电子科技大学-图论第一次作业
电子科技大学研究生试题《图论及其应用》(参考答案)
电子科技大学研究生试题《图论及其应用》(参考答案)考试时间:120分钟一.填空题(每题3分,共18分)1.4个顶点的不同构的简单图共有__11___个;2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。
则G 中顶点数至少有__9___个;3.设n 阶无向图是由k(k ?2)棵树构成的森林,则图G 的边数m= _n-k____;4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_.5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。
图G二.单项选择(每题3分,共21分)1.下面给出的序列中,是某简单图的度序列的是( A )(A) (11123); (B) (233445); (C) (23445); (D) (1333).2.已知图G 如图所示,则它的同构图是( D )3. 下列图中,是欧拉图的是( D )4. 下列图中,不是哈密尔顿图的是(B )5. 下列图中,是可平面图的图的是(B )AC DA B CD6.下列图中,不是偶图的是( B )7.下列图中,存在完美匹配的图是(B )三.作图(6分)1.画出一个有欧拉闭迹和哈密尔顿圈的图;2.画出一个有欧拉闭迹但没有哈密尔顿圈的图;3.画出一个没有欧拉闭迹但有哈密尔顿圈的图;解: 四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。
解:由克鲁斯克尔算法的其一最小生成树如下图:权和为:20.五.(8分)求下图G 的色多项式P k (G).解:用公式(G P k -G 的色多项式:)3)(3)()(45-++=k k k G P k 。
六.(10分) 22,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。
解:设该树有n 1个1度顶点,树的边数为m.一方面:2m=n 1+2n 2+…+kn k另一方面:m= n 1+n 2+…+n k -1 v v 13图G由上面两式可得:n 1=n 2+2n 3+…+(k -1)n k七.证明:(8分) 设G 是具有二分类(X,Y)的偶图,证明(1)G 不含奇圈;(2)若|X |≠|Y |,则G 是非哈密尔顿图。
电子科技大学图论作业
图论作业3一、填空题1. 完全图K2n共有个不同的完美匹配。
2. 超方体Q6的最小覆盖包含的点数为。
3. 图K m,n (m≤n)的最小覆盖包含的点数为。
4. 完全图K60能分解为个边不重的一因子之并。
5. 完全图K61能分解为个边不重的二因子之并。
6. 假设G是具有n个点、m条边、k个连通分支的无圈图,则G的荫度为。
7. 图G是由3个连通分支K1, K2, K4组成的平面图,则其共有个面。
8. 设图G与K5同胚,则至少从G中删掉条边才可能使其成为可平面图。
9. 设连通平面图G具有5个顶点,9条边,则其面数为。
10. 若图G是10阶极大平面图,则其面数等于。
11. 若图G是10阶极大外平面图,其内部面共有个。
二、不定项选择题1. 关于非平凡树T,下面说法错误的是( )(A) T至少包含一个完美匹配;(B) T至多包含一个完美匹配;(C) T的荫度大于1;(D) T是只有一个面的平面图;(E) T的对偶图是简单图。
2. 下列说法正确的是( )(A) 三正则的偶图存在完美匹配;(B) 无割边的三正则图一定存在完美匹配;(C) 有割边的三正则图一定没有完美匹配;(D) 有完美匹配的三正则图一定没有割边;(E) 三正则哈密尔顿图存在完美匹配。
3. 下列说法正确的是( )(A) 在偶图中,最大匹配包含的边数等于最小覆盖包含的点数;(B) 任一非平凡正则偶图包含完美匹配;(C) 任一非平凡正则偶图可以1-因子分解;(D) 偶度正则偶图可以2-因子分解;(E) 非平凡偶图的最大匹配是唯一的。
4. 下列说法中错误的是( )(A) 完全图K101包含1-因子;(B) 完全图K101包含2-因子;(C) 完全图K102包含1-因子;(D) 完全图K102包含2-因子;(E) 图G的一个完美匹配实际上就是它的一个1因子;(F) 图G的一个2-因子实际上就是它的一个哈密尔顿圈。
5. 下列说法正确的是( )(A) 方体Q n可以1-因子分解;(B) 非平凡树可以1-因子分解;(C) 无割边的3正则图可以1-因子分解;(D) 有割边的3正则图一定不可以1-因子分解;(E) 可1-因子分解的3正则图一定是哈密尔顿图。
电子科技大学-图论第一次作业-
课本习题一:
4. 证明下面两图同构。
v1
u1
v2
v6
v10 v5
v7
v8 v9
v3
v4 (a)
u6 u5
u2
u8
u10
u3
u7
u9
u4
(b)
证明:作映射 f : vi ↔ ui (i=1,2….10)
容易证明,对vi v j E ((a)),有 f (v i vj,),,ui,uj,,E,((b))
中不
3.设 G 是阶大于 2 的连通图,证明下列命题等价:
(1)
G 是块
(2)
G 无环且任意一个点和任意一条边都位于同一
个圈上;
(3)
G 无环且任意三个不同点都位于同一条路上。
: 是块,任取 的一点 ,一边 ,在 边插入一点 ,使得 成为两条边,由此 得到新图 ,显然 的是阶数大于 的块,由定理 4, 中的 u,v 位于同一个 圈上,于是 中 u 与边 都位于同一个圈上。
