中考复习专题6:图形与证明(2)
中考总复习:正多边形与圆的有关的证明和计算--知识讲解(基础)
中考总复习:正多边形与圆的有关的证明和计算—知识讲解(基础)【知识网络】【考点梳理】考点一、正多边形和圆1、正多边形的有关概念:(1) 正多边形:各边相等,各角也相等的多边形叫做正多边形.(2)正多边形的中心——正多边形的外接圆的圆心.(3)正多边形的半径——正多边形的外接圆的半径.(4)正多边形的边心距——正多边形中心到正多边形各边的距离.(正多边形内切圆的半径)(5)正多边形的中心角——正多边形每一边所对的外接圆的圆心角.2、正多边形与圆的关系:(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形.(2)这个圆是这个正多边形的外接圆.(3)把圆分成n(n≥3)等分,经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.这个圆叫做正n边形的内切圆.(4)任何正n边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3、正多边形性质:(1)任何正多边形都有一个外接圆.(2) 正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.当边数是偶数时,它又是中心对称图形,它的中心就是对称中心.(3)边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.(4)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.要点诠释:(1)正n边形的有n个相等的外角,而正n边形的外角和为360度,所以正n边形每个外角的度数是360n;所以正n边形的中心角等于它的外角.(2)边数相同的正多边形相似.周长的比等于它们边长(或半径、边心距)的比.面积比等于它们边长(或半径、边心距)平方的比.考点二、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、正多边形有关计算1.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【思路点拨】(1)作AE的垂直平分线交⊙O于C,G,作∠AOG,∠EOG的角平分线,分别交⊙O于H,F,反向延长 FO,HO,分别交⊙O于D,B顺次连接A,B,C,D,E,F,G,H,八边形ABCDEFGH即为所求;(2)由八边形ABCDEFGH是正八边形,求得∠AOD=3=135°得到的长=,设这个圆锥底面圆的半径为R,根据圆的周长的公式即可求得结论.【答案与解析】(1)如图所示,八边形ABCDEFGH即为所求,(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3=135°,∵OA=5,∴的长=,设这个圆锥底面圆的半径为R,∴2πR=,∴R=,即这个圆锥底面圆的半径为.故答案为:.【总结升华】本题考查了尺规作图,圆内接八边形的性质,弧长的计算,圆的周长公式的应用,会求八边形的内角的度数是解题的关键.举一反三:【变式1】如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是______米.【答案】31 .解析:如图,以三个圆心为顶点等边三角形O1O2O3的高O1C=3,所以AB=AO1+O1C+BC=131312222++=+.【变式2】同一个圆的内接正三角形、正方形、正六边形的边长的比是__________.【答案】321::【变式3】一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为2,则扇形纸板和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:【答案】A.【解析】解:如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=2,∵∠AOB=45°,∴OB=AB=2,由勾股定理得:OD==2,∴扇形的面积是=π;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=2,∴MC=MB=,∴⊙M的面积是π×()2=2π,∴扇形和圆形纸板的面积比是π÷(2π)=.故选:A.类型二、正多边形与圆有关面积的计算2.(1)如图(a),扇形OAB的圆心角为90°,分别以OA,OB为直径在扇形内作半圆,P和Q 分别表示阴影部分的面积,那么P和Q的大小关系是( ).A.P=Q B.P>Q C.P<Q D.无法确定(2)如图(b),△ABC为等腰直角三角形,AC=3,以BC为直径的半圆与斜边AB交于点D,则图中阴影部分的面积是________.(3)如图(c),△AOB中,OA=3cm,OB=1cm,将△AOB绕点O逆时针旋转90°到△A′OB′,求AB 扫过的区域(图中阴影部分)的面积.(结果保留π)【思路点拨】 直接使用公式计算阴影部分面积比较困难时,可采用和差法、转化法、方程法等,有时也需要运用变换的观点来解决问题.【答案与解析】解:(1)阴影部分的面积直接求出十分困难,可利用几个图形面积的和差进行计算:2OAB OCA P S S Q =-+扇形半圆2211()42R R Q Q ππ=-+=; (2)(转化法“凑整”)利用BmD CnD S S =弓形弓形,则阴影部分的面积可转化为△ACD 的面积,等于△ABC面积的一半,答案为94; (3)(旋转法)将图形ABM 绕点O 逆时针旋转到A ′B ′M ′位置,则A OA MOM S S S ''=-阴影扇形扇形2211244OA OM πππ=-=. 【总结升华】求阴影面积的几种常用方 (1)公式法;(2)割补法;(3)旋转法;(4)拼凑法;(5)等积变形法;(6)构造方程法.举一反三:【变式】如图,在△ABC 中,AB =AC ,AB =8,BC =12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是( )A .64π127-B .16π32-C .16π247-D .16π127-【答案】解:如图,由AB ,AC 为直径可得AD ⊥BC ,则BD =DC =6.在Rt △ABD 中,228627AD =-=∴ 211246271612722S ππ⎛⎫=⨯⨯⨯-⨯⨯=-⎪⎝⎭阴影. 答案选D. 3.如图所示,A 是半径为2的⊙O 外一点,OA =4,AB 是⊙O 的切线,B 为切点,弦BC ∥OA ,连AC ,求阴影部分的面积.【思路点拨】图中的阴影是不规则图形,不易直接求出,如果连接OB 、OC ,由BC ∥OA ,根据同底等高的三角形面积相等,于是所求阴影可化为扇形OBC 去求解.【答案与解析】解:如图所示,连OB 、OC∵ BC ∥OA .∴ △OBC 和△ABC 同底等高,∴ S △ABC =S △OBC ,∵ AB 为⊙O 的切线,∴ OB ⊥AB .∵ OA =4,OB =2,∴ ∠AOB =60°.∵ BC ∥OA , ∴ ∠AOB =∠OBC =60°.∵ OB =OC ,∴ △OBC 为正三角形.∴ ∠COB =60°,∴ 260223603OBC S S ππ⨯===阴影扇形.【总结升华】通过等积替换化不规则图形为规则图形,在等积转化中①可根据平移、旋转或轴对称等图形变换;②可根据同底(等底)同高(等高)的三角形面积相等进行转化.举一反三:【变式】如图所示,半圆的直径AB =10,P 为AB 上一点,点C ,D 为半圆的三等分点,则阴影部分的面积等于________.【答案】解:连接OC 、OD 、CD . ∵ C 、D 为半圆的三等分点,∴ ∠AOC =∠COD =∠DOB =180603=°°. 又∵ OC =OD ,∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,∴ PCD OCD S S =△△,∴ 2605253606S S ππ===阴影扇形OCD .4.如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆与对角线AC 交于点E .(1)求弧BE 所对的圆心角的度数.(2)求图中阴影部分的面积(结果保留π).【思路点拨】(1)连接OE,由条件可求得∠EAB=45°,利用圆周角定理可知弧BE所对的圆心角∠EOB=2∠EAB=90°;(2)利用条件可求得扇形AOE的面积,进一步求得弓形的面积,利用Rt△ADC的面积减去弓的面积可求得阴影部分的面积.【答案与解析】解:(1)连接OE,∵四边形ABCD为正方形,∴∠EAB=45°,∴∠EOB=2∠EAB=90°;(2)由(1)∠EOB=90°,且AB=4,则OA=2,∴S扇形AOE==π,S△AOE=OA2=2,∴S弓形=S扇形AOE﹣S△AOE=π﹣2,又∵S△ACD=AD•CD=×4×4=8,∴S阴影=8﹣(π﹣2)=10﹣π.【总结升华】本题主要考查扇形面积的计算和正方形的性质,掌握扇形的面积公式是解题的关键,注意弓形面积的计算方法.5.将一块三角板和半圆形量角器按图中方式叠放,重叠部分(阴影)的量角器圆弧(AB)对应的中心角(∠AOB)为120°,AO的长为4cm,求图中阴影部分的面积.【思路点拨】看是否由“规则的”三角形、四边形、圆、扇形、弓形等可求面积的图形,经过怎样的拼凑、割补、叠合而成,这是解决这类题的关键.【答案与解析】阴影部分的面积可看成是由一个扇形AOB 和一个Rt △BOC 组成,其中扇形AOB 的中心角是120°,AO 的长为4,Rt △BOC 中,OB =OA =4,∠BOC =60°,∴ 可求得BC 长和OC 长,从而可求得面积,阴影部分面积=扇形AOB 面积+△BOC 面积=21623cm 3π⎛⎫+ ⎪⎝⎭. 【总结升华】本题是求简单组合图形的面积问题,解答时,常常是寻找这些“不规则的图形”是由哪些“可求面积的、规则的图形”组合而成.举一反三:【变式】如图,矩形ABCD 中,AB =1,2AD =.以AD 的长为半径的⊙A 交BC 于点E ,则图中阴影部分的面积为________.【答案】1224π--. 解析:连接AE ,易证AB =BE =1,∠BAE =45°,所以∠EAD =45°, 所以21112(2)22824ABE ABCD DAE S S S S ππ=--=--=--△阴影矩形扇形.6.如图,AB是⊙O的直径,点P是AB延长线上一点,PC切⊙O于点C,连接AC,过点O作AC的垂线交AC于点D,交⊙O于点E.已知AB﹦8,∠P=30°.(1)求线段PC的长;(2)求阴影部分的面积.【思路点拨】(1)连接OC,由PC为圆O的切线,根据切线的性质得到OC与PC垂直,可得三角形OCP为直角三角形,同时由直径AB的长求出半径OC的长,根据锐角三角函数定义得到tanP为∠P的对边OC与邻边PC的比值,根据∠P的度数,利用特殊角的三角函数值求出tanP的值,由tanP及OC的值,可得出PC 的长;(2)由直角三角形中∠P的度数,根据直角三角形的两个锐角互余求出∠AOC的度数,进而得出∠BOC的度数,由OD与BC垂直,且OC=OB,利用等腰三角形的三线合一得到OD为∠BOC的平分线,可求出∠COD度数为60°,再根据直角三角形中两锐角互余求出∠OCD度数为30°,根据30°角所对的直角边等于斜边的一半,由斜边OC的长求出OD的长,先由∠COD的度数及半径OC的长,利用扇形的面积公式求出扇形COE的面积,再由OD与CD的长,利用直角三角形两直角边乘积的一半求出直角三角形COD 的面积,用扇形COE的面积减去三角形COD的面积,即可求出阴影部分的面积.【答案与解析】解:(1)连接OC,∵PC切⊙O于点C,∴OC⊥PC,∵AB=8,∴OC=12AB=4,又在直角三角形OCP中,∠P=30°,∴tanP=tan30°=OCPC,即PC=433=43;(2)∵∠OCP=90°,∠P=30°,∴∠COP=60°,∴∠AOC=120°,又AC⊥OE,OA=OC,∴OD为∠AOC的平分线,∴∠COE=12∠AOC=60°,又半径OC=4,∴S扇形OCE=26048= 3603ππ⨯,在Rt△OCD中,∠COD=60°,∴∠OCD=30°,∴OD=12OC=2,根据勾股定理得:CD=22OC-OD=23,∴S△OCD=12DC•OD=12×23×2=23,则S阴影=S扇形OCE-S△OCD=8-233π.【总结升华】此题考查了切线的性质,含30°角的直角三角形的性质,等腰三角形的性质,锐角三角函数定义,以及扇形的面积公式,遇到已知切线的类型题时,常常连接圆心与切点,利用切线的性质得出垂直,利用直角三角形的性质来解决问题.。
2024年中考数学教学工作计划例文(6篇)
2024年中考数学教学工作计划例文本学期,我负责初一1班和2班的数学教学任务。
为确保工作的精确性和全面性,我制定了以下教学工作计划:一、教学理念:本学期,我将以“推动课堂改革,提升教学实效性”为核心,致力于提升每位学生的学习水平。
我将深入领会并贯彻学校的教育理念,坚持以学生为主体,勇于在教学方法上创新,努力成为一位杰出的数学教师。
二、工作目标:通过本学期的教学,期望学生能具备一定的数学素养,能自发地运用数学知识解决实际问题,形成坚实的数学基础。
培养一批数学优秀生,使他们掌握有效的学习方法。
减少不及格人数,营造良好的学习风气,养成良好的数学学习习惯。
并建立和谐的师生关系,促进学生的全面发展。
(一)、深入学习,树立新教学观念:开学初期,我将全面研读数学新课程标准,深入探究,以理解其核心理念为教学指导,确保教学实践与《标准》要求相一致,以实现对所有学生的有效教学,促进他们的全面发展。
(二)、了解学生心理特点,激发学习动力:初中阶段,学生心理发生显著变化,对“独立自主”的需求增强,但可能对中学阶段的挑战准备不足。
因此,教师需激发学生的学习兴趣,让他们了解数学在日常生活中的应用,通过实际体验增强他们对数学学习的直接兴趣。
教师在言行上要尊重学生的自尊心,鼓励他们积极参与课堂讨论。
(三)、以课堂教学为关键:(1)作为教师,我将全面掌握教材,精心备课,充分考虑学生、教学方法等因素。
设计教学内容时,要确保各环节过渡自然,提出的问题应具有层次性和挑战性,以满足不同学生的学习需求。
在学生方面,通过设立学习小组,利用小组合作的方式,促进优生帮助差生,带动中等生,以此提高整体教学质量。
2024年中考数学教学工作计划例文(二)一、教材内容体系分析本册教材共涵盖六章内容,其中关于空间与图形的章节为两章,即第四章《相似图形》与第六章《证明》(一);关于数与代数的章节为三章,分别是第一章《一元一次不等式和一元一次不等式组》、第二章《分解因式》及第三章《分式》;而关于统计与概率的内容则集中在一章,即《数据的搜集与处理》。
(最新)2020年中考数学复习 专题6 四边形与三角形的综合(精讲)试题
专题六四边形与三角形的综合毕节中考备考攻略纵观近4年毕节中考数学试卷,四边形与三角形的综合是每年的必考考点,其中2015年第24题综合考查平行四边形和直角三角形;2016年第25题综合考查菱形和三角形全等;2017年第24题综合考查平行四边形与三角形相似、解直角三角形;2018年第24题综合考查平行四边形、三角形和菱形.预计2019年将继续综合考查四边形与三角形.熟练掌握特殊四边形的性质与判定、特殊三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质,掌握三角形中位线和梯形中位线性质的推导和应用,会画出四边形全等变换后的图形.解决问题时必须充分利用几何图形的性质及在题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用各种数学方法.中考重难点突破四边形与特殊三角形例1 如图,在四边形ABCD 中,AB ∥DC,AB =AD,对角线AC,BD 交于点O,AC 平分∠BAD ,过点C 作CE⊥AB 交AB 的延长线于点E,连接OE.(1)求证:四边形ABCD 是菱形; (2)若AB =5,BD =2,求OE 的长.【解析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DCA ,得出CD =AD =AB,即可得出结论; (2)先判断出OE =OA =OC,再求出OB =1,利用勾股定理求出OA,即可得出结果. 【答案】(1)证明:∵AB∥CD ,∴∠CAB =∠ACD. ∵AC 平分∠BAD ,∴∠CAB =∠CAD , ∴∠CAD =∠ACD ,∴AD =CD. 又∵AD=AB,∴AB =CD.又∵AB∥CD ,∴四边形ABCD 是平行四边形. 又∵AB=AD,∴四边形ABCD 是菱形; (2)解:∵四边形ABCD 是菱形,∴AC ⊥BD,OA =OC =12AC,OB =OD =12BD =1.在Rt △AOB 中,∠AOB =90°,∴OA =AB 2-OB 2=2. ∵CE ⊥AB,∴∠AEC =90°. 在Rt △AEC 中,O 为AC 中点, ∴OE =12AC =OA =2.四边形与三角形全等例2 (2018·张家界中考)在矩形ABCD 中,点E 在BC 上,AE =AD,DF ⊥AE,垂足为点F. (1)求证:DF =AB ;(2)若∠FDC=30°,且AB =4,求AD.【解析】(1)利用“AAS ”证△ADF≌△EAB 即可得证;(2)由∠ADF+∠FDC=90°,∠DAF +∠ADF=90°得∠FDC=∠DAF=30°,据此知AD =2DF,根据DF =AB 可得答案.【答案】(1)证明:在矩形ABCD 中,AD ∥BC, ∴∠AEB =∠DAF.又∵DF⊥AE ,∴∠DFA =90°,∴∠DFA =∠B. 又∵AD=EA,∴△ADF ≌△EAB,∴DF =AB ;(2)解:∵∠ADF+∠FDC =90°,∠DAF +∠ADF=90°,∴∠FDC =∠DAF=30°,∴AD =2DF.∵DF =AB =4,∴AD =2AB =8.四边形与三角形相似例3 (2018·资阳中考)已知:如图,在Rt △ABC 中,∠ACB =90°,点M 是斜边AB 的中点,MD ∥BC,且MD =CM,DE ⊥AB 于点E,连接AD,CD.(1)求证:△MED∽△BCA; (2)求证:△AMD≌△CMD;(3)设△MDE 的面积为S 1,四边形BCMD 的面积为S 2,当S 2=175S 1时,求cos ∠ABC 的值.【解析】(1)易证∠DME=∠CBA ,∠ACB =∠DE M =90°,从而可证明△MED∽△BCA;(2)由∠ACB=90°,点M 是斜边AB 的中点,可知BM =CM =AM,又由MD∥BC 可证明∠AMD=∠CMD ,从而可利用全等三角形的判定方法证明△AMD≌△CMD;(3)易证DM =12AB,由(1)可知△MED∽△BCA ,所以S 1S △ACB =⎝ ⎛⎭⎪⎫DM AB 2=14,所以S △MCB =12S △ACB =2S 1,从而可求出S △EBD =S 2-S △MCB -S 1=25S 1,由于S 1S △EBD =ME EB ,从而可知ME BE =52,设ME =5x,EB =2x,从而用x 表示出AB,BC,最后根据锐角三角函数的定义即可求出答案.【答案】(1)证明:∵MD∥BC ,∴∠DME =∠CBA. ∵∠ACB =∠DEM=90°,∴△MED ∽△BCA ; (2)证明:∵∠ACB=90°,点M 是斜边AB 的中点, ∴BM=CM =AM,∴∠MCB =∠MBC. ∵∠DMB =∠MBC , ∴∠MCB =∠DMB=∠MBC. ∵MD ∥BC,∴∠CMD =180°-∠MCB. 又∵∠AMD=180°-∠DMB , ∴∠AMD =∠CMD. 在△AMD 与△CMD 中, ⎩⎪⎨⎪⎧MD =MD ,∠AMD =∠CMD,AM =CM ,∴△AMD ≌△CMD(SAS );(3)解:∵DM=CM,∴AM =CM =DM =BM, ∴DM =12AB.由(1)可知△MED∽△BCA ,∴S 1S △ACB =⎝ ⎛⎭⎪⎫DM AB 2=14,∴S △ACB =4S 1. ∵CM 是△ACB 的中线,∴S △MCB =12S △ACB =2S 1,∴S △EBD =S 2-S △MCB -S 1=25S 1,∴S 1S △EBD =ME EB ,∴S 125S 1=ME EB ,∴ME EB =52. 设ME =5x,EB =2x,则BM =7x, ∴AB =2BM =14x. ∵MD AB =ME BC =12,∴BC =10x, ∴cos ∠ABC=BC AB =10x 14x =57.1.(2018·贺州中考)如图,在△ABC 中,∠ACB =90°,O,D 分别是边AC,AB 的中点,过点C 作CE ∥AB 交DO 的延长线于点E,连接AE.(1)求证:四边形AECD 是菱形;(2)若四边形AECD 的面积为24,tan ∠BAC =34,求BC 的长.(1)证明:∵点O 是AC 的中点,∴OA =OC.∵CE ∥AB,∴∠DAO =∠ECO. 又∵∠AOD=∠COE ,∴△AOD ≌△COE(ASA ),∴AD =CE, ∴四边形AECD 是平行四边形. 又∵CD 是Rt △ABC 斜边AB 上的中线, ∴CD =AD =12AB,∴四边形AECD 是菱形;(2)由(1)知,四边形AECD 是菱形,∴AC ⊥ED.在Rt △AOD 中,tan ∠DAO =OD OA =tan ∠BAC =34,可设OD =3x,OA =4x, 则ED =2OD =6x,AC =2OA =8x.由题意可得12·6x·8x=24,∴x =1,∴OD =3.∵O,D 分别是AC,AB 的中点, ∴OD 是△ABC 的中位线, ∴BC =2OD =6.2.(2018·盐城中考)在正方形ABCD 中,对角线BD 所在的直线上有两点E,F 满足BE =DF,连接AE,AF,CE,CF,如图.(1)求证:△AB E≌△ADF;(2)试判断四边形AECF 的形状,并说明理由. (1)证明:∵四边形ABCD 是正方形,∴AB =AD, ∴∠ABD =∠ADB ,∴∠ABE =∠ADF. 在△ABE 与△ADF 中,⎩⎪⎨⎪⎧AB =AD ,∠ABE =∠ADF,BE =DF ,∴△ABE ≌△ADF(SAS ); (2)解:四边形AECF 是菱形. 理由:连接AC,交BD 于点O. ∵四边形ABCD 是正方形, ∴OA =OC,OB =OD,AC ⊥EF, ∴OB +BE =OD +DF,即OE =OF. ∵OA =OC,OE =OF,∴四边形AECF 是平行四边形, 又∵AC⊥EF ,∴四边形AECF 是菱形.3.(2018·湖州中考) 已知在Rt △ABC 中,∠BAC =90°,AB ≥AC,D,E 分别为AC,BC 边上的点(不包括端点),且DC BE =ACBC=m,连接AE,过点D 作DM ⊥AE,垂足为点M,延长DM 交AB 于点F. (1)如图1,过点E 作EH⊥AB 于点H,连接DH.①求证:四边形DHEC 是平行四边形; ②若m =22,求证:AE =DF ; (2)如图2,若m =35,求DFAE的值.(1)证明:①∵EH⊥AB ,∠BAC =90°, ∴EH ∥CA,∴△BHE ∽△BAC,∴BE BC =HEAC .∵DC BE =AC BC ,∴BE BC =DC AC ,∴HE AC =DC AC, ∴HE =DC.∵EH ∥DC,∴四边形DHEC 是平行四边形; ②∵AC BC =22,∠BAC =90°,∴AC =AB.∵DC BE =22,HE =DC,∴HE BE =22. 又∵∠BHE=90°,∴BH =HE. ∵HE =DC,∴BH =CD,∴AH =AD. ∵DM ⊥AE,EH ⊥AB, ∴∠EHA =∠AMF=90°,∴∠HAE +∠HEA=∠HAE+∠AFM=90°, ∴∠HEA =∠AFD.∵∠EHA =∠FAD=90°,∴△HEA ≌△AFD,∴AE =DF ; (2)解:过点E 作EG⊥AB 于点G.∵CA ⊥AB,∴EG ∥CA,∴△EGB ∽△CAB, ∴EG CA =BE BC ,∴EG BE =CA BC =35. ∵CD BE =35,∴EG =CD. 设EG =CD =3x,AC =3y,则BE =5x,BC =5y, ∴BG =4x,AB =4y. ∵∠EGA =∠AMF=90°, ∴∠GEA +∠EAG=∠EAG+∠AFM ,∴∠AFM=∠AEG.∵∠FAD=∠EGA=90°,∴△FAD∽△EGA,∴DFAE=ADAG=3y-3x4y-4x=34.毕节中考专题过关 1.(2018·乌鲁木齐中考)如图,在四边形ABCD 中,∠BAC =90°,E 是BC 的中点,AD ∥BC,AE ∥DC,EF ⊥CD 于点F.(1)求证:四边形AECD 是菱形;(2)若AB =6,BC =10,求EF 的长.(1)证明:∵AD∥BC ,AE ∥DC,∴四边形AECD 是平行四边形.∵∠BAC =90°,E 是BC 的中点,∴AE =CE =12BC,∴四边形AECD 是菱形;(2)解:过A 作AH⊥BC 于点H.∵∠BAC =90°,AB =6,BC =10,∴AC =102-62=8.∵S △ABC =12BC·AH=12AB·AC ,∴AH =6×810=245.∵点E 是BC 的中点,BC =10,四边形AECD 是菱形,∴CD =CE =5.∵S ▱AECD =CE·A H =CD·EF ,∴EF =AH =245.2.(2018·青岛中考)已知:如图,▱ABCD 的对角线AC 与BD 相交于点E,点G 为AD 的中点,连接CG,CG 的延长线交BA 的延长线于点F,连接FD.(1)求证:AB =AF ;(2)若AG =AB,∠BCD =120°,判断四边形ACDF 的形状,并证明你的结论.(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD,AB =CD,∴∠AFG =∠DCG.又∵GA=GD,∠AGF =∠CGD ,∴△AGF ≌△DGC,∴AF =CD.∴AB =AF ;(2)解:四边形ACDF 是矩形.证明:∵AF=CD,AF ∥CD,∴四边形ACDF 是平行四边形.∵四边形ABCD 是平行四边形,∴∠BAD =∠BCD=120°.∴∠FAG =60°.∵AB =AG =AF,∴△AFG 是等边三角形,∴AG =GF.∵四边形ACDF 是平行四边形,∴FG =CG,AG =DG.∴AD=CF.∴四边形ACDF 是矩形.3.已知:如图,四边形ABCD 中,AD ∥BC,AD =CD,E 是对角线BD 上一点,且EA =EC.(1)求证:四边形ABCD 是菱形;(2)如果BE =BC,且∠CBE∶∠BCE=2∶3,求证:四边形ABCD 是正方形.证明:(1)在△ADE 与△CDE 中,⎩⎪⎨⎪⎧AD =CD ,DE =DE ,EA =EC ,∴△ADE ≌△CDE,∴∠ADE =∠CDE.∵AD ∥BC,∴∠ADE =∠CBD ,∴∠CDE =∠CBD ,∴BC =CD.∵AD =CD,∴BC =AD,∴四边形ABCD 为平行四边形.∵AD =CD,∴四边形ABCD 是菱形;(2)∵BE=BC,∴∠BCE =∠BEC.∵∠CBE ∶∠BCE =2∶3,∴∠CBE =180×22+3+3=45°. ∵四边形ABCD 是菱形,∴∠ABE =∠CBE=45°,∴∠ABC =90°,∴四边形ABCD 是正方形.4.(2018·眉山中考)如图①,在四边形ABCD 中,AC ⊥BD 于点E,AB =AC =BD,点M 为BC 的中点,N 为线段AM 上的点,且MB =MN.(1)求证:BN 平分∠ABE;(2)若BD =1,连接DN,当四边形DNBC 为平行四边形时,求线段BC 的长;(3)如图②,若点F 为AB 的中点,连接FN,FM,求证:△MFN∽△BDC.(1)证明:∵AB=AC,∴∠ABC =∠ACB.∵M 为BC 的中点,∴AM ⊥BC.在Rt △ABM 中,∠MAB +∠ABC=90°.在Rt △CBE 中,∠EBC +∠ACB=90°,∴∠MAB =∠EBC.又∵MB =MN,∴△MBN 为等腰直角三角形,∴∠MNB =∠MBN=45°,∴∠EBC +∠NBE=45°,∠MAB +∠ABN=∠MNB=45°,∴∠NBE =∠ABN ,即BN 平分∠ABE;(2)解:设BM =CM =MN =a.当四边形DNBC 是平行四边形时,DN =BC =2a.在△ABN 和△DBN 中,⎩⎪⎨⎪⎧AB =DB ,∠NBD =∠NBA,BN =BN ,∴△ABN ≌△DBN(SAS ),∴AN =DN =2a.在Rt △ABM 中,由AM 2+BM 2=AB 2,得(2a +a)2+a 2=1,解得a =±1010(负值舍去),∴BC =2a =105;(3)证明:在Rt △MAB 中,F 是AB 的中点,∴MF =AF =BF,∴∠MAB =∠FMN.又∵∠MAB=∠CBD ,∴∠FMN =∠DBC. ∵MFAB =MNBC =12,∴MF BD =MN BC =12,∴△MFN ∽△BDC.5.(2018·枣庄中考)如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG∥CD 交AF 于点G,连接DG.(1)求证:四边形EFDG 是菱形;(2)探究线段EG,GF,AF 之间的数量关系,并说明理由;(3)若AG =6,EG =25,求BE 的长.(1)证明:∵GE∥DF ,∴∠EGF =∠DFG.由翻折的性质可知DG =EG,DF =EF,∠DGF =∠EGF ,∴∠DGF =∠DFG ,∴DG =DF,∴DG =EG =DF =EF,∴四边形EFDG 是菱形;(2)解:EG 2=12GF·AF.理由:连接DE,交AF 于点O.∵四边形EFDG 是菱形,∴GF ⊥DE,OG =OF =12GF.∵∠DOF =∠ADF=90°,∠OFD =∠DFA , ∴△DOF ∽△ADF,∴DF AF =OF DF ,即DF 2=OF·AF.∵OF =12GF,DF =EG,∴EG 2=12GF·AF;(3)解:过点G 作GH⊥DC ,垂足为点H. ∵EG 2=12GF·AF ,AG =6,EG =25,即GF 2+6GF -40=0,解得GF =4,GF =-10(舍去).∵DF =EG =25,AF =AG +GF =10, ∴AD =AF 2-DF 2=4 5.∵GH ⊥DC,AD ⊥DC,∴GH ∥AD, ∴△FGH ∽△FAD,∴GH AD =GF AF ,即GH 45=410,∴GH =855.∴BE =AD -GH =45-855=1255.。
中考数学复习专题7几何综合题、几何与代数综合题 (2)
≥0的解集. 9.阅读下列材料,并用相关的思想方法解决问题. 计算:(1﹣ ﹣ ﹣ )×( + + + )﹣(1﹣ ﹣ ﹣ ﹣
)×( + + ). 令 + + =t,则 原式=(1﹣t)(t+ )﹣(1﹣t﹣ )t =t+ ﹣t2﹣ t﹣ t+t2 = 问题: (1)计算 (1﹣
﹣ ﹣ ﹣…﹣ )×( + + + +…+ + )﹣(1﹣ ﹣ ﹣ ﹣ ﹣…﹣
的代数式表示 ); (2)设该格点多边形外的格点数为 ,则 =
二、应用题 3.定义运算max{a, b}:当a≥b时,max{a,b}=a;当a<b时,max{a, b}=b.如max{﹣3,2}=2. (1)max{ , 3}= 3 ; (2)已知y1= 和y2=k2x+b在同一坐标系中的图象如图所示,若max{ ,k2x+b}= ,结合图象,直接写出x的取值范围; (3)用分类讨论的方法,求max{2x+1,x﹣2}的值.
归纳证明 (2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等 式表示出来,请利用图3证明你发现的关系式; 拓展应用 (3)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中 点,BE⊥EG,AD= ,AB=3.求AF的长.
