高一数学用因式分解法解下列方程 (1)

合集下载

一元二次方程100道计算题练习附答案

一元二次方程100道计算题练习附答案

一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2x+3=0 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x2)2)(113(=--x x x (x +1)-5x =0. 3x (x -3) =2(x -1) (x +1).应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少?思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

九年级数学: 因式分解法解一元二次方程典型例题

九年级数学: 因式分解法解一元二次方程典型例题

例 用因式分解法解下列方程: (1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1. 解:(1)方程可变形为(y +1)(y +6)=0 y +1=0或y +6=0 ∴y 1=-1,y 2=-6(2)方程可变形为t (2t -1)-3(2t -1)=0 (2t -1)(t -3)=0,2t -1=0或t -3=0 ∴t 1=21,t 2=3.(3)方程可变形为2x 2-3x =0 x (2x -3)=0,x =0或2x -3=0 ∴x 1=0,x 2=23说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解:原方程变形为:2x -1=1或x -1=1.∴x 1=1,x 2=2.(3)在方程(2)中,为什么方程两边不能同除以(2t -1),请同学们思考典型例题二例 用因式分解法解下列方程6223362+=+x x x解:把方程左边因式分解为:0)23)(32(=-+x x∴032=+x 或023=-x ∴ 32,2321=-=x x 说明: 对于无理数系数的一元二次方程,若左边可分解为一次因式积的形式,均可用因式分解法求出方程的解。

例 用因式分解法解下列方程。

1522+=y y解: 移项得:01522=--y y 把方程左边因式分解 得:0)3)(52(=-+y y ∴052=+y 或03=-y∴.3,2521=-=y y说明: 在用因式分解法解一元二次方程时,一定要注意,把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式都为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了。

(完整版)用因式分解法解一元二次方程(知识点+经典例题+综合练习)---详细答案

(完整版)用因式分解法解一元二次方程(知识点+经典例题+综合练习)---详细答案

用因式分解法解一元二次方程【主体知识归纳】1.因式分解法 若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如,x 2-9=0,这个方程可变形为(x +3)(x -3)=0,要(x +3)(x -3)等于0,必须并且只需(x +3)等于0或(x -3)等于0,因此,解方程(x +3)(x -3)=0就相当于解方程x +3=0或x -3=0了,通过解这两个一次方程就可得到原方程的解.这种解一元二次方程的方法叫做因式分解法.2.因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程.其理论根据是:若A ·B =0A =0或B =0.【基础知识讲解】1.只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程.分解因式时,要根据情况灵活运用学过的因式分解的几种方法.2.在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程.但对某些特殊形式的一元二次方程,有的用直接开平方法简便,有的用因式分解法简便.因此,在遇到一道题时,应选择适当的方法去解.配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法.而在以后的学习中,会常常用到因式分解法,所以要掌握这个重要的数学方法.【例题精讲】例1:用因式分解法解下列方程:(1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1.解:(1)方程可变形为(y +1)(y +6)=0,y +1=0或y +6=0,∴y 1=-1,y 2=-6.(2)方程可变形为t (2t -1)-3(2t -1)=0,(2t -1)(t -3)=0,2t -1=0或t -3=0,∴t 1=21,t 2=3.(3)方程可变形为2x 2-3x =0.x (2x -3)=0,x =0或2x -3=0.∴x 1=0,x 2=23. 说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解:原方程变形为:2x -1=1或x -1=1.∴x 1=1,x 2=2.(3)在方程(2)中,为什么方程两边不能同除以(2t -1),请同学们思考?例2:用适当方法解下列方程: (1)3(1-x )2=27;(2)x 2-6x -19=0;(3)3x 2=4x +1;(4)y 2-15=2y ;(5)5x (x -3)-(x -3)(x +1)=0;(6)4(3x +1)2=25(x -2)2.剖析:方程(1)用直接开平方法,方程(2)用配方法,方程(3)用公式法,方程(4)化成一般式后用因式分解法,而方程(5)、(6)不用化成一般式,而直接用因式分解法就可以了.解:(1)(1-x )2=9,(x -1)2=3,x -1=±3,∴x 1=1+3,x 2=1-3.(2)移项,得x 2-6x =19,配方,得x 2-6x +(-3)2=19+(-3)2,(x -3)2=28,x -3=±27, ∴x 1=3+27,x 2=3-27.(3)移项,得3x 2-4x -1=0,∵a =3,b =-4,c =-1, ∴x =37232)1(34)4()4(2±=⨯-⨯⨯--±--, ∴x 1=372+,x 2=372-. (4)移项,得y 2-2y -15=0,把方程左边因式分解,得(y -5)(y +3)=0;∴y -5=0或y +3=0,∴y 1=5,y 2=-3.(5)将方程左边因式分解,得(x -3)[5x -(x +1)]=0,(x -3)(4x -1)=0,∴x -3=0或4x -1=0,∴x 1=3,x 2=41. (6)移项,得4(3x +1)2-25(x -2)2=0,[2(3x +1)]2-[5(x -2)]2=0,[2(3x +1)+5(x -2)]·[2(3x +1)-5(x -2)]=0,(11x -8)(x +12)=0,∴11x -8=0或x +12=0,∴x 1=118,x 2=-12. 说明:(1)对于无理系数的一元二次方程解法同有理数一样,只不过要注意二次根式的化简.(2)直接因式分解就能转化成两个一次因式乘积等于零的形式,对于这种形式的方程就不必要整理成一般式了.例3:解关于x 的方程:(a 2-b 2)x 2-4abx =a 2-b 2.解:(1)当a 2-b 2=0,即|a |=|b |时,方程为-4abx =0.当a =b =0时,x 为任意实数.当|a |=|b |≠0时,x =0.(2)当a 2-b 2≠0,即a +b ≠0且a -b ≠0时,方程为一元二次方程.分解因式,得[(a +b )x +(a -b )][(a -b )x -(a +b )]=0,∵a +b ≠0且a -b ≠0,∴x 1=b a a b +-,x 2=ba b a -+. 说明:解字母系数的方程,要注意二次项系数等于零和不等于零的不同情况分别求解.本题实际上是分三种情况,即①a =b =0;②|a |=|b |≠0;③|a |≠|b |.例4:已知x 2-xy -2y 2=0,且x ≠0,y ≠0,求代数式22225252y xy x y xy x ++--的值. 剖析:要求代数式的值,只要求出x 、y 的值即可,但从已知条件中显然不能求出,要求代数式的分子、分母是关于x 、y 的二次齐次式,所以知道x 与y 的比值也可.由已知x 2-xy -2y 2=0因式分解即可得x 与y 的比值.解:由x 2-xy -2y 2=0,得(x -2y )(x +y )=0,∴x -2y =0或x +y =0,∴x =2y 或x =-y . 当x =2y 时,135y13y 5y 5y y 22)y 2(y 5y y 22)y 2(y 5xy 2x y 5xy 2x 2222222222-=-=+⋅⋅+-⋅⋅-=++--. 当x =-y 时,21y 4y 2y 5y )y (2)y (y 5y )y (2)y (y 5xy 2x y 5xy 2x 222222222-=-=+⋅-⋅+--⋅-⋅--=++--2. 说明:因式分解法体现了“降次”“化归”的数学思想方法,它不仅可用来解一元二次方程,而且在解一元高次方程、二元二次方程组及有关代数式的计算、证明中也有着广泛的 应用.【同步达纲练习】1.选择题(1)方程(x -16)(x +8)=0的根是( )A .x 1=-16,x 2=8B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )A ..x =21B .x =2C .x =1D .x =-1(3)方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3 B .x =53C .x 1=-53,x 2=-3D .x 1=53,x 2=-3 (4)方程(y -5)(y +2)=1的根为( )A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对 (5)方程(x -1)2-4(x +2)2=0的根为( )A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5 (6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( )A .1B .2C .-4D .4 (7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( )A .5B .5或11C .6D .11 (8)方程x 2-3|x -1|=1的不同解的个数是( )A .0B .1C .2D .32.填空题(1)方程t (t +3)=28的解为_______.(2)方程(2x +1)2+3(2x +1)=0的解为__________.(3)方程(2y +1)2+3(2y +1)+2=0的解为__________.(4)关于x 的方程x 2+(m +n )x +mn =0的解为__________.(5)方程x (x -5)=5 -x 的解为__________.3.用因式分解法解下列方程:(1)x 2+12x =0;(2)4x 2-1=0; (3)x 2=7x ;(4)x 2-4x -21=0;(5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x2-x-3=0;(8)(x-1)2-4(x-1)-21=0.4.用适当方法解下列方程:(1)x2-4x+3=0;(2)(x-2)2=256;(3)x2-3x+1=0;(4)x2-2x-3=0;(5)(2t+3)2=3(2t+3);(6)(3-y)2+y2=9;(7)(1+2)x2-(1-2)x=0;(8)5x2-(52+1)x+10=0;(9)2x2-8x=7(精确到0.01);(10)(x+5)2-2(x+5)-8=0.5.解关于x的方程:(1)x2-4ax+3a2=1-2a;(2)x2+5x+k2=2kx+5k+6;(3)x2-2mx-8m2=0; (4)x2+(2m+1)x+m2+m=0.6.已知x 2+3xy -4y 2=0(y ≠0),试求yx y x +-的值.7.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.8.请你用三种方法解方程:x (x +12)=864.9.已知x 2+3x +5的值为9,试求3x 2+9x -2的值.10.一跳水运动员从10米高台上跳水,他跳下的高度h (单位:米)与所用的时间t (单位:秒)的关系式h =-5(t -2)(t +1).求运动员起跳到入水所用的时间.11.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则y 2=(x 2-1)2,原方程化为y 2-5y +4=0,解此方程,得y 1=1,y 2=4.当y =1时,x 2-1=1,x 2=2,∴x =±2.当y =4时,x 2-1=4,x 2=5,∴x =±5.∴原方程的解为x 1=-2,x 2=2,x 3=-5,x 4=5.以上方法就叫换元法,达到了降次的目的,体现了转化的思想.(1)运用上述方法解方程:x 4-3x 2-4=0.(2)既然可以将x 2-1看作一个整体,你能直接运用因式分解法解这个方程吗参考答案【同步达纲练习】1.(1)B (2)C (3)D (4)D (5)B (6)A (7)A (8)D2.(1)t 1=-7,t 2=4(2)x 1=-21,x 2=-2(3)y 1=-1,y 2=-23(4)x 1=-m ,x 2=-n (5)x 1=5,x 2=-1 3.(1)x 1=0,x 2=-12;(2)x 1=-21,x 2=21;(3)x 1=0,x 2=7;(4)x 1=7,x 2=-3;(5)x 1=-5,x 2=3;(6)x 1=-1,x 2=31; (7)x 1=53,x 2=-21;(8)x 1=8,x 2=-2. 4.(1)x 1=1,x 2=3;(2)x 1=18,x 2=-14;(3)x 1=253+,x 2=253-;(4)x 1=3,x 2=-1; (5)t 1=0,t 2=-23;(6)y 1=0,y 2=3;(7)x 1=0,x 2=22-3; (8)x 1=55,x 2=10;(9)x 1≈7.24,x 2=-3.24;(10)x 1=-1,x 2=-7. 5.(1)x 2-4ax +4a 2=a 2-2a +1,(x -2a )2=(a -1)2,∴x -2a =±(a -1),∴x 1=3a -1,x 2=a +1.(2)x 2+(5-2k )x +k 2-5k -6=0, x 2+(5-2k )x +(k +1)(k -6)=0,[x -(k +1)][x -(k -6)]=0,∴x 1=k +1,x 2=(k -6).(3)x 2-2mx +m 2=9m 2,(x -m )2=(3m )2∴x 1=4m ,x 2=-2m(4)x 2+(2m +1)x +m (m +1)=0,(x +m )[x +(m +1)]=0,∴x 1=-m ,x 2=-m -16.(x +4y )(x -y )=0, x =-4y 或x =y当x =-4y 时,y x y x +-=3544=+---y y y y ; 当x =y 时,y x y x +-=y y y y +-=0. 7.(x 2+y 2)(x 2+y 2-1)-12=0,(x 2+y 2)2-(x 2+y 2)-12=0,(x 2+y 2-4)(x 2+y 2+3)=0,∴x 2+y 2=4或x 2+y 2=-3(舍去)8.x 1=-36,x 2=249.∵x 2+3x +5=9,∴x 2+3x =4,∴3x2+9x-2=3(x2+3x)-2=3×4-2=10 10.10=-5(t-2)(t+1),∴t=1(t=0舍去) 11.(1)x1=-2,x2=2(2)(x2-2)(x2-5)=0,(x+2)(x-2)(x+5)(x-5)=0。