件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图
有 11 个。
11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1)
不是图序列。
证明:由于 7 个顶点的简单图的最大度不会超过 6,因此序列(7,6,5,4,3,3,2)不
是图序列;
(6,6,5,4,3,3,1)是图序列
(G1) 2 最小边割{(6,5),(8,5)} {(6,7),(8,7)}{(6,9),(8,9)}
1j 10 ) 由图的同构定义知,图(a)与(b)是同构的。
5.证明:四个顶点的非同构简单图有 11 个。
证明:设四个顶点中边的个数为 m,则有:
电子科大图论答案(优.选)
图论第三次作业一、第六章2.证明:根据欧拉公式的推论,有m ≦l*(n-2)/(l-2),(1)若deg(f)≧4,则m ≦4*(n-2)/2=2n-4;(2)若deg(f)≧5,则m ≦5*(n-2)/3,即:3m ≦5n-10;(3)若deg(f)≧6,则m ≦6*(n-2)/4,即:2m ≦3n-6.3.证明:∵G 是简单连通图,∴根据欧拉公式推论,m ≦3n-6;又,根据欧拉公式:n-m+φ=2,∴φ=2-n+m ≦2-n+3n-6=2n-4.4.证明:(1)∵G 是极大平面图,∴每个面的次数为3,由次数公式:2m==3φ,由欧拉公式:φ=2-n+m,∴m=2-n+m,即:m=3n-6.(2)又∵m=n+φ-2,∴φ=2n-4.(3)对于3n >的极大可平面图的的每个顶点v ,有()3d v ≥,即对任一一点或者子图,至少有三个邻点与之相连,要使这个点或子图与图G 不连通,必须把与之相连的点去掉,所以至少需要去掉三个点才能使()(H)w G w G <-,由点连通度的定义知()3G κ≥。
5.证明:假设图G 不是极大可平面图,那么G 不然至少还有两点之间可以添加一条边e ,使G+e 仍为可平面图,由于图G 满足36m n =-,那么对图G+e 有36m n '=-,而平面图的必要条件为36m n '≤-,两者矛盾,所以图G 是极大可平面图。
6.证明:(1)由()4G δ=知5n ≥当n=5时,图G 为5K ,而5K 为不可平面图,所以6n ≥,(由()4G δ=和握手定理有24m n ≥,再由极大可平面图的性质36m n =-,即可得6n ≥)对于可平面图有()5G δ≤,而6n ≥,所以至少有6个点的度数不超过5.(2)由()5G δ=和握手定理有25m n ≥,再由极大可平面图的性质36m n =-,即可得12n ≥,对于可平面图有()5G δ≤,而12n ≥,所以至少有12个点的度数不超过5.二、第七章2.证明:设n=2k+1,∵G 是Δ正则单图,且Δ>0,∴m(G)==>k Δ,由定理5可知χˊ(G)=Δ(G)+1.28.解: (1)又:=k(k-1)(k-2)2(k-3)+k(k-1)2(k-2)=k(k-1)(k-2)(k2-4k+5)=k(k-1)(k-2)2(k-3),所以,原图色多项式为:k(k-1)(k-2)2(k2-4k+5)-k(k-1)(k-2)2(k-3)=k(k-1)(k-2)2(k2-5k+8)(2)∵原图与该图同构,又,同构的图具有相同的色多项式,所以原图色多项式为:k(k-1)(k-2)2(k2-5k+8)。
12年图论试题
电子科技大学研究生试卷(测试时间:至,共__2_小时)课程名称图论及其使用教师学时60 学分教学方式讲授考核日期_2012__年___月____日成绩 考核方式:(学生填写)一、填空题(填表题每空1分,其余每题2分,共30分)1.n 阶k 正则图G 的边数()m G =______2nk; 2.3个顶点的不同构的简单图共有___4___个;3.边数为m 的简单图G 的不同生成子图的个数有__2___m 个;4. 图111(,)G n m =和图222(,)G n m =的积图12G G ⨯的边数为1221____n m n m +;5. 在下图1G 中,点a 到点b 的最短路长度为__13__;6. 设简单图G 的邻接矩阵为A ,且23112012*********102001202A ⎛⎫⎪⎪⎪= ⎪ ⎪⎪⎝⎭,则图G 的边数为__6__; 7. 设G 是n 阶简单图,且不含完全子图3K ,则其边数一定不会超过2___4n ⎢⎥⎢⎥⎣⎦;8.3K 的生成树的棵数为__3__;9. 任意图G 的点连通度()k G 、边连通度()G λ、最小度()G δ之间的关系为__()()()____k G G G λδ≤≤;10. 对下列图,试填下表(是⨯⨯类图的打〝√ 〞,否则打〝⨯〞)。
① ② ③学号姓名学院……………………密……………封……………线……………以……………内……………答……………题……………无……………效……………………4 5 6 6 4 1 1 2 7 243 ab G 1能一笔画的图 Hamilton 图 偶图 可平面图 ① ⨯ √ ⨯ √ ② ⨯ ⨯ ⨯ √ ③⨯√√ √二、单项选择(每题2分,共10分)1.下面命题正确的是(B )对于序列(7,5,4,3,3,2),下列说法正确的是:(A) 是简单图的度序列;(B) 是非简单图的度序列; (C) 不是任意图的度序列; (D)是图的唯一度序列.2.对于有向图,下列说法不正确的是(D)(A) 有向图D 中任意一顶点v 只能处于D 的某一个强连通分支中; (B) 有向图D 中顶点v 可能处于D 的不同的单向分支中;(C) 强连通图中的所有顶点必然处于强连通图的某一有向回路中; (D)有向连通图中顶点间的单向连通关系是等价关系。