5.阅读理解 材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行 的两边叫梯形的底边,不平行的两边叫梯形的底边,不平行的两边叫梯 形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有 以下性质: 梯形的中位线平行于两底和,并且等于两底和的一半. 如图(1):在梯形ABCD中:AD∥BC ∵E、F是AB、CD的中点 ∴EF∥AD∥BC EF=
2020年江西省中考数学第二轮专题复习教案及练习:专题六 二次函数压轴题(含答案)
专题六二次函数压轴题类型一二次函数与图形变换如图①,已知直线l:y=-x+2与y轴交于点A,抛物线y=(x-1)2+m 也经过点A,其顶点为B,将该抛物线沿直线l平移,使顶点B落在直线l上的点D处,点D的横坐标为n(n>1).(1)求点B的坐标;(2)平移后的抛物线可以表示为__________________(用含n的式子表示);(3)若平移后的抛物线与原抛物线相交于点C,且点C的横坐标为a.①请写出a关于n的函数关系式;②如图②,连接AC、CD,若∠ACD=90°,求a的值.【分析】(1)点B是抛物线顶点,要求点B的坐标,只需求抛物线解析式即可,将点A代入即可得解;(2)确定平移后的抛物线解析式,可根据抛物线平移规律直接得解;(3)①由点C是两抛物线交点,可联立解方程来确定a与n的关系;②由∠ACD=90°,可过点C作y轴的垂线,构造三垂直模型利用相似来解.【自主解答】1.已知平面直角坐标系中两定点A (-1,0)、B (4,0),抛物线y =ax 2+bx -2(a ≠0)过点A ,B ,顶点为C ,点P (m ,n )(n <0)为抛物线上一点.(1)求抛物线的解析式和顶点C 的坐标;(2)当∠APB 为钝角时,求m 的取值范围;(3)若m >32,当∠APB 为直角时,将该抛物线向左或向右平移t (0<t <52)个单位长度,点C 、P 平移后对应的点分别记为C ′、P ′,是否存在t ,使得首尾依次连接A 、B 、P ′、C ′所构成的多边形的周长最短?若存在,求t 的值,并说明抛物线平移的方向;若不存在,请说明理由.2.(2019·陕西)在平面直角坐标系中,已知抛物线L :y =ax 2+(c -a )x +c 经过点A (-3,0)和点B (0,-6),L 关于原点O 对称的抛物线为L ′.(1)求抛物线L 的表达式;(2)点P 在抛物线L ′上,且位于第一象限,过点P 作PD ⊥y 轴,垂足为D ,若△POD 与△AOB 相似,求符合条件的点P 的坐标.3.已知二次函数y=ax2-2ax-2的图象(记为抛物线C1)的顶点为M,直线l:y =2x-a与x轴、y轴分别交于A,B.(1)对于抛物线C1,以下结论正确的是________.①对称轴是:直线x=1;②顶点坐标是(1,-a-2);③抛物线一定经过两个定点.(2)当a>0时,设△ABM的面积为S,求S与a的函数关系式.(3)将二次函数y=ax2-2ax-2的图象C1绕点P(t,-2)旋转180°得到二次函数的图象(记为抛物线C2),顶点为N.①当-2≤x≤1时,旋转前后的两个二次函数y的值都会随x的增大而减小,求t 的取值范围;②当a=1时,点Q是抛物线C1上的一点,点Q在抛物线C2上的对应点为Q′,试探究四边形QMQ′N能否为正方形?若能,求出t的值;若不能,请说明理由.类型二二次函数与几何图形综合如图,已知二次函数L 1:y=mx2+2mx-3m+1(m≥1)和二次函数L2:y=-m(x-3)2+4m-1(m≥1)图象的顶点分别为M,N,与x轴分别相交于A,B两点(点A在点B的左边)和C、D两点(点C在点D的左边).(1)函数y=mx2+2mx-3m+1(m≥1)的顶点坐标为________;当二次函数L1,L2的y值同时随x的增大而增大时,x的取值范围是________;(2)当AD=MN时,请直接写出四边形AMDN的形状;(3)抛物线L1,L2均会分别经过某些定点.①求所有定点的坐标;②若抛物线L1的位置固定不变,通过左右平移抛物线L2,使得这些定点组成的图形为菱形,则抛物线L2应平移的距离是多少?【分析】(1)将抛物线化为顶点式即可得到顶点坐标;由图象可得y随x的增大而增大的x的取值范围;(2)判断四边形AMDN的形状,可先证明四边形AMDN是平行四边形,再由AD =MN得到其为矩形;(3)①求抛物线经过的定点,可将抛物线化为关于m的代数式,令m的系数为0,代入求出对应的y值即可;②由所得图形为菱形,可先判定定点构成的图形是平行四边形,再根据菱形得到邻边相等,对角线互相垂直平分,从而利用勾股定理求解.【自主解答】1.(2019·海南)如图,已知抛物线y=ax2+bx+5经过A(-5,0),B(-4,-3)两点,与x轴的另一个交点为C,顶点为D,连接CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B,C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.2.(2019·辽阳)如图,在平面直角坐标系中,Rt△ABC的边BC在x轴上,∠ABC=90°,以A为顶点的抛物线y=-x2+bx+c经过点C(3,0),交y轴于点E(0,3),动点P在对称轴上.(1)求抛物线的解析式;(2)若点P从A点出发,沿A→B方向以1个单位/秒的速度匀速运动到点B停止,设运动时间为t秒,过点P作PD⊥AB交AC于点D,过点D平行于y轴的直线l交抛物线于点Q,连接AQ,CQ,当t为何值时,△ACQ的面积最大,最大值是多少?(3)若点M是平面内任意一点,在x轴上方是否存在点P,使得以点P,M,E,C为顶点的四边形是菱形?若存在,请直接写出符合条件的M点坐标;若不存在,请说明理由.第2题图备用图类型三二次函数与规律探索(2019·江西)特例感知(1)如图①,对于抛物线y 1=-x 2-x +1,y 2=-x 2-2x +1,y 3=-x 2-3x +1,下列结论正确的序号是________.①抛物线y 1,y 2,y 3都经过点C (0,1);②抛物线y 2,y 3的对称轴由抛物线y 1的对称轴依次向左平移12个单位得到;③抛物线y 1,y 2,y 3与直线y =1的交点中,相邻两点之间的距离相等. 形成概念(2)把满足y n =-x 2-nx +1(n 为正整数)的抛物线称为“系列平移抛物线”. 知识应用在(2)中,如图②.①“系列平移抛物线”的顶点依次为P 1,P 2,P 3,…,P n ,用含n 的代数式表示顶点P n 的坐标,并写出该顶点纵坐标y 与横坐标x 之间的关系式;②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:C 1,C 2,C 3,…,C n ,其横坐标分别为-k -1,-k -2,-k -3,…,-k -n (k 为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由.(3)在②中,直线y =1分别交“系列平移抛物线”于点A 1,A 2,A 3,…,A n ,连接C n A n ,C n -1A n -1,判断C n A n ,C n -1A n -1是否平行?并说明理由.图① 图②【分析】 (1)逐一判断3个结论的正确性即可;(2)①由抛物线y n 即可表示P n ,消去参数即可得到顶点P n 的横、纵坐标之间的关系式;②分别求出C n ,C n -1的横、纵坐标,利用两点距离公式求线段C n C n -1的长;(3)要判断C n A n 与C n -1A n -1是否平行,只需判断直线C n A n 与直线C n -1A n -1的解析式中自变量的系数是否相同即可.【自主解答】1.已知抛物线y =-x 2+2x +3和抛物线y n =n 3x 2-2n 3x -n (n 为正整数). (1)抛物线y =-x 2+2x +3与x 轴的交点坐标为____________,顶点坐标为________.(2)当n =1时,请解答下列问题:①直接写出y n 与x 轴的交点坐标__________,顶点坐标________.请写出抛物线y ,y n 的一条相同的图象性质________________;②当直线y =12x +m 与y ,y n 相交共有4个交点时,求m 的取值范围;(3)若直线y =k (k <0)与抛物线y =-x 2+2x +3,抛物线y n =n 3x 2-2n 3x -n (n 为正整数)共有4个交点,从左至右依次标记为点A ,点B ,点C ,点D ,当AB =BC =CD 时,求k ,n 之间满足的关系式.2.已知抛物线y n =-(x -a n )2+b n (n 为正整数,且0<a 1<a 2<…<a n )与x 轴的交点为A (0,0)和A n (c n ,0),c n =c n -1+2,当n =1时,第1条抛物线y 1=-(x -a 1)2+b 1与x 轴的交点为A (0,0)和A 1(2,0),其他依此类推.(1)求a 1,b 1的值及抛物线y 2的解析式.(2)抛物线y3的顶点B3的坐标为(______,______);依此类推,第n条抛物线y n 的顶点B n的坐标为(______,________);所有抛物线的顶点坐标满足的函数关系式是____________.(3)探究下列结论:①是否存在抛物线y n,使得△AA n B n为等腰直角三角形?若存在,请求出抛物线的表达式;若不存在,请说明理由.②若直线x=m(m>0)与抛物线y n分别交于C1,C2,…,C n,则线段C1C2,C2C3,…,C n-1C n的长有何规律?请用含有m的代数式表示.3.如图,抛物线y1=-x2+c与x轴交于A,B两点,且AB=2.(1)求抛物线y1的函数解析式,并直接写出y1的顶点坐标.(2)将y1先向右平移1个单位,再向上平移1个单位,记为第一次操作,得到抛物线y2.按同样的操作方式,经过第二次操作,可得到抛物线y3,经过第三次操作,可得到抛物线y4,…,经过第(n-1)次操作可得到抛物线y n.①y1的顶点是否在y2上?请说明理由.②若抛物线y n恰好经过点B(不含y1),求抛物线y n的解析式.③定义:当抛物线与x轴有两个交点时,定义:以这两个交点及抛物线顶点构成的三角形叫做该抛物线的“轴截三角形”.如△ABC是抛物线y1的“轴截三角形”.记抛物线y1,y2,y3,…,y n的“轴截三角形”的面积分别为S1,S2,S3,…,S n.当S n=125时,求n的值.4.小贤与小杰在探究某类二次函数问题时,经历了如下过程:求解体验(1)已知抛物线y=-x2+bx-3经过点(-1,0),则b=________,顶点坐标为______,该抛物线关于点(0,1)成中心对称的抛物线表达式是___________.抽象感悟我们定义,对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=-x2-2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决(3)已知抛物线y=ax2+2ax-b(a≠0).①若抛物线y的衍生抛物线为y′=bx2-2bx+a2(b≠0),两抛物线有两个交点,且恰好是它们的顶点,求a,b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1,其顶点为A1;关于点(0,k +22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)(n为正整数)的衍生抛物线为y n,其顶点为A n;….求A n A n+1的长(用含n的式子表示).类型四二次函数与新定义如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B 两点之间的部分与线段AB围成的图形称为该抛物线对应的准碟形,线段AB称为碟宽,顶点M 称为碟顶,点M 到线段AB 的距离称为碟高.(1)抛物线y =12x 2对应的碟宽为________;抛物线y =4x 2对应的碟宽为________;抛物线y =ax 2(a >0)对应的碟宽为________;抛物线y =a (x -2)2+3(a >0)对应的碟宽为________;(2)抛物线y =ax 2-4ax -53(a >0)对应的碟宽为6,且在x 轴上,求a 的值;(3)将抛物线y =a n x 2+b n x +c n (a n >0)对应的准碟形记为F n (n =1,2,3…),定义F 1,F 2,…,F n 为相似准碟形,相应的碟宽之比即为相似比.若F n 与F n -1的相似比为12,且F n 的碟顶是F n -1的碟宽的中点,现将(2)中求得的抛物线记为y 1,其对应的准碟形记为F 1.①求抛物线y 2的表达式;②若F 1的碟高为h 1,F 2的碟高为h 2,…,F n 的碟高为h n ,则h n =________,F n 的碟宽右端点横坐标为________;F 1,F 2,…,F n 的碟宽右端点是否在一条直线上?若是,直接写出该直线的表达式;若不是,请说明理由.【分析】 (1)根据定义易算出抛物线y =12x 2,抛物线y =4x 2的碟宽,且都利用端点(第一象限)横、纵坐标相等求解.推广至含字母的抛物线y =ax 2(a >0)可类似求解.而抛物线y =a (x -2)2+3(a >0)为顶点式,可看成由抛物线y =ax 2平移得到,则发现碟宽只和a 有关.(2)由(1)的结论,根据碟宽与a 的关系求解.(3)①由y 1,易推y 2.②由相似的性质得到h n 与h n -1,h n -1与h n -2,…h 2与h 1之间的关系,从而得到h n 即可;由等腰直角三角形性质得到F n 的碟宽与h n 之间的关系,即可得到F n 的碟宽右端点横坐标,先证明F n ,F n -1,F n -2的碟宽右端点在一条直线上,从而作出判断,再确定F 1,F 2的碟宽右端点所在直线即可求解.【自主解答】1.如图①,若抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 在抛物线L 1上(点A 与点B 不重合),我们把这样的两条抛物线L 1、L 2称为“伴随抛物线”,可见一条抛物线的“伴随抛物线”可以有多条.(1)抛物线L1:y=-x2+4x-3与抛物线L2是“伴随抛物线”,且抛物线L2的顶点B的横坐标为4,求抛物线L2的表达式;(2)若抛物线y=a1(x-m)2+n的任意一条“伴随抛物线”的表达式为y=a2(x-h)2+k,请写出a1与a2的关系式,并说明理由;(3)在图②中,已知抛物线L1:y=mx2-2mx-3m(m>0)与y轴相交于点C,它的一条“伴随抛物线”为L2,抛物线L2与y轴相交于点D,若CD=4m,求抛物线L2的对称轴.2.(2019·南昌二模)我们规定,以二次函数y=ax2+bx+c的二次项系数a的2倍为一次项系数,一次项系数b为常数项构造的一次函数y=2ax+b叫做二次函数y=ax2+bx+c的“子函数”,反过来,二次函数y=ax2+bx+c叫做一次函数y =2ax+b的“母函数”.(1)若一次函数y=2x-4是二次函数y=ax2+bx+c的“子函数”,且二次函数经过点(3,0),求此二次函数的解析式及顶点坐标;(2)若“子函数”y=x-6的“母函数”的最小值为1,求“母函数”的函数表达式;(3)已知二次函数y=-x2-4x+8的“子函数”图象直线l与x轴、y轴交于C、D 两点,点P在直线l上方的抛物线上,求△PCD的面积的最大值.3.(2019·南昌5月模拟)已知:抛物线C1:y=-(x+m)2+m2(m>0),抛物线C2:y=(x-n)2+n2(n>0),称抛物线C1,C2互为派对抛物线,例如抛物线C1:y=-(x+1)2+1与抛物线C2:y=(x-2)2+2是派对抛物线,已知派对抛物线C1,C2的顶点分别为A,B,抛物线C1的对称轴交抛物线C2于C,抛物线C2的对称轴交抛物线C 1与D .(1)已知抛物线:①y =-x 2-2x ,②y =(x -3)2+3,③y =(x -2)2+2,④y =x 2-x +12,则抛物线①②③④中互为派对抛物线的是________ (请在横线上填写抛物线的数字序号);(2)如图①,当m =1,n =2时,证明AC =BD ;(3)如图②,连接AB ,CD 交于点F ,延长BA 交x 轴的负半轴于点E ,记BD 交x 轴于G ,CD 交x 轴于点H ,∠BEO =∠BDC .①求证:四边形ACBD 是菱形;②若已知抛物线C 2:y =(x -2)2+4,请求出m 的值.图① 图②参考答案【例1】 解:(1)当x =0时,y =-x +2=2,∴A (0,2),把A (0,2)代入y =(x -1)2+m ,得1+m =2,∴m =1.∴B (1,1).(2)y =(x -n )2+2-n .(3)①∵点C 是两条抛物线的交点,∴点C 的纵坐标可以表示为(a -1)2+1或(a -n )2+2-n ,∴(a -1)2+1=(a -n )2+2-n ,即a 2-2a +1+1=a 2-2an +n 2+2-n , 2an -2a =n 2-n ,∵n >1,∴a =n 2-n 2n -2=n 2. ②如解图,过点C 作y 轴的垂线,垂足为E ,过点D 作DF ⊥CE 于点F .例1题解图∵∠ACD =90°,∴∠ACE =∠CDF .又∵∠AEC =∠DFC ,∴△ACE ∽△CDF ,∴AE EC =CF FD .又∵C (a ,a 2-2a +2),D (2a ,2-2a ),∴AE =a 2-2a ,DF =a 2,CE =CF =a ,∴a 2-2a a =a a 2,∴a 2-2a =1, 解得a =±2+1,∵n >1,∴a =n 2>12,∴a =2+1.跟踪训练1.解: (1)∵抛物线y =ax 2+bx -2(a ≠0)过点A ,B ,∴⎩⎪⎨⎪⎧a -b -2=0,16a +4b -2=0,解得⎩⎪⎨⎪⎧a =12,b =-32, ∴抛物线的解析式为y =12x 2-32x -2.∵y =12x 2-32x -2=12(x -32)2-258, ∴C (32,-258).(2)如解图①,以AB 为直径作⊙M ,则抛物线在圆内的部分,能使∠APB 为钝角,第1题解图①易得M (32,0),⊙M 的半径为52.设P ′是抛物线与y 轴的交点,∴OP ′=2,∵MP ′=OP′2+OM 2=52. ∵P 关于抛物线对称轴的对称点为点(3,-2),∴当-1<m <0或3<m <4时,∠APB 为钝角.(3)存在.抛物线向左或向右平移,∵AB 、P ′C ′是定值,∴要使首尾依次连接A 、B 、P ′、C ′所构成的多边形的周长第1题解图②最短,只要AC ′+BP ′最小.第一种情况:抛物线向右平移,AC ′+BP ′>AC +BP .第二种情况:向左平移,如解图②所示,由(2)可知P (3,-2), 又∵C (32,-258),∴C ′(32-t ,-258),P ′(3-t ,-2),将BP ′平移至AP ″,∵AB =5,∴P ″(-2-t ,-2),要使AC ′+BP ′最短,只要AC ′+AP ″最短即可,∵点C ′关于x 轴的对称点C ″的坐标为(32-t ,258),设直线P ″C ″的解析式为y =kx +b ,则⎩⎨⎧-2=(-2-t )k +b ,258=(32-t )k +b ,解得⎩⎪⎨⎪⎧k =4128,b =4128t +1314,∴直线P ″C ″的解析式为y =4128x +4128t +1314,当P ″、A 、C ″在同一条直线上时,周长最小,∴-4128+4128t +1314=0,∴t =1541. 故将抛物线向左平移1541个单位长度时,首尾依次连接A 、B 、P ′、C ′所构成的多边形的周长最短.2.解:(1)将点A (-3,0),B (0,-6)代入L 得⎩⎪⎨⎪⎧a (-3)2+(c -a )·(-3)+c =0,c =-6,解得⎩⎪⎨⎪⎧a =-1,c =-6,∴抛物线L 的表达式为y =-x 2-5x -6.(2)由题意,得∠PDO =90°,∠AOB =90°,由对称性可得L ′的表达式为y =x 2-5x +6.设点P 的坐标为(m ,m 2-5m +6),当△DPO ∽△OAB 时,DP DO =OA OB ,即m 2-5m +6=2m ,解得m 1=1,m 2=6,此时点P 的坐标为(1,2)或(6,12);当△DPO ∽△OBA 时,DP DO =OB OA ,即2m 2-10m +12=m ,解得m 3=4,m 4=32,此时点P 的坐标为(4,2)或(32,34).第2题解图3.解:(1)①②③(2)由抛物线的顶点公式求得:顶点M (1,-a -2).如解图①,当x =1时,y =2·1-a =2-a ,求得D (1,2-a );当y =0时,0=2x -a ,x =a 2,求得A (a 2,0),∴DM =2-a -(-a -2)= 4,∴S =S △BMD -S △AMD =12DM (OC -AC )=12DM ·AO =12·4·a 2=a .即S =a (a >0).(3)①当-2≤x ≤1时,C 1的y 的值会随x 的增大而减小,而C 1的对称轴为x =1, -2≤x ≤1在对称轴的左侧,C 1开口向上,∴a >0;同时C 2的开口向下,而当-2≤x ≤1时,y 的值会随x 的增大而减小,∴-2≤x ≤1要在C 2的对称轴右侧,令C 2的对称轴为x =m ,则m ≤2,而x =1和x =m 关于P (t ,-2)对称,∴P 到这两条对称轴的距离相等,∴1-t =t -m ,m =2t -1,∴2t -1≤-2,即t ≤-12.②当a =1时,M (1,-3),作PE ⊥CM 于E ,将Rt △PME 绕P 旋转90°,得到Rt △PQF ,则△MPQ 为等腰直角三角形,∵N ,Q ′分别是点M ,Q 的中心对称点,∴四边形MQNQ ′为正方形.第一种情况,当t ≤1时,求得PE =PF =1-t ,ME =QF =1,CE =2,∴Q (t +1,-t -1).把Q (t +1,-t -1)代入y =x 2-2x -2,得-t -1=(t +1)2-2(t +1)-2, t 2+t -2=0,解得:t 1=1,t 2=-2;第二种情况,当t >1时,求得PF =PE =t -1,ME =QF =1,CE =2, ∴Q (t -1,t -3),把Q (t -1,t -3)代入y =x 2-2x -2,得t -3=(t -1)2-2(t -1)-2,t 2-5t +4=0,解得t1=1 (舍去),t2=4综上t=-2或1或4.图①图②图③【例2】解:(1)(-1,-4m+1),-1<x<3(2)四边形AMDN是矩形.(3)①y=mx2+2mx-3m+1=m(x+3)(x-1)+1,∴当x=-3或1时,y=1,∴L1经过定点(-3,1)和(1,1).y=-m(x-3)2+4m-1=-m(x-5)(x-1)-1,∴当x=5或1时,y=-1,∴L2经过定点(5,-1)和(1,-1).②L1经过定点(-3,1)和(1,1),L2经过定点(5,-1)和(1,-1),设E(-3,1),F(1,1),G(5,-1),H(1,-1),则组成的四边形EFGH是平行四边形.如解图,另设平移距离为x,根据平移后的图形是菱形,由勾股定理得42=22+(4-x)2,解得x=4±23,故抛物线L2应平移的距离是4+23或4-2 3.例2题解图跟踪训练1.解:(1)将点A ,B 坐标代入抛物线表达式得⎩⎪⎨⎪⎧25a -25b +5=0,16a -4b +5=-3,解得⎩⎪⎨⎪⎧a =1,b =6, ∴抛物线的表达式为y =x 2+6x +5.(2)①令y =x 2+6x +5=0,得x 1=-1,x 2=-5,∴点C 的坐标为(-1,0). 由点B (-4,-3)得直线BC 的函数解析式为y =x +1,如解图①,过点P 作PG ∥y 轴交BC 于G ,第1题解图①设点P 的坐标为(t ,t 2+6t +5),则点G (t ,t +1),∴PG =(t +1)-(t 2+6t +5)=-t 2-5t -4,∴S △PBC =12PG ·|x C -x B |=32(-t 2-5t -4)=-32(t +52)2+278.∵-32<0,∴当t =-52时,△PBC 的面积最大,最大值为278.第1题解图②②设BP 交CD 于点H .当点P 在直线BC 下方时,∵∠PBC =∠BCD ,∴点H 在BC 的垂直平分线上,易得线段BC 的中点坐标为(-52,-32),过该点与直线BC 垂直的直线设为y =-x +m ,则-32=52+m ,解得m =-4,∴直线BC 的垂直平分线的函数解析式为y =-x -4.可得直线CD 的函数表达式为y =2x +2,联立得⎩⎪⎨⎪⎧y =-x -4,y =2x +2,解得⎩⎪⎨⎪⎧x =-2,y =-2,∴点H 的坐标为(-2,-2), 直线BH 的函数解析式为y =12x -1.联立得⎩⎨⎧y =x 2+6x +5,y =12x -1,解得⎩⎪⎨⎪⎧x =-32,y =-74,或⎩⎪⎨⎪⎧x =-4y =-3(舍去), ∴点P 的坐标为(-32,-74).当点P 在直线BC 上方时,∵∠PBC =∠BCD ,∴BP ∥CD ,∴直线BP 的表达式为y =2x +5,联立得⎩⎪⎨⎪⎧y =x 2+6x +5,y =2x +5,解得⎩⎪⎨⎪⎧x =-4,y =-3(舍去)或⎩⎪⎨⎪⎧x =0,y =5,∴点P 的坐标为(0,5).综上,所有点P 的坐标为(-32,-74),(0,5)2.解:(1)将C (3,0),E (0,3)代入y =-x 2+bx +c 得⎩⎪⎨⎪⎧-32+3b +c =0,c =3,解得⎩⎪⎨⎪⎧b =2,c =3,∴抛物线的解析式是y =-x 2+2x +3.(2)∵y =-x 2+2x +3=-(x -1)2+4,∴A (1,4).设直线AC 的解析式为y =mx +n ,将A ,C 代入得⎩⎪⎨⎪⎧m +n =4,3m +n =0,解得⎩⎪⎨⎪⎧m =-2,n =6,∴直线AC 的解析式为y =-2x +6.设P (1,4-t ),∵PD ⊥AB ,∴y D =4-t ,∴4-t =-2x +6,解得x =1+t2,∴点D 的坐标为(1+t2,4-t ).∵l ∥y 轴,∴x Q =1+t2,∴y Q =-(1+t2-1)2+4=4-14t 2,∴S △ACQ =S △ADQ +S △CDQ=12DQ ·BC=12(4-14t 2-4+t )×2=-14(t -2)2+1,∴当t =2时,S △ACQ 最大,最大值为1.(3)存在,综合条件的M 点坐标为(2,2),(-2,3+14),(4,17).【解法提示】设点P (1,t )(t >0),∵以P ,M ,E ,C 为顶点的四边形是菱形, ∴①当CE 为对角线时,PC =PE ,且PM 与CE 互相垂直平分,∴(1-0)2+(t -3)2=(3-1)2+t 2,解得t =1,即点P 的坐标为(1,1), 由菱形中心对称性质可知,点M 的坐标为(2,2);②CP =CE =32,即(3-1)2+t 2=32,解得t =14(负的已舍去), 即点P 的坐标为(1,14),此时点M 的坐标为(-2,3+14);③EP =CE =32,即(1-0)2+(t -3)2=32,解得t =3+17(负值已舍去),∴此时点P 的坐标为(1,3+17),则点M 的坐标为(4,17).【例3】 解:(1)当x =0时,y 1=y 2=y 3=1,∴①正确;y 1,y 2,y 3的对称轴分别是直线x 1=-12,x 2=-1,x 3=-32,∴②正确;y 1,y 2,y 3与直线y =1的交点(除点C 外)的横坐标分别为-1,-2,-3,∴距离为1,都相等,∴③正确.故答案为①②③.(2)①y n =-x 2-nx +1=-(x +n 2)2+n 2+44,∴顶点P n (-n 2,n 2+44).令顶点P n 的横坐标为x =-n 2,纵坐标y =n 2+44,∴y =n 2+44=(-n 2)2+1=x 2+1,即顶点P n 的纵坐标y 与横坐标x 满足关系式y =x 2+1. ②令C n (x n ,y n ),C n -1(x n -1,y n -1),x n -1=-k -(n -1)=-k -n +1,y n -1=-x n -12-(n -1)x n -1+1,x n =-k -n ,y n =-x n 2-nx n +1, ∵x n -1-x n =1,y n -1-y n =-x n -12-(n -1)x n -1+1+x n 2+nx n -1=(x n -x n -1)(x n +x n -1)+n (x n -x n -1)+x n -1=-(-k -n +1-k -n +n )-k -n +1=2k +n -1-k -n +1=k .∴C n -1C n =(x n -1-x n )2+(y n -1-y n )2=1+k 2. ∵C n -1C n =1+k 2与n 无关, ∴相邻两点之间的距离为定值,定值为1+k 2.(3)令y n =1得-x 2-nx +1=1,解得x 1=0,x 2=-n , ∴A n (-n ,1),由②知C n (x n ,-x n 2-nx n +1),设直线A n C n :y =k n x +b n ,则k n =1-(-x n 2-nx n +1)-n -x n =x n (x n +n )-n -(-k -n )=(-k -n )(-k -n +n )-n +k +n =k +n ,同理A n -1(-n +1,1),C n -1(x n -1,-x n -12-(n -1)x n -1+1), 设直线A n -1C n -1:y =k n -1x +b n -1,则k n -1=k +n -1,∴k n -1≠k n ,∴直线C n A n 与直线C n -1A n -1不平行.跟踪训练1.解:(1)(-1,0),(3,0);(1,4)(2)①(-1,0),(3,0);(1,-4n 3);对称轴为直线x =1[或与x 轴交点为(-1,0),(3,0)]②当直线y =12x +m 与y 相交只有1个交点时,由⎩⎨⎧y =12x +m ,y =-x 2+2x +3,整理得x 2-32x +m -3=0, ∴b 2-4ax =(32)2-4(m -3)=0,解得m =5716.当直线y =12x +m 与y n 相交只有1个交点时,由⎩⎪⎨⎪⎧y =12x +m ,y =13x 2-23x -1,整理得2x 2-7x -(6+6m )=0, ∴b 2-4ax =72-4×2×(-6-6m )=0,解得m =-9748,把点(-1,0)代入y =12x +m 得m =12,把(3,0)代入y =12x +m 得m =-32,如解图①,∴m 的取值范围是-9748<m <5716,且m ≠-32,m ≠12.(3)如解图②,由⎩⎪⎨⎪⎧y =k ,y =-x 2+2x +3得x 2-2x +k -3=0, ∴AD 2=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=16-4k ,由⎩⎨⎧y =k ,y =n 3x 2-2n 3x -n得nx 2-2nx -(3n +3k )=0, ∴BC 2=(x 3-x 4)2=(x 3+x 4)2-4x 3x 4=16+12k n , ∵AB =BC =CD ,∴AD 2=9BC 2,∴16-4k =9(16+12k n ), ∴32n +27k +nk =0.图① 图② 2.解: (1)当n =1时,第1条抛物线y 1=-(x -a 1)2+b 1与x 轴的交点为A (0,0),A 1(2,0),∴y 1=-x (x -2)=-(x -1)2+1,则a 1=1,b 1=1. 由c n =c n -1+2可知,c 2=c 1+2=2+2=4, ∴抛物线y 2与x 轴的交点为A (0,0),A 2(4,0), ∴y 2=-x (x -4)=-x 2+4x .(2)3,9,n ,n 2,y =x 2;(3)①存在,由(1)(2)得A n (2n ,0),B n (n ,n 2). 当△AA n B n 为等腰直角三角形时,n 2=n ,解得n 1=1,n 2=0(舍去).∴存在抛物线y n ,使得△AA n B n 为等腰直角三角形,此时抛物线为y 1=-(x -1)2+1.②∵y n =-x (x -2n )=-x 2+2nx ,当x =m (m >0)时,C n (m ,-m 2+2mn ),C n -1(m ,-m 2+2mn -2m ), ∴C n C n -1=-m 2+2mn -(-m 2+2mn -2m )=2m .∴C 1C 2=C 2C 3=…=C n -1C n =2m .3.解: (1)∵AB =2,抛物线y 1=-x 2+c 的对称轴为直线x =0, ∴点A ,B 的坐标分别为(-1,0),(1,0),将点A (-1,0)代入得c =1,则抛物线y 1的解析式为y 1=-x 2+1,顶点坐标为(0,1).(2)①由平移性质得,抛物线y 2的顶点坐标为(1,2),则抛物线y 2的函数解析式为y 2=-(x -1)2+2,当x =0时,y 2=1,则y 1的顶点(0,1)在抛物线y 2上.②由题意,得抛物线y 3=-(x -2)2+3,y 4=-(x -3)2+4,y n =-(x -n +1)2+n ,将点B (1,0)代入y n ,得-(1-n +1)2+n =0,解得n =4或n =1(舍去).∴抛物线y n 的解析式为y 4=-(x -3)2+4.③令y n =-(x -n +1)2+n =0,解得x 1=n -1-n ,x 2=n -1+n ,则S n =12[(n -1+n)-(n -1-n)]·n =n·n =125,∵53=125,∴n =5,即n =25.4.解:(1)-4;(-2,1);y =(x -2)2+1(2)y =-x 2-2x +5即y =-(x +1)2+6,∴顶点为(-1,6).∵点(-1,6)关于点(0,m )的对称点为(1,2m -6),∴衍生抛物线为y =(x -1)2+2m -6,则-(x +1)2+6=(x -1)2+2m -6,化简得x 2=-m +5,∵两抛物线有交点,∴-m +5≥0,∴m ≤5.(3)①y =ax 2+2ax -b =a (x +1)2-a -b ,顶点为(-1,-a -b ).y ′=bx 2-2bx +a 2=b (x -1)2-b +a 2,顶点为(1,-b +a 2).∵两抛物线交点恰好是顶点,∴⎩⎪⎨⎪⎧-b +a 2=a·(1+1)2-a -b ,-a -b =b·(-1-1)2-b +a 2,解得⎩⎪⎨⎪⎧a =0,b =0(舍去)或⎩⎪⎨⎪⎧a =3,b =-3,∴顶点分别为(-1,0)和(1,12).∵(-1,0),(1,12)关于衍生中心对称,∴衍生中心为它们的中点,∵-1+12=0,0+122=6,∴衍生中心为(0,6).②由①可知衍生中心为抛物线y =a (x +1)2-a -b 的顶点与A 1,A 2,A 3,…,A 4的中点,∴A n (1,2k +2n 2+a +b ),A n +1(1,2k +2(n +1)2+a +b ),∴A n A n +1=2k +2(n +1)2+a +b -(2k +2n 2+a +b )=4n +2.【例4】 解:(1)4;12;2a ;2a .例4题解图①【解法提示】 ∵a >0,∴y =ax 2的图象大致如解图①,其顶点为原点O ,记AB 为其碟宽,AB 与y 轴的交点为C ,连接OA ,OB .∵△OAB 为等腰直角三角形,AB ∥x 轴, ∴OC ⊥AB , ∴∠AOC =∠BOC =12∠AOB =12×90°=45°,∴△ACO 与△BCO 亦为等腰直角三角形,∴AC =OC =BC ,∴x A =-y A ,x B =y B ,代入y =ax 2,∴A (-1a ,1a ),B (1a ,1a ),C (0,1a ),∴AB =2a ,OC =1a ,即抛物线y =ax 2对应的碟宽为2a .①抛物线y =12x 2对应的a =12,得碟宽2a 为4;②抛物线y =4x 2对应的a =4,得碟宽2a 为12;③抛物线y =ax 2(a >0)对应的碟宽为2a ; ④抛物线y =a (x -2)2+3(a >0)可看成抛物线y =ax 2向右平移2个单位长度,再向上平移3个单位长度后得到的,∵平移不改变形状、大小、开口方向,∴抛物线y =a (x -2)2+3(a >0)的准碟形与抛物线y =ax 2的准碟形全等. ∵抛物线y =ax 2(a >0)对应的碟宽为2a ,∴抛物线y =a (x -2)2+3(a >0)对应的碟宽为2a .