因式分解法解一元二次方程

因式分解法解一元二次方程

因式分解法解一元二次方程
因式分解法解一元二次方程的口诀:一移,二分,三转化,四再求根容易得。

步骤:将方程右边化为0;将方程左边分解为两个一次式的积;令这两个一次式分别为0,得到两个一元一次方程;解这两个一元一次方程,它们的解就是原方程的解。

数学中用以求解高次一元方程的一种方法。

把方程的一侧的数(包括未知数),通过移动使其值化成0,把方程的另一侧各项化成若干因式的乘积,然后分别令各因式等于0而求出其解的方法叫因式分解法。

在使用因式分解法解一元二次方程时:
①因式分解法解一元二次方程时,等式右边必须为0。

②方程中如果有括号不要急于去掉括号,要先观察方程是否可采用因式分解法求解。

③因式分解法有提公因式法,公式法,分组分解法等(十字相乘法最常用)。

④利用因式分解法解一元二次方程时,注意不能将方程两边同时约去相同的因式或未知数。

第6讲 一元二次方程及其求解(配方法公式法因式分解法)

第6讲 一元二次方程及其求解(配方法公式法因式分解法)

第6讲一元二次方程及其求解(配方法、公式法、因式分解法)目标导航课程标准1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式;2.掌握直接开平方法解方程,会应用此判定方法解决有关问题;3.理解解法中的降次思想,直接开平方法中的分类讨论与换元思想.4.了解配方法的概念,会用配方法解一元二次方程;5.掌握运用配方法解一元二次方程的基本步骤;6.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力. 7.理解一元二次方程求根公式的推导过程,了解公式法的概念,能熟练应用公式法解一元二次方程;8.正确理解因式分解法的实质,熟练运用因式分解法解一元二次方程;9.通过求根公式的推导,培养学生数学推理的严密性及严谨性,渗透分类的思想.知识精讲知识点01 一元二次方程的有关概念1.一元二次方程的概念通过化简后,只含有未知数(一元),并且未知数的最高次数是(二次)的整式方程,叫做一元二次方程.注意:识别一元二次方程必须抓住三个条件(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.2.一元二次方程的一般形式一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;是一次项,是一次项系数;是常数项.注意:(1)只有当时,方程才是一元二次方程;(2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.3.一元二次方程的解使一元二次方程左右两边的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.4.一元二次方程根的重要结论(1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0.(2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0.(3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0.知识点02 一元二次方程的解法(一)直接开方法解一元二次方程1.直接开方法解一元二次方程:利用直接开平方求一元二次方程的解的方法称为直接开平方法.2.直接开平方法的理论依据:平方根的定义.3.能用直接开平方法解一元二次方程的类型有两类:①形如关于x的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于x的一元二次方程,可直接开平方求解,两根是.注意:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.(二)配方法解一元二次方程:1.配方法解一元二次方程将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.2.配方法解一元二次方程的理论依据是公式:.3.用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 注意:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±. 4.配方法的应用(1)用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.(2)用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.(3)用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. (4)用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 注意:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好. (三)公式法解一元二次方程 1.一元二次方程的求根公式 一元二次方程,当 时,2.一元二次方程根的判别式一元二次方程根的判别式: . ①当时,原方程有两个不等的实数根 ; ②当时,原方程有两个相等的实数根 ; ③当时,原方程 实数根.3.用公式法解一元二次方程的步骤 用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式; ②确定a 、b 、c 的值(要注意符号); ③求出的值; ④若,则利用公式求出原方程的解;若,则原方程无实根.注意:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选择.(2)一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+=.①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:21,242b b acx a -±-=.② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a =-.③ 当240b ac ∆=-<时,右端是负数.因此,方程没有实根. (四)因式分解法解一元二次方程 1.用因式分解法解一元二次方程的步骤 (1)将方程右边化为 ;(2)将方程左边分解为两个一次式的 ;(3)令这两个一次式分别为 ,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解. 2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等. 注意:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次 因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0; (3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.考法01 关于一元二次方程的判定【典例1】下列方程①x 2﹣5x =2022,②20ax bx c ++=,③2316xx +=,④2(2)(6)1x x x -+=+,一定是关于x 的一元二次方程的有( ) A .1个B .2个C .3个D .4个【即学即练】若()2230aa x x --+= 是关于x 的一元二次方程,则a 的值是( ) A .2-B .2C .1D .2±考法02 一元二次方程的一般形式、各项系数的确定能力拓展【典例2】将方程2x 2=5x -1化为一元二次方程的一般形式,其中二次项系数为2,则一次项系数、常数项分别是( ) A .-5、1B .5、1C .5、-1D .-5、-1【即学即练】将下列一元二次方程化成一般形式后,其中二次项系数是2,一次项系数是4-,常数项是3的方程是( ) A .2234x x +=B .2234x x -=C .2243x x +=D .2243x x -=考法03 一元二次方程的解(根)【典例3】若2x =是关于x 的一元二次方程20ax x b --=的一个根,则282a b +-的值为( ) A .0B .2C .4D .6【即学即练】若一元二次方程()221310k x x k -++-=有一个解为0x =,则k 为( )A .±1B .1C .1-D .0考法04 用直接开平方法解一元二次方程【典例4】方程()219x +=的解为( ) A .2x =,4x =-B .2,4x x =-=C .4,2x x ==D .2,4x x =-=-【即学即练】一元二次方程()2116x +=可转化为两个一元一次方程,其中一个一元一次方程是14x +=,则另一个一元一次方程是( ) A .14x -=-B .14x -=C .14x +=D .14x +=-考法05 用配方法解一元二次方程【典例5】用配方法解一元二次方程 x 2-10x +11=0,此方程可化为( ) A .(x -5)2=14B .(x +5)2=14C .(x -5)2 =36D .(x +5)2 =36【即学即练】慧慧将方程2x 2+4x ﹣7=0通过配方转化为(x +n )2=p 的形式,则p 的值为( ) A .7B .8C .3.5D .4.5考法06 配方法在代数中的应用【典例6】已知三角形的三条边为,,a b c ,且满足221016890a a b b -+-+=,则这个三角形的最大边c 的取值范围是( ) A .c >8B .5<c <8C .8<c <13D .5<c <13【即学即练】已知方程264x x -+=,等号右侧的数字印刷不清楚,若可以将其配方成()27x p -=的形式,则印刷不清楚的数字是( ) A .6B .9C .2D .2-考法07 公式法解一元二次方程【典例7】已知关于x 的一元二次方程ax 2+bx +c =0(a ≠0),下列命题是真命题的有( )①若a +2b +4c =0,则方程ax 2+bx +c =0必有实数根;②若b =3a +2,c =2a +2,则方程ax 2+bx +c =0必有两个不相等的实根; ③若c 是方程ax 2+bx +c =0的一个根,则一定有ac +b +1=0成立; ④若t 是一元二次方程ax 2+bx +c =0的根,则b 2﹣4ac =(2at +b )2. A .①②B .②③C .①④D .③④【即学即练】x = )A .22730x x ++=B .22730x x --=C .22730x x +-=D .22730x x -+=考法08 因式分解法解一元二次方程【典例8】一元二次方程2560x x -+=的根是( ) A .12x =,23x =B .12x =-,23x =C .12x =,23x =-D .12x =-,23x =-【即学即练】一个等腰三角形两边的长分别等于一元二次方程216550x x -+=的两个实数根,则这个等腰三角形周长为( ) A .11B .27C .5或11D .21或27题组A 基础过关练1.把一元二次方程(1)(1)3x x x +-=化成一般形式,正确的是( ) A .2310x x --=B .2310x x -+=C .2310x x +-=D .2310x x ++=2.若方程||(2)310m m x mx +++=是关于x 的一元二次方程,则( ) A .2m =±B .m =2C .2m ≠-D .2m ≠±3.用配方法解方程2410x x -+=时,结果正确的是( ) A .()225x -= B .()223x -= C .()225x +=D .()223x +=4.若关于x 的一元二次方程2210kx x +-=有实数根,则实数k 的取值范围是( ) A .k ≥-1B .k >-1C .k ≥-1且k ≠0D .k >-1且k ≠05.方程22240x x --=的根是( ) A .16x =,24x = B .16x =,24x =- C .16x =-,24x =D .16x =-,24x =-6.已知关于x 的一元二次方程(x +1)2+m =0可以用直接开平方法求解,则m 的取值范围是________. 7.若一元二次方程240x x k -+=无实数根,则k 的取值范围是_______.分层提分8.关于x 的一元二次方程220x x k ++=有两个相等的实数根,则这两个相等的根是x 1=x 2=__________________.题组B 能力提升练1.如果关于x 的一元二次方程()223390m x x m -++-=,有一个解是0,那么m 的值是( )A .3B .3-C .3±D .0或3-2.用配方法解方程2210x x --=时,配方结果正确的是( ) A .2(1)2x -=B .2(1)0x -=C .2(1)1x -=D .2(1)2x +=3.有关于x 的两个方程:ax 2+bx +c =0与ax 2-bx +c =0,其中abc >0,下列判断正确的是( ) A .两个方程可能一个有实数根,另一个没有实数根 B .若两个方程都有实数根,则必有一根互为相反数C .若两个方程都有实数根,则必有一根相等D .若两个方程都有实数根,则必有一根互为倒数4.由四个全等的直角三角形和一个小正方形EFGH 组成的大正方形ABCD 如图所示.连结CF ,并延长交AB 于点N .若35AB =,3EF =,则FN 的长为( )A .2B 5C .22D .35.已知实数a 、b 满足()()2222220a b a b +-+-=,则22a b +=________.6.如果关于x 的方程2(1)-=x m 没有实数根,那么实数m 的取值范围是__________. 7.已知方程2x 2+bx +a =0(a ≠0)的一个根是a . (1)求2a +b 的值;(2)若此方程有两个相等的实数解,求出此方程的解. 8.先阅读,后解题.已知2226100m m n n ++-+=,求m 和n 的值.解:将左边分组配方:()()2221690m m n n +++-+=.即()()22130m n ++-=.∵()210m +≥,()230n -≥,且和为0,∴()210m +=且()230n -=,∴1m =-,3n =.利用以上解法,解下列问题:(1)已知:224250x x y y ++-+=,求x 和y 的值.(2)已知a ,b ,c 是ABC 的三边长,满足228625a b a b +=+-且ABC 为直角三角形,求c .题组C 培优拔尖练1.若方程22432mx x x +-=是关于x 的一元二次方程,则m 的取值范围是( ) A .0m >B .0m ≠C .2m ≠D .2m ≠-2.若对于任意实数a ,b ,c ,d ,定义a bc d=ad -bc ,按照定义,若11x x +- 23x x -=0,则x 的值为( ) A .3B .3-C .3D .3±3.对于一元二次方程()200++=≠ax bx c a ,下列说法:①若0a b c ++=,则240b ac -≥;②若方程20ax c +=有两个不相等的实根,则方程20ax bx c ++=必有两个不相等的实根; ③若c 是方程20ax bx c ++=的一个根,则一定有10ac b ++=成立;②若0x 是一元二次方程20ax bx c ++=的根,则()22042b ac ax b -=+其中正确的( ) A .只有①②④B .只有①②③C .①②③④D .只有①②4.如图,在矩形ABCD 中,AB =14,BC =7,M 、N 分别为AB 、CD 的中点,P 、Q 均为CD 边上的动点(点Q 在点P 左侧),点G 为MN 上一点,且PQ =NG =5,则当MP +GQ =13时,满足条件的点P 有( )A .4个B .3个C .2个D .1个5.已知代数式A =3x 2﹣x +1,B =4x 2+3x +7,则A ____B (填>,<或=). 6.若x m =时,代数式223x x --的为0,则代数式243m m --=________. 7.已知:关于x 的方程kx 2﹣(4k ﹣3)x +3k ﹣3=0 (1)求证:无论k 取何值,方程都有实根; (2)若x =﹣1是该方程的一个根,求k 的值;(3)若方程的两个实根均为正整数,求k 的值(k 为整数).8.如果一元二次方程的两根相差1,那么该方程称为“差1方程”.例如x 2+x =0是“差1方程”. (1)判断下列方程是不是“差1方程”,并说明理由; ①x 2﹣5x ﹣6=0; ②x 25+1=0;(2)已知关于x 的方程x 2﹣(m ﹣1)x ﹣m =0(m 是常数)是“差1方程”,求m 的值;(3)若关于x 的方程ax 2+bx +1=0(a ,b 是常数,a >0)是“差1方程”,设t =10a ﹣b 2,求t 的最大值.。

