计算机组成原理实验
计算机组成原理实验报告
实验一:数字逻辑——交通灯系统设计子实验1:7 段数码管驱动电路设计(1)理解利用真值表的方式设计电路的原理;(2)利用Logisim 真值表自动生成电路的功能,设计一个 7 段数码管显示驱动。
二、实验方案设计7 段数码管显示驱动的设计方案:(1)输入:4 位二进制(2)输出:7 段数码管 7 个输出控制信号(3)电路引脚:(4)实现功能:利用 7 段数码管显示 4 位二进制的 16 进制值(5)设计方法:由于该实验若直接进行硬件设计会比较复杂,而7 段数码管显示的真值表较容易掌握,所以我们选择由真值表自动生成电路的方法完成该实验。
先分析设计 7 段数码管显示驱动的真值表,再利用Logisim 中的“分析组合逻辑电路”功能,将真值表填入,自动生成电路。
(6)真值表的设计:由于是 4输入 7输出,真值表共有 16 行。
7输出对应 7个引脚,所以需要依次对照LED 灯的引脚顺序进行设计,如下图所示(注意LED 的引脚顺序):三、实验步骤(1)在实验平台下载实验框架文件RGLED.circ;(2)在Logisim 中打开RGLED.circ 文件,选择数码管驱动子电路;(3)点击“工程”中的“分析组合逻辑电路”功能,先构建4输入和7输出,再在“真值表”中,将已设计好的真值表的所有数值仔细对照着填入表格中,确认无误后点击“生成电路”,自动生成的电路如下图所示:(4)将子电路封装为如下形式:(5)进行电路测试:·自动测试在数码管驱动测试子电路中进行测试;·平台评测自动测试结果满足实验要求后,再利用记事本打开RGLED.circ 文件,将所有文字信息复制粘贴到Educoder 平台代码区域,点击评测按钮进行测试。
四、实验结果测试与分析(1)自动测试的部分结果如下:(2)平台测试结果如下:综上,本实验测试结果为通过,无故障显示。
本实验的关键点在于:在设计时需要格外注重LED 灯的引脚顺序,保证0-9 数字显示的正确性,设计出正确的真值表。
计算机组成原理实验说明
实验一运算器组成实验一、实验目的1.熟悉双端口通用存放器堆〔组〕的读写操作。
2.熟悉简单运算器的数据传送通路。
3.验证运算器74LS181的算术逻辑功能。
4.按给定数据,完成指定的算术、逻辑运算。
二、实验原理上图是本实验所用的运算器数据通路图。
参与运算的数据首先通过实验台操作板上的八个二进制数据开关SW7-SW0来设置,然后输入到双端口通用存放器堆RF中。
RF由一个ispLSI1016实现,功能上相当于四个8位通用存放器,用于保存参与运算的数据,运算后的结果也要送到RF中保存。
双端口存放器堆模块的控制信号中,RS1、RS0用于选择从B端口〔右端口〕读出的通用存放器,RD1、RD0用于选取从A端口〔左端口〕读出的通用存放器。
而WR1、WR0用于选择写入的通用存放器。
LDRi是写入控制信号,当LDRi=1时,数据总线DBUS上的数据在T3写入由WR1、WR0指定的通用存放器。
RF的A、B端口分别与操作数暂存器DR1、DR2相连:另外,RF的B端口通过一个三态门连接到数据总线DBUS 上,因而RF中的数据可以直接通过B端口送到DBUS上。
DR1和DR2各由1片74LS273构成,用于暂存参与运算的数据。
DR1接ALU 的A输入端口,DR2接ALU的B端口。
ALU由两片74LS181构成,ALU的输出通过一个三态门(74LS244)发送到数据总线DBUS上。
图中尾巴上带粗短线标记的信号都是控制信号,其中S3,S2,Sl,S0,M,#,LDDR2,LDDRl,ALU-BUS#,SW-BUS#、LDRi、RS1、RS0、RD1、RD0、WR1、WR0等是电位信号,用电平开关K0—Kl5来模拟。
T2、T3是脉冲信号,印制板上已连接到实验台的时序电路上。
#为低电平有效。
K0—K15是一组用于模拟各控制电平信号的开关,开关向上时为1,开关向下时为0,每个开关无固定用途,可根据实验具体情况选用。
实验中进展单拍操作,每次只产生一组Tl,T2,T3,T4脉冲,需将实验台上的DP,DB开关进展正确设置。
计算机组成原理数据通路实验报告
计算机组成原理数据通路实验报告计算机组成原理实验报告计算机组成原理实验报告实验一基本运算器实验一、实验目的1. 了解运算器的组成结构2. 掌握运算器的工作原理3. 深刻理解运算器的控制信号二、实验设备PC机一台、TD-CMA实验系统一套三、实验原理1. (思考题)运算器的组成包括算数逻辑运算单元ALU(Arithmetic and Logic Unit)、浮点运算单元FPU(Floating Point Unit)、通用寄存器组、专用寄存器组。
①算术逻辑运算单元ALU (Arithmetic and Logic Unit)ALU主要完成对二进制数据的定点算术运算(加减乘除)、逻辑运算(与或非异或)以及移位操作。