(2)∵y =ax 2-4ax -53=a (x -2)2-(4a +53),∴同(1),其碟宽为2a .∵抛物线y =ax 2-4ax -53的碟宽为6,∴2a =6,解得a =13.(3)①∵F 1的碟宽∶F 2的碟宽=2∶1,∴2a 1=4a 2.∵a 1=13,∴a 2=23.∵y 1=13(x -2)2-3的碟宽AB 在x 轴上(A 在B 左边),∴A (-1,0),B (5,0),∴F 2的碟顶坐标为(2,0),∴y 2=23(x -2)2.②∵F n 的准碟形为等腰直角三角形,∴F n 的碟宽为2h n .∵2h n ∶2h n -1=1∶2,∴h n =12h n -1=(12)2h n -2=(12)3h n -3=…=(12)n -1h 1.∵h 1=3,∴h n =32n -1. ∵h n ∥h n -1,且都过F n -1的碟宽中点,∴h 1,h 2,h 3,…,h n -1,h n 都在一条直线上,∵h 1在直线x =2上,∴h 1,h 2,h 3,…,h n -1,h n 都在直线x =2上,∴F n 的碟宽右端点横坐标为2+32n -1. F 1,F 2,…,F n 的碟宽右端点在一条直线上,直线为y =-x +5.【解法提示】 考虑F n -2,F n -1,F n 情形,如解图②,例4题解图②F n -2,F n -1,F n 的碟宽分别为AB ,DE ,GH ;C ,F ,I 分别为其碟宽的中点,都在直线x =2上,连接右端点,BE ,EH .∵AB ∥x 轴,DE ∥x 轴,GH ∥x 轴,∴AB ∥DE ∥GH ,∴GH 平行且等于FE ,DE 平行且等于CB ,∴四边形GFEH ,四边形DCBE 都为平行四边形,∴HE ∥GF ,EB ∥DC .∵∠GFI =12∠GFH =12∠DCE =∠DCF ,∴GF ∥DC ,∴HE ∥EB ,∵HE ,EB 都过E 点,∴HE ,EB 在一条直线上,∴F n -2,F n -1,F n 的碟宽的右端点在一条直线上,∴F 1,F 2,…,F n 的碟宽的右端点在一条直线上.∵F 1:y 1=13(x -2)2-3对应的准碟形右端点坐标为(5,0),F 2:y 2=23(x -2)2对应的准碟形右端点坐标为(2+32,32),∴可得过以上两点的直线为y =-x +5,∴F 1,F 2,…,F n 的碟宽的右端点在直线y =-x +5上.跟踪训练1.解: (1)由y =-x 2+4x -3可得A 的坐标为(2,1),将x =4代入y =-x 2+4x -3,得y =-3,∴B 的坐标为(4,-3),设抛物线L 2的解析式为y =a (x -4)2-3.将A (2,1)代入,得1=a (2-4)2-3,解得a =1,∴抛物线L 2的表达式为y =(x -4)2-3;(2)a 1=-a 2,理由如下:∵抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 在抛物线L 1上,∴可列方程组⎩⎪⎨⎪⎧n =a 2(m -h )2+k k =a 1(h -m )2+n , 整理,得(a 1+a 2)(m -h )2=0,∵伴随抛物线的顶点不重合,∴m ≠h ,∴a 1=-a 2.(3)抛物线L 1:y =mx 2-2mx -3m 的顶点坐标为(1,-4m ),设抛物线L 2的顶点的横坐标为h ,则其纵坐标为mh 2-2mh -3m ,∴抛物线L 2的表达式为y =-m (x -h )2+mh 2-2mh -3m ,化简得,y =-mx 2+2mhx -2mh -3m ,所以点D 的坐标为(0,-2mh -3m ),又点C 的坐标为(0,-3m ),可得|(-2mh -3m )-(-3m )|=4m ,解得h =±2,∴抛物线L 2的对称轴为直线x =±2.2.解:(1)由题意得:a =1,b =-4,故抛物线的表达式为:y =x 2-4x +c ,将点(3,0)代入得:c =3,故抛物线的表达式为:y =x 2-4x +3=(x -2)2-1,故抛物线的顶点坐标为(2,-1);(2)设“子函数”y =x -6的“母函数”为:y =12x 2-6x +c ,则y =12(x 2-12x )+c =12(x -6)2-18+c ,故-18+c =1,解得c =19,故“母函数”的表达式为:y =12x 2-6x +19;第2题解图(3)设点P (m ,-m 2-4m +8),由题意,得直线l 的表达式为:y =-2x -4,故点C 、D 的坐标分别为(-2,0)、(0,-4),如解图,过点P 作PQ ∥y 轴交直线CD 于Q ,则Q (m ,-2m -4), ∴PQ =(-m 2-4m +8)-(-2m -4)=-m 2-2m +12,∴S △PCD =12·PQ |x D -x C |=12`(-m 2-2m +12)·2=-(m +1)2+13,∵点P 在CD 上方的抛物线上且-1<0,∴当m =-1时△PCD 的面积最大,最大值为13.3.(1)解:①y =-x 2-2x =-(x +1)2+12,②y =(x -3)2+3=(x -3)2+(3)2,③y=(x -2)2+(2)2,④y =x 2-x +12=(x -12)2+(12)2,所以①与③互为派对抛物线;①与④互为派对抛物线;故答案为①与③;①与④;(2)证明:当m =1,n =2时,抛物线C 1:y =-(x +1)2+1,抛物线C 2:y =(x -2)2+4,∴A(-1,1),B(2,4),∵AC∥BD∥y轴,∴点C的横坐标为-1,点D的横坐标为2,当x=-1时,y=(x-2)2+4=13,则C(-1,13);当x=2时,y=-(x+1)2+1=-8,则D(2,-8),∴AC=13-1=12,BD=4-(-8)=12,∴AC=BD;(3)①证明:抛物线C1:y=-(x+m)2+m2(m>0),则A(-m,m2);抛物线C2:y=(x-n)2+n2(n>0),则B(n,n2);当x=-m时,y=(-m-n)2+n2=m2+2mn+2n2,则C(-m,m2+2mn+2n2);当x=n时,y=-(n+m)2+m2=-2mn-n2,则D(n,-2mn-n2);∴AC=m2+2mn+2n2-m2=2mn+2n2,BD=n2-(-2mn-n2)=2mn+2n2,∴AC=BD,∴四边形ACBD为平行四边形.∵∠BEO=∠BDC,而∠EHF=∠DHG,∴∠EFH=∠DGH=90°,∴AB⊥CD,∴四边形ACBD是菱形;②∵抛物线C2:y=(x-2)2+4,则B(2,4),∴n=2,∴AC=BD=2mn+2n2=4m+8,而A(-m,m2),∴C(-m,m2+4m+8),∴BC2=(-m-2)2+(m2+4m+8-4)2=(m+2)2+(m+2)4.∵四边形ACBD是菱形,∴BC=BD,∴(m+2)2+(m+2)4=(4m+8)2,即(m+2)4=15(m+2)2,∵m>0,∴(m+2)2=15,∴m+2=15,∴m=15-2.。
南昌市中考数学专题题型复习06:四边形有关的计算与证明
南昌市中考数学专题题型复习06:四边形有关的计算与证明姓名:________ 班级:________ 成绩:________一、解答题 (共12题;共71分)1. (10分)如图,已知AB=AC,AD=AE,BE与CD相交于O,求证:△ABE≌△ACD.2. (5分)(2017·绿园模拟) 如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC 的延长线于点E.若点F是AE的中点,求证:BF⊥AF.3. (5分)如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE⊥AB.(1)求∠ABC的度数;(2)如果AC=4,求DE的长.4. (6分) (2018八下·瑶海期中) 如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF= +1,求BC的长.5. (5分)如图,已知△ABC和直线m ,画出与△ABC关于直线m对称的图形(不要求写出画法,但应保留作图痕迹)6. (5分) (2020九上·岐山期末) 如图,在菱形ABCD中,点E是边AD上一点,延长AB至点F,使BF=AE,连接BE、CF求证:BE=CF。
7. (5分)在▱ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC于点H,求证:CH=EH.8. (5分)(2017·吴忠模拟) 如图,在正方形ABCD中,点E、F在对角线BD上,且BE=EF=FD,连接AF,AE,CE,CF,请你判断四边形AECF的形状,并证明你的结论.9. (10分) (2015八下·嵊州期中) 如图,梯形ABCD中,AB∥CD,AB=24cm,DC=10cm,点P和Q同时从D、B出发,P由D向C运动,速度为每秒1cm,点Q由B向A运动,速度为每秒3cm,试求几秒后,P、Q和梯形ABCD 的两个顶点所形成的四边形是平行四边形?10. (5分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠C=45°,BC=4,AD=2.求四边形ABCD的面积.11. (5分)(2016·鄞州模拟) 如图,在平行四边形ABCD中,对角线AC,BD并于点O,经过点O的直线交AB于E,交CD于F.(1)求证:OE=OF.(2)连接DE,BF,则EF与BD满足什么条件时,四边形DEBF是矩形?请说明理由.12. (5分) (2016九上·长春期中) 如图,四边形OABC是平行四边形,点A,B,C在⊙O上,P为上一点,连接AP,CP,求∠P的度数.二、综合题 (共27题;共278分)13. (10分)(2018·沧州模拟) 如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;(4)当t为何值时,△PQF为等腰三角形?试说明理由.14. (10分)(2015·宁波模拟) 【试题背景】已知:l ∥m∥n∥k,平行线l与m、m与n、n与k之间的距离分别为d1、d2、d3 ,且d1 =d3 = 1,d2 = 2 .我们把四个顶点分别在l、m、n、k这四条平行线上的四边形称为“格线四边形”.(1)【探究1】如图1,正方形ABCD为“格线四边形”,BE L于点E,BE的反向延长线交直线k于点F.求正方形ABCD的边长.(2)【探究2】矩形ABCD为“格线四边形”,其长:宽 = 2 :1 ,求矩形ABCD的宽(3)【探究3】如图2,菱形ABCD为“格线四边形”且∠ADC=60°,△AEF是等边三角形,于点E,∠AFD=90°,直线DF分别交直线l、k于点G、M.求证:EC=DF.(4)【拓展】如图3,l ∥k,等边三角形ABC的顶点A、B分别落在直线l、k上,于点B,且AB=4 ,∠ACD=90°,直线CD分别交直线l、k于点G、M,点D、E分别是线段GM、BM上的动点,且始终保持AD=AE,于点H.猜想:DH在什么范围内,BC∥DE?直接写出结论。
中考数学二轮复习 专题二 解答重难点题型突破 题型六 二次函数与几何图形综合题试题-人教版初中九年级
题型六 二次函数与几何图形综合题类型一 二次函数与图形判定1.(2017·某某)在同一直角坐标系中,抛物线C 1:y =ax 2-2x -3与抛物线C 2:y =x 2+mx +n 关于y 轴对称,C 2与x 轴交于A 、B 两点,其中点A 在点B 的左侧.(1)求抛物线C 1,C 2的函数表达式; (2)求A 、B 两点的坐标;(3)在抛物线C 1上是否存在一点P ,在抛物线C 2上是否存在一点Q ,使得以AB 为边,且以A 、B 、P 、Q 四点为顶点的四边形是平行四边形?若存在,求出P 、Q 两点的坐标;若不存在,请说明理由.2.(2017·随州)在平面直角坐标系中,我们定义直线y =ax -a 为抛物线y =ax 2+bx +c(a 、b 、c 为常数,a ≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“梦想三角形”.已知抛物线y =-233x 2-433x +23与其“梦想直线”交于A 、B 两点(点A 在点B 的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为__________,点A的坐标为__________,点B的坐标为__________;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.(2017·某某模拟)已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.4.(2016·某某)如图①,直线y =-43x +n 交x 轴于点A ,交y 轴于点C(0,4),抛物线y =23x 2+bx +c 经过点A ,交y 轴于点B(0,-2).点P 为抛物线上一个动点,过点P 作x轴的垂线PD ,过点B 作BD⊥PD 于点D ,连接PB ,设点P 的横坐标为m.(1)求抛物线的解析式;(2)当△BDP 为等腰直角三角形时,求线段PD 的长;(3)如图②,将△BDP 绕点B 逆时针旋转,得到△BD′P′,且旋转角∠PBP′=∠OAC,当点P 的对应点P′落在坐标轴上时,请直接写出点P 的坐标.类型二 二次函数与图形面积1.(2017·某某)如图,在平面直角坐标系中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C ,抛物线y =-12x 2+bx +c 经过A 、C 两点,与x 轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D 为直线AC 上方抛物线上一动点;①连接BC 、CD ,设直线BD 交线段AC 于点E ,△CDE 的面积为S 1,△BCE 的面积为S 2,求S 1S 2的最大值; ②过点D 作DF⊥AC,垂足为点F ,连接CD ,是否存在点D ,使得△CDF 中的某个角恰好等于∠BAC 的2倍?若存在,求点D 的横坐标;若不存在,请说明理由.2.(2017·某某)如图甲,直线y=-x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).3.(2017·某某模拟)如图,抛物线y=ax2+bx-3与x轴交于点A(1,0)和点B,与y 轴交于点C,且其对称轴l为x=-1,点P是抛物线上B,C之间的一个动点(点P不与点B,C重合).(1)直接写出抛物线的解析式;(2)小唐探究点P的位置时发现:当动点N在对称轴l上时,存在PB⊥NB,且PB=NB的关系,请求出点P的坐标;(3)是否存在点P使得四边形PBAC的面积最大?若存在,请求出四边形PBAC面积的最大值;若不存在,请说明理由.4.(2017·某某模拟)如图①,已知抛物线y=ax2+bx-3的对称轴为x=1,与x轴分别交于A、B两点,与y轴交于点C,一次函数y=x+1经过A,且与y轴交于点D.(1)求该抛物线的解析式.(2)如图②,点P为抛物线B、C两点间部分上的任意一点(不含B,C两点),设点P的横坐标为t,设四边形DCPB的面积为S,求出S与t的函数关系式,并确定t为何值时,S取最大值?最大值是多少?(3)如图③,将△ODB沿直线y=x+1平移得到△O′D′B′,设O′B′与抛物线交于点E,连接ED′,若ED′恰好将△O′D′B′的面积分为1∶2两部分,请直接写出此时平移的距离.类型三二次函数与线段问题1.(2017·某某)如图,已知抛物线y=ax2-23ax-9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,1AM +1AN均为定值,并求出该定值.2.(2017·某某模拟)如图①,直线y =34x +m 与x 轴、y 轴分别交于点A 和点B(0,-1),抛物线y =12x 2+bx +c 经过点B ,点C 的横坐标为4.(1)请直接写出抛物线的解析式;(2)如图②,点D 在抛物线上,DE ∥y 轴交直线AB 于点E ,且四边形DFEG 为矩形,设点D 的横坐标为x(0<x <4),矩形DFEG 的周长为l ,求l 与x 的函数关系式以及l 的最大值;(3)将△AOB 绕平面内某点M 旋转90°或180°,得到△A 1O 1B 1,点A 、O 、B 的对应点分别是点A 1、O 1、B 1.若△A 1O 1B 1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A 1的横坐标.3.(2017·某某)已知点A(-1,1),B(4,6)在抛物线y=ax2+bx上.(1)求抛物线的解析式;(2)如图①,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,,连接FH、AE,求证:FH∥AE;(3)如图②,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒2个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.类型四二次函数与三角形相似1.(2016·某某)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x-2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.2.(2017·某某模拟)如图,抛物线y=ax2+bx+1与直线y=-ax+c相交于坐标轴上点A(-3,0),C(0,1)两点.(1)直线的表达式为__________;抛物线的表达式为__________;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交直线AC于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)P为抛物线上一动点,且P在第四象限内,过点P作PN垂直x轴于点N,使得以P、A、N为顶点的三角形与△ACO相似,请直接写出点P的坐标.3.如图①,二次函数y =ax 2+bx +33经过A(3,0),G(-1,0)两点. (1)求这个二次函数的解析式;(2)若点M 是抛物线在第一象限图象上的一点,求△ABM 面积的最大值;(3)抛物线的对称轴交x 轴于点P ,过点E(0,233)作x 轴的平行线,交AB 于点F ,是否存在着点Q ,使得△FEQ∽△BEP?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.4.(2017·某某)抛物线y =ax 2+bx +3经过点A(1,0)和点B(5,0). (1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=错误!x+3相交于C、D两点,点P是抛物线上的动点且位于x 轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连接PC、PD,如图①,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连接PB,过点C作CQ⊥PM,垂足为点Q,如图②,是否存在点P,使得△Q与△PBM 相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.题型六第23题二次函数与几何图形综合题类型一二次函数与图形判定1.解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=-3,∴C1的对称轴为x=1,∴C2的对称轴为x=-1,∴m=2,∴C1的函数表示式为y=x2-2x-3,C2的函数表达式为y=x2+2x-3;(2)在C2的函数表达式为y=x2+2x-3中,令y=0可得x2+2x-3=0,解得x=-3或x=1,∴A(-3,0),B(1,0);(3)存在.设P(a ,b),则Q(a +4,b)或(a -4,b), ①当Q(a +4,b)时,得:a 2-2a -3=(a +4)2+2(a +4)-3, 解得a =-2,∴b =a 2-2a -3=4+4-3=5, ∴P 1(-2,5),Q 1(2,5). ②当Q(a -4,b)时,得:a 2-2a -3=(a -4)2+2(a -4)-3, 解得a =2.∴b =4-4-3=-3, ∴P 2(2,-3),Q 2(-2,-3).综上所述,所求点的坐标为P 1(-2,5),Q 1(2,5); P 2(2,-3),Q 2(-2,-3). 2.解:(1)∵抛物线y =-233x 2-433x +23, ∴其梦想直线的解析式为y =-233x +233,联立梦想直线与抛物线解析式可得⎩⎪⎨⎪⎧y =-233x +233y =-233x 2-433x +23,解得⎩⎨⎧x =-2y =23或⎩⎪⎨⎪⎧x =1y =0,∴A(-2,23),B(1,0);(2)当点N 在y 轴上时,△AMN 为梦想三角形, 如解图①,过A 作AD ⊥y 轴于点D ,则AD =2,在y =-233x 2-433x +23中,令y =0可求得x =-3或x =1,∴C(-3,0),且A(-2,23), ∴AC =(-2+3)2+(23)2=13, 由翻折的性质可知AN =AC =13,在Rt △AND 中,由勾股定理可得DN =AN 2-AD 2=13-4=3, ∵OD =23,∴ON =23-3或ON =23+3,当ON =23+3时,则MN >OD >CM ,与MN =CM 矛盾,不合题意, ∴N 点坐标为(0,23-3);当M 点在y 轴上时,则M 与O 重合,过N 作NP ⊥x 轴于点P ,如解图②,在Rt △AMD 中,AD =2,OD =23,∴tan ∠DAM =MDAD =3,∴∠DAM =60°,∵AD ∥x 轴,∴∠AMC =∠DAM =60°, 又由折叠可知∠NMA =∠AMC =60°, ∴∠NMP =60°,且MN =CM =3, ∴MP =12MN =32,NP =32MN =332,∴此时N 点坐标为(32,332);综上可知N 点坐标为(0,23-3)或(32,332);(3)①当AC 为平行四边形的边时,如解图③,过F 作对称轴的垂线FH ,过A 作AK ⊥x 轴于点K ,则有AC ∥EF 且AC =EF ,∴∠ACK =∠EFH , 在△ACK 和△EFH 中,⎩⎪⎨⎪⎧∠ACK =∠EFH ∠AKC =∠EHF AC =EF,∴△ACK ≌△EFH(AAS ), ∴FH =CK =1,HE =AK =23,∵抛物线对称轴为x =-1,∴F 点的横坐标为0或-2,∵点F 在直线AB 上,∴当F 点横坐标为0时,则F(0,233),此时点E 在直线AB 下方,∴E 到x 轴的距离为EH -OF =23-233=433,即E 点纵坐标为-433,∴E(-1,-433); 当F 点的横坐标为-2时,则F 与A 重合,不合题意,舍去; ②当AC 为平行四边形的对角线时, ∵C(-3,0),且A(-2,23), ∴线段AC 的中点坐标为(-52,3),设E(-1,t),F(x ,y),则x -1=2×(-52),y +t =23,∴x =-4,y =23-t ,代入直线AB 解析式可得23-t =-233×(-4)+233,解得t =-433,∴E(-1,-433),F(-4,1033);综上可知存在满足条件的点F ,此时E(-1,-433)、F(0,233)或E(-1,-433)、F(-4,1033).3.解:(1)由题意,得⎩⎪⎨⎪⎧0=16a -8a +c 4=c ,解得⎩⎪⎨⎪⎧a =-12c =4, ∴所求抛物线的解析式为y =-12x 2+x +4;(2) 设点Q 的坐标为(m ,0),如解图①,过点E 作EG ⊥x 轴于点G. 由-12x 2+x +4=0,得x 1=-2,x 2=4,∴点B 的坐标为(-2,0),∴AB =6,BQ =m +2,∵QE ∥AC ,∴△BQE ∽△BAC ,∴EG CO =BQ BA ,即EG 4=m +26,∴EG =2m +43,∴S △CQE =S △CBQ -S △EBQ =12BQ·CO-12BQ·EG=12(m +2)(4-2m +43)=-13m 2+23m +83=-13(m-1)2+3,又∵-2≤m ≤4,∴当m =1时,S △CQE 有最大值3,此时Q(1,0);图①图②(3)存在.在△ODF 中. (ⅰ)若DO =DF ,∵A(4,0),D(2,0),∴AD =OD =DF =2, 又∵在Rt △AOC 中,OA =OC =4,∴∠OAC =45°, ∴∠DFA =∠OAC =45°,∴∠ADF =90°,此时,点F 的坐标为(2,2), 由-12x 2+x +4=2,得x 1=1+5,x 2=1-5,此时,点P 的坐标为P(1+5,2)或P(1-5,2); (ⅱ)若FO =FD ,如解图②,过点F 作FM ⊥x 轴于点M , 由等腰三角形的性质得:OM =MD =1,∴AM =3, ∴在等腰直角△AMF 中,MF =AM =3,∴F(1,3), 由-12x 2+x +4=3,得x 1=1+3,x 2=1-3,此时,点P 的坐标为:P(1+3,3)或P(1-3,3); (ⅲ)若OD =OF ,∵OA =OC =4,且∠AOC =90°,∴AC =42,∴点O 到AC 的距离为22,而OF =OD =2<22,与OF ≥22矛盾, ∴AC 上不存在点使得OF =OD =2,此时,不存在这样的直线l ,使得△ODF 是等腰三角形. 综上所述,存在这样的直线l ,使得△ODF 是等腰三角形.所求点P 的坐标为(1+5,2)或(1-5,2)或(1+3,3)或(1-3,3). 4.解:(1)∵点C(0,4)在直线y =-43x +n 上,∴n =4,∴y =-43x +4,令y =0,解得x =3,∴A(3,0),∵抛物线y =23x 2+bx +c 经过点A ,交y 轴于点B(0,-2),∴c =-2,6+3b -2=0,解得b =-43,∴抛物线的解析式为y =23x 2-43x -2;(2)∵点P 的横坐标为m ,且点P 在抛物线上, ∴P(m ,23m 2-43m -2),∵PD ⊥x 轴,BD ⊥PD ,∴点D 坐标为(m ,-2), ∴|BD|=|m|,|PD|=|23m 2-43m -2+2|,当△BDP 为等腰直角三角形时,PD =BD , ∴|m|=|23m 2-43m -2+2|=|23m 2-43m|.∴m 2=(23m 2-43m)2,解得:m 1=0(舍去),m 2=72,m 3=12,∴当△BDP 为等腰直角三角形时,线段PD 的长为72或12;(3)∵∠PBP′=∠OAC ,OA =3,OC =4,∴AC =5, ∴sin ∠PBP ′=45,cos ∠PBP ′=35,①当点P′落在x 轴上时,如解图①,过点D′作D′N⊥x 轴,垂足为N ,交BD 于点M ,∠DBD ′=∠ND′P′=∠PBP′,由旋转知,P ′D ′=PD =23m 2-43m ,在Rt △P ′D ′N 中,cos ∠ND ′P ′=ND′P′D′=cos ∠PBP ′=35,∴ND ′=35(23m 2-43m),在Rt △BD ′M 中,BD ′=-m ,sin ∠DBD ′=D′M BD′=sin ∠PBP ′=45,∴D ′M =-45m ,∴ND ′-MD′=2,∴35(23m 2-43m)-(-45m)=2, 解得m =5(舍去)或m =-5,如解图②, 同①的方法得,ND ′=35(23m 2-43m),MD ′=45m ,ND ′+MD′=2, ∴35(23m 2-43m)+45m =2, ∴m =5或m =-5(舍去),∴P(-5,45+43)或P(5,-45+43),②当点P′落在y 轴上时,如解图③,过点D′作D′M⊥x 轴,交BD 于M ,过点P′作P′N⊥y 轴,交MD′的延长线于点N , ∴∠DBD ′=∠ND′P′=∠PBP′,同①的方法得:P′N=45(23m 2-43m),BM =35m ,∵P ′N =BM ,∴45(23m 2-43m)=35m , 解得m =258或m =0(舍去),∴P(258,1132),∴P(-5,45+43)或P(5,-45+43)或P(258,1132).类型二 二次函数与图形面积1.解:(1)根据题意得A(-4,0),C(0,2), ∵抛物线y =-12x 2+bx +c 经过A 、C 两点,∴⎩⎪⎨⎪⎧0=-12×16-4b +c 2=c ,解得⎩⎪⎨⎪⎧b =-32c =2, ∴y =-12x 2-32x +2;(2)①令y =0,∴-12x 2-32x +2=0,解得x 1=-4,x 2=1,∴B(1,0),如解图①,过D 作DM ∥y 轴交AC 于M ,过B 作BN ⊥x 轴交AC 于N , ∴DM ∥BN ,∴△DME ∽△BNE ,∴S 1S 2=DE BE =DMBN ,设D(a ,-12a 2-32a +2),∴M(a ,12a +2),∵B(1,0),∴N(1,52),∴S 1S 2=DMBN =-12a 2-2a 52=-15(a +2)2+45; ∴当a =-2时,S 1S 2有最大值,最大值是45;②∵A(-4,0),B(1,0),C(0,2), ∴AC =25,BC =5,AB =5, ∵AC 2+BC 2=AB 2,∴△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,∴P(-32,0),∴PA =PC =PB =52,∴∠CPO =2∠BAC ,∴tan ∠CPO =tan (2∠BAC)=43,如解图②,过D 作x 轴的平行线交y 轴于R ,交AC 的延长线于G , 情况一:∠DCF =2∠BAC =∠DGC +∠CDG ,∴∠CDG =∠BAC , ∴tan ∠CDG =tan ∠BAC =12,即RC DR =12,令D(a ,-12a 2-32a +2),∴DR =-a ,RC =-12a 2-32a ,∴-12a 2-32a -a =12,解得a 1=0(舍去),a 2=-2, ∴x D =-2,情况二:∠FDC =2∠BAC , ∴tan ∠FDC =43,设FC =4k ,∴DF =3k ,DC =5k , ∵tan ∠DGC =3k FG =12,∴FG =6k ,∴CG =2k ,DG =35k ,∴RC =255k ,RG =455k , DR =35k -455k =1155k ,∴DR RC =1155k 255k =-a -12a 2-32a ,解得a 1=0(舍去),a 2=-2911, ∴点D 的横坐标为-2或-2911.2.解:(1)∵直线y =-x +3与x 轴、y 轴分别交于点B 、点C , ∴B(3,0),C(0,3),把B 、C 坐标代入抛物线解析式可得⎩⎪⎨⎪⎧9+3b +c =0c =3,解得⎩⎪⎨⎪⎧b =-4c =3,∴抛物线的解析式为y =x 2-4x +3; (2)∵y =x 2-4x +3=(x -2)2-1, ∴抛物线对称轴为x =2,P(2,-1), 设M(2,t),且C(0,3),∴MC =22+(t -3)2=t 2-6t +13,MP =|t +1|,PC =22+(-1-3)2=25, ∵△CPM 为等腰三角形,∴有MC =MP 、MC =PC 和MP =PC 三种情况,①当MC =MP 时,则有t 2-6t +13=|t +1|,解得t =32,此时M(2,32);②当MC =PC 时,则有t 2-6t +13=25,解得t =-1(与P 点重合,舍去)或t =7,此时M(2,7);③当MP =PC 时,则有|t +1|=25,解得t =-1+25或t =-1-25,此时M(2,-1+25)或(2,-1-25);综上可知存在满足条件的点M ,其坐标为(2,32)或(2,7)或(2,-1+25)或(2,-1-25);(3)如解图,在0<x <3对应的抛物线上任取一点E ,过E 作EF ⊥x 轴,交BC 于点F ,交x 轴于点D ,设E(x ,x 2-4x +3),则F(x ,-x +3), ∵0<x <3,∴EF =-x +3-(x 2-4x +3)=-x 2+3x ,∴S △CBE =S △EFC +S △EFB =12EF·OD+12EF·BD=12EF·OB=12×3(-x 2+3x)=-32(x -32)2+278,∴当x =32时,△CBE 的面积最大,此时E 点坐标为(32,-34),即当E 点坐标为(32,-34)时,△CBE 的面积最大.3.解:(1)∵A(1,0),对称轴l 为x =-1,∴B(-3,0),∴⎩⎪⎨⎪⎧a +b -3=09a -3b -3=0,解得⎩⎪⎨⎪⎧a =1b =2, ∴抛物线的解析式为y =x 2+2x -3; (2)如解图①,过点P 作PM ⊥x 轴于点M ,设抛物线对称轴l 交x 轴于点Q. ∵PB ⊥NB ,∴∠PBN =90°, ∴∠PBM +∠NBQ =90°.∵∠PMB =90°,∴∠PBM +∠BPM =90°, ∴∠BPM =∠NBQ.又∵∠BMP =∠BQN =90°,PB =NB ,∴△BPM ≌△NBQ ,∴PM =BQ.∵抛物线y =x 2+2x -3与x 轴交于点A(1,0)和点B ,且对称轴为x =-1, ∴点B 的坐标为(-3,0),点Q 的坐标为(-1,0), ∴BQ =2,∴PM =BQ =2.∵点P 是抛物线y =x 2+2x -3上B 、C 之间的一个动点, ∴结合图象可知点P 的纵坐标为-2,将y =-2代入y =x 2+2x -3,得-2=x 2+2x -3, 解得x 1=-1-2,x 2=-1+2(舍去), ∴此时点P 的坐标为(-1-2,-2); (3) 存在.如解图②,连接AC ,PC.可设点P 的坐标为(x ,y)(-3<x <0),则y =x 2+2x -3, ∵点A(1,0),∴OA =1.∵点C 是抛物线与y 轴的交点,∴令x =0,得y =-3,即点C(0,-3),∴OC =3. 由(2)可知S四边形PBAC=S △BPM +S四边形PMOC+S △AOC =12BM·PM+12(PM +OC)·OM+12OA·OC=12(x+3)(-y)+12(-y +3)(-x)+12×1×3=-32y -32x +32,将y =x 2+2x -3代入可得S 四边形PBAC =-32(x 2+2x -3)-32x +32=-32(x +32)2+758.∵-32<0,-3<x <0,∴当x =-32时,S 四边形PBAC 有最大值758,此时,y =x 2+2x -3=-154.∴当点P 的坐标为(-32,-154)时,四边形PBAC 的面积最大,最大值为758.4.解:(1)把y =0代入直线的解析式得x +1=0,解得x =-1,∴A(-1,0). ∵抛物线的对称轴为x =1,∴B 的坐标为(3,0). 将x =0代入抛物线的解析式得y =-3,∴C(0,-3).设抛物线的解析式为y =a(x +1)(x -3),将C(0,-3)代入得-3a =-3,解得a =1, ∴抛物线的解析式为y =(x +1)(x -3)=x 2-2x -3; (2)如解图①,连接OP.将x =0代入直线AD 的解析式得y =1,∴OD =1. 由题意可知P(t ,t 2-2t -3). ∵S 四边形DCPB =S △ODB +S △OBP +S △OCP ,∴S =12×3×1+12×3×(-t 2+2t +3)+12×3×t ,整理得S =-32t 2+92t +6,配方得:S =-32(t -32)2+758,∴当t =32时,S 取得最大值,最大值为758;(3)如解图②,设点D′的坐标为(a ,a +1),O ′(a ,a).当△D′O′E 的面积∶△D′EB′的面积=1∶2时,则O′E∶EB ′=1∶2. ∵O ′B ′=OB =3,∴O ′E =1, ∴E(a +1,a).将点E 的坐标代入抛物线的解析式得(a +1)2-2(a +1)-3=a ,整理得:a 2-a -4=0,解得a =1+172或a =1-172,∴O ′的坐标为(1+172,1+172)或(1-172,1-172),∴OO ′=2+342或OO′=34-22, ∴△DOB 平移的距离为2+342或34-22, 当△D′O′E 的面积∶△D ′EB ′的面积=2∶1时,则O′E∶EB ′=2∶1. ∵O ′B ′=OB =3,∴O ′E =2,∴E(a +2,a).将点E 的坐标代入抛物线的解析式得:(a +2)2-2(a +2)-3=a ,整理得:a 2+a -3=0,解得a =-1+132或a =-1-132.