2020年江苏省苏州市张家港市中考数学模拟试题(附带详细解析)

合集下载

2020年江苏省苏州市中考数学模拟试题(含答案)

2020年江苏省苏州市中考数学模拟试题(含答案)

2020年江苏省中考数学模拟试题含答案一、选择题:(本大题共10小题,每小题3分,共30分.,把答案直接填在答题卡相应位置上.) 1.14-的相反数是(★)A. 14-B. 14C. 4-D. 4 2. 已知α∠和β∠互为余角,若40α∠=︒,则β∠等于(★)A. 40°B. 50°C. 60°D. 140° 3. 若式子1x -在实数范围内有意义,则x 的取值范围是(★)A. 1x ≠B. 1x >C. 1x ≥D. 1x ≤4. 太阳的半径约为696 300 km. 696 300这个数用科学记数法可表示为 (★)A. 0.696 3×106B. 6.963×105C. 69.63×104D. 696.3×1035. 如图,直线//a b ,点C 在直线b 上,90DCB ∠=︒,若170∠=︒,则2∠的度数为 (★) A. 20° B. 25° C. 30° D. 40°6. 菱形OACB 在平面直角坐标系中的位置如图所示,点C 的坐标是(6,0),点A 的纵坐标是1,则点B 的坐标是 (★)A. (3,1)B. (1,-3)C. (3,-1)D. (1,3) 7.二次函数221y x x =--的图像的顶点在(★)A.第一象限B.第二象限C.第三象限D.第四象限8. 如图,D 、E 、F 分别是ABC ∆的边AB 、BC 、AC 的中点.若四边形ADEF 是菱形,则ABC ∆必须满足的条件是 (★) A. AB AC ⊥ B. AB AC = C. AB BC = D. AC BC =9. 如图,PA切⊙于点A,OP交⊙O于点B,且点B为OP的中点,弦AC∥OP.若OP=2,则图中阴影部分的面积为(★)A.33π- B.33π-C.36π- D.36π-10. 如图,己知ABC∆中,90,30,3C A AC∠=︒∠=︒=.动点D在边AC上,以BD为边作等边BDE∆(点E、A在BD的同侧).在点D从点A移动至点C的过程中,点E 移动的路线长为(★)A. 3B. 23C.3πD.23π二、填空题:(本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.)11. 计算: 2(2)x-= ★ .12. 有一组数据:3, 5, 7, 6, 5,这组数据的中位数是★ .13. 如图,直线a、b被直线c所截,且a∥b.若135∠=︒,则2∠= ★°.14. 方程322x x=-的解是★ .15. 若2320a a-+=,则2162a a+-= ★ .16. 将边长为2的正方形OABC如图放置,O为原点.若15α∠=︒,则点B的坐标为★ .17. 如图,小岛A在港口P的南偏东45°方向、距离港口81海里处.甲船从A出发,沿AP方向以9海里/h的速度驶向港口;乙船从港口P出发,沿南偏西60°方向,以18海里/h的速度驶离港口.现两船同时出发,当甲船在乙船的正东方向时,行驶的时间为★h.(结果保留根号)18. 如图,AB是半⊙O的直径,点C在半⊙O上,AB=5 cm, AC=4 cm. D是弧BC上的一个动点,连接AD,过点C作CE AD⊥于E,连接BE.在点D移动的过程中,BE的最小值为★ .三、解答题:(本大题共10小题,共76分.)19. (本题满分5分) 计算: 201()16(21)cos603---+--︒20. (本题满分5分) 解不等式组: 1253(1)x x x +>⎧⎨+≥-⎩21. (本题满分6分) 先化简,再求值:2)1x x x 1÷(1--+1,其中31x =+.22. (本题满分6分)购买6件A 商品和5件B 商品共需270元,购买3件A 商品和4件B 商品共需180元.问:购买1件A 商品和1件B 商品共需多少元?23.(本题满分8分) 为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A :实心球;B :立定跳远;C :跳绳;D :跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②所示的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.24.(本题满分8分)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE 的高度,他们在这棵树正前方一座楼亭前的台阶上A 点处测得树顶端D 的仰角为30o ,朝着这棵树的方向走到台阶下的点C 处,测得树顶端D 的仰角为60o .已知A 点的高度AB 为2m ,台阶AC 的倾斜角∠ACB 为30°,且B 、C 、E 三点在同一条直线上.请根据以上条件求出树DE 的高度(测倾器的高度忽略不计).25. (本题满分8分)如图,一次函数y kx b =+的图像与反比例函数my x=的图像交于 A (-2, 1)、(1,)B a 两点. (1)分别求出反比例函数与一次函数的表达式; (2)直接写出关于x 、y 的方程组 y kx b my x =+⎧⎪⎨=⎪⎩的解.26. (本题满分10分)如图,己知AB 是⊙O 的直径,且4AB =,点C 在半径OA 上(点C 与点O 、点A 不重合),过点C 作AB 的垂线交⊙O 于点D . 连接OD , 过点B 作OD 的平行线交⊙O 于点E ,交CD 的延长线于点F . (1)若点E 是弧BC 的中点,求F ∠的度数; (2)求证:2BE OC =;(3)设AC x =,则当x 为何值时BE EF ⋅的值最大? 最大值是多少?27. (本题满分10分)如图①,已知矩形ABCD 中,AB =60 cm, BC =90 cm.点P 从点A 出发,以3 cm/s 的速度沿AB 运动:同时,点Q 从点B 出发,以20 cm/s 的速度沿BC 运动.当点Q 到达点C 时,P 、Q 两点同时停止运动.设点P 、Q 运动的时间为t (s). (1)当t = s 时,BPQ ∆为等腰三角形; (2)当BD 平分PQ 时,求t 的值;(3)如图②,将BPQ ∆沿PQ 折叠,点B 的对应点为E , PE 、QE 分别与AD 交于点F 、G . 探索:是否存在实数t ,使得AF EF =?如果存在,求出t 的值:如果不存在,说明理由.28. (本题满分10分)如图①已知抛物线234(0)y ax ax a a =--<的图像与x 轴交于A 、B 两点(A 在B 的左侧),与y 的正半轴交于点C ,连结BC ,二次函数的对称轴与x 轴的交点E .(1)抛物线的对称轴与x 轴的交点E 坐标为 ,点A 的坐标为 ; (2)若以E 为圆心的圆与y 轴和直线BC 都相切,试求出抛物线的解析式;(3)在(2)的条件下,如图②(,0)Q m 是x 的正半轴上一点,过点Q 作y 轴的平行线,与直线BC 交于点M ,与抛物线交于点N ,连结CN ,将CMN ∆沿CN 翻折,M 的对应点为M '.在图②中探究:是否存在点Q ,使得M '恰好落在y 轴上?若存在,请求出Q 的坐标,若不存在,请说明理由.参考答案题号 1 2 3 4 5 6 7 8 9 10 答案 B BCBACDBDA11. 24x 12. 5 13. 145° 14. 6x = 15. 5 16. (2,6)- 17.929- 18. 132- 19. 112 20. 14x <≤ 21. 原式=11x -=3322. 50元24.6米 25. (1)2y x=-,1y x =-- (2) 12x =-, 21x = . 11y = 22y =-26. (1)30F ∠=︒ (2)OBM ∆≌ODC ∆,BM OC =,2BE OC ∴= (3)32x =时,最大值=9 28. (1)6023t = (2)18049t = (3)4t =2016-2017学年第二学期自主检测一试卷数 学一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(每小题3分,共24分)11. . 12. . 13. . 14. . 15. . 16. . 17. . 18. .19. (5分) 计算:201()16(21)cos603---+--︒20. (5分) 解不等式组: 1253(1)x x x +>⎧⎨+≥-⎩21. (6分) 先化简,再求值: 2)1x x x 1÷(1--+1,其中31x =+.22. (6分)23.(8分)(1)(2)(3)24.(8分)25. (8分)26. (10分)DECBA 30°60°27. (10分)为等腰三角形;(1)当t= s时,BPQ(2)28. (10分)(1)抛物线的对称轴与x轴的交点E坐标为,点A的坐标为 ;。

2020年江苏省苏州市张家港市中考数学模拟试卷(3月份)

2020年江苏省苏州市张家港市中考数学模拟试卷(3月份)

2020年江苏省苏州市张家港市中考数学模拟试卷(3月份)一、选择题(共16小题,每小题3分,满分42分)1.(3分)下列各对数中,数值相等的数是( )A .23与32B .23-与2(3)-C .3(32)⨯与332⨯D .32-与3(2)-2.(3分)以下四个标志中,是轴对称图形的是( )A .B .C .D .3.(3分)用肥皂水吹泡泡,泡沫的厚度约为0.000326毫米,0.000326用科学记数法表示为( )A .43.2610-⨯B .332610-⨯C .30.32610-⨯D .33.2610-⨯4.(3分)如图,//AB CD ,AD 和BC 相交于点O ,35A ∠=︒,75AOB ∠=︒,则C ∠等于( )A .35︒B .75︒C .70︒D .80︒5.(3分)二次函数2y ax bx c =++的图象如图所示,则函数值0y <时x 的取值范围是()A .1x <-B .3x >C .13x -<<D .1x <-或3x >6.(3分)如图,在平行四边形ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,:2:5DE AB =,则:DF BF 等于( )A .2:5B .2:3C .3:5D .3:27.(3分)已知反比例函数3k y x +=的图象位于第二、四象限,则k 的取值范围为( ) A .3k >- B .3k -…C .3k <-D .3k -„ 8.(3分)一只小花猫在如图的方砖上走来走去,最终停留在阴影方砖上的概率是( )A .13B .15C .215D .4159.(3分)如图,点A 、B 、C 、O 在数轴上表示的数分别为a 、b 、c 、0,且OA OB OC +=,则下列结论中:其中正确的有( )①0abc >.②()0a b c +=③a c b -=.④||||||1a b c a b c++=-,A .①③④B .①②④C .②③④D .①②③④10.(3分)关于x 的一元二次方程2220x x k -++=有实数根,则k 的取值范围在数轴上表示正确的是( )A .B .C .D .11.(2分)如图,粮仓的顶部是圆锥形状,这个圆锥底面的半径长为3m ,母线长为6m ,为防止雨水,需在粮仓顶部铺上油毡,如果油毡的市场价是每平方米10元钱,那么购买油毡所需要的费用是( )A .540π元B .360π元C .180π元D .90π元12.(2分)如图,A 、D 是O e 上的两个点,BC 是直径,若34D ∠=︒,则OAC ∠等于()A.68︒B.58︒C.72︒D.56︒13.(2分)如图,在ABC∆中,AB AC=,45BAC∠=︒,将ABC∆绕点A逆时针方向旋转得AEF∆,其中,E,F是点B,C旋转后的对应点,BE,CF相交于点D.若四边形ABDF为菱形,则CAE∠的大小是()A.45︒B.60︒C.75︒D.90︒14.(2分)如图,在边长为4的正方形ABCD中,点M为对角线BD上一动点,ME BC⊥于E,MF CD⊥于F,则EF的最小值为()A.42B.22C.2D.115.(2分)如图,在反比例函数32yx=的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC BC=,当点A运动时,点C始终在函数k yx =的图象上运动,若tan2CAB∠=,则k的值为()A.3-B.6-C.9-D.12-16.(2分)将二次函数256y x x=--在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,若直线2y x b=+与这个新图象有3个公共点,则b的值为( )A.734-或12-B.734-或2C.12-或2D.694-或12-二、填空题(本大题共3个小题,共12分,17-18小题各3分,19小题有2个空,每空3分,把答案写在题中横线上)17.(3分)若关于x、y的方程组2122x y mx y+=-⎧⎨+=⎩的解满足0x y+>,则m的取值范围是.18.(3分)如图,点I为ABC∆的内心,4AB cm=,3AC cm=,2BC cm=,将ACB∠平移,使其顶点与点I重合,则图中阴影部分的周长为cm.19.(6分)如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数myx=的图象经过点E,与AB交于点F.若点B坐标为(6,0)-,求图象经过A、E两点的一次函数的表达式是,若2AF AE-=,则反比例函数的表达式是.三、解答题(本大题共8个小题,共76分.解答应写出文字说明、证明过程或演算步骤)。

张家港市外国语学校2020年初三数学模拟试卷(含答案)

张家港市外国语学校2020年初三数学模拟试卷(含答案)

张家港市外国语学校2020年初三数学模拟试卷一、选择题(共10小题,每小题3分,共30分)1.苏州市3月份以来,日照明显增多,日均最高气温达21°℃,最低13℃,日均最高气温比最低气温高( )A.21°CB.13°CC.8°CD. 7°C2.若代数式在实数范围内有意义,则实数x的取值范围是( )A. x>-2B.x=-2C. x≠0D. x≠-23.下列事件,是必然事件的是()A. 投掷一次骰子,向上一面的点数是6B. 童威在罚球线上投篮一次,未投中C. 任意画一个多边形,其外角和是360°D. 经过有交通信号灯的路口,遇到红灯4.点A(-2,5)关于原点对称的点的坐标是( )A. (2,5)B. .(-2,-5)C. (2,-5)D. (5,-2)5.有个零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是( )A B C D6.计算(x-1)2的结果是( )A. x2-1B. x2-2x-1C. x2-2x+1D. x2+2x+17.记录某个月(30天)每天健步走的步数(单位:万步),绘制成了如图所示的统计图,在每天所走的步数这组数据中,中位数和众数分别为( )A.1.4,1.4B.1.3,1.4C.1.4,1.2D.1.5,1.4第7题图第8题图第9题图8.如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有( )A. 3种B. 5种C. 8种D. 13种9.一个滑道由滑坡(AB段)和缓冲带(BC段)组成,如图所示,滑雪者在滑坡上滑行的距离y1(单位:m)和滑行时间t滑行时间t1/s 0 1 2 3 4滑行距离y1/s 0 4.5 14 28.5 48滑雪者在缓冲带上滑行的距离y2(单位:m)和在缓冲带上滑行时间t2(单位:s)满足:y2=52t2-2t2,滑雪者从A出发在缓冲带BC上停止,一共用了23s,则滑坡AB的长度( )米A.270B. 280C. 375D.45010.图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A 在射线OX 上由点O 开始向右滑动,点B 在射线OY 上也随之向点O 滑动(如图3).当点B 滑动至与点O 重合时运动结束.在整个运动过程中,点C 运动的路径长是( )A.32πB.2πC.42-2D.10-42二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:(32+3)- 2的结果是________12.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇 匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸 到黑球,则估计第41次摸球是白球的概率大约是_________13.一副三角板叠在一起如图放置,最小锐角的顶点D 恰好放在等腰直角三角形的斜边上,AC 与DM 、DN 分别交于点E 、F.把△DEF 绕点D 旋转到一定位置,使得DE=DF,则∠BDN 的 度数是_________第13题图 第14题图 第15题图14.如图,在直角坐标系中,矩形OABC 的顶点A 、B 在双曲线y=k x (x>0)上,BC 与x 轴交于点D.若点A 的坐标为(1,2),则点B 的坐标为_______15.如图,矩形OABC 的边OA 在x 轴上,OA=10cm,OC 在y 轴上,且OC=4cm,P 为OA 的中点,动点Q 从C 点出发,沿着CB 以每秒1cm 的速度运动(Q 到B 点时停止运动).当△OPQ 是以OP 为腰的等腰三角形时,点Q 的运动时间=_______16.已知二次函数y=3x 2+2x+n,当自变量x 的取值在-1≤x≤1的范围内时,函数与x 轴有且只有一个公共点.则n 的取值范围是______三、解答题(共8题,共72分)17.(本题8分)计算:3x 3·x 2y-8x 7y÷x 2+4(x 2)2·xy18.(本题8分)已知,如图,∠1与∠3互余,∠2与∠3的余角互补,∠4=115°,NM平分∠ANE,求∠MNF的大小.19.(本题8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图.部门员工人数每人所创的年利润万元A 5 10B b 8C c 5各部门人数分布扇形图(1)①在扇形图中,C部门所对应的圆心角的度数为______; ②在统计表中,b=_______,c=________;(2)求这个公司平均每人所创年利润.20.(本题8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2)、B(0,4) 、C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若A的对应点A2的坐标为(0,4) ,画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.21.(本题8分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E(1)若tan∠ABC=2,证明:DA与⊙O相切;(2)在(1)条件下,连接BD交⊙O于点F,连接EF.若BC=1,求EF的长.22.(本题10分)国家推行“节能减排&低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A、B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2 万元.花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相等,销售中发现A型汽车的每周销量y A(台)与售价x(万元/台)满足函数关系式y A=-x+20,B型汽车的每周销量y B(台)与售价x(万元/台)满足函数关系式y B=-x+14(1)求A、B两种型号的汽车的进货单价;(2)已知A型汽车的售价比B型汽车的售价高2万元/台,设B型汽车售价为t万元/台,每周销售这两种车的总利润为W万元,求W与t的函数关系式, A、B两种型号的汽车售价各为多少时, 每周销售这两种车的总利润最大?最大总利润是多少万元?23.(本题10分)如图1,△ABC中,AB=AC,点D在BA的延长线上,点E在BC上,DE= DC,点F是DE 与AC的交点,且DF=FE.(1)找出图1中与∠BDE相等的角,并加以证明;(2)求证:BE=EC;(3)若将“点D在BA的延长线上,点E在BC上”和“点F是DE与AC的交点,且DF=FE” 分别改为“点D在AB上,点E在CB的延长线上”和“点F是ED的延长线与AC的交点,且DF=kFE",其他条件不变(如图2).当AB=1,∠ABC=α时,直接写出BE的长(用含k、a 的式子表示)24.(本题12分)已知二次函数y=x2+bx+c,其图象抛物线交x轴于点A(1,0)、B(3,0),交y轴于点C,直线l过点C,且交抛物线于另一点E(点E不与点A、B重合)(1)直接写出二次函数的解析式;(2)若直线l1经过抛物线顶点D,交x轴于点F,且l1∥l,则以点C、D、E、F为顶点的四边形能否为平行四边形?若能,求出点E的坐标;若不能,请说明理由;(3)将此抛物线沿着y=2翻折,E为所得新抛物线x轴上方一动点,过E作x轴的垂线,交x轴于G,交直线y=-12x-1于点F,求EGFG的最大值.参考答案12.0.7513.12014.(4,12) 15.2、3、816. -5≤n<-1或n=1317.-x 5y18. ∠MNF=122.5019.(1) ①1080 ②b=9,c=6 (2)7.6(万元)20.(1)略 (2)旋转中心的坐标(32,3) (3)点P 的坐标(-2,0)21. (1)略(2) 22.(1) A 型号的汽车的进货单价10万元, B 两种型号的汽车的进货单价8万元(2) W 与t 的函数关系式w=-2t 2+48t-256, A 型号的汽车售价各为14万元/台,B 两种型号的汽车售价为12万元/台时, 每周销售这两种车的总利润最大,最大总利润是32万元.23. (1)图1中与∠BDE 相等的角为∠DCA,证明略;(2) 证明略; (3) BE=2kcos α1-k24. (1)写出二次函数的解析式y=x 2-4x+3;(2)点E 的坐标、、、理由略;(3) EG FG 的最大值为4。