在某些CPU中还有专门用于处理移位操作的移位器。
通常ALU由两个输入端和一个输出端。
整数单元有时也称为IEU(IntegerExecution Unit)。
我们通常所说的“CPU 是XX位的”就是指ALU所能处理的数据的位数。
②浮点运算单元FPU(Floating Point Unit)FPU主要负责浮点运算和高精度整数运算。
有些FPU还具有向量运算的功能,另外一些则有专门的向量处理单元。
③通用寄存器组通用寄存器组是一组最快的存储器,用来保存参加运算的操作数和中间结果。
④专用寄存器专用寄存器通常是一些状态寄存器,不能通过程序改变,由CPU自己控制,表明某种状态。
而运算器内部有三个独立运算部件,分别为算术、逻辑和移位运算部件,逻辑运算部件由逻辑门构成,而后面又有专门的算术运算部件设计实验。
下图为运算器内部原理构造图2. 运算器的控制信号实验箱中所有单元的T1、T2、T3、T4都连接至控制总线单元的T1、T2、T3、T4,CLR都连接至CON单元的CLR按钮。
T4由时序单元的TS4提供(脉冲信号),其余控制信号均由CON单元的二进制数据开关模拟给出。
控制信号中除T4为脉冲信号外,其余均为电平信号,其中ALU_B为低有效,其余为高有效。
计算机组成原理实验报告(四个实验 图)
福建农林大学计算机与信息学院计算机类实验报告课程名称:计算机组成原理姓名:周孙彬系:计算机专业:计算机科学与技术年级:2012级学号:3126010050指导教师:张旭玲职称:讲师2014年06 月22日实验项目列表序号实验项目名称成绩指导教师1 算术逻辑运算单元实验张旭玲2 存储器和总线实验张旭玲3 微程序控制单元实验张旭玲4 指令部件模块实验张旭玲福建农林大学计算机与信息学院信息工程类实验报告系:计算机专业:计算机科学与技术年级: 2012级姓名:周孙彬学号: 3126010050 实验课程:实验室号:_______ 实验设备号:实验时间:指导教师签字:成绩:实验一算术逻辑运算单元实验实验目的1、掌握简单运算器的数据传输方式2、掌握74LS181的功能和应用实验要求完成不带进位位算术、逻辑运算实验。
按照实验步骤完成实验项目,了解算术逻辑运算单元的运行过程。
实验说明1、ALU单元实验构成(如图2-1-1)1、运算器由2片74LS181构成8位字长的ALU单元。
2、2片74LS374作为2个数据锁存器(DR1、DR2),8芯插座ALU-IN作为数据输入端,可通过短8芯扁平电缆,把数据输入端连接到数据总线上。
运算器的数据输出由一片74LS244(输出缓冲器)来控制,8芯插座ALU-OUT 作为数据输出端,可通过短8芯扁平电缆把数据输出端连接到数据总线上。
图2-1-1图2-1-22、ALU单元的工作原理(如图2-1-2)数据输入锁存器DR1的EDR1为低电平,并且D1CK有上升沿时,把来自数据总线的数据打入锁存器DR1。
同样使EDR2为低电平、D2CK有上升沿时把数据总线上的数据打入数据锁存器DR2。
算术逻辑运算单元的核心是由2片74LS181组成,它可以进行2个8位二进制数的算术逻辑运算,74LS181的各种工作方式可通过设置其控制信号来实现(S0、S1、S2、S3、M、CN)。
当实验者正确设置了74LS181的各个控制信号,74LS181会运算数据锁存器DR1、DR2内的数据。
计算机组成原理实验报告精品9篇
计算机组成原理实验报告课程名称计算机组成原理实验学院计算机专业班级学号学生姓名指导教师20年月日实验一:基础汇编语言程序设计实验1实验目的●学习和了解TEC-XP+教学实验监控命令的用法;●学习和了解TEC-XP+教学实验系统的指令系统;●学习简单的TEC-XP+教学实验系统汇编程序设计。
2实验设备及器材●工作良好的PC机;●TEC-XP+教学实验系统和仿真终端软件PCEC。
3实验说明和原理实验原理在于汇编语言能够直接控制底层硬件的状态,通过简单的汇编指令查看、显示、修改寄存器、存储器等硬件内容。
实验箱正如一集成的开发板,而我们正是通过基础的汇编语言对开发板进行使用和学习,过程中我们不仅需要运用汇编语言的知识,还需要结合数字逻辑中所学的关于存储器、触发器等基本器件的原理,通过串口通讯,实现程序的烧录,实验箱与PC端的通讯。
4实验内容1)学习联机使用TEC-XP+教学实验系统和仿真终端软件PCEC;2)学习使用WINDOWS界面的串口通讯软件;3)使用监控程序的R命令显示/修改寄存器内容、D命令显示存储内容、E命令修改存储内容;4)使用A命令写一小段汇编程序,U命令反汇编输入的程序,用G命令连续运行该程序,用T、P命令单步运行并观察程序单步执行情况。
