极值点偏移问题的两种常见解法之比较演示教学
专题20 极值点偏移问题(解析版)
专题20极值点偏移问题1.极值点偏移的含义若单峰函数f (x )的极值点为x 0,则极值点的偏移问题的图示及函数值的大小关系如下表所示.极值点x 0函数值的大小关系图示极值点不偏移x 0=x 1+x 22f (x 1)=f (2x 0-x 2)极值点偏移左移x 0<x 1+x 22峰口向上:f (x 1)<f (2x 0-x 2)峰口向下:f (x 1)>f (2x 0-x 2)右移x 0>x 1+x 22峰口向上:f (x 1)>f (2x 0-x 2)峰口向下:f (x 1)<f (2x 0-x 2)2.函数极值点偏移问题的题型及解法极值点偏移问题的题设一般有以下四种形式:(1)若函数f (x )在定义域上存在两个零点x 1,x 2(x 1≠x 2),求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(2)若在函数f (x )的定义域上存在x 1,x 2(x 1≠x 2)满足f (x 1)=f (x 2),求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(3)若函数f (x )存在两个零点x 1,x 2(x 1≠x 2),令x 0=x 1+x 22,求证:f ′(x 0)>0;(4)若在函数f (x )的定义域上存在x 1,x 2(x 1≠x 2)满足f (x 1)=f (x 2),令x 0=x 1+x 22,求证:f ′(x 0)>0.3.极值点偏移问题的一般解法3.1对称化构造法主要用来解决与两个极值点之和,积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数的单调性,进而确定函数的极值点0x .(2)构造函数,即对结论1202x x x +>型,构造函数0()()(2)F x f x f x x =--或00()()()F x f x x f x x =+--;(3)对结论2120x x x ⋅>型,构造函数20()()()x F x f x f x=-,通过研究()F x 的单调性获得不等式.(4)判断单调性,即利用导数讨论()F x 的单调性.(5)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(6)转化,即利用函数f (x )的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.3.2.差值代换法(韦达定理代换令1212,x x t x x t =±=.)差值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之差作为变量,从而实现消参、减元的目的.设法用差值(一般用t 表示)表示两个极值点,即12t x x =-,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.3.3.比值代换法比值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点的比值作为变量,从而实现消参、减元的目的.设法用比值(一般用t 表示)表示两个极值点,即12x t x =,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.3.4.对数均值不等式法两个正数a 和b (),(, )ln ln ().a ba b L a b a ba ab -⎧≠⎪=-⎨⎪=⎩(, )2a bL a b +≤≤(此式记为对数平均不等式)取等条件:当且仅当a b =时,等号成立.3.5指数不等式法在对数均值不等式中,设m a e =,nb e =,则()(,)()m nme e m n E a b m n e m n ⎧-≠⎪=-⎨⎪=⎩,根据对数均值不等式有如下关系:2(,)2m nm ne e eE a b ++≤≤专项突破练1.已知函数()1ln f x x a x=++.(1)求函数()f x 的单调区间;(2)当()()()1212f x f x x x =≠时,证明:122x x +>.【解析】(1)∵()1ln f x x a x=++,∴()22111x f x x x x -'=-=,令()0f x '=,得x =1,当01x <<时,()0f x '<,()f x 单调递减;当1x >时,()0f x '>,()f x 单调递增,故函数()f x 的减区间为()0,1,增区间为()1,+∞;(2)由(1)知,不妨设1201x x <<<,构造函数()()()2g x f x f x =--,01x <<,故()()()()()()2222241112022x x x g x f x f x x x x x ----'''=+-=+=<--,故()g x 在()0,1上单调递减,()()10g x g >=,∵()10,1x ∈,∴()()()11120g x f x f x =-->,又∵()()12f x f x =,∴()()2120f x f x -->,即()()212f x f x >-,∵1201x x <<<,∴2x ,()121,x -∈+∞,又∵()f x 在()1,+∞上单调递增,∴212x x >-,即122x x +>,得证.2.已知函数()()e ln xf x x a =+.(1)若()f x 是增函数,求实数a 的取值范围;(2)若()f x 有两个极值点1x ,2x ,证明:122x x +>.【解析】(1)函数的定义域为()0,∞+,()1e ln x f x x a x ⎛⎫'=++ ⎪⎝⎭,若()f x 是增函数,即()0f x '≥对任意0x >恒成立,故1ln 0x a x++≥恒成立,设()1ln g x x a x=++,则()22111x g x x x x -'=-=,所以当01x <<时,()0g x '<,()g x 单调递减,当1x >时,()0g x '>,()g x 单调递增,所以当1x =时,()()min 11g x g a ==+,由10a +≥得1a ≥-,所以a 的取值范围是[)1,-+∞.(2)不妨设120x x <<,因为1x ,2x 是()f x 的两个极值点,所以()11111e ln 0x f x x a x ⎛⎫'=++= ⎪⎝⎭,即111ln 0x a x ++=,同理221ln 0x a x ++=,故1x ,2x 是函数()1ln g x x a x=++的两个零点,即()()120g x g x ==,由(1)知,()()min 110g x g a ==+<,故应有(),1a ∞∈--,且1201x x <<<,要证明122x x +>,只需证212x x >-,只需证()()()()211122g x g x g x g x --=--()()111111111111ln ln 2ln ln 2022x a x a x x x x x x ⎡⎤=++--++=+--+>⎢⎥--⎣⎦,设()()11ln ln 22h x x x x x =+--+-,(]0,1x ∈,则()()()()()22222224111111102222x x x h x x x x x x x x x ---'=----=-≤----,所以()h x 在()0,1上单调递减,因为()10,1x ∈,所以()()110h x h >=,即()()2120g x g x -->,()()212g x g x >-,又21>x ,121x ->,及()g x 在()1,+∞上单调递增,所以212x x >-成立,即122x x +>成立.3.已知函数()()11e xf x x -=+.(1)求()f x 的极大值;(2)设m 、n 是两个不相等的正数,且()()11e 1e 4e n m m n m n +-+++=,证明:2m n +<.【解析】(1)因为()()111e 1e x x f x x x --+==+的定义域为R ,()1e x xf x -'=-,当0x <时,()0f x '>,此时函数()f x 单调递增,当0x >时,()0f x '<,此时函数()f x 单调递减,所以,函数()f x 的极大值为()0e f =.(2)证明:因为()()11e 1e 4e n m m n m n +-+++=,则11114e e em n m n --+++=,即()()4f m f n +=,由(1)知,函数()f x 在(),1-∞上单调递增,在()1,+∞上单调递减,因为m 、n 是两个不相等的正数,且满足()()4f m f n +=,不妨设01m n <<<,构造函数()()()2g x f x f x =+-,则()()()1122ee x xxx g x f x f x ---'''=--=--,令()()h x g x '=,则()()()()111111e 1e e ex x x x xh x x x -----'=---=--.当01x <<时,101x x ->>-,则()0h x '<,此时函数()h x 单调递减,当1x >时,101x x ->>-,则()0h x '<,此时函数()h x 单调递减,又因为函数()h x 在()0,∞+上连续,故函数()h x 在()0,∞+上单调递减,当01x <<时,()()10h x h >=,即()0g x '>,故函数()g x 在()0,1上为增函数,故()()()()()()214f m f m g m g f m f n -+=<==+,所以,()()2f n f m >-,21m -> 且1n >,函数()f x 在()1,+∞上为减函数,故2n m <-,则2m n +<.4.已知函数()1ln xf x ax+=(1)讨论f (x )的单调性;(2)若()()2112e e xxx x =,且121200x x x x >>≠,,,证明:>【解析】(1)()()2ln 0xf x x ax -'=>当0a >时,()01x ∈,,()0f x '>,所以()f x 单调递增;()1x ∈+∞,,()0f x '<,所以()f x 单调递减;当0a <时,()01x ∈,,()0f x '<,所以()f x 单调递减;()1x ∈+∞,,()0f x '>,所以()f x 单调递增;(2)证明:()()2112x x x x =e e ,∴()()2112ln ln x x x x =e e ,()()1212ln ln x x x x =e e 即当1a =时,()()12f x f x =由(1)可知,此时1x =是()f x 的极大值点,因此不妨令1201x x <<<>22122x x +>①当22x ≥时,22122x x +>成立;②当212x <<时先证122x x +>此时()2201x -∈,要证122x x +>,即证:122x x >-,即()()122f x f x >-,即()()222f x f x >-即:()()2220f x f x -->①令()()()()()()1ln 21ln 21,22x x g x f x f x x x x+-+=--=-∈-,∴()()()()()222222ln 2ln 2ln 2ln ln 02x x x x x x g x x x x x x ---'=-->--=->-∴()g x 在区间()12,上单调递增∴()()10x g g >=,∴①式得证.∴122x x +>∵21112x x +>,22212x x +>∴221212222x x x x ++>+∴()221212222x x x x +>+->>5.已知函数()22ln x f x x a=-(a ∈R 且0a ≠).(1)2a =,求函数()f x 在()()22f ,处的切线方程.(2)讨论函数()f x 的单调性;(3)若函数()f x 有两个零点12x x 、()12x x <,且2e a =,证明:122e x x +>.【解析】(1)当2a =时,()22ln 2x f x x =-,所以()222ln 2f =-.()2f x x x '=-,所以()22212f '=-=.所以函数()f x 在()()22f ,处的切线方程为()22ln 22y x --=-,即2ln 2y x =-.(2)()f x 的定义域为(0,+∞),22()x f x a x'=-.当a <0时,()0f x '<恒成立,所以()f x 在(0,+∞)上单调递减;当a >0时,(222()x f x x x a x ax'=-=.在(上,()0f x '<,所以()f x 单调递减;在)+∞上,()0f x '>,所以()f x 单调递增.(3)当2e a =,()222ln ex f x x =-.由(2)知,()f x 在()0,e 上单调递减,在()e,∞+上单调递增.由题意可得:()12(0,e),e,x x ∈∈+∞.由(2e)22ln 20f =->及2()0f x =得:()2e,2e x ∈.欲证x 1+x 2>2e ,只要x 1>2e-x 2,注意到f (x )在(0,e)上单调递减,且f (x 1)=0,只要证明f (2e-x 2)>0即可.由22222()2ln 0ex f x x =-=得22222e ln x x =.所以22222(2e )(2e )2ln(2e )e x f x x --=--2222224e 4e 2ln(2e )e x x x -+=--()2222224e 4e 2e ln 2ln 2e e x x x -+=--2222442ln 2ln(2e ),(e,2e),ex x x x =-+--∈令4()42ln 2ln(2e ),(e,2e)etg t t t t =-+--∈则24224(e )()0e 2e e (2e )t g t t t t t -'=-++=--,则g (t )在(e ,2e)上是递增的,∴g (t )>g (e)=0即f (2e-x 2)>0.综上x 1+x 2>2e.6.已知函数()ln f x x x =-(1)求证:当1x >时,()21ln 1x x x ->+;(2)当方程()f x m =有两个不等实数根12,x x 时,求证:121x x m +>+【解析】(1)令()()()21ln 11x g x x x x -=->+,因为()()()()222114011x g x x x x x -'=-=>++,所以()g x 在()1,+∞上单调递增,所以()()10g x g >=,即当1x >时,()21ln 1x x x ->+.(2)证明:由()ln f x x x =-,得()11f x x'=-,易知()f x 在()0,1单调递减,在()1,+∞单调递增,所以()min 1f x =.因为方程()f x m =有两个不等实根,所以1m >.不妨设1201x x <<<.由(1)知,当1x >时,()21ln 1x x x ->+;当01x <<时,()21ln 1x x x -<+.方程()f x m =可化为ln x m x -=.所以()222221ln 1x x m x x --=>+,整理得()222120x m x m -++->.①同理由()111121ln 1x x m x x --=<+,整理得()211120x m x m -++-+>.②由①②,得()()()211210x x x x m -+-+>⎡⎤⎣⎦.又因为21x x >所以121x x m +>+.法二:由()ln f x x x =-,得()11f x x'=-,易知()f x 在()0,1单调递减,在()1,+∞单调递增,所以()min 1f x =.因为方程()f x m =有两个不等实根,所以1m >.不妨设1201x x <<<.要证121x x m +>+,只要证1211ln 1x x x x +>-+,只要证:21ln 11x x >-+>.因为()f x 在()1,+∞上单调递增,只要证:()()()1211ln f x f x f x =>-.令()()()(1ln 01h x f x f x x =--<<,只要证()0,1x ∀∈,()0h x >恒成立.因为()()()()1111ln 11ln 111ln 1ln x x x h x f x f x x x x x x x --⎛⎫⎛⎫=---=-+-=⎪ ⎪-⎭'⎝'-'⎝⎭,令()()ln 101F x x x x x =--<<,则()ln 0F x x '=->,故()F x 在()0,1上单调递增,()()10F x F <=,所以()0h x '<,所以()h x 在()0,1上单调递减,所以()()10h x h >=,故原结论得证.7.已知函数()()22ln 21f x a x x a x a =-+-+.(1)若1a =,证明:()22f x x x <-;(2)若()f x 有两个不同的零点12,x x ,求a 的取值范围,并证明:122x x a +>.【解析】(1)当1a =时,()22ln 1f x x x =-+,定义域为()0,∞+令()()()222ln 21g x f x x x x x =--=-+,则()22g x x'=-当01x <<时,()0g x '>;当1x <时,()0g x '<;所以函数()g x 在()0,1上单调递增,在()1,+∞上单调递减,故()()max 110g x g ==-<,所以()0g x <,得()22f x x x <-;(2)因为()f x 有两个不同的零点12,x x ,则()f x 在定义域内不单调;由()()()()212221x a x af x x a x x--+'=-+-=当0a ≤时,()0f x '<在()0,∞+恒成立,则()f x 在()0,∞+上单调递减,不符合题意;当0a >时,在()0,a 上有()0f x '>,在(),a +∞上有()0f x '<,所以()f x 在()0,a 上单调递增,在(),a +∞上单调递减.不妨设120x a x <<<令()()()2F x f x f a x =--则()()()()()()222F x f x f a x a x f x f a x ''''''=---=+-()()()()()2422221222122a x a ax a a x a x a x x a x -=-+-+--+-=--当()0,x a ∈时,()0F x '>,则()F 在()0,a 上单调递增所以()()()()20F x F a f a f a a <=--=故()()2f x f a x <-,因为120x a x <<<所以()()12f x f a x <-1,又()()2f x f x =1,122a a x a <-<则()()212f x f a x <-,又()f x 在(),a +∞上单调递减,所以212x a x >-,则122x x a +>.8.已知函数()21ln 2f x x x x x =+-.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)若()00f x '=(()f x '为()f x 的导函数),方程()f x m =有两个不等实根1x 、2x ,求证:1202x x x +>.【解析】(1)因为()21ln 2f x x x x x =+-,则()ln f x x x '=+,所以,()112f =-,()11f '=,所以,曲线()y f x =在点()()1,1f 处的切线方程为112y x +=-,即32y x =-.(2)证明:因为()ln f x x x '=+,()00f x '=,所以00ln 0x x +=.因为()f x '为增函数,所以()f x 在()00,x 上单调递减,在()0,x +∞上单调递增.