2020年江苏省苏州市张家港市中考数学模拟试卷

2020年江苏省苏州市张家港市中考数学模拟试卷

中考数学模拟试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.3的相反数是()A. -3B.C. 3D. ±32.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.下列计算中,正确的是()A. a4+a4=a8B. a4•a4=2a4C. (a3)4•a2=a14D. (2x2y)3÷6x3y2=x3y4.县(区)姑苏区吴江区高新区吴中区相城区工业园区太仓市昆山市常熟市张家港气温(℃)16171616151614151514则该日最低气温(℃)的中位数是()A. 15.5B. 14.5C. 15D. 165.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=40°,则∠2的度数为()A. 10°B. 20°C. 30°D. 40°6.如图,AB是⊙O的直径,CD是弦,∠BCD=30°,OA=2,则阴影部分的面积是()A. 2πB. πC.D.7.若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是()A. k>-1B. k>-1且k≠0C. k<-1D. k<-1或k=08.若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程A. 0B. 1C. 4D. 69.如图,已知在▱ABCD中,E为AD的中点,CE的延长线交BA的延长线于点F,则下列选项中的结论错误的是()A. FA:FB=1:2B. AE:BC=1:2C. BE:CF=1:2D. S△ABE:S△FBC=1:410.如图,已知A,B两点的坐标分别为(8,0),(0,8),点C,F分别是直线x=-5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,sin∠BAD的值是()A.B.C.D.二、填空题(本大题共8小题,共24.0分)11.一组数据4,1,7,4,5,6,则这组数据的极差为______.12.若分式的值为0,则x=______.13.分解因式:xy2-2xy+x=______.14.《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为______.15.如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A1处,BC=8,那么线段AE的长度为______.16.位于湖北省荆州市滨江公园旁的万寿宝塔始建于明熹靖年间,周边风景秀丽.随着年代的增加,目前塔底低于地面约7米.某校学生先在地面A处侧得塔顶的仰角为30°,再向古塔方向行进a米后到达B处,在B处侧得塔顶的仰角为45°(如图所示),已知古塔的整体高度约为40米,那么a的值为______米.(结果保留根式)17.如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD 周长的最小值为______.18.如图,在△ABC中,AB=AC,BC=12,D为AC边的中点,线段BD的垂直平分线分别与边BC,AB交于点E,F,连接DF,EF.设BE=x,tan∠ACB=y.给出以下结论:①DF∥BC;②△BDE的面积为;③△CDE的周长为12+x;④x2-y2=9;⑤2x-y2=9.其中正确结论有______(把你认为正确结论的序号都填上).三、解答题(本大题共10小题,共76.0分)19.计算:.20.先化简,再求值:•(1+)÷,其中x=2-1.21.有四张正面分别标有数字0,1,2,3的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽出一张卡片,则抽到数字“2”的概率为______;(2)随机抽出一张卡片,记下数字后放回并搅匀,再随机抽出一张卡片,请用列表或画树状图的方法,求两次抽出的卡片上的数字之和是3的概率.22.本学期初,某校为迎接中华人民共和国建国七十周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动.校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调查,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示:根据以上信息,解答下列问题:(1)补全上面两幅统计图,填出本次所抽取学生四月份“读书量”的众数为______.(2)求本次所抽取学生四月份“读书量”的平均数;(3)已知该校七年级有1200名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数.23.某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?24.如图,▱OABC的边OA在x轴的正半轴上,OA=5,反比例函数(x>0)的图象经过点C(1,4).(1)求反比例函数的关系式和点B的坐标;(2)过AB的中点D作DP∥x轴交反比例函数图象于点P,连接CP,OP.求△COP 的面积.25.甲、乙两车分别从A,B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地,乙车匀速前往A地.设甲、乙两车距A地的路程为y (千米),甲车行驶的时间为x(小时),y与x之间的函数图象如图所示.(1)图中,m=______,n=______;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)在甲车返回到A地的过程中,当x为何值时,甲、乙两车相距190千米?26.如图,四边形ABCD内接于⊙O,AB=AC,BD⊥AC,垂足为E.(1)若∠BAC=40°,则∠ADC=______°;(2)求证:∠BAC=2∠DAC;(3)若AB=10,CD=5,求BC的值.27.如图1,在平面直角坐标系中,直线MN分别与x轴、y轴交于点M(6,0),N(0,2),等边△ABC的顶点B与原点O重合,BC边落在x轴正半轴上,点A恰好落在线段MN上,将等边△ABC从图1的位置沿x轴正方向以每秒1个单位长度的速度平移,边AB,AC分别与线段MN交于点E,F(如图2所示),设△ABC平移的时间为t(s).(1)∠OMN=______,等边△ABC的边长为______;(2)在运动过程中,当t为何值时,AB垂直平分MN;(3)在△ABC开始平移的同时,点P从△ABC的顶点B出发,以每秒2个单位长度的速度沿折线BA-AC运动,当点P运动到C时立即停止运动,△ABC也随之停止平移.①当点P在线段BA上运动时,若AE=2PE,求t的值;②当点P在线段AC上运动时,若△PEF的面积,求t的值.28.如图,已知抛物线y=ax2+bx+c的图象经过点A(0,3),B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)如图1,动点P在直线BC下方的抛物线上,连结PO,PC,当m为何值时,四边形OPCE面积最大,并求出其最大值;(3)如图2,F是抛物线的对称轴l上的一点,连接PO,PF,OF,在抛物线x轴下方的图象上是否存在点P使△POF满足:①∠OPF=90°;②?若存在,求点P的坐标,若不存在,请说明理由.答案和解析1.【答案】A【解析】解:3的相反数是-3,故选:A.根据只有符号不同的两个数互为相反数,可得答案.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.【答案】B【解析】解:A、不是中心对称图形,是轴对称图形,故本选项不符合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、是中心对称图形,不是轴对称图形,故本选项不符合题意;D、不是中心对称图形,是轴对称图形,故本选项不符合题意.故选:B.根据轴对称图形、中心对称图形的定义即可判断.此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3.【答案】C【解析】解:A、a4+a4=2a4,故此选项错误;B、a4•a4=a8,故此选项错误;C、(a3)4•a2=a14 ,正确;D、(2x2y)3÷6x3y2=8x6y3÷6x3y2=x3y,故此选项错误;故选:C.直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.4.【答案】A【解析】解:将数据重新排列为14,14,15,15,15,16,16,16,16,17,则该日最低气温(℃)的中位数是(15+16)÷2=15.5,故选:A.将数据重新排列后,根据中位数的定义求解可得.本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.【答案】B【解析】解:∵直线m∥n,∴∠2+∠ABC+∠1+∠BAC=180°,∵∠ABC=30°,∠BAC=90°,∠1=40°,根据平行线的性质即可得到结论.本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.6.【答案】C【解析】解:∵∠BCD=30°,∴∠BOD=2∠BCD=60°,∴阴影部分的面积==π.故选:C.先根据圆周角定理得到∠BOD=60°,然后根据扇形的面积公式计算阴影部分的面积.本题考查了扇形面积计算,圆周角定理,熟练掌握扇形的面积公式是解题的关键.7.【答案】B【解析】【分析】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.利用一元二次方程的定义和判别式的意义得到k≠0且△=(-2)2-4k•(-1)>0,然后求出两个不等式的公共部分即可.【解答】解:根据题意得k≠0且△=(-2)2-4k•(-1)>0,解得k>-1且k≠0.故选B.8.【答案】B【解析】【分析】本题综合考查了含参一元一次不等式组的整数解,含参分式方程得问题,需要考虑的因素较多,属于易错题.先解关于x的一元一次不等式组,再根据其解集是x≤a,得a小于5;再解分式方程,根据其有非负整数解,同时考虑增根的情况,得出a的值,再求和即可.【解答】解:由不等式组得:∵解集是x≤a,∴a<5;由关于y的分式方程-=1得2y-a+y-4=y-1∴y=,∵有非负整数解,∴≥0,故选:B.9.【答案】C【解析】解:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,∴△DEC∽△AEF,∴==,∵E为AD的中点,∴CD=AF,FE=EC,∴FA:FB=1:2,A说法正确,不符合题意;∵FE=EC,FA=AB,∴AE:BC=1:2,B说法正确,不符合题意;∵∠FBC不一定是直角,∴BE:CF不一定等于1:2,C说法错误,符合题意;∵AE∥BC,AE=BC,∴S△ABE:S△FBC=1:4,D说法正确,不符合题意;故选:C.根据平行四边形的性质得到CD∥AB,CD=AB,根据相似三角形的判定定理和性质定理计算,判断即可.本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.10.【答案】D【解析】解:如图,设直线x=-5交x轴于K.由题意KD=CF=5,∴点D的运动轨迹是以K为圆心,5为半径的圆,∴当直线AD与⊙K相切时,△ABE的面积最小,∵AD是切线,点D是切点,∴AD⊥KD,∵AK=13,DK=5,∴AD=12,∵tan∠EAO==,∴=,∴OE=,∴AE==,作EH⊥AB于H.∵S△ABE=•AB•EH=S△AOB-S△AOE,∴EH=,故选:D.如图,设直线x=-5交x轴于K.由题意KD=CF=5,推出点D的运动轨迹是以K为圆心,5为半径的圆,推出当直线AD与⊙K相切时,△ABE的面积最小,作EH⊥AB于H,求出EH,即可解决问题.本题考查解直角三角形,坐标与图形的性质,直线与圆的位置关系,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.11.【答案】6【解析】解:这组数据的极差为:7-1=6;故答案为:6.根据极差的定义即可求得.此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.12.【答案】【解析】解:由题意知,4x-1=0.解得x=.此时分母x2+1=≠0,符合题意.故答案是:.分式的值为零时,分子等于零,即4x-1=0.本题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.13.【答案】x(y-1)2【解析】解:xy2-2xy+x,=x(y2-2y+1),=x(y-1)2.先提公因式x,再对剩余项利用完全平方公式分解因式.本题考查提公因式法分解因式和完全平方公式分解因式,本题要进行二次分解因式,分解因式要彻底.14.【答案】【解析】【分析】根据题意可以列出相应的方程组,从而可以解答本题.本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.【解答】解:由题意可得,,故答案为:.15.【答案】5【解析】解:由折叠的性质可得AE=A1E,∵△ABC为等腰直角三角形,BC=8,∴AB=8,∵A1为BC的中点,∴A1B=4,设AE=A1E=x,则BE=8-x,在Rt△A1BE中,由勾股定理可得42+(8-x)2=x2,解得x=5,故答案为:5.由折叠的性质可求得AE=A1E,可设AE=A1E=x,则BE=8-x,且A1B=4,在Rt△A1BE中,利用勾股定理可列方程,则可求得答案.本题主要考查折叠的性质,利用折叠的性质得到AE=A1E是解题的关键,注意勾股定理的应用.16.【答案】33(-1)【解析】解:如图,设CD为塔身的高,延长AB交CD于E,则CD=40米,DE=7米,∴CE=33米,∵∠CBE=45°=∠BCE,∠CAE=30°,∴BE=CE=33米,∴AE=(a+33)米,∵tan A=,∴tan30°=,即33=a+33,解得a=33(-1),∴a的值为33(-1)米,故答案为:33(-1).设CD为塔身的高,延长AB交CD于E,则CD=40,DE=7,进而得出BE=CE=33,AE=a+33,在Rt△ACE中,依据tan A=,即可得到a的值.本题主要考查了解直角三角形的应用-仰角俯角问题,关键是根据在直角三角形中三角函数的定义列出算式,得出关于a的方程.17.【答案】20【解析】解:当AE⊥BC时,四边形AEFD的周长最小,∵AE⊥BC,AB=2,∠B=60°.∴AE=3,BE=,∵△ABE沿BC方向平移到△DCF的位置,∴EF=BC=AD=7,∴四边形AEFD周长的最小值为:14+6=20,故答案为:20当AE⊥BC时,四边形AEFD的周长最小,利用直角三角形的性质解答即可.此题考查平移的性质,关键是根据当AE⊥BC时,四边形AEFD的周长最小进行分析.18.【答案】②⑤【解析】解:过A作AQ⊥BC于Q,过D作DM⊥BC于M,连接DE,∵BD的垂直平分线交BC于E,BDEx,∴BE=DE=x,∵AB=AC,BC=12,tan∠ACB=y,∴==y,BQ=CQ=6,∴AQ=6y,∵AQ⊥BC,EM⊥BC,∴AQ∥EM,∵D为AC中点,∴CM=QM=CQ=3,∴EM=3y,∴S△EBD=•BE•DM=xy,故②正确,∴EM=12-3-x=9-x,在Rt△EDM中,由勾股定理得:x2=(3y)2+(9-x)2,即2x-y2=9,故⑤正确.不妨设①成立,则可以推出BD平分∠ABC,推出△ABC是等边三角形,这个显然不可能,故②不成立.不妨设③成立,则推出CD=BE=DE=x,推出DE∥AB,这个显然不可能,故③错误,不妨设④成立,则由⑤可知x2=2x,推出x=2,这个显然不可能,故④错误,故答案为②⑤.过A作AQ⊥BC于Q,过D作DM⊥BC于M,连接DE,根据线段垂直平分线求出DE=BE=x,根据等腰三角形求出BQ=CQ=6,求出CM=QM=3,解直角三角形求出EM=3y,AQ=6y,在Rt△DEM中,根据勾股定理求出即可.由此可以判断②⑤正确.本题考查了线段垂直平分线性质,等腰三角形的性质,勾股定理,解直角三角形等知识点,能正确作出辅助线是解此题的关键.19.【答案】解:原式=4+2-+1+2=7+.【解析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及二次根式性质计算即可求出值.此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.20.【答案】解:•(1+)÷=••=,把x=2-1代入得,原式===.【解析】直接分解因式,再利用分式的混合运算法则计算得出答案.此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.21.【答案】【解析】解:(1)从4张除数字外均相同的卡片中抽取1张,共有4种等可能结果,其中抽到数字“2”的只有1种结果,∴抽到数字“2”的概率为,故答案为:.(2)列表如下:0123 00123112342234533456由表可知,共有16种等可能结果,其中两次抽出的卡片上的数字之和是3的有4种结果,∴两次抽出的卡片上的数字之和是3的概率为=.(1)直接利用概率公式求解可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式求解可得.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A和B的结果数目m,然后利用概率公式计算事件A和事件B的概率.22.【答案】解:(1)3,补全统计图为:(2)平均数=;(3)四月份“读书量”为5本的学生人数=1200×=120(人),答:四月份“读书量”为5本的学生人数为120人.【解析】【分析】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(1)根据统计图可知众数为3;(2)根据平均数计算公式求解;(3)用总数乘以样本中读书量”为5本的学生的百分率即可..【解答】解:(1)根据统计图可知众数为3,故答案为3;补全统计图见答案;(2)(3)见答案,23.【答案】解:(1)设第一批衬衫每件进价是x元,则第二批每件进价是(x-10)元,根据题意可得:,解得:x=150,经检验x=150是原方程的解,第一批衬衫每件进价是150元,第二批每件进价是140元,(件),(件),答:第一批衬衫进了30件,第二批进了15件;(2)设第二批衬衫每件售价y元,根据题意可得:30×(200-150)+15(y-140)≥1950,解得:y≥170,答:第二批衬衫每件至少要售170元.【解析】(1)设第一批衬衫每件进价是x元,则第二批每件进价是(x-10)元,再根据等量关系:第二批进的件数=×第一批进的件数可得方程;(2)设第二批衬衫每件售价y元,由利润=售价-进价,根据这两批衬衫售完后的总利润不低于1950元,可列不等式求解.本题考查分式方程、一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据利润作为不等关系列出不等式求解.24.【答案】解:(1)∵反比例函数y=(x>0)的图象经过点C(1,4).∴m=1×4=4,∴反比例函数的关系式为y=(x>0).∵四边形OABC为平行四边形,且点O(0,0),OA=5,点C(1,4),∴点A(5,0),∴点B(6,4).(2)延长DP交OC于点E,如图所示.∵点D为线段BA的中点,点A(5,0)、B(6,4),∴点D(,2).令y=中y=2,则x=2,∴点P(2,2),∴PD=-2=,EP=ED-PD=,∴S△COP=EP•(y C-y O)=××(4-0)=3.【解析】(1)由点A的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数关系式,再根据平行四边形的性质结合点A、O、C的坐标即可求出点B的坐标;(2)延长DP交OC于点E,由点D为线段BA的中点,可求出点D的坐标,再令反比例函数关系式中y=2求出x值即可得出点P的坐标,由此即可得出PD、EP的长度,根据三角形的面积公式即可得出结论.本题考查了反比例函数图象上点的坐标特征、三角形的面积公式、平行四边形的性质,解题的关键是:根据反比例函数图象上点的坐标特征求出反比例函数解析式.25.【答案】2.5 3.75【解析】解:(1)m=300÷(180÷1.5)=2.5,n=300÷[(300-180)÷1.5]=3.75,故答案为:2.5;3.75;(2)设甲车返回时y与x之间的函数关系式为y=kx+b,根据题意得:,解得,∴甲车返回时y与x之间的函数关系式是y=-100x+550(2.5≤x≤5.5);(3)乙车的速度为:(300-180)÷1.5=80(千米/时),甲车返回时的速度为:300÷(5.5-2.5)=100(千米/时),根据题意得:80x-100(x-2.5)=190,解得x=3.答:当x=3时,甲、乙两车相距190千米.(1)根据题意列算式即可得到结论;(2)利用待定系数法求解即可;(3)根据题意列方程解答即可.本题考查了待定系数法求一次函数的解析式的运用,行程问题的数量关系的运用,解答时求出一次函数的解析式是关键.26.【答案】110【解析】(1)解:∵AB=AC,∠BAC=40°,∴∠ABC=∠ACB=70°,∵四边形ABCD是⊙O的内接四边形,∴∠ADC=180°-∠BAC=110°,故答案为:110;(2)证明:∵BD⊥AC,∴∠AEB=∠BEC=90°,∴∠ACB=90°-∠CBD,∵AB=AC,∴∠ABC=∠ACB=90°-∠CBD,∴∠BAC=180°-2∠ABC=2∠CBD,∵∠DAC=∠CBD,∴∠BAC=2∠DAC;(3)解:过A作AH⊥BC于H,∵AB=AC,∴∠BAH=∠CAH=CAB,CH=BH,∵∠BAC=2∠DAC,∴∠CAG=∠CAH,过C作CG⊥AD交AD的延长线于G,∴∠G=∠AHC=90°,∵AC=AC,∴△AGC≌△AHC(AAS),∴AG=AH,CG=CH,∵∠CDG=∠ABC,∴△CDG∽△ABH,∴==,∴=,设BH=k,AH=2k,∴AB==k=10,∴k=2,∴BC=2k=4.(1)根据等腰三角形的性质和圆内接四边形的性质即可得到结论;(2)根据等腰三角形的性质和三角形的内角和即可得到结论;(3)过A作AH⊥BC于H,根据等腰三角形的性质得到∠BAH=∠CAH=CAB,CH=BH,过C作CG⊥AD交AD的延长线于G,根据全等三角形的性质得到AG=AH,CG=CH,根据相似三角形的性质得到=,设BH=k,AH=2k,根据勾股定理即可得到结论.本题考查了圆内接四边形,全等三角形的判定和性质,等腰三角形的性质,相似三角形的判定和性质,勾股定理,正确的作出辅助线构造全等三角形是解题的关键.27.【答案】30°3【解析】解:(1)∵直线MN分别与x轴、y轴交于点M(6,0),N(0,2),∴OM=6,ON=2,∵tan∠OMN===,∴∠OMN=30°,∵△ABC是等边三角形,∴∠ABC=60°,∴∠BAM=90°,∴AB=BM=3,故答案为:30°,3;(2)由(1)可知MN=4,当AB垂直平分线段MN时,EM=MN=2,∴BM==4,∴OB=OM-BM=6-4=2,∴t=2时直线AB垂直平分线段MN.(3)①如图1中,由题意BP=2t,BM=6-t,∵∠BEM=90°,∠BME=30°,∴BE=3-,AE=AB-BE=,∵∠BAC=60°,∴EF=AE=t,当点P在EF下方时,PE=BE-BP=3-t,可得=2×(3-),解得t=,当点P在EF上方时,PE=BP-BE=t-3,可得t=2(t-3),解得t=,综上所述,满足条件的t的值为或.②当P点在EF上方时,过P作PH⊥MN于H,如图2中,由题意,EF=t,FC=MC=3-t,∠PFH=30°,∴PF=PC-CF=(6-2t)-(3-t)=3-t,∴PH=PF=,∴S△PEF=•EF•PH=×t×=,解得t=2或1(舍弃),当t=3时,点P与F重合,故P点在EF下方不成立.∴满足条件的t的值为2.(1)根据,∠OMN=30°和△ABC为等边三角形,求证△OAM为直角三角形,然后即可得出答案.(2)解直角三角形求出BM,即可解决问题.(3)①如图1中,由题意BP=2t,BM=6-t,分两种情形分别构建方程求解即可.②当P点在EF上方时,过P作PH⊥MN于H,如图2中,构建方程即可解决问题.本题考查几何变换综合题,等边三角形的性质、平移变换、解直角三角形、相似三角形、二次函数等知识,解题的关键是灵活运用所学知识解决问题,学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.28.【答案】解:(1)由题意得:,解得,故抛物线的表达式为:y=x2-4x+3;(2)点A(0,3),函数的对称轴为直线x=2,则点C(4,3),∵OE是∠AOB的平分线,故∠AOE=45°,则△AOE为等腰直角三角形,故OE=OA=3,故点E(3,3);连接OC,过点E、P分别作y轴的平行线分别交OC于点F、H,由点O、C的坐标得,直线OC的表达式为:y=x,当x=3时,y=,故F(3,),则EF=3-=,设点P(m,m2-4m+3),则点H(m,m),则四边形OPCE面积S=S△OCE+S△OCP=×EF×AC+PH×AC=×4×(+m-m2+4m-3)=-2m2+m-,∵-2<0,故S有最大值,当m=时,S的最大值为;(3)存在,理由:过点P作x轴的平行线交y轴于点M,交直线l于点N,设点P(m,m2-4m+3),∵∠OPF=90°,则∠MOP+∠MPO=90°,∠OPM+∠FPN=90°,∵∠FPN=∠POM=90°,∴△PMO∽△FNP,∵,即△PMO和△FNP的相似比为2:1,则OM=2PN,即-(m2-4m+3)=2|2-m|,解得:m=3-或1+,故点P的坐标为(3-,2-2)或(1,2-2).【解析】(1)由题意得:,解之即可求解;(2)四边形OPCE面积S=S△OCE+S△OCP =×EF×AC +PH×AC,即可求解;(3)证明△PMO∽△FNP ,而,则△PMO和△FNP的相似比为2:1,即OM=2PN,即可求解.本题考查的是二次函数综合运用,涉及到一次函数的性质、三角形相似、面积的计算等,综合性强,难度适中.第21页,共21页。

2020年江苏省苏州市中考数学模拟试卷解析版

2020年江苏省苏州市中考数学模拟试卷解析版

2020年江苏省苏州市中考数学模拟试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用28铅笔涂在答题卡相位置上1.(3分)在0,1,﹣,﹣1四个数中,最小的数是()A.0B.1C.D.﹣12.(3分)移动互联网已经全面进入人们的日常生活,截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B.1.62×106C.1.62×108D.0.162×109 3.(3分)如图,直线a∥b,∠1=60°,∠2=40°,则∠3等于()A.40°B.60°C.80°D.100°4.(3分)某中学初三(1)班的8名同学在一次排球垫球测试中的成绩如下:(单位:个)35,38,42,44,40,47,45,45则这组数据的中位数是()A.44B.43C.42D.405.(3分)如图,点A、B、C是⊙O上的点,OA=AB,则∠C的度数为()A.30°B.45°C.60°D.30°或60°6.(3分)某校举行春季运动会,需要在初一年级选取一名志愿者.初一(1)班、初一(2)班、初一(3)班各有2名同学报名参加.现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一(3)班同学的概率是()A.B.C.D.7.(3分)已知A(x1,y1)是一次函数y=﹣x+b+1图象上一点,若x1<0,y1<0,则b的取值范围是()A.b<0B.b>0C.b>﹣1D.b<﹣18.(3分)如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C两点测得该塔顶端F的仰角分别为45°和60°,矩形建筑物宽度AD=20m,高度DC=30m则信号发射塔顶端到地面的高度(即FG的长)为()A.(35+55)m B.(25+45)m C.(25+75)m D.(50+20)m 9.(3分)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(﹣2,﹣2),则k的值为()A.1B.﹣3C.4D.1或﹣310.(3分)边长为2的菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A'、D'处,且A'D'经过点B,EF为折痕,当D'F⊥CD时,CF的值为()A.4﹣2B.2﹣2C.﹣1D.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.11.(3分)分解因式:a2﹣4b2=.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)如图,在Rt△ABC中,∠A=90°.小华用剪刀沿DE剪去∠A,得到一个四边形.则∠1+∠2=度.14.(3分)某学校“你最喜爱的球类运动”调查中,随机调查了若干名学生(每个学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为名.15.(3分)一个扇形的圆心角为60°半径为6cm,则这个扇形的弧长为cm.(结果保留π)16.(3分)当x=1时,代数式ax3+bx+1的值为5,则代数式4﹣a﹣b的值=.17.(3分)如图,在四边形ABCD中,∠ADC=90°,∠BAD=60°,对角线AC平分∠BAD,且AB=AC=4,点E、F分别是AC、BC的中点,连接DE、EF、DF,则DF的长为.18.(3分)如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为.三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔. 19.(5分)计算:+()﹣1﹣2019020.(5分)解不等式组:21.(6分)先化简,再求值:﹣÷,其中x=﹣3+2.22.(6分)将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面(1)从中随机抽出一张牌,试求出牌面数字是偶数的概率;(2)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.23.(8分)为了提高农民抵御大病风险的能力,全国农村推行了新型农村合作医疗政策,农民只需每人每年交10元钱,就可以加入合作医疗.若农民患病住院治疗,出院后到新型农村合作医疗办公室按一定比例报销医疗费.小军与同学随机调查了他们镇的一些村民,根据收集到的数据绘制成了如图所示的统计图.根据以上信息,解答下列问题:(1)本次共调查了多少村民被调查的村民中,有多少人参加合作医疗得到了报销款?(2)若该镇有村民10000人,请你计算有多少人参加了合作医疗?要使两年后参加合作医疗的人数增加到9680人,假设这两年的年增长率相同,求这个年增长率.24.(8分)已知:如图,四边形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.(1)求证:BE=CF;(2)若AD=DC=2,求AB的长.25.(8分)如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x <0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.(1)求m的值;(2)若∠DBC=∠ABC,求一次函数y=kx+b的表达式.26.(10分)如图1,DE是⊙O的直径,点A、C是直径DE上方半圆上的两点,且AO⊥CO.连接AE,CD相交于点F,点B是直径DE下方半圆上的任意一点,连接AB交CD 于点G,连接CB交AE于点H.(1)∠ABC=;(2)证明:△CFH∽△CBG;(3)若弧DB为半圆的三分之一,把∠AOC绕着点O旋转,使点C、O、B在一直线上时,如图2,求的值.27.(10分)在直角坐标系xOy中,A(0,2)、B(﹣1,0),将△ABO经过旋转、平移变化后得到如图1所示的△BCD.(1)求经过A、B、C三点的抛物线的解析式;(2)连结AC,点P是位于线段BC上方的抛物线上一动点,若直线PC将△ABC的面积分成1:3两部分,求此时点P的坐标;(3)现将△ABO、△BCD分别向下、向左以1:2的速度同时平移,求出在此运动过程中△ABO与△BCD重叠部分面积的最大值.28.(10分)已知:如图①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m的值.(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用28铅笔涂在答题卡相位置上1.(3分)在0,1,﹣,﹣1四个数中,最小的数是()A.0B.1C.D.﹣1【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.2.(3分)移动互联网已经全面进入人们的日常生活,截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B.1.62×106C.1.62×108D.0.162×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1.62亿=16200 0000=1.62×108,故选:C.3.(3分)如图,直线a∥b,∠1=60°,∠2=40°,则∠3等于()A.40°B.60°C.80°D.100°【分析】根据对顶角相等和利用三角形的内角和定理列式计算即可得解.【解答】解:如图:∵∠4=∠2=40°,∠5=∠1=60°,∴∠3=180°﹣60°﹣40°=80°,故选:C.4.(3分)某中学初三(1)班的8名同学在一次排球垫球测试中的成绩如下:(单位:个)35,38,42,44,40,47,45,45则这组数据的中位数是()A.44B.43C.42D.40【分析】先将这组数据从小到大重新排列,再根据中位数的概念求解可得.【解答】解:将这组数据从小到大重新排列为35、38、40、42、44、45、45、47,所以这组数据的中位数为=43,故选:B.5.(3分)如图,点A、B、C是⊙O上的点,OA=AB,则∠C的度数为()A.30°B.45°C.60°D.30°或60°【分析】先证明△OAB为等边三角形得到∠AOB=60°,然后根据圆周角定理求解.【解答】解:∵OA=OB=AB,∴△OAB为等边三角形,∴∠AOB=60°,∴∠ACB=∠AOB=30°.故选:A.6.(3分)某校举行春季运动会,需要在初一年级选取一名志愿者.初一(1)班、初一(2)班、初一(3)班各有2名同学报名参加.现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一(3)班同学的概率是()A.B.C.D.【分析】用初一3班的学生数除以所有报名学生数的和即可求得答案.【解答】解:∵共有6名同学,初一3班有2人,∴P(初一3班)==,故选:B.7.(3分)已知A(x1,y1)是一次函数y=﹣x+b+1图象上一点,若x1<0,y1<0,则b的取值范围是()A.b<0B.b>0C.b>﹣1D.b<﹣1【分析】先根据题意判断出函数图象经过的象限,进而可得出结论.【解答】解:∵一次函数y=﹣x+b+1中,k=﹣1<0,∴函数图象经过二、四象限.∵x1<0,y1<0,∴函数图象经过第三象限,∴b+1<0,即b<﹣1.故选:D.8.(3分)如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C两点测得该塔顶端F的仰角分别为45°和60°,矩形建筑物宽度AD=20m,高度DC=30m则信号发射塔顶端到地面的高度(即FG的长)为()A.(35+55)m B.(25+45)m C.(25+75)m D.(50+20)m 【分析】将题目中所涉及到的仰角转换为直角三角形的内角,利用解直角三角形的知识表示出线段CG的长,根据三角函数值求得CG的长,代入FG=x•tanβ即可求得.【解答】解:设CG=xm,由图可知:EF=(x+20)•tan45°,FG=x•tan60°,则(x+20)tan45°+30=x tan60°,解得x==25(+1),则FG=x•tan60°=25(+1)×=(75+25)m.故选:C.9.(3分)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(﹣2,﹣2),则k的值为()A.1B.﹣3C.4D.1或﹣3【分析】设C(x,y).根据矩形的性质、点A的坐标分别求出B(﹣2,y)、D(x,﹣2);根据“矩形ABCD的对角线BD经过坐标原点”及相似三角形的性质求得xy=4①,又点C在反比例函数的图象上,所以将点C的坐标代入其中求得xy=k2+2k+1②;联立①②解关于k的一元二次方程即可.【解答】解:设C(x,y).∵四边形ABCD是矩形,点A的坐标为(﹣2,﹣2),∴B(﹣2,y)、D(x,﹣2);∵矩形ABCD的对角线BD经过坐标原点,∴设直线BD的函数关系式为:y=kx,∵B(﹣2,y)、D(x,﹣2),∴k=,k=,∴=,即xy=4;①又∵点C在反比例函数的图象上,∴xy=k2+2k+1,②由①②,得k2+2k﹣3=0,即(k﹣1)(k+3)=0,∴k=1或k=﹣3,故选:D.10.(3分)边长为2的菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A'、D'处,且A'D'经过点B,EF为折痕,当D'F⊥CD时,CF的值为()A.4﹣2B.2﹣2C.﹣1D.【分析】首先延长DC与A′D′交于点M,由四边形ABCD是菱形与折叠的性质,易求得CB=CM,△D′FM是含30°角的直角三角形,利用正切函数的知识,即可求得答案.【解答】解:延长FC、A′D′交于M,设CF=x,FD=2﹣x,∵四边形ABCD为菱形,∠A=60°,∴AB∥CD,∠DCB=∠A=60°,∴∠A+∠D=180°,∴∠D=120°,由折叠得:∠BD′F=∠D=120°,∴∠FD′M=180°﹣120°=60°,∵D′F⊥CD,∴∠D′FC=90°,∴∠M=90°﹣60°=30°,在Rt△FOC中,∠DCB=60°,∵∠DCB=∠CBM+∠M,∴∠CBM=60°﹣30°=30°,∵∠BCD=∠CBM+∠M=60°,∴∠CBM=∠M=30°,∴CB=CM=2,由折叠得:D′F=DF=2﹣x,tan M=tan30°===,∴x=4﹣2,∴CF=4﹣2,故选:A.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上. 11.(3分)分解因式:a2﹣4b2=(a+2b)(a﹣2b).【分析】直接用平方差公式进行分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣4b2=(a+2b)(a﹣2b).故答案为:(a+2b)(a﹣2b).12.(3分)函数y=中,自变量x的取值范围是x≤且x≠0.【分析】根据被开方数大于等于0,分母不等于0列式求解即可.【解答】解:由题意得,2﹣3x≥0且x≠0,解得,x≤且x≠0.故答案为:x≤且x≠0.13.(3分)如图,在Rt△ABC中,∠A=90°.小华用剪刀沿DE剪去∠A,得到一个四边形.则∠1+∠2=270度.【分析】先根据直角三角形的性质求得两个锐角和是90度,再根据四边形的内角和是360度,即可求得∠1+∠2的值.【解答】解:∵∠A=90°,∴∠B+∠C=90°.∵∠B+∠C+∠1+∠2=360°,∴∠1+∠2=360°﹣90°=270°.故答案为:270.14.(3分)某学校“你最喜爱的球类运动”调查中,随机调查了若干名学生(每个学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为60名.【分析】设被调查的总人数是x人,根据最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,即可列方程求解.【解答】解:设被调查的总人数是x人,则40%x﹣30%x=6,解得:x=60.故答案是:60.15.(3分)一个扇形的圆心角为60°半径为6cm,则这个扇形的弧长为2πcm.(结果保留π)【分析】利用弧长公式是l=,代入就可以求出弧长.【解答】解:弧长是:=2πcm.故答案为:2π.16.(3分)当x=1时,代数式ax3+bx+1的值为5,则代数式4﹣a﹣b的值=0.【分析】先由已知条件列出方程,求得a+b的值,再整体代入求原式的值.【解答】解:由题意得,a+b+1=5,∴a+b=4,当a+b=4时,原式=4﹣(a+b)=4﹣4=0.故答案为0.17.(3分)如图,在四边形ABCD中,∠ADC=90°,∠BAD=60°,对角线AC平分∠BAD,且AB=AC=4,点E、F分别是AC、BC的中点,连接DE、EF、DF,则DF的长为2.【分析】由∠BAD的度数结合角平分线的定理可得出∠BAC=∠DAC=30°,利用平行线的性质及三角形外角的性质可得出∠FEC=30°、∠DEC=60°,进而可得出∠FED =90°,在Rt△DEF中利用勾股定理可求出DF的长.【解答】解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=∠BAD=30°.∵点E、F分别是AC、BC的中点,∴EF∥AB,AE=DE,∴∠FEC=∠BAC=30°,∠DEC=2∠DAC=60°,∴∠FED=90°.∵AC=4,∴DE=EF=2,∴DF===2,故答案为:2.18.(3分)如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为5.【分析】过点B作BD⊥直线x=4,交直线x=4于点D,过点B作BE⊥x轴,交x轴于点E.则OB=.由于四边形OABC是平行四边形,所以OA=BC,又由平行四边形的性质可推得∠OAF=∠BCD,则可证明△OAF≌△BCD,所以OE的长固定不变,当BE最小时,OB取得最小值,从而可求.【解答】解:过点B作BD⊥直线x=4,交直线x=4于点D,过点B作BE⊥x轴,交x 轴于点E,直线x=1与OC交于点M,与x轴交于点F,直线x=4与AB交于点N,如图:∵四边形OABC是平行四边形,∴∠OAB=∠BCO,OC∥AB,OA=BC,∵直线x=1与直线x=4均垂直于x轴,∴AM∥CN,∴四边形ANCM是平行四边形,∴∠MAN=∠NCM,∴∠OAF=∠BCD,∵∠OF A=∠BDC=90°,∴∠FOA=∠DBC,在△OAF和△BCD中,,∴△OAF≌△BCD.∴BD=OF=1,∴OE=4+1=5,∴OB=.由于OE的长不变,所以当BE最小时(即B点在x轴上),OB取得最小值,最小值为OB=OE=5.故答案为:5.三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔. 19.(5分)计算:+()﹣1﹣20190【分析】直接利用二次根式的性质以及负整指数幂的性质和零指数幂的性质分别化简得出答案.【解答】解:原式=3+6﹣1=8.20.(5分)解不等式组:【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分.【解答】解:,解①得:x>﹣1,解②得:x≤6,则不等式的解集为:﹣1<x≤6.21.(6分)先化简,再求值:﹣÷,其中x=﹣3+2.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=﹣•=﹣=﹣,当x=﹣3+2时,原式=﹣=﹣.22.(6分)将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面(1)从中随机抽出一张牌,试求出牌面数字是偶数的概率;(2)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:(1)从中随机抽出一张牌,牌面所有可能出现的结果有4种,且它们出现的可能性相等,其中出现偶数的情况有2种,∴P(牌面是偶数)==;(2)根据题意,画树状图:由树状图可知,共有16种等可能的结果:其中恰好是4的倍数的共有4种,∴P(4的倍数)==.23.(8分)为了提高农民抵御大病风险的能力,全国农村推行了新型农村合作医疗政策,农民只需每人每年交10元钱,就可以加入合作医疗.若农民患病住院治疗,出院后到新型农村合作医疗办公室按一定比例报销医疗费.小军与同学随机调查了他们镇的一些村民,根据收集到的数据绘制成了如图所示的统计图.根据以上信息,解答下列问题:(1)本次共调查了多少村民被调查的村民中,有多少人参加合作医疗得到了报销款?(2)若该镇有村民10000人,请你计算有多少人参加了合作医疗?要使两年后参加合作医疗的人数增加到9680人,假设这两年的年增长率相同,求这个年增长率.【分析】(1)调查村民数=参加合作医疗的人数+未参加合作医疗的人数得到了报销款人数=参加合作医疗的人数×3%;(2)全村参加合作医疗人数=10000×参加合作医疗的百分率设年增长率为x,则8000(1+x)2=9680.【解答】解:(1)400+100=500(人),400×3%=12(人).所以,本次共调查了500人,有12人参加合作医疗得到报销款.(2)参加合作医疗的百分率为,所以该镇参加合作医疗的村民有10000×80%=8000(人).设年增长率为x,由题意:得8000(1+x)2=9680,解得x1=0.1,x2=﹣2.1(舍去),即年增长率为10%.24.(8分)已知:如图,四边形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.(1)求证:BE=CF;(2)若AD=DC=2,求AB的长.【分析】(1)由题中可求得AE和AC所在的三角形全等,进而得到BG和FG所在三角形全等的条件;(2)求得AF长即可求得AB长.利用等腰三角形的三线合一定理可得AF=AC=AE,进而求得一些角是30°,主要利用AD长,直角三角形勾股定理来求解.【解答】(1)证明:连接AG,∵∠ABC=90°,DE⊥AC于点F,∴∠ABC=∠AFE.在△ABC和△AFE中,,∴△ABC≌△AFE(AAS),∴AB=AF.∵AE=AC,∴BE=CF;(2)解:∵AD=DC,DF⊥AC,∴F为AC中点,∵AC=AE,∴AF=AC=AE.∴∠E=30°.∵∠EAD=90°,∴∠ADE=60°,∴∠F AD=∠E=30°,∴AF=.∴AB=AF=.25.(8分)如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x <0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.(1)求m的值;(2)若∠DBC=∠ABC,求一次函数y=kx+b的表达式.【分析】(1)由点B(﹣2,n)、D(3﹣3n,1)在反比例函数y=(x<0)的图象上可得﹣2n=3﹣3n,即可得出答案;(2)由(1)得出B、D的坐标,作DE⊥BC、延长DE交AB于点F,证△DBE≌△FBE 得DE=FE=4,即可知点F(2,1),再利用待定系数法求解可得.【解答】解:(1)∵点B(﹣2,n)、D(3﹣3n,1)在反比例函数y=(x<0)的图象上,∴,解得:.(2)由(1)知反比例函数解析式为y=﹣,∵n=3,∴点B(﹣2,3)、D(﹣6,1),如图,过点D作DE⊥BC于点E,延长DE交AB于点F,在△DBE和△FBE中,∵,∴△DBE≌△FBE(ASA),∴DE=FE=4,∴点F(2,1),将点B(﹣2,3)、F(2,1)代入y=kx+b,∴,解得:,∴y=﹣x+2.26.(10分)如图1,DE是⊙O的直径,点A、C是直径DE上方半圆上的两点,且AO⊥CO.连接AE,CD相交于点F,点B是直径DE下方半圆上的任意一点,连接AB交CD 于点G,连接CB交AE于点H.(1)∠ABC=45°;(2)证明:△CFH∽△CBG;(3)若弧DB为半圆的三分之一,把∠AOC绕着点O旋转,使点C、O、B在一直线上时,如图2,求的值.【分析】(1)∠AOC=90°,则∠ABC=45°;(2)如图1,∠CFH=∠CDE+∠AED=(180°﹣∠AOC)=45°=∠ABC,∠FCH =∠GCB,即可求解;(3)设HK=EK=x,则x+=R,OH=x tan∠HKO=(2﹣)R,则CH=CO ﹣OH=(﹣1)R,同理可得:FC=R,由△CFH∽△CBG,则=.【解答】解:(1)∵∠AOC=90°,∴∠ABC=45°,故答案为45°(2)如图1,∠CFH=∠CDE+∠AED=(180°﹣∠AOC)=45°=∠ABC,∠FCH=∠GCB,∴△CFH∽△CBG;(3)设∠AOD为∠1,∠COE为∠2,∠OEA=∠OAE=α,圆的半径为R,AO⊥CO,则∠1+∠2=90°,∠1=2α,弧DB为半圆的三分之一,则∠OEA=∠OAE=30°则∠2=60°,α=30°,在△OEH中,∠2=60°,α=30°,OE=R,在OE上取一点K,使HK=EK,则∠HKO=2α=30°,设HK=EK=x,则x+=R,则x=,OH=x tan∠HKO=(2﹣)R,则CH=CO﹣OH=(﹣1)R,在△FHC中,∠DCB=30°,∠HFC=45°,CH=(﹣1)R,同理可得:FC=R,∵△CFH∽△CBG,∴=.27.(10分)在直角坐标系xOy中,A(0,2)、B(﹣1,0),将△ABO经过旋转、平移变化后得到如图1所示的△BCD.(1)求经过A、B、C三点的抛物线的解析式;(2)连结AC,点P是位于线段BC上方的抛物线上一动点,若直线PC将△ABC的面积分成1:3两部分,求此时点P的坐标;(3)现将△ABO、△BCD分别向下、向左以1:2的速度同时平移,求出在此运动过程中△ABO与△BCD重叠部分面积的最大值.【分析】(1)由旋转,平移得到C(1,1),用待定系数法求出抛物线解析式;(2)先判断出△BEF∽△BAO,再分两种情况进行计算,由面积比建立方程求解即可;(3)先由平移得到A1B1的解析式为y=2x+2﹣t,A1B1与x轴交点坐标为(,0).C1B2的解析式为y=x+t+,C1B2与y轴交点坐标为(0,t+),再分两种情况进行计算即可.【解答】解:(1)∵A(0,2)、B(﹣1,0),将△ABO经过旋转、平移变化得到△BCD,∴BD=OA=2,CD=OB=1,∠BDC=∠AOB=90°.∴C(1,1).设经过A、B、C三点的抛物线解析式为y=ax2+bx+c,则有,∴∴抛物线解析式为y=﹣x2+x+2,(2)如图1所示,设直线PC与AB交于点E.∵直线PC将△ABC的面积分成1:3两部分,∴=或=3,过E作EF⊥OB于点F,则EF∥OA.∴△BEF∽△BAO,∴.∴当=时,,∴EF=,BF=,∴E(﹣,)∴直线PC解析式为y=﹣x+,∴﹣x2+x+2=﹣x+,∴x1=﹣,x2=1(舍去),∴P(﹣,),当时,同理可得,P(﹣,).(3)设△ABO平移的距离为t,△A1B1O1与△B2C1D1重叠部分的面积为S.由平移得,A1B1的解析式为y=2x+2﹣t,A1B1与x轴交点坐标为M(,0).C1B2的解析式为y=x+t+,C1B2与y轴交点坐标为N(0,t+).∴点C1的坐标为(1﹣2t,1),点D1的坐标为(1﹣2t,0).当点C1在线段A1B1上时,重叠部分从四边形变成三角形,把点C1的坐标代入直线A1B1的解析式y=2x+2﹣t中,得t=;当点D1在线段A1B1上时,就没有重叠部分了,把点D1的坐标代入直线A1B1的解析式y=2x+2﹣t中,得t=,①当0<t<时,△A1B1O1与△B2C1D1重叠部分为四边形.Ⅰ、如图2,当C1D1在y轴右侧时,即0<t<时,重叠部分是现四边形ONQM,设A1B1与x轴交于点M,C1B2与y轴交于点N,A1B1与C1B2交于点Q,连结OQ.由,∴,∴Q(,).∴S=S△QMO+S△QON=××+×(t+)×=﹣t2+t+=﹣(t﹣)2+.∵0<t≤,∴当t=时,S的最大值为.Ⅱ、如图4,当C'D'在y轴左侧,即:≤t<时,点C'在△A'MO内部,其重叠部分是四边形C'QMD',同(Ⅰ)的方法得出:Q(,).∴S=S△QMD'+S△QON=×[﹣(2t﹣1)]×+×1×[﹣(2t﹣1)]=﹣t2+1∵≤t<,∴当t=时,S最大=∴S<<②如图3所示,当≤t<时,△A1B1O1与△B2C1D1重叠部分为直角三角形.设A1B1与x轴交于点H,A1B1与C1D1交于点G.∴G(1﹣2t,4﹣5t),∴D1H=+1﹣2t=,D1G=4﹣5t.∴S=D1H×D1G=××(4﹣5t)=(5t﹣4)2.∴当≤t<时,S的最大值为.综上所述,在此运动过程中△ABO与△BCD重叠部分面积的最大值为.28.(10分)已知:如图①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m的值.(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.【分析】(1)利用矩形性质、勾股定理及三角形面积公式求解;(2)依题意画出图形,如答图2所示.利用平移性质,确定图形中的等腰三角形,分别求出m的值;(3)在旋转过程中,等腰△DPQ有4种情形,如答图3所示,对于各种情形分别进行计算.【解答】解:(1)在Rt△ABD中,AB=5,AD=,由勾股定理得:BD===.∵S△ABD=BD•AE=AB•AD,∴AE===4.在Rt△ABE中,AB=5,AE=4,由勾股定理得:BE=3.(2)设平移中的三角形为△A′B′F′,如答图2所示:由对称点性质可知,∠1=∠2.由平移性质可知,AB∥A′B′,∠4=∠1,BF=B′F′=3.①当点F′落在AB上时,∵AB∥A′B′,∴∠3=∠4,∴∠3=∠2,∴BB′=B′F′=3,即m=3;②当点F′落在AD上时,∵AB∥A′B′,∴∠6=∠2,∵∠1=∠2,∠5=∠1,∴∠5=∠6,又易知A′B′⊥AD,∴△B′F′D为等腰三角形,∴B′D=B′F′=3,∴BB′=BD﹣B′D=﹣3=,即m=.(3)存在.理由如下:假设存在,在旋转过程中,等腰△DPQ依次有以下4种情形:①如答图3﹣1所示,点Q落在BD延长线上,且PD=DQ,易知∠2=2∠Q,∵∠1=∠3+∠Q,∠1=∠2,∴∠3=∠Q,∴A′Q=A′B=5,∴F′Q=F′A′+A′Q=4+5=9.在Rt△BF′Q中,由勾股定理得:BQ===.∴DQ=BQ﹣BD=﹣;②如答图3﹣2所示,点Q落在BD上,且PQ=DQ,∴∠2=∠P,∵∠1=∠2,∴∠1=∠P,∴BA′∥PD,∵PD∥BC,∴此时点A′落在BC边上.∵∠3=∠2,∴∠3=∠1,∴BQ=A′Q,∴F′Q=F′A′﹣A′Q=4﹣BQ.在Rt△BQF′中,由勾股定理得:BF′2+F′Q2=BQ2,即:32+(4﹣BQ)2=BQ2,解得:BQ=,∴DQ=BD﹣BQ=﹣=;③如答图3﹣3所示,点Q落在BD上,且PD=DQ,易知∠3=∠4.∵∠2+∠3+∠4=180°,∠3=∠4,∴∠4=90°﹣∠2.∵∠1=∠2,∴∠4=90°﹣∠1.∴∠A′QB=∠4=90°﹣∠1,∴∠A′BQ=180°﹣∠A′QB﹣∠1=90°﹣∠1,∴∠A′QB=∠A′BQ,∴A′Q=A′B=5,∴F′Q=A′Q﹣A′F′=5﹣4=1.在Rt△BF′Q中,由勾股定理得:BQ===,∴DQ=BD﹣BQ=﹣;④如答图3﹣4所示,点Q落在BD上,且PQ=PD,易知∠2=∠3.∵∠1=∠2,∠3=∠4,∠2=∠3,∴∠1=∠4,∴BQ=BA′=5,∴DQ=BD﹣BQ=﹣5=.综上所述,存在4组符合条件的点P、点Q,使△DPQ为等腰三角形;DQ的长度分别为﹣、、﹣或.。