5实验步骤1)准备一台串口工作良好的PC机器;2)将TEC-XP+放在实验台上,打开实验箱的盖子,确定电源处于断开状态;3)将黑色的电源线一段接220V交流电源,另一端插在TEC-XP+实验箱的电源插座里;4)取出通讯线,将通讯线的9芯插头接在TEC-XP+实验箱上的串口"COM1"或"COM2"上,另一端接到PC机的串口上;5)将TEC-XP+实验系统左下方的六个黑色的控制机器运行状态的开关置于正确的位置,再找个实验中开关应置为001100(连续、内存读指令、组合逻辑、联机、16位、MACH),6)控制开关的功能在开关上、下方有标识;开关拨向上方表示"1",拨向下方表示"0","X"表示任意,其他实验相同;7)打开电源,船型开关盒5V电源指示灯亮;8)在PC机上运行PCEC16.EXE文件,根据连接的PC机的串口设置所用PC机的串口为"1"或"2",其他的设置一般不用改动,直接回车即可; (8)按一下"RESET"按键,再按一下"START"按键,主机上显示:6实验截图及思考题【例3】计算1到10的累加和。
计算机组成原理实验指导及答案
计算机组成原理实验指导实验一运算器实验一、实验目的⒈掌握简单运算器的数据传输方式。
⒉验证运算功能发生器(74LS181)及进位控制的组合功能。
二、实验要求完成不带进位及带进位算术运算实验、逻辑运算实验,了解算术逻辑运算单元的运用。
三、实验原理实验中所用的运算器数据通路如图7-1-1所示。
其中运算器由两片74LS181以并/串形式构成8位字长的ALU。
运算器的输出经过一个三态门(74LS245)以8芯扁平线方式和数据总线相连,运算器的2个数据输入端分别由二个锁存器(74LS273)锁存,锁存器的输入亦以8芯扁平线方式与数据总线相连,数据开关(INPUT DEVICE)用来给出参与运算的数据,经一三态门(74LS245)以8芯扁平线方式和数据总线相连,数据显示灯(BUS UNIT)已和数据总线相连,用来显示数据总线内容。
图7-1-1 运算器电原理图图7-1-1中T2、T4为时序电路产生的节拍脉冲信号,通过连接时序启停单元时钟信号“”来获得,剩余均为电平控制信号。
进行实验时,首先按动位于本实验装置右中侧的复位按钮使系统进入初始待令状态,在LED显示器闪动位出现“P.”的状态下,按【增址】命令键使LED显示器自左向右第4位切换到提示符“L”,表示本装置已进入手动单元实验状态,在该状态下按动【单步】命令键,即可获得实验所需的单脉冲信号,而LDDR1、LDDR2、ALU-B、SW-B、S3、S2、S1、S0、CN、M各电平控制信号用位于LED显示器上方的26位二进制开关来模拟,均为高电平有效。
四、实验连线图7-1-2 实验连线示意图按图7-1-2所示,连接实验电路:①总线接口连接:用8芯扁平线连接图7-1-2中所有标明“”或“”图案的总线接口。
②控制线与时钟信号“”连接:用双头实验导线连接图7-1-2中所有标明“”或“”图案的插孔(注:Dais-CMH的时钟信号已作内部连接)。
五、实验系统工作状态设定在闪动的“P.”状态下按动【增址】命令键,使LED显示器自左向右第4位显示提示符“L”,表示本装置已进入手动单元实验状态。
指导-组成原理DICE-CP226实验一至五
实验指导DICE-CP226系统概述1.1 DICE-CP226特点1、采用总线结构DICE-CP226实验系统使用三组总线即地址总线ABUS、数据总线DBUS、指令总线IBUS和控制信号,CPU、主存、外设和管理单片机等部件之间通过外部数据总线传输,CPU内部则通过内部数据总线传输信息。
各部件之间,通过三态缓冲器作接口连接。
2、计算机功能模块化设计DICE-CP2226为实验者提供运算器模块ALU,众多寄存器模块(A,W,IA ,ST,MAR,R0…R3等),程序计数器模块PC,指令部件模块IR,主存模块EM,微程序控制模块〈控存〉uM,微地址计数器模块UPC,组合逻辑控制模块及I/O等控制模块。
各模块间的电源线、地线、地址总线和数据总线等已分别连通,模块内各芯片间数据通路也已连好,各模块的控制信号及必要的输出信号已被引出到主板插孔,供实验者按自己的设计进行连接。
3、智能化控制系统在单片机监控下,管理模型机运行和读写,当模型机停机时,实验者可通过系统键盘,读写主存或控存指定单元的内容,使模型机实现在线开发。
模型机运行时,系统提供单步一条微指令(微单步)、单步一条机器指令(程单步),连续运行程序及无限止暂停等调试手段,能动态跟踪数据,流向、捕捉各种控制信息。
4、提供两种实验模式①手动运行“Hand……”:通过拨动开关和发光二极管二进制电平显示,支持最底层的手动操作方式的输入/输出和机器调试。
②自动运行:通过系统键盘及液晶显示器或PC机,直接接输入或编译装载用户程序<机器码程序和微程序>,实现微程序控制运行。