电子科大研究生图论考试 附答案
1电子科技大学研究生试卷(考试时间: 至 ,共__2_小时)课程名称 图论及其应用 教师 学时 60 学分 教学方式 讲授 考核日期_2013__年_6__月__20__日 成绩 考核方式: (学生填写)一.填空题(每空2分,共20分)1. n 阶k 正则图G 的边数m =_____。
2.4个顶点的不同构单图的个数为________。
3.完全偶图,r s K (,2r s ≥且为偶数),则在其欧拉环游中共含____条边。
4.高为h 的完全2元树至少有_______片树叶。
5. G 由3个连通分支124,,K K K 组成的平面图,则其共有_______个面。
6. 设图G 与5K 同胚,则至少从G 中删掉_______条边,才可能使其成为可平面图。
7. 设G 为偶图,其最小点覆盖数为α,则其最大匹配包含的边数为________。
8. 完全图6K 能分解为________个边不重合的一因子之并。
9. 奇圈的边色数为______。
10. 彼得森图的点色数为_______。
二.单项选择(每题3分,共15分) 1.下面说法错误的是( )学 号 姓 名 学 院…………………… 密……………封……………线……………以……………内……………答…… ………题……………无……………效……………………2(A) 图G 中的一个点独立集,在其补图中的点导出子图必为一个完全子图;(B) 若图G 连通,则其补图必连通; (C) 存在5阶的自补图; (D) 4阶图的补图全是可平面图. 2.下列说法错误的是( ) (A) 非平凡树是偶图;(B) 超立方体图(n 方体,1n ≥)是偶图; (C) 存在完美匹配的圈是偶图; (D) 偶图至少包含一条边。
3.下面说法正确的是( )(A) 2连通图一定没有割点(假定可以有自环); (B) 没有割点的图一定没有割边;(C) 如果3阶及其以上的图G 是块,则G 中无环,且任意两点均位于同一圈上;(D) 有环的图一定不是块。
2015电子科技大学-图论期末考试复习题
D.13
答:
求下图的最优树 T(不要求中间过程,只要求画出最小生成树, 并给出 T 的权和) 。
答:
权和为 17。 求下图的最小生成树,并给出权值(只给结果,不要过程)
答:
权和为 28。 求下图的最小生成树,并给出权值。
权和为 16。
假设用于通信的电文仅由 8 个字母 {a, b, c, d, e, f, g, h} 构成,它们在电文中出现的概率分 别为{ 0.07, 0.19, 0.02, 0.06, 0.32, 0.03, 0.21, 0.10},试为这 8 个字母设计哈夫曼编码。 解:a, 1100;b, 00;c, 11110;d, 1110;e,10;f, 11111;g, 01;h,1101
请画出 6 阶 3 正则图。
请画出 4 个顶,3 条边的所有非同构的无向简单图。
设图 G={V(G),E(G)}其中 V={a1, a2, a3, a4, a5},E(G)={(a1, a2),(a2, a4),(a3, a1),(a4, a5), (a5, a2)},试给出 G 的图形表示并画出其补图的图形。
D .2
B.有 n 个顶点,n1 条边的图 D.连通但删去一条边则不连通的图
B.无圈但添加一条边后有圈的图 D.连通且 E(G)V(G)1
求生成树个数时,将一个树对应一个 Prufer 序列,如果树 T 的对应 Prufer 序列为(2,3,2,3), 则标号为 2 的顶点的次数是 A.1 B.2 C.3 D .4 右图是二分图。
B.G 连通且顶点数比边数少 1 D.G 中没有圈
B.{01,001,000,1} D.{1,11,101,001,0011} ,则该序
给定一个序列集合{1,01,10,11,001,000},若去掉其中的元素 列集合构成前缀码。 若一棵典型有序二元树有 2n1 个顶点,则它的树叶数是 A.n B.2n C.n1 下面那种描述的单图不一定是树。 A.无回路的连通图 C.每对顶点都有通路的图 下列无向图一定是树的是 A.连通图 C.每对顶点间都有路的图
电子科技大学2017年图论期末试卷
12017年图论课程练习题一.填空题1.图1中顶点a 到顶点b 的距离d (a ,b )= 。
ab9 图112.已知图G 的邻接矩阵0110110100110100010110010A=,则G 中长度为2的途径总条数为 。
3.图2中最小生成树T 的权值W (T )= 。
4.图3的最优欧拉环游的权值为 。
12 图 22图35.树叶带权分别为1,2,4,5,6,8的最优二元树权值为 。
二.单项选择1.关于图的度序列,下列说法正确的是( )(A) 对任意一个非负整数序列来说,它都是某图的度序列;(B) 若非负整数序列12(,,,)n d d d π= 满足1ni i d =∑为偶数,则它一定是图序列;(C) 若图G 度弱于图H ,则图G 的边数小于等于图H 的边数;(D) 如果图G 的顶点总度数大于或等于图H 的顶点总度数,则图G 度优 于图H 。
2.关于图的割点与割边,下列说法正确的是( ) (A) 有割边的图一定有割点; (B) 有割点的图一定有割边; (C) 有割边的简单图一定有割点; (D) 割边不在图的任一圈中。
3.设()k G ,()G λ,()G δ分别表示图G 的点连通度,边连通度和最小度。