2020年江苏省中考数学模拟试题(含答案)

2020年江苏省中考数学模拟试题(含答案)

2020年江苏省中考数学模拟试题含答案注 意 事 项考生在答题前请认真阅读本注意事项:1.本试卷共6页,满分为150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡上指定的位置.3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1. 计算(-4)+6的结果为A .-2B .2C .-10D .22. 我国最大的领海是南海,总面积有3 500 000平方公里,将数3 500 000用科学记数法表示应为A .3.5×106B .3.5×107C .35×105D .0.35×1083. 下列图形中,是中心对称图形的是A .B .C .D .4. 如图,数轴上有四个点M ,P ,N ,Q ,若点M ,N 表示的数互为相反数,则图中表示绝对值最大的数对应的点是 A .点MB .点NC .点PD .点Q5. 如图是某个几何体的三视图,该几何体是A .三棱柱B .三棱锥C .圆锥D .圆柱6. 已知方程3x 2-4x -4=0的两个实数根分别为x 1,x 2.则x 1+x 2的值为A .4B .23C .43D .-43QP N M左视图主视图俯视图(第5题)7. 八年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h ,则所列方程正确的是 A.1010202x x -=B.1010202x x -=C.1010123x x -=D.1010123x x -= 8. 若圆锥的母线长是12,侧面展开图的圆心角是120°,则它的底面圆的半径为A. 2B. 4C. 6D. 89. 如图,点A 为反比例函数y =8x (x ﹥0)图象上一点,点B 为反比例函数y =kx(x ﹤0)图象上一点,直线AB 过原点O ,且OA =2OB ,则k 的值为 A .2B .4C .-2D .-410.如图,在矩形ABCD 中,AB =4,BC =6,E 为BC 的中点.将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则△CDF 的面积为 A.3.6B. 4.32C. 5.4D. 5.76二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.9的算术平方根为 ▲ .12.如图,若AB ∥CD ,∠1=65°,则∠2的度数为 ▲ °. 13.分解因式:12a 2-3b 2= ▲ .14.如图,⊙O 的内接四边形ABCD 中,∠BOD =100°,则∠BCD = ▲ °. 15.如图,利用标杆BE 测量建筑物的高度.若标杆BE 的高为1.2m ,测得AB =1.6m ,BC =12.4m ,则楼高CD 为 ▲ m .ABCF(第10题)O xyy =8xAB y =kx(第9题)DCEBA (第15题)ABDOC(第14题)DCB A 1(第12题)216.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数 中位数 众数 方差 8.58.38.10.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是 ▲ . 17.将正六边形ABCDEF 放入平面直角坐标系xOy 后,若点A ,B ,E 的坐标分别为(a ,b ),(-3,-1),(-a ,b ),则点D 的坐标为 ▲ . 18. 如图,平面直角坐标系xOy 中,点A 是直线y =33x +433上一动点,将点A 向右 平移1个单位得到点B ,点C (1,0),则OB +CB 的最小值为 ▲ .三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19. (本小题满分10分)(1)计算(x +y )2-y (2x +y ); (2)先化简,再求代数式的值:2221()244a a a a a a +----+÷4a a-,其中a =25.20.(本小题满分9分)近年来,我国很多地区持续出现雾霾天气.某市记者为了了解“雾霾天气的主要成因”, 随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表: 组别观点频数(人数)A 大气气压低,空气不流动 mB 地面灰尘大,空气湿度低40C 汽车尾气排放 nD工厂造成的污染120(第18题)y xB OCAC 10%B A20%DE调查结果扇形统计图E 其他 60请根据图表中提供的信息解答下列问题:(1)填空:m = ▲ ,n = ▲ ,扇形统计图中E 组所占的百分比为 ▲ % ; (2)若该市人口约有400万人,请你计算其中持D 组“观点”的市民人数; (3)对于“雾霾”这个环境问题,请用简短的语言发出倡议.21.(本小题满分8分)一个不透明的口袋中装有四个完全相同的小球,把它们分别标号为1,2,3,4.从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,请用列表法或画树形图的方法,求两次摸出的小球上所标数字之和大于4的概率.22.(本小题满分8分)如图,小明要测量河内小岛B 到河边公路AD 的距离,在点A 处测得∠BAD =37°,沿AD 方向前进150米到达点C ,测得∠BCD =45°. 求小岛B 到河边公路AD 的距离.(参考数据:sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)23.(本小题满分8分)如图,⊙O 的直径AB =10,弦AC =6,∠BAC 的平分线交⊙O 于点D ,过点D 作⊙O 的切线交AC 的延长线于点E .求DE 的长.(第23题)ABC EOBCA (第22题)D24.(本小题满分9分)如果一元一次方程的解是一元一次不等式组的解,那么称该一元一次方程为该不等式组的关联方程.(1)若不等式组122136xx x⎧-<⎪⎨⎪+>-+⎩,的一个关联方程的解是整数,则这个关联方程可以是▲(写出一个即可);(2)若方程3-x=2x,3+x=2(x+12)都是关于x的不等式组22x x mx m<-⎧⎨-⎩,≤的关联方程,试求m的取值范围.25.(本小题满分8分)在△ABC中,AB=AC=2,∠BAC=45º.△AEF是由△ABC绕点A按逆时针方向旋转得到,连接BE,CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF是菱形时,求CD的长.26.(本小题满分10分)请用学过的方法研究一类新函数kyx=(k为常数,k≠0)的图象和性质.(第25题)FEDCBA(1)在给出的平面直角坐标系中画出函数6y x=的图象(可以不列表); (2)对于函数ky x=,当自变量x 的值增大时,函数值y 怎样变化? (3)函数k y x =的图象可以经过怎样的变化得到函数2k y x =+的图象?27.(本小题满分13分)如图,矩形ABCD 中,AB =4,AD =6,点P 在AB 上,点Q 在DC 的延长线上,连接DP ,QP ,且∠APD =∠QPD ,PQ 交BC 于点G .(1)求证:DQ =PQ ; (2)求AP ·DQ 的最大值; (3)若P 为AB 的中点,求PG 的长.(第27题)(第26题)28.(本小题满分13分)已知二次函数y=ax2+bx+c(c≠4a),其图象L经过点A(-2,0).(1)求证:b2-4ac>0;(2)若点B(-c2a,b+3)在图象L上,求b的值;(3)在(2)的条件下,若图象L的对称轴为直线x=3,且经过点C(6,-8),点D(0,n)在y轴负半轴上,直线BD与OC相交于点E,当△ODE为等腰三角形时,求n的值.数学试题参考答案与评分标准说明:本评分标准每题给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分 标准的精神给分.一、选择题(本大题共10小题,每小题3分,共30分.)11. 312.6513.3(2a +b )(2a -b )14.13015.10.516.中位数17.(3,-1)18三、解答题(本大题共10小题,共96分.) 19.(本小题满分10分)(1)解:原式=x 2+2xy +y 2-2xy -y 2................. 4分 =x 2 .. (5)分 (2)解:原式=221[](2)(2)4a a aa a a a ----- ··············· 6分 =2(2)(2)(1)(2)4a a a a aa a a +----- ··················· 7分=24(2)4a aa a a --- ························ 8分 =21(2)a - ··························· 9分当a =2时,21(2)a -15= ············ 10分 20.(本小题满分9分)(1)80, 100,15; ························· 3分 (2)400×120400=120(万), 答:其中持D 组“观点”的市民人数约为120万人; ········· 6分 (3)根据所抽取样本中持C 、D 两种观点的人数占总人数的比例较大,所以倡议今后的环境改善中严格控制工厂的污染排放,同时市民多乘坐公共汽车, 减少私家车出行的次数. ······················· 9分 21.(本小题满分8分)★保密材料阅卷使用1 2 3 4 1 (1,2) (1,3) (1,4) 2 (2,1) (2,3) (2,4) 3 (3,1) (3,2) (3,4) 4(4,1)(4,2)(4,3)·································· 5分 因为所有等可能的结果数共有12种,其中所标数字之和大于4的占8种,·································· 6分 所以 P (数字之和大于4)=812=23. ·················· 8分22.(本小题满分8分)解:过B 作BE ⊥CD 垂足为E ,设BE =x 米, ·············· 1分在Rt△ABE 中,tan A =BEAE, ········· 2分AE =BEtan A=BEtan37° =43x , ········ 3分在Rt△ABE 中,tan∠BCD =BE CE, ······· 4分CE =BE tan∠BCD =xtan45°=x ,······· 5分∵AC =AE -CE ,∴43x -x =150解得x =450 ················ 7分答:小岛B 到河边公路AD 的距离为450米. ··············· 8分 23.(本小题满分8分)解:连接OD ,过点O 作OH ⊥AC ,垂足为H . ··············· 1分由垂径定理得AH =12AC =3.在Rt△AOH 中,OH =52-32=4. ········· 2分 ∵DE 切⊙O 于D ,∴OD ⊥DE ,∠ODE =90°. ············· 3分(第23题)A BC EOHEBCA(第22题)D∵AD平分∠BAC,∴∠BAD=∠CAD.∵OA=OD,∴∠BAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC.··········· 5分∴∠E=180°-90°=90°.又OH⊥AC,∴∠OHE=90°,∴四边形ODEH为矩形.·············· 7分∴DE=OH=4.·················· 8分24.(本小题满分9分)(1)x-2=0;(答案不唯一)····················· 3分(2)解方程3-x=2x得x=1,解方程3+x=2(x+12)得x=2,······ 5分解不等式组22x x mx m<-⎧⎨-⎩,≤得m<x≤m+2,·············· 7分∵1,2都是该不等式组的解,∴0≤m<1.··························· 9分25.(本小题满分8分)(1)由△ABC≌△ADE且AB=AC,得∴AE=AD=AC=AB,∠BAC=∠EAF,∴ ∠BAE=∠CAF.∴△ABE≌△ACF,························ 3分∴BE=CF.···························· 4分(2)∵四边形ABDF是菱形,∴AB∥DF,∴∠ACF=∠BAC=45°.····················· 5分∵AC=AF,∴∠CAF=90°,即△ACF是以CF为斜边的等腰直角三角形,∴CF=·························· 7分又∵DF=AB=2,∴CD=2.················· 8分26.(本小题满分10分)(1)图略;····························· 4分(2)若k>0,当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小;················· 6分若k<0,当x<0时,y随x的增大而减小,当x>0时,y随x的增大而增大;················· 8分(3)函数kyx=的图象向左平移2个单位长度得到函数2kyx=+的图象.··10分27.(本小题满分13分)(1)∵四边形ABDF 是矩形,∴AB ∥CD ,∴∠APD =∠QDP . ························ 1分 ∵∠APD =∠QPD ,∴∠QPD =∠QDP , ························ 2分 ∴DQ =PQ . ··························· 3分(2)过点Q 作QE ⊥DP ,垂足为E ,则DE =12D P . ············· 5分 ∵∠DEQ =∠PAD =90°,∠QDP =∠APD ,∴△QDE ∽△DPA ,∴DQ DP =DE AP , ··················· 6分∴AP ·DQ =DP ·DE =12DP 2. 在Rt△DAP 中,有DP 2=DA 2+AP 2=36+AP 2,∴AP ·DQ =12(36+AP 2). ····················· 7分 ∵点P 在AB 上,∴AP ≤4,∴AP ·DQ ≤26,即AP ·DQ 的最大值为26. ············· 8分(3)∵P 为AB 的中点,∴AP =BP =12AB =2, 由(2)得,DQ =14(36+22)=10. ················ 9分 ∴CQ =DQ -DC =6.设CG =x ,则BG =6-x ,由(1)得,DQ ∥AB ,∴CQ BP =CG BG, ·················· 11分 即62=x 6-x ,解得x =92, ····················· 12分 ∴BG =6-92=32, ∴PG =PB 2+BG 2=52. ······················ 13分 28.(本小题满分13分)(1)证明:由题意,得4a -2b +c =0,∴b =2a +12c . ·········· 1分 ∴b 2-4ac =(2a +12c )2-4ac =(2a -12c )2. ·············· 2分∵c ≠4a ,∴2a -12c ≠0,∴(2a -12c )2>0,即b 2-4ac >0. ······ 3分 (2)解:∵点B (-c2a ,b +3)在图象L 上, ∴22()342c c a b c b a a ⋅+⋅-+=+,整理,得(42)34c a b c b a-+=+. ···· 4分 ∵4a -2b +c =0,∴b +3=0,,解得b =-3. ············ 6分(3)解:由题意,得332a--=,且36a -18+c =-8,解得a =12,c =-8. ∴图象L 的解析式为y =12x 2-3x -8. ··············· 7分 设OC 与对称轴交于点Q ,图象L 与y 轴相交于点P ,则Q (3,-4),P (0,-8),OQ =PQ =5.分两种情况:①当OD =OE 时,如图1,过点Q 作直线MQ ∥DB ,交y 轴于点M ,交x 轴于点H , 则OM OQ OD OE=,∴OM =OQ =5. ∴点M 的坐标为(0,-5). 设直线MQ 的解析式为15y k x =-.∴1354k -=-,解得113k =. ∴MQ 的解析式为153y x =-.易得点H (15,0). 又∵MH ∥DB ,OD OB OM OH =. 即8515n -=,∴83n =-. ··················· 10分 ②当EO =ED 时,如图2,∵OQ =PQ ,∴∠1=∠2,又EO =ED ,∴∠1=∠3.∴∠2=∠3, ∴PQ ∥DB .设直线PQ 交于点N ,其函数表达式为28y k x =-∴2384k -=-,解得243k =. ∴PQ 的解析式为483y x =-. ∴点N 的坐标为(6,0). ∵PN ∥DB ,∴OD OB OP ON =,∴886n -=,解得323n =-. ······ 12分 综上所述,当△ODE 是等腰三角形时,n 的值为83-或323-. (13)。

江苏省苏州市张家港市2020年数学中考适应性卷及参考答案

江苏省苏州市张家港市2020年数学中考适应性卷及参考答案

10. 如图,已知A,B两点的坐标分别为(8,0),(0,8),点C,F分别是直线
线段 的中点,连接 交 轴于点E,当
面积取得最小值时,
和 轴上的动点, 的值是( )
,点D是
A. B.
C.
D.
二、填空题
11. 一组数据4,1,7,4,5,6则这组数据的极差为________.
12. 若分式
的值为0,则 ________.
根据以上信息,解答下列问题:
(1) 补全上面两幅统计图,填出本次所抽取学生四月份“读书量”的众数为 ▲ ; (2) 求本次所抽取学生四月份“读书量”的平均数; (3) 已知该校七年级有1200名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数。 23. 某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次 的一半,但进价每件比第一批降低了10元.
度平移,边
分别与线段 交于点 (如图2所示),设
,等边
的顶点B与原点O重
从图1的位置沿x轴正方向以每秒1个单位长度的速 平移的时间为 (s).
(1)
________,等边
的边长为________;
(2) 在运动过程中,当 为何值时,MN垂直平分AB;
(3) 在
开始平移的同时,点P从
的顶点B出发,以每秒2个单位长度的速度沿折线
的垂直平分线分别与边 , 交于
;②
的面积为 ;③
.其中正确结论有________(把你认为正确结论的序号都填上).
三、解答题
19. 计算:
.
20. 先化简,再求值:
,其中x=2 ﹣1.
21. 有四张正面分别标有数字0,1,2,3的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀. (1) 随机抽出一张卡片,则抽到数字“2”的概率为________; (2) 随机抽出一张卡片,记下数字后放回并搅匀,再随机抽出一张卡片,请用列表或画树状图的方法,求两次抽出 的卡片上的数字之和是3的概率. 22. 本学期初,某校为迎接中华人民共和国建国七十周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的 读书活动。校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调查 ,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如下图所示:

【2020年】江苏省中考数学模拟试卷(含答案)

【2020年】江苏省中考数学模拟试卷(含答案)