用因式分解法求解一元二次方程示范公开课教学课件北师大版九年级数学上册

用因式分解法求解一元二次方程示范公开课教学课件北师大版九年级数学上册

分解因式,得[(3x+2)+2(x-3)][(3x+2)-2(x-3)]=0,

(5x-4)(x+8)=0.
于是得
5x-4=0,或x+8=0,
x1
4 5
,x2
8.
五、课堂练习
7.用因式分解法解下列方程: (1)3(x-2)-x(x-2)=0;(2)(3x+2)2=4(x-3)2;(3)3x(2x+1)=4x+2.
一、学习目标
1.能用因式分解法(提公因式法、公式法)解某些数字系数的 一元二次方程.
2.能根据具体的一元二次方程的特征,灵活选择方程的解法, 体会解决问题方法的多样性.
二、复习引入
1.因式分解的方法有哪几种? 答:提公因式法、公式法.
2.将下列各式在实数范围内因式分解: (1)4x2-12x; (2)4x2-9; (3)(2x-1)2-(x-3)2. 答:(1)4x(x-3);(2)(2x+3)(2x-3);
解: x2-y2-3(x-y)=0, (x+y)(x-y)-3(x-y)=0, (x-y)(x+y-3)=0,
∴x-y=0,或x+y-3=0. ∵x≠y,∴x+y=3.
五、课堂练习
7.用因式分解法解下列方程: (1)3(x-2)-x(x-2)=0;(2)(3x+2)2=4(x-3)2;(3)3x(2x+1)=4x+2.
(3)原方程可变形为3x(2x+1)-2(2x+1)=0.
分解因式,得(3x-2)(2x+1)=0.
于是,得3x-2=0或2x+1=0,
x1
2 3

高一数学单元知识点专题讲解2---因式分解

高一数学单元知识点专题讲解2---因式分解

高一数学单元知识点专题讲解第二讲 因式分解因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形.在分式运算、解方程及各种恒等变形中起着重要的作用.是一种重要的基本技能.因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平方公式)外,还有公式法(立方和、立方差公式)、十字相乘法和分组分解法等等.一、公式法(立方和立方和、、立方差公式)在第一讲里,我们已经学习了乘法公式中的立方和、立方差公式:2233()()a b a ab b a b +−+=+ (立方和公式) 2233()()a b a ab b a b −++=− (立方差公式)由于因式分解与整式乘法正好是互为逆变形,所以把整式乘法公式反过来写,就得到:3322()()a b a b a ab b +=+−+ 3322()()a b a b a ab b −=−++这就是说,两个数的立方和(差),等于这两个数的和(差)乘以它们的平方和与它们积的差(和). 运用这两个公式,可以把形式是立方和或立方差的多项式进行因式分解. 【例1】用立方和或立方差公式分解下列各多项式:(1) 38x +(2) 30.12527b −分析分析:: (1)中,382=,(2)中3330.1250.5,27(3)b b ==.解:(1) 333282(2)(42)x x x x x +=+=+−+ (2) 333220.125270.5(3)(0.53)[0.50.53(3)]b b b b b −=−=−+×+2(0.53)(0.25 1.59)b b b =−++说明说明::(1) 在运用立方和(差)公式分解因式时,经常要逆用幂的运算法则,如3338(2)a b ab =,这里逆用了法则()n n n ab a b =;(2) 在运用立方和(差)公式分解因式时,一定要看准因式中各项的符号.【例2】分解因式:(1) 34381a b b −(2) 76a ab −分析分析::(1) 中应先提取公因式再进一步分解;(2) 中提取公因式后,括号内出现66a b −,可看着是3232()()a b −或2323()()a b −.解:(1) 3433223813(27)3(3)(39)a b b b a b b a b a ab b −=−=−++.(2) 76663333()()()a ab a a b a a b a b −=−=+−22222222()()()()()()()()a ab a ab b a b a ab b a a b a b a ab b a ab b =+−+−++=+−++−+二、分组分解法从前面可以看出,能够直接运用公式法分解的多项式,主要是二项式和三项式.而对于四项以上的多项式,如ma mb na nb +++既没有公式可用,也没有公因式可以提取.因此,可以先将多项式分组处理.这种利用分组来因式分解的方法叫做分组分解法.分组分解法的关键在于如何分组.1.分组后能提取公因式 【例3】把2105ax ay by bx −+−分解因式.分析分析::把多项式的四项按前两项与后两项分成两组,并使两组的项按x 的降幂排列,然后从两组分别提出公因式2a 与b −,这时另一个因式正好都是5x y −,这样可以继续提取公因式.解:21052(5)(5)(5)(2)ax ay by bx a x y b x y x y a b −+−=−−−=−−说明说明::用分组分解法,一定要想想分组后能否继续完成因式分解,由此合理选择分组的方法.本题也可以将一、四项为一组,二、三项为一组,同学不妨一试. 【例4】把2222()()ab c d a b cd −−−分解因式.分析分析::按照原先分组方式,无公因式可提,需要把括号打开后重新分组,然后再分解因式. 解:22222222()()ab c d a b cd abc abd a cd b cd −−−=−−+ 2222()()abc a cd b cd abd =−+−()()()()ac bc ad bd bc ad bc ad ac bd =−+−=−+说明说明::由例3、例4可以看出,分组时运用了加法结合律,而为了合理分组,先运用了加法交换律,分组后,为了提公因式,又运用了分配律.由此可以看出运算律在因式分解中所起的作用.2.分组后能直接运用公式【例5】把22x y ax ay −++分解因式.分析分析::把第一、二项为一组,这两项虽然没有公因式,但可以运用平方差公式分解因式,其中一个因式是x y +;把第三、四项作为另一组,在提出公因式a 后,另一个因式也是x y +.解:22()()()()()x y ax ay x y x y a x y x y x y a −++=+−++=+−+ 【例6】把2222428x xy y z ++−分解因式.分析分析::先将系数2提出后,得到22224x xy y z ++−,其中前三项作为一组,它是一个完全平方式,再和第四项形成平方差形式,可继续分解因式.解:22222224282(24)x xy y z x xy y z ++−=++−222[()(2)]2(2)(2)x y z x y z x y z =+−=+++−说明说明::从例5、例6可以看出:如果一个多项式的项分组后,各组都能直接运用公式或提取公因式进行分解,并且各组在分解后,它们之间又能运用公式或有公因式,那么这个多项式就可以分组分解法来分解因式.三、十字相乘法1.2()x p q x pq +++型的因式分解这类式子在许多问题中经常出现,其特点是:(1) 二次项系数是1;(2) 常数项是两个数之积;(3) 一次项系数是常数项的两个因数之和.22()()()()()x p q x pq x px qx pq x x p q x p x p x q +++=+++=+++=++因此,2()()()x p q x pq x p x q +++=++ 运用这个公式,可以把某些二次项系数为1的二次三项式分解因式. 【例7】把下列各式因式分解:(1) 276x x −+(2) 21336x x ++解:(1) 6(1)(6),(1)(6)7=−×−−+−=−Q 276[(1)][(6)](1)(6)x x x x x x ∴−+=+−+−=−−. (2) 3649,4913=×+=Q2 1336(4)(9)x x x x ∴++=++说明说明::此例可以看出,常数项为正数时,应分解为两个同号因数,它们的符号与一次项系数的符号相同.【例8】把下列各式因式分解:(1) 2524x x +−(2) 2215x x −−解:(1) 24(3)8,(3)85−=−×−+=Q 2 524[(3)](8)(3)(8)x x x x x x ∴+−=+−+=−+ (2) 15(5)3,(5)32−=−×−+=−Q2215[(5)](3)(5)(3)x x x x x x ∴−−=+−+=−+说明说明::此例可以看出,常数项为负数时,应分解为两个异号的因数,其中绝对值较大的因数与一次项系数的符号相同.练:2(1)65x x ++ 2(2)421x x −− (3)21130x x −+ (4)212x x −−【例9】把下列各式因式分解:(1) 226x xy y +−(2) 222()8()12x x x x +−++分析分析::(1) 把226x xy y +−看成x 的二次三项式,这时常数项是26y −,一次项系数是y ,把26y −分解成3y 与2y −的积,而3(2)y y y +−=,正好是一次项系数.(2) 由换元思想,只要把2x x +整体看作一个字母a ,可不必写出,只当作分解二次三项式2812a a −+.解:(1) 222266(3)(2)x xy y x yx x y x y +−=+−=+− (2) 22222()8()12(6)(2)x x x x x x x x +−++=+−+−(3)(2)(2)(1)x x x x =+−+−练:(1)42718x x −− (2)6312a a −−2.一般二次三项式2ax bx c ++型的因式分解大家知道,2112212122112()()()a x c a x c a a x a c a c x c c ++=+++. 反过来,就得到:2121221121122()()()a a x a c a c x c c a x c a x c +++=++ 我们发现,二次项系数a 分解成12a a ,常数项c 分解成12c c ,把1212,,,a a c c 写成1122a c a c ×,这里按斜线交叉相乘,再相加,就得到1221a c a c +,如果它正好等于2ax bx c ++的一次项系数b ,那么2ax bx c ++就可以分解成1122()()a x c a x c ++,其中11,a c 位于上一行,22,a c 位于下一行. 这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法.必须注意,分解因数及十字相乘都有多种可能情况,所以往往要经过多次尝试,才能确定一个二次三项式能否用十字相乘法分解. 【例10】把下列各式因式分解:(1) 21252x x −−(2) 22568x xy y +−解:(1) 21252(32)(41)x x x x −−=−+3241−×(2) 22568(2)(54)x xy y x y x y +−=+−1 254y y −×说明说明::用十字相乘法分解二次三项式很重要.当二次项系数不是1时较困难,具体分解时,为提高速度,可先对有关常数分解,交叉相乘后,若原常数为负数,用减法”凑”,看是否符合一次项系数,否则用加法”凑”,先”凑”绝对值,然后调整,添加正、负号.练:(1)21252x x −− (2)2451x x −+− (3)23103x x −+ (4)2318x x −−+ 【例11】因式分解:(1) 222(2)7(2)8x x x x +−+− (2)a ax x x 51522−−−+分析分析::用十字相乘法分解因式也要注意分解彻底,有时可能会多次使用十字相乘法,并且对于项数较多的多项式,应合理使用分组分解法,找公因式,如五项可以三、二组合.解:(1)原式)82)(12(22−+++=x x x x )4)(2()1(2+−+=x x x .(2)原式)5()152(2a ax x x +−−+=)5()5)(3(+−+−=x a x x )3)(5(a x x −−+=.练:(1)4224127m m n n −+ (2) 222x ax a ++−四、其它因式分解的方法1.配方法【例12】分解因式2616x x +−解:222222616233316(3)5x x x x x +−=+××+−−=+−(35)(35)(8)(2)x x x x =+++−=+−说明说明::这种设法配成有完全平方式的方法叫做配方法,配方后将二次三项式化为两个平方式,然后用平方差公式分解.当然,本题还有其它方法,请大家试验.2.拆、添项法 【例13】分解因式3234x x −+分析分析::此多项式显然不能直接提取公因式或运用公式,分组也不易进行.细查式中无一次项,如果它能分解成几个因式的积,那么进行乘法运算时,必是把一次项系数合并为0了,可考虑通过添项或拆项解决.解: 323234(1)(33)x x x x −+=+−− 22(1)(1)3(1)(1)(1)[(1)3(1)]x x x x x x x x x =+−+−+−=+−+−−22(1)(44)(1)(2)x x x x x =+−+=+−说明说明::本解法把原常数4拆成1与3的和,将多项式分成两组,满足系数对应成比例,造成可以用公式法及提取公因式的条件.本题还可以将23x −拆成224x y −,将多项式分成两组32()x x +和244x −+.一般地,把一个多项式因式分解,可以按照下列步骤进行: (1) 如果多项式各项有公因式,那么先提取公因式;(2) 如果各项没有公因式,那么可以尝试运用公式来分解;(3) 如果用上述方法不能分解,那么可以尝试用分组或其它方法(如十字相乘法)来分解; (4) 分解因式,必须进行到每一个多项式因式都不能再分解为止.A 组1.把下列各式分解因式: (1) 327a + (2) 38m − (3) 3278x −+(4) 3311864p q −−(5) 3318125x y −(6)3331121627x y c + 2.把下列各式分解因式: (1) 34xy x +(2) 33n n x x y +−(3) 2323()a m n a b +−(4) 2232(2)y x x y −+3.把下列各式分解因式: (1) 232x x −+ (2) 23736x x ++(3)21126x x +−(4) 2627x x −−(5) 2245m mn n −−(6) 2()11()28a b a b −+−+4.把下列各式分解因式:(1) 5431016ax ax ax −+ (2) 2126n n n aa b a b +++− (3) 22(2)9x x −−(4) 42718x x −−(5) 2673x x −−(6) 2282615x xy y +−(7) 27()5()2a b a b +−+−(8) 22(67)25x x −−5.把下列各式分解因式: (1) 233ax ay xy y −+−(2) 328421x x x +−− (3) 251526x x xy y −+−(4) 224202536a ab b −+− (5) 22414xy x y +−− (6) 432224a b a b a b ab +−− (7) 66321x y x −−+(8) 2(1)()x x y xy x +−+B 组1.把下列各式分解因式:(1) 2222()()ab c d cd a b −+−(2) 22484x mx mn n −+−(3) 464x + (4) 32113121x x x −+−(5) 3223428x xy x y y −−+2.已知2,23a b ab +==,求代数式22222a b a b ab ++的值. 3.证明:当n 为大于2的整数时,5354n n n −+能被120整除. 4.已知0a b c ++=,求证:32230a a c b c abc b ++−+=.第二讲 因式分解答案A 组1.222(3)(39),(2)(42),(23)(469),a a a m m m x x x +−+−++−++222222211211(2)(42),(2)(4),(2)(24)645525216p q p pq q xy x y xy xy c x y xyc c −+−+−+++−+2.2222()(),()(),n x x y y xy x x x y x xy y +−+−++22222432()[()()],(1)(4321)a m n b m n b m n b y x x x x x +−++++−−+++3.(2)(1),(36)(1),(13)(2),(9)(3)x x x x x x x x −−+++−−+(9)(3),(5)(),(4)(7)x x m n m n a b a b −+−+−+−+4.322(2)(8),(3)(2),(3)(1)(23),(3)(3)(2)n ax x x a a b a b x x x x x x x −−+−−+−+−++2(23)(31),(2)(415),(772)(1),(21)(35)(675)x x x y x y a b a b x x x x −+−++++−+−−+5.2()(3),(21)(21),(3)(52),(256)(256)x y a y x x x x y a b a b −++−−+−−−+23333(12)(12),()(),(1)(1),()(1)x y x y ab a b a b x y x y x x y x y −++−+−−−−+−++.B 组1.22()(),(42)(2),(48)(48),bc ad ac bd x m n x n x x x x +−−+−−+++ 2(1)(3)(7),(2)(2)x x x x y x y −−−−+. 2.2833.5354(2)(1)(1)(2)n n n n n n n n −+=−−++ 4.322322()()a a c b c abc b a ab b a b c ++−+=−+++。