由方程()f x m =有两个不等实根1x 、2x ,则可设102x x x <<,欲证1202x x x +>,即证20102x x x x >->,即证()()2012f x f x x >-,而()()21f x f x =,即()()10120f x f x x -->,即()()()()2211110*********ln 2ln 222022x x x x x x x x x x x x +------+->,设()()()()()22000011ln 2ln 22222g x x x x x x x x x x x x x =+------+-,其中00x x <<,则()()00ln ln 22g x x x x x =+-+',设()()()000ln ln 220h x x x x x x x =<+<+-,则()()()000211022x x x x x x x x h x -=-=>--',所以,函数()g x '在()00,x 上单调递增,所以()()0002ln 20g x g x x x '<='+=,所以()g x 在()00,x 上单调递减,所以()()00g x g x >=,即()()2012f x f x x >-,故1202x x x +>得证.9.已知函数2()1e (1),1,1x f x k x x k R x ⎛⎫=--->-∈ ⎪+⎝⎭.(1)若0k =,证明:(1,0)x ∈-时,()1f x <-;(2)若函数()f x 恰有三个零点123,,x x x ,证明:1231x x x ++>.【解析】(1)0k =时,函数1()e ,(1,0)1xx f x x x -=∈-+,则221()e 0(1)x x f x x +='>+,()f x 在(1,0)-上单调递增,所以1()e (0)11xx f x f x -=<=-+.(2)e ()(1)1x f x x k x ⎛⎫=--⎪+⎝⎭,显然1x =为函数的一个零点,设为3x ;设函数e ()1xF x k x =-+,2e ()(1)x x F x x '=+当(1,0)x ∈-时,()0F x '<,当,()0x ∈+∞时,()0F x '>,故()F x 在(1,0)-上单调递减,在(0,)+∞上单调递增.由已知,()F x 必有两个零点12,x x ,且1210x x -<<<,下证:120x x +>.设函数()()(),(1,0)h x F x F x x =--∈-,则e e ()11x xh x x x -=++-,2e 11()e e (1)11x x x x x x h x x x x -++⎛⎫⎛⎫=+- ⎪⎪+--⎝⎭⎝⎭',由于(1,0)x ∈-,则2e 1e 0(1)1x x x x x x -+⎛⎫-< ⎪+-⎝⎭,由(1)有1e 01xx x ++>-,故()0h x '<,即函数()h x 在(1,0)-上单调递减,所以()(0)0h x h >=,即有()()()211F x F x F x =>-,由于12,(0,)x x -∈+∞,且在(0,)+∞上单调递增,所以21x x >-,所以120x x +>.10.已知函数()()()1ln 3f x x x a x =++-.(1)若函数()f x 为增函数,求实数a 的取值范围;(2)若函数()f x 有两个极值点1x 、()212x x x <.求证:()()12122f x f x x x +++>-.【解析】(1)因为()()()1ln 3f x x x a x =++-,该函数的定义域为()0,∞+,()1ln 2f x x a x'=++-,若函数()f x 为增函数,则()0f x '≥恒成立.令()1ln 2g x x a x =++-,()22111x g x x x x-'=-=,令()0g x '=得1x =,当()0,1x ∈时,()0g x '<,()g x 单调递减;当()1,x ∈+∞时,()0g x '>,()g x 单调递增,故()()11g x g a ≥=-,所以,10a -≥,因此1a ≥.(2)因为函数()f x 有两个极值点1x 、()212x x x <,即方程()0g x =有两个不等的实根1x 、()212x x x <,因为()g x 在()0,1上递减,在()1,+∞上递增,所以,1201x x <<<,即1x 、2x 是1ln 20x a x++-=的两个根,所以11221ln 201ln 20x a x x a x ⎧++-=⎪⎪⎨⎪++-=⎪⎩,则()()111222ln 21ln 21x x a x x x a x ⎧+-=-⎪⎨+-=-⎪⎩,所以,()()()()121211221212ln ln ln ln 2f x f x x x x x x x x x a x x +++=++++-+12ln ln 2x x =+-,即证12ln ln 0x x +>,即证121x x >.由11221ln 201ln 20x a x x a x ⎧++-=⎪⎪⎨⎪++-=⎪⎩两式作差得122111ln x x x x =-,令()120,1x t x =∈,则11ln t x t -=,21ln t x t t-=,即只需证111ln ln t t t t t--⋅>,即证ln 0t >.令()ln t t ϕ=-()0,1t ∈,则()210t ϕ-'=,故()t ϕ在区间()0,1上单调递减,当()0,1t ∈时,()()10t ϕϕ>=,命题得证.11.已知函数()ln f x x x =-.(1)求函数()f x 的单调区间;(2)若函数()y f x =的图象与()y m m R =∈的图象交于()11,A x y ,()22,B x y 两点,证明:12242ln 2x x +>-.【解析】(1)()f x 的定义域为(0,)+∞令11()10xf x x x -'=-=>,解得01x <<令11()10x f x x x-'=-=<,解得1x >所以()f x 的单调增区间为(0,1),减区间为(1,)+∞(2)由(1)不妨设1201x x <<<由题知11ln x x m -=,22ln x x m -=两式相减整理可得:12121ln x x x x -=所以要证明12242ln 2x x +>-成立,只需证明1211222(42ln 2l )n x x x x x x +->-因为12ln 0x x <,所以只需证明212112(42ln 2ln )2x x x x x x <-+-令12,01x t t x =<<,则只需证明1(42ln l 21n 2)t t t -<-+,即证(1)ln (1)02(42ln 2)t t t +--<-令2()(1)ln (1)2(4ln 2)g t t t t -=-+-2ln 22l 12ln (2)1()22n 2ln t t t g t t t t++'--=++=记()2ln (2)12ln 2h x t t t +-=+则()2ln 2h x t '=易知,当102t <<时,()0h x '<,当112t <<时,()0h x '>所以当12t =时,min 11()()022n 2ln l h x h ==+=所以当01t <<时,()0g t '≥,函数()g t 单调递增故()(1)0g t g <=,即(1)ln (1)02(42ln 2)t t t +--<-所以,原不等式12242ln 2x x +>-成立.12.已知函数()()3ln 010f x ax x a a =+≠.(1)讨论()f x 的单调性.(2)若函数()f x 有两个零点12x x ,,且12x x <,证明:12310x x +>.【解析】(1)函数()f x 的定义域为()0,∞+,()()ln ln 1f x a x a a x '=+=+.①当0a >时,令()0f x '<,得10x e <<,则()f x 在10,e ⎛⎫⎪⎝⎭上单调递减;令()0f x '>,得1x e >,则()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.②当0a <时,令()0f x '<,得1x e >,则()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减;令()0f x '>,得10x e <<,则()f x 在10,e ⎛⎫⎪⎝⎭上单调递增.综上所述,当0a >时,()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增;当0a <时,()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减,在10,e ⎛⎫ ⎪⎝⎭上单调递增.(2)证明:因为12x x ,为()f x 的两个零点,所以113ln 010x x +=,223ln 010x x +=,两式相减,可得121233ln ln 01010x x x x -+-=,即1122123ln 10x x x x x x -=⋅,121212310ln x x x x x x -=⋅,因此,121121310ln x x x x x -=⋅,212121310ln x x x x x -=⋅.令12x t x =,则121113513310ln 10ln 10ln t t t x x t t t---+=⋅+⋅=⋅,令()()1ln 01h t t t t t =--<<,则()22211110t t h t t t t -+'=+-=>,所以函数()h t 在()0,1上单调递增,所以()()10h t h <=,即1ln 0t t t--<.因为01t <<,所以11ln t t t->,故12310x x +>得证.13.已知函数()ln f x x x ax a =-+.(1)若1≥x 时,()0f x ≥,求a 的取值范围;(2)当1a =时,方程()f x b =有两个不相等的实数根12,x x ,证明:121x x <.【解析】(1)∵1≥x ,()0f x ≥,∴ln 0a x a x -+≥,设()ln (1)ag x x a x x =-+≥,()221a x a g x x x x-'=-=,当1a >时,令()0g x '=得x a =,当1x a <≤时,()0g x '<,()g x 单调递减;当x a >时,()0g x '>,()g x 单调递增,∴()(1)0g a g <=,与已知矛盾.当1a ≤时,()0g x '≥,∴()g x 在[1,)+∞上单调递增,∴()(1)0g x g ≥=,满足条件;综上,a 取值范围是(,1]-∞.(2)证明:当1a =时,()ln f x x '=,当1x >,'()0f x >,当01x <<,'()0f x <,则()f x 在区间(1,)+∞上单调递增,在区间()0,1上单调递减,不妨设12x x <,则1201x x <<<,要证121x x <,只需证2111x x <<,∵()f x 在区间(1,)+∞上单调递增,∴只需证121()(f x f x <,∵12()()f x f x =,∴只需证111()()f x f x <.设1()()()(01)F x f x f x x =-<<,则22211()ln ln ln 0,x F x x x x x x -'=-=>,∴()F x 在区间()0,1上单调递增,∴()(1)0F x F <=,∴1()()0f x f x-<,即111()()f x f x <成立,∴121x x <.14.设函数()()e xf x x a =+,已知直线21y x =+是曲线()y f x =的一条切线.(1)求a 的值,并讨论函数()f x 的单调性;(2)若()()12f x f x =,其中12x x <,证明:124x x ⋅>.【答案】(1)1a =;()f x 在(),2-∞-上单调递减,在()2,-+∞上单调递增【解析】(1)设直线21y x =+与曲线()y f x =相切于点()()00,x f x ,()()1e x f x x a '=++ ,()()0001e 2x f x x a '∴=++=;又()()0000e 21x f x x a x =+=+,002e 21xx ∴-=+,即00e 210x x +-=;设()e 21x g x x =+-,则()e 20xg x '=+>,()g x ∴在R 上单调递增,又()00g =,()g x ∴有唯一零点0x =,00x ∴=,12a ∴+=,解得:1a =;()()1e x f x x ∴=+,()()2e x f x x '=+,则当(),2x ∞∈--时,()0f x '<;当()2,x ∈-+∞时,()0f x '>;()f x ∴在(),2-∞-上单调递减,在()2,-+∞上单调递增.(2)由(1)知:()()2min 2e 0f x f -=-=-<;当1x <-时,()0f x <;当1x >-时,()0f x >,1221x x ∴<-<<-;要证124x x ⋅>,只需证1242x x <<-;()f x 在(),2-∞-上单调递减,∴只需证()124f x f x ⎛⎫> ⎪⎝⎭,又()()12f x f x =,则只需证()224f x f x ⎛⎫> ⎪⎝⎭对任意()22,1x ∈--恒成立;设()()()421h x f x f x x ⎛⎫=--<<- ⎪⎝⎭,()()()()444333822e 2e e e 8xx xxxx x h x x x x x -⎛⎫++'∴=++=+ ⎪⎝⎭;设()()43e821x xp x x x -=+-<<-,则()2437e024x xp x x x -⎡⎤⎛⎫'=⋅++<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,()p x ∴在()2,1--上单调递减,()()2880p x p ∴<-=-+=,又当21x -<<-时,()432e 0xx x +<,()0h x '∴>,()h x ∴在()2,1--上单调递增,()()()()2220h x h f f ∴>-=---=,即()4f x f x ⎛⎫> ⎪⎝⎭在()2,1x ∈--时恒成立,又()22,1x ∈--,()224f x f x ⎛⎫∴> ⎪⎝⎭,原不等式得证.15.已知函数()()32ln f x x x a a R x=++-∈有两个不同的零点12,x x .(1)求实数a 的取值范围;(2)求证:121x x >.【解析】(1)定义域为()()22232230,,1x x f x x x x ∞+-+=-+=',()(),0,10x f x '∈<,所以()f x 在()0,1x ∈上单调递减.()()1,,0x f x '∈+∞>,所以()f x 在()1,x ∈+∞上单调递增,所以()f x 在1x =处取得极小值,也是最小值,又()min ()14f x f a ==-,所以先保证必要条件()10f <成立,即4a >满足题意.当4a >时,易知,()()()33222ln 22ln 2022f a a a a a a a a=++-=++>;()111132ln 2ln 0;f a a a a a a aa a ⎛⎫=+--=+->> ⎪⎝⎭由以上可知,当4a >时,()()32ln f x x x a a R x=++-∈有两个不同的零点.(2)由题意,假设1201x x <<<,要证明121x x >,只需证明121x x >.只需证()121f x f x ⎛⎫< ⎪⎝⎭,又()()12f x f x =.即只需证()221f x f x ⎛⎫< ⎪⎝⎭,构造函数()()1,(1)g x f x f x x ⎛⎫=-> ⎪⎝⎭.()224ln g x x xx =-+()222(1)x g x x --∴=',所以()g x 在()1,+∞单调递减.()()()2210,1,1g x g x g =>∴< ,即()221f x f x ⎛⎫<⎪⎝⎭成立,即()121f x f x ⎛⎫< ⎪⎝⎭所以原命题成立.16.已知a 是实数,函数()ln f x a x x =-.(1)讨论()f x 的单调性;(2)若()f x 有两个相异的零点12,x x 且120x x >>,求证:212e x x ⋅>.【解析】(1)()f x 的定义域为()0,∞+,()1a a x f x x x-'=-=,当0a ≤时,()0f x '<恒成立,故()f x 在()0,∞+上单调递减;当0a >时,令()0f x '>得:()0,x a ∈,令()0f x '<得:(),x a ∈+∞,故()f x 在()0,x a ∈上单调递增,在(),x a ∈+∞上单调递减;综上:当0a ≤时,()f x 在()0,∞+上单调递减;当0a >时,()f x 在()0,x a ∈上单调递增,在(),x a ∈+∞上单调递减;(2)由(1)可知,要想()f x 有两个相异的零点12,x x ,则0a >,不妨设120x x >>,因为()()120f x f x ==,所以1122ln 0,ln 0a x x a x x -=-=,所以()1212ln ln x x a x x -=-,要证212e x x ⋅>,即证12ln ln 2x x +>,等价于122x x a a +>,而1212ln ln 1x x a x x -=-,所以等价于证明121212ln ln 2x x x x x x ->-+,即()1212122ln x x x x x x ->+,令12x t x =,则1t >,于是等价于证明()21ln 1t t t ->+成立,设()()21ln 1t g t t t -=-+,1t >()()()()222114011t g t t t t t -'=-=>++,所以()g t 在()1,+∞上单调递增,故()()10g t g >=,即()21ln 1t t t ->+成立,所以212e x x ⋅>,结论得证.17.已知函数()1e xf x ax -=-,(1)讨论函数()f x 的单调性;(2)若函数()f x 在()0,2上有两个不相等的零点12,x x ,求证:121x x a>.【解析】(1)()1e xf x a -='-,x ∈R .①当0a ≤时,()0f x '>恒成立,()f x 单调递增;②当0a >时,由()0f x '>得,()1ln ,x a ∈++∞,()f x 单调递增,由()0f x '<得,(),1ln x a ∈-∞+,()f x 单调递减.综上:当0a ≤时,()f x 单调递增;当0a >时,()f x 在()1ln ,x a ∈++∞上单调递增,在(),1ln x a ∈-∞+上单调递减.(2)∵()f x 在()0,2上有两个不相等的零点1x ,2x ,不妨设12x x <,∴1e x a x -=在()0,2上有两个不相等的实根,令()1e x g x x -=,()0,2x ∈,∴()()12e 1x x g x x --'=,由()0g x '<得,()0,1x ∈,()g x 单调递减,由()0g x '>得,()1,2x ∈,()g x 单调递增,()11g =,()e 22g =,0x →,()g x ∞→+,∴e 1,2a ⎛⎫∈ ⎪⎝⎭要证121x x a>,即证121ax x >,又∵()()12g x g x a ==,只要证211e1x x ->,即证211e x x ->,∵121x x <<,即证()()211e xg x g -<即证()()212e x g x g -<,即证12221e 112e e ex x x x ----<,即证212e ln 10x x -+->令()1eln 1xh x x -=+-,()1,2x ∈,∴()11e x h x x-'=-+,令()e e x x x ϕ=-,()1,2x ∈,则()e e x x ϕ'=-,当()1,2x ∈时,()e e>0x x ϕ'=-恒成立,所以()e e xx x ϕ=-在()1,2x ∈上单调递增,又()()10x ϕϕ>=,∴e e x x >,∴11e x x-<,∴()0h x '>∴()h x 在()1,2上递增,∴()()10h x h >>,∴1e ln 10x x -+->,∴121x x a>.18.已知函数21()ln 2f x x x x x =+-的导函数为()'f x .(1)判断()f x 的单调性;(2)若关于x 的方程()f x m '=有两个实数根1x ,212()x x x <,求证:2122x x <.