2020年江苏省中考数学模拟试卷含答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)的值是()A.4 B.2 C.±2 D.﹣22.(3分)下列计算中,正确的是()A.a2•a3=a5 B.(a2)3=a8C.a3+a2=a5 D.a8÷a4=a23.(3分)若在实数范围内有意义,则x的取值范围是()A.x≥3 B.x<3 C.x≤3 D.x>34.(3分)函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)下列说法中,正确的是()A.一个游戏中奖的概率是,则做10次这样的游戏一定会中奖B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式C.一组数据8,8,7,10,6,8,9的众数是8D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小6.(3分)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.57.(3分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为()A.30°B.35°C.70°D.45°8.(3分)一个空间几何体的主视图和左视图都是边长为2cm的正三角形,俯视图是一个圆,那么这个几何体的表面积是()A.πcm2B.3πcm2C.πcm2D.5πc m29.(3分)如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.10.(3分)正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD相交于点M,N,则MN的长为()A.B.﹣1 C.D.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.(3分)“辽宁舰“最大排水量为67500吨,将67500用科学记数法表示为.12.(3分)分解因式:a3﹣2a2b+ab2=.13.(3分)已知正n边形的每一个内角为135°,则n=.14.(3分)某厂一月份生产某机器100台,计划三月份生产160台.设二、三月份每月的平均增长率为x,根据题意列出的方程是.15.(3分)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=3,AB=5,OD⊥BC于点D,则OD的长为.16.(3分)下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作图:如图,(1)作射线AB;(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD,∠DAB即为所求的角.请回答:该尺规作图的依据是.17.(3分)如图,在△ABC中,∠C=90°,AC=3,BC=4,点O是BC中点,将△ABC绕点O旋转得△A′B'C,则在旋转过程中点A、C′两点间的最大距离是.18.(3分)在平面直角坐标系xOy中,过点A(3,0)作垂直于x轴的直线AB,直线y=﹣x+b与双曲线y=交于点P(x1,y1),Q(x2,y2),与直线AB交于点R (x3,y3),若y1>y2>y3时,则b的取值范围是.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:|﹣2|+20130﹣(﹣)﹣1+3tan30°;(2)解方程:=﹣3.20.(8分)解不等式组,并写出x的所有整数解.21.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“了解”部分所对应扇形的圆心角为度;(2)请补全条形统计;(3)若该中学共有学生1200人,估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数.22.(8分)四张扑克牌的点数分别是2,3,4,8,除点数不同外,其余都相同,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数是偶数的概率;(2)随机抽取一张牌不放回,接着再抽取一张牌,求这两张牌的点数都是偶数的概率.23.(8分)如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶12千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.(结果保留根号)24.(8分)如图,▱ABCD中,点E是BC的中点,连接AE并延长交DC延长线于点F.(1)求证:CF=AB;(2)连接BD、BF,当∠BCD=90°时,求证:BD=BF.25.(8分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为km/h,快车的速度为km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km.26.(12分)如图,△ABC中,AB=6cm,AC=4cm,BC=2cm,点P以1cm/s 的速度从点B出发沿边BA→AC运动到点C停止,运动时间为t s,点Q是线段BP的中点.(1)若CP⊥AB时,求t的值;(2)若△BCQ是直角三角形时,求t的值;(3)设△CPQ的面积为S,求S与t的关系式,并写出t的取值范围.27.(12分)已知,正方形ABCD,A(0,﹣4),B(l,﹣4),C(1,﹣5),D(0,﹣5),抛物线y=x2+mx﹣2m﹣4(m为常数),顶点为M.(1)抛物线经过定点坐标是,顶点M的坐标(用m的代数式表示)是;(2)若抛物线y=x2+mx﹣2m﹣4(m为常数)与正方形ABCD的边有交点,求m 的取值范围;(3)若∠ABM=45°时,求m的值.28.(14分)如图,⊙O的直径AB=26,P是AB上(不与点A、B重合)的任一点,点C、D为⊙O上的两点,若∠APD=∠BPC,则称∠CPD为直径AB的“回旋角”.(1)若∠BPC=∠DPC=60°,则∠CPD是直径AB的“回旋角”吗?并说明理由;(2)若的长为π,求“回旋角”∠CPD的度数;(3)若直径AB的“回旋角”为120°,且△PCD的周长为24+13,直接写出AP 的长.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)的值是()A.4 B.2 C.±2 D.﹣2【分析】根据算术平方根解答即可.【解答】解:=2,故选:B.【点评】此题考查算术平方根问题,关键是根据4的算术平方根是2解答.2.(3分)下列计算中,正确的是()A.a2•a3=a5 B.(a2)3=a8C.a3+a2=a5 D.a8÷a4=a2【分析】根据同底数幂的乘法、幂的乘方、合并同类项法则及同底数幂的除法逐一计算可得.【解答】解:A、a2•a3=a5,此选项正确;B、(a2)3=a6,此选项错误;C、a3、a2不能合并,此选项错误;D、a8÷a4=a4,此选项错误;故选:A.【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂的乘法、幂的乘方、合并同类项法则及同底数幂的除法.3.(3分)若在实数范围内有意义,则x的取值范围是()A.x≥3 B.x<3 C.x≤3 D.x>3【分析】根据二次根式有意义的条件;列出关于x的不等式,求出x的取值范围即可.【解答】解:∵在实数范围内有意义,∴x﹣3≥0,解得x≥3.故选:A.【点评】本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.4.(3分)函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据题目中的函数解析式可以求得这两个函数的交点坐标,从而可以解答本题.【解答】解:,解得,,∴函数y=﹣x的图象与函数y=x+1的图象的交点是(,),故函数y=﹣x的图象与函数y=x+1的图象的交点在第二象限,故选:B.【点评】本题考查两条直线相交或平行问题,解答本题的关键是明确题意,求出两个函数的交点坐标,利用函数的思想解答.5.(3分)下列说法中,正确的是()A.一个游戏中奖的概率是,则做10次这样的游戏一定会中奖B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式C.一组数据8,8,7,10,6,8,9的众数是8D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小【分析】根据概率的意义可判断出A的正误;根据抽样调查与全面调查意义可判断出B的正误;根据众数和中位数的定义可判断出C的正误;根据方差的意义可判断出D的正误.【解答】解:A、一个游戏中奖的概率是,做10次这样的游戏也不一定会中奖,故此选项错误;B、为了了解一批炮弹的杀伤半径,应采用抽样调查的方式,故此选项错误;C、一组数据8,8,7,10,6,8,9的众数和中位数都是8,故此选项正确;D、若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动大;故选:C.【点评】此题主要考查了概率、抽样调查与全面调查、众数和中位数、方差,关键是注意再找中位数时要把数据从小到大排列再找出位置处于中间的数.6.(3分)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.5【分析】设该队获胜x场,则负了(6﹣x)场,根据总分=3×获胜场数+1×负了的场数,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设该队获胜x场,则负了(6﹣x)场,根据题意得:3x+(6﹣x)=12,解得:x=3.答:该队获胜3场.故选:B.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.7.(3分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为()A.30°B.35°C.70°D.45°【分析】直接利用平行线的性质结合角平分线的作法得出∠CAM=∠BAM=35°,即可得出答案.【解答】解:∵AB∥CD,∠ACD=110°,∴∠CAB=70°,∵以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,∴AP平分∠CAB,∴∠CAM=∠BAM=35°,∵AB∥CD,∴∠CMA=∠MAB=35°.故选:B.【点评】此题主要考查了基本作图以及平行线的性质,正确得出∠CAM=∠BAM 是解题关键.8.(3分)一个空间几何体的主视图和左视图都是边长为2cm的正三角形,俯视图是一个圆,那么这个几何体的表面积是()A.πcm2B.3πcm2C.πcm2D.5πcm2【分析】根据三视图的知识可知该几何体为一个圆锥.又已知底面半径可求出母线长以及侧面积、底面积后即可求得其表面积.【解答】解:综合主视图,俯视图,左视图可以看出这个几何体应该是圆锥,且底面圆的半径为1,母线长为2,因此侧面面积为1×π×2=2π,底面积为π×(1)2=π.表面积为2π+π=3π;故选:B.【点评】此题考查由三视图判定几何体,本题中要先确定出几何体的面积,然后根据其侧面积的计算公式进行计算.本题要注意圆锥的侧面积的计算方法是圆锥的底面半径乘以圆周率再乘以母线长.9.(3分)如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cosA=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=x cm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.【点评】本题考查了动点问题的函数图象.解答该题时,需要对点P的位置进行分类讨论,以防错选.10.(3分)正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD相交于点M,N,则MN的长为()A.B.﹣1 C.D.【分析】首先过F作FH⊥AD于H,交ED于O,于是得到FH=AB=2,根据勾股定理求得AF,根据平行线分线段成比例定理求得OH,由相似三角形的性质求得AM与AF的长,根据相似三角形的性质,求得AN的长,即可得到结论.【解答】解:过F作FH⊥AD于H,交ED于O,则FH=AB=2,∵BF=FC,BC=AD=2,∴BF=AH=1,FC=HD=1,∴AF===,∵OH∥AE,∴==,∴OH=AE=,∴OF=FH﹣OH=2﹣=,∵AE∥FO,∴△AME∽FMO,∴==,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴==2,∴AN=2AF=,∴MN=AN﹣AM=﹣=.故选:C.【点评】本题考查了相似三角形的判定与性质,矩形的性质,勾股定理,比例的性质,准确作出辅助线,求出AN与AM的长是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.(3分)“辽宁舰“最大排水量为67500吨,将67500用科学记数法表示为 6.75×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:67500=6.75×104,故答案为:6.75×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)分解因式:a3﹣2a2b+ab2=a(a﹣b)2.【分析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【解答】解:a3﹣2a2b+ab2,=a(a2﹣2ab+b2),=a(a﹣b)2.【点评】本题考查提公因式法分解因式和完全平方公式分解因式,熟记公式结构是解题的关键,分解因式一定要彻底.13.(3分)已知正n边形的每一个内角为135°,则n=8.【分析】根据多边形的内角就可求得外角,根据多边形的外角和是360°,即可求得外角和中外角的个数,即多边形的边数.【解答】解:多边形的外角是:180﹣135=45°,∴n==8.【点评】任何任何多边形的外角和是360°,不随边数的变化而变化.根据这个性质把多边形的角的计算转化为外角的计算,可以使计算简化.14.(3分)某厂一月份生产某机器100台,计划三月份生产160台.设二、三月份每月的平均增长率为x,根据题意列出的方程是100(1+x)2=160.【分析】设二,三月份每月平均增长率为x,根据一月份生产机器100台,三月份生产机器160台,可列出方程.【解答】解:设二,三月份每月平均增长率为x,100(1+x)2=160.故答案为:100(1+x)2=160.【点评】本题考查理解题意的能力,本题是个增长率问题,发生了两次变化,先找出一月份的产量和三月份的产量,从而可列出方程.15.(3分)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=3,AB=5,OD⊥BC于点D,则OD的长为2.【分析】先利用圆周角定理得到∠ACB=90°,则可根据勾股定理计算出AC=4,再根据垂径定理得到BD=CD,则可判断OD为△ABC的中位线,然后根据三角形中位线性质求解.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴AC==4,∵OD⊥BC,∴BD=CD,而OB=OA,∴OD为△ABC的中位线,∴OD=AC=×4=2.故答案为2.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.16.(3分)下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作图:如图,(1)作射线AB;(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD,∠DAB即为所求的角.请回答:该尺规作图的依据是直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等.【分析】连接OD、CD.只要证明△ODC是等边三角形即可解决问题;【解答】解:连接OD、CD.由作图可知:OD=OC=CD,∴△ODC是等边三角形,∴∠DCO=60°,∵AC是⊙O直径,∴∠ADC=90°,∴∠DAB=90°﹣60°=30°.∴作图的依据是:直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等,故答案为直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等.【点评】本题考查作图﹣复杂作图,圆的有关性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.(3分)如图,在△ABC中,∠C=90°,AC=3,BC=4,点O是BC中点,将△ABC绕点O旋转得△A′B'C,则在旋转过程中点A、C′两点间的最大距离是2+.【分析】连接OA,AC′,如图,易得OC=2,再利用勾股定理计算出OA=,接着利用旋转的性质得OC′=OC=2,根据三角形三边的关系得到AC′≤OA+OC′(当且仅当点A、O、C′共线时,取等号),从而得到AC′的最大值.【解答】解:连接OA,AC′,如图,∵点O是BC中点,∴OC=BC=2,在Rt△AOC中,OA==,∵△ABC绕点O旋转得△A′B'C′,∴OC′=OC=2,∵AC′≤OA+OC′(当且仅当点A、O、C′共线时,取等号),∴AC′的最大值为2+,即在旋转过程中点A、C′两点间的最大距离是2+.故答案为2+.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.18.(3分)在平面直角坐标系xOy中,过点A(3,0)作垂直于x轴的直线AB,直线y=﹣x+b与双曲线y=交于点P(x1,y1),Q(x2,y2),与直线AB交于点R (x3,y3),若y1>y2>y3时,则b的取值范围是2<b<.【分析】根据y2大于y3,说明x=3时,﹣x+b<,再根据y1大于y2,说明直线l和抛物线有两个交点,即可得出结论.【解答】解:如图,当x=3时,y2=,y3=﹣3+b,∵y3<y2,∴﹣3+b<,∴b<,∵y1>y2,∴直线l:y=﹣x+b①与双曲线y=②有两个交点,联立①②化简得,x2﹣bx+1=0有两个不相等的实数根,∴△=b2﹣4>0,∴b<﹣2(舍)或b>2,∴2<b<,故答案为:2<b<.【点评】此题主要考查了反比例函数和一次函数的交点问题,一元二次方程根的判别式,熟练掌握一次函数和双曲线的性质是解本题的关键.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:|﹣2|+20130﹣(﹣)﹣1+3tan30°;(2)解方程:=﹣3.【分析】(1)原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2﹣+1+3+=6;(2)去分母得:1=x﹣1﹣3x+6,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)解不等式组,并写出x的所有整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x≥﹣,解不等式②,得:x<3,则不等式组的解集为﹣≤x<3,∴不等式组的整数解为:﹣1、0、1、2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60人,扇形统计图中“了解”部分所对应扇形的圆心角为90度;(2)请补全条形统计;(3)若该中学共有学生1200人,估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数.【分析】(1)由基本了解的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“了解”部分所对应扇形的圆心角;(2)由(1)可求得了解很少的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【解答】解:(1)接受问卷调查的学生共有30÷50%=60人,扇形统计图中“了解”部分所对应扇形的圆心角为360°×=90°,故答案为:60、90.(2)“了解很少”的人数为60﹣(15+30+5)=10人,补全图形如下:(3)估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数为1200×=900人.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.关键是根据列表法或树状图法求概率以及条形统计图与扇形统计图.22.(8分)四张扑克牌的点数分别是2,3,4,8,除点数不同外,其余都相同,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数是偶数的概率;(2)随机抽取一张牌不放回,接着再抽取一张牌,求这两张牌的点数都是偶数的概率.【分析】(1)利用数字2,3,4,8中一共有3个偶数,总数为4,即可得出点数偶数的概率;(2)列表得出所有情况,让点数都是偶数的情况数除以总情况数即为所求的概率.【解答】解:(1)因为共有4张牌,其中点数是偶数的有3张,所以这张牌的点数是偶数的概率是;(2)列表如下:23482(2,3)(2,4)(2,8)3(3,2)(3,4)(3,8)4(4,2)(4,3)(4,8)8(8,2)(8,3)(8,4)从上面的表格可以看出,总共有12种结果,每种结果出现的可能性相同,其中恰好两张牌的点数都是偶数有6种,所以这两张牌的点数都是偶数的概率为=.【点评】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶12千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.(结果保留根号)【分析】作BH⊥AC于H,根据正弦的定义求出BH,根据余弦的定义计算即可.【解答】解:作BH⊥AC于H,由题意得,∠CBH=45°,∠BAH=60°,在Rt△BAH中,BH=AB×sin∠BAH=6,在Rt△BCH中,∠CBH=45°,∴BC==6(千米),答:B,C两地的距离为6千米.【点评】本题考查的是解直角三角形的应用﹣方向角问题,掌握锐角三角函数的定义、正确标出方向角是解题的关键.24.(8分)如图,▱ABCD中,点E是BC的中点,连接AE并延长交DC延长线于点F.(1)求证:CF=AB;(2)连接BD、BF,当∠BCD=90°时,求证:BD=BF.【分析】(1)欲证明AB=CF,只要证明△AEB≌△FEC即可;(2)想办法证明AC=BD,BF=AC即可解决问题;【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠BAE=∠CFE∵AE=EF,∠AEB=∠CEF,∴△AEB≌△FEC,∴AB=CF.(2)连接AC.∵四边形ABCD是平行四边形,∠BCD=90°,∴四边形ABCD是矩形,∴BD=AC,∵AB=CF,AB∥CF,∴四边形ACFB是平行四边形,∴BF=AC,∴BD=BF.【点评】本题考查平行四边形的判定和性质、矩形的判定和性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(8分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为80km/h,快车的速度为120km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km.【分析】(1)由图象可知,两车同时出发.等量关系有两个:3.6×(慢车的速度+快车的速度)=720,(9﹣3.6)×慢车的速度=3.6×快车的速度,设慢车的速度为akm/h,快车的速度为bkm/h,依此列出方程组,求解即可;(2)点C表示快车到达乙地,然后求出快车行驶完全程的时间从而求出点C的横坐标,再求出相遇后两辆车行驶的路程得到点C的纵坐标,从而得解;(3)分相遇前相距500km和相遇后相遇500km两种情况求解即可.【解答】解:(1)设慢车的速度为akm/h,快车的速度为bkm/h,根据题意,得,解得,故答案为80,120;(2)图中点C的实际意义是:快车到达乙地;∵快车走完全程所需时间为720÷120=6(h),∴点C的横坐标为6,纵坐标为(80+120)×(6﹣3.6)=480,即点C(6,480);(3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km.即相遇前:(80+120)x=720﹣500,解得x=1.1,相遇后:∵点C(6,480),∴慢车行驶20km两车之间的距离为500km,∵慢车行驶20km需要的时间是=0.25(h),∴x=6+0.25=6.25(h),故x=1.1 h或6.25 h,两车之间的距离为500km.【点评】本题考查了一次函数的应用,主要利用了路程、时间、速度三者之间的关系,(3)要分相遇前与相遇后两种情况讨论,这也是本题容易出错的地方.26.(12分)如图,△ABC中,AB=6cm,AC=4cm,BC=2cm,点P以1cm/s 的速度从点B出发沿边BA→AC运动到点C停止,运动时间为t s,点Q是线段BP的中点.(1)若CP⊥AB时,求t的值;(2)若△BCQ是直角三角形时,求t的值;(3)设△CPQ的面积为S,求S与t的关系式,并写出t的取值范围.【分析】(1)如图1中,作CH⊥AB于H.设BH=x,利用勾股定理构建方程求出x,当点P与H重合时,CP⊥AB,此时t=2;(2)分两种情形求解即可解决问题;(3)分两种情形:①如图4中,当0<t≤6时,S=×PQ×CH;②如图5中,当6<t<6+4时,作BG⊥AC于G,QM⊥AC于M.求出QM即可解决问题;【解答】解:(1)如图1中,作CH⊥AB于H.设BH=x,∵CH⊥AB,∴∠CHB=∠CHB=90°,∴AC2﹣AH2=BC2﹣BH2,∴(4)2﹣(6﹣x)2=(2)2﹣x2,解得x=2,∴当点P与H重合时,CP⊥AB,此时t=2.(2)如图2中,当点Q与H重合时,BP=2BQ=4,此时t=4.如图3中,当CP=CB=2时,CQ⊥PB,此时t=6+(4﹣2)=6+4﹣2.(3)①如图4中,当0<t≤6时,S=×PQ×CH=×t×4=t.②如图5中,当6<t<6+4时,作BG⊥AC于G,QM⊥AC于M.易知BG=AG=3,CG=.MQ=BG=.∴S=×PC×QM=••(6+4﹣t)=+6﹣t.综上所述,s=.【点评】本题考查三角形综合题、勾股定理、等腰三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.27.(12分)已知,正方形ABCD,A(0,﹣4),B(l,﹣4),C(1,﹣5),D(0,﹣5),抛物线y=x2+mx﹣2m﹣4(m为常数),顶点为M.。

江苏省苏州市张家港市2020年中考数学模拟试卷解析版

江苏省苏州市张家港市2020年中考数学模拟试卷解析版

B. ﹣ 或 2
C. ﹣12 或 2
D. ﹣ 或﹣12
二、填空题(本大题共 3 小题,共 12.0 分)
17. 若关于 x、y 的方程组
的解满足 x+y>0,则 m 的取值范围是______.
18. 如图,点 I 为△ABC 的内心,AB=4cm,AC=3cm,BC=2cm ,将∠ACB 平移,使其顶点与点 I 重合,则图中阴影部分 的周长为______cm.
范围是( )
A. x<-1
B. x>3
C. -1<x<3
D.
x<-1 或 x>3
6. 如图,在平行四边形 ABCD 中,E 为 CD 上一点,连 接 AE、BD,且 AE、BD 交于点 F,DE:AB=2:5,
则 DF:BF 等于( )
A. 2:5
B. 2:3
C. 3:5
D. 3:2
7. 已知反比例函数
19. 如图,矩形 ABCD 的两边 AD、AB 的长分别为 3、8,
E 是 DC 的中点,反比例函数 y= 的图象经过点 E,
与 AB 交于点 F.若点 B 坐标为(-6,0),求图象经过 A、E 两点的一次函数的表达式是______,若 AF-AE=2 ,则反比例函数的表达式是______.
三、解答题(本大题共 8 小题,共 76.0 分) 20. (1)已知实数 a 满足 a2-6a+9=0,求 + ÷
的值.
(2)先化简,再求值:( - )÷ ,其中 a=2sin60°-tan45°
21. 在 Rt△ABC 中,∠ACB=90°,利用直尺和圆规作图 (1)作出 AB 边上的中线 CD; (2)作出△ABC 的角平分线 AE; (3)若 AC=5,BC=12,求出斜边 AB 上的高的长度.

2020年中考数学模拟题精选30道03(解析版).docx

2020年中考数学模拟题精选30道03(解析版).docx

2020年中考数学模拟题精选30道03一、选择题(本题共12小题,在每小题所给出的四个选项中,只有一项是符合题目要求的)1.(2020・张家港市模拟)如图,点A、B、C、。

在数轴上表示的数分别为a、b、c、0,且OA+OB^OC,则下列结论中:其中正确的有()①。

阮>0. @a(Z?+c) =0③。

-c=b・④—+ — + — = —1, J a b cC AO B ••- ♦ A c a 0 bA.①③④B.①②④C.②③④D.①②③④【分析】根据图示,可得c<a<0,。

>0, \a\+\b\ = \c\,据此逐项判定即可.【解析 1 Vc<a<0,。

>0,/.。

阮>0,・.・选项①符合题意.Vc<tz<0, Z?>0, \a\+\b\ = \c\,0+cV0,.'•a(A+c) >0,・.・选项②不符合题意.V c<a<0, b>0, \a\+\b\ = \c\,- a+b= - Cf• • ci ~...选项③符合题意.••问」加」a …I I・—+ — + — = -1+1 T = T, a b c...选项④符合题意.正确的有①③④.故选:A.2.(2020-浙江自主招生)定义运算a^)b= +当a-'〉'时,,则(一2) ®4=()IZ)— 1/ 当CL— b <1 时,A. - 1B. - 3C. 5D. 3【分析】判断-2-4= -6<1,利用题中的新定义计算即可求出值.【解析】根据题中的新定义得:-2-4=-6<1,则有(-2) <8)4=4 - 1 = 3,故选:D. 3. (2020-烟台模拟)如图,在菱形ABCZ )中,点E 为对角线AC ±一点,且CE=CD,连接DE,若ABDE=5, AC=8,则—=( )AD 【分析】连接BD 交AC 于点。

2020年苏州市中考数学模拟试卷(含答案)

2020年苏州市中考数学模拟试卷(含答案)

一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)4.不等式叫组 ⎨的解集是( )- x + 1 ≥ 02020 年苏州市中考数学模拟试卷本试卷由选择题、填空题和解答题三大题组成.共 28 小题,满分 130 分.考试时间 120 分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用 0.5 毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用 0.5 毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题所给出的四个选项中,恰有....... 1.–2 的倒数是()A. 2B. –2C. 1 1D. -2 22.下列计算正确的是()A. 5a 3 - 2a 3 = 3B. (a 4 )3 = a 7C. a 3 g a 5 = a 8D. a 8 ÷ a 4 = a 23.某班派 6 名同学参加拔河比赛,他们的体重分别是:67,61,59,63,57,66(单位:千克)这组数据的中位数是() A. 59B. 61C. 62D. 63⎧2x + 2 > 0⎩A. x ≤ 1B. -1 ≤ x < 1C. x > -1D. -1 < x ≤ 15.将抛物线 y = x 2 平移得到抛物线 y = ( x + 3)2 ,则这个平移过程正确的是()A.向左平移 3 个单位长度B.向右平移 3 个单位长度C.向上平移 3 个单位长度D.向下平移 3 个单位长度6.在一个直角三角形中,有一个锐角等于 40°,则另一个锐角的度数是()A. 40°B. 50°C. 60°D. 70°7.一个多边形的内角和等于它的外角和,则这个多边形的边数为()A. 3B. 4C. 5D. 68.如图,在 ∆ABC 中,AB = 8 ,AC = 6 ,∠BAC = 30︒ ,将 ∆ABC 绕点 A 逆时针旋转 60°得到 ∆AB C ,连接 BC ,则 BC 的长为()1 111;②;③;④写在答题卡相应位置上)9.如图,E是Y ABCD的AD边上一点,CE与BA的延长线交于点F,则下列比例式:①FB FC AE AF FA AE AE FE====CD CE ED AB FB AD EC ED,其中一定成立的是()A.①②③④B.①②③C.①②④D.①②10.如图,P为正方形ABCD对角线BD上一动点,若AB=2,则AP+BP+CP的最小值为()A.2+5B.2+6C.4D.32二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填.......13.要使分式2x+2有意义,则x的取值范围是.14.分解因式:a2-4=.15.已知一粒米的质量约是0.000021千克,这个数字用科学记数法表示为.16.如图,在平面直角坐标系中,点M是直线y=-x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为.15.用一张边长为4πcm的正方形纸片刚好围成一个圆柱的侧面,则该圆柱的底面圆的半径三、解答题(本大题共10小题,共76分.请在答题卡指定区域内作答,解答时应写出文字说⎩2(x-3)=y+6……②2b长为cm.16.如图,在正方形网格中,∆ABC的顶点都在格点上,则tan∠ACB的值为.17.在锐角三角形ABC中,已知其两边a=1,b=3,则第三边c的取值范围为.18.如图,在Rt∆OAB中,∠AOB=90︒,OA=8,A B=10,⊙O的半径为4.点P是AB上的一动点,过点P作⊙O的一条切线PQ,Q为切点.设AP=x(0≤x≤10),PQ2=y,则y与x的函数关系式为.........明、证明过程或演算步骤)19.(本题满分5分)计算:1-27+3-2-(-)-1+2cos60︒.320.(本题满分5分)⎧x-3y=1…………①解方程组:⎨21.(本题满分6分)如图,BD为Y ABCD的对角线,AE⊥BD,C F⊥BD,垂足分别为E、F.求证:BE=DF.22.(本题满分6分)有三个质地、大小都相同的小球分别标上数字2,–,3后放入一个不透明的口袋搅匀,任意摸出一个小球,记下数字a后,放回口袋中搅匀,再任意摸出一个小球,又记下数字b.这样就得到一个点的坐标(a,b).(1)求这个点(a,b)恰好在函数y=-x的图像上的概率.(请用“画树状图”或“列表”等方法给出分析过程,并求出结果)(2)如果再往口袋中增加n(n≥1)个标上数字2的小球,按照同样的操作过程,所得到的点(a,)恰好在函数y=-x的图像上的概率是(请用含n的代数式直接写出结果).A23.(本题满分 7 分)如图,在 ∆ABC 中, AB = AC ,点 D 、 E 分别在 BC 、 AC 上,且DC = DE .(1)求证: ∆ABC : ∆DEC ;(2)若 AB = 5 , AE = 1 , DE = 3 ,求 BC 的长.24.(本题满分 8 分)无锡有丰富的旅游产品.某校九(1)班的同学就部分旅游产品的喜爱情况对部分游客随机调查,要求游客在列举的旅游产品中选出最喜爱的产品,且只能选一项, 以下是同学们整理的不完整的统计图:根据以上信息完成下列问题: (1)请将条形统计图补充完整. (2)参与随机调查的游客有 人;在扇形统计图中, 部分所占的圆心角是 度. (3)调查结果估计在 2 000 名游客中最喜爱惠山泥人的约有 人.25.(本题满分 8 分)初夏五月,小明和同学们相约去森林公园公玩.从公园入口处到景点只有一条长 15 km 的观光道路.小明先从入口处出发匀速步行前往景点,1.5 h 后,迟到的另 3 位同学在入口处搭乘小型观光车(限栽客 3 人)匀速驶往景点,结果反而比小明早到 45 min. 已知小型观光车的速度是步行速度的 4 倍. (1)分别求出小型观光车和步行的速度.(2)如果小型观光车在某处让这 3 位同学下车步行前往景点(步行速度和小明相同),观光 车立即返回接载正在步行的小明后直接驶往景点,并正好和这 3 位同学同时到达.求这 样做可以使小明提前多长时间到达景点?(上下车及车辆调头时间忽略不计)26.(本题满分 9 分)如图,正方形 ABCD 的对角线相交于点 O ,的 ∠CAB 平分线分别交 BD 、BC 于 E 、 F ,作 BH ⊥ AF 于点 H ,分别交 AC 、CD 于点 G 、 P ,连接 GE 、GF . (1)试判断四边形 BEGF 的形状并说明理由.(2)求AEPG的值.27.(本题满分 10 分)如图①,直线 l 与反比例函数 y =kxA 、B 两点,并与 y 轴、 x 轴分别交于 E 、 F .(1)试判断 AE 与 BF 的数量关系并说明理由.(k > 0) 位于第一象限的图像相交于(2)如图②,若将直线 l 绕点 A 顺时针旋转,使其与反比例函数 y =kx的另一支图像相交,设交点为 B .试判断 AE 与 BF 的数量关系是否依然成立?请说明理由.28.(本题满分12分)如图①,抛物线y=ax2+bx+3交x轴于点A(-1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图②,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当∆AQD是直角三角形时,求出所有满足条件的点Q的坐标.三、19、-4320,⎨⎧x=7y=2(参考答案一、1D.2C.3C.4D.5A.6B.7B.8C9B.10B二、11,x≠-2,12,(a+2)(a-2),132.1×10-514-4≤m≤4,15,216,3/5⎩21略23(1)证明略,2)BC=20/324.(1)图略,(2)400(3)56025.5,202627(1)证明略,(2)结论依然成立,证明略。