因式分解法解一元二次方程口诀是什么

因式分解法解一元二次方程口诀是什么

因式分解法解一元二次方程口诀是什么想要了解一元二次方程用因式分解法怎么解的小伙伴,赶紧来瞧瞧吧!下面由小编为你精心准备了“因式分解法解一元二次方程口诀是什么”,本文仅供参考,持续关注本站将可以持续获取更多的资讯!因式分解法解一元二次方程口诀是什么一移,二分,三转化,四再求根容易得。

步骤:将方程右边化为0;将方程左边分解为两个一次式的积;令这两个一次式分别为0,得到两个一元一次方程;解这两个一元一次方程,它们的解就是原方程的解。

拓展阅读:因式分解法的四种方法是什么因式分解法的四种方法有提公因式法、分组分解法、待定系数法、十字分解法。

1、如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。

2、分组分解法指通过分组分解的方式来分解提公因式法和公式分解法无法直接分解的因式,分解方式一般分为“1+3”式和“2+2”式。

3、待定系数法是初中数学的一个重要方法。

用待定系数法分解因式,就是先按已知条件把原式假设成若干个因式的连乘积,这些因式中的系数可先用字母表示,它们的值是待定的,由于这些因式的连乘积与原式恒等,然后根据恒等原理,建立待定系数的方程组,最后解方程组即可求出待定系数的值。

4、十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。

因式分解是中学代数课程的一种重要的恒等变形,不仅在后面的分式通分、约分时有着直接的应用,而且在解方程以及将三角函数式变形时,也经常用到它,一开始学习因式分解,往往遇到一些困难,一是拿到题目不知道用什么方法去分解;二是不知道分解到哪一步才算是结束.要想学好因式分解,必须掌握和注意以下几点:一、了解选择因式分解方法的思路。

首先,对任何一个多项式,都应当考虑提取公因式;然后,以多项式的项数为线索、考虑分解方法.如果多项式是二项、三项的采用公式法,或化为x2+(a+b)x+ab的形式,四项以上的采用分组分解法。

一元二次方程100道计算题练习(附答案)+一元二次方程经典练习题(6套)附带详细答案

一元二次方程100道计算题练习(附答案)+一元二次方程经典练习题(6套)附带详细答案

一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x--xx x(x+1)-5x=0. 3x(x-3) =2(x-1) (x+1).23(=)2)(11应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少? 思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

(新教材)2022年高中数学人教B版必修第一册学案:2.1.1 等式的性质与方程的解集 (含答案)

(新教材)2022年高中数学人教B版必修第一册学案:2.1.1 等式的性质与方程的解集 (含答案)

第二章 等式与不等式2.1 等 式2.1.1 等式的性质与方程的解集1.常用乘法公式(1)公式: 公式名称符号表示 文字表示 平方差公式 (a +b )(a -b )=a 2-b 2 两个数的和与这两个数的差的积等于这两个数的平方差完全平方 (a ±b )2=a 2±2ab +b 2两数和(或差)的平方,等于公式这两数的平方和,加上(或减去)这两数积的2倍其他恒等式①(a+b)(a2-ab+b2)=a3+b3;②(a+b)3=a3+3a2b+3ab2+b3;③(a+b+c)2=a2+b2+c2+2ab+2bc+2ac(2)本质:常用乘法公式的本质就是将每个括号内的每一项与另一括号内的每一项依次相乘后再求和得到.(3)应用:利用公式或恒等式进行表达式的化简与求值.(1)平方差公式的左右两边分别有什么特点?提示:公式的左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;右边是相同项的平方减去相反项的平方.(2)完全平方公式的左右两边分别有什么特点?提示:公式左边都是二项式的平方,右边是一个二次三项式;公式右边第一、三项分别是左边第一、第二项的平方;第二项是左边两项积的2倍.2.十字相乘法具体形式:①二次项系数为1时:x2+(a+b)x+ab=(x+a)(x+b)②二次项系数不为1时:acx2+(ad+bc)x+bd=(ax+b)(cx+d)记忆口诀:拆两头,凑中间.十字相乘法分解因式的关键是什么?提示:把二次项系数和常数项分解,交叉相乘,得到两个因数,再把两个因数相加,看它们的和是不是正好等于一次项系数.3.方程的解集(1)定义:方程的解(根)能使方程左右两边相等的未知数的值方程的解集一个方程所有解组成的集合的不同.(3)应用:求解方程的解(或解集).把方程通过适当变换后,求出的未知数的值都是这个方程的解(根)吗?提示:把方程通过变换,求出的未知数的值不一定是这个方程的根,也可能是这个方程的增根.1.辨析记忆(对的打“√”,错的打“×”).(1)计算(2a+5)(2a-5)=2a2-25.( ×)提示:(2a+5)(2a-5)=(2a)2-25=4a2-25.(2)因式分解过程为:x2-3xy-4y2=(x+y)(x-4).( ×)提示:x2-3xy-4y2=(x+y)(x-4y).(3)用因式分解法解方程时部分过程为:(x+2)(x-3)=6,所以x+2=3或x-3=2.( ×)提示:若(x+2)(x-3)=0,可化为x+2=0或x-3=0.2.分解因式:x2+2xy+y2-4=.【解析】x2+2xy+y2-4=(x+y)2-4=(x+y+2)(x+y-2).答案:(x+y+2)(x+y-2)3.(教材例题改编)已知三角形两边长分别为4和7,第三边的长是方程x2-17x+66=0的根,则第三边的长为______.【解析】由方程x2-17x+66=0得:(x-6)(x-11)=0,解得:x=6或x=11,当x=6时,三边长为4,6,7,符合题意;当x=11时,以4,7,11为三边构不成三角形,不合题意,舍去,则第三边长为6.答案:6类型一常用乘法公式的应用(数学运算)1.若多项式x2+kx-24可以因式分解为(x-3)(x+8),则实数k的值为()A.5 B.-5C.11 D.-11【解析】选A.由题意得x2+kx-24=(x-3)(x+8)=x2+5x-24. 2.计算(x+3y)2-(3x+y)2的结果是()A.8x2-8y2B.8y2-8x2C.8(x+y)2D.8(x-y)2【解析】选B.方法一:(x+3y)2-(3x+y)2=x2+6xy+9y2-(9x2+6xy+y2)=x2+6xy+9y2-9x2-6xy-y2=8y2-8x2.方法二:(x+3y)2-(3x+y)2=[(x+3y)+(3x+y)][(x+3y)-(3x+y)]=(x+3y+3x+y)(x+3y-3x-y)=(4x+4y)(-2x+2y)=4(x+y)×2(-x+y)=8y2-8x2.3.已知a2+b2+2a-4b+5=0,则2a2+4b-3的值为______.【解析】a2+b2+2a-4b+5=(a2+2a+1)+(b2-4b+4)=(a+1)2+(b-2)2=0,所以a=-1,b=2,所以2a2+4b-3=2×(-1)2+4×2-3=7.答案:7常用乘法公式的应用技巧(1)使用公式化简时,一定要分清公式中的a,b分别对应题目中的哪个数或哪个整式.(2)利用公式化简时,要注意选择公式,公式选择恰当,可以有效地简化运算.类型二十字相乘法分解因式(数学运算)【典例】把下列各式因式分解.(1)x2+3x+2.(2)6x2-7x-5.(3)5x2+6xy-8y2.【思路导引】二次项系数与常数项分别拆分,交叉相乘再相加,保证和为一次项系数即可.【解析】(1)x2+3x+2=(x+1)(x+2)1×2+1×1=3(2)6x2-7x-5=(2x+1)(3x-5)2×(-5)+3×1=-7(3)5x2+6xy-8y2=(x+2y)(5x-4y)1×(-4y)+5×(2y)=6y十字相乘法因式分解的形式尝试把某些二次三项式如ax2+bx+c分解因式,先把a分解成a=a1a2,把c分解成c=c1c2,并且排列如下:这里按斜线交叉相乘的积的和就是a 1c 2+a 2c 1,如果它正好等于二次三项式ax 2+bx +c 中一次项的系数b ,那么ax 2+bx +c 就可以分解成(a 1x +c 1)(a 2x +c 2),其中a 1,c 1是图中上面一行的两个数,a 2,c 2是下面一行的两个数.分解下列各因式:(1)8x 2+26xy -15y 2;(2)7(a +b)2-5(a +b)-2.【解析】(1)8x 2+26xy -15y 2=(2x -y)(4x +15y).(2)7(a +b)2-5(a +b)-2=(7a +7b +2)(a +b -1).【拓展延伸】齐次式的因式分解(1)齐次式是指合并同类项后,每一项关于x ,y 的次数都是相等的多项式.次数为一次就是一次齐次式,次数为二次就是二次齐次式.如x -2y 是一次齐次式;x 2+xy 是二次齐次式.(2)二元二次齐次式是高中最常见的齐次式之一,通常可以写为ax 2+bxy +cy 2的形式,常见的因式分解方法有两种,一是将原式中的y 看作参数直接进行因式分解;二是在解决此类问题的等式时可以同除以y 2转化为x y 的二次形式后利用因式分解进行分解或求值. 【拓展训练】x 2-13xy -30y 2分解因式为( )A .(x -3y)(x -10y)B .(x +15y)(x -2y)C .(x +10y)(x +3y)D .(x -15y)(x +2y)【解析】选D .x 2-13xy -30y 2=(x -15y)(x +2y)1×2y +1×(-15y)=-13y类型三 方程的解集(数学运算)一元一次方程的解集【典例】若x =-3是方程3x -a =0的解,则a 的值是( )A .9B .6C .-9D .-6【思路导引】方程的解定能满足方程,代入求解即可.【解析】选C .把x =-3代入方程3x -a =0得:-9-a =0,解得:a =-9.一元二次方程的解集【典例】解下列一元二次方程:(1)2x 2+7x +3=0;【思路导引】(1)(2)直接利用十字相乘法解方程,(3)(4)移项合并同类项后,再利用十字相乘法解方程.【解析】原方程化为(2x +1)(x +3)=0,解得x =-12 或x =-3,所以原方程的解集为⎩⎨⎧⎭⎬⎫-3,-12 . (2)2x 2-7x +3=0;【解析】原方程化为(2x -1)(x -3)=0,解得x =12 或x =3,所以原方程的解集为⎩⎨⎧⎭⎬⎫12,3 . (3)-3x 2-4x +4=0;【解析】原方程化为3x 2+4x -4=0,即(3x -2)(x +2)=0,解得x =23 或x =-2,所以原方程的解集为⎩⎨⎧⎭⎬⎫-2,23 . (4)6x(x +2)=x -4.【解析】原方程化为6x 2+11x +4=0,即(2x +1)(3x +4)=0,解得x =-12 或x =-43 ,所以原方程的解集为⎩⎨⎧⎭⎬⎫-12,-43 . 分类讨论思想的应用【典例】解方程ax 2-(a +1)x +1=0.【思路导引】把二次项系数分为a =0和a≠0两种情况讨论,第一种情况是解一元一次方程,第二种情况是解一元二次方程.【解析】当a =0时,原方程可化为-x +1=0,所以x =1,当a≠0时,对于ax 2-(a +1)x +1来说,因为a×1=a ,(-1)×(-1)=1,a×(-1)+1×(-1)=-(a+1).如图所示:ax 2-(a +1)x +1=(ax -1)(x -1),所以原方程可化为(ax -1)(x -1)=0,所以ax -1=0或x -1=0,所以x =1a 或x =1.1.利用因式分解法解一元二次方程的步骤(1)将方程的右边化为0;(2)将方程的左边进行因式分解;(3)令每个因式为0,得到两个一元一次方程;(4)解一元一次方程,得到方程的解.2.对于二次三项式分解因式的注意事项对于二次三项式,采用十字相乘法分解因式时,要注意把二次项系数和常数项分解,交叉相乘,两个因式的和正好等于一次项系数.注意,交叉相乘横着写.3.形如ax 2+bx +c =0(含参)的方程的解法方程的二次项系数中含有参数时,要讨论二次项系数是否可以等于零,当二次项系数等于零时,讨论方程变为一元一次方程或其他情况,当二次项系数不为0时,解一元二次方程.1.多项式x +5与2x -8互为相反数,则x =( )A .-1B .0C .1D .2【解析】选C.根据题意得:x +5+2x -8=0,移项合并得:3x =3,解得x =1.2.求下列方程的解集: (1)5x 2-2x -14 =x 2-2x +34 .(2)12x 2+5x -2=0.【解析】(1)移项、合并同类项,得4x 2-1=0.因式分解,得(2x +1)(2x -1)=0.于是得2x +1=0或2x -1=0,即x =-12 或x =12 ,因此方程的解集为⎩⎨⎧⎭⎬⎫-12,12 . (2)分解因式得:12x 2+5x -2=(3x +2)(4x -1)3×(-1)+4×2=5因为12x 2+5x -2=0,所以(3x +2)(4x -1)=0,所以3x +2=0或4x -1=0,即x =-23 或x =14 ,因此方程的解集为⎩⎨⎧⎭⎬⎫-23,14 . 3.解方程12x 2-ax -a 2=0.【解析】当a =0时,原方程可化为:12x 2=0,所以x =0,当a≠0时,因为3×4=12,-a×a =-a 2,3×a +4×(-a)=3a -4a =-a ,如图所示所以12x 2-ax -a 2=(3x -a)(4x +a),所以原方程可化为(3x -a)(4x +a)=0.所以3x -a =0或4x +a =0,所以x 1=a 3 ,x 2=-a 4 .【补偿训练】(2020·苏州高一检测)若方程(x -2)(3x +1)=0,则3x +1的值为( )A .7B .2C .0D .7或0【解析】选D .由方程(x -2)(3x +1)=0,可得x -2=0或3x +1=0,解得x 1=2,x 2=-13 ,当x =2时,3x +1=3×2+1=7;当x =-13 时,3x +1=3×(-13 )+1=0.备选类型 方程的解的应用(数学建模、数学运算)【典例】我市某楼盘准备以每平方米15 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格按同一百分率经过连续两次下调后,最终以每平方米12 150元的均价销售,则平均每次下调的百分率是( )A .8%B .9%C .10%D .11%【思路导引】设出每次下调的百分率,根据原价及两次下调后的价格列出关系式,求得方程的解.【解析】选C .设平均每次下调的百分率为x ,则:15 000·(1-x)·(1-x)=12 150,所以(1-x)2=0.81,所以1-x =0.9或1-x =-0.9,解得x=0.1或x=1.9.因为x<1,所以x=1.9(舍),所以x=0.1.所以平均每次下调的百分率为10%.解决实际问题的一般步骤(1)审清题意,理顺问题的条件和结论,找到关键量.(2)建立文字数量关系式.(3)转化为数学模型.(4)解决数学问题,得出相应的数学结论.(5)返本还原,即还原为实际问题本身所具有的意义.甲商品的进价为每件20元,商场将其售价从原来的每件40元进行两次调价,已知该商品现价为每件32.4元.(1)若该商场两次调价的降价率相同,求这个降价率.(2)经调查,该商品每降价0.2元,即可多销售10件.已知甲商品售价40元时每月可销售500件,若商场希望该商品每月能盈利10 000元,且尽可能扩大销售量,则该商品在现价的基础上还应如何调整?【解析】(1)设这种商品平均降价率是x,依题意得:40(1-x)2=32.4,解得:x1=0.1=10%,x2=1.9(舍去);故这个降价率为10%.(2)设降价y元,则多销售(y÷0.2)×10=50y件,根据题意得(40-20-y)(500+50y)=10 000,解得:y=0(舍去)或y=10,答:在现价的基础上,再降低10元.1.已知等式3x +2y +6=0,则下列等式正确的是( )A .y =-32 x -3B .y =32 x -3C .y =-32 x +3D .y =32 x +3【解析】选A.由等式3x +2y +6=0,可得y =-32 x -3.2.(2021·青岛高一检测)一元二次方程(x +3)(x -3)=3(x +3)的解集是( )A .{3}B .{6}C .{-3,6}D .{-6,3}【解析】选C.(x +3)(x -3)-3(x +3)=0,即(x +3)(x -3-3)=0,所以x +3=0或x -3-3=0,解得x 1=-3,x 2=6.3.(教材练习改编)多项式x 2-3x +a 可分解为(x -5)(x -b ),则a ,b 的值分别为( )A .10和-2B .-10和2C .10和2D .-10和-2【解析】选D.因为(x -5)(x -b )=x 2-(5+b )x +5b =x 2-3x +a , 所以5+b =3,a =5b ,所以b =-2,a =-10.4.(2021·南昌高一检测)一元二次方程2x 2+px +q =0的解集为{-1,2},那么二次三项式2x 2+px +q 可分解为( )A .(x +1)(x -2)B .(2x +1)(x -2)C .2(x -1)(x +2)D .2(x +1)(x -2)【解析】选D.因为一元二次方程2x 2+px +q =0的解集为{-1,2},所以2(x+1)(x-2)=0,所以2x2+px+q可分解为2(x+1)(x-2). 5.若x=3是方程2x-10=4a的解,则a=______.【解析】因为x=3是方程2x-10=4a的解,所以2×3-10=4a,所以4a=-4,所以a=-1.答案:-1。