5、开放性设计运算器采用了EDA技术设计,随机出厂时,已提供一套已装载的方案,能进行加、减、与、或、带进位加、带进位减、取反、直通八种运算方式,若用户不满意该套方案,可自行重新设计并通过JTAG 口下载。
用户还可以设计自己的指令/微指令系统。
系统中已带三套指令/微程序系统,用户可参照来设计新的指令/微程序系统。
计算机组成原理TEC-4实验手册(含实验步骤)完整6个实验-三个程序设计
地址寄存器AR1(U37)和AR2(U27、U28)提供双端口存储器的地址。AR1是1片GAL22V10,具有加1功能,提供双端口存储器左端口的地址。AR1从数据总线DBUS接收数据。AR1的控制信号是LDAR1和AR1_INC。当AR1_INC = 1时,在T4的上升沿,AR1的值加1;当LDAR1 = 1时,在T4的上升沿,将数据总线DBUS的数据打入地址寄存器AR1。AR2由2片74HC298组成,有两个数据输入端,一个来自程序计数器PC,另一个来自数据总线DBUS。AR2的控制信号是LDAR2和M3。M3选择数据来源,当M3 = 1时,选中数据总线DBUS;当M3 = 0时,选中程序计数器PC。LDAR2控制何时接收地址,当LDAR2 = 1时,在T2的下降沿将选中的数据源上的数据打入AR2。
一、TEC—4计算机组成原理实验系统特点
1.计算机模型简单、实用,运算器数据通路、控制器、控制台各部分划分清晰。
2.计算机模型采用了数据总线和指令总线双总线体制,能够实现流水控制。
3.控制器有微程序控制器或者硬布线控制器两种类型,每种类型又有流水和非流水两种方案。
4.寄存器堆由1片ispLSI1016组成,运算器由1片ispLSI1024组成,设计新颖。
1.运算器ALU
运算器ALU由一片ispLSI1024(U47)组成,在选择端S2、S1、S0控制下,对数据A和B进行加、减、与、直通、乘五种运算,功能如下:
表1运算器功能表
选择
操作
S2
S1
S0
0
0
0
A & B
0
0
1
A & A(直通)
0
1
0
A + B
计算机组成原理的实验报告
计算机组成原理的实验报告一、实验目的本次实验的主要目的是深入理解计算机组成原理中的关键概念和组件,通过实际操作和观察,增强对计算机硬件系统的认识和掌握能力。
具体包括:1、了解计算机内部各部件的工作原理和相互关系。
2、熟悉计算机指令的执行流程和数据的传输方式。
3、掌握计算机存储系统的组织和管理方法。
4、培养分析和解决计算机硬件相关问题的能力。
二、实验设备本次实验使用的设备包括计算机、逻辑分析仪、示波器以及相关的实验软件和工具。
三、实验内容1、运算器实验进行了简单的算术运算和逻辑运算,如加法、减法、与、或等操作。
观察运算结果在寄存器中的存储和变化情况。
2、控制器实验模拟了指令的取指、译码和执行过程。
分析不同指令对计算机状态的影响。
3、存储系统实验研究了内存的读写操作和地址映射方式。
考察了缓存的工作原理和命中率的计算。
4、总线实验观察数据在总线上的传输过程和时序。
分析总线竞争和仲裁的机制。
四、实验步骤1、运算器实验步骤连接实验设备,将运算器模块与计算机主机相连。
打开实验软件,设置运算类型和操作数。
启动运算,通过逻辑分析仪观察运算过程中的信号变化。
记录运算结果,并与预期结果进行比较。
2、控制器实验步骤连接控制器模块到计算机。
输入指令序列,使用示波器监测控制信号的产生和变化。
分析指令执行过程中各个阶段的状态转换。
3、存储系统实验步骤搭建存储系统实验电路。
进行内存读写操作,改变地址和数据,观察存储单元的内容变化。
分析缓存的替换策略和命中率的影响因素。
4、总线实验步骤连接总线模块,配置总线参数。
多个设备同时发送数据,观察总线的仲裁过程。
测量数据传输的时序和带宽。
五、实验结果与分析1、运算器实验结果加法、减法等运算结果准确,符合预期。
逻辑运算的结果也正确无误。
观察到在运算过程中,寄存器的值按照预定的规则进行更新。
分析:运算器的功能正常,能够准确执行各种运算操作,其内部的电路和逻辑设计合理。
2、控制器实验结果指令能够正确取指、译码和执行,控制信号的产生和时序符合指令的要求。
计算机组成原理实验
1. 采用 Cache-Memory 存储层次。 2. 地址长度为 16 位,数据寄存器长度 16 位,存储字长是 8 位,采用小端存储模式。 3. Cache 采用二路组相联,Cache 大小为 1KB,每个字块 4 个字,字长为 2B。 4. 能根据有效地址读 Cache 和内存,把数据读入数据寄存器中;能根据有效地址把
1、 运算器由 ALU,状态寄存器,通用寄存器组成。 2、 ALU 能够进行加、减、乘、除等四则运算,与、或、非、异或等逻辑运算以及移