张家港市外国语学校2020年初三数学模拟试卷(含答案)

张家港市外国语学校2020年初三数学模拟试卷(含答案)

张家港市外国语学校2020年初三数学模拟试卷一、选择题(共10小题,每小题3分,共30分)1.苏州市3月份以来,日照明显增多,日均最高气温达21°℃,最低13℃,日均最高气温比最低气温高( )A.21°CB.13°CC.8°CD. 7°C2.若代数式在实数范围内有意义,则实数x的取值范围是( )A. x>-2B.x=-2C. x≠0D. x≠-23.下列事件,是必然事件的是()A. 投掷一次骰子,向上一面的点数是6B. 童威在罚球线上投篮一次,未投中C. 任意画一个多边形,其外角和是360°D. 经过有交通信号灯的路口,遇到红灯4.点A(-2,5)关于原点对称的点的坐标是( )A. (2,5)B. .(-2,-5)C. (2,-5)D. (5,-2)5.有个零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是( )A B C D6.计算(x-1)2的结果是( )A. x2-1B. x2-2x-1C. x2-2x+1D. x2+2x+17.记录某个月(30天)每天健步走的步数(单位:万步),绘制成了如图所示的统计图,在每天所走的步数这组数据中,中位数和众数分别为( )A.1.4,1.4B.1.3,1.4C.1.4,1.2D.1.5,1.4第7题图第8题图第9题图8.如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有( )A. 3种B. 5种C. 8种D. 13种9.一个滑道由滑坡(AB段)和缓冲带(BC段)组成,如图所示,滑雪者在滑坡上滑行的距离y1(单位:m)和滑行时间t滑行时间t1/s 0 1 2 3 4滑行距离y1/s 0 4.5 14 28.5 48滑雪者在缓冲带上滑行的距离y2(单位:m)和在缓冲带上滑行时间t2(单位:s)满足:y2=52t2-2t2,滑雪者从A出发在缓冲带BC上停止,一共用了23s,则滑坡AB的长度( )米A.270B. 280C. 375D.45010.图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A 在射线OX 上由点O 开始向右滑动,点B 在射线OY 上也随之向点O 滑动(如图3).当点B 滑动至与点O 重合时运动结束.在整个运动过程中,点C 运动的路径长是( )A.32πB.2πC.42-2D.10-42二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:(32+3)- 2的结果是________12.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇 匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸 到黑球,则估计第41次摸球是白球的概率大约是_________13.一副三角板叠在一起如图放置,最小锐角的顶点D 恰好放在等腰直角三角形的斜边上,AC 与DM 、DN 分别交于点E 、F.把△DEF 绕点D 旋转到一定位置,使得DE=DF,则∠BDN 的 度数是_________第13题图 第14题图 第15题图14.如图,在直角坐标系中,矩形OABC 的顶点A 、B 在双曲线y=k x (x>0)上,BC 与x 轴交于点D.若点A 的坐标为(1,2),则点B 的坐标为_______15.如图,矩形OABC 的边OA 在x 轴上,OA=10cm,OC 在y 轴上,且OC=4cm,P 为OA 的中点,动点Q 从C 点出发,沿着CB 以每秒1cm 的速度运动(Q 到B 点时停止运动).当△OPQ 是以OP 为腰的等腰三角形时,点Q 的运动时间=_______16.已知二次函数y=3x 2+2x+n,当自变量x 的取值在-1≤x≤1的范围内时,函数与x 轴有且只有一个公共点.则n 的取值范围是______三、解答题(共8题,共72分)17.(本题8分)计算:3x 3·x 2y-8x 7y÷x 2+4(x 2)2·xy18.(本题8分)已知,如图,∠1与∠3互余,∠2与∠3的余角互补,∠4=115°,NM平分∠ANE,求∠MNF的大小.19.(本题8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图.部门员工人数每人所创的年利润万元A 5 10B b 8C c 5各部门人数分布扇形图(1)①在扇形图中,C部门所对应的圆心角的度数为______; ②在统计表中,b=_______,c=________;(2)求这个公司平均每人所创年利润.20.(本题8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2)、B(0,4) 、C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若A的对应点A2的坐标为(0,4) ,画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.21.(本题8分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E(1)若tan∠ABC=2,证明:DA与⊙O相切;(2)在(1)条件下,连接BD交⊙O于点F,连接EF.若BC=1,求EF的长.22.(本题10分)国家推行“节能减排&低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A、B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2 万元.花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相等,销售中发现A型汽车的每周销量y A(台)与售价x(万元/台)满足函数关系式y A=-x+20,B型汽车的每周销量y B(台)与售价x(万元/台)满足函数关系式y B=-x+14(1)求A、B两种型号的汽车的进货单价;(2)已知A型汽车的售价比B型汽车的售价高2万元/台,设B型汽车售价为t万元/台,每周销售这两种车的总利润为W万元,求W与t的函数关系式, A、B两种型号的汽车售价各为多少时, 每周销售这两种车的总利润最大?最大总利润是多少万元?23.(本题10分)如图1,△ABC中,AB=AC,点D在BA的延长线上,点E在BC上,DE= DC,点F是DE 与AC的交点,且DF=FE.(1)找出图1中与∠BDE相等的角,并加以证明;(2)求证:BE=EC;(3)若将“点D在BA的延长线上,点E在BC上”和“点F是DE与AC的交点,且DF=FE” 分别改为“点D在AB上,点E在CB的延长线上”和“点F是ED的延长线与AC的交点,且DF=kFE",其他条件不变(如图2).当AB=1,∠ABC=α时,直接写出BE的长(用含k、a 的式子表示)24.(本题12分)已知二次函数y=x2+bx+c,其图象抛物线交x轴于点A(1,0)、B(3,0),交y轴于点C,直线l过点C,且交抛物线于另一点E(点E不与点A、B重合)(1)直接写出二次函数的解析式;(2)若直线l1经过抛物线顶点D,交x轴于点F,且l1∥l,则以点C、D、E、F为顶点的四边形能否为平行四边形?若能,求出点E的坐标;若不能,请说明理由;(3)将此抛物线沿着y=2翻折,E为所得新抛物线x轴上方一动点,过E作x轴的垂线,交x轴于G,交直线y=-12x-1于点F,求EGFG的最大值.参考答案12.0.7513.12014.(4,12) 15.2、3、816. -5≤n<-1或n=1317.-x 5y18. ∠MNF=122.5019.(1) ①1080 ②b=9,c=6 (2)7.6(万元)20.(1)略 (2)旋转中心的坐标(32,3) (3)点P 的坐标(-2,0)21. (1)略(2) 22.(1) A 型号的汽车的进货单价10万元, B 两种型号的汽车的进货单价8万元(2) W 与t 的函数关系式w=-2t 2+48t-256, A 型号的汽车售价各为14万元/台,B 两种型号的汽车售价为12万元/台时, 每周销售这两种车的总利润最大,最大总利润是32万元.23. (1)图1中与∠BDE 相等的角为∠DCA,证明略;(2) 证明略; (3) BE=2kcos α1-k24. (1)写出二次函数的解析式y=x 2-4x+3;(2)点E 的坐标、、、理由略;(3) EG FG 的最大值为4。

2020年江苏省苏州市张家港市中考数学模拟试卷及答案解析(6月份)

2020年江苏省苏州市张家港市中考数学模拟试卷及答案解析(6月份)

2020年江苏省苏州市张家港市中考数学模拟试卷(6月份)一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.(3分)3的相反数是()
A.﹣3B.√3C.3D.±3
2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.
C.D.
3.(3分)下列计算中,正确的是()
A.a4+a4=a8B.a4•a4=2a4
C.(a3)4•a2=a14 D.(2x2y)3÷6x3y2=x3y
4.(3分)下表是苏州10个市(区)今年某日最低气温(℃)的统计结果:
县(区)姑苏
区吴江

高新

吴中

相城

工业园区太仓

昆山

常熟

张家

气温
(℃)
16171616151614151514
则该日最低气温(℃)的中位数是()
A.15.5B.14.5C.15D.16
5.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=40°,则∠2的度数为()
A.10°B.20°C.30°D.40°
第1 页共27 页。

2020年江苏省苏州市张家港市中考数学模拟试卷(3月份)

2020年江苏省苏州市张家港市中考数学模拟试卷(3月份)

2020年江苏省苏州市张家港市中考数学模拟试卷(3月份)一、选择题(共16小题,每小题3分,满分42分)1.(3分)下列各对数中,数值相等的数是()A.32与23B.﹣32与(﹣3)2C.(3×2)3与3×23D.﹣23与(﹣2)32.(3分)以下四个标志中,是轴对称图形的是()A.B.C.D.3.(3分)用肥皂水吹泡泡,泡沫的厚度约为0.000326毫米,0.000326用科学记数法表示为()A.3.26×10﹣4B.326×10﹣3C.0.326×10﹣3D.3.26×10﹣34.(3分)如图,AB∥CD,AD和BC相交于点O,∠A=35°,∠AOB=75°,则∠C等于()A.35°B.75°C.70°D.80°5.(3分)二次函数y=ax2+bx+c的图象如图所示,则函数值y<0时x的取值范围是()A.x<﹣1B.x>3C.﹣1<x<3D.x<﹣1或x>36.(3分)如图,在平行四边形ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:AB=2:5,则DF:BF等于()A.2:5B.2:3C.3:5D.3:27.(3分)已知反比例函数的图象位于第二、四象限,则k的取值范围为()A.k>﹣3B.k≥﹣3C.k<﹣3D.k≤﹣38.(3分)一只小花猫在如图的方砖上走来走去,最终停留在阴影方砖上的概率是()A.B.C.D.9.(3分)如图,点A、B、C、O在数轴上表示的数分别为a、b、c、0,且OA+OB=OC,则下列结论中:其中正确的有()①abc>0.②a(b+c)=0③a﹣c=b.④++=﹣1,A.①③④B.①②④C.②③④D.①②③④10.(3分)关于x的一元二次方程x2﹣2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是()A.B.C.D.11.(2分)如图,粮仓的顶部是圆锥形状,这个圆锥底面的半径长为3m,母线长为6m,为防止雨水,需在粮仓顶部铺上油毡,如果油毡的市场价是每平方米10元钱,那么购买油毡所需要的费用是()A.540π元B.360π元C.180π元D.90π元12.(2分)如图,A、D是⊙O上的两个点,BC是直径,若∠D=34°,则∠OAC等于()A.68°B.58°C.72°D.56°13.(2分)如图,在△ABC中,AB=AC,∠BAC=45°,将△ABC绕点A逆时针方向旋转得△AEF,其中,E,F 是点B,C旋转后的对应点,BE,CF相交于点D.若四边形ABDF为菱形,则∠CAE的大小是()A.45°B.60°C.75°D.90°14.(2分)如图,在边长为4的正方形ABCD中,点M为对角线BD上一动点,ME⊥BC于E,MF⊥CD于F,则EF的最小值为()A.B.C.2D.115.(2分)如图,在反比例函数y=的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y=的图象上运动,若tan∠CAB=2,则k的值为()A.﹣3B.﹣6C.﹣9D.﹣1216.(2分)将二次函数y=x2﹣5x﹣6在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,若直线y=2x+b与这个新图象有3个公共点,则b的值为()A.﹣或﹣12B.﹣或2C.﹣12或2D.﹣或﹣12二、填空题(本大题共3个小题,共12分,17-18小题各3分,19小题有2个空,每空3分,把答案写在题中横线上)17.(3分)若关于x、y的方程组的解满足x+y>0,则m的取值范围是.18.(3分)如图,点I为△ABC的内心,AB=4cm,AC=3cm,BC=2cm,将∠ACB平移,使其顶点与点I重合,则图中阴影部分的周长为cm.19.(6分)如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=的图象经过点E,与AB交于点F.若点B坐标为(﹣6,0),求图象经过A、E两点的一次函数的表达式是,若AF﹣AE=2,则反比例函数的表达式是.三、解答题(本大题共8个小题,共76分.解答应写出文字说明、证明过程或演算步骤)20.(8分)(1)已知实数a满足a2﹣6a+9=0,求+÷的值.(2)先化简,再求值:(﹣)÷,其中a=2sin60°﹣tan45°21.(8分)在Rt△ABC中,∠ACB=90°,利用直尺和圆规作图(1)作出AB边上的中线CD;(2)作出△ABC的角平分线AE;(3)若AC=5,BC=12,求出斜边AB上的高的长度.22.(8分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值>反比例函数的值的x的取值范围.23.(9分)如图,在平行四边形ABCD中,CE是∠DCB的角平分线,且交AB于点E,DB与CE相交于点O,(1)求证:△EBC是等腰三角形;(2)已知:AB=7,BC=5,求的值.24.(10分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺部分补充完整.(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.25.(10分)如图,二次函效y=x2+bx+c的图象与x轴交于A,B两点,B点坐标为(4,0),与y轴交于点C(0,4)点D为抛物线上一点.(1)求抛物线的解析式及A点坐标;(2)若△BCD是以BC为直角边的直角三角形时,求点D的坐标;(3)若△BCD是锐角三角形,请写出点D的横坐标m的取值范围.26.(11分)如图,在平面直角坐标系中,点A(﹣5,0),以OA为半径作半圆,点C是第一象限内圆周上一动点,连结AC、BC,并延长BC至点D,使CD=BC,过点D作x轴垂线,分别交x轴、直线AC于点E、F,点E为垂足,连结OF.(1)当∠BAC=30°时,求△ABC的面积;(2)当DE=8时,求线段EF的长;(3)在点C运动过程中,是否存在以点E、O、F为顶点的三角形与△ABC相似?若存在,请求出点E的坐标;若不存在,请说明理由.27.(12分)如图,△ABC中,∠ACB=90°,AC=CB=2,以BC为边向外作正方形BCDE,动点M从A点出发,以每秒1个单位的速度沿着A→C→D的路线向D点匀速运动(M不与A、D重合);过点M作直线l⊥AD,l 与路线A→B→D相交于N,设运动时间为t秒:(1)填空:当点M在AC上时,BN=(用含t的代数式表示);(2)当点M在CD上时(含点C),是否存在点M,使△DEN为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由;(3)过点N作NF⊥ED,垂足为F,矩形MDFN与△ABD重叠部分的面积为S,求S的最大值.2020年江苏省苏州市张家港市中考数学模拟试卷(3月份)参考答案与试题解析一、选择题(共16小题,每小题3分,满分42分)1.【解答】解:A、32=9,23=8,故本选项错误;B、﹣32=﹣9,(﹣3)2=9,故本选项错误;C、(3×2)3=63=216,3×23=3×8=24,故本选项错误;D、﹣23=﹣8,(﹣2)3=﹣8,故本选项正确.故选:D.2.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选:C.3.【解答】解:0.000326=3.26×10﹣4.故选:A.4.【解答】解:∵∠A=35°,∠AOB=75°,根据三角形的内角和是180°,∴∠B=70°.∵AB∥CD,根据两条直线平行,内错角相等,∴∠C=∠B=70°.故选:C.5.【解答】解:由图象可知,当﹣1<x<3时,函数图象在x轴的下方,y<0.故选:C.6.【解答】解:∵四边形ABCD为平行四边形,∴AB∥CD,∴△DEF∽△BAF,∴==.故选:A.7.【解答】解:根据题意得k+3<0,解得k<﹣3.故选:C.8.【解答】解:∵图中共有15个方格,其中黑色方格5个,∴黑色方格在整个方格中所占面积的比值,∴最终停在阴影方砖上的概率为,故选:A.9.【解答】解:∵c<a<0,b>0,∴abc>0,∴选项①符合题意.∵c<a<0,b>0,|a|+|b|=|c|,∴b+c<0,∴a(b+c)>0,∴选项②不符合题意.∵c<a<0,b>0,|a|+|b|=|c|,∴﹣a+b=﹣c,∴a﹣c=b,∴选项③符合题意.∵++=﹣1+1﹣1=﹣1,∴选项④符合题意.∴正确的有①③④.故选:A.10.【解答】解:∵关于x的一元二次方程x2﹣2x+k+2=0有实数根,∴△=(﹣2)2﹣4(k+2)≥0,解得:k≤﹣1.故选:C.11.【解答】解:底面半径为3m,则底面周长=6π,侧面面积=×6π×6=18π(m2).所需要的费用=18π×10=180π(元),故选:C.12.【解答】解:∵∠AOC=2∠ADC,∠ADC=34°,∴∠AOC=68°,∵OA=OC,∴∠OAC=∠OCA=(180°﹣68°)=56°,故选:D.13.【解答】解:∵ABDF是菱形∴AB∥CF,AB=AF∴∠BAC=∠ACF=45°,AF=AC∴∠ACF=∠AFC=45°∴∠CAF=90°∵将△ABC绕点A逆时针方向旋转得△AEF∴∠EAF=∠BAC=45°∴∠EAC=∠CAF﹣∠EAF=45°故选:A.14.【解答】解:连接MC,如图所示:∵四边形ABCD是正方形,∴∠C=90°,∠DBC=45°,∵ME⊥BC于E,MF⊥CD于F∴四边形MECF为矩形,∴EF=MC,当MC⊥BD时,MC取得最小值,此时△BCM是等腰直角三角形,∴MC=BC=2,∴EF的最小值为2;故选:B.15.【解答】解:如图,连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,∵由直线AB与反比例函数y=的对称性可知A、B点关于O点对称,∴AO=BO.又∵AC=BC,∴CO⊥AB.∵∠AOE+∠AOF=90°,∠AOF+∠COF=90°,∴∠AOE=∠COF,又∵∠AEO=90°,∠CFO=90°,∴△AOE∽△COF,∴==,∵tan∠CAB==2,∴CF=2AE,OF=2OE.又∵AE•OE=,CF•OF=|k|,∴k=±6.∵点C在第二象限,∴k=﹣6,故选:B.16.【解答】解:如图所示,过点B的直线y=2x+b与新抛物线有三个公共点,将直线向下平移到恰在点C处相切,此时与新抛物线也有三个公共点,令y=x2﹣5x﹣6=0,解得:x=﹣1或6,即点B坐标(6,0),将一次函数与二次函数表达式联立得:x2﹣5x﹣6=2x+b,整理得:x2﹣7x﹣6﹣b=0,△=49﹣4(﹣6﹣b)=0,解得:b=﹣,当一次函数过点B时,将点B坐标代入:y=2x+b得:0=12+b,解得:b=﹣12,综上,直线y=2x+b与这个新图象有3个公共点,则b的值为﹣12或﹣;故选:A.二、填空题(本大题共3个小题,共12分,17-18小题各3分,19小题有2个空,每空3分,把答案写在题中横线上)17.【解答】解:,①+②得,3(x+y)=3﹣m,解得:x+y=1﹣,∵x+y>0,∴1﹣>0,解得:m<3.故答案为:m<3.18.【解答】解:连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故答案为4.19.【解答】解:∵矩形ABCD的两边AD、AB的长分别为3、8,若点B坐标为(﹣6,0),∴A(﹣6,8),C(﹣3,0),D(﹣3,8),∵E是DC的中点,∴E(﹣3,4),设直线AE的解析式为y=kx+b,把A(﹣6,8),E(﹣3,4)代入得,解得,∴图象经过A、E两点的一次函数的表达式为y=﹣x;∵AE===5,而AF﹣AE=2,∴AF=7,设B(t,0),则F(t,1),C(t+3,0),E(t+3,4),∵F(t,1),E(t+3,4)在反比例函数y=的图象上,∴t×1=4(t+3),解得t=﹣4,∴F(﹣4,1),∴m=﹣4×1=﹣4,∴若AF﹣AE=2,则反比例函数的表达式是y=﹣.故答案为y=﹣x;y=﹣.三、解答题(本大题共8个小题,共76分.解答应写出文字说明、证明过程或演算步骤)20.【解答】解:(1)由a2﹣6a+9=0,得到a=3,原式=+•=+==,当a=3时,原式=;(2)原式=[﹣]•(a﹣1)=•(a﹣1)=,当a=2sin60°﹣tan45°=2×﹣1=﹣1时,原式==.21.【解答】解:(1)如图,线段CD即为所求.(2)如图,线段AE即为所求.(3)作CH⊥AB于H.在Rt△ABC中,∵AC=5,BC=12,∠ACB=90°∴AB===13,∵•AC•BC=•AB•CH∴CH==.22.【解答】解:(1)把A(﹣2,1)代入y=,得m=﹣2,即反比例函数为y=﹣,则n=n=﹣2,即B(1,﹣2),把A(﹣2,1),B(1,﹣2)代入y=kx+b,求得k=﹣1,b=﹣1,所以y=﹣x﹣1;(2)由图象可知:x<﹣2或0<x<1.23.【解答】证明:(1)∵四边形ABCD是平行四边形,∴CD∥AB,∴∠1=∠2.∵CE平分∠BCD,∴∠1=∠3,∴∠2=∠3,∴BC=BE,∴△EBC是等腰三角形;解:(2)∵∠1=∠2,∠4=∠5,∴△COD∽△EOB,∴=.∵平行四边形ABCD,∴CD=AB=7.∵BE=BC=5,∴==,∴=.24.【解答】解:(1)15÷30%=50(名),50×20%=10(名),即该班共有50名学生,其中穿175型校服的学生有10名;(2)185型的学生人数为:50﹣3﹣15﹣15﹣10﹣5=50﹣48=2(名),补全统计图如图所示;(3)185型校服所对应的扇形圆心角为:×360°=14.4°;(4)165型和170型出现的次数最多,都是15次,故众数是165和170;共有50个数据,第25、26个数据都是170,故中位数是170.25.【解答】(1)解:将B(4,0),C(0,4)代入y=x2+bx+c得解得所以抛物的解析式为y=x2﹣5x+4令y=0,得x2﹣5x+4=0,解得x1=1,x2=4∴A点的坐标为(1,0)(2)解:设D点坐标为a,则坐标为a2﹣5a+4①当∠BCD=90°时,如下图所示,连结BC,过C点作CD⊥BC与抛物交于点D,过D作DE⊥y轴于点E,由B、C坐标可知,OB=OC=4∴△OBC为等要真角三角形,∴∠OCB=∠OBC=45°又∵∠BCD=90°,∴∠ECD+∠OCB=90°∴∠ECD=45°,∴△CDE为等要真角三角形,∴DE=CE=a∴OE=OC+CE=a+4由D、E织坐标相等,可得a2﹣5a+4=a+4解得a1=6,a2=0,当a=0时,D点坐标为(0,4),与C重含,不符含思意,舍去当a=6时,D点坐标为(6,10)②当∠CBD=90°时,如下图所示,连按BC,过B点作BD⊥BC与抛物线交于点D,过B作FG⊥x轴,再过C作CF⊥FG于F,过D作DG⊥FG于G ∠COB=∠OBF=∠BFC=90°,四边形OBFC为形,又∵OC=OB,∴四边形OBFC为正方形,∠CBF=45°∠CBD=90°,∴∠CBF+∠DBG=90°∴∠DBG=45°,∴△DBG为等腰直角三角形,∴DG=BGD点横坐标为a∴DG=4﹣a而BG=﹣(a2﹣5a+4)∴﹣(a2﹣5a+4)=4﹣a解得a1=2,a2=4当a=4时,D点坐标为(4,0),与B重含,不符含题意,舍去当a=2时,D点坐标为(2,﹣2)上所述,D点坐标为(6,10)或(2,﹣2)(3)当BC为斜边构成Rt△BCD时,如下图所示,以BC中点O'为圆心,以BC为直径画圆,与物线交于D和D’BC为O'的直径∠BDC=∠BD'C=90°∵∴D到O'的距离为O'的半径D点横坐标为m,纵坐标为m2﹣5m+4,O'坐标为(2,2),∴由图象易得m=0或4为方程的解,则方程方边必有因式m(m一4)采用因式分解法进行降次解方程m(m﹣4)(m2﹣6m+6)=0m=0或m﹣4=0或m2﹣6m+6=0,解得当m=0时,D点坐标为(0,4),与C点重合,舍去;当m=4时,D点坐标为(4,0),与B点重合,舍去;当时,D点横坐标当时,D点横坐标为结合(2)中△BCD形成直角三角形的情况,可得△BCD为锐角三角形时,D点横坐标m的取值范围为或.26.【解答】解:(1)∵AB是⊙O的直径,∴∠ACB=90°,在RT△ABC中,AB=10,∠BAC=30°,∴BC=AB=5,∴AC==5,∴S△ABC=AC•BC=×5×5=(2)连接AD,∵∠ACB=90°,CD=BC,∴AD=AB=10,∵DE⊥AB,∴AE===6,∴BE=AB﹣AE=4,∴DE=2BE,∵∠DFC=∠DBE∠DFC=∠AFE,∴∠AFE=∠DBE,∵∠AEF=∠DEB=90°,∴△AEF∽△DEB,∴==2,∴EF=AE==3;(3)连接EC,设E(x,0),当的度数为60°时,点E恰好与原点O重合;①0°<的度数<60°时,点E在O、B之间,∠EOF>∠BAC=∠D,必须令∠EOF=∠EBD,此时有△EOF ∽△EBD,∴=,∵EC是RT△BDE斜边的中线,∵CE=CB,∴∠CEN=∠EBD,∴∠EOF=∠CEB,∴OF∥CE,∴==∴=,即=,解得x=,因为x>0,∴x,②60°<的度数<90°时,点E在O点的左侧,若∠EOF=∠B,则OF∥BD,∴OF=BC=BD,∴==,即=,解得x=﹣,若∠EOF=∠BAC,则x=﹣,综上,点E的坐标为(,0)、(﹣,0)、(﹣,0).27.【解答】解:(1)如图1,∵∠ACB=90°,AC=BC=2,∴∠A=∠ABC=45°,AB=2,∵AM=t,∠AMN=90°,∴MN=AM=t,AN=AM=t,则BN=AB﹣AN=2﹣t,故答案为:2﹣t.(2)如图2,∵AM=t,AC=BC=CD=2,∠BDC=∠DBE=45°,∴DM=MN=AD﹣AM=4﹣t,∴DN=DM=(4﹣t),∵PM=BC=2,∴PN=2﹣(4﹣t)=t﹣2,∴BP=t﹣2,∴PE=BE﹣BP=2﹣(t﹣2)=4﹣t,则NE==,∵DE=2,∴①若DN=DE,则(4﹣t)=2,解得t=4﹣;②若DN=NE,则(4﹣t)=,解得t=3;③若DE=NE,则2=,解得t=2或t=4(点N与点E重合,舍去);综上,当t=4﹣或t=3或t=2时,△DNE是等腰三角形.(3)①当0≤t<2时,如图3,由题意知AM=MN=t,则CM=NQ=AC﹣AM=2﹣t,∴DM=CM+CD=4﹣t,∵∠ABC=∠CBD=45°,∠NQB=∠GQB=90°,∴NQ=BQ=QG=2﹣t,则NG=4﹣2t,∴S=•t•(4﹣2t+4﹣t)=﹣(t﹣)2+,当t=时,S取得最大值;②当2≤t≤4时,如图4,∵AM=t,AD=AC+CD=4,∴DM=AD﹣AM=4﹣t,∵∠DMN=90°,∠CDB=45°,∴MN=DM=4﹣t,∴S=(4﹣t)2=(t﹣4)2,∵2≤t≤4,∴当t=2时,S取得最大值2;综上,当t=时,S取得最大值.。

2020年江苏省中考模拟测试数学试题(附答案)