【解析】(1)()1(1ln )(0)f x x x x x x '=+-+=>,令()ln g x x x =-,由11()1(0)x g x x x x'-=-=>,可得()g x 在(0,1)上单调递减,(1,)+∞上单调递增,所以()()(1)10f x g x g '==>,所以()f x 在(0,)+∞上单调递增;(2)依题意,1122ln ln x x mx x m-=⎧⎨-=⎩,相减得2121ln x x x x -=-,令21(1)x t t x =>,则有1ln 1t x t =-,2ln 1t t x t =-,欲证2122x x <成立,只需证222ln (ln )21(1)t t t t t ⋅<--成立,即证3322(1)(ln )t t t -<成立,即证13232(1)ln t t t-<成立,令13(1)t x x =>,只需证13212()3ln 0x x x-->成立,令1321()2()3ln (1)F x x x x x=-->,即证1x >时,()0F x >成立11323333232(2)3()2(1x x F x x x x+-'=+-=,令1323()2(2)3(1)h x x x x =+->,则11233()2(3)63(22)(1)x x x x x g x '=-=->,可得()h x 在23(1,2)内递减,在23(2,)+∞内递增,所以23()(2)0h x h = ,所以()0F x ',所以()F x 在(1,)+∞上单调递增,所以()(1)0F x F >=成立,故原不等式成立.19.已知函数()ln f x x =.(1)设函数()()ln tg x x t x=-∈R ,且()()g x f x ≤恒成立,求实数t 的取值范围;(2)求证:()12e e x f x x>-;(3)设函数()()1y f x ax a R x=--∈的两个零点1x 、2x ,求证:2122e x x >.【解析】(1)由()()g x f x ≤可得ln ln tx x x-≤,可得2ln t x x ≤,令()2ln h x x x =,其中0x >,则()()21ln h x x '=+,当10ex <<时,()0h x '<,此时函数()h x 单调递减,当1ex >时,()0h x '>,此时函数()h x 单调递增,所以,()min 12e e h x h ⎛⎫==- ⎪⎝⎭,所以,2e t ≤-;(2)要证()12e e x f x x >-,即证2ln e ex x x x >-,由(1)可知,1ln ex x ≥-,当且仅当1e x =时,等号成立,令()2e exx m x =-,其中0x >,则()1e x x m x -'=,当01x <<时,()0m x '>,此时函数()m x 单调递增,当1x >时,()0m x '<,此时函数()m x 单调递减,所以,()()max 11em x m ==-,因为1ln ex x ≥-和()1e m x ≤-取等的条件不同,故2ln e e x x x x >-,即()12e e x f x x >-;(3)由题知1111ln x ax x -=①,2221ln x ax x -=②,①+②得()()12121212ln x x x x a x x x x +-=+③,②-①得()22121112ln xx x a x x x x x ⎛⎫-+=- ⎪⎝⎭④.③÷④得()()1212212122112ln ln x x x x x x x x x x x x ++-=-,不妨设120x x <<,记211x t x =>.令()()()21ln 11t F t t t t -=->+,则()()()()222114011t F t t t t t -'=-=>++,所以()F t 在()1,+∞上单调递增,所以()()10F t F >=,则()21ln 1t t t ->+,即()2121122lnx x x x x x ->+,所以()()1212212122112ln ln 2x x x x x x x x x x x x ++-=>-.因为()()()()1212121212122ln ln ln x x x x x x x x x x +-<==所以2,即1>.令()2ln x x x ϕ=-,()2120x x xϕ'=+>,则()x ϕ在()0,∞+上单调递增.又)1lnln 2112e =+<,所以)1ln >-)ϕϕ>,所以2122x xe >.20.已知函数1()e xx f x -=.(1)求()f x 的单调区间与极值.(2)设m ,n 为两个不相等的正数,且ln ln m n n m m n -=-,证明:4e mn >.【解析】(1)()f x 的定义域为R ,()2e rxf x -'=.当(,2)x ∈-∞时,()0f x '>;当(2,)x ∈+∞时,()0.f x '<所以()f x 的单调递增区间为(,2)-∞,单调递减区间为(2,)+∞.故()f x 在2x =处取得极大值,且极大值为21e ,无极小值.(2)证明:易知m ,0n >,ln ln (ln 1)m n n m m n m n -=-⇔-()ln n ln ln 1ln 1ln 1ln 1ln 1e emn m n m n m n m ----=-⇔=⇔=即()ln (ln )f f m n =,ln ln m n ≠.不妨设1ln x m =,2ln x n =,12x x <.(1)可知2(2,)x ∈+∞,()()120f x f x =>,1(1,2)x ∈当23x ≥时,124x x +>,4e mn >,当223x <<时,2142x <-<,()()()()22224222222441e 31414x xx x x x e x x f x f x e e e ----------=-=设4()(1)e (3)e x x h x x x -=---,(2,3)x ∈,则()()()()()442e2e 2e e xx x x h x x x x --=---=--',因为(2,3)x ∈,4x x -<,所以()0h x '>,()h x 在区间(2,3)上单调递增,422()(21)e (32)e 0h x ->---=,所以()()()()2212440f x f x f x f x --=-->,()()124x f f x >-又因为1x ,24(1,2)x -∈,所以124x x >-,即124x x +>,故4e mm >.21.已知函数()()2ln f x e x x =-,其中 2.71828e =⋅⋅⋅为自然对数的底数.(1)讨论函数()f x 的单调性;(2)若()12,0,1x x ∈,且()21121212ln 2ln ln x x x ex x x x -=-,证明:1211221e e x x <+<+.【解析】(1)2(1)'()ln e x xf x =-+,2e y x =是减函数,1ln y x =+是增函数,所以'()f x 在()0,∞+单调递减,∵()'0f e =,∴()0,x e ∈时,()'()'0f x f e >=,()f x 单调递增;(),x e ∈+∞时,()'()'0f x f e <=,()f x 单调递减.(2)由题意得,121212ln ln 2ln 2ln x x e x e x x x -=-,即1212112ln 2ln e x e x x x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,112211112ln 2ln e e x x x x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,设111a x =,221a x =,则由()12,0,1x x ∈得,()12,1,a a ∈+∞,且()()12f a f a =.不妨设12a a <,则即证12221e a a e <+<+,由()20f e =及()f x 的单调性知,1212a e a e <<<<.令()()()2F x f x f e x =--,1x e <<,则[]24'()'()'(2)2ln (2)(2)e F xf x f e x x e x x e x =+-=----,∵()22x e x e -≤,∴2224'()2ln 0eF x e e>--=,()()0F x F e <=,∴()()2f x f e x <-,取1x a =,则()()112f a f e a <-,又()()12f a f a =,则()()212f a f e a <-,又12e a e ->,2a e >,且()f x 在(),e +∞单调递减,∴212a e a >-,122a a e +>.下证:1221a a e +<+.(i )当21a e <+时,由1a e <得,1221a a e +<+;(ii )当212e a e +≤<时,令()()(21)G x f x f e x =-+-,12e x e +<<,则22'()'()'(21)1ln 1ln(21)21e e G x f x f e x x e x x e x=++-=--+--+-+-222(21)2ln (21)(21)e e x e x x e x+⎡⎤=---++⎣⎦-++,记2(21)t x e x =-++,12e x e +≤<,则2(21)'()2ln e e G x t t+=--,又2(21)t x e x =-++在[)1,2e e +为减函数,∴()22,1t e e ∈+,2(21)2e e t +-在()22,1e e +单调递减,ln t 在()22,1e e +单调递增,∴2(21)2ln e e t t+--单调递减,从而,'()G x 在[)1,2e e +单调递增,又2(21)'(2)2ln 2(212)21ln 22(212)e e G e e e e e e e e e +=--+-=--+-,ln 1≤-x x ,∴()'20G e >,又2(21)'(1)2ln(1)(211)(1)(211)e e G e e e e e e e ++=--++--++--1ln(1)01e e e -=-+<+,从而,由零点存在定理得,存在唯一0(1,2)x e e ∈+,使得()0'0G x =,当[)01,x e x ∈+时,()0'()'0()G x G x G x <=⇒单调递减;当()0,2x x e ∈时,()0'()'0()G x G x G x >=⇒单调递增.所以,{}()max (1),(2)G x G e G e ≤+,又(1)(1)(211)(1)()(1)ln(1)G e f e f e e f e f e e e e +=+-+--=+-=-+-,ln 11ln ln(1)x x e x e x e e e+≤⇒≤⇒+≤,所以,11(1)(1)0e G e e e e e+-+<-⋅-=<,显然,()()()22212000G e f e f e e =-+-=-=,所以,()0<G x ,即()()210f x f e x -+-<,取[)21,2x a e e =∈+,则()()2221f a f e a <+-,又()()12f a f a =,则()()1221f a f e a <+-,结合()221211e a e e e +-<+-+=,1a e <,以及()f x 在()0,e 单调递增,得到1221a e a <+-,从而1221a a e +<+.22.已知函数()e ln xf x x a x a =--,其中0a >.(1)若2e a =,求()f x 的极值:(2)令函数()()g x f x ax a =-+,若存在1x ,2x 使得()()12g x g x =,证明:1212e e 2x xx x a +>.【解析】(1)当2e a =时()e 2eln 2e xf x x x =-,()0,x ∈+∞,所以()()()1e 2e2e 1e xxx x f x x x x+-'=+-=,当()0,1x ∈时,202x x <+<,1e e x <<,所以()0f x '<,当()1,x ∈+∞时,22x x +>,e e x >,所以()0f x '>,所以()f x 在()0,1上单调递减,在()1,+∞上单调递增,所以()f x 的极小值为()1e f =-,无极大值.(2)证明:()()()e ln e ln e x x xg x a x ax x f x ax x a x a ==-=+---,令e x t x =,则上述函数变形为()ln h a t t t =-,对于()e x t x x =,()0,x ∈+∞,则()()1e 0xt x x '=+>,即()e x t x x =在()0,∞+上单调递增,。
第14讲 拓展七:极值点偏移问题 (精讲)(原卷版)
第14讲拓展七:极值点偏移问题(精讲)目录第一部分:知识点精准记忆第二部分:典型例题剖析高频考点一:不含参数的极值点偏移问题高频考点二:含参数的极值点偏移问题高频考点三:与对数均值不等式有关的极值点偏移问题高频考点四:与指数均值不等式有关的极值点偏移问题第三部分:高考真题感悟1、极值点偏移的含义函数()f x满足对于定义域内任意自变量x都有()(2)f x f x x=-,则函数()f x关于直线x x=对称.可以理解为函数()f x在对称轴两侧,函数值变化快慢相同,且若()f x为单峰函数,则x x=必为()f x 的极值点,如图(1)所示,函数()f x图象的顶点的横坐标就是极值点x;①若()f x c=的两根为1x,2x,则刚好满足12x xx+=,则极值点在两根的正中间,也就是极值点没有偏移(如图1).若122x xx+≠,则极值点偏移.若单峰函数()f x的极值点为x,且函数()f x满足定义域x x=左侧的任意自变量x都有0()(2)f x f x x>-或()(2)f x f x x<-,则函数()f x极值点x左右侧变化快慢不同.如图(2)(3)所示.故单峰函数()f x 定义域内任意不同的实数1x ,2x ,满足12()()f x f x =,则122x x +与极值点0x 必有确定的大小关系:若1202x x x +<,则称为极值点左偏如图(2);若1202x x x +>,则称为极值点右偏如图(3).2、极值点偏移问题的一般解法2.1对称化构造法主要用来解决与两个极值点之和,积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数的单调性,进而确定函数的极值点0x . (2)构造函数,即对结论1202x x x +>型,构造函数0()()(2)F x f x f x x =--或00()()()F x f x x f x x =+--;(3)对结论2120x x x ⋅>型,构造函数20()()()x F x f x f x=-,通过研究()F x 的单调性获得不等式.(4)判断单调性,即利用导数讨论()F x 的单调性.(5)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(6)转化,即利用函数f (x )的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.2.2.差值代换法(韦达定理代换令1212,x x t x x t =±=.)差值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之差作为变量,从而实现消参、减元的目的.设法用差值(一般用t 表示)表示两个极值点,即12t x x =-,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.2.3.比值代换法比值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点的比值作为变量,从而实现消参、减元的目的.设法用比值(一般用t 表示)表示两个极值点,即12x t x =,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.2.4.对数均值不等式法两个正数a 和b 的对数平均定义:(),(, )ln ln ().a ba b L a b a ba ab -⎧≠⎪=-⎨⎪=⎩(, )2a bL a b +≤≤(此式记为对数平均不等式) 取等条件:当且仅当a b =时,等号成立.2.5指数不等式法在对数均值不等式中,设m a e =,n b e =,则()(,)()m nme e m n E a b m n e m n ⎧-≠⎪=-⎨⎪=⎩,根据对数均值不等式有如下关系:2(,)2m nm ne e eE a b ++≤≤ 3、极值点偏移问题的类型(1)加法型 (2)减法型 (3)平方型 (4)乘积型 (5)商型高频考点一:不含参数的极值点偏移问题①对称化构造法1.(2022·全国·高三专题练习)已知函数()()211e e 1e e 22x xf x x =-+++.(1)求()f x 的极值.(2)若()()()123f x f x f x ==,123x x x <<,证明:232x x +<.2.(2022·全国·高三专题练习)设函数()22ln 1f x x mx =-+.(1)当()f x 有极值时,若存在0x ,使得()01f x m >-成立,求实数m 的取值范围;(2)当1m =时,若在()f x 定义域内存在两实数12x x ,满足12x x <且()()12f x f x =,证明:122x x +>.3.(2021·全国·高三专题练习)已知函数31()28ln 6f x x ax x =-+. (1)若函数()f x 在定义域内单调递增,求实数a 的取值范围; (2)若函数()f x 存在两个极值点12,x x ,求证:124x x +>.4.(2021·湖南·宁乡市教育研究中心高三阶段练习)已知函数()()23x f x e x =-,其中e 为自然对数的底数.(1)求函数()f x 的单调区间和极值;(2)设方程()()0f x a a =<的两个根分别为1x ,2x ,求证:122x x +<.②对数均值不等式法1.(2022·四川·树德中学高二阶段练习(文))已知函数()e x f x a x=-.(1)若()()f x ag x x+=,当()0,1x ∈时,试比较()g x 与()2g x -的大小; (2)若()f x 的两个不同零点分别为1x 、()212x x x <,求证:122x x +>.高频考点二:含参数的极值点偏移问题①对称化构造法1.(2022·全国·高三专题练习)已知函数f (x )=x -a ln x (1)求函数f (x )的极值点;(2)若方程()f x k =有2个不等的实根12,x x ,证明:122x x a +>.2.(2022·全国·高三专题练习)已知函数2()(2)e (1)=-+-x f x x a x ,a R ∈. (1)求曲线()y f x =在点()()1,1P f 处的切线方程; (2)若0a ≥,求()f x 的零点个数;(3)若()f x 有两个零点1x ,2x ,证明:122x x +<.3.(2022·全国·高三专题练习)已知函数()()22ln 1f x x x a x a =++--,()a R ∈,当1≥x 时,()0f x ≥恒成立.(1)求实数a 的取值范围;(2)若正实数1x ,212()x x x ≠满足12()()0f x f x +=,证明:122x x +>.4.(2022·福建·莆田二中高三开学考试)已知a R ∈,()axf x x e -=⋅(其中e 为自然对数的底数).(1)讨论函数()y f x =的单调性;(2)若0a >,函数()y f x a =-有两个零点1x ,2x ,求证:12x x +>5.(2022·全国·高三专题练习)已知函数2()(2)ln f x ax a x x =+--. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围;(3)满足(2)的条件下,记两个零点分别为12,x x ,证明:122x x a+>②利用韦达定理代换法令1212,x x t x x t =±=1.