位求补等操作。其中乘除法要实现原码 1 位乘、补码 1 位乘(Booth)、原码加减 交替除法、补码加减交替除法 4 种算法。选作原码/补码 2 位乘算法。 3、 通用寄存器组用于保存参加运算的操作数和运算结果。 4、 状态寄存器用于记录算术、逻辑运算的结果状态。程序设计中,这些状态通常用 作条件转移指令的判断条件,所以又称为条件码寄存器。一般均设置如下几种状 态位:零标志位(Z),负标志位(N),溢出标志位(v),仅为或借位标志(C)。 【输入】从 ins_input.txt 读入。每行有一个操作码和两个操作数,用空格分开,操作数用原 码表示。 e.g. Add 0.110111 1.101110 Sub 0.100111 0.101011 Mul 1.101110 0.110111 【输出】将运算过程和结果输入到 output.txt 例如: ori_onebit_times [x]ori=1.101110 [y]ori=0.110111 x*=0.101110 y*=0.110111 0.000000 110111 + 0.101110 -------------------------------0.101110 0.010111 0 11011 + 0.101110 -------------------------------1.000101 0 0.100010 10 1101 + 0.101110 -------------------------------1.010000 10 0.101000 010 110 0.010100 0010 11 + 0.101110 -------------------------------1.000010 0010 0.100001 00010 1 + 0.101110 --------------------------------
计算机组成原理全部实验
计算机科学技术系王玉芬2012年11月3日基础实验部分该篇章共有五个基础实验组成,分别是:实验一运算器实验实验二存储器实验实验三数据通路组成与故障分析实验实验四微程序控制器实验实验五模型机CPU组成与指令周期实验实验一运算器实验运算器又称作算术逻辑运算单元(ALU),是计算机的五大基本组成部件之一,主要用来完成算术运算和逻辑运算。
运算器的核心部件是加法器,加减乘除运算等都是通过加法器进行的,因此,加快运算器的速度实质上是要加快加法器的速度。
机器字长n位,意味着能完成两个n位数的各种运算。
就应该由n个全加器构成n位并行加法器来实现。
通过本实验可以让学生对运算器有一个比较深刻的了解。
一、实验目的1.掌握简单运算器的数据传输方式。
2.掌握算术逻辑运算部件的工作原理。
3. 熟悉简单运算器的数据传送通路。
4. 给定数据,完成各种算术运算和逻辑运算。
二、实验内容:完成不带进位及带进位的算术运算、逻辑运算实验。
总结出不带进位及带进位运算的特点。
三、实验原理:1.实验电路图图4-1 运算器实验电路图2.实验数据流图图4-2 运算器实验数据流图3.实验原理运算器实验是在ALU UNIT单元进行;单板方式下,控制信号,数据,时序信号由实验仪的逻辑开关电路和时序发生器提供,SW7-SW0八个逻辑开关用于产生数据,并发送到总线上;系统方式下,其控制信号由系统机实验平台可视化软件通过管理CPU来进行控制,SW7-SW0八个逻辑开关由可视化实验平台提供数据信号。
(1)DR1,DR2:运算暂存器,(2)LDDR1:控制把总线上的数据打入运算暂存器DR1,高电平有效。
(3)LDDR2:控制把总线上的数据打入运算暂存器DR2,高电平有效。
(4)S3,S2,S1,S0:确定执行哪一种算术运算或逻辑运算(运算功能表见附录1或者课本第49页)。
(5)M:M=0执行算术操作;M=1执行逻辑操作。
(6)/CN :/CN=0表示ALU运算时最低位加进位1;/CN=1则表示无进位。
计算机组成原理实验报告(4个)
上海建桥学院本科实验报告课程名称:计算机组成原理学号:姓名:专业:班级:指导教师:课内实验目录及成绩序号实验名称页码成绩1 八位算术逻辑运算 12 静态随机存取存储器实验63 数据通路114 微程序控制器的实现16总成绩信息技术学院2014年03 月20 日上海建桥学院实验报告课程名称:计算机组成原理实验类型:验证型实验项目名称:八位算术逻辑运算实验地点:实验日期:年月日一、实验目的和要求1、掌握运算器的基本组成结构;2、掌握运算器的工作原理。
二、实验原理和内容实验采用的运算器数据通路如图1-1所示,ALU逻辑功能表如表1-1所示。
图1-1运算器原理图ALU部件由一片 CPLD实现,内部含有三个独立的运算部件,分别为算术、逻辑和移位运算部件。
输入数据IN[7..0](由插座JP22引出)通过拨动开关sK7..sK0产生(开关由插座JP97引出)。