因式分解经典题及解析

因式分解经典题及解析

2013组卷1.在学习因式分解时,我们学习了提公因式法和公式法(平方差公式和完全平方公式),事实上,除了这两种方法外,还有其它方法可以用来因式分解,比如配方法.例如,如果要因式分解x2+2x﹣3时,显然既无法用提公因式法,也无法用公式法,怎么办呢?这时,我们可以采用下面的办法:x2+2x﹣3=x2+2×x×1+12﹣1﹣3﹣﹣﹣﹣﹣﹣①=(x+1)2﹣22﹣﹣﹣﹣﹣﹣②=…解决下列问题:(1)填空:在上述材料中,运用了_________ 的思想方法,使得原题变为可以继续用平方差公式因式分解,这种方法就是配方法;(2)显然所给材料中因式分解并未结束,请依照材料因式分解x2+2x﹣3;(3)请用上述方法因式分解x2﹣4x﹣5.2.请看下面的问题:把x4+4分解因式分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢19世纪的法国数学家苏菲•热门抓住了该式只有两项,而且属于平方和(x2)2+(22)2的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2)人们为了纪念苏菲•热门给出这一解法,就把它叫做“热门定理”,请你依照苏菲•热门的做法,将下列各式因式分解.(1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab.3.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的_________ .A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底_________ .(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果_________ .(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.4.找出能使二次三项式x2+ax﹣6可以因式分解(在整数范围内)的整数值a,并且将其进行因式分解.5.利用因式分解说明:两个连续偶数的平方差一定是4的倍数.6.已知关于x的多项式3x2+x+m因式分解以后有一个因式为(3x﹣2),试求m的值并将多项式因式分解.7.已知多项式(a2+ka+25)﹣b2,在给定k的值的条件下可以因式分解.请给定一个k值并写出因式分解的过程.8.先阅读,后解题:要说明代数式2x2+8x+10的值恒大于0还是恒等于0或者恒小于0,我们可以将它配方成一个平方式加上一个常数的形式,再去考虑,具体过程如下:解:2x2+8x+10=2(x2+4x+5)(提公因式,得到一个二次项系数为1的二次多项式)=2(x2+4x+22﹣22+5)=2[(x+2)2+1](将二次多项式配方)=2(x+2)2+2 (去掉中括号)因为当x取任意实数时,代数式2(x+2)2的值一定是非负数,那么2(x+2)2+2的值一定为正数,所以,原式的值恒大于0,并且,当x=﹣2时,原式有最小值2.请仿照上例,说明代数式﹣2x2﹣8x﹣10的值恒大于0还是恒小于0,并且说明它的最大值或者最小值是什么.9.老师给学生一个多项式,甲、乙、丙、丁四位同学分别给了一个关于此多项式的描述:甲:这是一个三次三项式;乙:三次项系数为1;丙:这个多项式的各项有公因式;丁:这个多项式分解因式时要用到公式法;若已知这四位同学的描述都正确,请你构造一个同时满足这个描述的一个多项式.10.在对某二次三项式进行因式分解时,甲同学因看错了一次项系数而将其分解为2(x﹣1)(x﹣9),而乙同学看错了常数项,而将其分解为2(x﹣2)(x﹣4),请你判断正确的二次三项式并进行正确的因式分解.11.观察李强同学把多项式(x2+6x+10)(x2+6x+8)+1分解因式的过程:解:设x2+6x=y,则原式=(y+10)(y+8)+1=y2+18y+81=(y+9)2=(x2+6x+9)2(1)回答问题:这位同学的因式分解是否彻底?若不彻底,请你直接写出因式分解的最后结果:_________ .(2)仿照上题解法,分解因式:(x2+4x+1)(x2+4x﹣3)+4.12.(1)写一个多项式,再把它分解因式(要求:多项式含有字母m和n,系数、次数不限,并能先用提取公因式法再用公式法分解).(2)阅读下列分解因式的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]①=(1+x)2(1+x)②=(1+x)3③①上述分解因式的方法是_________ ,由②到③这一步的根据是_________ ;②若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2006,结果是_________ ;③分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).13.阅读下面的材料并完成填空:因为(x+a)(x+b)=x2+(a+b)x+ab,所以,对于二次项系数为1的二次三项式x2+px+q的因式解,就是把常数项q分解成两个数的积且使这两数的和等于p,即如果有a,b两数满足a﹒b=a+b=p,则有x2+px+q=(x+a)(x+b).如分解因式x2+5x+6.解:因为2×3=6,2+3=5,所以x2+5x+6=(x+2)(x+3).再如分解因式x2﹣5x﹣6.解:因为﹣6×1=﹣6,﹣6+1=﹣5,所以x2﹣5x﹣6=(x﹣6)(x+1).同学们,阅读完上述文字后,你能完成下面的题目吗?试试看.因式分解:(1)x2+7x+12;(2)x2﹣7x+12;(3)x2+4x﹣12;(4)x2﹣x﹣12.答案1.请看下面的问题:把x4+4分解因式分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢19世纪的法国数学家苏菲•热门抓住了该式只有两项,而且属于平方和(x2)2+(22)2的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2)人们为了纪念苏菲•热门给出这一解法,就把它叫做“热门定理”,请你依照苏菲•热门的做法,将下列各式因式分解.(1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab.2.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的 C .A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底不彻底.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果(x﹣2)4.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.3.找出能使二次三项式x2+ax﹣6可以因式分解(在整数范围内)的整数值a,并且将其进行因式分解.4.利用因式分解说明:两个连续偶数的平方差一定是4的倍数.5.已知关于x的多项式3x2+x+m因式分解以后有一个因式为(3x﹣2),试求m的值并将多项式因式分解.x=时多项式的值为×6.已知多项式(a2+ka+25)﹣b2,在给定k的值的条件下可以因式分解.请给定一个k值并写出因式分解的过程.7.先阅读,后解题:要说明代数式2x2+8x+10的值恒大于0还是恒等于0或者恒小于0,我们可以将它配方成一个平方式加上一个常数的形式,再去考虑,具体过程如下:解:2x2+8x+10=2(x2+4x+5)(提公因式,得到一个二次项系数为1的二次多项式)=2(x2+4x+22﹣22+5)=2[(x+2)2+1](将二次多项式配方)=2(x+2)2+2 (去掉中括号)因为当x取任意实数时,代数式2(x+2)2的值一定是非负数,那么2(x+2)2+2的值一定为正数,所以,原式的值恒大于0,并且,当x=﹣2时,原式有最小值2.请仿照上例,说明代数式﹣2x2﹣8x﹣10的值恒大于0还是恒小于0,并且说明它的最大值或者最小值是什么.8.老师给学生一个多项式,甲、乙、丙、丁四位同学分别给了一个关于此多项式的描述:甲:这是一个三次三项式;乙:三次项系数为1;丙:这个多项式的各项有公因式;丁:这个多项式分解因式时要用到公式法;若已知这四位同学的描述都正确,请你构造一个同时满足这个描述的一个多项式.9.在对某二次三项式进行因式分解时,甲同学因看错了一次项系数而将其分解为2(x﹣1)(x﹣9),而乙同学看错了常数项,而将其分解为2(x﹣2)(x﹣4),请你判断正确的二次三项式并进行正确的因式分解.10.观察李强同学把多项式(x2+6x+10)(x2+6x+8)+1分解因式的过程:解:设x2+6x=y,则原式=(y+10)(y+8)+1=y2+18y+81=(y+9)2=(x2+6x+9)2(1)回答问题:这位同学的因式分解是否彻底?若不彻底,请你直接写出因式分解的最后结果:(x+3)4.(2)仿照上题解法,分解因式:(x2+4x+1)(x2+4x﹣3)+4.11.(1)写一个多项式,再把它分解因式(要求:多项式含有字母m和n,系数、次数不限,并能先用提取公因式法再用公式法分解).(2)阅读下列分解因式的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]①=(1+x)2(1+x)②=(1+x)3③①上述分解因式的方法是提公因式法分解因式,由②到③这一步的根据是同底数幂的乘法法则;②若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2006,结果是(1+x)2007;③分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).12.阅读下面的材料并完成填空:因为(x+a)(x+b)=x2+(a+b)x+ab,所以,对于二次项系数为1的二次三项式x2+px+q的因式解,就是把常数项q分解成两个数的积且使这两数的和等于p,即如果有a,b两数满足a﹒b=a+b=p,则有x2+px+q=(x+a)(x+b).如分解因式x2+5x+6.解:因为2×3=6,2+3=5,所以x2+5x+6=(x+2)(x+3).再如分解因式x2﹣5x﹣6.解:因为﹣6×1=﹣6,﹣6+1=﹣5,所以x2﹣5x﹣6=(x﹣6)(x+1).同学们,阅读完上述文字后,你能完成下面的题目吗?试试看.因式分解:(1)x2+7x+12;(2)x2﹣7x+12;(3)x2+4x﹣12;(4)x2﹣x﹣12.。