(2022·广东·珠海市第一中学高二阶段练习)函数()e xf x a x a =--.(1)若()0f x ≥恒成立,求a 的值;(2)若()()20f x a =>有两个不相等的实数解1x ,2x ,证明122ln x x a +<-.2.(2022·浙江嘉兴·高三期末)已知函数()()2ln 0,0bf x ax x a b x =-->>.(1)若()f x 在定义域上单调递增,求ab 的最小值;(2)当1a =,1b >,()f x m '=有两个不同的实数根1x ,2x ,证明:()()1220f x f x m ++>.3.(2022·全国·高三专题练习)已知函数21()ln (1)2f x x ax a x =-+-,a R ∈. (1)讨论()f x 的单调性;(2)当2a =-时,正实数1x ,2x 满足1212()()0f x f x x x ++=,证明:1214x x +>.4.(2022·全国·高三专题练习)已知函数2()ln f x x mx =-,21()2g x mx x =+,m R ∈,令()()()F x f x g x =+. (1)12m =,研究函数()f x 的单调性; (2)若关于x 的不等式()1F x mx -恒成立,求整数m 的最小值; (3)2m =-,正实数1x ,2x 满足1212()()0F x F x x x ++=,证明:12512x x -+.5.(2022·江西·南昌十中高三阶段练习(理))已知函数()2ln x f x x x =++.(1)若()2f x ax ≤,求a 的取值范围;(2)若()()12121f x f x x x +=-,证明:12x x +>.6.(2022·全国·高三专题练习)已知实数0a ≠,设函数()2ln af x x x=-. (1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x ,()212x x x <,且()()()()122121220f x f x e x x e k x x --++>-恒成立,求正实数k 的最大值.7.(2022·江苏江苏·高三期末)设f (x )=x e x -mx 2,m ∈R . (1)设g (x )=f (x )-2mx ,讨论函数y =g (x )的单调性;(2)若函数y =f (x )在(0,+∞)有两个零点1x ,2x ,证明:x 1+x 2>2.③比值代换法1.(2022·全国·高三专题练习)已知函数()212ln x ax xf x x--=. (1)讨论函数()f x 的单调性; (2)若11ln ln m n m n-=+,求证:2m n ->.2.(2022·全国·高三专题练习)已知函数()ln 1xa x f x e -=+-(a ∈R ).(1)当a e ≤时,讨论函数()f x 的单调性;(2)若函数()f x 恰有两个极值点1x ,2x (12x x <),且()1221ln 221e e x x e +⋅+≤-,求21x x 的最大值.3.(2022·全国·高三专题练习)已知函数()ln f x x a x =-. (1)讨论()f x 的单调性;(2)若()f x 有两个相异零点12,x x ,求证:212x x e ⋅>.4.(2022·全国·高三专题练习)设函数2()(2)ln f x x m x m x =---, (1)求()f x 的单调区间; (2)设2312,()()(21)2m g x f x x m x <<=-+--,求证:[]12,1,x x m ∀∈,恒有()()1212g x g x -<.(3)若0m >,函数()f x 有两个零点()1212,,x x x x <,求证2102x f x ⎛⎫+> ⎪⎝⎭'.5.(2022·全国·高三专题练习)已知函数()()1ln F x m x x =+-()()1212,,0m R x x x x ∈<<分别是函数()F x 的两个零点,求证:0F '<.6.(2022·全国·高三专题练习)已知函数()21ln ,2f x x x mx x m R =--∈(1)若()()g x f x '=,(f x 为()f x 的导函数),求函数()g x 在区间[]1,e 上的最大值;(2)若函数()f x 有两个极值点12,x x ,求证:212x x e >7.(2022·全国·高三专题练习)已知函数()ln f x x =. (1)设函数()()ln tg x x t x=-∈R ,且()()g x f x ≤恒成立,求实数t 的取值范围; (2)求证:()12e e x f x x>-; (3)设函数()()1y f x ax a R x=--∈的两个零点1x ,2x ,求证:2122e x x >.高频考点三:与对数均值不等式有关的极值点偏移问题1.(2022·全国·高三专题练习)已知22()5ln f x ax bx x =++-. (1)若()f x 在定义域内单调递增,求a b +的最小值.(2)当0a =时,若()f x 有两个极值点12,x x ,求证:122x x e +>.2.(2022·全国·高三专题练习)已知函数f (x )=ln x ﹣ax ,a 为常数. (1)若函数f (x )在x =1处的切线与x 轴平行,求a 的值; (2)当a =1时,试比较f (m )与f (1m)的大小; (3)若函数f (x )有两个零点1x ,2x ,试证明x 1x 2>e 2.3.(2022·全国·高三专题练习)设函数()()3211232xf x e x kx kx =--+.(1)若1k =,求()f x 的单调区间;(2)若()f x 存在三个极值点1x ,2x ,3x ,且123x x x <<,求k 的取值范围,并证明:1322x x x +>.4.(2021·安徽·高三阶段练习(理))已知函数()()()21ln 1f x x x x m x =--+-,m R ∈.(1)讨论()f x 极值点的个数.(2)若()f x 有两个极值点1x ,2x ,且12x x <,证明:()()1224f x f x m +>-.5.(2022·辽宁·大连二十四中模拟预测)已知函数1()sin ln 122mf x x x x =--+.(1)当2m =时,试判断函数()f x 在(,)π+∞上的单调性;(2)存在12,(0,)x x ∈+∞,12x x ≠,()()12f x f x =,求证:212x x m <.6.(2022·全国·高三专题练习(理))已知函数()()()()22133e 2x f x a x x x x a -=++++∈R .(1)当1a =-时,求曲线()y f x =在点(0,f (0))处的切线方程;(2)若函数f (x )有三个极值点1x ,2x ,3x ,且321x x x <<.证明:3121120x x x ++>.7.(2021·海南·北京师范大学万宁附属中学高三阶段练习)已知函数21()1xx f x e x -=+(Ⅰ)求函数()f x 的单调区间;(Ⅱ)当1212()(),f x f x x x =≠时,求证:120x x +<高频考点四:与指数均值不等式有关的极值点偏移问题1、已知函数()xf x x ae =-(a 为常数)有两个不同的零点1x ,2x (e 为自然对数的底数)请证明:122x x +>.1.(2021·全国·高考真题)已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<.2.(2020·天津·高考真题)已知函数3()ln ()f x x k x k R =+∈,()'f x 为()f x 的导函数. (Ⅰ)当6k =时,(i )求曲线()y f x =在点(1,(1))f 处的切线方程;(ii )求函数9()()()g x f x f x x'=-+的单调区间和极值;(Ⅱ)当3k -时,求证:对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.。
【NO.148】极值点偏移?你想多了!
【NO.148】极值点偏移?你想多了!
很多时候我们熟悉一种题型之后,久而久之就会形成一种思维定势。
比如说下面这道题目:
这么一看,有点儿像?太不想了吧。
极值点偏移解决的是两种问题,两变量之和大于或者小于多少,另一个是两个变量之积或者之商大于或者多少的问题。
很明显这个题目证明的是两个变量的函数值之和的问题,怎么能扯上极值点偏移呢?
我们尝试的把式子写出来
接下来就是想办法消参呗。
我们看见了a的系数是-x,那么我要是能够够造出一个a的系数是x然后两个式子正好相加消去a那就好了啊。
所以这个题目的思路就出来了。
我们顺着这个思路,顺便再给大家一个类似的题目。
接下来直接给出大家解析过程。
好了,今晚的分享就到这里。
导数压轴题分类(2)---极值点偏移问题(含答案)
导数压轴题分类(2)---极值点偏移问题(含答案)极值点偏移问题是在求解函数的极值点时,由于函数表达式的特殊性质,导致极值点位置发生偏移,需要采用特殊的解决方法。
常见的处理方法有以下几种:1.构造一元差函数F(x)=f(x)-f(2x-x)或F(x)=f(x+x)-f(x-x),其中x为函数y=f(x)的极值点。
2.利用对数平均不等式ab<a-b+a+b。
3.变换主元等方法lna-lnb^2<ln(a-b^2)。
接下来,我们以一个具体的例子来说明极值点偏移问题的解决方法。
题目:设函数f(x)=-alnx+x-ax(a∈R),试讨论函数f(x)的单调性;若f(x)=m有两解x1,x2(x12a。
解析:1.讨论函数f(x)的单调性由f(x)=-alnx+x-ax可知:f'(x)=-a/x+1-a=-(a/x+a-1)因为函数f(x)的定义域为(0,+∞),所以:①若a>0时,当x∈(0,a)时,f'(x)0,函数f(x)单调递增。
②若a=0时,当f'(x)=1/x>0在x∈(0,+∞)XXX成立,函数f(x)单调递增。
③若a0,函数f(x)单调递增。
2.求证x1+x2>2a因为f(x)=m有两解x1,x2(x1<x2),所以:alnx1+x1-ax=m,-alnx2+x2-ax=m将两式相减,整理得:lnx1-lnx2+ln(x1-x2)=a根据对数平均不等式,有:ln(x1-x2)<(lnx1-lnx2)/2代入上式得:a>-[(lnx1-lnx2)/2]化XXX:x1-x2<2e^-2a因为x1+x2>2x2>a,所以:x1+x2>2a综上所述,极值点偏移问题的解决方法包括构造一元差函数、利用对数平均不等式和变换主元等方法。
在具体求解中,需要根据函数表达式的特殊性质,选择合适的方法进行处理。
2(t-1)x2-1)/(4(t-1)2+1)为减函数,且在(1,∞)上递增,所以原不等式得证。
两招解决极值点偏移问题
两招解决极值点偏移问题一、极值点偏移的含义众所周知,函数)(x f 满足定义域内任意自变量x 都有)2()(x m f x f -=,则函数)(x f 关于直线m x =对称;可以理解为函数)(x f 在对称轴两侧,函数值变化快慢相同,且若)(x f 为单峰函数,则m x =必为)(x f 的极值点.如二次函数)(x f 的顶点就是极值点0x ,若c x f =)(的两根的中点为221x x +,则刚好有0212x x x =+,即极值点在两根的正中间,也就是极值点没有偏移.若相等变为不等,则为极值点偏移:若单峰函数)(x f 的极值点为m ,且函数)(x f 满足定义域内m x =左侧的任意自变量x 都有)2()(x m f x f ->或)2()(x m f x f -<,则函数)(x f 极值点m 左右侧变化快慢不同.故单峰函数)(x f 定义域内任意不同的实数21,x x 满足)()(21x f x f =,则221x x +与极值点m 必有确定的大小关系:若221x x m +<,则称为极值点左偏;若221x x m +>,则称为极值点右偏.如函数x e x x g =)(的极值点10=x 刚好在方程c x g =)(的两根中点221x x +的左边,我们称之为极值点左偏.二、极值点偏移问题的一般题设形式:1.若函数)(x f 存在两个零点21,x x 且21x x ≠,求证:0212x x x >+(0x 为函数)(x f 的极值点);2.若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,求证:0212x x x >+(0x 为函数)(x f 的极值点);3.若函数)(x f 存在两个零点21,x x 且21x x ≠,令2210x x x +=,求证:0)('0>x f ;4.若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,令2210x x x +=,求证:0)('0>x f .二、运用判定定理判定极值点偏移的方法1、方法概述:(1)求出函数)(x f 的极值点0x ;(2)构造一元差函数)()()(00x x f x x f x F --+=;(3)确定函数)(x F 的单调性;(4)结合0)0(=F ,判断)(x F 的符号,从而确定)(0x x f +、)(0x x f -的大小关系.口诀:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随.2、抽化模型答题模板:若已知函数)(x f 满足)()(21x f x f =,0x 为函数)(x f 的极值点,求证:0212x x x <+.(1)讨论函数)(x f 的单调性并求出)(x f 的极值点0x ;假设此处)(x f 在),(0x -∞上单调递减,在),(0+∞x 上单调递增.(2)构造)()()(00x x f x x f x F --+=;注:此处根据题意需要还可以构造成)2()()(0x x f x f x F --=的形式.(3)通过求导)('x F 讨论)(x F 的单调性,判断出)(x F 在某段区间上的正负,并得出)(0x x f +与)(0x x f -的大小关系;假设此处)(x F 在),0(+∞上单调递增,那么我们便可得出0)()()()(000=-=>x f x f x F x F ,从而得到:0x x >时,)()(00x x f x x f ->+.(4)不妨设201x x x <<,通过)(x f 的单调性,)()(21x f x f =,)(0x x f +与)(0x x f -的大小关系得出结论;接上述情况,由于0x x >时,)()(00x x f x x f ->+且201x x x <<,)()(21x f x f =,故)2()]([)]([)()(2002002021x x f x x x f x x x f x f x f -=-->-+==,又因为01x x <,0202x x x <-且)(x f 在),(0x -∞上单调递减,从而得到2012x x x -<,从而0212x x x <+得证.(5)若要证明02('21<+x x f ,还需进一步讨论221x x +与0x 的大小,得出221x x +所在的单调区间,从而得出该处函数导数值的正负,从而结论得证.此处只需继续证明:因为0212x x x <+,故0212x x x <+,由于)(x f 在),(0x -∞上单调递减,故0)2('21<+x x f .【说明】(1)此类试题由于思路固定,所以通常情况下求导比较复杂,计算时须细心;(2)此类题目若试题难度较低,会分解为三问,前两问分别求)(x f 的单调性、极值点,证明)(0x x f +与)(0x x f -(或)(x f 与)2(0x x f -)的大小关系;若试题难度较大,则直接给出形如0212x x x <+或0)2('21<+x x f 的结论,让你给予证明,此时自己应主动把该小问分解为三问逐步解题.题型二利用对数平均不等式两个正数a 和b 的对数平均定义:(),(,)ln ln ().a b a b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩对数平均与算术平均、几何平均的大小关系:(,)2a b L a b +≤≤(此式记为对数平均不等式)取等条件:当且仅当a b =时,等号成立.只证:当a b ≠(,)2a b L a b +<<.不失一般性,可设a b >.证明如下:(I(,)L a b <……①不等式①1ln ln ln 2ln (1)a a b x x x bx ⇔-<<<-=其中构造函数1()2ln (),(1)f x x x x x =-->,则22211()1(1)f x x x x '=--=--.因为1x >时,()0f x '<,所以函数()f x 在(1,)+∞上单调递减,故()(1)0f x f <=,从而不等式①成立;(II )再证:(,)2a b L a b +<……②不等式②2(1)2()2(1)ln ln ln ln (1)(1)(1)a a b a x b a b x x a a b b x b---⇔->⇔>⇔>=+++其中构造函数2(1)()ln ,(1)(1)x g x x x x -=->+,则22214(1)()(1)(1)x g x x x x x -'=-=++.因为1x >时,()0g x '>,所以函数()g x 在(1,)+∞上单调递增,故()(1)0g x g <=,从而不等式②成立;综合(I )(II )知,对,a b R +∀∈(,)2a b L a b +≤≤成立,当且仅当a b =时,等号成立.。
2022年高考压轴大题:极值点的偏移问题解题方法