下面说法错误的是( )3(A) 存在图G ,使得()k G =()G δ=()G λ; (B) 存在图G ,使得()()()k G G G λδ<<;(C) 设G 是n 阶简单图,若()2n G δ≥,则G 连通,且()()G G λδ=;(D) 图G 是k 连通的,则G 的连通度为k 。
4.关于哈密尔顿图,下列命题错误的是( ) (A) 彼得森图是非哈密尔顿图;(B) 若图G 的闭包是哈密尔顿图,则其闭包一定是完全图; (C) 若图G 的阶数至少为3且闭包是完全图,则图G 是哈密尔顿图; (D) 设G 是三阶以上简单图,若G 中任意两个不邻接点u 与v ,满足()()d u d v n +≥,则G 是哈密尔顿图。
电子科技大学研究生图论总结
第一章:图论基本概念 1.定义平凡图/非平凡图 简单图/复合图 空图 n 阶图 连通图/非连通图完全图n K12n n n m K偶图,m n K 完全偶图,m n m K mn K 正则图图和补图,自补图 自补图判定方法 定点的度 d v 最小度 最大度 握手定理2d v m图的度序列与图序列,图序列判定方法(注意为简单图) 图的频序列 2.图运算删点/删边 图并/图交/图差/图对称差 图联 积图/合成图111122,u adjv u v u adjv 或 超立方体 3.连通性 途径 迹 路图G 不连通,其补图连通一个图是偶图当且仅当它不包含奇圈 4.最短路算法(b t A T ) 5.矩阵描述邻接矩阵及其性质,图的特征多项式 关联矩阵 6.极图??L 补图 完全L 部图 完全L 几乎等部图 托兰定理第二章:树 1.定义树:连通的无圈图 森林 树的中心和树的形心?入<=sqrt(2m(n-1)/n)生成树 根树 出度 入度 树根 树叶 分支点 m 元根树 完全m 元根树 2.性质每棵非平凡树至少有两片树叶图G 是树当且仅当G 中任意两点都被唯一的路连接T 是(n,m)树,则m = n – 1 具有k 个分支的森林有n-k 条边每个n 阶连通图边数至少为n-1(树是连通图中边的下界) 每个连通图至少包含一棵生成树 3.计算 生成树计数 递推计数法: G G e G e关联矩阵计数法:去一点后,每个非奇异阵对应一棵生成树最小生成树(边赋权)避圈法 破圈法完全m 元树: 11m i t第三章:图的连通性1. 割边、割点和块(性质使用反证法) 割边: w G e w G边e 为割边当且仅当e 不在任何圈中割点: w G v w Gv 是无环连通图G 的一个顶点,v 是G 的割点当且仅当V(G-e)可以被划分为两个子集,v 在两个子集内点互连的路上 块:没有割点的连通子图 G 顶点数>=3,G 是块当且仅当G 无环且任意两顶点位于同一圈上v 是割点当且仅当v 至少属于G 的两个不同的块2. 连通度点割 k 顶点割 最小点割(最少用几个点把图割成两份) G 的连通度 G连通图没顶点割时连通度 1G n ,非连通图 0G边割 k 边割 最小边割(最少用几条边把图割成两份) G 的边连通度 G递推到无圈,自环不算圈性质: 任意图G 有 G G GG 是(n,m)连通图, 2m G nG 是(n,m)单图,若 2n G,则G 必定连通 G 是(n,m)单图,对应k n ,若 22n k G,则G 是k 连通G 是(n,m)单图,若 2n G,则 G G敏格尔定理: G 中分离不相邻x,y 的最小点数等于独立的x,y 路最大数目G 中分离x,y 的最小边数等于边不重x,y 路最大数目第四章 E 图与H 图 一、 E 图(走完所有边) 1. 定义,性质与判定E 图(欧拉环游)与E 迹,走完所有边回到出发点与不回到出发点E 图性质与判定:E 图 G 的顶点度数为偶数度 G 的边集合能划分为圈 E 迹性质与判定:E 迹 G 中只有两个顶点度为奇数 2. 求解路径算法 找欧拉环游:都是偶数度点:Fleury 算法(避割边行走)两奇数点欧拉环游:奇数点补充最短路后得到欧拉环游多奇数点欧拉环游:补充偶数度并不断交换 (中国邮路问题算法) 二、 H 图(走完所有点) 1. 定义与性质H 图(H 圈)与H 路:走完所有点回到出发点与不回到出发点 G 图是H 图 w G S S 2. H 图判定3n 的单图G ,如果 2nGG 是H 图3n 的单图G ,任意不相邻u,v 有 d u d v n G 是H 图图G 的闭包是H 图 G 是H 图 度序列判定法:123n d d d d ,3n ,若对任意的2nm,有m d m 或n m d n m ,则G 是H 图123n d d d d ,3n ,若对任意的2nm,有m d m 且n m d n m ,则G 是非H 图 2. 极大非哈密尔顿图定义:如果图G 的度大于等于其他非H 图,则称G 为极大非H 图(非H 图的度上限),m n C 图: ,2m n m m n m C K K K,m n C 图是非H 图G 是非H 图 G 度弱于某个,m n C 图(证) N 阶单图G 度优于所有,m n C 图 G 为H 图 彼得森图是超H 图4. TSP 问题(边赋权近似最优H 圈求解)最优H 图下界:去点求最小生成树,选最小关联边12e e , 11w T w e w e第五章 图的匹配与因子分解 1.边匹配定义: 匹配 饱和点/非饱和点 最大匹配/完美匹配 M 交错路/M 可扩路 贝尔热定理:G 的匹配M 是最大匹配,当且仅当G 不包含M 可扩路(反证) 2.偶图匹配Hall 定理(偶图匹配存在性定理,完美匹配): N S S 推论:k 正则偶图G 存在完美匹配(证) 匹配算法: 匈牙利算法最优匹配算法3.点覆盖边匹配数等于点覆盖数时匹配为最大匹配覆盖为最小覆盖 哥尼定理:偶图中最大匹配边数等于最小覆盖点数(用) 4.托特定理一般图G 有完美匹配当且仅当 G S S推论:没有割边的3正则图存在完美匹配(充分条件)(证) 5.因子分解因子分解,n 度正则因子 一因子分解:2n K 可一因子分解具有H 圈的三正则图可一因子分解 若三正则图有割边,则它不能一因子分解 二因子分解: G 的一个H 圈肯定是一个二因子,但二因子不一定是H 圈(二因子可以不连通)21n K 可2因子分解2n K 可分解为一个1因子和n-1个2因子之和。