∴O ′的坐标为(-1+132,-1+132)或(-1-132,-1-132).∴OO′=-2+262或OO′=2+262.∴△DOB 平移的距离为-2+262或2+262.综上所述,当△D′O′B′沿DA 方向平移2+342或2+262单位长度,或沿AD 方向平移34-22或-2+262个单位长度时,ED ′恰好将△O′D′B′的面积分为1∶2两部分. 类型三 二次函数与线段问题1.(1)解:∵C(0,3),∴-9a =3,解得a =-13.令y =0,得ax 2-23ax -9a =0,∵a ≠0,∴x 2-23x -9=0,解得x =-3或x =3 3. ∴点A 的坐标为(-3,0),点B 的坐标为(33,0),∴抛物线的对称轴为x =3; (2)解:∵OA =3,OC =3, ∴tan ∠CAO =3,∴∠CAO =60°. ∵AE 为∠BAC 的平分线,∴∠DAO =30°, ∴DO =33AO =1,∴点D 的坐标为(0,1), 设点P 的坐标为(3,a).∴AD 2=4,AP 2=12+a 2,DP 2=3+(a -1)2. 当AD =PA 时,4=12+a 2,方程无解.当AD =DP 时,4=3+(a -1)2,解得a =0或a =2, ∴点P 的坐标为(3,0)或(3,2).当AP =DP 时,12+a 2=3+(a -1)2,解得a =-4. ∴点P 的坐标为(3,-4).综上所述,点P 的坐标为(3,0)或(3,-4)或(3,2);(3)证明:设直线AC 的解析式为y =mx +3,将点A 的坐标代入得-3m +3=0,解得m =3,∴直线AC 的解析式为y =3x +3. 设直线MN 的解析式为y =kx +1.把y =0代入y =kx +1,得kx +1=0,解得:x =-1k ,∴点N 的坐标为(-1k ,0),∴AN =-1k +3=3k -1k.将y =3x +3与y =kx +1联立,解得x =2k -3,∴点M 的横坐标为2k -3.如解图,过点M 作MG ⊥x 轴,垂足为G.则AG =2k -3+ 3.∵∠MAG =60°,∠AGM =90°, ∴AM =2AG =4k -3+23=23k -2k -3.∴1AM +1AN =k -323k -2+k 3k -1=k -323k -2+2k 23k -2=3k -323k -2=3(3k -1)2(3k -1)=32. 2.解:(1)∵直线l :y =34x +m 经过点B(0,-1),∴m =-1,∴直线l 的解析式为y =34x -1,∵直线l :y =34x -1经过点C ,且点C 的横坐标为4,∴y =34×4-1=2,∵抛物线y =12x 2+bx +c 经过点C(4,2)和点B(0,-1),∴⎩⎪⎨⎪⎧12×42+4b +c =2c =-1,解得⎩⎪⎨⎪⎧b =-54c =-1, ∴抛物线的解析式为y =12x 2-54x -1;(2)令y =0,则34x -1=0,解得x =43,∴点A 的坐标为(43,0),∴OA =43,在Rt △OAB 中,OB =1,∴AB =OA 2+OB 2=(43)2+12=53, ∵DE ∥y 轴,∴∠ABO =∠DEF ,在矩形DFEG 中,EF =DE·cos ∠DEF =DE·OB AB =35DE ,DF =DE·sin ∠DEF =DE·OA AB =45DE ,∴l =2(DF +EF)=2×(45+35)DE =145DE ,∵点D 的横坐标为t(0<t <4), ∴D(t ,12t 2-54t -1),E(t ,34t -1),∴DE =(34t -1)-(12t 2-54t -1)=-12t 2+2t ,∴l =145×(-12t 2+2t)=-75t 2+285t ,∵l =-75(t -2)2+285,且-75<0,∴当t =2时,l 有最大值285;(3)“落点”的个数有4个,如解图①,解图②,解图③,解图④所示.如解图③,设A 1的横坐标为m ,则O 1的横坐标为m +43,∴12m 2-54m -1=12(m +43)2-54(m +43)-1, 解得m =712,如解图④,设A 1的横坐标为m ,则B 1的横坐标为m +43,B 1的纵坐标比A 1的纵坐标大1,∴12m 2-54m -1+1=12(m +43)2-54(m +43)-1,解得m =43, ∴旋转180°时点A 1的横坐标为712或43.3.(1)解:将点A(-1,1),B(4,6)代入y =ax 2+bx 中, 得⎩⎪⎨⎪⎧a -b =116a +4b =6,解得⎩⎪⎨⎪⎧a =12b =-12, ∴抛物线的解析式为y =12x 2-12x ;(2)证明:设直线AF 的解析式为y =kx +m , 将点A(-1,1)代入y =kx +m 中,即-k +m =1, ∴k =m -1,∴直线AF 的解析式为y =(m -1)x +m. 联立直线AF 和抛物线解析式成方程组,⎩⎪⎨⎪⎧y =(m -1)x +m y =12x 2-12x ,解得⎩⎪⎨⎪⎧x 1=-1y 1=1,⎩⎪⎨⎪⎧x 2=2my 2=2m 2-m , ∴点G 的坐标为(2m ,2m 2-m). ∵GH ⊥x 轴,∴点H 的坐标为(2m ,0). ∵抛物线的解析式为y =12x 2-12x =12x(x -1),∴点E 的坐标为(1,0).设直线AE 的解析式为y =k 1x +b 1,将A(-1,1),E(1,0)代入y =k 1x +b 1中,得⎩⎪⎨⎪⎧-k 1+b 1=1k 1+b 1=0,解得⎩⎪⎨⎪⎧k 1=-12b 1=12,∴直线AE 的解析式为y =-12x +12.设直线FH 的解析式为y =k 2x +b 2,将F(0,m)、H(2m ,0)代入y =k 2x +b 2中,得⎩⎪⎨⎪⎧b 2=m 2mk 2+b 2=0,解得:⎩⎪⎨⎪⎧k 2=-12b 2=m, ∴直线FH 的解析式为y =-12x +m.∴FH ∥AE ;(3)解:设直线AB 的解析式为y =k 0x +b 0,将A(-1,1),B(4,6)代入y =k 0x +b 0中,⎩⎪⎨⎪⎧-k 0+b 0=14k 0+b 0=6,解得⎩⎪⎨⎪⎧k 0=1b 0=2, ∴直线AB 的解析式为y =x +2.当运动时间为t 秒时,点P 的坐标为(t -2,t),点Q 的坐标为(t ,0).当点M 在线段PQ 上时,过点P 作PP′⊥x 轴于点P′,过点M 作MM′⊥x 轴于点M′,则△PQP′∽△MQM′,如解图所示.∵QM =2PM , ∴QM′QP′=MM′PP′=23,∴QM ′=43,MM ′=23t ,∴点M 的坐标为(t -43,23t),又∵点M 在抛物线y =12x 2-12x 上,∴23t =12(t -43)2-12(t -43), 解得t =15±1136,当点M 在线段QP 的延长线上时, 同理可得出点M 的坐标为(t -4,2t), ∵点M 在抛物线y =12x 2-12x 上,∴2t =12×(t -4)2-12(t -4),解得t =13±892.综上所述:当运动时间为15-1136秒、15+1136秒、13-892秒或13+892秒时,QM =2PM.类型四 二次函数与三角形相似 1.(1)解:∵顶点坐标为(1,1), ∴设抛物线解析式为y =a(x -1)2+1,又∵抛物线过原点,∴0=a(0-1)2+1,解得a =-1, ∴抛物线的解析式为y =-(x -1)2+1,即y =-x 2+2x ,联立抛物线和直线解析式可得⎩⎪⎨⎪⎧y =-x 2+2x y =x -2,解得⎩⎪⎨⎪⎧x =2y =0或⎩⎪⎨⎪⎧x =-1y =-3, ∴B(2,0),C(-1,-3);(2)证明:如解图,分别过A 、C 两点作x 轴的垂线,交x 轴于D 、E 两点, 则AD =OD =BD =1,BE =OB +OE =2+1=3,EC =3, ∴∠ABO =∠CBO =45°,即∠ABC =90°, ∴△ABC 是直角三角形;(3)解:假设存在满足条件的点N ,设N(x ,0),则M(x ,-x 2+2x), ∴ON =|x|,MN =|-x 2+2x|,由(2)在Rt △ABD 和Rt △CEB 中,可分别求得AB =2,BC =32, ∵MN ⊥x 轴于点N ∴∠MNO =∠ABC =90°,∴当△MNO 和△ABC 相似时有MN AB =ON BC 或MN BC =ONAB,①当MN AB =ON BC 时,则有|-x 2+2x|2=|x|32,即|x|×|-x +2|=13|x|,∵当x =0时M 、O 、N 不能构成三角形, ∴x ≠0,∴|-x +2|=13,即-x +2=±13,解得x =53或x =73,此时N 点坐标为(53,0)或(73,0),②当MN BC =ON AB 时,则有|-x 2+2x|32=|x|2,即|x|×|-x +2|=3|x|,∴|-x +2|=3,即-x +2=±3,解得x =5或x =-1, 此时N 点坐标为(-1,0)或(5,0),综上可知存在满足条件的N 点,其坐标为(53,0)或(73,0)或(-1,0)或(5,0).2.解:(1)把A 、C 两点坐标代入直线y =-ax +c 可得⎩⎪⎨⎪⎧3a +c =0c =1,解得⎩⎪⎨⎪⎧a =-13c =1, ∴直线的表达式为y =13x +1,把A 点坐标和a =-13代入抛物线解析式可得9×(-13)-3b +1=0,解得b =-23,∴抛物线的表达式为y =-13x 2-23x +1;(2)∵点D 为抛物线在第二象限部分上的一点,∴可设D(t ,-13t 2-23t +1),则F(t ,13t +1),∴DF =-13t 2-23t +1-(13t +1)=-13t 2-t =-13(t +32)2+34.∵-13<0,∴当t =-32时,DF 有最大值,最大值为34,此时D 点坐标为(-32,54);(3)设P(m ,-13m 2-23m +1),如解图,∵P 在第四象限,∴m >0,-13m 2-23m +1<0,∴AN =m +3,PN =13m 2+23m -1,∵∠AOC =∠ANP =90°,∴当以P 、A 、N 为顶点的三角形与△ACO 相似时有△AOC ∽△PNA 和△AOC ∽△ANP ,①当△AOC ∽△PNA 时,则有OC NA =AO PN ,即1m +3=313m 2+23m -1,解得m =-3或m =10,经检验当m =-3时,m +3=0(舍去), ∴m =10,此时P 点坐标为(10,-39);②当△AOC ∽△ANP 时,则有OC NP =AO AN ,即113m 2+23m -1=3m +3,解得m =2或m =-3,经检验当m =-3时,m +3=0(舍去), ∴m =2,此时P 点坐标为(2,-53);综上可知P 点坐标为(10,-39)或(2,-53).3.解:(1)将A 、G 点坐标代入函数解析式,得⎩⎨⎧9a +3b +33=0,a -b +33=0,解得⎩⎨⎧a =-3b =23,∴抛物线的解析式为y =-3x 2+23x +33; (2)如解图①,作ME ∥y 轴交AB 于E 点, 当x =0时,y =33,即B 点坐标为(0,33), 直线AB 的解析式为y =-3x +33,设M(n ,-3n 2+23n +33),E(n ,-3n +33), ME =-3n 2+23n +33-(-3n +33)=-3n 2+33n , S △ABM =12ME·AO=12(-3n 2+33n)×3=-332(n -32)2+2738,当n =32时,△ABM 面积的最大值是2738;(3)存在;理由如下:OE =233,AP =2,OP =1,BE =33-233=733,当y =233时,-3x +33=233,解得x =73,即EF =73,将△BEP 绕点E 顺时针方向旋转90°,得到△B′EC(如解图②), ∵OB ⊥EF ,∴点B′在直线EF 上,∵C 点横坐标绝对值等于EO 长度,C 点纵坐标绝对值等于EO -PO 长度, ∴C 点坐标为(-233,233-1),如解图,过F 作FQ ∥B′C,交EC 于点Q , 则△FEQ ∽△B′EC,由BE EF =B′E EF =CEEQ =3,可得Q 的坐标为(-23,-33);根据对称性可得,Q 关于直线EF 的对称点Q′(-23,533)也符合条件.4.解:(1)∵抛物线y =ax 2+bx +3经过点A(1,0)和点B(5,0), ∴⎩⎪⎨⎪⎧a +b +3=025a +5b +3=0,解得⎩⎪⎨⎪⎧a =35b =-185, ∴该抛物线对应的函数解析式为y =35x 2-185x +3;(2)①∵点P 是抛物线上的动点且位于x 轴下方,∴可设P(t ,35t 2-185t +3)(1<t <5),∵直线PM ∥y 轴,分别与x 轴和直线CD 交于点M 、N , ∴M(t ,0),N(t ,35t +3),∴PN =35t +3-(35t 2-185t +3)=-35(t -72)2+14720,联立直线CD 与抛物线解析式可得⎩⎪⎨⎪⎧y =35x +3y =35x 2-185x +3,解得⎩⎪⎨⎪⎧x =0y =3或⎩⎪⎨⎪⎧x =7y =365,∴C(0,3),D(7,365),分别过C 、D 作直线PN 的垂线,垂足分别为E 、F ,如解图①,则CE =t ,DF =7-t ,∴S △PCD =S △P +S △PDN =12PN·CE+12PN·DF=72PN =72[-35(t -72)2+14720]=-2110(t -72)2+102940, ∴当t =72时,△PCD 的面积最大,最大值为102940;②存在.∵∠CQN =∠PMB =90°, ∴当△Q 与△PBM 相似时,有NQ CQ =PM BM 或NQ CQ =BMPM两种情况, ∵CQ ⊥PN ,垂足为Q ,∴Q(t ,3),且C(0,3),N(t ,35t +3),∴CQ =t ,NQ =35t +3-3=35t ,∴NQ CQ =35,∵P(t ,35t 2-185t +3),M(t ,0),B(5,0),∴BM =5-t ,PM =0-(35t 2-185t +3)=-35t 2+185t -3,当NQ CQ =PM BM 时,则PM =35BM ,即-35t 2+185t -3=35(5-t),解得t =2或t =5(舍去),此时P(2,-95);当NQ CQ =BM PM 时,则BM =35PM ,即5-t =35(-35t 2+185t -3),解得t =349或t =5(舍去),此时P(349,-5527);综上可知存在满足条件的点P ,其坐标为(2,-95)或(349,-5527).。
2020中考数学复习测试:热点专题突破 专题六%E3%80%80开放型
专题六开放型条件开放类[类型解读]条件开放类问题的三种类型(1)补充条件型:题目给出部分条件,然后再添加一个(或几个)条件,使结论成立.(2)探索条件型:题目只给出结论,通过分析给出的结论特征,发现使结论成立的条件.(3)条件变化型:在原有条件与结论的基础上,题目的结论发生变化,需要补充条件.[例1](2019绍兴)在屏幕上有如下内容:如图,△ABC内接于☉O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长.小聪:你这样太简单了,我加的是∠A=30°,连接OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答.解决条件开放型问题的一般思路:从结论出发,执果索因,逆向思维,逐步探求结论成立的条件.强化运用1:(2019齐齐哈尔)如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).结论开放类[类型解读]结论开放型问题的两种类型(1)结论是否成立型:这类探索问题的设问,常以适合某种条件的结论“成立”“不成立”等语句加以表述.从给出的已知条件出发,经过推理证明能够推出结论是否成立.(2)判断猜想型:这类问题设问通常有两条线段有何关系(探索相等、平行或垂直),两个角是否相等,这个三角形是什么特殊的三角形,这个四边形是什么特殊的四边形等.它与传统题的区别在于:探索问题的结论过程往往也是解题过程.[例2]小敏思考解决如下问题:原题:如图1,点P,Q分别在菱形ABCD的边BC,CD上,∠PAQ=∠B,求证:AP=AQ.(1)小敏进行探索,若将点P,Q的位置特殊化:把∠PAQ绕点A旋转得到∠EAF,使AE⊥BC,点E,F分别在边BC,CD上,如图2.此时她证明了AE=AF,请你证明;(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作AE⊥BC,AF⊥CD,垂足分别为E,F.请你继续完成原题的证明.解决结论开放型问题,要充分利用题目中给出的条件合理地猜想,正确地推理,就会获得所求的结论.强化运用2:(2019贵阳)(1)数学理解:如图①,△ABC是等腰直角三角形,过斜边AB的中点D 作正方形DECF,分别交BC,AC于点E,F,求AB,BE,AF之间的数量关系;(2)问题解决:如图②,在任意直角△ABC内,找一点D,过点D作正方形DECF,分别交BC,AC于点E,F,若AB=BE+AF,求∠ADB的度数;(3)联系拓广:如图③,在(2)的条件下,分别延长ED,FD,交AB于点M,N,求MN,AM,NB的数量关系.存在性开放类[类型解读]存在性开放问题常见的四种类型(1)特殊点存在性开放问题:图形中存在特殊的点,该点满足题目中的某些条件,通过探索,推理证明或运算说明该点存在.(2)特殊三角形存在性开放问题:图形中存在着特殊的三角形(等腰三角形或直角三角形),通过探索,推理证明或运算说明该特殊三角形存在.(3)相似三角形存在性开放问题:图形中存在着与原三角形相似的三角形,通过探索,推理证明说明该三角形存在.(4)特殊四边形存在性开放问题:图形中存在着特殊的四边形,通过探索,推理证明或运算说明该特殊四边形存在.[例3](2019辽阳)如图,在平面直角坐标系中,Rt△ABC 的边BC在x轴上,∠ABC=90°,以A 为顶点的抛物线y=-x2+bx+c经过点C(3,0),交y轴于点E(0,3),动点P在对称轴上.(1)求抛物线的解析式;(2)若点P从A点出发,沿A→B方向以1个单位/秒的速度匀速运动到点B停止,设运动时间为t秒,过点P作PD⊥AB交AC于点D,过点D作平行于y轴的直线l交抛物线于点Q,连接AQ,CQ,当t为何值时,△ACQ的面积最大?最大值是多少?(3)若点M是平面内的任意一点,在x轴上方是否存在点P,使得以点P,M,E,C为顶点的四边形是菱形,若存在,请求出符合条件的M点坐标;若不存在,请说明理由.解决存在性问题,需先假设存在,再进行推演,若得出推演结果,则说明结论存在;若推出矛盾,则推翻假设,说明结论不存在.2+bx+c(a≠0)经过点A(3,0),B(-1,0),C(0,-3).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.1.(2019咸宁)若整式x2+my2(m为常数,且m≠0)能在有理数范围内分解因式,则m的值可以是(写一个即可).2.如图,在平面直角坐标系中,点A,B的坐标分别为(1,3),(n,3),若直线y=2x与线段AB有公共点,则n的值可以为.(写出一个即可)3.如图,在△ABC中,AB≠AC,D,E分别为边AB,AC上的点,AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件: ,可以使得△FDB与△ADE相似.(只需写出一个)第2题图第3题图4.(2019舟山)如图,在矩形ABCD中,点E,F在对角线BD上.请添加一个条件,使得结论“AE=CF”成立,并加以证明.5.(2019温州)如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG=90°.(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP=NQ.6.如图,已知二次函数的图象过点O(0,0),A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于点N,当△ANM面积最大时,求点M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴,与抛物线交于点Q.过A作AC⊥x轴于点C,当以点O,P,Q 为顶点的三角形与以点O,A,C为顶点的三角形相似时,求P点的坐标.专题六开放型专题突破[例1]解:(1)如图,连接OC,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠D=30°,∴OD=2OC=2,∴AD=AO+OD=1+2=3.(2)(答案不唯一)添加∠DCB=30°,求AC的长.解:∵AB为直径,∴∠ACB=90°,∵∠ACO+∠OCB=90°,∠OCB+∠DCB=90°,∴∠ACO=∠DCB,∵∠ACO=∠A,∴∠A=∠DCB=30°,在Rt△ACB中,BC=AB=1,∴AC=BC=.强化运用1:AB=DE(答案不唯一)[例2]证明:(1)∵四边形ABCD是菱形,∴∠B+∠C=180°,∠B=∠D,AB=AD,∵∠EAF=∠B,∴∠EAF+∠C=180°,∴∠AEC+∠AFC=180°,∵AE⊥BC,∴∠AEB=90°,∴∠AFC=∠AFD=90°,在△AEB和△AFD中,∴△AEB≌△AFD,∴AE=AF.(2)由(1)得∠PAQ=∠EAF=∠B,AE=AF,∴∠EAP=∠FAQ,在△AEP和△AFQ中,∴△AEP≌△AFQ(ASA),∴AP=AQ.强化运用2:解:(1)AB=(AF+BE).理由如下:∵△ABC是等腰直角三角形,∴AC=BC,∠A=∠B=45°,AB=AC,∵四边形DECF是正方形,∴DE=DF=CE=CF,∠DFC=∠DEC=90°,∴∠A=∠ADF=45°,∴AF=DF=CE,∴AF+BE=BC=AC,∴AB=(AF+BE).(2)如图,延长AC到点M,使FM=BE,连接DM,∵四边形DECF是正方形,∴DF=DE,∠DFC=∠DEC=90°,∵BE=FM,∠DFC=∠DEB=90°,DF=ED,∴△DFM≌△DEB(SAS),∴DM=DB,∵AB=AF+BE,AM=AF+FM,FM=BE,∴AM=AB,又DM=DB,AD=AD,∴△ADM≌△ADB(SSS).∴∠DAC=∠DAB=∠CAB,同理,得∠ABD=∠CBD=∠ABC,∵∠ACB=90°,∴∠CAB+∠CBA=90°,∴∠DAB+∠ABD=(∠CAB+∠CBA)=45°,∴∠ADB=180°-(∠DAB+∠ABD)=135°. (3)∵四边形DECF是正方形,∴DE∥AC,DF∥BC,∴∠CAD=∠ADM,∠CBD=∠NDB,∠MDN=∠AFD=90°,∵∠DAC=∠DAB,∠ABD=∠CBD,∴∠DAB=∠ADM,∠NDB=∠ABD,∴AM=MD,DN=NB,在Rt△DMN中,MN2=MD2+DN2,∴MN2=AM2+NB2.[例3]解:(1)将点C(3,0),E(0,3)的坐标分别代入二次函数解析式,得解得故抛物线的解析式为y=-x2+2x+3.(2)由(1)知y=-x2+2x+3=-(x-1)2+4,∴点A的坐标为(1,4),设直线AC的解析式为y=kx+b,把A(1,4),C(3,0)代入,得解得∴直线AC的解析式为y=-2x+6,由题意,知AP=t,∴BP=4-t(0≤t≤4).把y=4-t代入y=-2x+6得4-t=-2x+6,解得x=1+.∴点D的坐标为1+,4-t.把x=1+代入y=-x2+2x+3,得y=-1+2+2×1++3=-+4,∴点Q的坐标为1+,-+4.∴QD=y Q-y D=-+4-(4-t)=-+t,∴S△ACQ=S△ADQ+S△CDQ=QD·(x Q-x A)+QD·(x C-x Q)=QD·(x C-x A)=×-+t×(3-1)=-+t=-(t-2)2+1(0≤t≤4).∴当t=2时,△ACQ的面积最大,最大面积为1.(3)设点P的坐标为(1,m),点M的坐标为(x,y),①当EC是菱形一条边时,且点M在直线AB右侧时,点E向右平移3个单位、向下平移3个单位得到C,则点P向右平移3个单位、向下平移3个单位得到M,则1+3=x,m-3=y,而MP=EP,得1+(m-3)2=(x-1)2+(y-m)2,解得y=m-3=,故点M的坐标为(4,);当点M在直线AB左侧时,同理,得点M的坐标为(-2,3+);②当EC是菱形一对角线时,则EC的中点即为PM的中点,则x+1=3,y+m=3,而PE=PC,即1+(m-3)2=4+m2,解得m=1,故x=2,y=3-m=3-1=2,故点M的坐标为(2,2).综上,点M的坐标为(4,)或(-2,3+)或(2,2).强化运用3:解:(1)把A(3,0),B(-1,0),C(0,-3)代入抛物线解析式,得解得则该抛物线的解析式为y=x2-2x-3.(2)设直线BC的解析式为y=kx-3,把B(-1,0)代入得-k-3=0,即k=-3,∴直线BC的解析式为y=-3x-3,∵A(3,0),B(-1,0),C(0,-3),∴AB=4,BC=,BO=1,如图,∵以点A为圆心的圆与直线BC相切于点M,∴AM⊥BC,∴∠AMB=∠COB=90°.∵∠ABM=∠CBO,∴△ABM∽△CBO,∴=,∴=,∴BM=,设M点的坐标为(m,-3m-3).则BM2=(-1-m)2+(3m+3)2=,解得m1=-,m2=-(不合题意,舍去)∴M点的坐标为-,-.(3)存在以点B,C,Q,P为顶点的四边形是平行四边形.设Q(x,0),P(n,n2-2n-3),当四边形BCQP为平行四边形时,由B(-1,0),C(0,-3),则-1+x=0+n,0+0=-3+n2-2n-3,解得n1=1+,n2=1-,当n=1+时,n2-2n-3=3,即P1(1+,3);当n=1-时,n2-2n-3=3,即P2(1-,3).当四边形BCPQ为平行四边形时,则-1+n=0+x,0+n2-2n-3=-3+0,解得n3=0,n4=2,当n=0时,不合题意,舍去;当n=2时,n2-2n-3=-3,即P3(2,-3).当四边形BQCP为平行四边形时,x+n=-1+0,0+n2-2n-3=-3+0,解得n5=0,n6=2,则P4(2,-3).综上可得,存在以点B,C,Q,P为顶点的四边形是平行四边形,点P的坐标为(1+,3)或(1-,3)或(2,-3).专题精练1.-1(答案不唯一)2.2(答案不唯一)3.∠BDF=∠A(答案不唯一)4.解:(答案不唯一)添加的条件是BE=DF.证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∴∠ABD=∠BDC,又∵BE=DF,∴△ABE≌△CDF(SAS),∴AE=CF.5.解:(1)(答案不唯一)满足条件的△EFG,如图1,2所示.(2)(答案不唯一)满足条件的四边形MNPQ如图所示.6.解:(1)∵抛物线过原点,对称轴是直线x=3,∴点B的坐标为(6,0),设抛物线解析式为y=ax(x-6),把A(8,4)代入,得4=8a(8-6),解得a=,∴抛物线解析式为y=x(x-6)=x2-x.(2)设M(t,0),直线OA的解析式为y=x,设直线AB的解析式为y=kx+b,把B(6,0),A(8,4)代入得,解得∴直线AB的解析式为y=2x-12,∵MN∥AB,∴设直线MN的解析式为y=2x+n,把M(t,0)代入得2t+n=0,解得n=-2t,∴直线MN的解析式为y=2x-2t,解方程组得则N t,t,∴S△AMN=S△AOM-S△NOM=×4t-t×t=-t2+2t=-(t-3)2+3,当t=3时,S△AMN有最大值3,此时M点坐标为(3,0).(3)设点P(m,0),则点Q m,m2-m,当△PQO∽△COA时,=,即=,∴PQ=2PO,即m2-m=2|m|,解方程m2-m=2m,得m1=0(舍去),m2=14,此时P点坐标为(14,0);解方程m2-m=-2m,得m3=0(舍去),m4=-2,此时P点坐标为(-2,0).当△PQO∽△CAO时,=,即=,∴PQ=PO,即m2-m=|m|,解方程m2-m=m,得m5=0(舍去),m6=8(舍去),解方程m2-m=-m,得m7=0(舍去),m8=4,此时P点坐标为(4,0).综上所述,P点坐标为(14,0)或(-2,0)或(4,0).。
中考数学常见几何模型专题06 相似模型-母子型(共角共边模型)和A(X)字型(原卷版)
专题06 相似模型-母子型(共角共边模型)和A (X )字型 相似三角形是初中几何中的重要的内容,常常与其它知识点结合以综合题的形式呈现,其变化很多,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到相似三角形的问题就信心更足了.本专题重点讲解相似三角形的母子模型与A (X )字模型.模型1.“母子”模型(共边角模型)【模型解读与图示】“母子”模型的图形(通常有一个公共顶点和另外一个不是公共的顶点,由于小三角形寓于大三角形中,恰似子依母怀),也是有一个“公共角”,再有一个角相等或夹这个公共角的两边对应成比例就可以判定这两个三角形相似.“双垂线”型是其特例。
“ 母子”模型(斜射影) 双垂直(射影定理) “母子型”的变形斜射影结论:△ABD ∽△ACB ,AB 2=AD ·AC .双垂直结论:①△ABD ∽△ACB ,AB 2=AD ·AC ;②△ADC ∽△ACB ,AC 2=AD ·AB ;③△CDB ∽△ACB ,CB 2=BD ·BA . 1.(2022·贵州贵阳·中考真题)如图,在ABC 中,D 是AB 边上的点,B ACD ∠=∠,:1:2AC AB =,则ADC 与ACB △的周长比是( )A .B .1:2C .1:3D .1:42.(2022·陕西汉中·九年级期末)如图,CD 是等腰直角ABC 斜边AB 的中线,以点D 为顶点的EDF ∠绕点D 旋转,角的两边分别与AC 、BC 的延长线相交,交点分别为点E 、F ,DF 与AE 交于点M ,DE 与BC交于点N ,且45EDF ∠=︒.(1)如图1,若CE CF =,求证:DE DF =;(2)如图2,若CE CF ≠,求证:2CD CE CF =⋅;(3)如图2,过D 作DG BC ⊥于点G ,若2CD =,CF =DN 的长.3.(2022·浙江绍兴·九年级期末)如果两个相似三角形的对应边存在2倍关系,则称这两个相似三角形互为母子三角形.(1)如果DEF 与ABC 互为母子三角形,则DE AB的值可能为( ) A .2 B .12 C .2或12(2)已知:如图1,ABC 中,AD 是BAC ∠的角平分线,2,AB AD ADE B =∠=∠.求证:ABD △与ADE 互为母子三角形.(3)如图2,ABC 中,AD 是中线,过射线CA 上点E 作//EG BC ,交射线DA 于点G ,连结BE ,射线BE 与射线DA 交于点F ,若AGE 与ADC 互为母子三角形.求AG GF 的值.4.(2022.浙江中考模拟)如图,在ABC 中,∠ACB =90°,CD∠AB .(1)图1中共有 对相似三角形,写出来分别为 (不需证明):(2)已知AB =5,AC =4,请你求出CD 的长:(3)在(2)的情况下,如果以AB 为x 轴,CD 为y 轴,点D 为坐标原点O ,建立直角坐标系(如图2),若点P 从C 点出发,以每秒1个单位的速度沿线段CB 运动,点Q 出B 点出发,以每秒1个单位的速度沿线段BA 运动,其中一点最先到达线段的端点时,两点即刻同时停止运动;设运动时间为t 秒是否存在点P ,使以点B、P、Q为顶点的三角形与∠ABC相似?若存在,请求出点P的坐标;若不存在,请说明理由.模型2. “A”字模型【模型解读与图示】“A”字模型图形(通常只有一个公共顶点)的两个三角形有一个“公共角”(是对应角),再有一个角相等或夹这个公共角的两边对应成比例,就可以判定这两个三角形相似.1.(2022·湖南怀化·中考真题)如图,∠ABC中,点D、E分别是AB、AC的中点,若S△ADE=2,则S△ABC=_____.2.(2022·浙江杭州·中考真题)如图,在ABC中,点D,E,F分别在边AB,AC,BC上,连接DE,EF,已知四边形BFED是平行四边形,DE1BC4=.(1)若8AB=,求线段AD的长.(2)若ADE的面积为1,求平行四边形BFED的面积.3.(2022·浙江宁波·中考真题)(1)如图1,在ABC 中,D ,E ,F 分别为,,AB AC BC 上的点,,,DE BC BF CF AF =∥交DE 于点G ,求证:DG EG =.(2)如图2,在(1)的条件下,连接,CD CG .若,6,3⊥==CG DE CD AE ,求DE BC的值. (3)如图3,在ABCD 中,45,︒∠=ADC AC 与BD 交于点O ,E 为AO 上一点,EG BD ∥交AD 于点G ,⊥EF EG 交BC 于点F .若40,︒∠=EGF FG 平分,10∠=EFC FG ,求BF 的长.4.(2022·辽宁·中考真题)如图,在ABC 中,4AB AC BC ===,D ,E ,F 分别为,,AC AB BC 的中点,连接,DE DF .(1)如图1,求证:DF =;(2)如图2,将EDF ∠绕点D 顺时针旋转一定角度,得到PDQ ∠,当射线DP 交AB 于点G ,射线DQ 交BC 于点N 时,连接FE 并延长交射线DP 于点M ,判断FN 与EM 的数量关系,并说明理由;(3)如图3,在(2)的条件下,当DP AB ⊥时,求DN 的长.模型3. “X”字模型(“8”模型)【模型解读与图示】“X”字模型图形的两个三角形有“对顶角”,再有一个角相等或夹对顶角的两边对应成比例就可以判定这两个三角形相似.1.(2022·河北·中考真题)如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A,B的连线与钉点C,D的连线交于点E,则(1)AB与CD是否垂直?______(填“是”或“否”);(2)AE=______.2.(2022·四川内江·中考真题)如图,在矩形ABCD中,AB=6,BC=4,点M、N分别在AB、AD上,且MN∠MC,点E为CD的中点,连接BE交MC于点F.(1)当F为BE的中点时,求证:AM=CE;(2)若EFBF=2,求ANND的值;(3)若MN∠BE,求ANND的值.3.(2022·广西贵港·中考真题)已知:点C ,D 均在直线l 的上方,AC 与BD 都是直线l 的垂线段,且BD 在AC 的右侧,2BD AC =,AD 与BC 相交于点O .(1)如图1,若连接CD ,则BCD △的形状为______,AO AD的值为______; (2)若将BD 沿直线l 平移,并以AD 为一边在直线l 的上方作等边ADE .①如图2,当AE 与AC 重合时,连接OE ,若32AC =,求OE 的长; ②如图3,当60ACB ∠=︒时,连接EC 并延长交直线l 于点F ,连接OF .求证:OF AB ⊥.4.(2022·江苏镇江·九年级期末)梅涅劳斯(Menelaus )是古希腊数学家,他首先证明了梅涅劳斯定理,定理的内容是:如图(1),如果一条直线与△ABC 的三边AB ,BC ,CA 或它们的延长线交于F 、D 、E 三点,那么一定有••1AF BD CE FB DC EA=.下面是利用相似三角形的有关知识证明该定理的部分过程:证明:如图(2),过点A 作AG BC ∥,交DF 的延长线于点G , 则有AF AG FB BD =,CE CD EA AG =,∠1AF BD CE AG BD CD FB DC EA BD DC AG••=••=. 请用上述定理的证明方法解决以下问题:(1)如图(3),△ABC 三边CB ,AB ,AC 的延长线分别交直线l 于X ,Y ,Z 三点,证明:1BX CZ AY XC ZA YB⋅⋅=. (2)如图(4),等边△ABC 的边长为2,点D 为BC 的中点,点F 在AB 上,且2BF AF =,CF 与AD 交于点E ,则AE 的长为________.(3)如图(5),△ABC 的面积为2,F 为AB 中点,延长BC 至D ,使CD BC =,连接FD 交AC 于E ,则四边形BCEF 的面积为________.课后专项训练:1.(2022•江苏中考模拟)对于两个相似三角形,如果沿周界按对应点顺序环绕的方向相同,那么称这两个三角形互为顺相似;如果沿周界按对应点顺序环绕的方向相反,那么称这两个三角形互为逆相似.例如,如图(1),∠CDE∠∠CAB,且沿周界CDEC与CABC环绕的方向(同为逆时针方向)相同,因此∠CDE和∠CAB 互为顺相似;如图(2),∠CDE∠∠CBA,且沿周界CDEC与CBAC环绕的方向相反,因此∠CDE和∠CBA互为逆相似.