2022年高考压轴大题:极值点的偏移问题解题方法极值点偏移问题常作为压轴题出现,题型复杂多变.解决此类问题,先需理解此类问题的实质,例1 已知函数f (x )=x e -x . (1)求函数f (x )的单调区间;(2)若x 1≠x 2且f (x 1)=f (x 2),求证:x 1+x 2>2.(1)解 f ′(x )=e -x (1-x ),令f ′(x )>0得x <1;令f ′(x )<0得x >1,∴函数f (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减. (2)证明 方法一 (对称化构造法)构造辅助函数F (x )=f (x )-f (2-x ),x >1,则F ′(x )=f ′(x )+f ′(2-x )=e -x (1-x )+e x -2(x -1)=(x -1)(e x -2-e -x ),∴当x >1时,x -1>0,e x -2-e -x >0,∴F ′(x )>0, ∴F (x )在(1,+∞)上单调递增,∴F (x )>F (1)=0, 故当x >1时,f (x )>f (2-x ),(*)由f (x 1)=f (x 2),x 1≠x 2,可设x 1<1<x 2, 将x 2代入(*)式可得f (x 2)>f (2-x 2), 又f (x 1)=f (x 2), ∴f (x 1)>f (2-x 2).又x 1<1,2-x 2<1,而f (x )在(-∞,1)上单调递增, ∴x 1>2-x 2, ∴x 1+x 2>2.方法二 (比值代换法) 设0<x 1<1<x 2,f (x 1)=f (x 2)即11ex x -=22ex x -,取对数得ln x 1-x 1=ln x 2-x 2.令t =x 2x 1>1,则x 2=tx 1,代入上式得ln x 1-x 1=ln t +ln x 1-tx 1,得x 1=ln t t -1,x 2=t ln t t -1.∴x 1+x 2=t +1ln t t -1>2∴ln t -2t -1t +1>0,设g (t )=ln t -2t -1t +1(t >1),∴g ′(t )=1t -2t +1-2t -1t +12=t -12t t +12>0,∴当t >1时,g (t )单调递增,∴g (t )>g (1)=0,∴ln t -2t -1t +1>0,故x 1+x 2>2.例2 已知函数f (x )=ln x -ax 有两个零点x 1,x 2. (1)求实数a 的取值范围; (2)求证:x 1·x 2>e 2.(1)解 f ′(x )=1x -a =1-ax x(x >0),∴若a ≤0,则f ′(x )>0,不符合题意;∴若a >0,令f ′(x )=0,解得x =1a.当x ∴⎝⎛⎭⎫0,1a 时,f ′(x )>0; 当x ∴⎝⎛⎭⎫1a ,+∞时,f ′(x )<0. 由题意知f (x )=ln x -ax 的极大值f ⎝⎛⎭⎫1a =ln 1a -1>0,解得0<a <1e. 所以实数a 的取值范围为⎝⎛⎭⎫0,1e . (2)证明 因为f (1)=-a <0,所以1<x 1<1a<x 2.构造函数H (x )=f ⎝⎛⎭⎫1a +x -f ⎝⎛⎭⎫1a -x =ln ⎝⎛⎭⎫1a +x -ln ⎝⎛⎭⎫1a -x -2ax ,0<x <1a. H ′(x )=11a +x +11a-x -2a =2a 3x21-a 2x 2>0,所以H (x )在⎝⎛⎭⎫0,1a 上单调递增, 故H (x )>H (0)=0,即f ⎝⎛⎭⎫1a +x >f ⎝⎛⎭⎫1a -x .由1<x 1<1a <x 2,知2a -x 1>1a,故f (x 2)=f (x 1)=f ⎝⎛⎭⎫1a -⎝⎛⎭⎫1a -x 1<f ⎝⎛⎭⎫1a +⎝⎛⎭⎫1a -x 1=f ⎝⎛⎭⎫2a -x 1. 因为f (x )在⎝⎛⎭⎫1a ,+∞上单调递减, 所以x 2>2a -x 1,即x 1+x 2>2a.故ln x 1x 2=ln x 1+ln x 2=a (x 1+x 2)>2, 即x 1·x 2>e 2.例3已知函数f (x )=x 2-2x +1+a e x 有两个极值点x 1,x 2,且x 1<x 2. 证明:x 1+x 2>4.解析 证明:令g (x )=f ′(x )=2x -2+a e x ,则x 1,x 2是函数g (x )的两个零点. 令g (x )=0,得a =-2(x -1)e x .令h (x )=-2(x -1)e x , 则h (x 1)=h (x 2),h ′(x )=2x -4e x ,可得h (x )在区间(-∞,2)上单调递减,在区间(2,+∞)上单调递增, 所以x 1<2<x 2.令H (x )=h (2+x )-h (2-x ),则H ′(x )=h ′(2+x )-h ′(2-x )=2x (e 2-x -e 2+x )e 2+x ·e 2-x ,当0<x <2时,H ′(x )<0,H (x )单调递减,有H (x )<H (0)=0, 所以h (2+x )<h (2-x ).所以h (x 1)=h (x 2)=h (2+(x 2-2))<h (2-(x 2-2))=h (4-x 2). 因为x 1<2,4-x 2<2,h (x )在(-∞,2)上单调递减, 所以x 1>4-x 2,即x 1+x 2>4.例4已知f (x )=x ln x -12mx 2-x ,m ∈R .若f (x )有两个极值点x 1,x 2,且x 1<x 2. 求证:x 1x 2>e 2(e 为自然对数的底数).一题多解解法1思路参考:转化为证明ln x 1+ln x 2>2,根据x 1,x 2是方程f ′(x )=0的根建立等量关系. 令t =x 2x 1将ln x 1+ln x 2变形为关于t 的函数,将ln x 1+ln x 2>2转化为关于t 的不等式进行证明. 证明:欲证x 1x 2>e 2,需证ln x 1+ln x 2>2.若f (x )有两个极值点x 1,x 2,即函数f ′(x )有两个零点.又f ′(x )=ln x -mx ,所以x 1,x 2是方程f ′(x )=0的两个不等实根.于是,有⎩⎪⎨⎪⎧ln x 1-mx 1=0,ln x 2-mx 2=0,解得m =ln x 1+ln x 2x 1+x 2. 另一方面,由⎩⎪⎨⎪⎧ln x 1-mx 1=0,ln x 2-mx 2=0,得ln x 2-ln x 1=m (x 2-x 1), 从而得ln x 2-ln x 1x 2-x 1=ln x 1+ln x 2x 1+x 2.于是,ln x 1+ln x 2=(ln x 2-ln x 1)(x 2+x 1)x 2-x 1=⎝⎛⎭⎫1+x 2x 1ln x 2x 1x 2x 1-1.又0<x 1<x 2,设t =x 2x 1,则t >1. 因此,ln x 1+ln x 2=(1+t )ln tt -1,t >1. 要证ln x 1+ln x 2>2,即证(t +1)ln tt -1>2,t >1. 即当t >1时,有ln t >2(t -1)t +1. 设函数h (t )=ln t -2(t -1)t +1,t >1, 则h ′(t )=1t -2(t +1)-2(t -1)(t +1)2=(t -1)2t (t +1)2≥0, 所以,h (t )为(1,+∞)上的增函数.注意到,h (1)=0,因此,h (t )>h (1)=0. 于是,当t >1时,有ln t >2(t -1)t +1. 所以ln x 1+ln x 2>2成立,即x 1x 2>e 2. 解法2思路参考:将证明x 1x 2>e 2转化为证明x 1>e 2x 2.依据x 1,x 2是方程f ′(x )=0的两个不等实根构造函数g (x )=ln x x ,结合函数g (x )的单调性,只需证明g (x 2)=g (x 1)<g ⎝⎛⎭⎫e 2x 1.证明:由x 1,x 2是方程f ′(x )=0的两个不等实根,所以mx 1=ln x 1,mx 2=ln x 2. 令g (x )=ln xx ,g (x 1)=g (x 2), 由于g ′(x )=1-ln xx 2,因此,g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减. 又x 1<x 2,所以0<x 1<e<x 2.令h (x )=g (x )-g ⎝⎛⎭⎫e 2x (x ∈(0,e)),h ′(x )=(1-ln x )(e 2-x 2)x 2e 2>0, 故h (x )在(0,e)上单调递增,故h (x )<h (e)=0,即g (x )<g ⎝⎛⎭⎫e 2x .令x =x 1,则g (x 2)=g (x 1)<g ⎝⎛⎭⎫e 2x 1.因为x 2,e 2x 1∈(e ,+∞),g (x )在(e ,+∞)上单调递减,所以x 2>e 2x 1,即x 1x 2>e 2. 解法3思路参考:设t 1=ln x 1∈(0,1),t 2=ln x 2∈(1,+∞),推出t 1t 2=e t 1-t 2.将证明x 1x 2>e 2转化为证明t 1+t 2>2,引入变量k =t 1-t 2<0构建函数进行证明. 证明:设t 1=ln x 1∈(0,1),t 2=ln x 2∈(1,+∞),由⎩⎪⎨⎪⎧ln x 1-mx 1=0,ln x 2-mx 2=0得⎩⎪⎨⎪⎧t 1=m e t1,t 2=m et 2⇒t 1t 2=e t 1-t 2.设k =t 1-t 2<0,则t 1=k e k e k -1,t 2=k e k -1. 欲证x 1x 2>e 2, 需证ln x 1+ln x 2>2.即只需证明t 1+t 2>2,即k (1+e k )e k -1>2⇔k (1+e k )<2(e k -1)⇔k (1+e k )-2(e k -1)<0. 设g (k )=k (1+e k )-2(e k -1)(k <0),g ′(k )=k e k -e k +1, g ″(k )=k e k <0,故g ′(k )在(-∞,0)上单调递减, 故g ′(k )>g ′(0)=0,故g (k )在(-∞,0)上单调递增, 因此g (k )<g (0)=0,命题得证. 解法4思路参考:设t 1=ln x 1∈(0,1),t 2=ln x 2∈(1,+∞),推出t 1t 2=e t 1-t 2.将证明x 1x 2>e 2转化为证明t 1+t 2>2,引入变量t 1t 2=k ∈(0,1)构建函数进行证明.证明:设t 1=ln x 1∈(0,1),t 2=ln x 2∈(1,+∞),由⎩⎪⎨⎪⎧ln x 1-mx 1=0,ln x 2-mx 2=0得⎩⎪⎨⎪⎧t 1=m e t1,t 2=m et 2⇒t 1t 2=e t 1-t 2.设t 1t 2=k ∈(0,1),则t 1=k ln k k -1,t 2=ln k k -1.欲证x 1x 2>e 2,需证ln x 1+ln x 2>2,即只需证明t 1+t 2>2,即(k +1)ln kk -1>2⇔ln k <2(k -1)k +1⇔ln k -2(k -1)k +1<0. 设g (k )=ln k -2(k -1)k +1(k ∈(0,1)),g ′(k )=(k -1)2k (k +1)2>0, 故g (k )在(0,1)上单调递增,因此g (k )<g (1)=0,命题得证.思维升华1.本题考查应用导数研究极值点偏移问题,基本解题方法是把双变量的等式或不等式转化为一元变量问题求解,途径都是构造一元函数.2.基于课程标准,解答本题一般需要熟练掌握转化与化归能力、运算求解能力、逻辑思维能力,体现了逻辑推理、数学运算的核心素养.3.基于高考数学评价体系,本题涉及函数与方程、不等式、导数的计算与应用等知识,渗透着函数与方程、转化与化归、分类讨论等思想方法,有一定的综合性,属于能力题,在提升学生思维的灵活性、创造性等数学素养中起到了积极的作用.多维训练1.已知函数f (x )=e x (e x -ax +a )有两个极值点x 1,x2. (1)求a 的取值范围; (2)求证:2x 1x 2<x 1+x 2.(1)解:因为f (x )=e x (e x -ax +a ),所以f ′(x )=e x (e x -ax +a )+e x (e x -a )=e x (2e x -ax ). 令f ′(x )=0,则2e x =ax . 当a =0时,不成立; 当a ≠0时,2a =xe x .令g (x )=xe x ,所以g ′(x )=1-x e x .当x <1时,g ′(x )>0;当x >1时,g ′(x )<0.所以g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减. 又因为g (1)=1e ,当x →-∞时,g (x )→-∞,当x →+∞时,g (x )→0,因此,当0<2a <1e 时,f (x )有2个极值点,即a 的取值范围为(2e ,+∞).(2)证明:由(1)不妨设0<x 1<1<x 2,且⎩⎨⎧2e x 1=ax 1,2e x 2=ax 2,所以⎩⎪⎨⎪⎧ln 2+x 1=ln a +ln x 1,ln 2+x 2=ln a +ln x 2, 所以x 2-x 1=ln x 2-ln x 1. 要证明2x 1x 2<x 1+x 2,只要证明2x 1x 2(ln x 2-ln x 1)<x 22-x 21,即证明2ln ⎝⎛⎭⎫x 2x 1<x 2x 1-x 1x 2.设x 2x 1=t (t >1),即要证明2ln t -t +1t <0在t ∈(1,+∞)上恒成立. 记h (t )=2ln t -t +1t (t >1),h ′(t )=2t -1-1t 2=-t 2+2t -1t 2=-(t -1)2t 2<0, 所以h (t )在区间(1,+∞)上单调递减,所以h (t )<h (1)=0,即2ln t -t +1t <0,即2x 1x 2<x 1+x 2. 2.已知函数f (x )=x ln x -2ax 2+x ,a ∈R .(1)若f (x )在(0,+∞)内单调递减,求实数a 的取值范围; (2)若函数f (x )有两个极值点分别为x 1,x 2,证明x 1+x 2>12a . (1)解:f ′(x )=ln x +2-4ax . 因为f (x )在(0,+∞)内单调递减,所以 f ′(x )=ln x +2-4ax ≤0在(0,+∞)内恒成立, 即4a ≥ln x x +2x 在(0,+∞)内恒成立. 令g (x )=ln x x +2x ,则g ′(x )=-1-ln x x 2. 所以,当0<x <1e 时,g ′(x )>0,即g (x )在⎝⎛⎭⎫0,1e 内单调递增; 当x >1e 时,g ′(x )<0,即g (x )在⎝⎛⎭⎫1e ,+∞内单调递减.所以g (x )的最大值为g ⎝⎛⎭⎫1e =e , 所以实数a 的取值范围是⎣⎡⎭⎫e 4,+∞.(2)证明:若函数f (x )有两个极值点分别为x 1,x 2,则f ′(x )=ln x +2-4ax =0在(0,+∞)内有两个不等根x 1,x 2. 由(1),知0<a <e4.由⎩⎪⎨⎪⎧ln x 1+2-4ax 1=0,ln x 2+2-4ax 2=0,两式相减, 得ln x 1-ln x 2=4a (x 1-x 2). 不妨设0<x 1<x 2, 所以要证明x 1+x 2>12a ,只需证明x 1+x 24a (x 1-x 2)<12a (ln x 1-ln x 2). 即证明2(x 1-x 2)x 1+x 2>ln x 1-ln x 2,亦即证明2⎝⎛⎭⎫x 1x 2-1x 1x 2+1>ln x 1x 2.令函数h (x )=2(x -1)x +1-ln x,0<x <1. 所以h ′(x )=-(x -1)2x (x +1)2<0, 即函数h (x )在(0,1)内单调递减. 所以当x ∈(0,1)时,有h (x )>h (1)=0, 所以2(x -1)x +1>ln x .即不等式2⎝⎛⎭⎫x 1x 2-1x 1x 2+1>ln x 1x 2成立.综上,x 1+x 2>12a ,命题得证.3.已知函数f (x )=ln x -ax (a ∴R ).(1)讨论函数f (x )在(0,+∞)上的单调性; (2)证明:e x -e 2ln x >0恒成立. (1)解 f (x )的定义域为(0,+∞),f ′(x )=1x -a =1-ax x,当a ≤0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增,当a >0时,令f ′(x )=0,得x =1a,∴x ∴()0,1a 时,f ′(x )>0;x ∴()1a ,+∞时,f ′(x )<0,∴f (x )在()0,1a 上单调递增,在()1a ,+∞上单调递减.(2)证明 方法一 要证e x -e 2ln x >0,即证e x -2>ln x , 令φ(x )=e x -x -1,∴φ′(x )=e x -1.令φ′(x )=0,得x =0,∴x ∴(-∞,0)时,φ′(x )<0; x ∴(0,+∞)时,φ′(x )>0,∴φ(x )在(-∞,0)上单调递减,在(0,+∞)上单调递增, ∴φ(x )min =φ(0)=0,即e x -x -1≥0,即e x ≥x +1,当且仅当x =0时取“=”. 同理可证ln x ≤x -1,当且仅当x =1时取“=”. 由e x ≥x +1(当且仅当x =0时取“=”),可得e x -2≥x -1(当且仅当x =2时取“=”),又ln x ≤x -1,即x -1≥ln x ,当且仅当x =1时取“=”,所以e x -2≥x -1≥ln x 且两等号不能同时成立,故e x -2>ln x .即证原不等式成立.方法二 令φ(x )=e x -e 2ln x ,φ(x )的定义域为(0,+∞),φ′(x )=e x -e 2x ,令h (x )=e x-e 2x,∴h ′(x )=e x+e 2x2>0,∴φ′(x )在(0,+∞)上单调递增.又φ′(1)=e -e 2<0,φ′(2)=e 2-12e 2=12e 2>0,故∴x 0∴(1,2),使φ′(x 0)=0,即0e x -e 2x 0=0,即0e x =e 2x 0,∴当x ∴(0,x 0)时,φ′(x )<0; 当x ∴(x 0,+∞)时,φ′(x 0)>0,∴φ(x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,∴φ(x )min =φ(x 0)=0ex -e 2ln x 0=e 2x 0-e 2ln x 0=e 2x 0-022e e ln e x =e 2x 0-e 2(2-x 0)=e 2()1x 0+x 0-2=e 2·x 0-12x 0>0,故φ(x )>0,即e x -e 2ln x >0,即证原不等式成立.4.(2018·全国∴)已知函数f (x )=1x-x +a ln x .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f x 1-f x 2x 1-x 2<a -2.(1)解 f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+ax =-x 2-ax +1x 2.∴若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时,f ′(x )=0, 所以f (x )在(0,+∞)上单调递减. ∴若a >2,令f ′(x )=0,得 x =a -a 2-42或x =a +a 2-42.当x ∴⎝⎛⎭⎫0,a -a 2-42∴⎝⎛⎭⎫a +a 2-42,+∞时, f ′(x )<0;当x ∴⎝⎛⎭⎫a -a 2-42,a +a 2-42时,f ′(x )>0.所以f (x )在⎝⎛⎭⎫0,a -a 2-42,⎝⎛⎭⎫a +a 2-42,+∞上单调递减,在⎝⎛⎭⎫a -a 2-42,a +a 2-42上单调递增. (2)证明 由(1)知,f (x )存在两个极值点当且仅当a >2. 由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0, 所以x 1x 2=1,不妨设x 1<x 2,则x 2>1.由于f x 1-f x 2x 1-x 2=-1x 1x 2-1+a ln x 1-ln x 2x 1-x 2=-2+a ln x 1-ln x 2x 1-x 2=-2+a -2ln x 21x 2-x 2,所以f x 1-f x 2x 1-x 2<a -2等价于1x 2-x 2+2ln x 2<0.设函数g (x )=1x-x +2ln x ,由(1)知,g (x )在(0,+∞)上单调递减.又g (1)=0,从而当x ∴(1,+∞)时,g (x )<0.所以1x 2-x 2+2ln x 2<0,即f x 1-f x 2x 1-x 2<a -2.。
一题学懂极值点偏移问题解题策略