最新电子科大图论 第二次作业(4、5章) 答案资料
习题四3.(1)画一个有Euler 闭迹和Hamilton圈的图;(2)画一个有Euler 闭迹但没有Hamilton圈的图;(3)画一个有Hamilton圈但没有Euler闭迹的图;(4)画一个即没有Hamilton圈也没有Euler闭迹的图;解:找到的图如下:(1)一个有Euler 闭迹和Hamilton圈的图;(2)一个有Euler闭迹但没有Hamilton圈的图;(3) 一个有Hamilton圈但没有Euler闭迹的图;(4)一个即没有Hamilton圈也没有Euler闭迹的图.7. 将G中的孤立点去掉后的图为G1,则G1也是没有奇度点的,且G1的最小度大于等于2.则G1存在一个圈S1,在G1 –S1中去除孤立的点,得到一个新的图G2,显然G2也没有奇度的点,且G2的最小度大于等于2.这样G2中也存在一个圈S2,这样一直下去,指导Gm中有圈Sm,且Gm-Sm都是孤立的点。
这样E(G) = E(G1)并E(G2)…并E(Gm).命题得证。
10.证明:若:(1)不是二连通图,或者(2)是具有二分类的偶图,这里,则是非Hamilton图。
证明:(1)不是二连通图,则不连通或者存在割点,有,由于课本上的相关定理:若是Hamilton图,则对于的任意非空顶点集,有:,则该定理的逆否命题也成立,所以可以得出:若不是二连通图,则是非Hamilton图(2)因为是具有二分类的偶图,又因为,在这里假设,则有,也就是说:对于的非空顶点集,有:成立,则可以得出则是非Hamilton图。
习题五1.(1)证明:每个k方体都有完美匹配(k大于等于2)(2) 求K2n和K n,n中不同的完美匹配的个数。
证明一:证明每个k方体都是k正则偶图。
事实上,由k方体的构造:k方体有2k个顶点,每个顶点可以用长度为k的二进制码来表示,两个顶点连线当且仅当代表两个顶点的二进制码只有一位坐标不同。
如果我们划分k方体的2k个顶点,把坐标之和为偶数的顶点归入X,否则归入Y。
电子科技大学研究生试题《图论及其应用》(参考答案)
电子科技大学研究生试题《图论及其应用》(参考答案)考试时间:120分钟一.填空题(每题3分,共18分)1.4个顶点的不同构的简单图共有__11___个;2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。
则G 中顶点数至少有__9___个;3.设n 阶无向图是由k(k ≥2)棵树构成的森林,则图G 的边数m= _n-k____;4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_.5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。
图G图G二.单项选择(每题3分,共21分)1.下面给出的序列中,是某简单图的度序列的是( A )(A) (11123); (B) (233445); (C) (23445); (D) (1333).2.已知图G 如图所示,则它的同构图是( D )3. 下列图中,是欧拉图的是( D )4. 下列图中,不是哈密尔顿图的是(B )5. 下列图中,是可平面图的图的是(B )A Bb c123A B 3CDAD6.下列图中,不是偶图的是( B )7.下列图中,存在完美匹配的图是(B )三.作图(6分)1.画出一个有欧拉闭迹和哈密尔顿圈的图;2.画出一个有欧拉闭迹但没有哈密尔顿圈的图;3.画出一个没有欧拉闭迹但有哈密尔顿圈的图;解:四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。
A B DC123A B DC解:由克鲁斯克尔算法的其一最小生成树如下图:权和为:20.五.(8分)求下图G 的色多项式P k(G).解:用公式)()()(e G P G P e G P k k k •+=-,可得G 的色多项式:)3)(2()1()()(3)()(2345---=++=k k k k k k k G P k 。
六.(10分) 一棵树有n 2个顶点的度数为2,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。
电子科大图论-第二次作业(4、5章)-答案
习题四
3.(1)画一个有 Euler 闭迹和 Hamilton 圈的图;
(2)画一个有 Euler 闭迹但没有 Hamilton 圈的图; (3)画一个有 Hamilton 圈但没有 Euler 闭迹的图; (4)画一个即没有 Hamilton 圈也没有 Euler 闭迹的图; 解:找到的图如下: (1) 一个有 Euler 闭迹和 Hamilton 圈的图;
(2) 一个有 Euler 闭迹但没有 Hamilton 圈的图;
(3) 一个有 Hamilton 圈但没有 Euler 闭迹的图;
(4)一个即没有 Hamilton 圈也没有 Euler 闭迹的图.
