【人教A版】2020年秋高中数学选修1-1:全一册学案(23套,含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.1 命题
学习目标:1.了解命题的概念.(难点)2.理解命题的构成形式,能将命题改写为“若p ,则q ”的形式.(重点)3.能判断一些简单命题的真假.(难点,易错点)
[自 主 预 习·探 新 知]
1.命题的定义与分类
(1)命题的定义:在数学中,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.
(2)命题定义中的两个要点:“可以判断真假”和“陈述句”.我们学习过的定理、推论都是命题.
(3)分类
命题⎩
⎪⎨
⎪⎧
真命题:判断为真的语句假命题:判断为假的语句
思考1:(1)“x -1=0”是命题吗?
(2)“命题一定是陈述句,但陈述句不一定是命题”这个说法正确吗? [提示] (1)“x -1=0”不是命题,因为它不能判断真假.
(2)正确.根据命题的定义,命题一定是陈述句,但陈述句中只有能够判断真假的才是命题.
2.命题的结构
(1)命题的一般形式为“若p ,则q ”.其中p 叫做命题的条件,q 叫做命题的结论. (2)确定命题的条件和结论时,常把命题改写成“若p ,则q ”的形式. 思考2:命题“实数的平方是非负数”的条件与结论分别是什么? [提示] 条件是“一个数是实数”,结论是:“它的平方是非负数”.
[基础自测]
1.思考辨析
(1)一个命题不是真命题就是假命题. ( ) (2)一个命题可以是感叹句. ( ) (3)x >5是命题.
( )
[解析] 根据命题的定义知(1)正确,(2)、(3)错误. [答案] (1)√ (2)× (3)× 2.下列语句是命题的是( ) ①三角形内角和等于180°;②2>3; ③一个数不是正数就是负数;④x >2; ⑤2018央视狗年春晚真精彩啊! A .①②③
B .①③④
C.①②⑤ D.②③⑤
A[①、②、③是陈述句,且能判断真假,因此是命题,④不能判断真假,⑤是感叹句,故④、⑤不是命题.]
3.下列命题中,真命题共有( )
【导学号:97792000】
①面积相等的三角形是全等三角形;②若xy=0,则|x|+|y|=0;
③若a>b,则a+c>b+c;④矩形的对角线互相垂直.
A.1个B.2个
C.3个D.4个
A[①、②、④是假命题,③是真命题.]
[合作探究·攻重难]
A.x2-1=0 B.2+3=8
C.你会说英语吗?D.这是一棵大树
(2)下列语句为命题的有________.
①x∈R,x>2;②梯形是不是平面图形呢?③22 018是一个很大的数;④4是集合{2,3,4}中的元素;⑤作△ABC≌△A′B′C′.
[解析](1)A中x不确定,x2-1=0的真假无法判断;B中2+3=8是命题,且是假命题;C不是陈述句,故不是命题;D中“大”的标准不确定,无法判断真假.
(2)①中x有范围,可以判断真假,因此是命题;②是疑问句,不是命题;③是陈述句,但“大”的标准不确定,无法判断真假,因此不是命题;④是陈述句且能判断真假,因此是命题;⑤是祈使句,不是命题.
[答案](1)B (2)①④
感叹句等都不是命题
对于含变量的语句,要注意根据变量的取值范围,看能否判断其真假,若能,就是命题;若
1.判断下列语句是不是命题,并说明理由.
(1)函数f(x)=3x(x∈R)是指数函数;
(2)x2-3x+2=0;
(3)若x∈R,则x2+4x+7>0.
(4)垂直于同一条直线的两条直线一定平行吗?
(5)一个数不是奇数就是偶数;
(6)2030年6月1日上海会下雨.
[解](1)是命题,满足指数函数的定义,为真命题.
(2)不是命题,不能判断真假.
(3)是命题.当x∈R时,x2+4x+7=(x+2)2+3>0能判断真假.
(4)疑问句,不是命题.
(5)是命题,能判断真假.
(6)不是命题,不能判断真假.
改为“若p则q”的形式,则p是________,q是________.
【导学号:97792001】
(2)把下列命题改写成“若p,则q”的形式,并判断命题的真假.
①函数y=lg x是单调函数;
②已知x,y为正整数,当y=x+1时,y=3,x=2;
③当abc=0时,a=0且b=0且c=0.
[思路探究] 解决此类题目的关键是找到命题的条件和结论,然后用适当的形式改写成“若p,则q的形式”.
[解析](1)命题的条件是“弦的垂直平分线”,结论是“经过圆心并且平分弦所对的弧”.因此p是“一条直线是弦的垂直平分线”,q是“这条直线经过圆心并且平分弦所对的弧”.
[答案]一条直线是弦的垂直平分线这条直线经过圆心且平分弦所对的弧.
(2)①若函数是对数函数y=lg x,则这个函数是单调函数.
②已知x,y为正整数,若y=x+1,则y=3,x=2.
③若abc=0,则a=0且b=0且c=0.
2.把下列命题改写成“若p ,则q ”的形式. (1)当1a >1
b
时,a
(2)垂直于同一条直线的两个平面互相平行; (3)同弧所对的圆周角不相等. [解] (1)若1a >1
b
,则a
(2)若两个平面垂直于同一条直线,则这两个平面平行; (3)若两个角为同弧所对的圆周角,则它们不相等.
1.如何判断一个命题是真命题?
提示:根据命题的条件,利用定义、定理、性质论证命题的正确性. 2.如何判断一个命题是假命题? 提示:举出一个反例即可.
给定下列命题: ①若a >b ,则2a >2b
;
②命题“若a ,b 是无理数,则a +b 是无理数”是真命题; ③直线x =π
2是函数y =sin x 的一条对称轴;
④在△ABC 中,若AB →·BC →
>0,则△ABC 是钝角三角形. 其中为真命题的是________.
[思路探究] 命题――――――――→严格的逻辑推理
真命题―――――→恰当的反例
假命题 [解析] 对于①,根据函数f (x )=2x
的单调性知①为真命题.
对于②,若a =1+3,b =1-3,则a +b =2不是无理数,因此②是假命题. 对于③,函数y =sin x 的对称轴方程为x =π
2+k π,k ∈Z ,故③为真命题.
对于④,因为AB →·BC →=|AB →||BC →|cos(π-B )=-|AB →||BC →
|cos B >0,故得cos B <0,从而得B 为钝角,所以④为真命题.
[答案] ①③④