极值点的“偏移”问题一、极值点“偏移”图示(左右对称,无偏移,如二次函数;若f (x 1)=f (x 2),则x 1+x 2=2x 0)(左陡右缓,极值点向左偏移;若f (x 1)=f (x 2),则x 1+x 2>2x 0)(左缓右陡,极值点向右偏移;若f (x 1)=f (x 2),则x 1+x 2<2x 0)二、极值点偏移问题的结论不一定总是x 1+x 2>(<)2x 0,也可能是x 1x 2>(<)x 20.解题策略:对称化构造用对称化构造的方法解决极值点偏移问题分为以下三步:(1)求导,获得f(x)的单调性,极值情况,作出f(x)的图象,由f (x 1)=f (x 2)得的取值范围(数形结合);(2)构造辅助函数,对结论x 1+x 2>(<)2x 00,构造F (x )=f (x )-f (2x 0-x );对结论x 1x 2>(<)x 20,构造F (x )=f (x )-f ⎝⎛⎭⎫x 20x ,求导,限定范围(x 1或x 2的范围),判定符号,获得不等式; (3)代入x 1(或x 2),利用f (x 1)=f (x 2)及f (x )的单调性证明最终结论.已知()21ln 2f x x x mx x =--,m ∈R .若()f x 有两个极值点1x ,2x ,且12x x <,求证:212e x x >(e 为自然对数的底数). 解法一:齐次构造通解偏移套路证法1:欲证212e x x >,需证12ln ln 2x x +>.若()f x 有两个极值点1x ,2x ,即函数()f x '有两个零点.又()ln f x x mx '=-,所以,1x ,2x 是方程()0f x '=的两个不同实根.于是,有1122ln 0ln 0x mx x mx -=⎧⎨-=⎩,解得1212ln ln x x m x x +=+.另一方面,由1122ln 0ln 0x mx x mx -=⎧⎨-=⎩,得()2121ln ln x x m x x -=-,从而可得,21122112ln ln ln ln x x x x x x x x -+=-+. 于是,()()222121111222111lnln ln ln ln 1x x x x x x x x x x x x x x ⎛⎫+ ⎪-+⎝⎭+==--.又120x x <<,设21x t x =,则1t >.因此,()121ln ln ln 1t t x x t ++=-,1t >. 要证12ln ln 2x x +>,即证:()1ln 21t t t +>-,1t >.即:当1t >时,有()21ln 1t t t ->+.设函数()()21ln 1t h t t t -=-+,1t ≥,则()()()()()()222212111011t t t h t t t t t +---'=-=≥++, 所以,()h t 为()1.+∞上的增函数.注意到,()10h =,因此,()()10h t h ≥=.于是,当1t >时,有()21ln 1t t t ->+.所以,有12ln ln 2x x +>成立,212e x x >.解法二 变换函数能妙解证法2:欲证212e x x >,需证12ln ln 2x x +>.若()f x 有两个极值点1x ,2x ,即函数()f x '有两个零点.又()ln f x x mx '=-,所以,1x ,2x 是方程()0f x '=的两个不同实根.显然0m >,否则,函数()f x '为单调函数,不符合题意. 由()11121222ln 0ln ln ln 0x mx x x m x x x mx -=⎧⇒+=+⎨-=⎩,即只需证明()122m x x +>即可.即只需证明122x x m+>. 设()()210,g x f x f x x m m ⎛⎫⎛⎫⎛⎫''=--∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()()22102mx g x x mx -'=>-,故()g x 在10,m ⎛⎫↑ ⎪⎝⎭,即()10g x g m ⎛⎫<= ⎪⎝⎭,故()2f x f x m ⎛⎫''<- ⎪⎝⎭.由于()11mx f x m x x -''=-=,故()f x '在10,m ⎛⎫↑ ⎪⎝⎭,1,m ⎛⎫+∞↓ ⎪⎝⎭. 设121x x m <<,令1x x =,则()()2112f x f x f x m ⎛⎫'''=<- ⎪⎝⎭, 又因为2x ,121,x mm ⎛⎫-∈+∞ ⎪⎝⎭,()f x '在1,m ⎛⎫+∞↓ ⎪⎝⎭,故有212x x m >-,即122x x m +>.原命题得证.解法三 构造函数现实力证法3:由1x ,2x 是方程()0f x '=的两个不同实根得ln x m x =,令()ln x g x x=,()()12g x g x =,由于()21ln xg x x-'=,因此,()g x 在()1,e ↑,()e,+∞↓. 设121e x x <<<,需证明212e x x >,只需证明()212e 0,e x x >∈,只需证明()212e f x f x ⎛⎫> ⎪⎝⎭,即()222e f x f x ⎛⎫> ⎪⎝⎭,即()222e 0f x f x ⎛⎫-> ⎪⎝⎭. 即()()()()2e 1,e h x f x f x x ⎛⎫=-∈ ⎪⎝⎭,()()()22221ln e 0e x x h x x --'=>,故()h x 在()1,e ↑,故()()e 0h x h <=,即()2e f x f x ⎛⎫< ⎪⎝⎭.令1x x =,则()()2211e f x f x f x ⎛⎫=< ⎪⎝⎭,因为2x ,()21e e,x ∈+∞,()f x 在()e,+∞↓,所以221e x x >,即212e x x >. 解法四 巧引变量(一)证法4:设()11ln 0,1t x =∈,()22ln 1,t x =∈+∞,则由1122ln 0ln 0x mx x mx -=⎧⎨-=⎩得11221122e e et t t t t t m t m t -⎧=⇒=⎨=⎩,设120k t t =-<,则1e e 1k kk t =-,2e 1k k t =-.欲证212e x x >,需证12ln ln 2x x +>.即只需证明122t t +>,即()()()()()1e 21e 2e 11e 2e 10e 1k k k k k kk k k +>⇔+<-⇔+--<-.设()()()()1e 2e 10k k g k k k =+--<,()e e 1k k g k k '=-+,()e 0k g k k ''=<,故()g k '在(),0-∞↓,故()()00g k g ''>=,故()g k 在(),0-∞↑,因此()()00g k g <=,命题得证.解法五 巧引变量(二)证法5:设()11ln 0,1t x =∈,()22ln 1,t x =∈+∞,则由1122ln 0ln 0x mx x mx -=⎧⎨-=⎩得11221122e e et t t t t t m t m t -⎧=⇒=⎨=⎩,设()120,1t k t =∈,则1ln 1k k t k =-,2ln 1k t k =-.欲证212e x x >,需证12ln ln 2x x +>,即只需证明122t t +>,即()()()1ln 21212ln ln 0111k k k k k k k k k +-->⇔<⇔-<-++,设()()()()21ln 0,11k g k k k k -=-⇔+,()()()22101k g k k k -'=>+,故()g k 在()0,1↑,因此()()10g k g <=,命题得证.。
探析导数题中常见的含参与极值点偏移问题
探析导数题中常见的含参与极值点偏移问题
由于极值点左右的“增减速度”不同,使得函数图象失去了对称性,出现了极值点的左右偏移。
以此为背景的极值点偏移问题在高考中屡屡出现。
解法1构造函数法
第一步:求出函数f(x)的极值点xo;第二步:构造一元差函数F(x)=f(x)-f(2x6-x);第三步:确定函数F(x)的单调性;第四步:结合F(xo)=0,判断F(x)的符号,从而确定f (x),f(2xo-x)的大小;第五步:结合f(x)的单调性得到结论。
解法2不等式放缩
第一步:根据f(x)=f(x)建立等式;第二步:如果含有参数,则消参;如果等式中含有指数式,则两边取对数;第三步:通过恒等变形转化为对数平均,利用对数平均不等式求解。
解决极值点偏移问题的两种方法,实质上都是把两个变元的不等式转化为一元问题求解,途径都是构造函数。
所以解法的本质就是构造函数。
解法1是根据对称性构造函数,而解法2是捆绑构造函数(证明对数平均不等式的方法)。
两种方法各有优劣,不同的题目使用两种方法的简繁程度不一致,但是有些题极值点解不出来的,对称性构造函数法就失效,需要转化为对数平均求解。
2024年高考重难专攻(四)极值点偏移问题
令 g(x)=-x-2x12(x∈[2,5]),则 g′(x)=-2xx-2+142 x≤0(x∈[2,5]), 所以 g(x)在[2,5]上单调递减,所以 g(x)在[2,5]上的最大值为 g(2)=-8. 所以 a 的取值范围是[-8,+∞). (2)当 a=2 时,方程 f(x)=x2+2m,即 x-ln x-m=0, 令 h(x)=x-ln x-m(x>0),则 h′(x)=1-1x, 当 x∈(0,1)时,h′(x)<0,h(x)单调递减; 当 x∈(1,+∞)时,h′(x)>0,h(x)单调递增. 所以 h(x)min=h(1)=1-m. 若方程 f(x)=x2+2m 有两个不等实根,则有 h(x)min<0,即 m>1.
(4)比较大小,即判断函数F(x)在某段区间上的正负,并得出f(x)与f(2x0-x)的大小 关系;
(5)转化,即利用函数f(x)的单调性,将f(x)与f(2x0-x)的大小关系转化为x与2x0-x 之间的关系,进而得到所证或所求.
已知函数f(x)=(x-1)ex-a,a∈R .
(1)若函数f(x)有两个零点,求a的取值范围; (2)设x1,x2是函数f(x)的两个零点,证明:x1+x2<0. 解:(1)由f(x)=0得a=(x-1)ex,令g(x)=(x-1)ex,∵g′(x)=ex+(x-1)ex=xex, 由g′(x)>0得x>0,∴函数g(x)在(0,+∞)上单调递增, 由g′(x)<0得x<0,∴函数g(x)在(-∞,0)上单调递减, ∴当x=0时,函数f(x)有极小值同时也是最小值, g(x)min=g(0)=-1,当x→+∞时,g(x)→+∞,当x→-∞时,g(x)<0,且g(x)→0, 则要使a=g(x)有两个不同的零点,则-1<a<0,即当-1<a<0时,函数f(x)有两个零点.
高中数学课件-导数中的综合问题-第4课时 极值点偏移问题
高考重难突破一导数中的综合问题第4课时极值点偏移问题已知函数 图象顶点的横坐标就是极值点 0.(1)若 = 的两根的中点满足1+22=0 ,即极值点在两根的正中间,也就是说极值点没有偏移.此时函数 在 =0两侧的函数值变化快慢相同,如图①.(2)若 = 的两根的中点1+22≠0 ,则极值点偏移,此时函数在 =0 两侧的函数值变化快慢不同,如图②、图③.技法一构造对称和(或差)法例1(2023·湖南郴州质量检测)已知函数=ln −122+1,若设函数的两个零点为1,2,证明:1+2>2.【证明】′=1−=1+1−>0,令′=0,解得=1.当0<<1时,′>0,在0,1上单调递增;当>1时,′<0,在1,+∞上单调递减,所以max=1=12>0,且当→0+时,→−∞,2=ln 2−1<0,则的两个零点1,2满足0<1<1<2<2.令=−2−,0<<1,则′=y+y2−=2K122−.当0<<1时,′>0,单调递增,所以<1=0,即<2−.因为0<1<1<2<2,所以0<2−2<1,所以2−2<2=1.又函数在0,1上单调递增,所以1>2−2,即1+2>2.对称变换求极值点偏移的步骤第一步:求导,获得的单调性,极值情况,求出的极值点0,再由1=2得出1,2的取值范围;第二步:构造辅助函数(对结论1+2><20,构造=−20−;对结论12><02,构造=−02,)求导,限定1或2的范围,判定符号,获得不等式;第三步:代入1(或2),利用1=2及的单调性证明结论.【对点训练】已知函数=−1e−,∈.设1,2是函数的两个零点,证明:1+2<0.证明:令=−1e−=0,则=−1e.设=−1e,则′=⋅e,当<0时,′<0,在−∞,0上单调递减,当>0时,′>0,在0,+∞上单调递增.所以min=0=−1,且→−∞时,→0,当>1时,>0.所以,当−1<<0时,有两个零点1,2,且12<0,1=2=0,不妨设1<0,2>0,则−2<0.令=−−=−1e+1+e−,则′=e−e−,当<0时,′=e−e−>0,此时在−∞,0上为增函数,所以<0,即=−−<0,即<−.因为−2<0,所以−2<2,因为1=2=0,所以−2<1,因为在−∞,0上为减函数,所以−2>1,即1+2<0.技法二消参减元法例2已知函数=−2e+−12有两个零点.(1)求的取值范围;【解】′=−1e+2−1=−1e+2.①设=0,则=−2e,只有一个零点.②设>0,则当∈−∞,1时,′<0;当∈1,+∞时,′>0.所以在−∞,1上单调递减,在1,+∞上单调递增.又1=−e<0,2=>0,取满足<0且<ln2,则>2−2+−12=2−32g>0,故存在两个零点.③设<0,由′=0得=1或=ln−2.若≥−e2,则l n−2≤1,故当∈1,+∞时,′>0,因此在1,+∞上单调递增.又当≤1时,<0,所以不存在两个零点.若<−e2,则l n−2>1,故当∈ 1,ln−2时,′<0;当∈ln−2,+∞时,′>0.因此在1,ln−2上单调递减,在ln−2,+∞上单调递增.又当≤1时,<0,所以不存在两个零点.综上,的取值范围为0,+∞.(2)设1,2是的两个零点,证明:1+2<2.证明:不妨设1<2,由(1)知1∈−∞,1,2∈1,+∞,2−2∈−∞,1,又在−∞,1上单调递减,所以1+2<2等价于1>2−2,即2−2<0.由于2−2=−2e2−2+2−12,而2=2−2e2+2−12=0,所以2−2=−2e2−2−2−2e2.设=−x2−−−2e,则′=−1e2−−e.所以当>1时,′<0,而1=0,故当>1时,<0.从而2=2−2<0,故1+2<2.消参减元,主要是利用导数把函数的极值点转化为导函数的零点,进而建立参数与极值点之间的关系,消参或减元,从而简化目标函数.其基本解题步骤如下:(1)建立方程:利用函数的导函数,建立极值点所满足的方程,抓住导函数中的关键——导函数解析式中使导函数变号的因式部分;(2)确定关系:根据极值点所满足的方程,建立极值点与方程系数之间的关系;(3)构建函数:根据消参、减元后式子的结构特征,构造相应的函数;(4)求解问题:利用导数研究所构造的函数的单调性、极值、最值等,解决相应的问题.【对点训练】已知函数=122−+En .若函数有两个极值点1,2,证明:1+2>−ln 22−34.证明:由题意得,′=−1+=2−r>0.因为函数有两个极值点1,2,所以方程2−+=0在0,+∞上有两个不同的实数根1,2,则&1+2=1>0,&12=>0,且=1−4>0,所以0<<14.由题意得1+2=1212−1+En 1+1222−2+En 2 =1212+22−1+2+En12=121+22−12−1+2+En12=12−−1+En =En −−12.令ℎ=En −−12 0<<14,则ℎ′=ln <0,所以ℎ在0,14上单调递减,所以ℎ>ℎ14=−ln 22−34,所以1+2>−ln 22−34.技法三比(差)值换元法例3已知函数=Bln +(,为实数)的图象在点1,1处的切线方程为=−1.(1)求实数,的值及函数的单调区间;【解】′=1+ln >0,由题意得&′1==1,&1==0,解得&=1,&=0.令′=1+ln =0,解得=1e.当>1e时,′>0,在1e,+∞ 上单调递增;当0<<1e时,′<0,在0,1e上单调递减.所以的单调递减区间为0,1e,单调递增区间为1e,+∞ .(2)设函数=+1,证明:1=21<2时,1+2>2.证明:由(1)得=En >0,故=+1=ln +1>0,由1=21<2,得l n 1+11=ln 2+12,即2−112=ln21>0.要证1+2>2,即证1+2⋅2−112>2ln21,即证21−12>2ln21.设21=>1,则需证−1>2ln >1.令ℎ=−1−2ln >1,则ℎ′=1+12−2= 1−12>0.所以ℎ在1,+∞上单调递增,则ℎ>ℎ1=0,即−1>2ln .故1+2>2得证.比(差)值换元的目的也是消参,就是先根据已知条件建立极值点之间的关系,然后利用两个极值点之比(或差)作为变量,实现消参、减元的目的.设法用两个极值点的比值或差值表示所求解的不等式,进而转化为相应的函数问题求解,多用来研究含对数(或指数)式的函数的极值点偏移问题.其基本解题步骤如下:(1)建等式:利用极值点所满足的条件建立两个关于极值点1,2的方程;(2)设比差:根据两个数值之间的大小关系,选取两数之商或差作为变量,建立两个极值点之间的关系;(3)定关系:用一个极值点与比值或差值表示另一个极值点,代入方程.通过两个方程之差或商构造极值点与比值或差值之间的关系,进而通过解方程用比值或差值表示两个极值点;(4)构函数:将关于极值点的目标代数式用比值或差值表示出来,构造相应的函数;(5)解问题:利用导数研究所构造的函数的单调性、极值、最值等,解决相应的问题.【对点训练】已知函数=e−B有两个零点1,21<2.证明:2−1<21−2.证明:由题意得&e1=B1,&e2=B2,令=2−1>0,两式相除得e=e2−1=21=1+1,即1=e−1>0,欲证2−1<21−2,即证<2 e−1 −2,即证2+2r2e<2.记ℎ=2+2r2e>0,ℎ′=2r2e− 2+2r2 ee2=−2e<0,故ℎ在0,+∞上单调递减,所以ℎ<ℎ0=2,即2+2r2e<2,所以2−1<21−2得证.。
专题07 极值点偏移问题 (解析版)
导数及其应用 专题七:极值点偏移问题一、知识储备1、极值点偏移的相关概念所谓极值点偏移,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性。
若函数)(x f 在0x x =处取得极值,且函数)(x f y =与直线b y =交于),(),,(21b x B b x A 两点,则AB 的中点为),2(21b x x M +,而往往2210xx x +≠。
如下图所示。
图1 极值点不偏移 图2 极值点偏移极值点偏移的定义:对于函数)(x f y =在区间),(b a 内只有一个极值点0x ,方程)(x f 的解分别为21x x 、,且b x x a <<<21,(1)若0212x x x ≠+,则称函数)(x f y =在区间),(21x x 上极值点0x 偏移;(2)若0212x x x >+,则函数)(x f y =在区间),(21x x 上极值点0x 左偏,简称极值点0x 左偏;(3)若0212x x x <+,则函数)(x f y =在区间),(21x x 上极值点0x 右偏,简称极值点0x 右偏。
2、对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点x 0.(2)构造函数,即根据极值点构造对称函数0()()(2)F x f x f x x =--,若证2120x x x > ,则令2()()()x F x f x f x=-. (3)判断单调性,即利用导数讨论()F x 的单调性.(4)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(5)转化,即利用函数()f x 的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.[提醒] 若要证明122x x f +⎛⎫'⎪⎝⎭的符号问题,还需进一步讨论122x x +与x 0的大小,得出122x x +所在的单调区间,从而得出该处导数值的正负. 二、例题讲解1.(2022·贵州省思南中学高三月考(文))设函数()22ln 1f x x mx =-+.(1)讨论函数()f x 的单调性;(2)当1m =时,若在()f x 定义域内存在两实数1x ,2x 满足12x x <且()()12f x f x =,证明:122x x +>.【详解】(1)依题意,函数()f x 定义域为(0,)+∞,()222(1)2mx f x mx x x-'=-=,当0m ≤时,()0f x '>,()f x 在(0,)+∞上单调递增,当0m >时,由()0f x '=得m x m =,当0mx m <<时,()0f x '>,当m x m >时,()0f x '<,于是得()f x 在(0,)m m 上单调递增,在(,)mm+∞上单调递减,所以,当0m ≤时,()f x 在(0,)+∞上单调递增,当0m >时,()f x 在(0,)m m 上单调递增,在(,)mm+∞上单调递减;(2)分析 :如图:1201x x <<< 要证122x x +> 只需证:122x x -<由于101x <<,则112x <-即只需证1212x x <-< 如图,只需证12(2)()f x f x ->;由于()()12f x f x = 只需证11(2)()f x f x ->此时可构造函数()()(2)F x f x f x =--(即用x 替代了上式1x ) 只需证:在01x <<,()()(2)0F x f x f x =--<。
数学-极值点偏移问题的求解策略(共14张PPT)
解法二:(分离参数)
f ( x) ( x 2)e a( x 1) 有两个零点 x (2 x)e 有两根. 方程 a 2 ( x 1)
x 2
(2 x)e g ( x) 2 ( x 1)
x
(0, )
问题提出
【2016 全国课标Ⅰ卷理 21】 【题目】已知函数 f ( x) ( x 2)e a( x 1) 有两个零点. (Ⅰ)求 a 的取值范围; (0, ) (Ⅱ) 设 x1 , x2 是 f ( x) 的两个零点, 证明:x1 x2 2 .