2020年江苏省中考模拟测试数学试题(附答案)

江苏省中考模拟测试数学试题注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上. 3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.23的倒数是2.计算a 6b 2÷(ab )2的结果是3.无理数a 满足: 2<a <3,那么a 可能是4.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,摸到红球的概率是 A .12 B .13 C .25 D .15 5.半径为1,圆心角为60°的扇形的面积是A .π3B .16C .π6D .136.如图,在平面直角坐标系中,x 轴上一点A 从点(-3,0)出发沿x 轴向右平移,当以A 为圆心,半径为1的圆与函数y =33x 的图像相切时,点AA .(-2,0)B .(-3,0) 或(3,0)C .(-3,0)D .(-2,0)或(2,0)二、填空题(本大题共10小题,每小题2分,共20A .23B .-23C .-32D .32A .a 3B .a 4C .a 3bD .a 4bA .10B .6C .2.5D .207(第6题)填写在答题卡相应位置.......上) 7.(-2)2+(-2)-2= ▲ .8.南京奥林匹克体育中心位于南京市区西部,总占地面积896000平方米,是2014年南京青奥会主要场馆.数据896000用科学计数法表示为: ▲ . 9.如图,在正六边形ABCDEF 中,连接AE ,则tan ∠1= ▲ .10.写出一个公因式为2ab 且次数为3的多项式: ▲ . 11.2a =12,则a = ▲ .12.如图, CD ∥AB ,CB ⊥AB ,∠1=60o ,∠2=40o ,则∠3= ▲ .13.已知如图所示的图形是一无盖长方体的铁盒平面展开图,若铁盒的容积为3m 3,则根据图中的条件,可列出方程: ▲ .14.平行四边形ABOC 在平面直角坐标系中,A 、B 的坐标分别为(-3,3),(-4,0).则 过C 的双曲线表达式为: ▲ .15.如图,在Rt △ABC 中,AC =8,BC =6,直线l 经过C ,且l ∥AB ,P 为l 上一个动点,若△ABC 与△PAC 相似,则PC = ▲ . 16. 如图,△OA 1B 1在直角坐标系中,A 1(-1,0),B 1(0,2),点C 1与点A 1关于OB 1的对称.对△A 1B 1C 1 进行图形变换,得到△C 1B 2C 2,使得B 2(3,2),C 2(5,0);再进行第二次变换,得到△C 2B 3C 3 ,使得B 3(9 ,2 ),C 3(13 ,0 );第三次将△C 2B 3C 3变换成△C 3B 4C 4,B 4(21, 2),C 4(29 ,0 )…按照上面的规律,若对△A 1B 1C 1进行第四次次变换,得到△C 4B 5C 5,则C 5(第15题)CABEF D 1 (第9题)13 2EABCD (第12题)(第13题) (第14题)三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17. (6分)解不等式组⎩⎪⎨⎪⎧ 2x -3>5, 2+x 3-1≤2.18.(6分)先化简,再求值a 2-b 2ab ÷(1a + 1b ).其中a =-2,b =1.19.(8分)如图,在矩形ABCD 中,点F 是CD 中点,连接AF 并延长交BC 延长线于点E ,连接AC .(1)求证:△ADF ≌△ECF ;(2)若AB =1,BC =2,求四边形ACED 的面积.20.(8分)王老师对初三年级四个班级上学期期末数学成绩进行统计分析,以下是根据数据制成的统计图表的一部分:请你根据以上信息解答下列问题:CAB D EF (第19题)初三各班参考人数统计表0﹪﹪分比统计图初三各班数学合格人数统计图图(2)(1)图(1)中,甲班参考人数占 ▲ ﹪,丙班有 ▲ 人参考; (2)若经计算得出丙班的合格率为90%,将图(2)补充完整; (3)求上学期期末初三年级数学成绩的平均合格率.21.(8分)甲、乙、丙三个篮球队用抽签方法来决定参加第一场比赛的两个球队.请用树状图或列表法求出甲、乙两队在第一场进行比赛的概率.22.(8分)如图,延长等边三角形ABC 一边CB 到D ,连接AD .以A 为圆心,AC 为半径画弧交AD 于E .已知AC =2,∠D =20o ,求DE 的长(精确到0.1).(参考数据:3≈1.73,tan20o ≈0.36,sin20o ≈0.34,cos20o ≈0.94)23. (8分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具. (1)不妨设该种品牌玩具的销售单价....为x 元(x >40),请你分别用x 的代数式来表示销售量y (件)和销售该品牌玩具获得利润w (元),并把结果填写在表格中:(2)若商场获得了10000元销售利润,求该玩具销售单价x 应定为多少元?DB AEC(第22题)24.(8分)请用尺规..作出符合下列要求的图形(不写作法,保留作图痕迹): (1)已知线段AB ,试确定一点C ,使得∠ACB =90o ; (2)已知△ABD ,试确定一点C ,使得∠ACB +∠ADB =180o .25.(8分)快、慢两车分别从相距120千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,快车到达乙地后,立即按原路返回,返回时的速度是去时速度的2倍,结果与慢车同时回到甲地.慢车距出发地的路程y 1(千米)与出发后所用的时间x (小时)的关系如图所示. 请结合图象信息解答下列问题:(1)慢车的速度是 ▲ 千米/小时,快车的返回时速度是 ▲ 千米/小时; (2)画出快车距出发地的路程y 2(千米)与出发后所用的时间x (小时)的函数图象; (3)在快车返回途中,快、慢两车相距的路程为50千米时,慢车行驶了多少小时?DABAB(第25题)y 120O 1 2 3 x26.(9分)已知,如图,在矩形ABCD 中,AB =6cm ,BC =8cm ,动点E 、F 同时从B 点出发,点E 沿射线BC 方向以5cm /s 运动,点F 沿线段BD 方向以4cm /s 运动,当点F 到达D 时,运动停止,连接DE ,设运动时间为t (s ). (1)请判断△DEF 的形状,并说明理由; (2)线段DE 的中点O 的运动路径长 ▲ cm ;(3)当t 为何值时,△DEF 的外接圆与矩形ABCD 的边相切?27.(11分)函数图象有一个公共点,我们就称两个函数图象“共一点”,有两个公共点,则称它们“共两点”…(1)若函数y =-x +b 图像和y =-x 2+2x 图像“共一点”P ,求P 点坐标;(2)若函数y =-x +1图像和y =ax 2+2x 图像“共两点”,则a 的取值范围是: ▲ ; (3)若函数y =2x 与y =ax 2+bx 图像在第一象限“共两点”A 、B (A 在B 左侧),且A 、B 两点之间水平距离为2,两点之间垂直距离是A 到y 轴距离的倒数,设函数y =ax 2+bx 图像(第26题)的顶点为C .求顶点C 的坐标.参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.174 8.8.96 105 9.3310.答案不唯一,如2ab -4ab 211.1212.65o 13.x (x +1)=3 14.y =3x 15. 6.4或10 16.(61,0) 三、解答题(本大题共11小题,共88分) 17. (本题6分)解:解不等式2x -3>5,得 x >4. …………………………………………………………………2分 解不等式2+x3-1≤2,得 x ≤7. ………………………………………………………………4分 ∴原不等式组解集为4<x ≤7. ………………………………………………………………… 6分 18.(本题6分)解:原式=a 2-b 2ab ÷ a +bab ………………………………………………………………………… 1分=(a -b )(a +b )ab ·aba +b………………………………………………………………3分 =a -b . ………………………………………………………………………4分 当a =-2,b =1时,原式=-2-1=-3. ………………………………………………………6分 19.(本题8分) (1)证明: ∵F 是CD 中点, ∴DF =CF .∵四边形ABCD 是矩形, ∴AD ∥BC ,即AD ∥CE .∴∠ADF =∠ECF . ………………………………………………………………………………2分 在△ADF 和△ECF 中,∠ADF =∠ECF ,DF =CF ,∠AFD =∠EFC .∴△ADF ≌△ECF . ………………………………………………………………………………4分 (2)解:∵四边形ABCD 是矩形, ∴AD =BC =2,AB =CD =1,CD ⊥AD . 由(1)知,△ADF ≌△ECF . ∴AD =CE . ∵AD ∥CE ,∴四边形ACED 是平行四边形. ………………………………………………………………6分 ∴四边形ACED 的面积=AD ×DC =2. ………………………………………………………8分 20.(本题8分)(1)28,30; ………………………………………………………3分(2)图(2)中丙班合格人数为27,图略; ……………………………………………5分(3)42+35+27+40150=96﹪. ∴上学期期末数学成绩各班的平均合格率为96﹪. …………………………………………8分 21.(本题8分)解:列表如下(或画树状图正确)……………………………………………………5分 共有6种等可能的结果.…………………………………………………………………………………6分CABD EF∴ P (甲,乙)=26=13. …………………………………………………………………………………8分 22.(本题8分)解:如图,过A 作AF ⊥BC ,交点为F .…………………………………………………………………1分 ∵△ABC 为等边三角形,∴AB =BC =AC =2,∠ABC =60o . 在△ABF 中,sin ∠ABC =AFAB , ∵∠ABC =60o ,AB =2, ∴sin60o =AF 2,即32=AF2.∴AF =3.…………………………………………………………………………………………………4分 在△ADF 中,sin D =AFAD , ∵∠D =20o ,AF =3, ∴sin20o =AF 3,即3AD ≈0.34, ∴AD ≈5.1,…………………………………………………………………………………………………7分 由题知,∴AE =AC =2,∴DE =3.1. …………………………………………………………………………8分 23.(本题8分) 解:(1)……………………………………………………………………………………4分 (2)-10x 2+1300x -30000, 解之得:x 1=50,x 2=80. 答:玩具销售单价为50元或80元时,可获得10000元销售利润.……………………………………………………………………………………8分 24.(本题8分)(1)画图正确; ……………………………………………………………………………………4分 (提示:借助以AB 为直径画圆,圆上除A 、B 之外的点均可为C 点)(2)画图正确. ……………………………………………………………………………………8分(提示:作出△ABD 的外接圆,以圆内接四边形对角互补为依据,在优弧上取一点为C ) 25.(本题8分)(1)40,120; ……………………………………………………………………………………2分 (2)如图:DBAECF……………………………………………………………………………………4分 (3)解:OA 的函数关系式为y =40x ,BC 的函数关系式为y =120-120(x -2)=-120x +360; 根据题意,得:-120x +360+40x =120+50,解得:x =198.所以,慢车行驶198小时,快、慢两车相距的路程为50千米. …………………………………………8分 26.(本题9分) 解:(1)△DEF 是直角三角形理由 ∵四边形ABCD 为矩形,∴∠C =90°. 又∵AB =6cm ,BC =8cm ,根据勾股定理得∴BD =10.Q 点E 的运动速度为5cm/s ,点F 的运动速度为4cm/s ,运动时间为t (s), ∴BE =5t ,BF =4t . ∴BF BC =BEBD .又∵∠DBC 为公共角,∴△BEF ∽△BDC .∴∠ BFE =∠ C =90°.∴△DEF 是直角三角形. …………………………………………………………………………………3分 (2)254; …………………………………………………………………………………5分 (3)∵∠ DFE =90°,∴DE 为△DEF 的外接圆直径,点O 为圆心,①当⊙O 与AB 边相切于点G 时,连接GO 并延长交BC 于H 点, ∴GH ∥AD ∥BC . ∴BG AG =BM MD =DO EO =DH CH .又∵点O 是DE 的中点,∴点G 、M 、H 分别为AB 、DB 、CD 的中点,∴OH =12EC =12(8-5t )=4-52t ,OG =8-12(8-5t )=4+52t .ABFEOGM DCEB A H又∵OD 2=OH 2+DH 2=(4-52t )2+32,∴由OD 2=OG 2,得(4-52t )2+32=(4+52t )2,解得t =940. …………………………………………7分②当点E 运动到点C 时,⊙O 与AD 、BC 边相切,由5t =8,得t =85 .所以,当t =940或t =85时,△DEF 的外接圆⊙O 与矩形ABCD 的边相切. (9)分27.(本题11分)解:(1)∵函数y =-x +b 图像和y =-x 2+2x 图像“共一点”,∴-x +b =-x 2+2x ,且b 2-4ac =9-4b =0.∴b =94.………………………………………………………………………………………………………2分当b =94时,y =-x +94,-x +94=-x 2+2x .解得x =32,把x =32代入y =-x +94中,得y =34.∴P 坐标为(32,34). ……………………………………………………………………………………4分(2)a>-94,且a ≠0. ………………………………………………………………………………6分(3)设A 的横坐标为m ,则B 的横坐标为m +2,∵A 、B 在y =2x 图像上,∴A 、B 分别表示为(m ,2m ),(m +2,2m +2). ∵两点之间垂直距离是A 到y 轴距离的倒数,∴2m -2m +2=1m . 解得m =2, (4)经检验,m =2是原方程的根.………………………………………………………………………8分当m =2时,A 、B 分别为(2,1),(4,12),∵A 、B 在函数y =ax 2+bx 图像上,∴1=4a +2b ,12=16a +4b .解得a =-316,b =78.………………………………………………………10分∴y =-316x 2+78x ,其顶点坐标C 为(73,4948).………………………………………………………11分。

苏州2020中考数学综合模拟测试卷(含答案及解析)

苏州2020中考数学综合模拟测试卷(含答案及解析)

2020苏州市初中毕业暨升学模拟考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(-3)×3的结果是( )A.-9B.0C.9D.-62.已知∠α和∠β是对顶角.若∠α=30°,则∠β的度数为( )A.30°B.60°C.70°D.150°3.有一组数据:1,3,3,4,5,这组数据的众数为( )A.1B.3C.4D.54.若式子-在实数范围内有意义,则x的取值范围是( )A.x≤-4B.x≥-4C.x≤4D.x≥45.如图,一个圆形转盘被分成6个圆心角都为60°的扇形.任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是( )A. B. C. D.6.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为( )A.30°B.40°C.45°D.60°7.下列关于x的方程有实数根的是( )A.x2-x+1=0B.x2+x+1=0C.(x-1)(x+2)=0D.(x-1)2+1=08.二次函数y=ax2+bx-1(a≠0)的图象经过点(1,1),则代数式1-a-b的值为( )A.-3B.-1C.2D.59.如图,港口A在观测站O的正东方向,OA=4km.某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为( )A.4kmB.2kmC.2kmD.(+1)km10.如图,△AOB为等腰三角形,顶点A的坐标为(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A'O'B,点A的对应点A'在x轴上,则点O'的坐标为( )A. B. C. D.第Ⅱ卷(非选择题,共100分)二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在相应位置上.11.的倒数是.12.已知地球的表面积约为510000000km2.数510000000用科学记数法可以表示为.13.已知正方形ABCD的对角线AC=,则正方形ABCD的周长为.14.某学校计划开设A,B,C,D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门.为了了解各门课程的选修人数,现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有人.15.如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC= .16.某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道x m,乙工程队平均每天疏通河道y m,则(x+y)的值为.17.如图,在矩形ABCD中,=.以点B为圆心,BC长为半径画弧,交边AD于点E,若AE·ED=,则矩形ABCD的面积为.18.如图,直线l与半径为4的☉O相切于点A,P是☉O上的一个动点(不与点A重合),过点P 作PB⊥l,垂足为B,连结PA.设PA=x,PB=y,则(x-y)的最大值是.三、解答题:本大题共11小题,共76分.把解答过程写在相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.(本题满分5分)计算:22+|-1|-.20.(本题满分5分)解不等式组:--21.(本题满分5分)先化简,再求值:-÷-,其中x=-1.22.(本题满分6分)解分式方程:-+-=3.23.(本题满分6分)如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB.连结CD,将线段CD绕点C 按顺时针方向旋转90°后得CE,连结EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.24.(本题满分7分)如图,已知函数y=-x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2.在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=-x+b和y=x的图象于点C,D.(1)求点A的坐标;(2)若OB=CD,求a的值.25.(本题满分7分)如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色.请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率.26.(本题满分8分)如图,已知函数y=(x>0)的图象经过点A,B,点A的坐标为(1,2).过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连结OC,OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.27.(本题满分8分)如图,已知☉O上依次有A,B,C,D四个点,=,连结AB,AD,BD,弦AB不经过圆心O.延长AB到E,使BE=AB.连结EC,F是EC的中点,连结BF.(1)若☉O的半径为3,∠DAB=120°,求劣弧的长;(2)求证:BF=BD;(3)设G是BD的中点.探索:在☉O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE 的位置关系.28.(本题满分9分)如图,已知l1⊥l2,☉O与l1,l2都相切,☉O的半径为2cm.矩形ABCD的边AD,AB分别与l1,l2重合,AB=4cm,AD=4cm.若☉O与矩形ABCD沿l1同时..向右移动,☉O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s).(1)如图①,连结OA,AC,则∠OAC的度数为°;(2)如图②,两个图形移动一段时间后,☉O到达☉O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm).当d<2时,求t的取值范围.(解答时可以利用备用图画出相关示意图)备用图29.(本题满分10分)如图,二次函数y=a(x2-2mx-3m2)(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A,B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图象上,CD∥AB,连结AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2)求证:为定值;(3)设该二次函数图象的顶点为 F.探索:在x轴的负半轴上是否存在点G,连结GF,以线段GF,AD,AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G 即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.答案全解全析:一、选择题1.A 根据有理数乘法法则,先确定符号为“-”,再把绝对值相乘,所以结果为-9,故选A.2.A 因为“对顶角相等”,所以∠β=∠α=30°,故选A.3.B 众数为一组数据中出现次数最多的数,故选B.4.D 要使-在实数范围内有意义,则被开方数x-4≥0,所以x≥4,故选D.5.D ∵一个转盘被分成6个相同的扇形,阴影区域有4个扇形,∴指针指向阴影区域的概率为=.6.B 因为AB=AD,所以∠B=∠ADB=80°,因为DC=AD,所以∠C=∠CAD,又因为∠ADB是△ACD 的外角,所以∠ADB=∠C+∠CAD=2∠C,所以∠C=40°,故选B.7.C 选项A、B中,根的判别式Δ都小于零,故不符合题意;选项D可化为(x-1)2=-1,易知方程无实数根;选项C的根为x1=1,x2=-2,故选C.8.B 把点(1,1)代入函数解析式,得a+b-1=1,则1-a-b=-1,故选B.9.C过A作OB边的垂线AD,垂足为D,易知∠BOA=30°,∠BAD=45°,在Rt△OAD中,AD=OAsin∠DOA=4sin30°=2km,在Rt△ABD中,AB===2km,故选C.10.C 过A作OB边的垂线AC,垂足为C,过O'作BA'边的垂线O'D,垂足为D,因为顶点A的坐标为(2,),所以C点坐标为(2,0),所以OC=2,AC=,在Rt△OAC中,根据勾股定理得OA=3,所以AB=3.因为△AOB为等腰三角形,所以C为OB的中点,所以B点坐标为(4,0),故BO'=BO=4.在Rt△O'BD和Rt△O'A'D中,O'B2-BD2=O'A'2-A'D2.设BD=x,则有42-x2=32-(3-x)2,解得x=,所以BD=,所以O'D=,又OD=4+=,故O'点的坐标为,故选C.二、填空题11.答案解析的倒数是.12.答案 5.1×108解析根据科学记数法的表示方法可知,510000000=5.1×108.13.答案4解析设正方形的边长为x.因为正方形的对角线长为,根据勾股定理,可列方程x2+x2=()2,解得x=1(负值舍去),所以正方形的周长为4.14.答案240解析样本中选修C课程的学生占全部被调查学生的×100%=20%,所以估计全校选修C课程的学生有1200×20%=240人.15.答案解析过A作等腰△ABC底边BC上的高AD,垂足为D,则AD平分∠BAC,且D为BC的中点,所以BD=4,根据勾股定理可求出AD=3,又因为∠BPC=∠BAC,所以∠BPC=∠BAD,所以tan∠BPC=tan∠BAD==.16.答案20解析解法一:由题意可列方程组①+②,可得12x+12y=240,所以x+y=20.解法二:由题意可列方程组解得所以x+y=20.评析两种解法中,解法一较为简单,解法二较容易想到.17.答案5解析连结BE,设AB=3k(k≠0),则BC=5k.在Rt△ABE中,根据勾股定理可求出AE=4k,故ED=k,由题意可得4k·k=,可得k2=,所以矩形ABCD的面积为AB·BC=3k·5k=15k2=15×=5.18.答案2解析解法一:连结AO并延长交☉O于点C,连结PC,因为☉O与l相切于点A,所以∠PAB+∠PAC=90°.因为AC为☉O的直径,所以∠APC=90°,所以∠PAC+∠C=90°,所以∠PAB=∠C,又因为∠APC=∠ABP=90°,所以△PAB∽△ACP,所以=,即=,即y=,所以x-y=x-=-(x-4)2+2,所以当x=4时,x-y取最大值2.解法二:连结AO并延长交☉O于点C,连结PC,设∠PAB=α.因为☉O与l相切于点A,所以∠PAB+∠PAC=90°,因为AC为☉O的直径,所以∠APC=90°,所以∠PAC+∠C=90°,所以∠PAB=∠C=α.在Rt△APB中,sin∠PAB==,所以y=x·sinα.在Rt△APC中,sin C==,所以x=8·sinα,所以y=x·sinα=8sin2α,所以x-y=8sinα-8sin2α=-8-+2,所以当sinα=时,x-y取最大值2.评析本题考查圆的性质,切线的性质,二次函数的最值等,综合性强,属难题.三、解答题19.解析原式=4+1-2=3.20.解析解x-1>2,得x>3,解2+x≥2(x-1),得x≤4,所以不等式组的解集是3<x≤4.21.解析原式=-÷--=-×-=.当x=-1时,原式=-==.22.解析去分母,得x-2=3(x-1).解得x=.检验:当x=时,x-1和1-x的值都不等于0,所以x=是原方程的解.评析本题考查分式方程的解法.23.解析(1)证明:∵CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°.∵∠ACB=90°,∴∠BCD=90°-∠ACD=∠FCE.在△BCD和△FCE中,∴△BCD≌△FCE.(2)由△BCD≌△FCE得∠BDC=∠E.∵EF∥CD,∴∠E=180°-∠DCE=90°.∴∠BDC=90°.评析本题考查全等三角形的判定及性质,平行的性质,属容易题.24.解析(1)∵点M在函数y=x的图象上,且横坐标为2,∴点M的纵坐标为2,∴点M的坐标为(2,2).∵点M(2,2)在一次函数y=-x+b的图象上,∴-×2+b=2.∴b=3.∴一次函数的表达式为y=-x+3.令y=0,得x=6.∴点A的坐标为(6,0).(2)由题意得C-,D(a,a).∵OB=CD,∴a--=3.∴a=4.25.解析用树状图表示如下:A区域B区域C区域所得结果∴共有8种等可能结果,∴P(A,C两个区域所涂颜色不相同)==.26.解析(1)∵反比例函数y=的图象经过点A(1,2),∴k=2.∵AC∥y轴,AC=1,点C位于点A的下方,∴点C的坐标为(1,1).∵CD∥x轴,点D在函数图象上,∴点D的坐标为(2,1).∴S△OCD=×1×1=.(2)∵BE=AC,∴BE=.∵BE⊥CD,∴点B的纵坐标为.∴点B的横坐标为.∴CE=-1=.27.解析(1)连结OB,OD.∵∠DAB=120°,∴所对圆心角的度数为240°.∴∠BOD=120°.∵☉O的半径为3,∴劣弧的长为×π×3=2π.(2)证明:连结AC.∵AB=BE,∴点B为AE的中点.∵F是EC的中点,∴BF为△EAC的中位线.∴BF=AC.∵=,∴+=+,∴=.∴BD=AC.∴BF=BD.(3)过点B作AE的垂线,与☉O的交点即为所求的点P.连结PG,PF.∵BF为△EAC的中位线,∴BF∥AC.∴∠FBE=∠CAE.∵=,∴∠CAB=∠DBA.∴∠FBE=∠DBA.∵BP⊥AE,∴∠GBP=∠FBP.∵G为BD的中点,∴BG=BD.∴BG=BF.∵BP=BP,∴△PBG≌△PBF.∴PG=PF.此时PB与AE相互垂直.28.解析(1)105.(2)如图,当O1,A1,C1恰好在同一直线上时,设☉O1与l1的切点为E,连结O1E,可得O1E=2,O1E⊥l1.在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°.∴∠O1A1E=∠C1A1D1=60°,∴A1E==.∵A1E=AA1-OO1-2=t-2,∴t-2=,∴t=+2.∴OO1=3t=2+6.(3)①当直线AC与☉O第一次相切时,设移动时间为t1.如图,此时☉O移动到☉O2的位置,矩形ABCD移动到A2B2C2D2的位置.设☉O2与直线l1,C2A2分别相切于点F,G,连结O2F,O2G,O2A2.∴O2F⊥l1,O2G⊥A2C2.由(2)可得∠C2A2D2=60°,∴∠GA2F=120°.∴∠O2A2F=60°.在Rt△A2O2F中,O2F=2,∴A2F=.∵OO2=3t1,AF=AA2+A2F=4t1+,∴4t1+-3t1=2,∴t1=2-.②当直线AC与☉O第二次相切时,设移动时间为t2.记第一次相切时为位置一,点O1,A1,C1共线时为位置二,第二次相切时为位置三.由题意知,从位置一到位置二所用时间与从位置二到位置三所用时间相等.∴+2--=t2-,∴t2=2+2.综上所述,当d<2时,t的取值范围是2-<t<2+2.评析本题是一道典型的运动型问题,化动为静,合理运用切线的性质是解决本题的关键,主要考查学生分析问题的能力.29.解析(1)将C(0,-3)代入函数表达式得a(0-0-3m2)=-3.∴a=.(2)证明:如图,过点D,E分别作x轴的垂线,垂足为M,N.由a(x2-2mx-3m2)=0解得x1=-m,x2=3m.∴A(-m,0),B(3m,0).∵CD∥AB,∴点D的坐标为(2m,-3).∵AB平分∠DAE,∴∠DAM=∠EAN.∵∠DMA=∠ENA=90°,∴△ADM∽△AEN.∴==.设点E的坐标为--,∴--=--.∴x=4m.∴===(定值).(3)连结FC并延长,与x轴负半轴交于一点,此点即为所求的点G.由题意得,二次函数图象的顶点F的坐标为(m,-4).过点F作FH⊥x轴于点H.∵tan∠CGO=,tan∠FGH=.∴=,∴OG=3m.此时,GF===4,AD===3,∴=.由(2)得=,∴AD∶GF∶AE=3∶4∶5.∴以线段GF,AD,AE的长度为三边长的三角形是直角三角形,此时G点的横坐标为-3m.。