7. 将 G 中的孤立点去掉后的图为 G1,则 G1 也是没有奇度点的,且 G1 的最小
度大于等于 2.则 G1 存在一个圈 S1,在 G1 –S1 中去除孤立的点,得到一个新的 图 G2,显然 G2 也没有奇度的点,且 G2 的最小度大于等于 2.这样 G2 中也存在 的点。这 样 E(G) = E(G1)并 E(G2)…并 E(Gm).命题得证。
则 是非 Hamilton 图
(2)因为 是具有二分类 的偶图,又因为
,在这里假设
,则有
,也就是说:对于
的非空顶点集 ,有:
成
立,则可以得出则 是非 Hamilton 图。
习题五
1. (1)证明:每个 k 方体都有完美匹配(k 大于等于 2)
电子科大研究生图论06-14年图论期末试题
五.(10 分) 设 G 为 n 阶简单无向图,n>2 且 n 为奇数,G 与 G 的补 图 G 中度数为奇数的顶点个数是否相等?证明你的结论
六 . (10 分 ) 设 G 是 具 有 n 个 顶 点 的 无 向 简 单 图 , 其 边 数 m = 1 (n −1)(n − 2) + 2 ,证明(1) 证明 G 中任何两个不相邻顶点的度数之
6、若 K n 为欧拉图,则 n= _________ ;若 K n 仅存在欧拉迹而不存在欧拉回路,则 n= _________ 。 7、无向完全图 K n (n 为奇数),共有 _________ 条没有公共边的哈密尔顿圈。
8、设 G 是具有二分类 (X ,Y) 的偶图,则 G 包含饱和 X 的每个顶点的匹配当且仅当
(B)
(C)
(D)
4.下列说法中不正确的是( )
(A)每个连通图至少包含一棵生成树;
(B)k 正则偶图(k>0)一定存在完美匹配;
(C)平面图 G ≅ (G*)* ,其中 G *表示 G 的对偶图;
(D)完全图 K2n 可一因子分解。
三、 (10 分)设图 G 的阶为 14,边数为 27,G 中每个顶点的度只可能 为 3,4 或 5,且 G 有 6 个度为 4 的顶点。问 G 中有多少度为 3 的顶 点?多少度为 5 的顶点?
四、求下图的最小生成树,并给出它的权值之和(10 分)。
v1
1 v4
2
64 3
9
a
8 v2
2
v5 6
b
72 1
9 v3
4 2
v6
图G
五、给出一个同构函数证明 G1 ≅ G2 (10 分)
电子科技大学《图论及其应用》复习总结--第一章图的基本概念
电⼦科技⼤学《图论及其应⽤》复习总结--第⼀章图的基本概念⼀、重要概念图、简单图、图的同构、度序列与图序列、偶图、补图与⾃补图、两个图的联图、两个图的积图1.1 图⼀个图G定义为⼀个有序对(V, E),记为G = (V, E),其中(1)V是⼀个有限⾮空集合,称为顶点集或边集,其元素称为顶点或点;(2)E是由V中的点组成的⽆序点对构成的集合,称为边集,其元素称为边,且同⼀点对在E中可出现多次。
注:图G的顶点数(或阶数)和边数可分别⽤符号n(G) 和m(G)表⽰。
连接两个相同顶点的边的条数,叫做边的重数。
重数⼤于1的边称为重边。
端点重合为⼀点的边称为环。
1.2 简单图⽆环⽆重边的图称为简单图。
(除此之外全部都是复合图)注: 1.顶点集和边集都有限的图称为有限图。
只有⼀个顶点⽽⽆边的图称为平凡图。
其他所有的图都称为⾮平凡图。
边集为空的图称为空图。
2.n阶图:顶点数为n的图,称为n阶图。
3.(n, m) 图:顶点数为n的图,边数为m的图称为(n, m) 图1.3 邻接与关联:顶点u与v相邻接:顶点u与v间有边相连接(u adj v);其中u与v称为该边的两个端点。
注:1.规定⼀个顶点与⾃⾝是邻接的。
2.顶点u与边e相关联:顶点u是边e的端点。
3.边e1与边e2相邻接:边e1与边e2有公共端点。
1.4 图的同构设有两个图G1=(V1,E1)和G2=(V2,E2),若在其顶点集合间存在双射,使得边之间存在如下关系:u1,v1∈V1,u2,v2∈ V2 ,设u1↔u2,v1↔v2,; u1v1∈E1 当且仅当u2v2∈E2,且u1v1与u2v2的重数相同。
称G1与G2同构,记为:G1≌G2注:1、图同构的两个必要条件: (1) 顶点数相同;(2) 边数相同。
2、⾃⼰空间的理解:通过空间的旋转折叠可以进⾏形态转换1.5 完全图、偶图1、在图论中,完全图是⼀个简单图,且任意⼀个顶点都与其它每个顶点有且只有⼀条边相连接。
电子科大图论 第二次作业(4、5章) 答案(优.选)
,在这里假设
,则有
,也就是说:对于
的非空顶点集 ,有:
成
立,则可以得出则 是非 Hamilton 图。
习题五
1. (1)证明:每个 k 方体都有完美匹配(k 大于等于 2)
(2) 求 K2n 和 Kn,n 中不同的完美匹配的个数。 证明一:证明每个 k 方体都是 k 正则偶图。 事实上,由 k 方体的构造:k 方体有 2k 个顶点,每个顶点可以用长度为 k 的二进 制码来表示,两个顶点连线当且仅当代表两个顶点的二进制码只有一位坐标不 同。如果我们划分 k 方体的 2k 个顶点,把坐标之和为偶数的顶点归入 X,否则 归入 Y。显然,X 中顶点互不邻接,Y 中顶点也如此。所以 k 方体是偶图。又不 难知道 k 方体的每个顶点度数为 k,所以 k 方体是 k 正则偶图。 由推论:k 方体存在完美匹配。 证明二:直接在 k 方体中找出完美匹配。
10.证明:若:
(1) 不是二连通图,或者
(2) 是具有二分类 的偶图,这里
,
1 / 4word.