因式分解法解一元二次方程(含答案)

因式分解法解一元二次方程(含答案)

因式分解法解一元二次方程一.解答题(共11小题)1.用适当的方法解下列一元二次方程:(1)x2﹣2x﹣15=0;(2)(x+4)2﹣5(x+4)=0.2.解方程:(1)(x﹣3)2﹣16=0;(2)x2+2x﹣3=0.3.解下列方程:(1)x2﹣4x=0;(2)x(x﹣2)=x﹣2.4.解方程:(1)(x﹣1)2﹣4=0;(2)(x﹣2)2=3x﹣6.5.解一元二次方程:(1)(x﹣2)2=9;(2)x2+2x﹣3=0.6.解下列方程:(1)x2﹣3x=0(2)x2+4x﹣5=07.请用适当的方法解下列方程:(1)4x﹣2=2x2;(2)(x+1)2+2=3(x+1).8.用适当的方法解下列方程:(1)2x2+5x=7.(2)x2+8x+15=0.9.解方程:(1)x2﹣2x﹣15=0;(2)(x+4)2﹣5(x+4)=0.10.用适当的方法解方程:(1)x2=7x;(2)x2+4x﹣5=0.11.阅读下面例题的解题过程,体会、理解其方法,并借鉴该例题的解法解方程.例:解方程:x2﹣|x|﹣2=0解:当x≥0时,原方程化为x2﹣x﹣2=0.解得:x1=2,x2=﹣1∵x≥0,故x=﹣1舍去,∴x=2是原方程的解;当x<0时,原方程化为x2+x﹣2=0.解得:x1=﹣2,x2=1∵x<0,故x=1舍去,∴x=﹣2是原方程的解;综上所述,原方程的解为x1=2,x2=﹣2.解方程x2+2|x+2|﹣4=0.参考答案与试题解析一.解答题(共11小题)1.用适当的方法解下列一元二次方程:(1)x2﹣2x﹣15=0;(2)(x+4)2﹣5(x+4)=0.【分析】(1)利用十字相乘法把方程的左边变形,进而解出方程;(2)利用提公因式法把方程的左边变形,进而解出方程.【解答】(1)∵x2﹣2x﹣15=0,∴(x﹣5)(x+3)=0,∴x﹣5=0或x+3=0,∴x1=5,x2=﹣3;(2)∵(x+4)2﹣5(x+4)=0,∴(x+4)(x+4﹣5)=0,∴x+4=0或x﹣1=0,∴x1=﹣4,x2=1.【点评】本题考查了解一元二次方程,掌握因式分解法解一元二次方程的一般步骤是解题的关键.2.解方程:(1)(x﹣3)2﹣16=0;(2)x2+2x﹣3=0.【分析】(1)先移项得到(x﹣3)2=16,然后利用直接开平方法解方程;(2)利用因式分解法解方程.【解答】解:(1)(x﹣3)2=16,x﹣3=±4,所以x1=7,x2=﹣1;(2)x2+2x﹣3=0,(x+3)(x﹣1)=0,x+3=0或x﹣1=0,所以x1=﹣3,x2=1.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了直接开平方法.3.解下列方程:(1)x2﹣4x=0;(2)x(x﹣2)=x﹣2.【分析】(1)将等号左边提公因式,用因式分解法即可求出方程的解;(2)移项将等号右边化为0,左边因式分解,再用因式分解法求出方程的解.【解答】解:(1)∵x2﹣4x=0,∴(x﹣4)=0,∴x=0或x﹣4=0,∴x1=0,x2=4;(2)∵x(x﹣2)=x﹣2,∴(x﹣2)(x﹣1)=0,∴x﹣2=0或x﹣1=0,∴x1=2,x2=1.【点评】本题考查用因式分解法解一元二次方程,解题的关键是掌握因式分解法解一元二次方程的一般步骤.4.解方程:(1)(x﹣1)2﹣4=0;(2)(x﹣2)2=3x﹣6.【分析】(1)将方程变形后用直接开平方法可求出方程的解;(2)将方程变形,右边化为0,左边分解因式,即可把原方程化为两个一元一次方程,从而求出原方程的解.【解答】解:(1)(x﹣1)2=4,∴x﹣1=2或x﹣1=﹣2,∴x1=3,x2=﹣1;(2)(x﹣2)2﹣3(x﹣2)=0,∴(x﹣2)(x﹣2﹣3)=0,∴x﹣2=0或x﹣5=0,∴x1=2,x2=5.【点评】本题考查解一元二次方程,解题的关键是掌握直接开平方法和因式分解法解一元二次方程.5.解一元二次方程:(1)(x﹣2)2=9;(2)x2+2x﹣3=0.【分析】(1)利用直接开平方法求解即可;(2)利用因式分解法求解即可.【解答】(1)解:(x﹣2)2=9,x﹣2=±3,x﹣2=3或x﹣2=﹣3,∴x1=5,x2=﹣1.(2)解:x2+2x﹣3=0,∴(x﹣1)(x+3)=0,则x﹣1=0或x+3=0,∴x1=1,x2=﹣3.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.6.解下列方程:(1)x2﹣3x=0(2)x2+4x﹣5=0【分析】(1)利用因式分解法把原方程化为x=0或x﹣3=0,然后解两个一次方程即可;(2)利用因式分解法把原方程化为x+5=0或x﹣1=0,然后解两个一次方程即可.【解答】解:(1)x(x﹣3)=0,x=0或x﹣3=0,所以x1=0,x2=3;(2)(x+5)(x﹣1)=0,x+5=0或x﹣1=0,所以x1=﹣5,x2=1..【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.7.请用适当的方法解下列方程:(1)4x﹣2=2x2;(2)(x+1)2+2=3(x+1).【分析】(1)先化成一般式,再因式分解即可;(2)把x+1看成一个整体,利用因式分解法解即可.【解答】解:(1)原方程化为x2﹣2x+1=0;∴(x﹣1)2=0,∴x﹣1=0或x﹣1=0,∴x1=x2=1;(2)移项得(x+1)2﹣3(x+1)+2=0,因式分解得(x+1﹣1)(x+1﹣2)=0,∴x+1﹣1=0或x+1﹣2=0,∴x1=0,x2=1.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.也考查了直接开平方法解一元二次方程.8.用适当的方法解下列方程:(1)2x2+5x=7.(2)x2+8x+15=0.【分析】(1)利用十字相乘法因式分解,解出x的值即可;(2)利用十字相乘法因式分解,解出x的值即可.【解答】解:(1)2x2+5x=7,因式分解得,(2x+7)(x﹣1)=0,所以x1=﹣,x2=1;(2)x2+8x+15=0,因式分解得(x+3)(x+5)=0,所以x1=﹣3,x2=﹣5.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).9.解方程:(1)x2﹣2x﹣15=0;(2)(x+4)2﹣5(x+4)=0.【分析】(1)利用解一元二次方程﹣因式分解法,进行计算即可解答;(2)利用解一元二次方程﹣因式分解法,进行计算即可解答.【解答】解:(1)x2﹣2x﹣15=0,(x﹣5)(x+3)=0,x﹣5=0或x+3=0,x1=5,x2=﹣3;(2)(x+4)2﹣5(x+4)=0,(x+4)(x+4﹣5)=0,(x+4)(x﹣1)=0,x+4=0或x﹣1=0,x1=﹣4,x2=1.【点评】本题考查了解一元二次方程﹣因式分解法,熟练掌握解一元二次方程的方法是解题的关键.10.用适当的方法解方程:(1)x2=7x;(2)x2+4x﹣5=0.【分析】(1)先移项,再利用提公因式法将方程的左边因式分解,继而得出两个关于x 的一元一次方程,再进一步求解即可;(2)利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可.【解答】解:(1)∵x2=7x,∴x2﹣7x=0,∴x(x﹣7)=0,则x=0或x﹣7=0,解得x1=0,x2=7;(2)∵x2+4x﹣5=0,∴(x+5)(x﹣1)=0,则x+5=0或x﹣1=0,解得x1=﹣5,x2=1.【点评】本题主要考查解一元二次方程,解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.11.阅读下面例题的解题过程,体会、理解其方法,并借鉴该例题的解法解方程.例:解方程:x2﹣|x|﹣2=0解:当x≥0时,原方程化为x2﹣x﹣2=0.解得:x1=2,x2=﹣1∵x≥0,故x=﹣1舍去,∴x=2是原方程的解;当x<0时,原方程化为x2+x﹣2=0.解得:x1=﹣2,x2=1∵x<0,故x=1舍去,∴x=﹣2是原方程的解;综上所述,原方程的解为x1=2,x2=﹣2.解方程x2+2|x+2|﹣4=0.【分析】分x+2大于等于0与小于0两种情况,利用绝对值的代数意义化简所求方程,求出解即可.【解答】解:当x+2≥0,即x≥﹣2时,方程变形得:x2+2x=0,即x(x+2)=0,解得:x1=0,x2=﹣2;当x+2<0,即x<﹣2时,方程变形得:x2﹣2x﹣8=0,即(x﹣4)(x+2)=0,解得:x1=4(不合题意,舍去),x2=﹣2(不合题意,舍去),综上,原方程的解为x=0或x=﹣2.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.。

一元二次方程(因式分解法)

一元二次方程(因式分解法)

一元二次方程(因式分解法)【知识要点】1、 分解因式法解一元二次方程:当一元二次方程的一边为0,而另一边易于分解成两个一次因式的积时,可用解两个一元一次方程的方法来求得一元二次方程的解,这种解一元二次方程的方法称为分解因式法。

2、分解因式法的理论依据是:若0=⋅b a ,则0=a 或0=b3、用分解因式法解一元二次方程的一般步骤: ①将方程的右边化为零;②将方程的左边分解为两个一次因式的乘积; ③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,他们的解就是一元一次方程的解。

【典型例题】例1、(1)方程)2(2)2)(1(+=+-x x x 的根是__________ (2)方程0)3)(2)(1(=-+-x x x 的根是__________ 例2、 用分解因式法解下列方程(1)0632=-x x (2))5(2)5(32x x -=-(3) 0122=+-x x (4)4842-=+x x(5) 0)3()23(22=+-+x x (6)22)6(16)3(49+=-x x(7)0625412=-+x x (8)(x -1)2-4(x -1)-21=0.例3、2-3是方程x 2+bx -1=0的一个根,则b =_________,另一个根是_________. 例4、已知a 2-5ab +6b 2=0,则abb a +等于 ( ) 21331D.2 31321C.2 31B.3 21A.2或或例5、解关于x 的方程:(a 2-b 2)x 2+4abx =a 2-b 2.例6、x 为何值时,等式0232222=--+--x x x x【经典练习】填空题1、用因式分解法解方程9=x 2-2x+1 (1)移项得 ;(2)方程左边化为两个数的平方差,右边为0得 ; (3)将方程左边分解成两个一次因式之积得 ; (4)分别解这两个一次方程得x 1 = , x 2= 。