(1)根据以上材料填空:①如图(3),AB∠CD,则∠AOB∠∠COD,它们互为相似(填“顺”或“逆”,下同);②如图(4),Rt∠ABC中,∠ACB=90°,CD∠AB于点D,则∠ABC∠,它们互为相似;③如图(5),若∠DAB=∠EBC=90°,并且BD∠CE于点F,则∠ABD∠,它们互为相似;(2)如图(6),若∠AOB∠∠COD,指出图中另外的一对相似三角形并说明理由,同时指出它们互为顺相似还是互为逆相似;(3)如图(7),在Rt∠ABC中,∠C=90°,AC=20,BC=15,点P在∠ABC的斜边上,且AP=16,过点P画直线截∠ABC ,使截得的一个三角形与∠ABC 相似,则满足的截线共有 条.2.(2022·吉林·中考真题)下面是王倩同学的作业及自主探究笔记,请认真阅读并补充完整.【作业】如图①,直线12l l ∥,ABC 与DBC △的面积相等吗?为什么?解:相等.理由如下:设1l 与2l 之间的距离为h ,则12ABC S BC h =⋅,12DBC S BC h =⋅△.∠ABC DBC S S =.【探究】(1)如图②,当点D 在1l ,2l 之间时,设点A ,D 到直线2l 的距离分别为h ,h ',则ABC DBC S h S h ='△△.证明:∠ABC S(2)如图③,当点D 在1l ,2l 之间时,连接AD 并延长交2l 于点M ,则ABC DBC S AM S DM=△△.证明:过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,则90AEM DFM ∠=∠=︒, ∠AE ∥ .∠AEM △∽ .∠AE AM DF DM=. 由【探究】(1)可知ABC DBC S S =△△ ,∠ABC DBC S AM S DM =△△. (3)如图④,当点D 在2l 下方时,连接AD 交2l 于点E .若点A ,E ,D 所对应的刻度值分别为5,1.5,0,ABC DBCS S △△的值为 .3.(2022·上海·九年级专题练习)如图,在Rt ABC ∆中,90ACB ∠=︒,60BAC ∠=︒,6AC =,AD 平分BAC ∠,交边BC 于点D ,过点D 作CA 的平行线,交边AB 于点E . (1)求线段DE 的长;(2)取线段AD 的中点M ,联结BM ,交线段DE 于点F ,延长线段BM 交边AC 于点G ,求EF DF的值.4.(2022·上海市奉贤区古华中学九年级期中)已知:如图,四边形ABCD是平行四边形,在边AB的延长线上截取BE=AB,点F在AE的延长线上,CE和DF交于点M,BC和DF交于点N,联结BD.(1)求证:△BND△△CNM;(2)如果AD2=AB•AF,求证:CM•AB=DM•CN.5.(2022•安庆模拟)在四边形ABCD中,对角线AC、BD相交于点O.(1)如图①,若四边形ABCD为矩形,过点O作OE⊥BC,求证:OE=CD.(2)如图②,若AB∥CD,过点O作EF∥AB分别交BC、AD于点E、F.求证:=2.(3)如图③,若OC平分∠AOB,D、E分别为OA、OB上的点,DE交OC于点M,作MN∥OB交OA于一点N,若OD=8,OE=6,直接写出线段MN长度.6.(2022•重庆中考模拟)问题提出:如图1,D 、E 分别在∠ABC 的边AB 、AC 上,连接DE ,已知线段AD =a ,DB =b ,AE =c ,EC =d ,则S ∠ADE ,S ∠ABC 和a ,b ,c ,d 之间会有怎样的数量关系呢?问题解决:探究一:(1)看到这个问题后,我们可以考虑先从特例入手,找出其中的规律.如图2,若DE ∠BC ,则∠ADE =∠B ,且∠A =∠A ,所以∠ADE ∠∠ABC ,可得比例式:a ca b c d=++而根据相似三角形面积之比等于相似比的平方.可得()22ADE ABCS a Sa b =+.根据上述这两个式子,可以推出:()()()22ADE ABCS a a a a c ac Sa b a b a b c d a b c d a b ==⋅=⋅=+++++++. (2)如图3,若∠ADE =∠C ,上述结论还成立吗?若成立,请写出证明过程;着不成立,请说明理由. 探究二:回到最初的问题,若图1中没有相似的条件,是否仍存在结论:()()ADE ABCSacSa b c d =++?方法回顾:两个三角形面积之比,不仅可以在相似的条件下求得,当两个三角形的底成高具有一定的关系时,也可以解决.如图4,D 在∠ABC 的边上,做AH ∠BC 于H ,可得:1212ABD ADCBD AHS BD SDC DC AH ⋅==⋅.借用这个结论,请你解决最初的问题.延伸探究:(1)如图5,D 、E 分别在∠ABC 的边AB 、AC 反向延长线上,连接DE ,已知线段AD =a ,AB =b ,AE =c ,AC =d ,则ADE ABCSS= .(2)如图6,E 在∠ABC 的边AC 上,D 在AB 反向延长线上,连接DE ,已知线段AD =a ,AB =b ,AE =c ,AC =d ,ADE ABCSS= .结论应用:如图7,在平行四边形ABCD 中,G 是BC 边上的中点,延长GA 到E ,连接DE 交BA 的延长线于F ,若AB =5,AG =4,AE =2,∠ABCD 的面积为30,则∠AEF 的面积是 .7.(2022·贵州铜仁·中考真题)如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,记COD △的面积为1S ,AOB 的面积为2S .(1)问题解决:如图①,若AB //CD ,求证:12⋅=⋅S OC ODS OA OB(2)探索推广:如图②,若AB 与CD 不平行,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由.(3)拓展应用:如图③,在OA 上取一点E ,使OE OC =,过点E 作EF CD ∥交OD 于点F ,点H 为AB 的中点,OH 交EF 于点G ,且2=OG GH ,若56=OE OA ,求12S S 值.8.(2022·湖北随州·九年级期末)请阅读下列材料,并完成相应的任务.梅涅劳斯(Menelaus )是公元一世纪时的希腊数学家兼天文学家,著有几何学和三角学方面的许多书籍.梅涅劳斯发现,三角形各边(或其延长线)被一条不过任何一个顶点也不与任何一条边平行的直线所截,这条直线可能与三角形的两条边相交(一定还会与一条边的延长线相交),也可能与三条边都不相交(与三条边的延长线都相交).他进行了深入研究并证明了著名的梅涅劳斯定理(简称梅氏定理): 设D ,E ,F 依次是∠ABC 的三边AB ,BC ,CA 或其延长线上的点,且这三点共线,则满足1AD BE CFDB EC FA⋅⋅=. 这个定理的证明步骤如下:情况①:如图1,直线DE 交∠ABC 的边AB 于点D ,交边AC 于点F ,交边BC 的延长线与点E . 过点C 作CM ∠DE 交AB 于点M ,则BE BD EC DM =,AD AFDM FC=(依据), ∠BE AD EC DM ⋅=BD AFDM FC⋅, ∠BE •AD •FC =BD •AF •EC ,即1AD BE CFDB EC FA⋅⋅=.情况②:如图2,直线DE 分别交∠ABC 的边BA ,BC ,CA 的延长线于点D ,E ,F . …(1)情况①中的依据指: ; (2)请你根据情况①的证明思路完成情况②的证明;(3)如图3,D ,F 分别是∠ABC 的边AB ,AC 上的点,且AD :DB =CF :F A =2:3,连接DF 并延长,交BC 的延长线于点E ,那么BE :CE = .9.(2022长宁一模)已知, 在 △ABC 中,5,8AB AC BC ===, 点 E 是射线 CA 上的动点, 点 O 是边 BC 上的动点,且 OC OE =, 射线 OE 交射线 BA 于点 D .(1)如图 1, 如果 2OC =, 求 S △ADES△ODB的值;(2)联结AO , 如果 AEO △ 是以AE 为腰的等腰三角形,求线段OC 的长; (3)当点E 在边AC 上时, 联结,BE CD DBE CDO ∠∠=、, 求线段OC 的长.10.(2022松江中考模拟)如图,已知在△ABC 中,BC >AB ,BD 平分△ABC ,交边AC 于点D ,E 是BC 边上一点,且BE =BA ,过点A 作AG △DE ,分别交BD 、BC 于点F 、G ,联结FE .(1)求证:四边形AFED 是菱形;(2)求证:AB 2=BG •BC ;(3)若AB =AC ,BG =CE ,联结AE ,求ADEABCS S ∆∆的值.11.(2022•静安区期末)如图1,四边形ABCD中,△BAD的平分线AE交边BC于点E,已知AB=9,AE =6,AE2=AB•AD,且DC△AE.(1)求证:DE2=AE•DC;(2)如果BE=9,求四边形ABCD的面积;(3)如图2,延长AD、BC交于点F,设BE=x,EF=y,求y关于x的函数解析式,并写出定义域.12.(2022·浙江·九年级单元测试)如图,在Rt∠ABC中,∠ACB=90°,点D在AB上,且ADAC=ACAB.(1)求证∠ACD∠∠ABC;(2)若AD=3,BD=2,求CD的长.13.(2021·广西百色·中考真题)如图,∠ABC中,AB=AC,∠B=72°,∠ACB的平分线CD交AB于点D,则点D是线段AB的黄金分割点.若AC=2,则BD=______.14.(2022·江苏盐城·中考真题)如图,在ABC 与A B C '''中,点D 、D 分别在边BC 、B C ''上,且ACD A C D '''∽△△,若___________,则ABD A B D '''△∽△.请从①BD B D CD C D ''='';②AB A B CD C D ''='';③BAD B A D '''∠=∠这三个选项中选择一个作为条件(写序号),并加以证明.。
2021届中考数学总复习:命题与证明-精练精析(2)及答案解析
图形的性质——命题与证明2一.选择题(共9小题)1.下列命题中,假命题是()A.对顶角相等B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360°2.下列命题中,不正确的是()A.n边形的内角和等于(n﹣2)•180°B.两组对边分别相等的四边形是矩形C.垂直于弦的直径平分弦所对的两条弧D.直角三角形斜边上的中线等于斜边的一半3.下列命题中,错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等4.下列四个命题中,真命题是()A.对角线互相垂直平分的四边形是正方形B.对角线垂直相等的四边形是菱形C.对角线相等且互相平分的四边形是矩形D.四边都相等的四边形是正方形5.下列命题:①对角线相等且垂直的四边形是正方形;②平分弦的直径必垂直于弦;③相等的圆心角所对的弧一定相等;④买彩票中奖概率是,则买4张彩票一定一张会中奖;⑤真命题的逆命题一定是真命题,其中正确的命题个数是()A.0个B.1个C.2个D.3个6.说明命题“如果a,b,c是△ABC的三边,那么长为a﹣1,b﹣1,c﹣1的三条线段能构成三角形”是假命题的反例可以是()A.a=2,b=2,c=3 B.a=2,b=2,c=2 C.a=3,b=3,c=4 D.a=3,b=4,c=5 7.已知下列命题:①若a>0,b>0,则a+b>0;②若a=b,则a2=b2;③角的平分线上的点到角的两边的距离相等;④矩形的对角线相等.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个8下列命题是真命题的是()①若ac>bc,则a>b;②抛物线y=x2﹣2x﹣3与坐标轴有2个不同交点;③对角线相等的菱形是正方形;④过三点可以作一个圆.A.①②③B.②③ C.③D.③④9.已知下列命题:①若a>0,b>0,则ab>0;②直径是弦;③若,则a>0;④线段垂直平分线上的点到这条线段两个端点的距离相等.其中原命题与逆命题均为真命题的个数是()A.4 B.3 C.2 D.1二.填空题(共7小题)10.已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是_________ .(填写所有真命题的序号)11.写出定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:_________ .12.把命题“如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2”的逆命题改写成“如果…,那么…”的形式:_________ .13.下列命题中,其逆命题成立的是_________ .(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.14.下列命题①不相交的直线是平行线;②同位角相等;③矩形的对角线相等且互相平分;④平行四边形既是中心对称图形又是轴对称图形;⑤同圆中同弦所对的圆周角相等.其中错误的序号是_________ .15.在命题“同位角相等,两直线平行”中,题设是:_________ .16.已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题:_________ .三.解答题(共5小题)17.如图,现有以下3句话:①AB∥CD,②∠B=∠C.③∠E=∠F.请以其中2句话为条件,第三句话为结论构造命题.(1)你构造的是哪几个命题?(2)你构造的命题是真命题还是假命题?请加以证明.18.如图,在△ADF与△CBE中,点A,E,F,C在同一直线上,现给出下列四个论断:①AE=CF;②AD=CB;③∠B=∠D;④AD∥BC.请你选择其中三个作为条件,余下的一个作为结论,构成一个命题.请问:(1)在所有构成的命题中有假命题吗?若有,请写出它的条件和结论(用序号表示);若没有,请说明理由;(2)在所有构成的真命题中,任意选择一个加以证明.19.把命题改写成”如果…那么…”的形式.(1)对顶角相等.(2)两直线平行,同位角相等.(3)等角的余角相等.20.对于同一平面的三条直线,给出下列5个论断,①a∥b;②b∥c;③a⊥b;④a∥c;⑤a⊥c.以其中两个论断为条件,一个论断为结论,组成一个你认为正确的命题.解:已知:_________ ;结论_________ ;理由:_________ .21.将下列命题改写成“如果…,那么…”的形式.(1)能被2整除的数也能被4整除;(2)相等的两个角是对顶角;(3)若xy=0,则x=0;(4)角平分线上的点到这个角两边的距离相等.图形的性质——命题与证明2参考答案与试题解析一.选择题(共9小题)1.下列命题中,假命题是()A.对顶角相等 B.三角形两边的和小于第三边C.菱形的四条边都相等 D.多边形的外角和等于360°考点:命题与定理.分析:分别利用对顶角的性质、三角形的三边关系、菱形的性质及多边形的外角和对四个选项分别判断后即可确定正确的选项.解答:解:A、对顶角相等,正确,是真命题;B、三角形的两边之和大于第三边,错误,是假命题;C、菱形的四条边都相等,正确,是真命题;D、多边形的外角和为360°,正确,为真命题,故选:B.点评:本题考查了命题与定理的知识,解题的关键是熟知对顶角的性质、三角形的三边关系、菱形的性质及多边形的外角和定理,属于基础知识,难度较小.2.下列命题中,不正确的是()A.n边形的内角和等于(n﹣2)•180°B.两组对边分别相等的四边形是矩形C.垂直于弦的直径平分弦所对的两条弧D.直角三角形斜边上的中线等于斜边的一半考点:命题与定理.分析:利用多边形的内角和定理、矩形的判定、垂径定理及直角三角形的性质逐一判断后即可确定正确的选项.解答:解:A、n边形的内角和等于(n﹣2)•180°,故A选项正确;B、两组对边分别相等的四边形是平行四边形,故B选项错误;C、垂直于弦的直径平分弦所对的两条弧,故C选项正确;D、直角三角形斜边上的中线等于斜边的一半,故D选项正确,故选B.点评:本题考查了命题与定理的知识,解题的关键是了解多边形的内角和定理、矩形的判定、垂径定理及直角三角形的性质,难度不大.3.下列命题中,错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等考点:命题与定理.分析:根据平行四边形的性质对A进行判断;根据菱形的性质对B进行判断;根据矩形的性质对C进行判断;根据角平分线的性质对D进行判断.解答:解:A、平行四边形的对角线互相平分,所以A选项的说法正确;B、菱形的对角线互相垂直平分,所以B选项的说法正确;C、矩形的对角线相等且互相平分,所以C选项的说法错误;D、角平分线上的点到角两边的距离相等,所以D选项的说法正确.故选:C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.4.下列四个命题中,真命题是()A.对角线互相垂直平分的四边形是正方形B.对角线垂直相等的四边形是菱形C.对角线相等且互相平分的四边形是矩形D.四边都相等的四边形是正方形考点:命题与定理.分析:根据菱形、矩形、等腰梯形的判定与性质分别判断得出即可.解答:解:A、根据菱形的判定方法,对角线互相垂直平分的四边形是菱形,故此选项错误;B、两条对角线相等且互相垂直的四边形有可能是等腰梯形,故此选项错误;C、根据对角线相等且互相平分的四边形是矩形,故此选项正确;D、根据四边都相等的四边形是菱形,故此选项错误.故选:C.点评:此题主要考查了菱形、矩形的判定等知识,熟练掌握其性质是解题关键.5.下列命题:①对角线相等且垂直的四边形是正方形;②平分弦的直径必垂直于弦;③相等的圆心角所对的弧一定相等;④买彩票中奖概率是,则买4张彩票一定一张会中奖;⑤真命题的逆命题一定是真命题,其中正确的命题个数是()A.0个B.1个C.2个D.3个考点:命题与定理.专题:常规题型.分析:根据正方形的判定方法对①进行判断;根据垂径定理对②进行判断;根据圆心角、弦和弧的关系对③进行判断;根据概率的意义对④进行判断;利用反例对⑤进行判断.解答:解:对角线互相平分、相等且垂直的四边形是正方形,所以①错误;平分弦(非直径)的直径必垂直于弦,所以②错误;在同圆或等圆中,相等的圆心角所对的弧一定相等,所以③错误;买彩票中奖概率是,则中奖的机会为,但不是买4张彩票一定一张会中奖,所以④错误;真命题的逆命题不一定是真命题,如对顶角相等,所以⑤错误.故选A.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.说明命题“如果a,b,c是△ABC的三边,那么长为a﹣1,b﹣1,c﹣1的三条线段能构成三角形”是假命题的反例可以是()A.a=2,b=2,c=3 B.a=2,b=2,c=2 C.a=3,b=3,c=4 D.a=3,b=4,c=5考点:命题与定理;三角形三边关系.分析:举例能使得两边之和小于或等于第三边即可得到反例.解答:解:当a=2,b=2,c=3时,a﹣1=1,b﹣1=1,c﹣1=2,此时:1+1=2,所以不能构成三角形,故选A.点评:本题考查了命题与定理及三角形的三边关系,举反例是判定命题为假命题的一个方法.7.已知下列命题:①若a>0,b>0,则a+b>0;②若a=b,则a2=b2;③角的平分线上的点到角的两边的距离相等;④矩形的对角线相等.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个考点:命题与定理.分析:分别利用不等式的性质以及角平分线的性质和矩形的判定和性质分析得出即可.解答:解:①若a>0,b>0,则a+b>0,原命题正确,逆命题:如果a+b>0,那么a>0,b>0不一定正确,故不合题意;②若a=b,则a2=b2,原命题正确,逆命题:如果a2=b2,那么a=b不一定正确,故不合题意;③角的平分线上的点到角的两边的距离相等,原命题正确,逆命题也正确,符合题意;④矩形的对角线相等,原命题正确,逆命题不正确,故不合题意.其中原命题与逆命题均为真命题的个数有1个.故选:A.点评:此题主要考查了命题与定理,熟练掌握相关定理与判定方法是解题关键.8.下列命题是真命题的是()①若ac>bc,则a>b;②抛物线y=x2﹣2x﹣3与坐标轴有2个不同交点;③对角线相等的菱形是正方形;④过三点可以作一个圆.A.①②③B.②③C.③D.③④考点:命题与定理.分析:根据不等式的性质对①进行判断;根据抛物线与x轴的交点问题对②进行判断;根据正方形的判定方法对③进行判断;根据确定圆的条件对④进行判断.解答:解:若ac>bc,c>0,则a>b,所以①错误;由于△=4﹣4×(﹣3)>0,则抛物线y=x2﹣2x﹣3与坐标轴有2个不同交点,所以②正确;对角线相等的菱形是正方形,所以③正确;过不共线的三点可以作一个圆,所以④错误.故选B.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.9.已知下列命题:①若a>0,b>0,则ab>0;②直径是弦;③若,则a>0;④线段垂直平分线上的点到这条线段两个端点的距离相等.其中原命题与逆命题均为真命题的个数是()A. 4 B.3 C.2 D.1考点:命题与定理.分析:利用等式的性质、弦的定义、绝对值的意义及线段垂直平分线的性质分别判断后即可确定正确的选项.解答:解:①若a>0,b>0,则ab>0中原命题正确,逆命题错误;②直径是弦,原命题正确,逆命题错误;③若,则a>0,原命题与逆命题均错误;④线段垂直平分线上的点到这条线段两个端点的距离相等,原命题与逆命题均正确.故选D.点评:本题考查了命题与定理的知识,解题的关键是能够写出该命题的逆命题并判断真假.二.填空题(共7小题)10.已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是①②④.(填写所有真命题的序号)考点:命题与定理;平行线的判定与性质.专题:推理填空题.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:①如果a∥b,a⊥c,那么b⊥c是真命题,故①正确;②如果b∥a,c∥a,那么b∥c是真命题,故②正确;③如果b⊥a,c⊥a,那么b⊥c是假命题,故③错误;④如果b⊥a,c⊥a,那么b∥c是真命题,故④正确.故答案为:①②④.点评:本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,难度适中.11.写出定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.考点:命题与定理.分析:把一个命题的条件和结论互换就得到它的逆命题.命题“直角三角形斜边上的中线等于斜边的一半”的条件是直角三角形,结论是斜边上的中线等于斜边的一半,故其逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.解答:解:定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.点评:本题考查了互逆命题的知识及命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.12.把命题“如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2”的逆命题改写成“如果…,那么…”的形式:如果三角形三边长a,b,c,满足a2+b2=c2,那么这个三角形是直角三角形.考点:命题与定理;勾股定理.分析:命题都能写成“如果…,那么…”的形式,如果后面是题设,那么后面是结论,题设和结论互换后就是原命题的逆命题.解答:解:逆命题为:三角形三边长a,b,c,满足a2+b2=c2,这个三角形是直角三角形,逆命题改写成“如果…,那么…”的形式:如果三角形三边长a,b,c,满足a2+b2=c2,那么这个三角形是直角三角形,故答案为:如果三角形三边长a,b,c,满足a2+b2=c2,那么这个三角形是直角三角形.点评:本题考查把命题写成“如果…,那么…”的形式以及逆命题的概念,难度适中.13.下列命题中,其逆命题成立的是①④.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.考点:命题与定理;实数的运算;角的概念;平行线的判定与性质;勾股定理;勾股定理的逆定理.专题:推理填空题.分析:把一个命题的条件和结论互换就得到它的逆命题,再分析逆命题是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:①两直线平行,同旁内角互补,正确;②如果两个角相等,那么它们是直角,错误;③如果两个实数的平方相等,那么这两个实数相等,错误;④如果一个三角形是直角三角形,c为斜边,则a2+b2=c2,正确.故答案为①④.点评:本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,难度适中.14.下列命题①不相交的直线是平行线;②同位角相等;③矩形的对角线相等且互相平分;④平行四边形既是中心对称图形又是轴对称图形;⑤同圆中同弦所对的圆周角相等.其中错误的序号是①②④⑤.考点:命题与定理;同位角、内错角、同旁内角;平行线;平行四边形的性质;矩形的性质;圆周角定理;轴对称图形;中心对称图形.专题:应用题.分析:根据平行的性质,矩形的性质,平行四边形的性质,圆周角的性质来判断所给选项是否正确即可.解答:解:①在同一平面内,不相交的直线是平行线,故本选项错误,②两直线平行,同位角相等,故本选项错误,③矩形的对角线相等且互相平分,故本选项正确,④平行四边形是中心对称图形不是轴对称图形,故本选项错误,⑤同弦对应的圆周角中,在弦的同侧时,两圆周角相等,在两侧时两圆周角互补,故本选项错误,故答案为①②④⑤.点评:本题主要考查了综合利用相关性质和判定,难度适中.15.在命题“同位角相等,两直线平行”中,题设是:同位角相等.考点:命题与定理.专题:应用题.分析:由命题的题设的定义进行解答.命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.解答:解:命题中,已知的事项是“同位角相等”,所以“同位角相等”是命题的题设部分.故答案为同位角相等.点评:本题主要考查命题的基本概念与组成,比较简单.注意命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.16.已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题:如果一个平行四边形是菱形,那么这个平行四边形的两条对角线互相垂直.考点:命题与定理.专题:压轴题.分析:把一个命题的条件和结论互换就得到它的逆命题.解答:解:命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”的逆命题是“如果一个平行四边形是菱形,那么这个平行四边形的两条对角线互相垂直”.点评:本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.三.解答题(共5小题)17.如图,现有以下3句话:①AB∥CD,②∠B=∠C.③∠E=∠F.请以其中2句话为条件,第三句话为结论构造命题.(1)你构造的是哪几个命题?(2)你构造的命题是真命题还是假命题?请加以证明.考点:命题与定理;平行线的判定与性质.专题:常规题型.分析:(1)分别以其中2句话为条件,第三句话为结论可写出3个命题;(2)根据平行线的判定与性质对3个命题分别进行证明,判断它们的真假.解答:解:(1)由①②得到③;由①③得到②;由②③得到①;(2)∵AB∥CD,∴∠B=∠CDF,∵∠B=∠C,∴∠C=∠CDF,∴CE∥BF,∴∠E=∠F,所以由①②得到③为真命题;∵AB∥CD,∴∠B=∠CDF,∵∠E=∠F,∴CE∥BF,∴∠C=∠CDF,∴∠B=∠C,所以由①③得到②为真命题;∵∠E=∠F,∴CE∥BF,∴∠C=∠CDF,∵∠B=∠C,∴∠B=∠CDF,∴AB∥CD,所以由②③得到①为真命题.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.18.如图,在△ADF与△CBE中,点A,E,F,C在同一直线上,现给出下列四个论断:①AE=CF;②AD=CB;③∠B=∠D;④AD∥BC.请你选择其中三个作为条件,余下的一个作为结论,构成一个命题.请问:(1)在所有构成的命题中有假命题吗?若有,请写出它的条件和结论(用序号表示);若没有,请说明理由;(2)在所有构成的真命题中,任意选择一个加以证明.考点:命题与定理.专题:证明题;开放型.分析:(1)结合题意和图形,可知构成的命题中有假命题;(2)本题答案不唯一,可以用条件①③④作为已知;②作为结论,构造命题,再结合图形进行证明.解答:解:(1)假命题为:条件①②③;结论④.(2)(答案不唯一)已知条件①③④;结论②已知AE=CF,∠B=∠D,AD∥BC.求证:AD=CB证明:∵AE=CF,∴AE+EF=CF+EF.∴AF=EC.∵AD∥BC,∴∠A=∠C.又∵∠B=∠D,∴△ADF≌△EBC(AAS).∴AD=CB.点评:主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.19.把命题改写成”如果…那么…”的形式.(1)对顶角相等.(2)两直线平行,同位角相等.(3)等角的余角相等.考点:命题与定理.分析:找出原命题的条件和结论即可得出答案.解答:解:(1)如果两个角是对顶角,那么这两个角相等;(2)如果两直线平行,那么同位角相等;(3)如果两个角同为等角的余角,那么这两个角相等.点评:本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.20.对于同一平面的三条直线,给出下列5个论断,①a∥b;②b∥c;③a⊥b;④a∥c;⑤a⊥c.以其中两个论断为条件,一个论断为结论,组成一个你认为正确的命题.解:已知:①②;结论④;理由:平行于同一条直线的两直线平行.考点:命题与定理;垂线;平行线的判定与性质.分析:利用平行线的判定方法可由①②得到④组成一个真命题.解答:解:若a∥b,b∥c,则a∥c.理由为平行于同一条直线的两直线平行.故答案为①②,④,平行于同一条直线的两直线平行.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.21.将下列命题改写成“如果…,那么…”的形式.(1)能被2整除的数也能被4整除;(2)相等的两个角是对顶角;(3)若xy=0,则x=0;(4)角平分线上的点到这个角两边的距离相等.考点:命题与定理.分析:把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.解答:解:(1)如果一个数能被2整除,那么这个数也能被4整除;(2)如果两个角相等,那么这两个角是对顶角;(3)如果xy=0,那么x=0;(4)如果一个点在角平分线上,那么它到角两边的距离相等..点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.。
中考数学二轮专题复习 专题六 开放性问题教案(2021学年)
吉林省农安县新农乡2017届中考数学二轮专题复习专题六开放性问题教案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(吉林省农安县新农乡2017届中考数学二轮专题复习专题六开放性问题教案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为吉林省农安县新农乡2017届中考数学二轮专题复习专题六开放性问题教案的全部内容。
专题六——开放性问题解题依据、解题方法、问题结论这四项要素中,缺少解题,或者条件、结论有待探求、补充等。
一个数学问题系统中,通常包括已知条件、解题依据、方法和结论.如果这些部分齐备,称之为封闭性问题.若不完全齐备,称之为开放性问题,数学开放题就是指那些条件不完整,结论不确定,解法不限制的数学问题,它的显著特点是正确答案不唯一。
常见题型:(1)条件开放型;(2)结论开放型;(3)策略开放型;(4)综合开放型。
解题策略:(1)条件开放型,指结论给定,条件未知或不全,需要探求结论成立的条件,且与结论成立相对应的条件不唯一的数学问题。
这类开放题在中考试卷中多以填空题形式出现。
解条件开放型问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,挖掘条件,逆向追索,逐步探求,最终得出符合结论的条件。
这是一种分析型思维方式.(2)结论开放型,指条件充分给定,结论未知或不全,需要探求,整合出符合给定条件下相应结论的一类试题。
这类开放题在中考试卷中,以解答题居多。
解结论开放型问题的一般思路是:充分利用已知条件或图形特征,进行猜想、归纳、类比,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍。
这是一种归纳类比型思维方式。
中考数学复习练测课件 专题练测5 几何图形中的证明与计算
5.(2021·张家界)如图,在 Rt△AOB 中,∠ABO=90°,∠OAB=30°, 以点 O 为圆心,OB 为半径的圆交 BO 的延长线于点 C,过点 C 作 OA 的平 行线,交⊙O 于点 D,连接 AD.
(1)求证:AD 为⊙O 的切线;
证明:连接 OD. ∵∠OAB=30°,∠ABO=90°, ∴∠AOB=60°. ∵CD∥OA,∴∠C=∠AOB=60°. 又∵OC=OD,∴△COD 是等边三角形. ∴∠COD=60°.∴∠AOD=180°-60°-60°=60°=∠AOB. 又∵OD=OB,AO=AO,∴△AOD≌△AOB(SAS). ∴∠ADO=∠ABO=90°,即 OD⊥AD. 又∵点 D 在⊙O 上,∴AD 是⊙O 的切线.
8.(2021·株洲)如图,AB 是⊙O 的直径,点 C,D 是⊙O 上不同的两点,直 线 BD 交线段 OC 于点 E,交过点 C 的直线 CF 于点 F,若 OC=3CE,且 9(EF2-CF2)=OC2. (2)连接 OD,AD,AC,DC,若∠COD=2∠BOC. ①求证:△ACD∽△OBE; ②过点 E 作 EG∥AB,交线段 AC 于点 G,点 M 为线段 AC 的中点,若 AD =4,求线段 MG 的长度.
4.(2021·泰安)四边形 ABCD 为矩形,E 是 AB 延长线上的一点.
(2)若 AB=AD,点 F 是 AB 上的点,AF=BE,EG⊥AC 于点 G,如图 2,
求证:△DGF 是等腰直角三角形. 证明:∵AB=AD,
∴矩形 ABCD 是正方形.
∵EG⊥AC,
∴∠E=∠GAE=45°.
∴GE=GA.
∠EAD=∠FAD,
在△AED 与△AFD 中,∠AED=∠AFD, AD=AD,
2023版山西数学中考总复习第六章图形的变化提分小专题十二-图形折叠的计算与证明
返回目录
4.(2022河南模拟)如图,在Rt△ABC中,∠C = 90°,BC = 6,AC = 8,点
E是边AB的中点,点P为边AC上的一动点,连接EP,将△AEP沿EP折叠得
5 到△A'EP.当A'E与△ABC的一条直角边垂直时,则线段AP的长为 2 或 5 .
返回目录
点拨:由勾股定理易得 AB = 10.由题意知 E 为 AB 的中点,则 AE = 5.分如下两种情
应点为D',AD'的延长线交BC于点E,则BE的长为 10 .
返回目录
点拨:(1)如图析 1,连接 FE ,易证 Rt△FD'E ≌ Rt △FCE ,
得 D'E = CE , 设 D'E = CE = x, 则 BE = 10 - x,AE = 10 + x, 根据勾股定理列方程可求出 CE = 9 ,
49 若AE = 5,则GE的长为 13 .
点拨:易证△DFC ≌ △AED,得到 CF = DE,
DF = AE = 5,根据勾股定理得 DE = 13,
可证△FCD ∽ △FDO,求出 DO = 60 , 13
GE = DE - 2DO = 49 . 13
返回目录
3.(2022黄岩区模拟)如图,菱形ABCD的边长为2,∠A = 45°,点E是边
返回目录
典例精讲 掌握通性通法
(一)三角形中的折叠 1. 如图,在Rt△ABC中,∠BAC = 90°,∠B = 35°,AD是斜边 BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB 相交于点E,则∠FAE等于 20° .