则 是非 Hamilton 图。
证明:(1) 不是二连通图,则 不连通或者存在割点 ,有
,由于课本
上的相关定理:若 是 Hamilton 图,则对于
的任意非空顶点集 ,有:
,则该定理的逆否命题也成立,所以可以得出:若 不是二连通图,
所以 可以表示为四个边不重的 2 因子之和,对于每个分解出的因子的路径为:
, 则 的四条路径为:
,
, ,
则生成圈 是 圈之和。
, 与 的两个端点连线生成的。所以可以将 表示为四个生成
13.
3 / 4word.
所以最小的权值之和为 30
图论第一章课后习题解答
bi 个 (i = 1,2,…,s),则有 列。 定理 7
bi = n。故非整数组(b ,b ,…, b )是 n 的一个划分,称为 G 的频序
1 2 s
s
i 1
一个 n 阶图 G 和它的补图 G 有相同的频序列。
§1.2 子图与图的运算
且 H 中边的重数不超过 G 中对应边的 定义 1 如果 V H V G ,E H E G , 重数,则称 H 是 G 的子图,记为 H G 。有时又称 G 是 H 的母图。 当 H G ,但 H G 时,则记为 H G ,且称 H 为 G 的真子图。G 的生成子图是 指满足 V(H) = V(G)的子图 H。 假设 V 是 V 的一个非空子集。以 V 为顶点集,以两端点均在 V 中的边的全体为边集 所组成的子图,称为 G 的由 V 导出的子图,记为 G[ V ];简称为 G 的导出子图,导出子图 G[V\ V ]记为 G V ; 它是 G 中删除 V 中的顶点以及与这些顶点相关联的边所得到的子图。 若 V = {v}, 则把 G-{v}简记为 G–v。 假设 E 是 E 的非空子集。以 E 为边集,以 E 中边的端点全体为顶点集所组成的子图 称为 G 的由 E 导出的子图,记为 G E ;简称为 G 的边导出子图,边集为 E \ E 的 G 的 导出子图简记为 G E 。若 E e ,则用 G–e 来代替 G-{e}。 定理 8 简单图 G 中所有不同的生成子图(包括 G 和空图)的个数是 2m 个。 定义 2 设 G1,G2 是 G 的子图。若 G1 和 G2 无公共顶点,则称它们是不相交的;若 G1 和 G2 无公共边,则称它们是边不重的。G1 和 G2 的并图 G1∪G2 是指 G 的一个子图,其顶点 集为 V(G1)∪V(G2),其边集为 E(G1)∪E(G2);如果 G1 和 G2 是不相交的,有时就记其并图为 G1+G2。类似地可定义 G1 和 G2 的交图 G1∩G2,但此时 G1 和 G2 至少要有一个公共顶点。
电子科大研究生图论05-14年图论期末试题
(A)每个连通图至少包含一棵生成树;
(B)k正则偶图(k>0)一定存在完美匹配;
(C)平面图 ,其中 表示G的对偶图;
(D)完全图 可一因子分解。
三、(10分)设图G的阶为14,边数为27,G中每个顶点的度只可能为3,4或5,且G有6个度为4的顶点。问G中有多少度为3的顶点?多少度为5的顶点?
2、m条边的简单图G中所有不同的生成子图(包括G和空图)的个数为
3、4个顶点的非同构的简单图有 个.
4、 图G1的最小生成树各边权值之和为
5、若W是图G中一条包含所有边的闭通道,则W在这样的闭通道中具有最短长度的充要条件是:
(1)每一条边最多重复经过 次;
(2)在G的每一个圈上,重复经过的边的数目不超过圈的长度的
四,(10)证明:每棵非平凡树至少有两片树叶(10分)
五.(10分)今有a,b,c,d,e,f,g七个人围圆桌开会,已知:a会讲英语,b会讲英语和汉语,c会讲英语、意大利语和俄语,d会讲日语和汉语,e会讲德语和意大利语,f会讲法语、日语和俄语,g会讲法语与德语。给出一种排座方法,使每个人能够和他身边的人交流(用图论方法求解)。
6、若 为欧拉图,则n= ;若 仅存在欧拉迹而不存在欧拉回路,则n= 。
7、无向完全图 (n为奇数),共有 条没有公共边的哈密尔顿圈。
8、设 是具有二分类 的偶图,则 包含饱和 的每个顶点的匹配当且仅当 ,对所有 。
9、在有6个点。12条边的简单连通平面图中,每个面均由 条边组成。
10、彼德森图的点色数为 ;边色数为 ;点独立数为 。
二、单选或多选题(15分,每题3分)
1、设 , 则图 的补图是( ).
2、在下列图中,既是欧拉图又是哈密尔顿图的是( ).