数据存于暂存器A或暂存器 B中(暂存器A和B的数据可在 LED灯上实时显示),三个部件可同时接受来自暂存器 A和 B的数据。
各部件对操作数进行何种运算由控制信号S3…S0和CN_I来决定(S3…S0由插座JP18引出;CN_I由插座JP19引出),可通过拨动开关sK23..sK20和sK12设置(开关由插座JP89、JP19引出)。
运算结果由三选一多路开关选择,任何时候,多路开关只选择三个部件中的一个部件的运算结果作为ALU的输出。
ALU的输出ALU_D7..ALU_D0通过三态门74LS245送至CPU内部数据总线(iDBus)上(由插座JP25引出),并通过扩展区单元的的二位数码管和DS94..DS101LED灯显示(LED灯由插座JP62引出)。
如果运算影响进位标志FC、零标志FZ、正负标志FS,则在T3状态的下降沿,相应状态分别锁存到FC、FZ、FS触发器中,实验仪设有LED灯显示各标志位状态。
操作控制信号wA(允许写暂存器A)、wB(允许写暂存器B)、rALU(允许ALU结果输出到内部数据总线(iDBus)上)由JP19引出,都为低电平有效,实验时可通过连接开关sK15..sK13设置(开关由插座JP92引出)。
计算机组成原理实验(接线、实验步骤)
实验一运算器[实验目的]1.掌握算术逻辑运算加、减、乘、与的工作原理;2.熟悉简单运算器的数据传送通路;3.验证实验台运算器的8位加、减、与、直通功能;4.验证实验台4位乘4位功能。
[接线]功能开关:DB=0 DZ=0 DP=1 IR/DBUS=DBUS接线:LRW:GND(接地)IAR-BUS# 、M1、M2、RS-BUS#:接+5V控制开关:K0:SW-BUS# K1:ALU-BUSK2:S0 K3:S1 K4:S2K5:LDDR1 K6:LDDR2[实验步骤]一、(81)H与(82)H运算1.K0=0:SW开关与数据总线接通K1=0:ALU输出与数据总线断开2.开电源,按CLR#复位3.置数(81)H:在SW7—SW0输入10000001→LDDR2=1,LDDR1=0→按QD:数据送DR2置数(82)H:在SW7—SW0输入10000010→LDDR2=0,LDDR1=1→按QD:数据送DR1 4.K0=1:SW开关与数据总线断开K1=1:ALU输出与数据总线接通5. S2S1S0=010:运算器做加法(观察结果在显示灯的显示与进位结果C的显示)6.改变S2S1S0的值,对同一组数做不同的运算,观察显示灯的结果。
二、乘法、减法、直通等运算1.K0K1=002.按CLR#复位3.分别给DR1和DR2置数4.K0K1=115. S2S1S0取不同的值,执行不同的运算[思考]M1、M2控制信号的作用是什么?运算器运算类型选择表选择操作S2 S1 S00 0 0 A&B0 0 1 A&A(直通)0 1 0 A+B0 1 1 A-B1 0 0 A(低位)ΧB(低位)完成以下表格ALU-BUS SW-BUS# 存储器内容S2S1S0 DBUS C输入时:计算时:DR1:01100011DR2:10110100(与)DR1:10110100DR2:01100011(直通)DR1:01100011DR2:01100011(加)DR1:01001100DR2:10110011(减)DR1:11111111DR2:11111111(乘)实验二双端口存储器[实验目的]1.了解双端口存储器的读写;2.了解双端口存储器的读写并行读写及产生冲突的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机组成原理实验讲义曲靖师范学院计科系实验室2005年10月目录一、基础实验实验一算术逻辑运算实验实验二移位运算实验实验三存储器实验实验四总线控制实验实验五微程序控制器的组成与微程序设计实验二、综合实验实验六基本模型机实验二、选做实验实验七 8259中断控制器实验实验八复杂模型机实验三、附录附录一:实验用芯片介绍附录二:模块布局图实验一、算术逻辑运算实验一.实验目的1. 掌握简单运算器的组成以及数据传送通路。
2. 验证运算功能发生器(74LS181)的组合功能。
二.实验设备ZY15Comp12BB计算机组成原理教学实验箱一台,排线若干。
三.实验原理图1-l 运算器数据通路图实验中所用的运算器数据通路如图1-1所示。
其中运算器由两片74LS181以并/串形式构成8位字长的ALU。
运算器的两个数据输入端分别由两个锁存器(74LS273)锁存,锁存器的输入连至数据总线,数据输入开关(INPUT)用来给出参与运算的数据,并经过一三态门(74LS245)和数据总线相连。
运算器的输出经过一个三态门(74LS245)和数据总线相连。
数据显示灯已和数据总线(“DA TA BUS”)相连,用来显示数据总线内容。