返回目录
2. 如图,直角三角形纸片ABC的两条直角边BC,AC的长分别为6,8,现 7
2019年中考数学二轮复习专题练【几何图形的证明及计算问题】附答案解析
2019年中考数学二轮复习专题练【几何图形的证明及计算问题】附答案解析类型一与全等三角形有关的证明及计算1.如图,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM 上的点,且MB=MN.(1)求证:BN平分∠ABE;(2)若BD=1,连接DN,当四边形DNBC为平行四边形时,求线段BC的长;第1题图2.如图①,在等腰三角形ABC中,AB=AC,在底边BC上取一点D,在边AC上取一点E,使AE=AD,连接DE,在∠ABD的内部作∠ABF=2∠EDC,交AD于点F.(1)求证:△ABF是等腰三角形;(2)如图②,BF的延长线交AC于点G.若∠DAC=∠CBG,延长AC至点M,使GM=AB,连接BM,点N是BG的中点,连接AN,试判断线段AN、BM之间的数量关系,并证明你的结论.第2题图3.如图①,在△ABC中,∠ACB=90°,AC=BC,E为AC边上的一点,F为AB边上一点,连接CF,交BE于点D,且∠ACF=∠CBE,CG平分∠ACB交BD于点G.(1)求证:CF=BG;(2)如图②,延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB =CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=33,BG=6,求AC的长.图①图②第3题图4.如图①,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD=CE.(1)求证:∠CAE=∠CBD;(2)如图②,F是BD的中点,连接CF交AE于点M,求证:AE⊥CF;(3)如图③,F,G分别是BD,AE的中点,连接GF,若AC=2 2 ,CE=1,求△CGF的面积.第4题图5.如图①,在正方形ABCD中,O是对角线AC上一点,点E在BC的延长线上,且OE=OB,OE交CD于点F.(1)求证:△OBC≌△ODC;(2)求证:∠DOE=∠ABC;(3)把正方形ABCD改为菱形,其他条件不变(如图②),若∠ABC=52°,求∠DOE的度数.第5题图6.已知:如图①,等腰直角△ABC和△ECD中,∠ACB=∠ECD=90°,AC=BC,EC=DC.(1)求证:BE=AD;(2)如图②,若将△ECD绕点C按逆时针方向旋转一个锐角,①延长BE交AD于点F,交AC于点O.求证:BF⊥AD;②如图③,取BE的中点M,AD的中点N,连接MN,NC,求∠MNC的度数.第6题图类型二与相似三角形有关的证明及计算1.如图①,已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的点,过点Q作AC的垂线交线段AB(如图①)或线段AB的延长线(如图②)于点P.(1)当点P在线段AB上时,求证:△AQP∽△ABC;(2)当△PQB为等腰三角形时,求AP的长.第1题图2. 如图,在四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 的中点,连接DE 、CE .(1)求证:AC 2=AB ·AD ; (2)求证:CE ∥AD ;(3)若AD =5,AB =7,求ACAF 的值.第2题图3. 如图①,在△ABC 中,AB =AC ,点D 、E 、F 分别在BC 、AB 、AC 上,∠EDF =∠B. (1)求证:DE ·CD =DF ·BE ;(2)如图②,若D 为BC 中点,连接EF ,A D. ①求证:DE 平分∠BEF ;②若四边形AEDF 为菱形,求∠BAC 的度数及AEAB 的值.第3题图4. 如图①,△ABC 中,点D 在线段AB 上,点E 在线段CB 延长线上,且BE =CD ,EP ∥AC 交直线CD 的延长线于点P ,交直线AB 的延长线于点F ,∠ADP =∠AC B.(1)图①中是否存在与AC 相等的线段?若存在,请找出,并加以证明,若不存在,说明理由; (2)若将“点D 在线段AB 上,点E 在线段CB 延长线上”改为“点D 在线段BA 延长线上,点E 在线段BC 延长线上”,其他条件不变(如图②).当∠ABC =90°,∠BAC =60°,AB =2时,求线段PE 的长.第4题图5. 如图①,△ABC 中,BC >AC ,CD 平分∠ACB 交AB 于D ,E ,F 分别是AC ,BC 边上的两点,EF 交CD 于H .(1)若∠EFC =∠A ,求证:CE ·CD =CH ·BC ;(2)如图②,若BH 平分∠ABC ,CE =CF ,BF =3,AE =2,求EF 的长;(3)如图③,若CE ≠CF ,∠CEF =∠B ,∠ACB =60°,CH =5,CE =4 3 ,求 AC BC 的值.第5题图类型三与全等和相似三角形有关的证明及计算1.如图,等边△ABC边长是8,过点C的直线l∥AB,点D为BC上一点(不与点B,C重合),将一个60°角的顶点放在D处,它的边始终过点A,另一边与直线l交于点E,DE交AC于点F.(1)若BD=6,求CF的长;(2)若点D是BC的中点,判定△ADE的形状,并给出证明;(3)若点D不是BC的中点,则(2)中的结论成立吗?如果成立,请给予证明,如果不成立,请说明理由.第1题图2.如图①,在△ABC中,AC=BC,∠ACB=90°,点D、P分别为AC、AB的中点,连接BD、CP,CP交BD于点E,点F在AB上且∠ACF=∠CB D.(1)求证:CF=BE;(2)如图②,过点A 作AG ⊥AB 交BD 的延长线于点G . ①若CF =6,求DG 的长; ②设CF 交BD 于点H ,求HECH 的值.第2题图3. 如图①,已知D 是△ABC 的边BC 上的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,且BE =CF ,点M 、N 分别是AE 、DE 上的点,AN ⊥FM 于点G .(1)若∠BAC =90°,求证:△ABC 为等腰直角三角形; (2)如图②,若∠BAC ≠90°,AF =2DF . ①求证:FM AN =EM DN ; ②求AN ∶FM 的值.图① 图②第3题图4. (2018六安市模拟)我们知道,三角形三个内角平分线的交点叫做三角形的内心,已知点I 为△ABC 的内心.(1)如图①,连接AI 并延长交BC 于点D ,若AB =AC =3,BC =2,求ID 的长; (2)如图②,过点I 作直线交AB 于点M ,交AC 于点N . ①若MN ⊥AI ,求证:MI 2=BM ·CN ;②如图③,AI 的延长线交BC 于点D ,若∠BAC =60°,AI =4,求1AM +AN1的值.第4题图5. 如图①,在△ABC 中,∠ACB =90°,AC =BC ,顶点C 恰好在直线l 上,过A 、B 分别作AD ⊥l ,BE ⊥l ,垂足分别为D 、E .(1)求证:DE=AD+BE;(2)如图②,在△ABC中,当AC=kBC,其他条件不变,猜想DE与AD、BE的关系,并证明你的结论;(3)如图③,在Rt△ABC中,AC=4,BC=12,∠ACB=90°,点D是AC的中点,点E在BC上,过点E作EF⊥DE交AB于点F,若恰好EF=2DE,求CE的长.图①图②图③第5题图6.如图①,在等腰Rt△ABC中,∠ACB=90°,AC=BC, D为AB的中点,连接CD,将一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF 与AC交于点M,DE与BC交于点N.(1)若CE=CF,求证:△DCE≌△DCF;(2)如图②,在∠EDF绕点D旋转的过程中:①探究线段AB与CE、CF之间的数量关系,并证明;②若AB=42,CE=2CF,求DN的长.第6题图类型一 与全等三角形有关的证明及计算1. (1)证明:∵AB =AC ,点M 是BC 的中点,∴AM ⊥BC ,∠BAM =∠CAM , ∴∠CAM +∠ACM =90°, ∵AC ⊥BD ,∴∠MBE +∠ACM =90°, ∴∠BAN =∠CAM =∠MBE , ∵MB =MN , ∴∠MNB =∠MBN ,∵∠MNB =∠ABN +∠BAN ,∠MBN =∠MBE +∠NBE , ∴∠ABN +∠BAN =∠MBE +∠NBE , ∴∠ABN =∠NBE , 即BN 平分∠ABE ;(2)解:连接DN ,∵点M 为BC 中点,MB =MN , ∴MB =MN =12BC ,∵四边形DNBC 为平行四边形, ∴BN =CD ,BN ∥CD , ∴∠DBN =∠BDC , 由(1)知∠ABN =∠DBN , ∴∠ABN =∠BDC , ∵AB =BD =1, ∴△ABN ≌△BDC , ∴AN =BC ,∴AM =AN +MN =32BC ,参考答案由(1)中条件可知AM ⊥BC ,即∠AMB =90°, ∴AM 2+MB 2=AB 2,即(32BC )2+(12BC )2=1,解得BC =105.第1题解图2. (1)证明:∵等腰三角形ABC 中,AB =AC ,∴∠ABD =∠ACD , ∵AE =AD , ∴∠ADE =∠AED ,∵∠BAD +∠ABD =∠ADE +∠EDC ,∠EDC +∠ACD =∠AED , ∴∠BAD =2∠EDC , ∵∠ABF =2∠EDC , ∴∠BAD =∠ABF , ∴△ABF 是等腰三角形; (2)解:AN =12BM .证明:如解图,延长CA 至点H ,使AG =AH ,连接BH , ∵点N 是BG 的中点,点A 是HG 的中点, ∴AN =12BH ,∵(1)中已证明∠BAD =∠ABF ,且∠DAC =∠CBG , ∴∠CAB =∠CBA , ∴CA =CB 又∵AB =AC ,∴△ABC 是等边三角形,∠BAC =∠BCA =60°, ∴∠BAH =∠BCM , ∵GM =AB ,AB =AC , ∴AC =GM , ∴CM =AG , ∴AH =CM ,在△BAH 和△BCM 中,⎩⎨⎧AB =BC∠BAH =∠BCM AH =CM, ∴△BAH ≌△BCM (SAS), ∴BH =BM , ∴AN =12BM .第2题解图3. (1)证明:∵∠ACB =90°,AC =BC ,∴∠A =45°, ∵CG 平分∠ACB , ∴∠ACG =∠BCG =45°, ∴∠A =∠BCG , 在△BCG 和△CAF 中,⎩⎨⎧∠A =∠BCGAC =BC∠ACF =∠CBE,∴△BCG ≌△CAF (ASA), ∴CF =BG ;(2)证明:∵PC ∥AG , ∴∠PCA =∠CAG ,∵AC =BC ,∠ACG =∠BCG ,CG =CG , ∴△ACG ≌△BCG (SAS ), ∴∠CAG =∠CBE ,∵∠PCG =∠PCA +∠ACG =∠CAG +45°=∠CBE +45°,∠PGC =∠GCB +∠CBE =∠CBE +45°, ∴∠PCG =∠PGC , ∴PC =PG ,∵PB =BG +PG ,BG =CF , ∴PB =CP +CF ;(3)解:如解图,过E 作EM ⊥AG ,交AG 于M , ∵S △AEG =12AG ·EM =33, 由(2)得:△ACG ≌△BCG , ∴BG =AG =6, ∴ 12×6×EM =33, 解得EM =3,设∠FCH =x °,则∠GAC =2x °, ∴∠ACF =∠EBC =∠GAC =2x °, ∵∠ACH =45°, ∴2x +x =45, 解得x =15,∴∠ACF =∠GAC =30°,在Rt △AEM 中,AE =2EM =23, AM =(23)2-(3)2=3, ∴M 是AG 的中点,第3题解图∴AE =EG =23, ∴BE =BG +EG =6+23, 在Rt △ECB 中,∠EBC =30°, ∴CE =12BE =3+3,∴AC =AE +EC =23+3+3=33+3. 4. (1)证明:在△ACE 和△BCD 中,⎩⎨⎧AC =BC∠ACE =∠BCD CE =CD, ∴△ACE ≌△BCD , ∴∠CAE =∠CBD ;(2)证明:在Rt △BCD 中,点F 是BD 的中点, ∴CF =BF , ∴∠BCF =∠CBF , 由(1)知,∠CAE =∠CBD , ∴∠BCF =∠CAE ,∴∠CAE +∠ACF =∠BCF +∠ACF =∠BCA =90°, ∴∠AMC =90°, ∴AE ⊥CF ;(3)解:∵AC =2 2 , ∴BC =AC =2 2 , ∵CE =1, ∴CD =CE =1,在Rt △BCD 中,根据勾股定理得,BD =CD 2+BC 2=3 , ∵点F 是BD 中点, ∴CF =DF =12BD =32 ,同理:EG =12AE =32 ,如解图,连接EF ,过点F 作FH ⊥BC 于点H , ∵∠ACB =90°,点F 是BD 的中点, ∴FH =12CD =12,∴S △CEF =12CE ·FH =12×1×12=14, 由(2)知,AE ⊥CF ,∴S △CEF =12CF ·ME =12×32ME =34ME , ∴ 34ME =14,∴ME =13 ,∴GM =EG -ME =32-13=76 ,∴S △CFG =12CF ·GM =12×32×76=78. 5. (1)证明:∵AC 是正方形ABCD 的对角线,∴BC =DC ,∠BCA =∠DCA , 在△OBC 和△ODC 中,⎩⎨⎧BC =DC∠BCO =∠DCO CO =CO, ∴△OBC ≌△ODC (SAS);(2)证明:由(1)知,△OBC ≌△ODC , ∴∠CBO =∠CDO , ∵OE =OB , ∴∠CBO =∠E , ∴∠CDO =∠E , ∵∠DFO =∠EFC ,∴180°-∠DFO -∠CDO =180°-∠EFC -∠E ,即∠DOE =∠DCE ,第4题解图∵AB ∥CD , ∴∠DCE =∠ABC , ∴∠DOE =∠ABC ;(3)解:∵AC 是菱形ABCD 的对角线, ∴BC =DC ,∠BCA =∠DCA , 在△BCO 和△DCO 中,⎩⎨⎧BC =DC∠BCO =∠DCO CO =CO, ∴△BCO ≌△DCO (SAS), ∴∠CBO =∠CDO , ∵OE =OB , ∴∠CBO =∠E , ∴∠CDO =∠E , ∵∠DFO =∠EFC ,∴180°-∠DFO -∠CDO =180°-∠EFC -∠E , 即∠DOE =∠DCE , ∵AB ∥CD , ∴∠DCE =∠ABC , ∴∠DOE =∠ABC =52°. 6. (1)证明:在△BEC 和△ACD 中,⎩⎨⎧BC =AC∠ACB =∠ECD EC =DC, ∴△BEC ≌△ADC (SAS), ∴BE =AD ;(2)①证明:∵∠ACB =∠ECD =90°, ∴∠ACB -∠ACE =∠ECD -∠ACE , 即∠BCE =∠ACD ,在△BEC 和△ADC 中,⎩⎨⎧BC =AC∠BCE =∠ACD EC =DC, ∴△BEC ≌△ADC (SAS), ∴∠CBE =∠CAD ,在△BCO 和△AFO 中,∠CBE =∠CAD ,∠BOC =∠AOF , ∴∠AFB =∠ACB =90°, ∴BF ⊥AD ;②解:如解图,连接MC , ∵∠ACB =∠ECD =90°, ∴∠BCE =∠ACD , 又∵AC =BC ,EC =DC , ∴△BEC ≌△ADC ,∴∠CBE =∠CAD ,AD =BE , ∵M 是BE 的中点,N 是AD 的中点, ∴BM =AN ,在△BMC 和△ANC 中,⎩⎨⎧BM =AN∠CBE =∠CAD BC =AC, ∴△BMC ≌△ANC (SAS), ∴CM =CN ,∠BCM =∠ACN , ∴∠ACN +∠MCA =∠BCM +∠MCA , ∴∠MCN =∠ACB =90°, ∴△MCN 是等腰直角三角形, ∴∠MNC =45°.第6题解图类型二 与相似三角形有关的证明及计算1. (1)证明:∵PQ ⊥AQ ,∴∠AQP =90°=∠ABC . 在△AQP 与△ABC 中, ∵∠AQP =∠ABC , ∠QAP =∠BAC , ∴△AQP ∽△ABC ;(2)解:在Rt △ABC 中,AB =3,BC =4,由勾股定理得AC =5. ①当点P 在线段AB 上时,如题图①所示. ∵∠QPB 为钝角,∴当△PQB 为等腰三角形时,只可能是PB =PQ , 由(1)可知,△AQP ∽△ABC , ∴P A AC =PQBC ,即3-PB 5=BP 4, 解得PB =43,∴AP =AB -PB =3-43=53;②当点P 在线段AB 的延长线上时,如题图②所示. ∵∠QBP 为钝角,∴当△PQB 为等腰三角形时,只可能是PB =BQ . ∴∠BQP =∠P ,∵∠BQP +∠AQB =90°,∠A +∠P =90°, ∴∠AQB =∠A ,∴BQ =AB , ∴AB =BP ,∴AP =2AB =2×3=6.综上所述,当△PQB 为等腰三角形时,AP 的长为53或6. 2. (1)证明:∵AC 平分∠DAB ,∴∠DAC =∠CAB .又∵∠ADC =∠ACB =90°, ∴△ADC ∽△ACB , ∴AD AC =AC AB , ∴AC 2=AB ·AD ;(2)证明:∵E 为AB 的中点, ∠ACB =90°, ∴CE =12AB =AE , ∴∠EAC =∠ECA , ∵∠DAC =∠CAB , ∴∠DAC =∠ECA . ∴AD ∥CE ; (3)解:∵CE ∥AD , ∴∠DAF =∠ECF , 又∵∠DF A =∠EFC , ∴△AFD ∽△CFE , ∴AD CE =AF CF , ∵CE =12AB , ∴CE =12×7=72, ∵AD =5,∴572=AFCF,∴CFAF=710,∴AF+CFAF=1+CFAF=1710,即ACAF=1710.3. (1)证明:∵△ABC中,AB=AC,∴∠B=∠C,∵∠B+∠BDE+∠DEB=180°,∠BDE+∠EDF+∠FDC=180°,∠EDF=∠B,∴∠FDC=∠DEB,∴△CFD∽△BDE,∴DEDF=BECD,即DE·CD=DF·BE;(2)①证明:由(1)证得△BDE∽△CFD,∴BECD=DEDF,∵D为BC中点,∴BD=CD,∴BEBD=DEDF,∵∠B=∠EDF,∴△BDE∽△DFE,∴∠BED=∠DEF,∴ED平分∠BEF;②解:∵四边形AEDF为菱形,∴∠AEF=∠DEF,由(2)知,∠BED=∠DEF,∵∠AEF+∠DEF+∠BED=180°,∴∠AEF =60°,∵AE =AF ,∴∠BAC =60°.∵AB =AC ,∴△ABC 是等边三角形,∴∠B =60°,又∵∠BED =∠AEF =60°,∴△BED 是等边三角形,∴BE =DE ,∵AE =DE ,∴AE =BE =12AB ,∴AE AB =12.4. 解:(1)AC =BF .证明如下:∵∠ADP =∠ACD +∠A ,∠ACB =∠ACD +∠BCD ,∠ADP =∠ACB ,∴∠BCD =∠A ,又∵∠CBD =∠ABC ,∴△CBD ∽△ABC ,∴ CD AC =BC BA ,①∵FE ∥AC ,∴∠CAB =∠EFB ,又∵∠ABC =∠FBE ,∴△ABC ∽△FBE ,∴ BC BA =BE BF ,②由①②可得CD AC =BE BF ,∵BE =CD ,∴BF =AC ;(2)∵∠ABC =90°,∠BAC =60°,∴∠ACB =30°=∠ADP ,∴∠BCD =60°,∠ACD =60°-30°=30°,∵PE ∥AC ,∴∠E =∠ACB =30°,∠CPE =∠ACD =30°,∴CP =CE ,∵BE =CD ,∴BE -CE =CD -CP ,∴BC =DP ,∵∠ABC =90°,∠D =30°,∴BC =12CD ,∴DP =12CD ,即P 为CD 的中点,又∵PF ∥AC ,∴F 是AD 的中点,∴FP 是△ADC 的中位线,∴FP =12 AC ,∵∠ABC =90°,∠ACB =30°,∴AB =12AC ,∴FP =AB =2,∵DP =CP =BC ,CP =CE ,∴BC =CE ,即C 为BE 的中点,又∵EF ∥AC ,∴A 为FB 的中点,∴AC 是△BEF 的中位线,∴EF =2AC =4AB =8,∴PE =EF -FP =8-2=6.5. (1)证明:∵∠EFC +∠FEC +∠ECF =180°,∠A +∠B +∠ACB =180°,又∵∠EFC =∠A ,∠ECF =∠ACB ,∴∠CEF =∠B ,∵∠ECH =∠DCB ,∴△ECH ∽△BCD ,∴EC BC =CH CD ,∴CE ·CD =CH ·BC ;(2)解:如解图①,连接AH .∵BH 、CH 分别是∠ABC 和∠ACB 的平分线,∴AH 是∠BAC 的平分线,∴∠BHC =180°-12(∠ABC +∠ACB )=180°-12(180°-∠BAC )=90°+12∠BAC =90°+∠HAE ,∵CE =CF ,∠HCE =∠HCF ,∴CH ⊥EF ,HF =HE ,∴∠CHF =90°,∵∠BHC =∠BHF +∠CHF =∠BHF +90°,∴∠HAE =∠BHF ,∵CE =CF ,∴∠CFE =∠CEF ,∴∠AEH =∠BFH ,∴△AEH ∽△HFB ,∴ AE HF =EH FB ,∴FH ·EH =6,∴HE =HF =6,∴EF =26;第5题解图①(3)解:如解图②,作HM ⊥AC 于M ,HN ⊥BC 于N .设HF =x ,FN =y .∵∠HCM =∠HCN =30°,HC =5,∴HM =HN =52 ,CM =CN =532,∵CE =4 3 ,∴EM =332, ∴EH =EM 2+HM 2=13 ,∵S △HCF ∶S △HCE =FH ∶EH =FC ∶EC ,∴x ∶13=(y + 532)∶43,又∵x 2=y 2+(52)2 ,解得y =5314或332,∵当y =332时,CF =CN +NF =43,又∵CE ≠CF ,∴y ≠332,即FN =5314,∴CF =2037 ,∵∠CEF =∠B ,∠ECF =∠ACB ,∴△ECF ∽△BCA ,∴ EC BC =CFAC ,∴ AC BC =CF EC =203743=57.第5题解图②类型三 与全等和相似三角形有关的证明及计算1. 解:(1)∵△ABC 是等边三角形,∴∠B =∠FCD =60°,∵∠BAD =180°-60°-∠ADB ,∠FDC =180°-∠ADE -∠ADB =180°-60°-∠ADB , ∴∠BAD =∠FDC ,∴△ABD ∽△DCF ,∴AB DC =BD CF ,∴CF =DC ·BD AB =(8-6)×68=32;(2)△ADE 是等边三角形.证明:若D 点是BC 边中点,则AD ⊥BC ,∴∠CDE =∠ADC -∠ADE =90°-60°=30°,又∵l ∥AB ,∴∠DCE =180°-∠ABC =180°-60°=120°,∴∠CED =180°-∠DCE -∠CDE =180°-120°-30°=30°,即∠CDE =∠CED ,∴CE =CD .在△ACD 和△ACE 中,⎩⎨⎧AC =AC∠ACD =∠ACE =60°DC =EC,∴△ACD ≌△ACE (SAS),∴AD =AE ,又∵∠ADE =60°,∴△ADE 是等边三角形;(3)(2)中结论仍然成立.证明:如解图,过点D 作DG ∥l 交AC 于点G ,则△GDC ∽△ABC , ∴△GDC 是等边三角形,∴DG =DC ,∠GDC =∠DGC =60°,∵∠ADE =60°,∴∠ADE =∠GDC ,∴∠ADG =∠EDC ,又∵∠AGD =180°-60°=120°,∠DCE =180°-∠ABC =120°,∴∠AGD =∠DCE ,在△ADG 和△EDC 中,⎩⎨⎧∠ADG =∠EDCDG =DC ∠AGD =∠DCE ,∴△ADG ≌△EDC (ASA),∴AD =DE ,又∵∠ADE =60°,∴△ADE 是等边三角形.2. (1)证明:∵P 为AB 的中点,AC =BC ,∠ACB =90°, ∴∠BCE =12∠ACB =12×90°=45°,∠A =45°,∴∠A =∠BCE ,在△ACF 和△CBE 中第1题解图⎩⎨⎧∠A =∠BCEAC =BC ∠ACF =∠CBD,∴△ACF ≌△CBE (ASA),∴CF =BE ;(2)解:①由(1)得CF =BE ,∴BE =CF =6,∵AC =BC ,CE 平分∠ACB ,P 为AB 的中点,∴CP ⊥AB ,∵AG ⊥AB ,∴CE ∥AG ,∴∠GAD =∠ECD ,又∵∠ADG =∠CDE ,∴△ADG ∽△CDE ,∵点D 是AC 的中点,∴AD =CD ,即相似比k =1,∴△ADG ≌△CDE ,∴DG =DE =12GE ,∵CE ∥AG 且P 为AB 中点,∴GE =BE =6,∴DG =3;②设EP =a ,由(2)① 得EP ∥AG ,∴AG =2a ,又由上题得△ADG ≌△CDE ,∴CE =AG =2a ,∴CP =CE +EP =3a ,∵等腰直角△ABC 中 CP ⊥AB ,∴BP =CP =3a ,由题得∠ACP =∠CBP =45°,∵∠ACF =∠CBD ,∴∠ACP -∠ACF =∠CBP -∠CBD ,即∠HCE =∠PBE , ∵∠CEH =∠PEB ,∴∠CHE =180°-∠CEH -∠HCE ,∠BPE =180°-∠PBE -∠PEB , ∴∠CHE =∠BPE =90°,∴△CHE 是直角三角形,∴△CHE ∽△BPE ,∴HE CH =PE BP =a 3a =13.3. (1)证明:∵DE ⊥AB ,DF ⊥AC ,∴∠BED =∠CFD =90°,∵D 是BC 的中点,∴BD =CD ,在Rt △BED 和Rt △CFD 中,⎩⎨⎧BD =CDBE =CF ,∴Rt △BED ≌Rt △CFD (HL),∴∠B =∠C ,∵∠BAC =90°,∴△ABC 为等腰直角三角形;(2)①证明:如解图,连接AD 、EF ,相交于点O ,∵由(1)可得Rt △BED ≌Rt △CFD ,∴∠B =∠C ,DE =DF ,∴AB =AC ,∵BE =CF ,∴AE =AF ,∴AD ⊥EF ,又∵∠NEM =∠MGN =90°,∴∠GME +∠ENG =∠DNG +∠ENG =180°, ∴∠EMF =∠DNA ,又∵∠AEO +∠EAO =90°,∠EAO +∠NDA =90°, ∴∠AEO =∠NDA ,∴△FME ∽△AND ,∴FM AN =EM DN ;第3题解图②解:设AF =2k ,DF =k ,在Rt △ADF 中,AD =(2k )2+k 2=5k , 由①可得∠B =∠C ,DE =DF ,∴AD 垂直平分EF ,则OF =12EF ,∵DF ⊥AC ,∴S △ADF =12×5k ·OF =12×2k ×k ,∴OF =255k ,EF =455k ,∴ADEF =54,又∵△FME ∽△AND ,∴AN FM =AD EF =54,即AN ∶FM =5∶4.4. (1)解:如解图①中,作IE ⊥AB 于E .设ID =x , ∵AB =AC =3,AI 平分∠BAC ,∴AD ⊥BC ,BD =CD =1,在Rt △ABD 中,AD =AB 2-BD 2=32-12=2 2 ,在△BEI 和△BDI 中,⎩⎨⎧∠EBI =∠DBI ,∠BEI =∠BDI =90°,BI =BI ,∴△BEI ≌△BDI ,∴ID =IE =x ,BD =BE =1,AE =2,在Rt △AEI 中,∵AE 2+EI 2=AI 2,∴22+x 2=(22-x )2 ,∴x =22,∴ID =22;第4题解图(2)①证明:如解图②,连接BI 、CI .∵I 是内心,∴∠MAI =∠NAI ,∵AI ⊥MN ,∴∠AIM =∠AIN =90°,又∵AI =AI ,∴△AMI ≌△ANI (ASA),∴∠AMN =∠ANM ,∴∠BMI =∠CNI ,设∠BAI =∠CAI =α,∠ACI =∠BCI =β,∴∠NIC =90°-α-β,∵∠ABC =180°-2α-2β,∴∠MBI=90°-α-β,∴∠MBI=∠NIC,∴△BMI∽△INC,∴BMNI=MINC,∴NI·MI=BM·CN,∵NI=MI,∴MI2=BM·CN;②解:如解图③,过点N作NG∥AD交MA的延长线于G. ∵NG∥AD,∴∠ANG=∠DAN,∠AGN=∠BAD,∵∠BAC=60°,∴∠BAD=∠DAN=30°,∴∠ANG=∠AGN=30°,∴AN=AG,NG=3AN,∵AI∥NG,∴∠MIA=∠MNG,∠MAI=∠MGN,∴△AMI∽△GMN,∴AMMG=AING,∴AMAM+AN=43AN,∴AM+ANAM=3AN4,∴1AM+1AN=34.第4题解图③5.(1)证明:∵∠ACB =90°,∴∠ACD +∠BCE =90°,∵AD ⊥DE ,BE ⊥DE ,∴∠DAC +∠DCA =90°,∠ADC =∠BEC ,∴∠DAC =∠ECB ,在△ADC 和△CEB 中,⎩⎨⎧∠ADC =∠CEB∠DAC =∠ECBAC =CB,∴△ADC ≌△CEB (AAS),∴AD =CE ,CD =BE ,∴DE =CE +DC =AD +BE ;(2)解:DE =kBE +1k AD .证明:∵∠ACB =90°,∴∠ACD +∠BCE =90°,∵AD ⊥DE ,∴∠DAC +∠DCA =90°,∴∠DAC =∠ECB ,∵AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠CEB =90°,∴△ADC ∽△CEB ,∴AD CE =DC BE =AC BC =k ,∴DC =kBE ,CE =1k AD ,∴DE =DC +CE =kBE +1k AD ;(3)解:如解图,过点F 作FG ⊥BC 于点G ,∵AC =4,D 是AC 的中点,∴CD =2,∵EF =2DE ,易证△DCE ∽△EGF ,FG =2CE ,EG =2DC =4, 设CE =x ,则BG =BC -CG =12-4-x =8-x ,∵FG ⊥BC ,AC ⊥BC ,∴∠ACB =∠FGB =90°,∵∠B =∠B ,∴△FGB ∽△ACB ,∴FG AC =BG BC ,即2x 4=8-x 12,解得x =87,即CE 的长为87.第5题解图6. (1)证明:∵∠ACB =90°,AC =BC ,D 为AB 的中点,∴∠BCD =∠ACD =45°,∠BCE =∠ACF =90°,∴∠DCE =∠DCF =135°,在△DCE 与△DCF 中,⎩⎨⎧CE =CF∠DCE =∠DCFCD =CD,∴△DCE ≌△DCF (SAS);(2) ①解:AB 2=4CE ·CF .证明:∵∠DCF =∠DCE =135°,∴∠CDF +∠F =180°-135°=45°,∵∠CDF +∠CDE =45°,∴∠F =∠CDE ,∴△CDF ∽△CED , ∴CD CE =CF CD ,即CD 2=CE ·CF ,∵∠ACB =90°,AC =BC ,CD 平分∠ACB ,∴CD =AD =BD =12AB ,∴(12AB )2=CE ·CF ,∴AB 2=4CE ·CF ;②解:如解图,过D 作DG ⊥BC 于G ,由①得AB 2=4CE ·CF , ∵AB =42,CE =2CF ,∴CE =4,CF =2,∵DG ⊥BC 于G ,由题得∠B =45°,BD =12AB =2 2∴△DGB 是等腰直角三角形,∴BG =DG =22·sin 45°=2,∵DG ⊥BC ,AC ⊥BC ,∴DG ∥AC 即DG ∥CE ,∴∠ECN =∠DGN 又∵∠ENC =∠DNG ∴△CEN ∽△GDN ,∴CE DG =CN NG =42=2,又∵D 点为AB 中点,DG ∥AC ,∴CG =BG =2, ∴NG =13CG =23,在Rt △DGN 中,DN =DG 2+NG 2=22+(23)2=2103.第6题解图。
中考数学复习课件练习:专题复习六 几何综合题有答案
中考数学复习课件+练习:专题复习(六) 几何综合题(有答案)专题复习(六)几何综合题类型1类比探究的几何综合题1.(2019·岳阳)问题背景:已知∠EDF的顶点D 在△ABC的边AB所在直线上(不与A,B重合).DE交AC所在直线于点M,DF交BC所在直线于点N.记△ADM的面积为S1,△BND 的面积为S2.(1)初步尝试:如图1,当△ABC是等边三角形,AB=6,∠EDF=∠A,且DE∥BC,AD =2时,则S1·S2=12;(2)类比探究:在(1)的条件下,先将点D沿AB平移,使AD=4,再将∠EDF绕点D旋转至如图2所示位置,求S1·S2的值;(3)延伸拓展:当△ABC是等腰三角形时,设∠B=∠A=∠EDF=α.(Ⅰ)如图3,当点D在线段AB上运动时,设AD=a,BD=b,求S1·S2的表达式(结果用a,b和α的三角函数表示);(Ⅱ)如图4,当点D在BA的延长线上运动时,设AD=a,BD=b,直接写出S1·S2的表达式,不必写出解答过程.解:(1)在图1中,∵△ABC是等边三角形,∴AB=CB=AC=6,∠A=∠B=60°. ∵DE∥BC,∠EDF=∠A=60°,∴∠BND=∠EDF=60°.∴∠BDN=∠ADM=60°.∴△ADM,△BDN都是等边三角形.∴S1=34×22=3,S2=34×42=4 3.∴S1S2=12.(2)在图2中,设AM=x,BN=y.∵∠MDB=∠MDN+∠NDB=∠A+∠AMD,∠MDN=∠A,∴∠AMD=∠NDB.∵∠A=∠B,∴△AMD∽△BDN.∴AMBD=ADBN.∴x2=4y.∴xy=8.∵S1=12AD·AM sin60°=3x,S2=12DB·BN sin60°=32y,∴S 1S 2=3x·32y =32xy =12. (3)(Ⅰ)在图3中,设AM =x ,BN =y , 同法可证△AMD ∽△BDN ,可得xy =ab.∵S 1=12AD·AM sin α=12ax sin α, S 2=12DB·BN sin α=12by sin α, ∴S 1S 2=14(ab)2sin 2α. (Ⅱ)在图4中,设AM =x ,BN =y ,同法可证△AMD ∽△BDN ,可得xy =ab ,∵S 1=12AD·AM sin α=12ax sin α, S 2=12DB·BN sin α=12by sin α, ∴S 1S 2=14(ab)2sin 2α. 2.(2019·自贡)如图,已知∠AOB =60°,在∠AOB 的平分线OM 上有一点C ,将一个120°角的顶点与点C 重合,它的两条边分别与直线OA ,OB 相交于点D ,E.(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC的数量关系,并说明理由;(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给予证明;若不成立,线段OD,OE与OC之间又有怎样的数量关系?请写出你的猜想,不需证明.图1图2图3解:(1)∵OM是∠AOB的平分线,∴∠AOC=∠BOC=12∠AOB=30°.∵CD⊥OA,∴∠ODC=90°.∴∠OCD=60°.∴∠OCE=∠DCE-∠OCD=60°.在Rt△OCD中,OD=OC·cos30°=32OC,同理,OE=32OC.∴OD+OE=3OC.(2)(1)中的结论仍然成立.理由:过点C作CF⊥OA于点F,CG⊥OB于点G,∴∠OFC=∠OGC=90°.∵∠AOB=60°,∴∠FCG=120°.同(1)的方法得OF=32OC,OG=32OC.∴OF+OG=3OC.∵CF⊥OA,CG⊥OB,且点C是∠AOB 的平分线OM上一点,∴CF=CG.∵∠DCE=∠FCG=120°,∴∠DCF=∠ECG.∴△CFD≌△CGE.∴DF=EG.∴OF=OD+DF=OD+EG,OG=OE-EG.∴OF+OG=OD+EG+OE-EG=OD+OE.∴OD+OE=3OC.(3)(1)中的结论不成立,结论为OE-OD=3OC.3.(2019·东营)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC 上,∠BAO=30°,∠OAC=75°,AO=33,BO∶CO=1∶3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=75°,AB=43;(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=33,∠ABC =∠ACB=75°,BO∶OD=1∶3,求DC的长.图1图2 图3解:过点B作BE∥AD交AC于点E.∵AC⊥AD,∴∠DAO =∠BEO=90°.∵∠AOD =∠EOB,∴△AOD∽△EOB.∴BODO=EOAO=BEDA.∵BO∶OD=1∶3,∴EOAO=BEDA=13.∵AO=33,∴EO= 3.∴AE=4 3. ∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC.∴AB=AC=AEcos30°=8.∴BE=12AB=4,AD=3BE=12.在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,得CD=413. 4.(2019·江西)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.图1图2图3图4(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是BP=CE,CE与AD的位置关系是AD⊥CE;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE.若AB=23,BE=219,求四边形ADPE的面积.解:(1)提示:连接AC,延长CE交AD于点H,证明△ABP≌△ACE.(2)结论仍然成立.理由:选图2,连接AC交BD于点O,设CE交AD于点H.∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∠ABD =∠CBD=30°.∴AB=AC.∵△APE是等边三角形,∴AP=AE,∠BAC=∠PAE=60°.∴∠BAP=∠CAE.∴△BAP≌△CAE.∴BP=CE,∠ACE=∠ABP=30°.∵∠CAH=60°,∴∠CAH+∠ACH=90°.∴∠AHC=90°,即CE⊥AD.(3)连接AC交BD于点O,连接CE交AD 于点H.由(2)可知,EC⊥AD,CE=BP.在菱形ABCD中,AD∥BC,∴EC⊥BC.∵BC=AB=23,BE=219,在Rt△BCE中,EC=(219)2-(23)2=8.∴BP=CE=8.∵AC与BD是菱形的对角线,∴∠ABD=12∠ABC=30°,AC⊥BD. ∴BD=2BO=2AB·cos30°=6.∴OA=12AB=3,DP=BP-BD=8-6=2.∴OP=OD+DP=5.在Rt△AOP中,AP=AO2+OP2=27,∴S四边形ADPE =S△ADP+S△AEP=12×2×3+34×(27)2=8 3.5.(2019·烟台)【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP′B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC=11,求∠APB的度数.图1图2解:【问题解决】思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP′≌△CBP.∴∠PBP′=90°,BP′=BP=2,AP′=CP=3.在Rt△PBP′中,BP=BP′=2,∴∠BPP′=45°,根据勾股定理,得PP′=2 BP=2 2.∵AP=1,∴AP2+PP′2=1+8=9.∵AP′2=32=9,∴AP2+PP′2=AP′2.∴△APP′是直角三角形,且∠APP′=90°.∴∠APB=∠APP′+∠BPP′=90°+45°=135°.【类比探究】将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP′≌△CBP.