2、(1)方程t (t +3)=28的解为_______.(2)方程(2x +1)2+3(2x +1)=0的解为__________.3、(1)用因式分解法解方程5(x+3)-2x (x+3)=0,可把其化为两个一元一次方程和 求解。

高一数学知识点讲解与专题练习3---一元二次方程

高一数学知识点讲解与专题练习3---一元二次方程

高一数学知识点讲解与专题练习第三讲一元二次方程根与系数的关系现行初中数学教材主要要求学生掌握一元二次方程的概念、解法及应用,而一元二次方程的根的判断式及根与系数的关系,在高中教材中的二次函数、不等式及解析几何等章节有着许多应用.本节将对一元二次方程根的判别式、根与系数的关系进行阐述.一、一元二次方程的根的判断式++=≠,用配方法将其变形为:一元二次方程20 (0)ax bx c a(1) 当240−>时,右端是正数.因此,方程有两个不相等的实数根:b ac−<时,右端是负数.因此,方程没有实数根.(3) 当240b ac由于可以用24−的取值情况来判定一元二次方程的根的情况.因此,把b ac24++=≠的根的判别式,表示为:b acax bx c a−叫做一元二次方程20 (0)24∆=−b ac【例1】不解方程,判断下列方程的实数根的个数:5(3)60+=(3) 2x x+−=y yx x49122310(1) 2−+=(2) 2解:(1) 2Q,∴ 原方程有两个不相等的实数根.(3)42110∆=−−××=>(2) 原方程可化为:241290y y −+=2 (12)4490∆=−−××=Q ,∴ 原方程有两个相等的实数根.(3) 原方程可化为:256150x x −+=2 (6)45152640∆=−−××=−<Q ,∴ 原方程没有实数根.说明说明::在求判断式时,务必先把方程变形为一元二次方程的一般形式. 练:说出下列各方程的根的情况(1)23x x −+ (2)2441x x −+ (3)22x x +−【例2】已知关于x 的一元二次方程2320x x k −+=,根据下列条件,分别求出k 的范围: (1) 方程有两个不相等的实数根;(2) 方程有两个相等的实数根(3)方程有实数根;(4) 方程无实数根.解:2(2)43412k k ∆=−−××=−二、一元二次方程的根解法进一步地,在一元二次方程20 (0)ax bx c a ++=≠有实数根的前提下,该实数根具体是多?这就涉及到一元二次方程的根的求法解法一(因式分解法)若2ax bx c ++可分解为()()px q mx n ++,【典例典例】】解一元二次方程220x x +−=解:原方程可化为(1)(2)0x x −+= 故12x =−或练:解一元二次方程(1)24120x x −−= (2)2260x x +−= (3)24510x x −+−= 解法二(配方法)一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:【典例典例】】解一元二次方程220x x +−=练:解一元二次方程(1)24120x x −−= (2)2260x x +−= (3)24510x x −+−= 解法三(公式法)对于一元二次方程20 (0)ax bx c a ++=≠,(1) 当240b ac −>时,右端是正数.因此,方程有两个不相等的实数根:【典例典例】】解一元二次方程220x x +−=解:由2b 490ac ∆=−=>所以原方程有两个不相等的实数根练:解一元二次方程(1)24120x x −−= (2)2260x x +−= (3)24510x x −+−=三、一元二次方程的根与系数的关系一元二次方程20 (0)ax bx c a ++=≠的两个根为:定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么:说明说明::一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现,所以通常把此定理称为”韦达定理”.上述定理成立的前提是0∆≥.【例3】若12,x x 是方程2220070x x +−=的两个根,试求下列各式的值: 分析分析::本题若直接用求根公式求出方程的两根,再代入求值,将会出现复杂的计算.这里,可以利用韦达定理来解答.解:由题意,根据根与系数的关系得:12122,2007x x x x +=−=− (1) 2222121212()2(2)2(2007)4018xx x x x x +=+−=−−−=(3) 121212(5)(5)5()2520075(2)251972x x x x x x −−=−++=−−−+=−说明说明::利用根与系数的关系求值,要熟练掌握以下等式变形:33312121212()3()x x x x x x x x +=+−+等等.韦达定理体现了整体思想.练:若12,x x 是方程22530x x +−=的两个根,试求下列各式的值 (1)12x x + (2)12x x (3) 2212x x +;A 组1.一元二次方程2(1)210k x x −−−=有两个不相等的实数根,则k 的取值范围是( )A .2k >B .2,1k k <≠且C .2k <D .2,1k k >≠且3.已知菱形ABCD 的边长为5,两条对角线交于O 点,且OA 、OB 的长分别是关于x 的方程22(21)30x m x m +−++=的根,则m 等于( )A .3−B .5C .53−或D .53−或4.若t 是一元二次方程20 (0)ax bx c a ++=≠的根,则判别式24b ac ∆=−和完全平方式2(2)M at b =+的关系是( )A .M ∆=B .M ∆>C .M ∆<D .大小关系不能确定为( )A .20−B .2C .220−或D .220或6.如果方程2()()()0b c x c a x a b −+−+−=的两根相等,则,,a b c 之间的关系是 ______ 7.已知一个直角三角形的两条直角边的长恰是方程22870x x −+=的两个根,则这个直角三角形的斜边长是 _______ .8.若方程22(1)30x k x k −+++=的两根之差为1,则k 的值是 _____ .9.设12,x x 是方程20x px q ++=的两实根,121,1x x ++是关于x 的方程20x qx p ++=的两实根,则p = _____ ,q = _____ .10.已知实数,,a b c 满足26,9a b c ab =−=−,则a = _____ ,b = _____ ,c = _____ . 11.对于二次三项式21036x x −+,小明得出如下结论:无论x 取什么实数,其值都不可能等于10.您是否同意他的看法?请您说明理由.的值.13.已知关于x 的一元二次方程2(41)210x m x m +++−=. (1) 求证:不论为任何实数,方程总有两个不相等的实数根;(1)k 取何值时,方程存在两个正实数根?B 组1.已知关于x 的方程2(1)(23)10k x k x k −+−++=有两个不相等的实数根12,x x . (1) 求k 的取值范围;(2) 是否存在实数k ,使方程的两实根互为相反数?如果存在,求出k 的值;如果不存在,请您说明理由.2.已知关于x 的方程230x x m +−=的两个实数根的平方和等于11.求证:关于x 的方程22(3)640k x kmx m m −+−+−=有实数根.3.若12,x x 是关于x 的方程22(21)10x k x k −+++=的两个实数根,且12,x x 都大于1.(1) 求实数k 的取值范围;第三讲一元二次方程根与系数的关系习题答案A组1.B 2.A 3.A 4.A 5.A且+=≠a cb b c6.2,=−=−7.3 8.9或3−9.1,3p q===11.正确12.4a b c10.3,3,0B组k≠时,0x+=,有实根;(2) 当3∆>也有实m=(1)当3k=时,方程为3102.1根.。

典型常用地因式分解公式

典型常用地因式分解公式

常用的因式分解公式常用的因式分解公式:待定系数法(因式分解)待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例1 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例2 分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.求根法(因式分解)我们把形如anxn+an-1xn-1+…+a1x+a0(n为非负整数)的代数式称为关于x 的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x) f(1)=12-3×我们把形如an x n+an-1x n-1+…+a1x+a(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是an的约数.特别地,当a=1时,整系数多项式f(x)的整数根均为an的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.双十字相乘法(因式分解)分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为 2x2-(5+7y)x-(22y2-35y+3),可分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y 当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.笔算开平方对于一个数的开方,可以不用计算机,也不用查表,直接笔算出来,下面通过一个例子来说明如何笔算开平方,对于其它数只需模仿即可例求316.4841的平方根.第一步,先将被开方的数,从小数点位置向左右每隔两位用逗号,分段,如把数316.4841分段成3,16.48,41.第二步,找出第一段数字的初商,使初商的平方不超过第一段数字,而初商加1的平方则大于第一段数字,本例中第一段数字为3,初商为1,因为12=1<3,而(1+1)2=4>3.第三步,用第一段数字减去初商的平方,并移下第二段数字,组成第一余数,在本例中第一余数为216.第四步,找出试商,使(20×初商+试商)×试商不超过第一余数,而【20×初商+(试商+1)】×(试商+1)则大于第一余数.第五步,把第一余数减去(20×初商+试商)×试商,并移下第三段数字,组成第二余数,本例中试商为7,第二余数为2748.依此法继续做下去,直到移完所有的段数,若最后余数为零,则开方运算告结束.若余数永远不为零,则只能取某一精度的近似值.第六步,定小数点位置,平方根小数点位置应与被开方数的小数点位置对齐.本例的算式如下:根式的概念【方根与根式】数a的n次方根是指求一个数,它的n次方恰好等于a.a的n 次方根记为(n为大于1的自然数).作为代数式,称为根式.n称为根指数,a称为根底数.在实数范围内,负数不能开偶次方,一个正数开偶次方有两个方根,其绝对值相同,符号相反.【算术根】正数的正方根称为算术根.零的算术根规定为零.【基本性质】由方根的定义,有根式运算【乘积的方根】乘积的方根等于各因子同次方根的乘积;反过来,同次方根的乘积等于乘积的同次方根,即≥0,b≥0)【分式的方根】分式的方根等于分子、分母同次方根相除,即≥0,b>0)【根式的乘方】≥0)【根式化简】≥0)≥0,d≥0)≥0,d≥0)【同类根式及其加减运算】根指数和根底数都相同的根式称为同类根式,只有同类根式才可用加减运算加以合并.进位制的基与数字任一正数可表为通常意义下的有限小数或无限小数,各数字的值与数字所在的位置有关,任何位置的数字当小数点向右移一位时其值扩大10倍,当小数点向左移一位时其值缩小10倍.例如一般地,任一正数a可表为这就是10进数,记作a(10),数10称为进位制的基,式中ai在{0,1,2,L,9}中取值,称为10进数的数字,显然没有理由说进位制的基不可以取其他的数.现在取q为任意大于1的正整数当作进位制的基,于是就得到q进数表示(1)式中数字ai在{0,1,2,...,q-1}中取值,an an-1...a1a称为q进数a(q)的整数部分,记作[a(q)];a-1a-2 ...称为a(q)的分数部分,记作{a(q)}.常用进位制,除10进制外,还有2进制、8进制、16进制等,其数字如下2进制 0, 18进制 0, 1, 2, 3, 4, 5, 6, 716进制 0, 1, 2, 3, 4, 5, 6, 7, 8, 9各种进位制的相互转换1 q→10转换适用通常的10进数四则运算规则,根据公式(1),可以把q进数a(q)转换为10进数表示.例如2 10→q转换转换时必须分为整数部分和分数部分进行.对于整数部分其步骤是:(1) 用q去除[a(10)],得到商和余数.(2) 记下余数作为q进数的最后一个数字.(3) 用商替换[a(10)]的位置重复(1)和(2)两步,直到商等于零为止.对于分数部分其步骤是:(1)用q去乘{a(10)}.(2)记下乘积的整数部分作为q进数的分数部分第一个数字.(3)用乘积的分数部分替换{a(10)}的位置,重复(1)和(2)两步,直到乘积变为整数为止,或直到所需要的位数为止.例如:103.118(10)=147.074324 (8)整数部分的草式分数部分的草式3 p→q转换通常情况下其步骤是:a(p)→a(10)→a(q).如果p,q是同一数s 的不同次幂,其步骤是:a(p)→a(s)→a(q).例如,8进数127.653(8)转换为16进数时,由于8=23,16=24,所以s=2,其步骤是:首先把8进数的每个数字根据8-2转换表转换为2进数(三位一组)127.653(8)=001 010 111.110 101 011(2)然后把2进数的所有数字从小数点起(左和右)每四位一组分组,从16-2转换表中逐个记下对应的16进数的数字,即正多边形各量换算公式n为边数R为外接圆半径 a为边长爎为内切圆半径为圆心角 S为多边形面积重心G与外接圆心O重合正多边形各量换算公式表各量正三角形n为边数R为外接圆半径a为边长爎为内切圆半径为圆心角 S为多边形面积重心G与外接圆心O重合正多边形各量换算公式表或许你还对作图感兴趣:正多边形作图所谓初等几何作图问题,是指使用无刻度的直尺和圆规来作图.若使用尺规有限次能作出几何图形,则称为作图可能,或者说欧几里得作图法是可能的,否则称为作图不可能.很多平面图形可以用直尺和圆规作出,例如上面列举的正五边形、正六边形、正八边形、正十边形等.而另一些就不能作出,例如正七边形、正九边形、正十一边形等,这些多边形只能用近似作图法.如何判断哪些作图可能,哪些作图不可能呢?直到百余年前,用代数的方法彻底地解决了这个问题,即给出一个关于尺规作图可能性的准则:作图可能的充分必要条件是,这个作图问题中必需求出的未知量能够由若干已知量经过有限次有理运算及开平方运算而算出.几千年来许多数学家耗费了不少的精力,企图解决所谓“几何三大问题”:立方倍积问题,即作一个立方体,使它的体积二倍于一已知立方体的体积.三等分角问题,即三等分一已知角.化圆为方问题,即作一正方形,使它的面积等于一已知圆的面积.后来已严格证明了这三个问题不能用尺规作图.代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析 x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.解已知条件可变形为3x2+3x-1=0,所以6x4+15x3+10x2=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1=(3x2+3x-1)(2z2+3x+1)+1=0+1=1.说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.例2 已知a,b,c为实数,且满足下式:a2+b2+c2=1,①求a+b+c的值.解将②式因式分解变形如下即所以a+b+c=0或bc+ac+ab=0.若bc+ac+ab=0,则(a+b+c)2=a2+b2+c2+2(bc+ac+ab)=a2+b2+c2=1,所以a+b+c=±1.所以a+b+c的值为0,1,-1.说明本题也可以用如下方法对②式变形:即前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式.2.利用乘法公式求值例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值.解因为x+y=m,所以m3=(x+y)3=x3+y3+3x y(x+y)=n+3m·xy,所以求x2+6xy+y2的值.分析将x,y的值直接代入计算较繁,观察发现,已知中x,y的值正好是一对共轭无理数,所以很容易计算出x+y与xy的值,由此得到以下解法.解 x2+6xy+y2=x2+2xy+y2+4xy=(x+y)2+4xy3.设参数法与换元法求值如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.有时也可把代数式中某一部分式子,用另外的一个字母来替换,这叫换元法.分析本题的已知条件是以连比形式出现,可引入参数k,用它表示连比的比值,以便把它们分割成几个等式.x=(a-b)k,y=(b-c)k,z=(c-a)k.所以x+y+z=(a-b)k+(b-c)k+(c-a)k=0.u+v+w=1,①由②有把①两边平方得u2+v2+w2+2(uv+vw+wu)=1,所以u2+v2+w2=1,即两边平方有所以4.利用非负数的性质求值若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.例8 若x2-4x+|3x-y|=-4,求y x的值.分析与解x,y的值均未知,而题目却只给了一个方程,似乎无法求值,但仔细挖掘题中的隐含条件可知,可以利用非负数的性质求解.因为x2-4x+|3x-y|=-4,所以x2-4x+4+|3x-y|=0,即 (x-2)2+|3x-y|=0.所以 y x=62=36.例9 未知数x,y满足(x2+y2)m2-2y(x+n)m+y2+n2=0,其中m,n表示非零已知数,求x,y的值.分析与解两个未知数,一个方程,对方程左边的代数式进行恒等变形,经过配方之后,看是否能化成非负数和为零的形式.将已知等式变形为m2x2+m2y2-2mxy-2mny+y2+n2=0,(m2x2-2mxy+y2)+(m2y2-2mny+n2)=0,即 (mx-y)2+(my-n)2=0.5.利用分式、根式的性质求值分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明.例10 已知xyzt=1,求下面代数式的值:分析直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.解根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.同理分析计算时应注意观察式子的特点,若先分母有理化,计算反而复杂.因为这样一来,原式的对称性就被破坏了.这里所言的对称性是分利用这种对称性,或称之为整齐性,来简化我们的计算.同样(但请注意算术根!)将①,②代入原式有练习六2.已知x+y=a,x2+y2=b2,求x4+y4的值.3.已知a-b+c=3,a2+b2+c2=29,a3+b3+c3=45,求ab(a+b)+bc(b+c)+ca(c+a)的值.5.设a+b+c=3m,求(m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)的值.8.已知13x2-6xy+y2-4x+1=0,求(x+y)13·x10的值.。