图1-2中已将实验需要连接的控制信号用箭头标明(其他实验相同,不再说明)。
其中除T4为脉冲信号,其它均为电平控制信号。
实验电路中的控制时序信号均已内部连至相应时序信号引出端,进行实验时,还需将S3、S2、S1、S0、Cn、M、LDDR1、LDDR2、ALU_G、SW_G 各电平控制信号与“SWITCH”单元中的二进制数据开关进行跳线连接。
其中ALU_G、SW_G 为低电平有效,LDDR1、LDDR2为高电平有效。
按动微动开关PULSE,即可获得实验所需的单脉冲。
四.实验步骤l. 按图1-2连接实验线路,仔细检查无误后,接通电源。
(图中箭头表示需要接线的地方,接总线和控制信号时要注意高低位一一对应,可用彩排线的颜色来进行区分)接到D A TA B U S图1-2 算术逻辑运算实验接线图2. 用INPUT UNIT 的二进制数据开关向寄存器DR1和DR2置数,数据开关的内容可以用与开关对应的指示灯来观察,灯亮表示开关量为“1”,灯灭表示开关量为“0”。
以向DR1中置入11000001(C1H )和向DR2中置入01000011(43H )为例,具体操作步骤如下:首先使各个控制电平的初始状态为:CLR=1,LDDR1=0,LDDR2=0,ALU_G=1,SW_G=1,S3 S2 S1 S0 M CN=111111,并将CONTROL UNIT 的开关SP05打在“NORM ”状态,然后按下图所示步骤进行。
上面方括号中的控制电平变化要按照从上到下的顺序来进行,其中T4的正脉冲是通过按动一次CONTROL UNIT 的触动开关PULSE 来产生的。
置数完成以后,检验DR1和DR2中存的数是否正确,具体操作为:关闭数据输入三态门(SW_G=1),打开ALU 输出三态门(ALU_G=0),使ALU 单元的输出结果进入总线。
当设置S3、S2、S1、S0、M 、CN 的状态为111111时,DA TA BUS 单元的指示灯显示DR1中的数;而设置成101011时,DA TA BUS 单元的指示灯显示DR2中的数,然后将指示灯的显示值与输入的数据进行对比。
3. 验证74LS181的算术运算和逻辑运算功能(采用正逻辑)74LS181的功能见表1-1,可以通过改变S3 S2 S1 S0 M CN 的组合来实现不同的功能,表中“A ”和“B ”分别表示参与运算的两个数,“+”表示逻辑或,“加”表示算术求和。
L DD R 1=0L DD R 2=1T 4=L D D R1=1L D D R2=0T 4=SW _G =0。
然后改变运算器的控制电平S3 S2 S1 S0 M CN的组合,观察运算器的输出,填入表1-2中,并和理论值进行比较、验证74LS181的功能。
1.画出实验连线图,写出实验的操作步骤,记录实验结果。
2.根据实验原理,计算理论值,判断实验结果的正确性。
实验二、移位运算实验一.实验目的验证移位控制的功能。
二.实验设备ZY15Comp12BB 计算机组成原理教学实验箱一台,排线若干。
三.实验原理移位运算实验中使用了一片74LS299作为移位发生器,其八位输入/输出端以排针方式和总线单元连接。
299_G 信号控制其使能端,T4时序为其时钟脉冲,由S1 S0 M 控制信号控制其功能状态,列表如下:1. 按图1-5连接实验线路,仔细检查无误后接通电源。
(图中箭头表示需要接线的地方,接到D A TA B U S图1-5 移位运算实验接线图2. 按照如下步骤用INPUT UNIT 的二进制数据开关把数据写入74LS299:首先使各个控制电平的初始状态为:299_G=1,SW_G=1,S1 S0 M =111,CLR= l →0→1,并将控制台单元的开关SP05打在“NORM ”状态,SP06打在“RUN ”状态,,SP03打在“STEP”状态,SP04打在“RUN ”状态。
然后按下图所示步骤进行。
S W _G =0S 0=1S 1=1T 4=S W _G =1上面方括号中的控制电平变化要按照从上到下的顺序来进行,其中T4的正脉冲是通过按动一次CONTROL UNIT 的触动开关START 来产生的。
3. 参照前面的表格1-3,改变S0 S1 M 299_G 的状态,按动触动开关START ,观察移位结果。
五、实验报告要求1 画出实验连线图,写出实验的操作步骤,记录实验结果。
2 根据实验原理,计算理论值,验证实验结果的正确性。
实验三、存储器实验一.实验目的1. 掌握静态随机存储器RAM工作特性。
2. 掌握静态随机存储器RAM的数据读写方法。
二.实验设备ZY15Comp12BB计算机组成原理教学实验箱一台,排线若干。
三.实验原理实验所用的半导体静态存储器电路原理如图1-6所示,实验中的静态存储器由一片6116LI01)连至“SWITCH”单元的二进制开关给出,其中SW_G为低电平有效,LDAR为高电平有效。