∴∠PBP′=90°,BP′=BP=1,AP′=CP=11.在Rt△PBP′中,BP=BP′=1,∴∠BPP′=45°,根据勾股定理,得PP′=2 BP= 2.∵AP=3,∴AP2+PP′2=9+2=11.∵AP′2=(11)2=11,∴AP2+PP′2=AP′2.∴△APP′是直角三角形,且∠APP′=90°.∴∠APB=∠APP′-∠BPP′=90°-45°=45°.6.(2019·黄石)在△ABC中,E,F分别为线段AB,AC上的点(不与A,B,C重合).(1)如图1,若EF∥BC,求证:S△AEFS△ABC=AE·AFAB·AC;(2)如图2,若EF不与BC平行,(1)中的结论是否仍然成立?请说明理由;(3)如图3,若EF上一点G恰为△ABC的重心,AEAB=34,求S△AEFS△ABC的值.图1图2图3 解:(1)∵EF∥BC,∴△AEF∽△ABC.∴AEAB=AFAC.∴S△AEFS△ABC=(AEAB)2=AEAB·AFAC=AE·AFAB·AC.(2)若EF不与BC平行,(1)中的结论仍然成立.分别过点F,C作AB的垂线,垂足分别为N,H.∵FN⊥AB,CH⊥AB,∴FN∥CH.∴△AFN∽△ACH.∴FNCH=AFAC.∴S△AEFS△ABC=12AE·FN12AB·CH=AE·AFAB·AC.(3)连接AG并延长,交BC于点M,连接BG并延长,交AC于点N,连接M,N,则M,N分别是BC,AC的中点,∴MN∥AB,且MN=12AB.∴GM GA =GN GB =12,且S △ABM =S △ACM . ∴AG AM =23. 设AF AC=a , 由(2)知,S △AEG S △ABM=AE·AG AB·AM =34×23=12, S △AFG S △ACM =AG·AF AM·AC =23a , 则S △AEF S △ABC =S △AEG +S △AFG 2S △ACM =S △AEG 2S △ABM +S △AFG 2S △ACM=14+13a. 而S △AEF S △ABC =AE·AF AB·AC =34a , ∴14+13a =34a ,解得a =35. ∴S △AEF S △ABC =34×35=920. 7.(2019·河南)(1)问题发现如图1,在△OAB 和△OCD 中,OA =OB ,OC =OD ,∠AOB =∠COD =40°,连接AC ,BD 相交于点M.填空:①AC BD的值为1; ②∠AMB 的度数为40°;(2)类比探究如图2,在△OAB 和△OCD 中,∠AOB =∠COD =90°,∠OAB =∠OCD =30°,连接AC交BD 的延长线于点M.请判断AC BD的值及∠AMB 的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M.若OD =1,OB =7,请直接写出当点C 与点M 重合时AC 的长.图1图2 图3解:(2)AC BD=3,∠AMB =90°. 理由如下:∵∠AOB =∠COD =90°,∠OAB =∠OCD=30°,∴CODO=AOBO=3,∠COD+∠AOD=∠AOB+∠AOD,即∠AOC=∠BOD.∴△AOC∽△BOD.∴ACBD=CODO=3,∠CAO=∠DBO.∵∠AOB=90°,∴∠DBO+∠ABD+∠BAO=90°.∴∠CAO+∠ABD+∠BAO=90°.∴∠AMB=90°.(3)AC的长为23或3 3.提示:在△OCD旋转的过程中,(2)中的结论仍然成立,即ACBD=3,∠AMB=90°.如图所示,点C与点M重合,AC1,AC2的长即为所求.8.(2019·淄博)(1)操作发现:如图1,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC 为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是MG=NG;位置关系是MG⊥NG;(2)类比思考:如图2,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其他条件不变,小明发现的上述结论还成立吗?请说明理由;(3)深入研究:如图3,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其他条件不变,试判断△GMN 的形状,并给予证明.图1图2图3解:(1)连接BE,CD相交于点H,∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∠BAD=∠CAE=90°.∴∠CAD=∠BAE.∴△ACD≌△AEB(SAS).∴CD=BE,∠ADC=∠ABE.∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°.∴∠BHD=90°.∴CD⊥BE.∵点M,G分别是BD,BC的中点,∴MG//12CD.同理NG//12BE.∴MG=NG,MG⊥NG.故答案为MG=NG,MG⊥NG.(2)连接CD,BE,相交于点H,同(1)的方法得,MG=NG,MG⊥NG.(3)连接EB,DC,延长线相交于点H,同(1)的方法得,△ABE≌△ADC,MG=NG.∴∠AEB=∠ACD.∴∠CEH+∠ECH=∠AEH-∠AEC+180°-∠ACD-∠ACE=∠ACD-45°+180°-∠ACD-45°=90°.∴∠DHE=90°.同(1)的方法得,MG⊥NG.类型2与图形变换有关的几何综合题1.(2019·襄阳)如图1,已知点G在正方形ABCD 的对角线AC上,GE⊥BC,垂足为E,GF⊥CD, 垂足为F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:AGBE的值为2;(2)探究与证明:将四边形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG与BE之间的数量关系,并说明理由;(3)拓展与运用:四边形CEGF在旋转过程中,当B,E,F 三点在一条直线上时,如图3所示,延长CG交AD于点H.若AG=6,GH=22,则BC=35.图1图2图3解:(1)①证明:∵四边形ABCD是正方形,∴∠BCD=90°,∠BCA=45°.∵GE⊥BC,GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°.∴四边形CEGF是矩形,∠CGE=∠ECG =45°.∴EG=EC.∴四边形CEGF是正方形.(2)连接CG,由旋转性质可知,∠BCE=∠ACG=α.在Rt△CEG和Rt△CBA中,CECG=cos45°=22,CBCA=cos45°=22.∴CGCE=CACB= 2.又∵∠ECG=∠ECA=∠ACB-∠ECA,即∠ACG=∠BCE,∴△ACG∽△BCE.∴AGBE=CACB= 2.∴线段AG与BE之间的数量关系为AG=2BE.2.(2019·仙桃)问题:如图1,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC;探索:如图2,在Rt△ABC与Rt△ADE中,AB =AC ,AD =AE ,将△ADE 绕点A 旋转,使点D 落在BC 边上,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;应用:如图3,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45°.若BD =9,CD =3,求AD 的长.图1图2 图3解:探索:BD 2+CD 2=2AD 2.连接CE.∵∠BAD +∠DAC =90°=∠DAC +∠CAE ,∴∠BAD =∠CAE.在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE(SAS ).∴BD =CE ,∠B =∠ACE.∵Rt △ABC 与Rt △ADE 是等腰直角三角形,∴DE 2=2AD 2.∴∠B =45°.∴∠ACB +∠ACE =45°+45°=90°.∴∠DCE=90°.∴DC2+CE2=DE2,即BD2+CD2=2AD2.应用:以AD为腰作等腰Rt△ADE,连接CE,由“探索”可知,△ABD≌△ACE(SAS).∴CE=BD=9.∵∠ADC=∠ADE=45°,∴∠EDC=90°.在Rt△CDE中,由勾股定理,得DE=92-32=6 2.在等腰Rt△ADE中,AD=22DE=6.3.(2019·宜昌)在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E,且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB 的值;③当BP=9时,求BE·EF的值.图1 图2 图2备用图解:(1)证明:在矩形ABCD 中,∠A =∠D =90°,AB =DC ,∵点E 是AD 中点,∴AE =DE.在△AEB 和△DEC 中,⎩⎪⎨⎪⎧AB =DC ,∠A =∠D =90°,AE =DE ,∴△AEB ≌△DEC(SAS ).(2)①证明:在矩形ABCD 中,∠ABC =90°. ∵△BPC 沿PC 折叠得到△GPC ,∴∠PGC =∠PBC =90°,∠BPC =∠GPC. ∵BE ⊥CG ,∴BE ∥PG.∴∠GPF =∠PFB.∴∠BPF =∠PFB.∴BP =BF.②当AD =25时,∵∠BEC =90°,∴∠AEB +∠PEC =90°. ∵∠AEB +∠ABE =90°,∴∠DEC =∠ABE.∵∠A =∠D =90°,∴△ABE ∽△DEC.∴AB AE =DE DC.设AE=x,则DE=25-x,∴12x=25-x12.∴x=9或x=16.∵AE<DE,∴AE=9,DE=16.∴由勾股定理,得CE=20,BE=15.由折叠得,BP=PG,BC=GC,∴BP=BF =PG.∵BE∥PG,∴△ECF∽△GCP.∴EFGP=CECG.设BP=BF=PG=y,∴15-yy=2025.∴y=253,即BP=253.在Rt△PBC中,由勾股定理,得PC=25103,cos∠PCB=BCPC=31010.③连接FG,∵∠GEF=∠G=90°,∴BE∥PG. ∵BF∥PG,BF=PG=BP,∴四边形BPGF是菱形.∴BP∥GF,且BP=GF.∴∠GFE=∠EBA. ∴△GEF∽△EAB.∴EFGF=ABEB.∴BE·EF=AB·GF=AB·BP=12×9=108. 4.(2019·永州)如图1,在△ABC中,矩形EFGH 的一边EF在AB上,顶点G,H分别在BC,AC上,CD是边AB上的高,CD交GH于点I.若CI=4,HI=3,AD=92,矩形DFGI恰好为正方形.图1图2图3(1)求正方形DFGI的边长;(2)如图2,延长AB至P,使得AC=CP.将矩形EFGH沿BP的方向平移,当点G刚好落在CP上时,试判断移动后的矩形与△CBP重叠部分的形状是三角形还是四边形,为什么?(3)如图3,连接DG,将正方形DFGI绕点D顺时针旋转一定的角度得到正方形DF′G′I′,正方形DF′G′I′分别与线段DG,DB相交于点M,N,求△MN G′的周长.解:(1)∵HI∥AD,∴HIAD=CICD.∴392=4CD.∴CD=6.∴ID=CD-CI=2.∴正方形的边长为2.(2)如图2,设点G落在PC上时对应的点为点G′,点F的对应点为点F′.∵CA=CP,CD⊥PA,∴∠ACD=∠PCD,∠A=∠P.∵HG′∥PA,∴∠CHG′=∠A,∠CG′H=∠P.∴∠CHG′=∠CG′H.∴CH=CG′.∴IH=IG′=DF′=3.∵IG∥DB,∴IGDB=CICD.∴2DB=46.∴DB=3.∴DB=DF′=3.∴点B与点F′重合.∴移动后的矩形与△CBP重叠部分是三角形,即△BGG′.(3)将△DMI′绕点D顺时针旋转90°得到△DRF′,此时N,F′,R共线.∴∠MDR=90°.∵∠NDM=45°,∠NDM+∠NDR=90°,∴∠NDM=∠NDR=45°.∵DN=DN,DM=DR,∴△NDM≌△NDR.∴MN=NR=NF′+RF′=NF′+MI′.∴△MNG′的周长=MN+MG′+NG′=NF′+NG′+MI′=F′G′+I′G′=2I′G′=4. 5.(2019·岳阳)已知在Rt△ABC中,∠BAC=90°,CD为∠ACB的平分线,将∠ACB沿CD 所在的直线对折,使点B落在点B′处,连接AB′,BB′,延长CD交BB′于点E,设∠ABC=2α.(0°<α<45°)(1)如图1,若AB=AC,求证:CD=2BE;(2)如图2,若AB≠AC,试求CD与BE的数量关系;(用含α的式子表示)(3)如图3,将(2)中的线段BC绕点C逆时针旋转角(α+45°),得到线段FC,连接EF交BC 于点O,设△COE的面积为S1,△COF的面积为S2,求S1S2.(用含α的式子表示)图1图2图3解:(1)证明:∵点B,B′关于EC对称,∴BB′⊥EC,BE=EB′.∴∠DEB=∠DAC=90°.∵∠EDB=∠ADC,∴∠DBE=∠ACD.∵AB=AC,∠BAB′=∠CAD=90°,∴△BAB′≌△CAD.∴CD=BB′=2BE.(2)如图2,结论:CD=2BE·tan2α.理由:由(1)可知,∠ABB′=∠ACD,∠BAB′=∠CAD=90°,∴△BAB′∽△CAD.∴BB′CD=ABAC=1tan2α.∴2BECD=1tan2α.∴CD=2BE·tan2α.(3)如图3,在Rt△ABC中,∠ACB=90°-2α.∵EC平分∠ACB,∴∠ECB=12(90°-2α)=45°-α.∵∠BCF=45°+α,∴∠ECF=45°-α+45°+α=90°. ∴∠BEC+∠ECF=180°.∴BB′∥CF.∴△BEO∽△CFO.∴EOFO=BECF=BEBC=sin(45°-α).∵S1S2=EOFO,∴S1S2=sin(45°-α).6.(2019·潍坊)如图1,在▱ABCD中,DH⊥AB 于点H,CD的垂直平分线交CD于点E,交AB 于点F,AB=6,DH=4,BF∶FA=1∶5.(1)如图2,作FG⊥AD于点G,交DH于点M,将△DGM沿DC方向平移,得到△CG′M′,连接M′B.①求四边形BHMM′的面积;②直线EF上有一动点N,求△DNM周长的最小值;(2)如图3,延长CB交EF于点Q,过点Q作QK∥AB,过CD边上的动点P作PK∥EF,并与QK交于点K,将△PKQ沿直线PQ翻折,使点K的对应点K′恰好落在直线AB上,求线段CP的长.图1图2图3解:(1)①在▱ABCD中,AB=6,直线EF 垂直平分CD,∴DE=FH=3.又BF∶FA=1∶5,∴BF=1,FA=5.∴AH=2.∵Rt△AHD∽Rt△MHF,∴HMFH=HAHD.∴HM3=24.∴HM=3 2.根据平移的性质,得MM′=CD=6,∴S四边形BHMM′=S△BMM′+S△BHM=12×6×32+12×4×32=15 2.②连接CM交直线EF于点N,连接DN. ∴CN=DN.∵MH=32,∴DM=52.在Rt△CDM中,MC2=DC2+DM2.∴MC2=62+(52)2,即MC=132.∵MN+DN的最小值=MN+CN=MC,∴△DNM周长的最小值为9.(2)∵BF∥CE,∴△DNM周长的最小值为9.(2)∵BF∥CE,∴QFQF+4=BFCE=13.∴QF=2.∴PK=PK′=6.过点K′作E′F′∥EF,分别交CD于点E′,交QK于点F′.当点P在线段CE上时,在Rt△PK′E′中,PE′2=PK′2-E′K′2,∴PE′=2 5.∵Rt△PE′K′∽Rt△K′F′Q,∴PE′K′F′=E′K′F′Q.∴252=4F′Q.∴F′Q=45 5.∴PE=PE′-EE′=25-455=655.∴CP=CE-PE=15-655.同理可得,当点P在线段ED上时,CP=15+655.综上可得,CP的长为15-655或15+655.类型3与动点有关的几何综合题1.(2019·黄冈)如图,在平面直角坐标系xOy中,菱形OABC的边OA在x轴正半轴上,点B,C 在第一象限,∠C=120°,边长OA=8.点M从原点O出发沿x轴正半轴以每秒1个单位长度的速度作匀速运动,点N从A出发沿边AB-BC-CO以每秒2个单位长度的速度作匀速运动,过点M作直线MP垂直于x轴并交折线OCB 于点P,交对角线OB于点Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动.(1)当t=2时,求线段PQ的长;(2)求t为何值时,点P与N重合;(3)设△APN的面积为S,求S与t的函数关系式及t的取值范围.解:(1)当t=2时,OM=2,在Rt△OPM中,∠POM=60°,∴PM=OM·tan60°=2 3.在Rt△OMQ中,∠QOM=30°,∴QM=OM·tan30°=23 3.∴PQ =PM -QM =23-233=433. (2)由题意,得8+(t -4)+2t =24,解得t =203. (3)①当0<t <4时,S =12·2t·43=43t ; ②当4≤t <203时,S =12×[8-(t -4)-(2t -8)]×43=403-63t ;③当203≤t <8时,S =12×[(t -4)+(2t -8)-8]×43=63t -403;④当8≤t ≤12时,S =S 菱形ABCO -S △AON -S △ABP -S △PCN=323-12(24-2t)×43-12×[8-(t -4)]×43-12(t -4)×32[8-(24-2t)] =-32t 2+123t -56 3. 综上,S =⎩⎪⎪⎪⎨⎪⎪⎪⎧43t ;(0<t <4)403-63t ;(4≤t <203)63t -403;(203≤t <8)-32t 2+123t -56 3.(8≤t ≤12) 2.(2019·青岛)已知:如图,四边形ABCD ,AB ∥DC ,CB ⊥AB ,AB =16 cm ,BC =6 cm ,CD =8 cm .动点P 从点D 开始沿DA 边匀速运动,动点Q 从点A 开始沿AB 边匀速运动,它们的运动速度均为2 cm /s .点P 和点Q 同时出发,以QA ,QP 为边作平行四边形AQPE ,设运动的时间为t(s ),0<t <5.根据题意解答下列问题:(1)用含t 的代数式表示AP ;(2)设四边形CPQB 的面积为S(cm 2),求S 与t 的函数关系式;(3)当QP ⊥BD 时,求t 的值;(4)在运动过程中,是否存在某一时刻t ,使点E 在∠ABD 的平分线上?若存在,求出t 的值;若不存在,请说明理由.解:(1)过点D 作DH ⊥AB 于点H ,则四边形DHBC 是矩形,∴CD =BH =8,DH =BC =6.∴AH =AB -BH =8,AD =DH 2+AH 2=10,BD =CD 2+BC 2=10.∴AP =AD -DP =10-2t.(2)过点P 作PN ⊥AB 于点N ,连接PB. 在Rt △APN 中,PA =10-2t ,∴PN =PA·sin ∠DAH =35(10-2t),AN =PA·cos ∠DAH =45(10-2t). ∴BN =16-AN =16-45(10-2t), S =S △PQB +S △BCP =12·(16-2t)·35(10-2t)+12×6×[16-45(10-2t)]=65t 2-545t +72(0<t <5). (3)当PQ ⊥BD 时,∠PQN +∠DBA =90°, ∵∠QPN +∠PQN =90°,∴∠QPN =∠DBA.∴tan ∠QPN =QN PN =34.∴45(10-2t)-2t35(10-2t)=34.解得t=3527.经检验,t=3527是分式方程的解,∴当t=3527s时,PQ⊥BD.(4)存在.理由:连接BE交DH于点K,过点K作KM⊥BD于点M.当BE平分∠ABD时,△KBH≌△KBM,∴KH=KM,BH=BM=8.设KH=KM=x,在Rt△DKM中,(6-x)2=22+x2,解得x=8 3.过点E作EF⊥AB于点F,则△AEF≌△QPN,∴EF=PN=35(10-2t),AF=QN=45(10-2t)-2t,∴BF =16-[45(10-2t)-2t]. ∵KH ∥EF ,∴KH EF =BH BF. ∴8335(10-2t )=816-[45(10-2t )-2t].解得t =2518. 经检验,t =2518是分式方程的解. ∴当t =2518s 时,点E 在∠ABD 的平分线上.3.(2019·绵阳)如图,已知△ABC 的顶点坐标分别为A(3,0),B(0,4),C(-3,0).动点M ,N 同时从A 点出发,M 沿A →C ,N 沿折线A →B →C ,均以每秒1个单位长度的速度移动,当一个动点到达终点C 时,另一个动点也随之停止移动,移动的时间记为t 秒,连接MN.(1)求直线BC 的解析式;(2)移动过程中,将△AMN 沿直线MN 翻折,点A 恰好落在BC 边上点D 处,求此时t 值及点D 的坐标;(3)当点M ,N 移动时,记△ABC 在直线MN 右侧部分的面积为S ,求S 关于时间t 的函数关系式.备用图解:(1)设直线BC 的解析式为y =kx +b ,则有⎩⎨⎧b =4,-3k +b =0,解得⎩⎨⎧k =43,b =4.∴直线BC 的解析式为y =43x +4. 图1(2)如图1,连接AD 交MN 于点O′.由题意可知,四边形AMDN 是菱形,M(3-t ,0),N(3-35t ,45t), ∴O′(3-45t ,25t),D(3-38t ,45t). ∵点D 在BC 上,∴45t =43×(3-85t)+4,解得t =3011. ∴t =3011s 时,点A 恰好落在BC 边上点D 处,此时D(-1511,2411). 图2(3)如图2,当0<t ≤5时,△ABC 在直线MN 右侧部分是△AMN ,S =12×t ×45t =25t 2; 如图3,当5<t ≤6时,△ABC 在直线MN 右侧部分是四边形ABNM.图3S =S △ABC -S △CMN =12×6×4-12×(6-t)×[4-45(t -5)]=-25t 2+325t -12. 4.(2019·广东)已知Rt △OAB ,∠OAB =90°,∠ABO =30°,斜边OB =4,将Rt △OAB 绕点O 顺时针旋转60°,如图1,连接BC.(1)填空:∠OBC =60°;(2)如图1,连接AC ,作OP ⊥AC ,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止.已知点M的运动速度为单位长度/秒,点N的运动速度为1单位长度/秒.设运动时间为x秒,△OMN的面积为y,求当x为何值时,y取得最大值?最大值为多少?(结果可保留根号)图1图2备用图解:(2)∵OB=4,∠ABO=30°,∴OA=12OB=2,AB=3OA=2 3.∴S△AOC =12OA·AB=12×2×23=2 3.∵△BOC是等边三角形,∴BC=BO=4.∴∠OBC=60°,∠ABC=∠ABO+∠OBC =90°.∴AC=AB2+BC2=27.∴OP=2S△AOCAC=4327=2217.(3)①当0<x ≤83时,点M 在OC 上运动,点N 在OB 上运动,此时过点N 作NE ⊥OC 且交OC 于点E.则NE =ON·sin 60°=32x , ∴y =12OM·NE =12××32x ,即y =338x 2. ∴当x =83时,y 有最大值,最大值为833. ②当83<x ≤4时,点M 在BC 上运动,点N 在OB 上运动.图3过点M 作MH ⊥OB 于点H.则BM =8-,MH =BM·sin 60°=32(8-1.5x), ∴y =12ON·MH =-338x 2+23x. ∵当x =83时,y 取最大值,∴y <833. ③当4<x ≤时,点M ,N 都在BC 上运动,过点O作OG⊥BC于点G.则MN=12-,OG=AB=23,图4∴y=12MN·OG=123-532x.∵当x=4时,y有最大值,∴y<2 3.综上所述,y有最大值,最大值为83 3.类型4与实践操作有关的几何综合题1.(2019·齐齐哈尔)折纸是一项有趣的活动,同学们小时候都玩过折纸,可能折过小动物、小花、飞机、小船等,折纸活动也伴随着我们初中数学的学习.在折纸过程中,我们可以通过研究图形的性质和运动,确定图形位置等,进一步发展空间观念,在经历借助图形思考问题的过程中,我们会初步建立几何直观.折纸往往从矩形纸片开始,今天,就让我们带着数学的眼光来玩一玩折纸,看看折叠矩形的对角线之后能得到哪些数学结论.实践操作如图1,将矩形纸片ABCD沿对角线AC翻折,使点B′落在矩形ABCD所在平面内,B′C 和AD相交于点E,连接B′D.图1图2解决问题(1)在图1中.①B′D和AC的位置关系为B′D∥AC(互相平行);②将△AEC剪下后展开,得到的图形是菱形;(2)若图1中的矩形变为平行四边形(AB≠BC),如图2所示,结论①和结论②是否成立,若成立,请挑选其中一个结论加以证明,若不成立,请说明理由;(3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长和宽之比为1∶1或3∶1.拓展应用(4)在图2中,若∠B=30°,AB=43,当△AB′D恰好为直角三角形时,BC的长度为4或6或8或12.解:结果仍成立.①选择结论①证明.∵四边形ABCD是平行四边形,∴AD//BC.∴∠DAC=∠BCA.由折叠性质,得BC=B′C,∠BCA=∠ACB′,∴∠DAC=∠ACB′,B′C=AD.∴AE=CE,∴B′E=DE.∴∠CB′D=ADB′.∵∠AEC=∠B′ED,∠ACB′=∠CAD,∴∠ADB′=∠DAC.∴B′D∥AC.②选择结论②证明.设点E的对应为点F,连接AF.由折叠性质,得AE=AF,CE=CF.由①知AE=CE,∴AE=CE=AF=CF.∴四边形AECF是菱形.2.(2019·山西)综合性实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM,试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC.∴EMDM=EBAB.(依据1)∵BE=AB,∴EMDM=1.∴EM=DM,即AM是△ADE的DE边上的中线.又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE为一边在CE 的左下方作正方形CEFG,发现点G在线段BC 的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE,以CE为一边在CE 的右上方作正方形CEFG,可以发现点C,点B 都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.图1图2 图3解:(1)①依据1:两条直线被一组平行线所截,所得到的对应线段成比例(或平行线分线段成比例).依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”).②点A在线段GF的垂直平分线上.(2)证明:过点G作GH⊥BC于点H.∵四边形ABCD为矩形,点E在AB的延长线上,∴∠CBE=∠ABC=∠GHC=90°.∴∠BCE+∠BEC=90°.∵四边形CEFG为正方形,∴CG=CE,∠GCE=90°.∴∠BCE+∠BCG=90°.∴∠BEC=∠BCG.∴△GHC≌△CBE(AAS).∴HC=BE.∵四边形ABCD是矩形,∴AD=BC.∵AD=2AB,BE=AB,∴BC=2BE=2HC.∴HC=BH.∴GH垂直平分BC.∴点G在BC的垂直平分线上.(3)点F在BC边的垂直平分线上(或点F在AD边的垂直平分线上).过点F作FM⊥BC于点M,过点E作EN⊥FM于点N.∴∠BMN=∠ENM=∠ENF=90°.∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=90°.∴四边形BENM 为矩形.∴BM=EN,∠CEB+∠CEN=90°.∵四边形CEFG为正方形,∴EF=EC,∠CEF=90°.∴∠CEN+∠FEN=90°.∴∠CEB=∠FEN.∴△ENF≌△EBC(AAS).∴NE=BE.∴BM=BE.。
2022年中考数学专题:图形的变化(二)
2022年中考数学专题:图形的变化(二)1.以下四个标志,每个标志都有图案和文字说明,其中的图案是轴对称图形是()A.节能B.绿色环保C.永洁环保D.绿色食品2.下列图形都是由一个圆和两个相等的半圆组合而成的,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.将一张三角形纸片按如图步骤①至④折叠两次得图⑤,然后剪出图⑤中的阴影部分,则阴影部分展开铺平后的图形是()A.等腰三角形B.直角三角形C.矩形D.菱形4.下列图形中,是轴对称图形且对称轴条数最多的是() A.B.C.D.5.下列四幅图案是四所大学校徽的主体标识,其中是中心对称图形的是( )A.B.C.D.6.如图,在矩形ABCD中,AB=5,AD=3,点E为BC上一点,把ΔCDE 沿DE翻折,点C恰好落在AB边上的F处,则CE的长是()A.1B.43C.32D.537.对称美是美的一种重要形式,它能给与人们一种圆满、协调和平的美感,下列图形属于中心对称图形的是()A.B.C.D.8.如图,▱OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D.将ΔODA绕点O顺时针旋转得到△ OD′A′,当点D 的对应点D′落在OA上时,D′A′的延长线恰好经过点C,则点C的坐标为()A.(2√3,0)B.(2√5,0)C.(2√3+1,0)D.(2√5+1,0)9.已知在RtΔACB中,∠C=90°,∠ABC=75°,AB=5,点E为边AC上的动点,点F为边AB上的动点,则线段FE+EB的最小值是()A.5√32B.52C.√5D.√310.在平面直角坐标系中,将点A(−3,−2)向右平移5个单位长度得到点B,则点B关于y轴对称点B′的坐标为()A.(2,2)B.(−2,2)C.(−2,−2)D.(2,−2) 11.如图,将▱ABCD沿对角线AC翻折,点B落在点E处,CE交AD于点F,若∠B=80°,∠ACE=2∠ECD,FC=a,FD=b,则▱ABCD的周长为.12.如图,∠MON=40°,以O为圆心,4为半径作弧交OM于点A,交ON于点B,分别以点A,B为圆心,大于12AB的长为半径画弧,两弧在∠MON的内部相交于点C,画射线OC交AB于点D,E为OA上一动点,连接BE,DE,则阴影部分周长的最小值为.13.已知菱形ABCD的面积为2√3,点E是一边BC上的中点,点P是对角线BD 上的动点.连接AE,若AE平分∠BAC,则线段PE与PC的和的最小值为,最大值为.14.如图,三角形纸片ABC中,点D,E,F分别在边AB,AC,BC上,BF=4,CF=6,将这张纸片沿直线DE翻折,点A与点F重合.若DE//BC,AF=EF,则四边形ADFE的面积为.15.如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(4,0),连接AB,若将ΔABO绕点B顺时针旋转90°,得到△ A′BO′,则点A′的坐标为.16.如图,在RtΔABC中,∠BAC=90°,AB=2√2,AC=6,点E在线段AC上,且AE=1,D是线段BC上的一点,连接DE,把四边形ABDE 沿直线DE翻折,得到四边形FGDE,当点G恰好落在线段AC上时,AF=.17.如图,中,,,将绕点逆时针旋转得到,连接,则的值是.18.如图所示的图案由三个叶片组成,绕点O旋转120°后可以和自身重合.若每个叶片的面积为4cm2,∠AOB为120°,则图中阴影部分的面积之和为cm2.19.已知抛物线y=x2−2x−3与x轴交于A,B两点(点A在点B的左侧)与y轴交于点C,点D(4,y)在抛物线上,E是该抛物线对称轴上一动点,当BE+ DE的值最小时,ΔACE的面积为.20.将一副三角板如图放置在平面直角坐标系中,顶点A与原点O重合,AB在AD,将这副三角x轴正半轴上,且AB=4√3,点E在AD上,DE=14的板整体向右平移个单位,C,E两点同时落在反比例函数y=kx 图象上.21.在平面直角坐标系xOy中,⊙O的半径为1.对于点A和线段BC,给出如下定义:若将线段BC绕点A旋转可以得到⊙O的弦B′C′(B′,C′分别是B,C的对应点),则称线段BC是⊙O的以点A为中心的“关联线段”.(1)如图,点A,B1,C1,B2,C2,B3,C3的横、纵坐标都是整数.在线段B1C1,B2C2,B3C3中,⊙O的以点A为中心的“关联线段”是B2C2;(2)ΔABC是边长为1的等边三角形,点A(0,t),其中t≠0.若BC是⊙O 的以点A为中心的“关联线段”,求t的值;(3)在ΔABC中,AB=1,AC=2.若BC是⊙O的以点A为中心的“关联线段”,直接写出OA的最小值和最大值,以及相应的BC长.22.如图,在RtΔABC中,点P为斜边BC上一动点,将ΔABP沿直线AP折叠,使得点B的对应点为B′,连接AB′,CB′,BB′,PB′.(1)如图①,若PB′⊥AC,证明:PB′=AB′.(2)如图②,若AB=AC,BP=3PC,求cos∠B′AC的值.(3)如图③,若∠ACB=30°,是否存在点P,使得AB=CB′.若存在,的值;若不存在,请说明理由.求此时PCBC23.如图,在平面直角坐标系中,ΔABC的顶点坐标分别是A(0,4),B(0,2),C(3,2).(1)将ΔABC以O为旋转中心旋转180°,画出旋转后对应的△ A1B1C1;(2)将ΔABC平移后得到△ A2B2C2,若点A的对应点A2的坐标为(2,2),求△ A1C1C2的面积.24.实践与探究操作一:如图①,已知正方形纸片ABCD,将正方形纸片沿过点A的直线折叠,使点B落在正方形ABCD的内部,点B的对应点为点M,折痕为AE,再将纸片沿过点A的直线折叠,使AD与AM重合,折痕为AF,则∠EAF=度.操作二:如图②,将正方形纸片沿EF继续折叠,点C的对应点为点N.我们发现,当点E的位置不同时,点N的位置也不同.当点E在BC边的某一位置时,点N恰好落在折痕AE上,则∠AEF=度.在图②中,运用以上操作所得结论,解答下列问题:(1)设AM与NF的交点为点P.求证:ΔANP≅ΔFNE;(2)若AB=√3,则线段AP的长为.25.如图,在ΔABC中,AB=AC,∠BAC=α,M为BC的中点,点D在MC上,以点A为中心,将线段AD顺时针旋转α得到线段AE,连接BE,DE.(1)比较∠BAE与∠CAD的大小;用等式表示线段BE,BM,MD之间的数量关系,并证明;(2)过点M作AB的垂线,交DE于点N,用等式表示线段NE与ND的数量关系,并证明.26.学习了图形的旋转之后,小明知道,将点P绕着某定点A顺时针旋转一定的角度α,能得到一个新的点P′,经过进一步探究,小明发现,当上述点P在某函数图象上运动时,点P′也随之运动,并且点P′的运动轨迹能形成一个新的图形.试根据下列各题中所给的定点A的坐标、角度α的大小来解决相关问题.【初步感知】如图1,设A(1,1),α=90°,点P是一次函数y=kx+b图象上的动点,已知该一次函数的图象经过点P1(−1,1).(1)点P1旋转后,得到的点P1′的坐标为(1,3);(2)若点P′的运动轨迹经过点P2′(2,1),求原一次函数的表达式.【深入感悟】(x<0)的图象上如图2,设A(0,0),α=45°,点P是反比例函数y=−1x的动点,过点P′作二、四象限角平分线的垂线,垂足为M,求ΔOMP′的面积.【灵活运用】x2+2√3x+7图如图3,设A(1,−√3),α=60°,点P是二次函数y=12象上的动点,已知点B(2,0)、C(3,0),试探究ΔBCP′的面积是否有最小值?若有,求出该最小值;若没有,请说明理由.27.如图,在平面直角坐标系中,矩形OABC的两边OC、OA分别在坐标轴(x>0)的图象经上,且OA=2,OC=4,连接OB.反比例函数y=k1x过线段OB的中点D,并与AB、BC分别交于点E、F.一次函数y= k2x+b的图象经过E、F两点.(1)分别求出一次函数和反比例函数的表达式;(2)点P是x轴上一动点,当PE+PF的值最小时,点P的坐标为.28.如图,在5×5的方格纸中,线段AB的端点均在格点上,请按要求画图.(1)如图1,画出一条线段AC,使AC=AB,C在格点上;(2)如图2,画出一条线段EF,使EF,AB互相平分,E,F均在格点上;(3)如图3,以A,B为顶点画出一个四边形,使其是中心对称图形,且顶点均在格点上.29.如图,点E为正方形ABCD外一点,∠AEB=90°,将RtΔABE绕A点逆时针方向旋转90°得到ΔADF,DF的延长线交BE于H点.(1)试判定四边形AFHE的形状,并说明理由;(2)已知BH=7,BC=13,求DH的长.30.在RtΔABC中,∠ACB=90°,AB=5,BC=3,将ΔABC绕点B顺时针旋转得到△ A′BC′,其中点A,C的对应点分别为点A′,C′.(1)如图1,当点A′落在AC的延长线上时,求AA′的长;(2)如图2,当点C′落在AB的延长线上时,连接CC′,交A′B于点M,求BM的长;(3)如图3,连接AA′,CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.在旋转过程中,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.参考答案1.D2.A[※解析※]根据中心对称图形和轴对称图形的定义逐项判断即可.解:A.既是轴对称图形又是中心对称图形,故此选项符合题意;B.不是轴对称图形,是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,故此选项不合题意;D.是轴对称图形,不是中心对称图形,故此选项不合题意;3.D[※解析※]对折是轴对称得到的图形,根据最后得到的图形可得是沿对角线折叠2次后,剪去一个三角形得到的,按原图返回即可.解:如图,由题意可知,剪下的图形是四边形BACD,由折叠可知CA=AB,∴ΔABC是等腰三角形,又ΔABC和ΔBCD关于直线BC对称,∴四边形BACD是菱形,4.D[※解析※]根据轴对称图形的概念逐项进行判断即可.解:A.是轴对称图形,共有1条对称轴;B.不是轴对称图形,没有对称轴;C.不是轴对称图形,没有对称轴;D.是轴对称图形,共有2条对称轴.5.C[※解析※]根据中心对称图形的意义逐项判断即可.解:A.不是中心对称图形,故本选项不合题意;B.不是中心对称图形,故本选项不合题意;C.是中心对称图形,故本选项符合题意;D.不是中心对称图形,故本选项不合题意.6.D[※解析※]设CE=x,则BE=3−x由折叠性质可知,EF=CE=x,DF=CD=AB=5,求出AF=4,BF=AB−AF=1,在RtΔBEF中,BE2+BF2=EF2,即(3−x)2+12=x2,即可求解.解:设CE=x,则BE=3−x.由折叠性质可知,EF=CE=x,DF=CD=AB=5.在RtΔDAF中,AD=3,DF=5.∴AF=4.∴BF=AB−AF=1.在RtΔBEF中,BE2+BF2=EF2.即(3−x)2+12=x2..解得x=537.A[※解析※]根据中心对称图形的定义逐项作出判断.解:A、是中心对称图形,故选项符合题意;B、是轴对称图形,不是中心对称图形,故选项不符合题意;C、是轴对称图形,不是中心对称图形,故选项不符合题意;D、是轴对称图形,不是中心对称图形,故选项不符合题意.8.B[※解析※]延长A′D′交y轴于点E,延长D′A′,由题意D′A′的延长线经过点C,如图,∵A(1,2),∴AD=1,OD=2,∴OA=√AD2+OD2=√12+22=√5.由题意:△ OA′D′≅ΔOAD,∴A′D′=AD=1,OA′=OA=√5,OD′=OD=2,∠A′D′O=∠ADO=90°,∠A′OD′=∠DOD′.则OD′⊥A′E,OA平分∠A′OE,∴△ A′OE为等腰三角形.∴OE=OA′=√5,ED′=A′D′=1.∵EO⊥OC,OD′⊥EC,∴ΔOED′∽ΔCEO.∴ED′OD′=EOOC.∴12=√5OC.∴OC=2√5.