2020年江苏省苏州市张家港一中中考数学(3月份)模拟试卷 含解析

2020年江苏省苏州市张家港一中中考数学(3月份)模拟试卷 含解析

2020年张家港一中中考数学(3月份)模拟试卷一、选择题1.如果实数a,b,c在数轴上的位置如图所示,那么代数式可以化简为()A.2c﹣a B.2a﹣2b C.﹣a D.a2.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P 是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A.B.6C.3D.123.已知a,b,c为正实数,且===k,则直线y=kx+(k+1)一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.二次函数y=x2+(a﹣2)x+3的图象与一次函数y=x(1≤x≤2)的图象有且仅有一个交点,则实数a的取值范围是()A.a=3±2B.﹣1≤a<2C.a=3或﹣≤a<2D.a=3﹣2或﹣1≤a<﹣5.平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.86.如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:2=13﹣(﹣1)3,26=33﹣13,2和26均为和谐数.那么,不超过2019的正整数中,所有的“和谐数”之和为()A.6858B.6860C.9260D.92627.矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1B.C.D.8.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=2,CD=1,则BE的长是()A.5B.6C.7D.89.如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A.B.C.D.二、填空题10.直线y=m与函数y=x2﹣3|x﹣2|﹣5x+1的图象有3个交点,则m的值为.11.已知α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足,则m的值是.12.如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为.13.一名考生步行前往考场,10分钟走了总路程的,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了分钟.14.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为.15.已知直线l1:y=(k﹣1)x+k+1和直线l2:y=kx+k+2,其中k为不小于2的自然数.当k=2,3,4,……2019时,设直线l1、l2与x轴围成的三角形的面积分别为S2,S3,S4,S2019,则S2+S3+S4++S2019=.16.如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为.17.如图,矩形EFGH的四个顶点分别在矩形ABCD的各条边上,AB=EF,FG=2,GC =3.有以下四个结论:①∠BGF=∠CHG;②△BFG≌△DHE;③tan∠BFG=;④矩形EFGH的面积是4.其中一定成立的是.(把所有正确结论的序号填在横线上)18.如图,点A是反比例函数y=(x>0)图象上一点,直线y=kx+b过点A并且与两坐标轴分别交于点B,C,过点A作AD⊥x轴,垂足为D,连接DC,若△BOC的面积是4,则△DOC的面积是.三、解答题19.如图,在Rt△ABC中,∠A=90°,D为斜边BC中点,DE⊥DF,求证:EF2=BE2+CF2.20.如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BG =10.(1)当折痕的另一端F在AB边上时,如图.求△EFG的面积;(2)当折痕的另一端F在AD边上时,如图.证明四边形BGEF为菱形,并求出折痕GF的长.21.已知一次函数y=2x﹣4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1、d2.(1)当P为线段AB的中点时,求d1+d2的值;(2)直接写出d1+d2的范围,并求当d1+d2=3时点P的坐标;(3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值.22.如图,P是⊙O外的一点,PA、PB是⊙O的两条切线,A、B是切点,PO交AB于点F,延长BO交⊙O于点C,交PA的延长交于点Q,连结AC.(1)求证:AC∥PO;(2)设D为PB的中点,QD交AB于点E,若⊙O的半径为3,CQ=2,求的值.23.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:(1)如图1,若k=1,则∠APE的度数为;(2)如图2,若k=,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.(3)如图3,若k=,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.24.如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C (0,﹣),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=.(1)求抛物线的解析式;(2)动点P从点B出发,沿x轴正方形以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A 时,点Q也停止运动,设运动时间为t秒.①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由.②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.参考答案一、选择题(每题3分,共27分)1.如果实数a,b,c在数轴上的位置如图所示,那么代数式可以化简为()A.2c﹣a B.2a﹣2b C.﹣a D.a【分析】根据数轴表示数的方法得到b<a<0<c,且|b|>c,则a+b<0,c﹣a>0,b+c <0,然后根据二次根式的性质得到原式=|a|+(a+b)+|c﹣a|﹣(b+c)=﹣a+a+b+c﹣a ﹣b﹣c,再合并即可.解:由实数a,b,c在数轴上的位置可知:b<a<0<c,且|b|>c,所以原式=|a|+(a+b)+|c﹣a|﹣(b+c)=﹣a+a+b+c﹣a﹣b﹣c=﹣a.故选:C.2.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P 是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A.B.6C.3D.12【分析】将双曲线逆时针旋转使得l与y轴重合,等腰三角形△PAO的底边在y轴上,应用反比例函数比例系数k的性质解答问题.解:如图,将C2及直线y=x绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合.双曲线C3,的解析式为y=﹣过点P作PB⊥y轴于点B∵PA=PO∴B为OA中点.∴S△PAB=S△POB由反比例函数比例系数k的性质,S△POB=3∴△POA的面积是6故选:B.3.已知a,b,c为正实数,且===k,则直线y=kx+(k+1)一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】由a,b,c为正实数,且===k,可得出k>0,k+1>0,再利用一次函数图象与系数的关系,可得出直线y=kx+(k+1)经过第一、二、三象限,进而可得出结论.解:∵a,b,c为正实数,且===k,∴k>0,∴k+1>0,∴直线y=kx+(k+1)经过第一、二、三象限,∴直线y=kx+(k+1)一定不经过第四象限.故选:D.4.二次函数y=x2+(a﹣2)x+3的图象与一次函数y=x(1≤x≤2)的图象有且仅有一个交点,则实数a的取值范围是()A.a=3±2B.﹣1≤a<2C.a=3或﹣≤a<2D.a=3﹣2或﹣1≤a<﹣【分析】根据二次函数的图象性质即可求出答案.解:由题意可知:方程x2+(a﹣2)x+3=x在1≤x≤2上只有一个解,即x2+(a﹣3)x+3=0在1≤x≤2上只有一个解,当△=0时,即(a﹣3)2﹣12=0a=3±2当a=3+2时,此时x=﹣,不满足题意,当a=3﹣2时,此时x=,满足题意,当△>0时,令y=x2+(a﹣3)x+3,令x=1,y=a+1,令x=2,y=2a+1(a+1)(2a+1)≤0解得:﹣1≤a≤,当a=﹣1时,此时x=1或3,满足题意;当a=﹣时,此时x=2或x=,不满足题意,综上所述,a=3﹣2或﹣1≤a<,故选:D.5.平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.8【分析】由点A、B的坐标可得到AB=2,然后分类讨论:若AC=AB;若BC=AB;若CA=CB,确定C点的个数.解:∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=2,①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(含B点),即(0,0)、(4,0)、(0,4),∵点(0,4)与直线AB共线,∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点(A点除外),即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与坐标轴有两个交点,即满足△ABC是等腰三角形的C点有2个;综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有5个.故选:A.6.如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:2=13﹣(﹣1)3,26=33﹣13,2和26均为和谐数.那么,不超过2019的正整数中,所有的“和谐数”之和为()A.6858B.6860C.9260D.9262【分析】由(2n+1)3﹣(2n﹣1)3=24n+2≤2019,可得n2≤,再根据和谐数为正整数,得到1≤n≤9,可得在不超过2019的正整数中,“和谐数”共有10个,依此列式计算即可求解.解:由(2n+1)3﹣(2n﹣1)3=24n2+2≤2019,可得n2≤,∵和谐数为正整数,∴0≤n≤9,则在不超过2019的正整数中,所有的“和谐数”之和为13﹣(﹣1)3+33﹣13+53﹣33+…+193﹣173=193﹣(﹣1)3=6860.故选:B.7.矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1B.C.D.【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=PG=×=,故选:C.8.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=2,CD=1,则BE的长是()A.5B.6C.7D.8【分析】根据垂径定理求出AD,根据勾股定理列式求出OD,根据三角形中位线定理计算即可.解:∵半径OC垂直于弦AB,∴AD=DB=AB=,在Rt△AOD中,OA2=(OC﹣CD)2+AD2,即OA2=(OA﹣1)2+()2,解得,OA=4∴OD=OC﹣CD=3,∵AO=OE,AD=DB,∴BE=2OD=6,故选:B.9.如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A.B.C.D.【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.解:过点A向BC作AH⊥BC于点H,所以根据相似比可知:=,即EF=2(6﹣x)所以y=×2(6﹣x)x=﹣x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选:D.二、填空题(每小题3分,共27分)10.直线y=m与函数y=x2﹣3|x﹣2|﹣5x+1的图象有3个交点,则m的值为﹣5或﹣6.【分析】|x﹣2|的绝对值分两种情况去掉绝对值符号,得到函数当x≥2时,y=x2﹣8x+7;当x<2时,y=x2﹣2x﹣5;画出函数图象,结合函数图象即可求解.解:当x≥2时,y=x2﹣3|x﹣2|﹣5x+1=x2﹣3x+6﹣5x+1=x2﹣8x+7,当x<2时,y=x2﹣3|x﹣2|﹣5x+1=x2﹣6+3x+5x+1=x2﹣2x﹣5,如图:当x=2时,y=﹣5,当x=1时,y=﹣6,∴m=﹣5或m=﹣6时,y=m与函数有三个交点,故答案为﹣5或﹣6.11.已知α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足,则m的值是3.【分析】先求出两根之积与两根之和的值,再将+化简成两根之积与两根之和的形式,然后代入求值.解:∵α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根;∴α+β=﹣2m﹣3,α•β=m2;∴+===﹣1;∴m2﹣2m﹣3=0;解得m=3或m=﹣1;∵一元二次方程x2+(2m+3)x+m2=0有两个不相等的实数根;∴△=(2m+3)2﹣4×1×m2=12m+9>0;∴m>﹣;∴m=﹣1不合题意舍去;∴m=3.12.如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为.【分析】过O′作O′M⊥OA于M,解直角三角形求出旋转角的度数,根据图形得出阴影部分的面积S=S扇形OAO′+S△O′AC′﹣S△OAC﹣S扇形CAC′=S扇形OAO′﹣S扇形CAC′,分别求出即可.解:过O′作O′M⊥OA于M,则∠O′MA=90°,∵点O′的坐标是(1,),∴O′M=,OM=1,∵AO=2,∴AM=2﹣1=1,∴tan∠O′AM==,∴∠O′AM=60°,即旋转角为60°,∴∠CAC′=∠OAO′=60°,∵把△OAC绕点A按顺时针方向旋转到△O′AC′,∴S△OAC=S△O′AC′,∴阴影部分的面积S=S扇形OAO′+S△O′AC′﹣S△OAC﹣S扇形CAC′=S扇形OAO′﹣S扇形CAC′=﹣=,故答案为:.13.一名考生步行前往考场,10分钟走了总路程的,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了24分钟.【分析】由题意可知步行需要40分钟,设乘出租车的路程y与时间x(分钟)的函数关系式为y=kx+b,根据“两点法”求这个函数关系式,求当y=1时,x的值,再计算提前的时间.解:依题意,步行到考场需要时间为40分钟,设乘出租车的路程y与时间x(分钟)的函数关系式为y=kx+b,则,解得,y=x﹣1,当y=1时,x=16,提前时间=40﹣16=24分钟.故答案为:24.14.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为20.【分析】首先可判断四边形BGFD是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD,则可判断四边形BGFD是菱形,设GF=x,则AF=13﹣x,AC=2x,在Rt△ACF中利用勾股定理可求出x的值.解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴BD=DF=AC,∴四边形BGFD是菱形,设GF=x,则AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,故四边形BDFG的周长=4GF=20.故答案为:20.15.已知直线l1:y=(k﹣1)x+k+1和直线l2:y=kx+k+2,其中k为不小于2的自然数.当k=2,3,4,……2019时,设直线l1、l2与x轴围成的三角形的面积分别为S2,S3,S4,S2019,则S2+S3+S4++S2019=.【分析】利用一次函数图象上点的坐标特征可求出两直线与x轴的交点坐标,进而可得出两点间的距离,联立两直线解析式成方程组,通过解方程组可求出两直线的交点坐标.即可得出直线l1、l2与x轴围成的三角形的面积S k==d=﹣,分别代入k=2、3、4、…、2019求出S2、S3、S4、…、S2019值,将其相加即可得出结论.解:当y=0时,有(k﹣1)x+k+1=0,解得:x=﹣1﹣,∴直线l1与x轴的交点坐标为(﹣1﹣,0),同理,可得出:直线l2与x轴的交点坐标为(﹣1﹣,0),∴两直线与x轴交点间的距离d=﹣1﹣﹣(﹣1﹣)=﹣.联立直线l1、l2成方程组,得:,解得:,∴直线l1、l2的交点坐标为(﹣1,2).∴直线l1、l2与x轴围成的三角形的面积S k=×2d=d=﹣.当k=2时,S2=﹣,当k=3时,S3=﹣;当k=4时,S4=﹣;…;S2019=﹣,∴S2+S3+S4+……+S2019=﹣+﹣+﹣+…+﹣=﹣=.故答案为:.16.如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为135°.【分析】如图,连接EC.首先证明∠AEC=135°,再证明△EAC≌△EAB即可解决问题;解:如图,连接EC.∵E是△ADC的内心,∠ADC=90°,∴∠ACE=∠ACD,∠EAC=∠CAD,∴∠AEC=180°﹣(∠ACD+∠CAD)=135°,在△AEC和△AEB中,,∴△EAC≌△EAB,∴∠AEB=∠AEC=135°,故答案为135°.17.如图,矩形EFGH的四个顶点分别在矩形ABCD的各条边上,AB=EF,FG=2,GC =3.有以下四个结论:①∠BGF=∠CHG;②△BFG≌△DHE;③tan∠BFG=;④矩形EFGH的面积是4.其中一定成立的是①②④.(把所有正确结论的序号填在横线上)【分析】根据矩形的性质和全等三角形的判定分析各小题即可;解:∵∠FGH=90°,∴∠BGF+∠CGH=90°.又∵∠CGH+∠CHG=90°,∴∠BGF=∠CHG,故①正确.同理可得∠DEH=∠CHG.∴∠BGF=∠DEH.又∵∠B=∠D=90°,FG=EH,∴△BFG≌△DHE,故②正确.同理可得△AFE≌△CHG.∴AF=CH.易得△BFG∽△CGH.设GH、EF为a,∴=.∴=.∴BF=.∴AF=AB﹣BF=a﹣.∴CH=AF=a﹣.在Rt△CGH中,∵CG2+CH2=GH2,∴32+(a﹣)2=a2.解得a=2.∴GH=2.∴BF=a﹣=.在Rt△BFG中,∵cos∠BFG==,∴∠BFG=30°.∴tan∠BFG=tan30°=,故③错误.矩形EFGH的面积=FG×GH=2×2=4,故④正确.故答案为:①②④18.如图,点A是反比例函数y=(x>0)图象上一点,直线y=kx+b过点A并且与两坐标轴分别交于点B,C,过点A作AD⊥x轴,垂足为D,连接DC,若△BOC的面积是4,则△DOC的面积是2﹣2.【分析】方法1、先用三角形BOC的面积得出k=①,再判断出△BOC∽△BDA,得出a2k+ab=4②,联立①②求出ab,即可得出结论.方法2、先利用△BOC的面积得出k=,表示出A(m,),进而得出m+b=,即(mb)2+mb﹣4=0,即可得出结论.【解答】解法1:设A(a,)(a>0),∴AD=,OD=a,∵直线y=kx+b过点A并且与两坐标轴分别交于点B,C,∴C(0,b),B(﹣,0),∵△BOC的面积是4,∴S△BOC=OB×OC=××b=4,∴b2=8k,∴k=①∵AD⊥x轴,∴OC∥AD,∴△BOC∽△BDA,∴,∴,∴a2k+ab=4②,联立①②得,ab=﹣4﹣4(舍)或ab=4﹣4,∴S△DOC=OD•OC=ab=2﹣2故答案为2﹣2.解法2、∵直线y=kx+b与两坐标轴分别交于点B,C,∴B(﹣,0),C(0,b),∴OB=,OC=b,∵△BOC的面积是4,∴××b=4,∴=8,∴k=设OD=m,∵AD⊥x轴,∴A(m,),∵点A在直线y=kx+b上,∴km+b=,∴m+b=,∴(mb)2+mb﹣4=0,∴mb=﹣4﹣4(舍)或mb=4﹣4,∴S△COD=OC×OD=b×m=2﹣2三、解答题(第19∽22每小题12分,第23、24每小题12分,共76分)19.如图,在Rt△ABC中,∠A=90°,D为斜边BC中点,DE⊥DF,求证:EF2=BE2+CF2.【分析】延长ED到G,使DG=DE,连接EF、FG、CG,由于DF=DF,∠EDF=∠FDG=90°,DG=DE,可得出△EDF≌△GDF,所以EF=FG,同理证出BE=CG,所以要证明EF2=BE2+CF2,只需证明FG2=FC2+CG2即可.【解答】证明:延长ED到G,使DG=DE,连接EF、FG、CG,如图所示:在△EDF和△GDF中,∴△EDF≌△GDF(SAS),∴EF=FG又∵D为斜边BC中点∴BD=DC在△BDE和△CDG中,,∴△BDE≌△CDG(SAS)∴BE=CG,∠B=∠BCG∴AB∥CG∴∠GCA=180°﹣∠A=180°﹣90°=90°在Rt△FCG中,由勾股定理得:FG2=CF2+CG2=CF2+BE2∴EF2=FG2=BE2+CF2.20.如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BG =10.(1)当折痕的另一端F在AB边上时,如图.求△EFG的面积;(2)当折痕的另一端F在AD边上时,如图.证明四边形BGEF为菱形,并求出折痕GF的长.【分析】根据轴对称的性质,折叠前后图形的形状和大小不变和矩形的性质及直角三角形的性质,同角的余角相等,相似三角形的判定和性质,平行四边形和菱形的判定和性质求解.解:(1)过点G作GH⊥AD,则四边形ABGH为矩形,∴GH=AB=8,AH=BG=10,由图形的折叠可知△BFG≌△EFG,∴EG=BG=10,∠FEG=∠B=90°;∴EH=6,AE=4,∠AEF+∠HEG=90°,∵∠AEF+∠AFE=90°,∴∠HEG=∠AFE,又∵∠EHG=∠A=90°,∴△EAF∽△GHE,∴,∴EF=5,∴S△EFG=EF•EG=×5×10=25.(2)由图形的折叠可知四边形ABGF≌四边形HEGF,∴BG=EG,AB=EH,∠BGF=∠EGF,∵EF∥BG,∴∠BGF=∠EFG,∴∠EGF=∠EFG,∴EF=EG,∴BG=EF,∴四边形BGEF为平行四边形,又∵EF=EG,∴平行四边形BGEF为菱形;连接BE,BE,FG互相垂直平分,在Rt△EFH中,EF=BG=10,EH=AB=8,由勾股定理可得FH=AF=6,∴AE=AF+EF=16,∴BE==8,∴BO=4,∴OG==2,∵四边形BGEF是菱形,∴FG=2OG=4,答:折痕GF的长是4.21.已知一次函数y=2x﹣4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1、d2.(1)当P为线段AB的中点时,求d1+d2的值;(2)直接写出d1+d2的范围,并求当d1+d2=3时点P的坐标;(3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值.【分析】(1)对于一次函数解析式,求出A与B的坐标,即可求出P为线段AB的中点时d1+d2的值;(2)根据题意确定出d1+d2的范围,设P(m,2m﹣4),表示出d1+d2,分类讨论m的范围,根据d1+d2=3求出m的值,即可确定出P的坐标;(3)设P(m,2m﹣4),表示出d1与d2,由P在线段上求出m的范围,利用绝对值的代数意义表示出d1与d2,代入d1+ad2=4,根据存在无数个点P求出a的值即可.解:(1)对于一次函数y=2x﹣4,令x=0,得到y=﹣4;令y=0,得到x=2,∴A(2,0),B(0,﹣4),∵P为AB的中点,∴P(1,﹣2),则d1+d2=3;(2)①d1+d2≥2;②设P(m,2m﹣4),∴d1+d2=|m|+|2m﹣4|,当0≤m≤2时,d1+d2=m+4﹣2m=4﹣m=3,解得:m=1,此时P1(1,﹣2);当m>2时,d1+d2=m+2m﹣4=3,解得:m=,此时P2(,);当m<0时,不存在,综上,P的坐标为(1,﹣2)或(,);(3)设P(m,2m﹣4),∴d1=|2m﹣4|,d2=|m|,∵P在线段AB上,∴0≤m≤2,∴d1=4﹣2m,d2=m,∵d1+ad2=4,∴4﹣2m+am=4,即(a﹣2)m=0,∵有无数个点,即无数个解,∴a﹣2=0,即a=2.22.如图,P是⊙O外的一点,PA、PB是⊙O的两条切线,A、B是切点,PO交AB于点F,延长BO交⊙O于点C,交PA的延长交于点Q,连结AC.(1)求证:AC∥PO;(2)设D为PB的中点,QD交AB于点E,若⊙O的半径为3,CQ=2,求的值.【分析】(1)根据切线长定理得出PA=PB,且PO平分∠BPA,利用等腰三角形三线合一的性质得出PO⊥AB.根据圆周角定理得出AC⊥AB,进而得到AC∥PO;(2)连结OA、DF.先用勾股定理计算出AQ=4,再计算出PA=PB=6,利用切线长定理可得到F点为AB的中点,易得DF为△BAP的中位线,则DF=PA=3,DF∥PA,利用DF∥AQ得到△DFE∽△QEA,所以==,设AE=4t,FE=3t,则AF=AE+FE=7t,于是BE=BF+FE=AF+FE=7t+3t=10t,最后计算.【解答】(1)证明:∵PA、PB是⊙O的两条切线,A、B是切点,∴PA=PB,且PO平分∠BPA,∴PO⊥AB.∵BC是直径,∴∠CAB=90°,∴AC⊥AB,∴AC∥PO;(2)解:连结OA、DF,如图,∵PA、PB是⊙O的两条切线,A、B是切点,∴∠OAQ=∠PBQ=90°.在Rt△OAQ中,OA=OC=3,∴OQ=5.由QA2+OA2=OQ2,得QA=4.在Rt△PBQ中,PA=PB,QB=OQ+OB=8,由QB2+PB2=PQ2,得82+PB2=(PB+4)2,解得PB=6,∴PA=PB=6,∵OP⊥AB,∴BF=AF=AB.又∵D为PB的中点,∴DF∥AP,DF=PA=3,∴△DFE∽△QEA,∴==,设AE=4t,FE=3t,则AF=AE+FE=7t,∴BE=BF+FE=AF+FE=7t+3t=10t,∴==.23.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:(1)如图1,若k=1,则∠APE的度数为45°;(2)如图2,若k=,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.(3)如图3,若k=,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.【分析】(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;(2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE ∽△ACD,再判断出∠EFB=90°,即可得出结论;(3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△ACD ∽△HEA,再判断出∠EFB=90°,即可得出结论;解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,∴BD=AF,BF=AD,∵AC=BD,CD=AE,∴AF=AC,∵∠FAC=∠C=90°,∴△FAE≌△ACD,∴EF=AD=BF,∠FEA=∠ADC,∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EHD,∵AD∥BF,∴∠EFB=90°,∵EF=BF,∴∠FBE=45°,∴∠APE=45°,故答案为:45°.(2)(1)中结论不成立,理由如下:如图2,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,∴BD=AF,BF=AD,∵AC=BD,CD=AE,∴,∵BD=AF,∴,∵∠FAC=∠C=90°,∴△FAE∽△ACD,∴=,∠FEA=∠ADC,∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EMD,∵AD∥BF,∴∠EFB=90°,在Rt△EFB中,tan∠FBE=,∴∠FBE=30°,∴∠APE=30°,(3)(2)中结论成立,如图3,作EH∥CD,DH∥BE,EH,DH相交于H,连接AH,∴∠APE=∠ADH,∠HEC=∠C=90°,四边形EBDH是平行四边形,∴BE=DH,EH=BD,∵AC=BD,CD=AE,∴,∵∠HEA=∠C=90°,∴△ACD∽△HEA,∴,∠ADC=∠HAE,∵∠CAD+∠ADC=90°,∴∠HAE+∠CAD=90°,∴∠HAD=90°,在Rt△DAH中,tan∠ADH==,∴∠ADH=30°,∴∠APE=30°.24.如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,﹣),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=.(1)求抛物线的解析式;(2)动点P从点B出发,沿x轴正方形以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A 时,点Q也停止运动,设运动时间为t秒.①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由.②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.【分析】(1)应用待定系数法求解析式(2)①分别用t表示△ADC、△PQA各边,应用分类讨论相似三角形比例式,求t值;②分别用t表示△APQ与△CAQ的面积之和,讨论最大值.解:(1)∵OA=1,OB=4∴A(1,0),B(﹣4,0)设抛物线的解析式为y=a(x+4)(x﹣1)∵点C(0,﹣)在抛物线上∴﹣解得a=∴抛物线的解析式为y=(2)存在t,使得△ADC与△PQA相似.理由:①在Rt△AOC中,OA=1,OC=则tan∠ACO=∵tan∠OAD=∴∠OAD=∠ACO∵直线l的解析式为y=∴D(0,﹣)∵点C(0,﹣)∴CD=由AC2=OC2+OA2,得AC=在△AQP中,AP=AB﹣PB=5﹣2t,AQ=t由∠PAQ=∠ACD,要使△ADC与△PQA相似只需或则有或解得t1=,t2=∵t1<2.5,t2<2.5∴存在t=或t=,使得△ADC与△PQA相似②存在t,使得△APQ与△CAQ的面积之和最大理由:作PF⊥AQ于点F,CN⊥AQ于N在△APF中,PF=AP•sin∠PAF=在△AOD中,由AD2=OD2+OA2,得AD=在△ADC中,由S△ADC=∴CN=∴S△AQP+S△AQC==﹣∴当t=时,△APQ与△CAQ的面积之和最大.方法二:由题意可得Q点的坐标为(,﹣t),∴S△AQP+S△AQC=(5﹣2t)×t+(﹣)(t﹣1+1)=﹣t2+t.可得当t=时,△APQ与△CAQ的面积之和最大.。

2019-2020年江苏张家港中考数学模拟试卷

2019-2020年江苏张家港中考数学模拟试卷

2019-2020年张家港市初三中考模拟试卷(数学)一、选择题 (本大题共16个小题,共42分,1-10小题各3分:11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求) 1.下列各对数中,相等的是 ( )A. 32与23B. -32与(-3)2C. (3×2)3与3×23D. -23与(-2)32.以下四个标志中,是轴对称图形的是…( )3.小时候我们用肥皂水吹泡泡,其泡沫的厚度是约0000326毫米,数字0.000326用科学记数法表示为 …( )A. 3.26×10-4B. 0.326×10-3C. 3.26x104D. 32.6×10-34.如图,AB∥CD,AD 和BC 相交于点O,∠A=35°,∠AOB=75°,则∠C 等于……( ) A. 35° B. 75° C. 70° D. 80°5.已知二次函数y=ax 2+bx+c 的图象如图所示,当y<0时,x 的取值范围是……( ) A. x<-1 B. x>3 C.-1<x<3 D. x>3 或x<-16.如图,在□ABCD 中,E 为CD 上一点,连接AE 、BD,且AE 、BD 交于点F,DE :EC=2:3,则EF :AF 等于 ( ) A. 2:3 B. 3:5 C. 2:5 D. 3:27.已知反比例函数y=k+3x 的图象位于第二、四象限,则k 的取值范围为………( )A.k>-3B. k ≥-3C. k<-3D. k≤-3 8.一只小花猫在如图的方砖上走来走去,最终停留在阴影方砖上的概率是 ( )A. 13B. 15C. 215D. 4159.如图,点A 、B 、C 、O 在数轴上表示的数分别为a 、b 、c 、0,且OA+OB=OC,则下列结论中:①abc>0.②a(b+c)=0③a -c=b.④∣a ∣a +∣b∣b +∣c ∣c =-1,其中正确的有( )A. ①③④B. ①②④C. ②③④D. ①②③④10.关于x 的一元二次方程x 2-2x+k+2=0有实数根,则k 的取值范围在数轴上表示正确的是( )11.如图,粮仓的顶部是圆锥形状,这个圆锥底面的半径长为3m,母线长为6m,为防止雨水,需在粮仓顶部铺上油毡,如果油毡的市场价是每平方米10元钱,那么购买油毡所需要的费用是( )A. 540π元B. 360π元C. 180π元D. 90π元12.如图,A,D 是⊙O 上的两个点,BC 是直径,若∠D=34,则∠OAC 等于……( )B.58° D.56° A. 68° B. 58° C. 72° D. 56°13.如图,在△ABC 中,AB=AC,∠BAC=45°,将△ABC 绕点A 逆时针方向旋转得△AEF, 其中,E,F 是点B,C 旋转后的对应点,BE,CF 相交于点D,若四边形ABDF 为菱形,则∠CAE 的大小是 ( ) A. 45° B. 60° C. 75° D. 90°14.如图,在边长为2的正方形ABCD 中,点M 为对角线BD 上一动点,ME⊥BC 于点E,MF⊥CD 于点F,连接EF,则EF 的最小值为( )A.1B.2 2C. 3D.215.如图,在反比例函数y=32x 的图象上有一动点A,连接AO 并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A 运动时,点C 始终在函数 y=kx 的图象上运动,若tan∠CAB=2,则k 的值为 ( )B. C. D. A.-3 B. -6C. -9D. -1216.将二次函数y=x 2-5x-6在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新图象,若直线y=2x+b 与这个新图象有3个公共点, 则b 的值为( )A. -734 或-12B. -734 或2C. -12或2D. -694或-12二、填空题(本大题共3个小题,共12分,17-18小题各3分,19 小题有2个空,每空3分,把答案写在题中横线上)17.若关于x,y 的方程组⎩⎪⎨⎪⎧2x +y =1-mx+2y =2的解满足x+y>0, 则m 的取值范围是__________18.如图,点I 为△ABC 的内心,AB=4,AC=3,BC=2,将∠ACB 平移使其顶点与I 重合,则图中阴影部分的周长为_________________19.如图,矩形ABCD 的两边AD 、AB 的长分别为3、8, E 是DC 的中点,反比例函数y=mx 的图象经过点E,与AB 交于点F.若点B 坐标为(-6,0),求图象经过A 、E 两点的一次函数的表达式是_________, 若AF-AE=2,则反比例函数的表达式是___________三、解答题(本大题共8个小题,共76分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)(1)已知实数a 满足a 2-6a+9=0,求1a+1 +a+2a+1 ÷ (a+1)(a+2) a 2-2a+1 的值.(2)先化筒,再求值:(2a-1 -2a+1 a 2-1 )÷1a-1其中a=2sin60°-tan45°21.(本小题满分8分) 在Rt△ABC 中,∠ACB=90°,利用直尺和圆规作图. (1)作出AB 边上的中线CD (2)作出△ABC 的角平分线BE(3)若BC=5,AC=12,求出斜边AB 上的高的长度22.(本小题满分8分) 如图,一次函数y=kx+b 的图象与反比例函数y=mx 的图象交于A(-2,-1)、B(1,n)两点(1)利用图中条件求反比例函数和一次函数的解析式(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范图23.(本小题满分9分) 如图,在平行四边形ABCD中,CE是∠DCB的角平分线,且交AB于点E,DB与CE相交于点O,(1)求证:△EBC是等腰三角形(2)已知:AB=7,BC=5,求OBDB的值.24.(本小题满分10分) 某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号) 根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺部分补充完整(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小(4)求该班学生所穿校服型号的众数和中位数25.(本小题满分10分) 如图,二次函效y=x2+bx+c的图像与x轴交于A,B两点,B点坐标为(4,0),与y轴交于点C(0,4)点D为抛物线上一点(1)求抛物线的解析式及A点坐标(2)若△BCD是以BC为直角边的直角三角形时,求点D的坐标(3)若△BCD是锐角三角形,请写出点D的横坐标m的取值范围26.(本小题满分11分) 如图,在平面直角坐标系中,点A(-5,0),以OA为半径作半圆,点C是第一象限内圆周上一动点,连结AC、BC,并延长BC至点D,使CD=BC,过点D作x轴垂线,分别交x轴、直线AC于点E、F,点E为垂足,连结OF(1)当∠BAC=30时,求△ABC的面积(2)当DE=8时,求线段EF的长(3)在点C运动过程中,是否存在以点E、O、F为顶点的三角形与△ABC相似,若存在,请求出点E的坐标; 若不存在,请说明理由.27.(本小题满分12分)如图,△ABC中,∠ACB=90°,AC=CB=2,以BC为边向外作正方形BCDE,动点M从A点出发,以每秒1个单位的速度沿着A→C→D的路线向D点匀速运动(M不与A、D重合). 过点M作直线I⊥AD, I与路线A→B→D相交于N,设运动时间为t秒.(1)填空:当点M在AC上时,BN=_______ (用含t的代数式表示)(2)当点M在CD上时(含点C),是否存在点M,使△DEN为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由(3)过点N作NF⊥ED,垂足为F,矩形MDFN与△ABD重叠部分的面积为S,求S的最大值27.(1)如图(1)。