四.实验步骤1. 形成时钟脉冲信号T3,具体接线方法和操作步骤如下:①将SIGNAL UNIT中的CLOCK和CK,TS3和T3用排线相连。
②将SIGNAL UNIT中的两个二进制开关“SP03”设置为“RUN”状态、“SP04”设置为“RUN”状态(当“SP03”开关设置为“RUN”状态、“SP04”开关设置为“RUN”状态时,每按动一次触动开关START,则T3的输出为连续的方波信号。
当“SP03”开关设置为“STEP”状态、“SP04”开关设置为“RUN”状态时,每按动一次触动开关START,则T3输出一个单脉冲,其脉冲宽度与连续方式相同。
)2. 按图1-7连接实验线路,仔细检查无误后接通电源。
(图中箭头表示需要接线的地方,接总线和控制信号时要注意高低位一一对应,可用彩排线的颜色来进行区分)图1-7 存储器实验接线图3. 给存储器的00、01、02、03、04地址单元中分别写入数据11、22、33、44、55,具体操作步骤如下:(以向00号单元写入11为例)首先使各个控制电平的初始状态为:SW_G=1,CE=1,WE=1,LDAR=0,CLR= l →0→1,并将CONTROL UNIT 的开关SP05打在“NORM ”状态,然后按下图所示步骤进行。
图中方括号中的控制电平变化要按照从上到下的顺序来进行,其中T3的正脉冲是通过按动一次CONTROL UNIT 的触动开关START 来产生的,而WE 的负脉冲则是通过让SWITCH 单元的WE 开关做l →0→1变化来产生的。
接到D AT A B U S接到AD DRB U SSW _G =1LD AR =0S W_G =0LD A R=1T3=SW _G =0CE =0WE =4. 依次读出第00、01、02、03、04号单元中的内容,在DA TA BUS 单元的指示灯上进行显示,观察上述各单元中的内容是否与前面写入的一致。
具体操作步骤如下:(以从00号单元读出11数据为例)其中AR 的值在ADDR BUS 单元的指示灯上显示,RAM 相应单元的值在DA TA BUS 单元的指示灯上显示。
五、实验报告要求1 画出实验连线图,写出实验的操作步骤,记录实验结果。
2 根据实验原理,计算理论值,验证实验结果的正确性。
C E =1W E =1S W _G =1S W _G =0T 3=S W _G =1L D A R =0C E =0L D A R =1实验四、总线控制实验一.实验目的1. 理解总线的概念及其特性。
2. 掌握总线传输控制特性。
二.实验设备ZY15Comp12BB计算机组成原理教学实验箱一台,排线若干。
三.实验原理总线是多个系统部件之间进行数据传送的公共通路,是构成计算机系统的骨架。
借助总线连接,计算机在系统各部件之间实现传送地址、数据和控制信息的操作。
因此,所谓总线就是指能为多个功能部件服务的一组公用信息线。
总线传输实验框图如图1-8所示,它将几种不同的设备挂至总线上,有存储器、输入设备、输出设备、寄存器。
这些设备都需要有三态输出控制,按照传输要求恰当有序的控制它们,就可实现总线信息传输。
图1-8 总线示意图四.实验步骤1. 根据挂在总线上的几个基本部件,设计一个简单的流程:①输入设备将一个数写入地址寄存器。
②输入设备将另一个数写入到存储器的当前地址单元中。
③将存储器当前地址单元中的数用LED数码管显示。
2. 按照图1-9实验接线图进行连线,仔细检查无误后,接通电源。
(图中箭头表示需要接线的地方,接总线和控制信号时要注意高低位一一对应,可用彩排线的颜色来进行区分)3. 具体操作步骤图示如下:首先使各个控制电平的初始状态为:SW_G=1,CE=1,WE=1,LDAR=0,299_G (LED_G )=1,PC_G (WE )=1,CLR= l →0→1,并将CONTROL UNIT 的开关SP05打在“NORM ”状态,然后按下图所示步骤进行。
图中方括号中的控制电平变化要按照从上到下的顺序来进行,其中LDAR 的正脉冲是通过让SWITCH 单元的LDAR 开关做0→1→0变化来产生的,而WE 和PC_G (WE )的负脉冲则是通过让SWITCH 单元的WE 和PC_G 开关做1→0→1变化来产生的。
完成上述操作后,在OUTPUT UNIT 的数码管上观察结果。
五、实验报告要求1 画出实验连线图,写出实验的操作步骤,记录实验结果。
2 根据实验原理,计算理论值,验证实验结果的正确性。
接到D A TA BU SS W _G =0S W _G =1L D A R =S W _G =0C E =1S W _G =1W E=C E =0CE =0299_G (L ED_G)=0 P C_G(W E)=实验五、微程序控制器的组成与微程序设计实验一.实验目的1. 掌握微程序控制器的组成原理。