∴C(2√5,0).9.B[※解析※]作点F关于直线AB的对称点F’,如下图所示,此时EF+EB=EF’+EB,再由点到直线的距离垂线段长度最短求解即可.解:作F关于AC的对称点F′,延长AF′、BC交于点B′,∴∠BAB′=30°,EF=EF′,∴FE+EB=BE+EF′,∴当B、E、F′共线且与AB′垂直时,BE+EF′长度最小,即求BD的长,即作BD⊥AB′于D,在ΔABD中,BD=12AB=52,10.C[※解析※]根据点的平移规律左减右加可得点B的坐标,然后再根据关于B轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.解:点A(−3,−2)向右平移5个单位长度得到的B的坐标为(−3+5,−2),即(2,−2),则点B关于y轴的对称点B′的坐标是:(−2,−2).11.4a+2b[※解析※]根据已知条件证明ΔAFC为等腰三角形.推出AF=FC=a.设∠ECD=x,则∠ACE=2x,在ΔADC中,由三角形内角和定理可知,2x+2x+x+80°=180°,解得x=20°,由外角定理可证明ΔDFC为等腰三角形.所以DC=FC=a.故平行四边形ABCD的周长为2(DC+AD)=2(a+a+b)=2=4a+2b.解:∵∠B=80°,四边形ABCD为平行四边形.∴∠D=80°.由折叠可知∠ACB=∠ACE,又AD//BC,∴∠DAC=∠ACB,∴∠ACE=∠DAC,∴ΔAFC为等腰三角形.∴AF=FC=a.设∠ECD=x,则∠ACE=2x,∴∠DAC=2x,在ΔADC中,由三角形内角和定理可知,2x+2x+x+80°=180°,解得:x=20°.∴由三角形外角定理可得∠DFC=4x=80°,故ΔDFC为等腰三角形.∴DC=FC=a.∴AD=AF+FD=a+b,故平行四边形ABCD的周长为2(DC+AD)=2(a+a+b)=4a+2b.12.4+49π[※解析※]根据作图得到OA=OB=OD=4,∠BOD=∠AOD=20°,用弧长公式可计算出BD的长度,作B点关于OM的对称点F,连接DF交OM于E′,连接OF,如图,证明ΔODF为等边三角形得到DF=4,接着根据两点之间线段最短可判断此时E′B+E′D的值最小,从而得到阴影部分周长的最小值.解:由作法得OC平分∠MON,OA=OB=OD=4,∴∠BOD=∠AOD=12∠MON=12×40°=20°,∴BD的长度为20×π×4180=49π,作B点关于OM的对称点F,连接DF交OM于E′,连接OF,如图,∴OF=OB,∠FOA=∠BOA=40°,∴OD=OF,∴ΔODF为等边三角形,∴DF=OD=4,∵E′B=E′F,∴E′B+E′D=E′F+E′D=DF=4,∴此时E′B+E′D的值最小,∴阴影部分周长的最小值为4+49π.13.√3;2+√7[※解析※]根据点E是一边BC上的中点及AE平分∠BAC判定ΔABC是等边三角形,根据菱形ABCD的面积求出菱形的边长;求PE+PC的最小值,点E和点C是定点,点P是线段BD上动点,由轴对称最值问题,可求出最小值;求和的最大值,观察图形可知,当PE和PC的长度最大时,和最大,即点P和点D 重合时,PE+PC的值最大.解:根据图形可画出图形,如图所示,过点B作BF//AC交AE的延长线于点F,∴∠F=∠CAE,∠EBF=∠ACE,∵点E是BC的中点,∴ΔACE≅ΔFBE(AAS),∴BF=AC,∵AE平分∠BAC,∴∠BAE=∠CAE,∴∠BAE=∠F,∴AB=BF=AC,在菱形ABCD中,AB=BC,∴AB=BC=AC,即ΔABC是等边三角形;∴∠ABC=60°,设AB=a,则BD=√3a,∴菱形ABCD的面积=12AC⋅BD=2√3,即12⋅a⋅√3a=2√3,∴a=2,即AB=BC=CD=2;∵四边形ABCD是菱形,∴点A和点C关于BD对称,∴PE+PC=AP+EP,当点A,P,E三点共线时,AP+EP的和最小,此时AE=√3;点P和点D重合时,PE+PC的值最大,此时PC=DC=2,过点D作DG⊥BC交BC的延长线于点G,连接DE,∵AB//CD,∠ABC=60°,∴∠DCG=60°,∴CG=1,DG=√3,∴EG=2,∴DE=√EG2+DG2=√22+(√3)2=√7,此时PE+PC=2+√7;即线段PE与PC的和的最小值为√3;最大值为2+√7.14.5√3[※解析※]∵将这张纸片沿直线DE翻折,点A与点F重合,∴DE垂直平分AF,AD=DF,AE=EF,∠ADE=∠EDF,∵DE∥BC,∴ ∠ADE=∠B,∠EDF=∠BFD,∠AFC=90°,∴ ∠B=∠BFD,∴ BD=DF,∴ BD=AD,即D为AB的中点,∴DE为△ABC的中位线,BC=5,∴ DE=12∵AF=EF,∴ △AEF是等边三角形,在Rt△ACE中,∠CAF=60°,CF=6,=2√3,∴ AF=CFtan60°∴ AG=√3,DE⋅AG×2=5√3,∴四边形ADFE的面积为1215.(7,4)[※解析※]作AC⊥x轴于点C,根据旋转的性质可得BC=A′O′=OA=3,A′C=O′B= OB=4,进而求解.解:作AC⊥x轴于点C,由旋转可得∠O′=90°,O′B⊥x轴,∴四边形O′BCA′为矩形,∴BC=A′O′=OA=3,A′C=O′B=OB=4,∴点A′坐标为(7,4).16.2√63[※解析※]由折叠的性质可得AB=FG=2√2,AE=EF=1,∠BAC=∠EFG=90°,在RtΔEFG中,由勾股定理可求EG=3,由锐角三角函数可求EH,HF的长,在RtΔAHF中,由勾股定理可求AF.解:如图,过点F作FH⊥AC于H,∵把四边形ABDE沿直线DE翻折,得到四边形FGDE,∴AB=FG=2√2,AE=EF=1,∠BAC=∠EFG=90°,∴EG=√EF2+FG2=√1+8=3,∵sin∠FEG=HFEF =FGEG,∴HF1=2√23,∴HF=2√23,∵cos∠FEG=EHEF =EFEG,∴EH1=13,∴EH=13,∴AH=AE+EH=43,∴AF=√AH2+HF2=√169+89=2√63,17.[※解析※]连接,由旋转的性质可得,,得到为等边三角形,由,,得出垂直平分,于是求出,,可得,即可求解.解:如图,连接,设与交于点,将绕点逆时针旋转得到,,为等边三角形,,;,,,,,垂直平分,,,,故答案为本题考查了图形的变换旋转,等腰直角三角形的性质,等边三角形的判定和性质,线段的垂直平分线的性质,准确把握旋转的性质是解题的关键.18.4[※解析※]根据题中条件可知图中阴影部分的面积之和等于三个叶片的面积和的三分之一.解:∵三个叶片组成,绕点O旋转120°后可以和自身重合,而∠AOB为120°,∴图中阴影部分的面积之和=13(4+4+4)=4(cm2).19.4[※解析※]先求出A,B两点的坐标和抛物线的对称轴为直线x=1,再确定C、D的坐标,连接AD交直线x=1于E,交y轴于F点,如图,根据两点之间线段最短可判断此时BE+DE的值最小,接着根据待定系数法求出直线AD的解析式,则F(0,1),然后根据三角形面积公式计算.解:当y=0时,x2−2x−3=0,解得x1=−1,x2=3,则A(−1,0),B(3,0),抛物线的对称轴为直线x=1,当x=0时,y=x2−2x−3=−3,则C(0,−3),当x=4时,y=x2−2x−3=5,则D(4,5),连接AD交直线x=1于E,交y轴于F点,如图,∵BE+DE=EA+DE=AD,∴此时BE+DE的值最小,设直线AD的解析式为y=kx+b,把A(−1,0),D(4,5)代入得{−k+b=04k+b=5,解得{k=1b=1,∴直线AD的解析式为y=x+1,当x=1时,y=x+1=2,则E(1,2),当x=0时,y=x+1=1,则F(0,1),∴SΔACE=SΔACF+SΔECF=12×4×1+12×4×1=4.20.12−√3[※解析※]先求出C、E的坐标,然后表示出平移后的坐标,根据k=xy得到关于t的方程,解方程即可求得.解:∵AB=4√3,∴BD=√3AB=12,∴C(4√3+6,6),∵DE=1AD,4∴E的坐标为(3√3,9),设平移t个单位后,则平移后C点的坐标为(4√3+6+t,6),平移后E点的坐标为(3√3+t,9),∵平移后C,E两点同时落在反比例函数y=k的图象上,x∴(4√3+6+t)×6=(3√3+t)×9,解得t=12−√3,21.(1)B2C2;(2)t=±√3;(3)当OA min=1时,此时BC=√3;当OA max=2时,此时BC=√6.2[※解析※](1)以点A为圆心,分别以AB1,AC1,AB2,AC2,AB3,AC3为半径画圆,进而观察是否与⊙O有交点即可;(2)由旋转的性质可得△AB′C′是等边三角形,且B′C′是⊙O的弦,进而画出图象,则根据等边三角形的性质可进行求解;(3)由BC是⊙O的以点A为中心的“关联线段”,则可知B′,C′都在⊙O上,且AB′=AB=1,AC′=AC=2,然后由题意可根据图象来进行求解即可.(1)由题意得:通过观察图象可得:线段B2C2能绕点A旋转90°得到⊙O的“关联线段”,B1C1,B3C3都不能绕点A进行旋转得到;故答案为B2C2;(2)由题意可得:当BC是⊙O的以点A为中心的“关联线段”时,则有△AB′C′是等边三角形,且边长也为1,当点A在y轴的正半轴上时,如图所示:设B′C′与y轴的交点为D,连接OB′,易得B′C′⊥y轴,,∴ B′D=DC′=12∴ OD =√OB ′2−B ′D 2=√32, AD =√AB ′2−B ′D 2=√32, ∴ OA =√3, ∴ t =√3;当点A 在y 轴的正半轴上时,如图所示:同理可得此时的 OA =√3, ∴ t =−√3;(3)由 BC 是 ⊙O 的以点 A 为中心的“关联线段”,则可知 B ′,C ′都在 ⊙O 上,且 AB ′=AB =1,AC ′=AC =2,则有当以 B ′为圆心,1为半径作圆,然后以点A 为圆心,2为半径作圆,即可得到点A 的运动轨迹,如图所示:由运动轨迹可得当点A 也在 ⊙O 上时为最小,最小值为1,此时 AC ′为 ⊙O 的直径,∴ ∠AB ′C ′=90°, ∴ ∠AC ′B ′=30°,∴ BC=B′C′=AC′⋅cos30°=√3;由以上情况可知当点A,B′,O三点共线时,OA的值为最大,最大值为2,如图所示:连接OC′,B′C′,过点C′作C′P⊥OA于点P,∴ OC′=1,AC′=OA=2,设OP=x,则有AP=2−x,∴由勾股定理可得:C′P2=AC′2−AP2=OC′2−OP2,即22−(2−x)2=1−x2,解得:x=14,∴ C′P=√154,∴ B′P=OB′−OP=34,在Rt△B′PC′中,B′C′=√B′P2+C′P2=√62,∴ BC=√62;综上所述:当OA min=1时,此时BC=√3;当OA max=2时,此时BC=√62.22.(1)见解析;(2)cos∠B′AC=35;(3)12或34.[※解析※](1)根据平行线的性质和折叠的性质易得PB′=AB′;(2)设AB=AC=a,AC、PB′交于点D,推出ΔABC为等腰直角三角形.再判定ΔCDP~△ B′DA,根据相似三角形的性质可得边的比.设B′D=b,则CD=√24b.则AD=a−√24b,PD=3√24a−b,由PDAD=√24解得b=4√27a.再过点D作DE⊥AB′于点E,则△ B′DE为等腰直角三角形.所以B′E=sin45°×B′D=47a,AE=AB−B′E=37a,AD=57a.即可求出结果;(3)分①点P在BC外的圆弧上;②点P在BC上两种情况分别求解即可.解:(1)证明:∵PB′⊥AC,∠CAB=90°,∴PB′//AB.∴∠B′PA=∠BAP,又由折叠可知∠BAP=∠B′AP,∴∠B′PA=∠B′AP.故PB′=AB′.(2)设AB=AC=a,AC、PB′交于点D,则ΔABC为等腰直角三角形,∴BC=√2a,PC=√24a,PB=3√24a,由折叠可知,∠PB′A=∠B=45°,又∠ACB=45°,∴∠PB′A=∠ACB,又∠CDP=∠B′DA,∴ΔCDP~△ B′DA.∴CDB′D =PDDA=CPB′A=√2a4a=√24.①设B′D=b,则CD=√24b.∴AD=AC−CD=a−√24b,PD=PB′−B′D=PB−B′D=3√24a−b,由① PDAD =√24得:3√24a−ba−√24b=√24.解得:b=4√27a.过点D作DE⊥AB′于点E,则△ B′DE为等腰直角三角形.∴B′E=sin45°×B′D=√22b=√22×4√27a=47a,∴AE=AB′−B′E=AB−B′E=a−47a=37a.又AD=AC−CD=a−√24b=a−27 a=57a.∴cos∠B′AC=cos∠EAD=AEAD =37a57a=35.(3)存在点P,使得CB′=AB=m.∵∠ACB=30°,∠CAB=90°.∴BC=2m.①如答图2所示,由题意可知,点B′的运动轨迹为以A为圆心、AB为半径的半圆A.当P为BC中点时,PC=BP=AP=AB′=m,又∠B=60°,∴ΔPAB为等边三角形.又由折叠可得四边形ABPB′为菱形.∴PB′//AB,∴PB′⊥AC.又∵AP=AB′,则易知AC为PB′的垂直平分线.故CB′=PC=AB=m,满足题意.此时,PCBC =m2m=12.②当点B′落在BC上时,如答图3所示,此时CB′=AB=m,则PB′=12(2m−m)=12m,∴PC=CB′+PB′=m+12m=32m,∴PCBC =32m2m=34.综上所述,PCBC 的值为12或34.23.(1)见解析;(2)11[※解析※](1)根据中心对称的性质分别作出A,B,C的对应点A1,B1,C1即可.(2)根据平移变换的性质分别作出A,B,C的对应点A2,B2,C2即可,再根据三角形的面积公式求出△ A1C1C2的面积.解:(1)如图,△ A1B1C1即为所求.(2)如图,△ A2B2C2即为所求.△ A1C1C2的面积=4×8−12×3×2−1 2×2×8−12×4×5=11.24.操作一:45;操作二:60;(1)见解析;(2)2√3−2[※解析※]操作一:由正方形的性质得∠BAD=90°,再由折叠的性质得:∠BAE=∠MAE,∠DAF=∠MAF,即可求解;操作二:证ΔANF是等腰直角三角形,得∠AFN=45°,则∠AFD=∠AFM= 45°+∠NFE,求出∠NFE=∠CFE=30°,即可求解;(1)由等腰直角三角形的性质得AN=FN,再证∠NAP=∠NFE=30°,由ASA 即可得出结论;(2)由全等三角形的性质得AP=FE,PN=EN,再证∠AEB=60°,然后由含30°角的直角三角形的性质得BE=√33AB=1,AE=2BE=2,AN=√3PN=√3a,AP=2PN=2a,由AN+EN=AE得出方程,求解即可.操作一:解:∵四边形ABCD是正方形,∴∠C=∠BAD=90°,由折叠的性质得:∠BAE=∠MAE,∠DAF=∠MAF,∴∠MAE+∠MAF=∠BAE+∠DAF=12∠BAD=45°,即∠EAF=45°,操作二:解:∵四边形ABCD是正方形,∴∠B=∠C=90°,由折叠的性质得:∠NFE=∠CFE,∠ENF=∠C=90°,∠AFD=∠AFM,∴∠ANF=180°−90°=90°,由操作一得:∠EAF=45°,∴ΔANF是等腰直角三角形,∴∠AFN=45°,∴∠AFD=∠AFM=45°+∠NFE,∴2(45°+∠NFE)+∠CFE=180°,∴∠NFE=∠CFE=30°,∴∠AEF=90°−30°=60°,(1)证明:∵ΔANF是等腰直角三角形,∴AN=FN,∵∠AMF=∠ANF=90°,∠APN=∠FPM,∴∠NAP=∠NFE=30°,在ΔANP和ΔFNE中,{∠ANP=∠FNE=90°AN=FN∠NAP=∠NFE,∴ΔANP≅ΔFNE(ASA);(2)由(1)得:ΔANP≅ΔFNE,∴AP=FE,PN=EN,∵∠NFE=∠CFE=30°,∠ENF=∠C=90°,∴∠NEF=∠CEF=60°,∴∠AEB=60°,∵∠B=90°,∴∠BAE=30°,∴BE=√33AB=1,∴AE=2BE=2,设PN=EN=a,∵∠ANP=90°,∠NAP=30°,∴AN=√3PN=√3a,AP=2PN=2a,∵AN+EN=AE,∴√3a+a=2,解得:a=√3−1,∴AP=2a=2√3−2,25.(1)∠BAE=∠CAD,BM=BE+MD,理由见详解;(2)DN=EN,理由见详解.[※解析※](1)∵∠DAE=∠BAC=α,∴∠DAE−∠BAD=∠BAC−∠BAD,即∠BAE=∠CAD,在ΔABE和ΔACD中,{AB=AC∠BAE=∠CADAE=AD,∴ΔABE≅ΔACD(SAS),∴BE=CD,∵M为BC的中点,∴BM=CM,∴BE+MD=BM;(2)如图,作EH⊥AB交BC于H,交AB于F,由(1)ΔABE≅ΔACD得:∠ABE=∠ACD,∵∠ACD=∠ABC,∴∠ABE=∠ABD,在ΔBEF和ΔBHF中,{∠EBF=∠HBFBF=BF∠BFE=∠BFH,∴ΔBEF≅ΔBHF(ASA),∴BE=BH,由(1)知:BE+MD=BM,∴MH=MD,∵MN//HF,∴ENDN =MHMD,∴EN=DN.26.(1)(1,3);(2)y=12x+32;(3)12;(4)存在最小值,118[※解析※]【初步感知】(1)根据旋转的旋转即可得出答案;(2)运用待定系数法即可求出答案;【深入感悟】设双曲线与二、四象限平分线交于N点,通过联立方程组求出点N的坐标,再分两种情况:①当x⩽−1时,作PQ⊥x轴于Q,证明ΔPQA≅△ P′MA(AAS),再运用三角形面积公式即可求出答案;②当−1<x<0时,作PH⊥y轴于点H,同理可得到答案;【灵活运用】连接AB,AC,将B,C绕点A逆时针旋转60°得B′,C′,作AH⊥x轴于点H,证明△ C′AO≅ΔCAB(SAS),根据待定系数法求出OC′的函数表达式为:y=√3x,设过P且与B′C′平行的直线l解析式为y=√3x+b,由于 S ΔBCP′=S △B′C′P ,当直线 l 与抛物线相切时取最小值,再根据一元二次方程根的判别式求解即可.解:【初步感知】(1)如图1, ∵P 1(−1,1), A(1,1),∴P 1A//x 轴, P 1A =2,由旋转可得: P 1′A//y 轴, P 1′A =2,∴P 1′(1,3);故答案为: (1,3);(2) ∵P 2′(2,1),由题意得 P 2(1,2),∵P 1(−1,1), P 2(1,2)在原一次函数图象上, ∴设原一次函数解析式为 y =kx +b ,则 {−k +b =1k +b =2, 解得: {k =12b =32, ∴原一次函数解析式为 y =12x +32; 【深入感悟】设双曲线与二、四象限平分线交于 N 点,则: {y =−xy =−1x (x <0),解得: {x =−1y =1,∴N(−1,1), ①当 x ⩽−1时,作 PQ ⊥x 轴于 Q ,∵∠QAM =∠POP′=45°,∴∠PAQ =∠P′AN ,∵PM ⊥AM ,∴∠P′MA =∠PQA =90°,∴在 ΔPQA 和△ P′MA 中,{∠PQA=∠P′MA ∠PAQ=∠P′AMAP=AP′,∴ΔPQA≅△ P′MA(AAS),∴S△P′MA=SΔPQA=|K|2=12,即SΔOMP′=12;②当−1<x<0时,作PH⊥y轴于点H,∵∠POP′=NOY=45°,∴∠PON=∠P′OY,∴∠MP′O=90°−∠MOY−∠P′OY=45°−∠P′OY,∵∠POH=∠POP′−∠P′OY=45°−∠P′OY,∴∠POH=∠MP′O,在ΔPOH和△ OP′M中,{∠PHO=∠OMP′∠POH=∠MP′OPO=P′O,∴ΔPOH≅△ OP′M(AAS),∴S△P′MO=SΔPHO=|K|2=12,综上所述,ΔOMP′的面积为12;【灵活运用】如图4,连接AB,AC,将B,C绕点A逆时针旋转60°得B′,C′,作AH⊥x 轴于点H,∵A(1,−√3),B(2,0),C(3,0),∴OH=BH=1,BC=1,∴OA=AB=OB=2,∴ΔOAB为等边三角形,此时B′与O重合,即B′(0,0),连接C′O,∵∠CAC′=∠BAB′=60°,∴∠CAB=∠C′AB′,在△ C′AO和ΔCAB中,{C′A =CA ∠C′AO =∠CAB BA =OA,∴△ C′AO ≅ΔCAB(SAS),∴C′O =CB =1, ∠C′OA =∠CBA =120°, ∴作 C′G ⊥y 轴于 G ,在 Rt △ C′GO 中, ∠C′OG =90°−∠C′B′C =30°, ∴C′G =12OC′=12,∴OG =√32, ∴C′(12, √32),此时 OC′的函数表达式为: y =√3x , 设过 P 且与 B′C′平行的直线 l 解析式为 y =√3x +b , ∵S ΔBCP′=S △B′C′P ,∴当直线 l 与抛物线相切时取最小值, 则 {y =√3x +by =12x 2+2√3x +7, 即 √3x +b =12x 2+2√3x +7,∴12x 2+√3x +7−b =0, 当△ =0时,得 b =112,∴y =√3x +112,设 l 与 y 轴交于点 T ,∵S △B′C′T =S △B′C′P ,∴S △B′C′P =12×B′T ×C′G =12×12×112=118.27.(1)反比例函数表达式为y=2x ;一次函数的解析式为y=−12x+52;(2)(175,0);[※解析※](1)根据矩形的性质及中点坐标公式可得D(2,1),从而可得反比例函数表达式;再求出点E、F坐标可用待定系数法解得一次函数的解析式;(2)作点E关于x轴的对称点E′,连接E′F交x轴于点P,则此时PE+PF 最小.求出直线E′F的解析式后令y=0,即可得到点P坐标.解:(1)∵四边形OABC为矩形,OA=BC=2,OC=4,∴B(4,2).由中点坐标公式可得点D坐标为(2,1),∵反比例函数y=k1x(x>0)的图象经过线段OB的中点D,∴k1=xy=2×1=2,故反比例函数表达式为y=2x.令y=2,则x=1;令x=4,则y=12.故点E坐标为(1,2),F(4,12).设直线EF的解析式为y=kx+b,代入E、F坐标得:{2=k+b12=4k+b,解得:{k=−12b=52.故一次函数的解析式为y=−12x+52.(2)作点E关于x轴的对称点E′,连接E′F交x轴于点P,则此时PE+PF 最小.如图.由E坐标可得对称点E′(1,−2),设直线E′F的解析式为y=mx+n,代入点E′、F坐标,得:{−2=m+n12=4m+n,解得:{m=56n=−176.则直线E′F的解析式为y=56x−176,令y=0,则x=175.∴点P坐标为(175,0).故答案为:(175,0).28.(1)见解析;(2)见解析;(3)见解析[※解析※](1)AB为长方形对角线,作出相等线段即可;(2)只要保证四边形AFBE是平行四边形即可;(3)同(2).解:如图:(1)线段AC即为所作,(2)线段EF即为所作,(3)四边形ABHG即为所作.29.(1)正方形,理由见解析;(2)17[※解析※](1)由旋转的性质可得∠AEB=∠AFD=90°,AE=AF,∠DAF=∠EAB,由正方形的判定方法证明四边形BE'FE是正方形;(2)连接BD,用勾股定理求出BD的长,再利用勾股定理可求DH的长.解:(1)四边形AFHE是正方形,理由如下:根据旋转:∠AEB=∠AFD=90°,AE=AF,∠DAF=∠EAB,∵四边形ABCD是正方形∴∠DAB=90°∴∠FAE=∠DAB=90°∴ ∠AEB=∠AFH=∠FAE=90°∴四边形AFHE是矩形,又∵ AE=AF∴矩形AFHE是正方形.(2)连接BD∵ BC=CD=13,在Rt△BCD中,BD=√CD2+CB2=13√2∵四边形AFHE是正方形∴ ∠EHD=90°在Rt△DHB中,DH=√BD2−BH2,又BH=7,∴ DH=17.30.(1)AA′=8;;(2)BM=1511(3)DE存在最小值1[※解析※](1)先求出AC=4,再在Rt△ A′BC中,求出A′C=√A′B2−BC2=4,从而可得AA′=8;(2)过C作CE//A′B交AB于E,过C作CD⊥AB于D,先证明CE=BC=3,再根据SΔABC=12AC⋅BC=12AB⋅CD,求出CD,进而可得DE和BE及C′E,由CE//A′B得BMCE =BC′C′E,即可得结果;(3)过A作AP//A′C′交C′D延长线于P,连接A′C,先证明∠ACP=∠A′C′D=∠P,得AP=AC=A′C′,再证明ΔAPD≅△ A′C′D得AD=A′D,DE是△ AA′C 的中位线,DE=12A′C,要使DE最小,只需A′C最小,此时A′、C、B共线,A′C的最小值,即可得DE最小值.解:(1)∵∠ACB=90°,AB=5,BC=3,∴AC=√AB2−BC2=4,∵∠ACB=90°,ΔABC绕点B顺时针旋转得到△ A′BC′,点A′落在AC的延长线上,∴∠A′CB=90°,A′B=AB=5,Rt△ A′BC中,A′C=√A′B2−BC2=4,∴AA′=AC+A′C=8;(2)过C作CE//A′B交AB于E,过C作CD⊥AB于D,如图:∵ΔABC绕点B顺时针旋转得到△ A′BC′,∴∠A′BC=∠ABC,BC′=BC=3,∵CE//A′B,∴∠A′BC=∠CEB,∴∠CEB=∠ABC,∴CE=BC=3,RtΔABC中,SΔABC=12AC⋅BC=12AB⋅CD,AC=4,BC=3,AB=5,∴CD=AC⋅BCAB =125,RtΔCED中,DE=√CE2−CD2=√32−(125)2=95,同理BD=95,∴BE=DE+BD=185,C′E=BC′+BE=3+185=335,∵CE//A′B,∴BMCE =BC′C′E,∴BM3=3335,∴BM=1511;(3)DE存在最小值1,理由如下:过A作AP//A′C′交C′D延长线于P,连接A′C,如图:∵ΔABC绕点B顺时针旋转得到△ A′BC′,∴BC=BC′,∠ACB=∠A′C′B=90°,AC=A′C′,∴∠BCC′=∠BC′C,而∠ACP=180°−∠ACB−∠BCC′=90°−∠BCC′,∠A′C′D=∠A′C′B−∠BC′C=90°−∠BC′C,∴∠ACP=∠A′C′D,∵AP//A′C′,∴∠P=∠A′C′D,∴∠P=∠ACP,∴AP=AC,∴AP=A′C′,在ΔAPD和△ A′C′D中,{∠P=∠A′C′D∠PDA=∠A′DC′AP=A′C′,∴ΔAPD≅△ A′C′D(AAS),∴AD=A′D,即D是AA′中点,∵点E为AC的中点,∴DE是△ AA′C的中位线,A′C,∴DE=12要使DE最小,只需A′C最小,此时A′、C、B共线,A′C的最小值为A′B−BC=AB−BC=2,A′C=1.∴DE最小为12。
初三数学中考复习专题6_四边形(含变换).
初三数学中考复习专题6_四边形(含变换).京华中学初三数学辅导班资料6 四边形及平移旋转对称一、1、知识框图:矩形四边形平行四边形菱形梯形2、正方形一组对边平行四边形一组对边不平行3、有一个角是直角梯形两腰相等直角梯形等腰梯形图形之间的变换关系轴对称连结对应点的线段平行(或在同一直线上)且相等,对应线段平行(或在同一直线上)且相等对应点与旋转中心的距离不变;每一点都绕旋转中心旋转了同样大小的角度旋转对称中心对称平移旋转在轴对称、平移、旋转这些图形变换中,线段的长度不变,角的大小不变;图形的形状、大小不变二、例题分析1、四边形例1(1)凸五边形的内角和等于______度,外角和等于______度,(2)若一凸多边形的内角和等于它的外角和,则它的边数是_______.- 1 -2.平行四边形的运用例2 如图,∠1=∠2,则下列结论一定成立的是()A. AB∥CDB. AD∥BCC. ∠B=∠DD. ∠3=∠4 若ABCD是平行四边形,则上述四个结论中那些DA是正确?你还可以得到什么结论?41 23BC3.矩形的运用例3 如图1,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、则阴影部分的面积是矩形ABCD的面积的……………………………………………()A、4.菱形的运用例4 1. 一个菱形的两条对角线的长的比是2 :3 ,面积1113 B、C、D、54310AEBO图1DFC是12 cm2 ,则它的两条对角线的长分别为_____、____.2、已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为_______.5.等腰梯形的有关计算例5 已知:如图,等腰梯形ABCD中,AD∥BC,AD=3,AB=4,BC=7.求∠B的度数..AD BCE 6.轴对称的应用例6 如图,牧童在A处放牛,其家在B处,若牧童从A处出发牵牛到河岸CD边饮水后再回家,试问在何处饮水所走路程最短?_ B_ A_ C_ D- 2 -7.中心对称的运用例7 如图,作△ABC关于点O的中心对称图形△DEF AO BC8.平移作图例8 .在5×5方格纸中将图(1)中的图形N平移后的位置如图(2)中所示,那么正确的平移方法是().(A)先向下移动1格,再向左移动1格(B)先向下移动1格,再向左移动2格(C)先向下移动2格,再向左移动1格(D)先向下移动2格,再向左移动2格NNM图(1)M(2)图1 图图2 (第1题)9.旋转的运用例9 如图,△ABC和△ADE都是等腰直角三角形,∠C和∠AED都是直角,点C在AD上,如果△ABC经旋转后能与△ADE重合,那么哪一点是旋转中心?旋转了多少度?解:_____是旋转中心,_______方向旋转了______.B基础达标一、选择题:ACDE1. 一个内角和是外角和的2倍的多边形是________边形.2. 有以下四个命题:(1)两条对角线互相平分的四边形是平行四边形.(2)两条对角线相等的四边形是菱形.(3)两条对角线互相垂直的四边形是正方形.(4)两条对角线相等且互相垂直的四边形是正方形,其中正确的个数为() A.4 B.3 C.2 D.1- 3 -3.下面条件中,能判定四边形是平行四边形的条件是()A.一组对角相等B.对角线互相平分C.一组对边相等D.对角线互相垂直4.在一个平面上有不在同一直线上的三点,则以这三点为顶点的平行四边形有()A.1个B.2个C.3个D.4个5. 如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于() A.18° B.36° C.72°D.108° A6、下列说法中,正确的是()A 、等腰梯形既是中心对称图形又是轴对称图形.BB 、正方形的对角线互相垂直平分且相等C 、矩形是轴对称图形且有四条对称轴D 、菱形的对角线相等7、如图,在平行四边形ABCD中,下列各式不一定正确的是()A.?1??2?180 B.?2??3?180 C.?3??4?180 D.?2??4?1808、在平行四边形ABCD中,延长AD至F,延长CD至E,连接EF,则?E??F? ?B?110?,()(A)110? (B)30? (C)50? (D)70? _ F_ E_ AD_ _ B_ C0000EDC9、如图7,直线l是四边形ABCD的对称轴,若AB=CD,有下面的结论:①AB∥CD;②AC⊥BD;③AO=OC;④AB⊥BC,其中正确的结论有_________.10.如图,观察下列图形,既是轴对称图形又是中心对称图形的个数是().A.3个B.4个C.5个D.6个- 4 -11.下列基本图形中,经过平移、旋转或轴对称变换后,不能得到右图的是()..A.B.C. D.12.右图可以看作是一个等腰直角三角形旋转若干次而生成的则每次旋转的度数可以是()A.90o B.60o C.45o D.30o13.图2是我国古代数学赵爽所著的《勾股圆方图注》中所画的图形,它是由四个相同的直角三角形拼成的,下面关于此图形的说法正确的是()A.它是轴对称图形,但不是中心对称图形B.它是中心对称图形,但不是轴对称图形C.它既是轴对称图形,又是中心对称图形(图2) D.它既不是轴对称图形,又不是中心对称图形14、下图可以看作是一个等腰直角三角形旋转若干次而生成的则每次旋转的度数可以是()- 5 -A.90o B.60o C.45o D.30o14 图1515、如上图,O是正六边形ABCDE的中心,下列图形中可由△OBC平移得到的是()A.△OCD B.△OAB C.△OAF D.OEF16.如图,D、E、F是△ABC三边的中点,且DE∥AB,DF∥AC,EF ∥BC,平移△AEF可以得到的三角形是()A.△BDFB.△DEFC.△CDED.△BDF 和△CDE AFACEOBDBDC图16 图1717.将两块直角三角尺的直角顶点重合为如图17的位置,若∠AOD=110°,则∠BOC=____°18、如图将四个全等的矩形分别等分成四个全等的小矩形,其中阴影部分面积相等的是()① ② ③ ④A.只有①和②相等B.只有③和④相等C.只有①和④相等D.①和②,③和④分别相等19.如图,已知△ABC,画出△ABC绕点C逆时针旋转90°后的图形.- 6 -ACB20、矩形纸片ABCD中,AD=4cm ,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,则DE=______cm.E B A DF CC121、若四边形的两条对角线相等,则顺次连结该四边形各边中点所得的四边形是()A.梯形B.矩形C.菱形D.正方形22.如图:已知在Rt△ABC中,∠ABC=90°,∠C =60°,边AB=6cm.(1)求边AC和BC的值;(2)求以直角边AB所在的直线l为轴旋转一周所得的几何体的侧面积.(结果用含π的代数式表示) 解:F分别在AB、AC、BC上,DE//BC,23、(2022常州市)如图,在?ABC中,点D、E、EF//AB,且F是BC的中点.求证:DE?CF- 7 -ADEBFC24.三月三,放风筝,小明制了一个风筝,如右图,且DE=DF,EH=FH,小明不用度量就知道∠DEH =∠DFH.请你用所学过的数学知识证明之.(提示:可连结DH,证明ΔDHE≌ΔDHF或连结EF,通过证明等腰三角形得证.)25.如图,E、F是□ABCD的对角线AC上两点,AE=CF.求证:(1)△ABE≌△CDF.(2)BE∥DF.DEACFB- 8 -(B层)25、如图,在□ ABCD中,O是对角线AC的中点,过点O作AC的垂线与边AC、BD分别交于E、F,求证:四边形AFCE是菱形.AE1DOB2FC26.(2022.上海)如图1,边长为3的正方形ABCD绕点C 按顺时针方向旋转30 °后得到正方形EFCG,EF交AD于点H,那么DH的长为________.- 9 -EAHDFBCG27.如图,已知正方形ABCD的边长为2.如果将线段BD 绕着点B旋转后,点D落在CB的延长线上的D′点处,那么tan?BAD′等于__________29、(2022广东省)如图,等腰梯形ABCD中,AD∥BC,M、N分别是AD、BC的中点,E、F分别是BM、CM的中点.(1)求证:四边形MENF是菱形;(2)若四边形MENF是正方形,请探索等腰梯形ABCD 的高和底边BC的数量关系,并证明你的结论.- 10 -四边形及平移旋转对称答案二、考题例析例1 (n -2)·180o =360o.解得n=4. 例2 答案:B. 例3( B )例4_____4cm,6cm ___例5答案:∠B=60°.例6.中心对称的运用例7 例8 .(C)_____.AC BMM'D例9 点A是旋转中心,顺时针方向旋转了45.A'基础达标一、选择题:(D)9、(①AB∥CD;②AC⊥BD;③AO=OC;10.( B ).11.C. 12.(C )13.B.14 (C)15、D.16.(D ) 17.(_70°18、( D) 19.1.___6___2. D.3.(B )4.(C)5 ( B )6、(B 7、(D8、20、DE=___5.8___cm.21、C.菱形22.解:(1)AC=43 cm,BC=23cm (2)所求几何体的侧面积S=23、∵DE//BC,EF//AB- 11 -1?(2??23)?43?24?(cm2)2∴四边形DBFE是平行四边形∴ DE=BF,∵ F是BC的中点.∴BF=CF ∴DE?CF24.:可连结DH,证明ΔDHE≌ΔDHF或连结EF,通过证明等腰三角形得证.25.(1)证明:∵在△ABC与△EFD中,AB=EF,由EF∥AB得∠BAC=∠FED.由AD=CE得AC=ED.∴△ABC≌△EFD.(2)四边形BDFC是平行四边形.证明:∵△ABC≌△EFD,∴BC=FD,∠BCA=∠EDF.∴BC∥FD∴四边形BDFC是平行四边形.26剖析:解题时,注意区分判定定理与性质定理的不同使用.∵□ ABCD中,AE∥CF,∴?1??2. 又?AOE??COF,AO?CO.AE1D∴△AOE≌△COF,∴EO?FO. ∴四边形AFCE是平行四边形.又EF?AC,∴□ AFCE是菱形.27. _3_______. 28___2_______ 29、BO2FC- 12 -第一章图形与证明(二)1.1等腰三角形的性质和判断定理:等腰三角形的两个底角相等(简称“等边对等角”)定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14、专题6:图形与证明(2)
复习目标:能够灵活运用已有公理、定理证明其他相关结论,及折叠、对称、旋转、平移等相关知识解决问题。
重、难点:综合运用四边形、三角形、折叠、对称、旋转、全等等相关知识解决问题。
一、典型例题,巩固训练:
(一)轴对称变换(折叠):
1. 如图:在Rt ABC △中,90ACB ∠=°,CD 是AB 边上的中线,将ADC △沿AC 边所在的直线折叠,使点D 落在点E 处,得四边形ADCE . 求证:(1)EC AB ∥.(2) 四边形ADCE 是菱形
2. (2007年青岛)将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D ′ 处,折痕为EF .
(1)求证:△ABE ≌△AD ′F ;
(2)连接CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.
E C B A D A B C D
E F D ′
典型例题(2009年山东青岛市)
已知:如图,在ABCD
中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC △.
(1)求证:BE DG =;
(2)若60B ∠=°,当AB 与BC 满足什么数量关系时,四
边形ABFG 是菱形?证明你的结论. ,
针对练习:如图,将矩形ABCD 沿对角线AC 剪开,再把ACD △沿CA 方向平移得到A C D '''△.
(1)证明A AD CC B '''△≌△;(2)若30ACB ∠=°,试问当点C '在线段AC 上的什么位置时,四边形ABC D ''是菱形,并请说明理由.
A D G C
B F E
C B
A D A 'C ' D '
典型例题(2009年青岛)
已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE CG =,连接BG 并延长交DE 于F . (1)求证:BCG DCE △≌△;
(2)将DCE △绕点D 顺时针旋转90 得到DAE '△, 判断四边形E BGD '是什么特殊四边形?并说明理由.
针对练习:如图所示,在Rt ABC △中,90ABC =︒∠.将Rt ABC △绕点C 顺时针方向旋转60︒得到DEC △,点E 在AC 上,再将Rt ABC △沿着AB 所在直线翻转180︒得到ABF △.连接AD .
(1)求证:四边形AFCD 是菱形;
(2)连接BE 并延长交AD 于G ,连接CG ,请问:四边形ABCG 是什么特殊平行四边形?为什么?
A B C D E F
E ' G A D
F C E
G B
对称练习:
如图,四边形ABCD 是平行四边形,△AB ’C 和△ABC 关于AC 所在的直线对称,AD 和
B ’
C 相交于点O ,连接BB ’.
(1)请直接写出图中所有的等腰三角形(不添加字母);
(2)求证:△AB ’O ≌△CDO .
三、归纳总结
四、过关检测,反馈学情:
如图,在Rt OAB ∆中,90OAB ∠=︒,6OA AB ==,将OAB ∆绕点O 沿逆时针方
向旋转90︒得到11
OA B ∆. (1)求证:△A 1DO ≌△ABD
(2)连结1AA ,求证:四边形11OAA B 是平行四边形;
A。