2020年江苏省苏州市张家港市中考数学模拟试卷(3月份)(含答案解析)

2020年江苏省苏州市张家港市中考数学模拟试卷(3月份)(含答案解析)

2020年江苏省苏州市张家港市中考数学模拟试卷(3月份)一、选择题(本大题共16小题,共42.0分)1.下列各组数中,数值相等的有()①−27与(−2)7;②−22与(−2)2;③(−1)2018与−1;④455与1625.A. 1组B. 2组C. 3组D. 4组2.下列标志图中,是轴对称图形的是()A. B. C. D.3.下列各数用科学记数法可记为2.019×10−3的是()A. −2019B. 2019C. 0.002019D. −0.0020194.如图,AB//CD,AC与BD相交于点E,且∠DEC=100°,∠C=50°,则∠B的大小是()A. 30°B. 40°C. 50°D. 60°5.若二次函数y=3x2+(b−3)x−4的图象如图所示,则b的值是()A. −5B. 0C. 3D. 46.如图,H为平行四边形ABCD中AD边上一点,且AH=12DH,AC和BH交于点K,则AKKC等于()A. 1:2B. 1:1C. 1:3D. 2:37.已知反比例函数y=k−1的图像在每个象限内y随x的增大而减小,则k的取值范围是()xA. k<1B. k>1C. 0<k<1D. k≤18.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,每块方砖大小、质地完全一致,那么它最终停留在涂色区域的概率是()A. 13B. 14C. 15D. 169.如图,A,B两点在数轴上表示的数分别为a、b,下列结论:①a−b>0;②a+b<0;>0.③(b−1)(a+1)>0;④b−1|a−1|其中结论正确的是()A. ①②B. ③④C. ①③D. ①②④10.关于x的一元二次方程x2−3x+m=0有两个不相等的实数根,则实数m的取值范围是()A. m≤B. m<C. m≥D. m>11.母线长为3,底面圆的直径为2的圆锥的侧面积为()A. 3πB.C.D. 4π12.如图,已知,AB是⊙O的直径,点C,D在⊙O上,∠ABC=50°,则∠D为()A. 30°B. 40°C. 50°D. 60°13.如图,在边长为2的菱形ABCD中,∠ABC=60°,若将△ACD绕点A旋转,AC′,AD′分别与BC,CD交于点E,F,则△CEF的周长的最小值为()A. 2+√3B. 2√3C. 2D. 414.如图,在△ABC中,∠C=90°,AC=6,BC=8,点P为斜边AB上一动点,过点P作PE⊥AC于点E,PF⊥BC于点F,连结EF,则线段EF的最小值为()A. 1.2B. 2.4C. 2.5D. 4.8(x<0)的图象上,点B在反比15.如图,点A在反比例函数y−−6x(x>0)的图象上,且∠AOB=90°.则tan∠OBA的值例函数y=1x等于()A. 2B. √3C. 3D. √616.如图,一次函数y=kx+b与二次函数y=x2+2x+3的图象交于点M,N,则抛物线y=−x2+(k−2)x+b−3的图象大致为()A.B.C.D.二、填空题(本大题共3小题,共12.0分)17.关于x、y的二元一次方程组的解满足2x+y<1,则m的取值范围是______.18.在△ABC中,点I是内心,∠BIC=110°,则∠A=__________.19.如图,过点O的直线AB与反比例函数y=kx的图象交于A、B两点,A(2,1),直线BC//y轴,与反比例函数y=−3kx(x<0)的图象交于点C,连接AC,则△ABC的面积为.三、解答题(本大题共8小题,共76.0分)20.先化简,再求值:(1 x−y −1x2−xy)÷x−23x,其中x=2+tan60°,y=4sin30°.21.作图:已知△ABC,利用直尺和圆规,①在BC上作一点P,使点P到∠BAC两边的距离相等.②再在射线AP上作一点Q,使点Q到A、C两点的距离相等.(不写作法,保留作图痕迹).22.一次函数y=kx+b的图象与反比例函数y=m的图象交于点A(2,1),B(−1,n)两点.x(1)求一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出不等式kx+b≥m的解.x23.如图,在▱ABCD中,∠ABC的平分线BF分别与AC,AD交于点E,F.(1)求证:AF=CD;(2)当AB=3,BC=5时,求AE的值.AC24.为了绿化校园环境,今年3月某中学八年级(1)班同学积极参加学校组织的植树活动,根据该班同学的植树情况,绘制了如下两幅统计图,请根据图中的信息,回答以下问题:(1)这个班共有多少名学生参加了植树活动?(2)请你将条形统计图补充完整;(3)分别求出植树株数的众数和中位数.x+4的对称轴是直线x=3,且与x轴交于A、B两点(点B在点25.如图,已知抛物线y=ax2+32A的右侧),与y轴交于点C.(1)求抛物线的解析式;(2)以BC为边作正方形CBDE,求对角线BE所在直线的解析式;(3)点P是抛物线上一点,若∠APB=45°,求出点P的坐标.26.已知:如图,AB为半圆的直径,O为圆心,OC⊥AB,D为BC的中点,连接DA、DB、DC,过点C作DC的垂线交DA于点E,DA交OC于点F.(1)求∠CED的度数;(2)求证:AE=BD;(3)求AO的值.OF27.如图(1),在Rt△AOB中,∠A=90°,∠AOB=60°,OB=2√3,∠AOB的平分线OC交AB于C,过O点做与OB垂直的直线ON.动点P从点B出发沿折线BC−CO向终点O运动,运动时间为t 秒,同时动点Q从点C出发沿线段CO及直线ON运动,当点P到达点O时P、Q同时停止运动.(1)求OC、BC的长;(2)当点P与点Q的速度都是每秒1个单位长度的速度运动时,设△CPQ的面积为S,求S与t的函数关系式;(3)当点P运动到OC上时,在直线OB上有一点D,当PD+BP最小时,在直线OB上有一点E,若以B、P、Q、E为顶点的四边形为平行四边形,设点P、Q的运动路程分别为a、b,求a与b满足的数量关系.【答案与解析】1.答案:A解析:本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方的计算方法.根据有理数的乘方进行计算,再逐一判断即可.解:①(−2)7=−27,故①−27与(−2)7相等;②−22=−4,(−2)2=4,故②−22与(−2)2不相等;③(−1)2018=1,故③(−1)2018与−1不相等;④455=10245,故④455与1625不相等;相等的有1组.故选:A.2.答案:C解析:根据轴对称图形的概念对各选项分析判断即可得解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.解:A.不是轴对称图形,故本选项不符合题意;B.不是轴对称图形,故本选项不符合题意;C.是轴对称图形,故本选项符合题意;D.不是轴对称图形,故本选项不符合题意.故选C.3.答案:C解析:解:2.019×10−3=0.002019.故选:C.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.。

江苏苏州2020中考数学综合模拟测试卷(解析版)

江苏苏州2020中考数学综合模拟测试卷(解析版)

【文库独家】一、选择题(共10小题,每小题3分,满分30分)1.23的倒数是( )A .32B .-32C .23D .-23【答案】A.【解析】试题分析:根据倒数的定义可得23的倒数是32,故选A. 考点:倒数.2.肥皂泡的泡壁厚度大约是0.0007mm ,0.0007用科学记数法表示为( )A .0.7×10﹣3B .7×10﹣3C .7×10﹣4D .7×10﹣5【答案】C.考点:科学计数法.3.下列运算结果正确的是( )A .a+2b=3abB .3a 2﹣2a 2=1C .a 2•a 4=a 8D .(﹣a 2b )3÷(a 3b )2=﹣b【答案】D.【解析】试题分析:选项A :a+2b 不能再计算,故此选项错误;选项B :3a 2﹣2a 2=a 2,故此选项错误;选项C :a 2·a 4=a 6,故此选项错误;选项D :(-a 2b )3÷(a 3b )2=-a 6b 3÷a 6b 2=-b ,故此选项正确.故选D.考点: 1合并同类项;2同底数幂的乘法;3幂的乘方与积的乘方.4.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是( )A .0.1B .0.2C .0.3D .0.4【答案】A.【解析】试题分析:第5组的频率=1.04086101240=----.故选A. 考点:频数与频率.5.如图,直线a ∥b ,直线l 与a 、b 分别相交于A 、B 两点,过点A 作直线l 的垂线交直线b 于点C ,若∠1=58°,则∠2的度数为( )A .58°B .42°C .32°D .28°【答案】C.考点:平行线的性质.6.已知点A (2,y 1)、B (4,y 2)都在反比例函数y=k x (k <0)的图象上,则y 1、y 2的大小关系为( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .无法确定【答案】B.【解析】试题分析:∵当k <0时,y=k x在每个象限内,y 随x 的增大而增大,∴y 1<y 2,故选B. 考点:反比例函数增减性.7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)15 20 25 30 35 户数 3 6 7 9 5则这30户家庭该用用水量的众数和中位数分别是( )A .25,27B .25,25C .30,27D .30,25【答案】D.【解析】试题分析:这组数据中30出现的次数最多,∴这组数据的众数为30,把它们按大小顺序排列后位于第15和16位的是25、25,∴中位数为25.故选D.考点:1众数;2中位数.8.如图,长4m 的楼梯AB 的倾斜角∠ABD 为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°,则调整后的楼梯AC 的长为( )A .23mB .26mC .(23﹣2)mD .(26﹣2)m【答案】B.考点:解直角三角形的应用.9.9.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( )A .(3,1)B .(3,43)C .(3,53)D .(3,2)【答案】B.【解析】试题分析:如图,作点D 关于直线AB 的对称点H ,连接CH 与AB 的交点为E ,此时△CDE 的周长最小.∵D (32,0),A (3,0),∴H (92,0),∴直线CH 解析式为y=﹣89x+4,当x=3时,y=43,∴点E 坐标(3,43) 故选:B .考点:1矩形;2轴对称;3平面直角坐标系.10.如图,在四边形ABCD 中,∠ABC=90°,AB=BC=22,E 、F 分别是AD 、CD 的中点,连接BE 、BF 、EF .若四边形ABCD 的面积为6,则△BEF 的面积为( )A .2B .94C .52D .3【答案】C.考点:1勾股定理;2三角形面积.二、填空题(共8小题,每小题3分,满分24分)11.分解因式:x2﹣1=.【答案】(x+1)(x-1).【解析】试题分析:x2-1=(x+1)(x-1).考点:因式分解.12.当x=时,分式x-22x+5的值为0.【答案】2.考点:分式.13.要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是运动员.(填“甲”或“乙”)【答案】乙.【解析】试题分析:方差越小,数据越稳定.乙的方差小于甲的方差,所以乙比较稳定.考点:方差.14.某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是 度.【答案】72.【解析】试题分析:根据条形图得出文学类人数为90,利用扇形图得出文学类所占百分比为:30%,则本次调查中,一共调查了:90÷30%=300(人),则艺术类读物所在扇形的圆心角是的圆心角是360°×60300=72°. 考点:1条形统计图;2扇形统计图.15.不等式组⎩⎨⎧-≤->+x x x 81212的最大整数解是 .【答案】3.考点:一元一次不等式组的整数解.16.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,过点C 的切线交AB 的延长线于点D ,若∠A=∠D ,CD=3,则图中阴影部分的面积为 .【答案】233π-. 【解析】试题分析:连接OC ,∴OC ⊥CD ,即∠OCD=90°,∴∠D+∠COD=90°,∵AO=CO ,∴∠A=∠ACO ,∴∠COD=2∠A ,∵∠A=∠D ,∴∠COD=2∠D ,∴3∠D=90°,∴∠D=30°,∴∠COD=60°,∵CD=3,∴OC=3×33=3, ∴阴影部分的面积=12×3×3﹣360360⨯⋅π=233π-.考点:1切线性质;2圆的有关计算;3圆周角定理.17.如图,在△ABC 中,AB=10,∠B=60°,点D 、E 分别在AB 、BC 上,且BD=BE=4,将△BDE 沿DE 所在直线折叠得到△B ′DE (点B ′在四边形ADEC 内),连接AB ′,则AB ′的长为 .【答案】27.考点:1轴对称;2等边三角形.18.如图,在平面直角坐标系中,已知点A 、B 的坐标分别为(8,0)、(0,23),C 是AB 的中点,过点C 作y 轴的垂线,垂足为D ,动点P 从点D 出发,沿DC 向点C 匀速运动,过点P 作x 轴的垂线,垂足为E ,连接BP 、EC .当BP 所在直线与EC 所在直线第一次垂直时,点P 的坐标为 .【答案】(1,3).考点:1相似三角形性质与判定;2平面直角坐标系.三、解答题(共10小题,满分76分)19.计算:()()02335+--+π.【解析】试题分析:利用绝对值、零指数幂、二次根式的性质分别化简在计算.试题解析:原式=5+3﹣1=7.考点:1二次根式;2绝对值;3零指数幂.20.解不等式2x ﹣1>3x -12,并把它的解集在数轴上表示出来.【答案】x >1,画图见解析.【解析】试题分析:利用不等式的基本性质可求得不等式的解集,再把阶级表示在数轴上即可. 试题解析:4x-2>3x-1,4x-3x >2-1,x >1.把它表示在数轴上如下图:考点:解一元一次不等式.21.先化简,再求值:⎪⎪⎭⎫ ⎝⎛+-÷++-1211222x x x x x ,其中x=3. 【答案】x -1x ,333-.考点:分式化简求值.22.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?【答案】中型汽车20辆,小型汽车30辆.试题分析:此题等量关系为:中型汽车+小型汽车=30,中型汽车停车费+小型汽车停车费=480,据此列方程求解即可.试题解析:设中型车有x 辆,小型车有y 辆,根据题意,得⎩⎨⎧=+=+48081250y x y x ,解得⎩⎨⎧==3020y x ,答:中型汽车20辆,小型汽车30辆. 考点:二元一次方程组的应用.23.. 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M 的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M 的纵坐标,请用树状图或表格列出点M 所有可能的坐标,并求出点M 落在如图所示的正方形网格内(包括边界)的概率.【答案】(1)13;(2)列表见解析,23.试题解析:(1)P (摸出的球为标有数字2的小球)=13;(2)列表如下:共有9种等可能的结果数,其中点M 落在如图所示的正方形网格内(包括边界)的结果数为6,∴P (点M 落在如图所示的正方形网格内)=69=23.考点:1列表或树状图求概率;2平面直角坐标系.24.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点D 作对角线BD 的垂线交BA 的延长线于点E .(1)证明:四边形ACDE 是平行四边形; (2)若AC=8,BD=6,求△ADE 的周长.【答案】(1)证明见解析;(2)18.考点:1平行四边形;2菱形.25.如图,一次函数y=kx+b 的图象与x 轴交于点A ,与反比例函数y=mx (x >0)的图象交于点B (2,n ),过点B 作BC ⊥x 轴于点C ,点P (3n ﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC ,求反比例函数和一次函数的表达式.【答案】反比例函数解析式:y=8x ,一次函数解析式:y=12x+3.【解析】试题分析:把B 、P 坐标代入可求得m 得值,反比例函数解析式即可求出. 过点P 作PD ⊥BC ,垂足为D ,并延长交AB 与点P ′.易证△BDP ≌△BDP ′,得到点P ′的坐标,再根据P ′和B 的坐标即可求出一次函数的解析式.试题解析:∵点B (2,n )、P (3n ﹣4,1)在反比例函数y=mx(x >0)的图象上,∴⎩⎨⎧=-=m n m n 432.解得⎩⎨⎧==48n m .∴反比例函数解析式:y=8x,∴点B (2,4),(8,1).过点P 作PD ⊥BC ,垂足为D ,并延长交AB 与点P ′.在考点:1反比例函数;2一次函数;3全等三角形.26.如图,AB 是⊙O 的直径,D 、E 为⊙O 上位于AB 异侧的两点,连接BD 并延长至点C ,使得CD=BD ,连接AC 交⊙O 于点F ,连接AE 、DE 、DF . (1)证明:∠E=∠C ;(2)若∠E=55°,求∠BDF 的度数;(3)设DE 交AB 于点G ,若DF=4,cosB=23,E 是弧AB 的中点,求EG •ED 的值.【答案】(1)证明见解析;(2)110°;(3)18. 【解析】试题分析:(1)连接AD ,可证AD ⊥BC ,根据线段垂直平分线的判定可得AB=AC ,进而可证∠E=∠C ;(2)利用圆内接四边形的性质得出∠AFD=180°﹣∠E ,根据三角形外角性质∠BDF=∠C+∠CFD ,可求出∠BDF 的度数;(3)根据cosB=23,求出AB 的长,再求出AE 的长,再利用△AEG ∽△DEA ,可求出EG ED 得值.试题解析:(1)证明:连接AD ,∴∠ADB=90°,即AD ⊥BC ,∵CD=BD ,∴AD 垂直平分BC ,∴AB=AC,∴∠考点:1圆;2相似;3三角函数.27.如图,在矩形ABCD 中,AB=6cm ,AD=8cm ,点P 从点B 出发,沿对角线BD 向点D 匀速运动,速度为4cm/s ,过点P 作PQ ⊥BD 交BC 于点Q ,以PQ 为一边作正方形PQMN ,使得点N 落在射线PD 上,点O 从点D 出发,沿DC 向点C 匀速运动,速度为3m/s ,以O 为圆心,0.8cm 为半径作⊙O ,点P 与点O 同时出发,设它们的运动时间为t (单位:s )(0<t <85).(1)如图1,连接DQ 平分∠BDC 时,t 的值为 ;(2)如图2,连接CM ,若△CMQ 是以CQ 为底的等腰三角形,求t 的值; (3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O 始终在QM 所在直线的左侧;②如图3,在运动过程中,当QM 与⊙O 相切时,求t 的值;并判断此时PM 与⊙O 是否也相切?说明理由.【答案】(1)34;(2)4049;(3)①证明见解析,②t=43,PM 与⊙O 不相切.【解析】试题分析:(1)先证△PBQ ∽△CBD ,求出PQ 、BQ ,进而可求出t 值;(2)先证△QTM ∽△BCD ,利用线段成比例可求出t 值;(3)①QM 交CD 于E ,利用DE 、DO 差值比较可判断点O 始终在QM 所在直线的左侧;②由①可知⊙O 只有在左侧与直线QM 相切于点H ,QM 与CD 交于点E .由△OHE ∽△BCD ,利用线段成比例可求t∵EQ ∥BD ,∴E C CD =CQ CB ,∴EC=34(8﹣5t ),ED=DC ﹣EC=6﹣34(8﹣5t )=154t ,∵DO=3t ,∴DE﹣DO=154t ﹣3t=34t >0,∴点O 在直线QM 左侧.②解:如图3中,由①可知⊙O 只有在左侧与直线QM 相切于点H ,QM 与CD 交于点E .∵EC=34(8﹣5t ),DO=3t ,∴OE=6﹣3t ﹣34(8﹣5t )=34t ,∵OH ⊥MQ ,∴∠OHE=90°,∵∠HEO=∠CEQ ,∴∠HOE=∠CQE=∠CBD ,∵∠OHE=∠C=90°,∴△OHE ∽△BCD ,∴OH BC =O E BD ,∴104388.0t,∴t=43.∴t=43s 时,⊙O 与直线QM 相切.连接PM ,假设PM 与⊙O 相切,则∠OMH= PMQ=22.5°,在MH 上取一点F ,考点:1圆的综合题;2矩形;3相似三角形;4等腰三角形.28.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M 的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).【答案】(1)y=﹣x 2+2x+3;(2)S=-12m 2+52m ,最大值为258;(3)①(52,74),②45°.【解析】试题分析:(1)先求出B 点坐标,再把B 点坐标代入即可求二次函数解析式;(2)根据M 的位置可确定0为(322m m -,﹣m2+2m+3),∴DM=m ﹣322m m -=352m m +-,∴S=12DM•OB =12×352m m +-×3=-12m 2+52m=-12(m-52)2+258,S 最大值为258;(3)①由(2)可知:M ′的坐标为(52,74);②过点M ′作直线l 1∥l ′,过点B 作BF ⊥l 1于点F 根据题意知:d 1+d 2=BF ,∵∠BFM ′=90°,∴点F 在以BM ′为直径的圆上,设直线AM ′与该圆相交于点H ,∵点C 在线段BM ′上,∴F 在优弧BM ′H 上,∴当F 与M ′重合时,BF 可取得最大值,此时BM ′⊥l 1,∵A (1,0),B (0,3),M ′(52,74),∴由勾股定理可求得:AB=10,M ′B=455,M ′A=485,过点M ′作M ′G ⊥AB 于点G ,设BG=x ,∴由勾股定理可得:M ′B 2﹣BG 2=M ′A 2﹣AG 2,∴ 8516﹣(10﹣x )2=12516﹣x 2,∴x=8105,cos ∠M ′BG=22,∵l 1∥l ′,∴∠BCA=90°,∠BAC=45°.考点:1二次函数综合题;2一次函数;3勾股定理;4圆.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
评卷人
得分
二、填空题
17.若关于 、 的方程组的解 满足 >0,则 的取值范围是__________.
18.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为___________.
评卷人
得分
三、解答题
19.如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y= 的图象经过点E,与AB交于点F.
绝密★启用前
2020年江苏省苏州市张家港市中考数学模拟试题
考试范围:xxx;考试时间:100分钟;命题人:xxx
题号



总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、单选题
1.下列各对数中,数值相等的数是( )
10.关于x的一元二次方程x2﹣2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是( )
A. B.
C. D.
11.如图,粮仓的顶部是圆锥形状,这个圆锥底面圆的半径长为3m,母线长为6m,为防止雨水,需在粮仓顶部铺上油毡,如果油毡的市场价是每平方米10元钱,那么购买油毡所需要的费用是()
A. 元B. 元C. 元D. 元
A.45°B.60°C.75°D.90°
14.如图,在边长为 的正方形 中,点 为对角线 上一动点, 于 于 ,则 的最小值为()
A. B. C. D.
15.如图,在反比例函数 的图象上有一动点A,连接并AO延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数 的图象上运动,若 ,则k的值为
(1)若点B坐标为(﹣6,0),求图象经过A、E两点的一次函数的表达式是_____;
(2)若AF﹣AE=2,则反比例函数的表达式是_____.
20.(1)已知实数a满足a2﹣6a+9=0,求 + ÷ 的值.
(2)先化简,再求值:( ﹣ )÷ ,其中a=2sin60°﹣tan45°
21.在Rt△ABC中,∠ACB=90°,利用直尺和圆规作图
(1)作出AB边上ห้องสมุดไป่ตู้中线CD;
(2)作出△ABC的角平分线AE;
(3)若AC=5,BC=12,求出斜边AB上的高的长度.
22.如图,一次函数y=kx+b的图象与反比例函数y= 的图象交于A(﹣2,1),B(1,n)两点.
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值>反比例函数的值的x的取值范围.
A.32与23B.﹣32与(﹣3)2
C.(3×2)3与3×23D.﹣23与(﹣2)3
2.以下四个标志中,是轴对称图形的是( )
A. B. C. D.
3.用肥皂水吹泡泡,泡沫的厚度约为0.000326毫米,0.000326用科学记数法表示为( )
A.3.26×10﹣4B.326×10﹣3C.0.326×10﹣3D.3.26×10﹣3
12.如图,A、D是⊙O上的两个点,BC是直径,若∠D=34°,则∠OAC等于()
A.68°B.58°C.72°D.56°
13.如图,在△ABC中,AB=AC,∠BAC=45°,将△ABC绕点A逆时针方向旋转得△AEF,其中,E,F是点B,C旋转后的对应点,BE,CF相交于点D.若四边形ABDF为菱形,则∠CAE的大小是( )
A.-3B.-6C.-9D.-12
16.将二次函数y=x2﹣5x﹣6在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,若直线y=2x+b与这个新图象有3个公共点,则b的值为( )
A.﹣ 或﹣12B.﹣ 或2C.﹣12或2D.﹣ 或﹣12
第II卷(非选择题)
请点击修改第II卷的文字说明
根据以上信息,解答下列问题(请写出每个空所需的求解步骤)
(1)该班共有多少名学生?其中穿175型号校服的学生有多少?
(2)在条形统计图中,请把空缺部分补充完整;(提醒:有两处需要补充)
(3)在扇形统计图中,185型校服所对应的扇形圆心角的大小是度;
(4)该班学生所穿校服型号的众数是型,中位数是型。
25.如图,二次函数y=x2+bx+c的图像与x轴交于A,B两点,B点坐标为(4,0),与y轴交于点C(0,4).点D为抛物线上一点
(1)求抛物线的解析式及A点坐标;
(2)若△BCD是以BC为直角边的直角三角形时,求点D的坐标;
(3)若△BCD是锐角三角形,请直接写出点D的横坐标m的取值范围.
26.如图,在平面直角坐标系中,点A(-5,0),以OA为半径作半圆,点C是第一象限内圆周上一动点,连结AC、BC,并延长BC至点D,使CD=BC,过点D作x轴垂线,分别交x轴、直线AC于点E、F,点E为垂足,连结OF.
(1)当∠BAC=30º时,求△ABC的面积;
(2)当DE=8时,求线段EF的长;
(3)在点C运动过程中,是否存在以点E、O、F为顶点的三角形与△ABC相似,若存在,请求出点E的坐标;若不存在,请说明理由.
4.如图, , 和 相交于点 , , ,则 等于()
A. B. C. D.
5.二次函数 的图象如图所示,则函数值 时x的取值范围是()
A. B.x>3C.-1<x<3D. 或x>3
6.如图,在 中, 为 上一点,连接 、 ,且 、 交于点 , ,则 等于()
A. B. C. D.
7.已知反比例函数 的图象位于第二、四象限,则 的取值范围为()
A. B. C. D.
8.一只小花猫在如图的方砖上走来走去,最终停留在阴影方砖上的概率是( )
A. B. C. D.
9.如图,点A、B、C、O在数轴上表示的数分别为a、b、c、0,且OA+OB=OC,则下列结论中:其中正确的有( )
①abc>0.
②a(b+c)=0.
③a﹣c=b.
④ =﹣1.
A.①③④B.①②④C.②③④D.①②③④
23.如图,在平行四边形ABCD中,CE是∠DCB的角平分线,且交AB于点E,DB与CE相交于点O,
(1)求证:△EBC是等腰三角形;
(2)已知:AB=7,BC=5,求 的值.
24.某学校为使学生及时穿上合身的校服,现提前对该校八年级四班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6个型号)
相关文档
最新文档