用因式分解法解一元二次方程一元二次方程

用因式分解法解一元二次方程一元二次方程

例3.解下列方程 :
(1)x(x 2) x 2 0;
(2)5x2 2x 1 x2 2x 3 .
4
4
可以试用 多种方法解 本例中的两
个方程 .
分解因式法解一元二次方程的步骤是: 1.将方程右边等于0; 2. 将方程左边因式分解为A×B; 3. 根据“ab=0,则a=0或b=0”,转化为两个一元一次方程. 4. 分别解这两个一元一次方程,它们的根就是原方程的根.
回顾与复习 1
1.我们已经学过了几种解一元二次方程 的方法?
直接开平方法 x2=a (a≥0) 配方法 (x+m)2=n (n≥0)
公式法
x b b2 4ac . b2 4ac 0 . 2a
2.什么叫分解因式?
把一个多项式分解成几个整式乘积 的形式叫做分解因式.
回顾与复习 2
分解因式的方法有那些?
解:化为一般式为 x2-2x+1 = 0.
解:因式分解,得 ( 2x + 11 )( 2x- 11 ) = 0.
因式分解,得 ( x-1 )( x-1 ) = 0.
有 2x + 11 = 0 或 2x - 11= 0,
有 x - 1 = 0 或 x - 1 = 0, x1=x2=1.
x1
11, 2
(1) x2+x=0
解: 因式分解,得 x ( x+1 ) = 0. 得 x = 0 或 x + 1 =0,
x1=0 , x2=-1.
2 x2 2 3x 0
解:因式分解,得
x x 2 3 0.
得 x 0 或 x 2 3 0, x1 0, x2 2 3.
3 3x2 6x 3, 4 4x2 121 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学:用因式分解法解下列方程1.a^4-4a+32.(a+x)^m+1*(b+x)^n-1-(a+x)^m*(b+x)^n3.x^2+(a+1/a)xy+y^24.9a^2-4b^2+4bc-c^25.(c-a)^2-4(b-c)(a-b)答案1.原式=a^4-a-3a+3=(a-1)(a^3+a^2+a-3)2.[1-(a+x)^m][(b+x)^n-1]3.(ax+y)(1/ax+y)4.9a^2-4b^2+4bc-c^2=(3a)^2-(4b^2-4bc+c^2)=(3a)^2-(2b-c)^2=(3a+2b-c)(3a-2b+c)5.(c-a)^2-4(b-c)(a-b)= (c-a)(c-a)-4(ab-b^2-ac+bc)=c^2-2ac+a^2-4ab+4b^2+4ac-4bc=c^2+a^2+4b^2-4ab+2ac-4bc=(a-2b)^2+c^2-(2c)(a-2b)=(a-2b-c)^21.x^2+2x-82.x^2+3x-103.x^2-x-204.x^2+x-65.2x^2+5x-36.6x^2+4x-27.x^2-2x-38.x^2+6x+89.x^2-x-1210.x^2-7x+1011.6x^2+x+212.4x^2+4x-3解方程:(x的平方+5x-6)分之一=(x的平方+x+6)分之一十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解。

1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

2、十字相乘法的用处:(1)用十字相乘法来分解因式。

(2)用十字相乘法来解一元二次方程。

3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。

4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。

2、十字相乘法只适用于二次三项式类型的题目。

3、十字相乘法比较难学。

5、十字相乘法解题实例:1)、用十字相乘法解一些简单常见的题目例1把m²+4m-12分解因式分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题解:因为1 -21 ╳6所以m²+4m-12=(m-2)(m+6)例2把5x²+6x-8分解因式分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。

当二次项系数分为1×5,常数项分为-4×2时,才符合本题解:因为 1 25 ╳-4所以5x²+6x-8=(x+2)(5x-4)例3解方程x²-8x+15=0分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。

解:因为 1 -31 ╳-5所以原方程可变形(x-3)(x-5)=0所以x1=3 x2=5例4、解方程6x²-5x-25=0分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。

解:因为 2 -53 ╳5所以原方程可变形成(2x-5)(3x+5)=0所以x1=5/2 x2=-5/32)、用十字相乘法解一些比较难的题目例5把14x²-67xy+18y²分解因式分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y²可分为y.18y , 2y.9y , 3y.6y解: 因为2 -9y7 ╳-2y所以14x²-67xy+18y²= (2x-9y)(7x-2y)例6 把10x²-27xy-28y²-x+25y-3分解因式分析:在本题中,要把这个多项式整理成二次三项式的形式解法一、10x²-27xy-28y²-x+25y-3=10x²-(27y+1)x -(28y²-25y+3)4y -37y ╳-1=10x²-(27y+1)x -(4y-3)(7y -1)=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)5 ╳4y - 3=(2x -7y +1)(5x +4y -3)说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]解法二、10x²-27xy-28y²-x+25y-3=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y=[(2x -7y)+1] [(5x -4y)-3] 5 ╳4y=(2x -7y+1)(5x -4y -3)2 x -7y 15 x - 4y ╳-3说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3]. 例7:解关于x方程:x²- 3ax + 2a²–ab -b²=0分析:2a²–ab-b²可以用十字相乘法进行因式分解解:x²- 3ax + 2a²–ab -b²=0x²- 3ax +(2a²–ab - b²)=0x²- 3ax +(2a+b)(a-b)=0 1 -b2 ╳+b[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)1 ╳-(a-b)所以x1=2a+b x2=a-b5-7(a+1)-6(a+1)^2=-[6(a+1)^2+7(a+1)-5]=-[2(a+1)-1][3(a+1)+5]=-(2a+1)(3a+8);-4x^3 +6x^2 -2x=-2x(2x^2-3x+1)=-2x(x-1)(2x-1);6(y-z)^2 +13(z-y)+6=6(z-y)^2+13(z-y)+6=[2(z-y)+3][3(z-y)+2]=(2z-2y+3)(3z-3y+2).比如...x^2+6x-7这个式子由于一次幂x前系数为6所以,我们可以想到,7-1=6因此我们想到将-7看成7*(-1)于是我们作十字相成x +7x -1的到(x+7)·(x-1)成功分解了因式3ab^2-9a^2b^2+6a^3b^2=3ab^2(1-3a+2a^2)=3ab^2(2a^2-3a+1)=3ab^2(2a-1)(a-1)5-7(a+1)-6(a+1)^2=-[6(a+1)^2+7(a+1)-5]=-[2(a+1)-1][3(a+1)+5]=-(2a+1)(3a+8);-4x^3 +6x^2 -2x=-2x(2x^2-3x+1)=-2x(x-1)(2x-1);6(y-z)^2 +13(z-y)+6=6(z-y)^2+13(z-y)+6=[2(z-y)+3][3(z-y)+2]=(2z-2y+3)(3z-3y+2).比如...x^2+6x-7这个式子由于一次幂x前系数为6所以,我们可以想到,7-1=6因此我们想到将-7看成7*(-1)于是我们作十字相成x +7x -1的到(x+7)·(x-1)成功分解了因式3ab^2-9a^2b^2+6a^3b^2=3ab^2(1-3a+2a^2)=3ab^2(2a^2-3a+1)=3ab^2(2a-1)(a-1)x^2+3x-40=x^2+3x+2.25-42.25=(x+1.5)^2-(6.5)^2=(x+8)(x-5).⑹十字相乘法这种方法有两种情况。

①x^2+(p+q)x+pq型的式子的因式分解这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。

因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x^2+(p+q)x+pq=(x+p)(x+q) .②kx^2+mx+n型的式子的因式分解如果如果有k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d).图示如下:a b×c d例如:因为1 -3×7 2-3×7=-21,1×2=2,且2-21=-19,所以7x^2-19x-6=(7x+2)(x-3).十字相乘法口诀:首尾分解,交叉相乘,求和凑中⑶分组分解法分组分解是解方程的一种简洁的方法,我们来学习这个知识。

能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。

比如:ax+ay+bx+by=a(x+y)+b(x+y)=(a+b)(x+y)我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。

同样,这道题也可以这样做。

ax+ay+bx+by=x(a+b)+y(a+b)=(a+b)(x+y)几道例题:1. 5ax+5bx+3ay+3by解法:=5x(a+b)+3y(a+b)=(5x+3y)(a+b)说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay 和3by看成一个整体,利用乘法分配律轻松解出。

2. x3-x2+x-1解法:=(x3-x2)+(x-1)=x2(x-1)+(x-1)=(x-1)(x2+1)利用二二分法,提公因式法提出x2,然后相合轻松解决。

3. x2-x-y2-y解法:=(x2-y2)-(x+y)=(x+y)(x-y)-(x+y)=(x+y)(x-y+1)利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决。

758²—258² =(758+258)(758-258)=1016*500=508000。

相关文档
最新文档