2
所以f (2 x2 ) x2e
2 x2
( x2 2)e . 令g ( x) xe2x ( x 2)ex .
x2
x
令g( x) ( x 1)(e e ). 所以当 x 1 时, g ( x) 0 ,而 g (1) 0 ,
2 x
故当 x 1 时, g ( x) 0. 从而 g ( x2 ) f (2 x2 ) 0, 故x1 x2 2.
x 2
x1 x2 1 x1 x2 2 2
问题解决
f (2 x2 ) 0 0 f ( x2 ) f (2 x2 )
f ( x1 ) f (2 x2 )
x1 2 x2 x1 x2 2
问题解决
不妨设 x1 1 x2 , 则2 x2 (1, ).
问题提出
【2016 全国课标Ⅰ卷理 21】 【题目】已知函数 f ( x) ( x 2)e a( x 1) 有两个零点. (Ⅰ)求 a 的取值范围; (Ⅱ) 设 x1 , x2 是 f ( x) 的两个零点, 证明:x1 x2 2 .
补上一课 极值点的“偏移”问题
@《创新设计》
①g(x)在(-∞,0)和(0,1)上单减,在(1,+∞)上单增;g(x)的符号与 x 的符号相同; 当 x→-∞时,g(x)→0;当 x→0-时,g(x)→-∞;当 x→0+时,g(x)→+∞;当 x→ +∞时,g(x)→+∞,g(x)的图象如下(由图象亦可得 a>e),由 g(x1)=g(x2)=a 可设 0<x1<1<x2:
8
@《创新设计》
题型二 构造函数的选取 【例2】 已知函数f(x)=ex-ax有两个不同的零点x1,x2,其极值点为x0.
(1)求a的取值范围;(2)求证:x1+x2<2x0; (3)求证:x1+x2>2;(4)求证:x1x2<1. (1)解 f′(x)=ex-a,若a≤0,则f′(x)>0,f(x)在R上单增,f(x)至多有1个零点, 舍去;故必有a>0,易得f(x)在(-∞,ln a)上单减,在(ln a,+∞)上单增,要使 f(x)有两个不同的零点,则有f(ln a)<0⇒a>e(严格来讲,还需补充两处变化趋势 的说明:当x→-∞时,f(x)→+∞;当x→+∞时,f(x)→+∞).
12
@《创新设计》
②构造函数
G(x) = g(x) - g(2 - x) , 则
G′(x)
=
g′(x)
-
[g(2
-
x)]′
=
ex(x-1) x2
+
e2(-x(2-1-x)x)2 =(x-1)xe2x-(2e-2-xx)2, 当 0<x<1 时,x-1<0,但因式xe2x-(2e-2-xx)2的符号不容易看出,引进辅助
7
@《创新设计》
【训练1】 (2016·新课标Ⅰ卷节选)已知函数f(x)=(x-2)ex+a(x-1)2有两个零点(a>0). 设x1,x2是f(x)的两个零点,证明:x1+x2<2. 证明 由f′(x)=(x-1)ex+2a(x-1)=(x-1)(ex+2a),知f(x)在(-∞,1)上递减,在(1, +∞)上递增,f(1)=-e,由f(x1)=f(x2)=0,可设x1<1<x2. 构造辅助函数F(x)=f(x)-f(2-x),求导得F′(x)=f′(x)-[f(2-x)]′ =(x-1)(ex+2a)-(x-1)(e2-x+2a) =(x-1)(ex-e2-x), 当x<1时,x-1<0,ex-e2-x<0,则F′(x)>0,得F(x)在(-∞,1)上单增,又F(1)=0, 故F(x)<0(x<1),即f(x)<f(2-x)(x<1).将x1代入上述不等式中,得f(x1)=f(x2)<f(2-x1), 又x2>1,2-x1>1,f(x)在(1,+∞)递增,故x2<2-x1,x1+x2<2.
导数的极值点偏移问题
导数极值点偏移问题如上图所示,x0为函数的极值点,x0处对应的曲线的切线的斜率为0极值点左移:x1x22x0, x x1x2处切线与 x 轴不平行2极值点右移:x1x22x0, x x1x2处切线与 x 轴不平行2由上面图像可知,函数的图像分为凸函数和凹函数。
当函数图像为凸函数,且极值点左偏时,有f' x1 x2 f ' x00;当函数图像为凸函数,且极值点右偏时,有2f 'x1x2f2f 'x1x2f2f 'x1x2f2' x00 。
当函数图像为凹函数,且极值点左偏时,' x00 ;当函数图像为凹函数,且极值点右移时,有' x00 。
如图所示,上图的函数图像为凸函数,且极值点右移,x1和 x2处对应的函数值相等,我们可以作 x2关于 x0的对称点 x3,则 x3 2x0x2x1,且 x3x0,故 f x3 f x1,即f 2 x0 x2f x1,故我们可以构造函数 F x f 2x0 x2 f x1,只需要判断函数F x 的单调性,然后根据单调性判断函数的最小值,只要满足 F x min0 ,我们就可以得到 x1 x2 2x0。
同理,我们可以得到凸函数极值点左移以及凹函数极值点左移或右移的构造函数。
做题步骤:(1)求极值点x0;(2)构造函数F ( x) f (x) f (2 x0 x) ;(3)判断极值点左移还是右移;(4)若是左移,求导时研究极值点左侧区间,比较 f ( x) 和 f (2 x0 x) 大小,然后在极值点右侧区间利用 f ( x) 单调性,得出结论;若是右移,求导时研究极值点右侧区间,比较 f (x)和 f (2 x0 x) 大小,然后在极值点左侧区间利用 f (x) 单调性,得出结论;(5)若极值点求不出来,由 f ' ( x0 ) 0 ,使用替换的思想,简化计算步骤.经典题型:1. 已知函数f x lnx ax2,其中 a R(1)若函数f x 有两个零点,求 a 的取值范围;(2)若函数f x 有极大值为1,且方程 f x m 的两根为x1, x2,且x1x2,证明:2x1 x2 4a .2. 已知函数 f x e x ax a a R ,其中e为自然对数的底数.(1)讨论函数y f x 的单调性;(2)若函数 f x 有两个零点x1, x2,证明:x1x22ln a .(1)试讨论函数 f x 的单调性;(2)如果a0且关于x的方程 f x m 有两解x1,x2(x1x2),证明 x1x22a .( Ⅰ ) 求f x 的单调区间;(Ⅱ)设 f x 极值点为x0,若存在 x1 , x 20,,且x1x2,使f x1f x2,求证: x1x22x0 .5. 设函数 f x a 2lnx x 2ax aR .(1)试讨论函数 f x 的单调性;(2)设2h xf x x0时,若方程x2 xaal n x, 记, 当 ah xm mR 有两个不相等的实根 x 1 , x 2 ,证明 h'x 1x 2 0 .26. 设函数f x 1 x2 a 1 x alnx.2(Ⅰ)讨论函数 f x的单调性;(Ⅱ)若 f x b 有两个不相等的实数根x1x20. x1 , x2,求证 f27. 设函数 f x x2alnx , g x = a 2 x .(Ⅰ)求函数 f x 的单调区间;(Ⅱ)若函数 F x f x g x 有两个零点x1, x2.(1)求满足条件的最小正整数 a 的值;x1x20 .(2) 求证:F28.(2016年全国卷1)已知函数 f x x 2 e x a x 1 2有两个零点(1)求a的取值范围;(2)设x1, x2是f x的两个零点,证明:x1x229.(2018 年湖北省七市州联考)已知函数f x axe2 x 2 x 1 2 ,a R (1)当a4 时,谈论函数 f x的单调性;(2)当0 a 1时,求证:函数 f x有两个不相等的零点x1, x2,且x1x2210.(广西桂林2017 年第一次联合模拟考试)已知函数 f x m 1ln x 1 m R 的两个x 2零点为x1 , x2 x1x2(1)求实数m的取值范围;(2)求证:112x1x2e11.已知函数 f x e x ax 有两个零点(1)求实数a的取值范围;(2)设x1, x2是函数 f x 的两个零点,证明:x1x2212.已知函数 f x e x 1kx 2k(1)讨论函数 f x 的单调性;(2)当函数 f x 有两个零点x1, x2时,证明:x1x22。
简单的极值点的偏移
,证明:
x1
x2>2e2
ln 2 0.7,
2 1.4
4.
已知
f (x) ax4 4ax3 1 x2 (x x>0,a>1),
2
f (x) 有两个零点 x1, x2 ,证明: 4<x1 x2<a 4
5.
已知
f (x) a 1 ln x ,
x
f (x) 有两个零点 x1, x2 ,证明: 2<x1 x2<3ea1 1
6. 已知 f (x) xln x ,若 f x1 f x2 ,证明: x1 x2<(x1 x2)4 解:
7. 已知 f (x) ln x x2 x ,若正实数 x1, x2 满足 (f x1) f x2 x1 x2 0 ,证明: x1 x2
y 1 与它的图象相交,交点横坐标分别为 1 和1 , 我们简单计算 11 0 .也就是说,极值点刚好位于
2
两个交点的中点处,此时我们称极值点相对中点不 偏移. 当然,更多的情况是极值点相对中点偏移.
下面的图形能形象地解释这一点.
极值点左偏
极值点右偏
那么,如何判断一道题是否属于“极值点偏移”问题呢?
特征就是: ①函数 f (x) 的极值点为 x0 ;
②函数 f (x) 中存在 f x1 f x2 ;
③证明 x1 x2 2x0 或者 x1 x2 2x0 .
Baby Steps to Giant Strides
解题步骤:
构造差函数 F x f 2x0 x f x ; 研究 F x 单调性; 结合 F x0 0 ,判断 F x 的符号,从而确定 f 2x0 x 与 f (x) 的大小关系; 进一步确定 f x1 f x2 f 2x0 x 或者 f x1 f x2 f 2x0 x ;
极值点偏移PPT课件
f (x1) f (2 x2), x1 1 x2,2 x2 1,x1 2 x2
x1 x2 2
解法二:公 xex 式 a 法 x: lnaxx1lnxlna,x2lnxlna
x1x2lnx1lnx2lnxx1 1 lx2nx2
1,由对数均值a不 b 等 a式 b lnalnb 2
x1x2 2
m有两个实x1根 , x2,且x1
x2
3 2
证明: x1 x2 5
证明: e x 1 m x ln m ( 2 x 3 ) 1 2x 3
x1 ln m ( 2 x1 3 ) 1, x 2 ln m ( 2 x 2 3 ) 1
x1 x 2 ln( 2 x1 3 ) ln( 2 x 2 3 )
1x1x2
2
.
17
世上有一条很长很美的路,叫做梦想; 还有一堵很高很硬的墙,叫做现实; 翻越那堵墙,叫做坚持; 推倒那堵墙,叫做突破。 只有拼搏了才会知道自己有多优秀!
.
18
谢谢 聆听
.
19
a(x1 x2 )
x1 x2 ln x1 ln x2
1 a
ln x1 ln x2 a(x1 x2 )
由对数均值不等式 a b a b ln a ln b 2
ln
x1
ln
x2
a( x1
x2 )
a
2 a
2
ln(x1x2 )
2
x1 x2
e2
.
16
例 7 :f 已 ( x ) x x , 若 e 知 x 1 x 2 , 有 f ( x 函 1 ) f ( x 2 ) 证 数 , x 1 x 2 明 2
f (x2 ) f (2 x1),又x21,2 x1 1, f (x)在(1, ),x2 2 x1
专题11 极值点偏移问题 - 2021年高考数学二轮经典专题深度解读(解析版)
专题11 极值点偏移问题一、极值点偏移的概念1.已知函数f (x )的图象的顶点的横坐标就是极值点x 0,若f (x )=c 的两根的中点刚好满足=x 0,即极值点在两根的正中间,也就是说极值点没有偏移.此时函数f (x )在x =x 0两侧,函数值变化快慢相同,如图1.图 1 图 2 图 32.若≠x 0,则极值点偏移,此时函数f (x )在x =x 0两侧,函数值变化快慢不同,如图2、图3.(1)若,则,即函数在区间上极(小)大值点右(左)偏; (2)若,则,即函数在区间上极(小)大值点右(左)偏.证明:(1)因为对于可导函数,在区间上只有一个极大(小)值点,则函数的单调递增(减)区间为,单调递减(增)区间为,由于,有,且,又,故,所以,即函数极(小)大值点右(左)偏;二、极值点偏移的求解方法:利用对称构造函数(1)定函数(极值点为x 0),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点x 0.(2)构造函数,即根据极值点构造一元差函数F (x )=f (x )-f (2x 0-x ),若证x 1x 2> ,则令F (x )=f (x )-f (注意:x 0为极值点);(3)对F(x)求导,判断导数符号,即利用导数讨论F (x )的单调性;(4)比较大小:即判断函数F (x )在某段区间上的正负,并得出f (x )与f (2x 0-x )的大小关系;(5)转化,即利用函数f (x )的单调性,将f (x )与f (2x 0-x )的大小关系转化为x 与2x 0-x 之间的关系,进而得到所证或所求;[注意] 若要证明f ′的符号,还需进一步讨论与x 0的大小,得出所在的单调区间,从而得出该处导数值的考点剖析)2()(201x x f x f -<)2()(201x x f x f ->b x x a <<<21)2()(201x x f x f -<2012)(x x x -><正负.三、极值点偏移问题求解另一种方法:利用对数平均不等式求解对数平均不等式:),0,0(2ln ln b a b a ba b a b a ab ≠>>+<-+<,利用换元法将双变量问题转化为单变量问题,再构造函数求导数,利用单调性证明不等式的成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极值点偏移问题的两种常见解法之比较浅谈部分导数压轴题的解法在高考导数压轴题中,不断出现极值点偏移问题,那么,什么是极值点偏移问题?参考陈宽宏、邢友宝、赖淑明等老师的文章,极值点偏移问题的表述是:已知函数()y f x =是连续函数,在区间12(,)x x 内有且只有一个极值点0x ,且12()()f x f x =,若极值点左右的“增减速度”相同,常常有极值点1202x x x +=,我们称这种状态为极值点不偏移;若极值点左右的“增减速度”不同,函数的图象不具有对称性,常常有极值点1202x x x +≠的情况,我们称这种状态为“极值点偏移”. 极值点偏移问题常用两种方法证明:一是函数的单调性,若函数()f x 在区间(,)a b 内单调递增,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔<;若函数()f x 在区间(,)a b 内单调递减,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔>. 二是利用“对数平均不等式”证明,什么是“对数平均”?什么又是“对数平均不等式”?两个正数a 和b 的对数平均数定义:,,(,)ln ln ,,a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩对数平均数与算术平均数、(,)2a bL a b +≤≤,(此式记为对数平均不等式)下面给出对数平均不等式的证明: i )当0a b =>时,显然等号成立 ii )当0a b ≠>时,不妨设0a b >>, ①ln ln a b a b -<-,ln ln a ba b-<-,只须证:ln a b <,1x =>,只须证:12ln ,1x x x x≤-> 设1()2ln ,1f x x x x x=-+>,则22221(1)()10x f x x x x -'=--=-<,所以()f x在(1,)+∞内单调递减,所以()(1)0f x f <=,即12ln x x x<-,ln ln a ba b --②再证:ln ln 2a b a ba b -+<- 要证:ln ln 2a b a ba b -+<-,只须证:1ln21a ab b a b-<+令1a x b =>,则只须证:1ln 12x x x -<+,只须证2ln 1112x x x -<>+,设2ln ()112xg x x =--+,1x >,则22221(1)()0(1)22(1)x g x x x x x --'=-=<++ 所以()g x 在区间(1,)+∞内单调递减,所以()g(1)0g x <=,即2ln 112xx -<+, 故ln ln 2a b a ba b -+<- 综上述,当0,0a b >>(,)2a bL a b +≤≤例1 (2016年高考数学全国Ⅰ理科第21题)已知函数2)1()2()(-+-=x a e x x f x有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设21,x x 是)(x f 的两个零点,证明:221<+x x . 解:(Ⅰ)函数()f x 的定义域为R ,当0a =时,()(2)0xf x x e =-=,得2x =,只有一个零点,不合题意; 当0a ≠时,()(1)[2]x f x x e a '=-+当0a >时,由()0f x '=得,1x =,由()0f x '>得,1x >,由()0f x '<得,1x <, 故,1x =是()f x 的极小值点,也是()f x 的最小值点,所以min ()(1)0f x f e ==-< 又(2)0f a =>,故在区间(1,2)内存在一个零点2x ,即212x << 由21lim (2)limlim 0,xx x x x x x x e e e--→-∞→-∞→-∞--===-又2(1)0a x ->,所以,()f x 在区间 (,1)-∞存在唯一零点1x ,即11x <, 故0a >时,()f x 存在两个零点;当0a <时,由()0f x '=得,1ln(2)x x a ==-或, 若ln(2)1a -=,即2ea =-时,()0f x '≥,故()f x 在R 上单调递增,与题意不符 若ln(2)1a ->,即02ea -<<时,易证()=(1)0f x f e =-<极大值故()f x 在R 上只有一 个零点,若ln(2)1a -<,即2ea <-时,易证()=(ln(2)f x f a -极大值2(ln (2)4ln(2)5)0a a a =---+<,故()f x 在R 上只有一个零点综上述,0a >(Ⅱ)解法一、根据函数的单调性证明 由(Ⅰ)知,0a >且1212x x <<<令2()()(2)(2),1xxh x f x f x x e xe x -=--=-+>,则2(1)2(1)(e 1)()x x x h x e ----'= 因为1x >,所以2(1)10,10x x e-->->,所以()0h x '>,所以()h x 在(1,)+∞内单调递增所以()(1)0h x h >=,即()(2)f x f x >-,所以22()(2)f x f x >-,所以12()(2)f x f x >-,因为121,21x x <-<,()f x 在区间(,1)-∞内单调递减,所以122x x <-,即122x x +< 解法二、利用对数平均不等式证明由(Ⅰ)知,0a >,又(0)2f a =- 所以, 当02a <≤时,10x ≤且212x <<,故122x x +<当2a >时,12012x x <<<<,又因为12122212(2)(2)(1)(1)x x x e x e a x x --=-=--- 即12122212(2)(2)(1)(1)x x x e x e x x --=--所以111222ln(2)2ln(1)ln(2)2ln(1)x x x x x x -+--=-+--所以12122112ln(2)ln(2)2(ln(1)ln(1))(2)(2)x x x x x x x x -------=-=---所以1212121212ln(1)ln(1)(2)(2)412ln(2)ln(2)ln(2)ln(2)2x x x x x x x x x x ---------=<------所以1212122ln(1)ln(1)22ln(2)ln(2)x x x x x x +----<--- ①下面用反证法证明不等式①成立因为12012x x <<<<,所以12220x x ->->,所以12ln(2)ln(2)0x x ---> 假设122x x +≥,当122x x +=,1212122ln(1)ln(1)02=02ln(2)ln(2)x x x x x x +----=---且,与①矛盾; 当122x x +>时1212122ln(1)ln(1)02<02ln(2)ln(2)x x x x x x +---->---且,与①矛盾,故假设不成立 所以122x x +<例2 (2011年高考数学辽宁卷理科第21题)已知函数2()ln (2)f x x ax a x =-+-(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若曲线()y f x =与x 轴交于A B 、两点,A B 、中点的横坐标为0x ,证明:0()0f x '<解:(Ⅰ)函数()f x 的定义域是(0,)+∞1(12)(1)()2(2)x ax f x ax a x x+-'=-+-=当0a ≤时,()0f x '>在区间(0,)+∞内恒成立,即()f x 在区间(0,)+∞内单调递增 当0a >时,由()f x '>0,得函数()f x 的递增区间1(0,)a, 由()f x '<0,得函数()f x 的递减区间1(,)a+∞ (Ⅱ)解法一、根据函数的单调性求解设点A B 、的横坐标分别为12x x 、,则1202x x x +=,且1210x x a<<< 由(Ⅰ)知,当0a >时,max 111[()]=[()]()ln 1f x f x f a a a ==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<要证0000(12)(1)()0x ax f x x +-'=<,只须证01ax >,即证122x x a+>令2()()()h x f x f x a =--=21ln ln()22,0x x ax x a a ---+<<则212(1)()202(2)a ax h x a x ax x ax -'=+-=>--,所以()h x 在1(0,)a内单调递增 所以1()()0h x h a <=,即2()()f x f x a <- 因为1210x x a <<<,所以112()()f x f x a <-,所以212()()f x f x a <-又21121,x x a a a >->,且()f x 在区间1(,)a +∞内单调递减所以212x x a >-,即122x x a+>,故0()0f x '<解法二、利用对数平均不等式求解设点A B 、的坐标分别为12(,0)(,0)A x B x 、,则1202x x x += 由(Ⅰ)知,当0a >时,max111[()]=[()]()ln 1f x f x f a a a==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<因为21112222ln (2)0ln (2)0x ax a x x ax a x ⎧-+-=⎪⎨-+-=⎪⎩,所以212121ln ln [()(2)]()x x a x x a x x -=+--- 所以211212211()(2)ln ln 2x x x x a x x a x x -+=<+---,即12121()(2)2x x a x x a +<+--所以21212()(2)()20a x x a x x ++-+-> ,所以1212[()2][()1]0a x x x x +-++>所以12102x x a+-<,所以121212012(1)(1)2()()022x x x x ax xf x f x x +++-+''==<+.例3 (2014年高考数学湖南卷文科第21题)已知函数21()1xx f x e x-=+ (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当1212()(),f x f x x x =≠时,求证:120x x +< 解:(Ⅰ)函数()f x 的定义域为R()f x '=2222222(1)2(1)1[(1)2](1)1(1)x x xx x x x x x e e e x x x -+-----++=+++ 由()0f x '=,得0x =,由()0f x '>,得函数的递增区间(,0)-∞,由()0f x '<,得函数的递减区间(0,)+∞,所以max ()(0)1f x f ==(Ⅱ)解法一、利用函数的单调性求解令2211()()()11x xx x h x f x f x e e x x --+=--=-++ ,0x > 则22222(23)(23)()(1)x xx x e x x h x xx e -+-++'=-+令222()(23)(2+3),0xH x x x ex x x =-+-+>则22()2[(2)(1)],0xH x x x ex x '=-+-+>,则22()2[(23)1],0x H x x e x ''=+->由0x >得,()2(31)40H x ''>-=>,故()H x '在(0,)+∞内单调递增 故()(0)20H x H ''>=>,故()H x 在(0,)+∞内单调递增 故()(0)0H x H >=,故()0h x '<,故()h x 在(0,)+∞上单调递减 所以,()(0)0h x h <=由(1)及1212()(),f x f x x x =≠知,1201x x <<<,故222()()()0h x f x f x =--< 所以22()()f x f x <-,所以12()()f x f x <-,又()f x 在(,0)-∞上单调递增 所以,12x x <-,即120x x +< 解法二、利用对数平均不等式求解因为1x <时,()0f x >,1x >时,()0f x <,1212()(),f x f x x x =≠ 所以,1201x x <<<,121222121111x x x x e e x x --=++,所以,21111222121111x x x x e e x x ----=++ 所以,22121212ln(1)(1)ln(1)ln(1)(1)ln(1)x x x x x x -+--+=-+--+ 所以,22212112(1)(1)ln(1)ln(1)ln(1)ln(1)x x x x x x ---=---++-+所以,222112212121(1)(1)ln(1)ln(1)111ln(1)ln(1)ln(1)ln(1)2x x x x x x x x x x ---+-+-+-=+<------ 所以,22121212ln(1)ln(1)2ln(1)ln(1)x x x x x x ++-+<---① 因为1201x x <<<,所以12ln(1)ln(1)0x x ---> 下面用反证法证明120x x +<,假设120x x +≥当120x x +=时,22121212ln(1)ln(1)0,=02ln(1)ln(1)x x x x x x ++-+=---且,与不等式①矛盾当120x x +>时,210x x >->,所以120,2x x +>且221212ln(1)ln(1)0ln(1)ln(1)x x x x +-+<---,与不等式①矛盾.所以假设不成立,所以120x x +<例4 (2014年江苏省南通市二模第20题)设函数()(),xf x e ax a a R =-+∈其图象与x 轴交于12(,0),(,0)A x B x 两点,且12x x <. (Ⅰ)求实数a 的取值范围;(Ⅱ)证明:0(()f f x ''<为函数()f x 的导函数); (Ⅲ)略.解:(Ⅰ)()xf x e a '=-,x R ∈,当0a ≤时,()0f x '>在R 上恒成立,不合题意 当0a >时,易知,ln x a =为函数()f x 的极值点,且是唯一极值点, 故,min ()(ln )(2ln )f x f a a a ==-当min ()0f x ≥,即20a e <≤时,()f x 至多有一个零点,不合题意,故舍去;当min ()0f x <,即2a e >时,由(1)0f e =>,且()f x 在(,ln )a -∞内单调递减,故()f x 在(1,ln )a 有且只有一个零点;由22(ln )2ln (12ln ),f a a a a a a a a =-+=+- 令212ln ,y a a a e =+->,则210y a'=->,故2212ln 1430a a e e +->+-=-> 所以2(ln )0f a >,即在(ln ,2ln )a a 有且只有一个零点. (Ⅱ)解法一、根据函数的单调性求解由(Ⅰ)知,()f x 在(,ln )a -∞内递减,在(ln ,)a +∞内递增,且(1)0f e => 所以121ln 2ln x a x a <<<<,要证0f '<,只须证a <ln a <122x x +<,故只须证122ln x x a +<令2ln ()()(2ln )(2ln ),xa xh x f x f a x e ax a e a a x a -=--=-+-+--222ln xxe a e ax a a -=--+,1ln x a <<则2()220x x h x e a e a a -'=+-≥=,所以()h x 在区间(1,ln )a 内递增所以ln 2ln ()2ln 2ln 0aa h x e a e a a a a -<--+=,即()(2ln )f x f a x <-所以11()(2ln )f x f a x <-,所以21()(2ln )f x f a x <-因为21ln ,2ln ln x a a x a >->,且()f x 在区间(ln ,)a +∞内递增所以212ln x a x <-,即122ln x x a +<,故0f '< 解法二、利用对数平均不等式求解由(Ⅰ)知,()f x 在(,ln )a -∞内递减,在(ln ,)a +∞内递增,且(1)0f e =>所以121ln 2ln x a x a <<<<,因为111()0x f x e ax a =-+=,222()0x f x e ax a =-+=121211x x e e a x x ==--,即12111211x x e e x x --=--,所以1212(1)(1)1ln(1)ln(1)x x x x ---=>---所以1212()0x x x x -+<,要证:0f '<,只须证a <ln a <11ln(1)x x <--22ln(1)x x <--所以1212ln(1)(1)x x x x <+---,所以121212ln(()1)x x x x x x -++<+-因为1212()0x x x x -+<,所以1212ln(()1)ln10x x x x -++<=,而120x x +->所以121212ln(()1)x x x x x x -++<+-0f '<从以上四个例题可以看出,两种方法解决的问题相同,即若12,x x 是函数()f x 的两个零点,而0x x =是函数()f x 的极值点,证明1202x x x +<(或1202x x x +>),根据函数单调性求解的步骤是:一、构建函数0()()(2)h x f x f x x =--,二、判断函数()h x 的单调性,三、证明()0h x >(或()0h x <)即0()(2)f x f x x >-(或0()(2)f x f x x <-),四、故函数()f x 的单调性证1202x x x +<(或1202x x x +>).根据对数平均不等式求解的步骤是:一、通过等式两边同取自然对数或相减等配凑出1212ln ln x x x x --及,二、通过等式两边同除以12ln ln x x -构建对数平均数1212ln ln x x x x --,三、利用对数平均不等式将1212ln ln x x x x --转化为122x x +后再证明1202x x x +<(或1202x x x +>). 两种方法各有优劣,适用的题型也略有差异,考生若能灵活驾驭这两种方法,便能在考场上发挥自如,取得理想的成绩.。