电子科大图论 第二次作业(4、5章) 答案
习题四3.(1)画一个有Euler 闭迹和Hamilton圈的图;(2)画一个有Euler 闭迹但没有Hamilton圈的图;(3)画一个有Hamilton圈但没有Euler闭迹的图;(4)画一个即没有Hamilton圈也没有Euler闭迹的图;解:找到的图如下:(1)一个有Euler 闭迹和Hamilton圈的图;(2)一个有Euler闭迹但没有Hamilton圈的图;(3) 一个有Hamilton圈但没有Euler闭迹的图;(4)一个即没有Hamilton圈也没有Euler闭迹的图.7. 将G中的孤立点去掉后的图为G1,则G1也是没有奇度点的,且G1的最小度大于等于2.则G1存在一个圈S1,在G1 –S1中去除孤立的点,得到一个新的图G2,显然G2也没有奇度的点,且G2的最小度大于等于2.这样G2中也存在一个圈S2,这样一直下去,指导Gm中有圈Sm,且Gm-Sm都是孤立的点。
这样E(G) = E(G1)并E(G2)…并E(Gm).命题得证。
10.证明:若:(1)不是二连通图,或者(2)是具有二分类的偶图,这里,则是非Hamilton图。
证明:(1)不是二连通图,则不连通或者存在割点,有,由于课本上的相关定理:若是Hamilton图,则对于的任意非空顶点集,有:,则该定理的逆否命题也成立,所以可以得出:若不是二连通图,则是非Hamilton图(2)因为是具有二分类的偶图,又因为,在这里假设,则有,也就是说:对于的非空顶点集,有:成立,则可以得出则是非Hamilton图。
习题五1.(1)证明:每个k方体都有完美匹配(k大于等于2)(2) 求K2n和K n,n中不同的完美匹配的个数。
证明一:证明每个k方体都是k正则偶图。
事实上,由k方体的构造:k方体有2k个顶点,每个顶点可以用长度为k的二进制码来表示,两个顶点连线当且仅当代表两个顶点的二进制码只有一位坐标不同。
如果我们划分k方体的2k个顶点,把坐标之和为偶数的顶点归入X,否则归入Y。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课本习题一:
●。
证明:作映射f : v i ↔ u i (i=1,2….10)
容易证明,对"v i v j Î E ((a)),有f (v i v j,),=,u i,u j,Î,E,((b))
(1£ i £
10, 1£j £ 10 ) 由图的同构定义知,图(a)与(b)是同构的。
● 5.证明:四个顶点的非同构简单图有11个。
证明:设四个顶点中边的个数为m ,则有:
m=0:
m=1 :
m=2:
m=3:
m=4:
(a) v 23 4
(b)
m=5:
m=6:
因为四个顶点的简单图最多就是具有6条边,上面所列出的情形是在不同边的条件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图有11个。
● 11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1)不是图序列。
证明:由于7个顶点的简单图的最大度不会超过6,因此序列(7,6,5,4,3,3,2)不是图序列;
(6,6,5,4,3,3,1)是图序列
非负整数组12121(,,,),,2n n n i i d d d d d d d m π==≥≥≥=∑L L 是图序列的充要条件是:
⇔
11
12312(1,1,,1,,,)d d n d d d d d π++=---L L 是图序列 (5,4,3,2,2,0)是图序列,然而(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1)不是图序列。
● 12.证明:若δ≥2,则G 包含圈。
证明:下面仅对连通图的下的条件下进行证明,不连通的情形可以通过分成若干个连通的情形来证明。
设V (G )={V 1,V 2,V 3,⋯V n },对于G 中的路V 1,V 2,V 3,⋯V n 若V k 与V 1邻接,则构成一个圈。
若V i1,V i2,V i3,⋯V in 是一条路,由于δ≥2,因此,对于V in ,存在V ik 与之邻接,则V ik ,,⋯V in V ik 构成一个圈。
● 17.证明:若G 不连通,则G ̅连通。
证明:对于任意的u,v ∈(G
̅),若u 与v 属于G 的不同连通分支,显然u 与v 在G ̅中连通;若u 与v 属于g 的同一连通分支,设w 为G 的另一个连通分支中的一个顶点,
则u 与w ,v 与w 分别在G
̅中连通,因此,u 与v 在G ̅中连通。
● 18.证明:若e ∈E(G),则w (G )≤w (G −e )≤w (G )+1.
证明:若e 为G 的割边,则w (G −e )= w (G )+1,若e 为G 的非割边,则w (G −e )=w (G ),
所以,若e ∈E(G),则有w (G )≤w (G −e )≤w (G )+1.
习题二:
1.证明:非平凡树的最长路的起点和终点均是1度的。
证明设P =v 1v 2…v k 是非平凡树T 中一条最长路,若d(v 1)≥2则v 1与v k 在T 中的邻接点只能有一个,否则,若v 1与除了P 中顶点之外的其他顶点相连,则P 可以继续延长,这与P 是最长路是相矛盾的。
若v 1与P 上的某顶点相连,则就构成了圈,这与数相矛盾,推出P 不是最长路。
即说明v 1与v k 是树叶,则v 1与v k 均是一度的。
所以非平凡树的最长路的起点和终点均是1度的。
9.证明:顶点度数为偶数的连通图本身可构成一个包含所有边的闭迹。
证明:证明:由于G 是连通非平凡的且每个顶点度数为偶数,所以G 中至少存在圈C 1,从G 中去掉C 1中的边,得到G 的生成子图G 1,若G 1没有边,则G 的边集合能划分为圈。
否则,G 1的每个非平凡分支是度数为偶数的连通图,于是又可以抽取一个圈。
反复这样抽取,E(G)最终划分为若干圈。
设C 1是G 的边划分中的一个圈。
若G 仅由此圈组成,则G 显然是闭迹。
否则,由于G 连通,所以,必然存在圈C 2,它和C 1有公共顶点。
于是,C 1∪C 2是一条含有C 1与C 2的边的欧拉闭迹,如此拼接下去,得到包含G 的所有边的一条闭迹.
16.Kruskal 算法能否用来求:
(1)赋权连通图中的最大权的树?
(2)赋权图中的最小权的最大森林?如果可以,怎样实现?
答:1、不能,由Kruskal 算法得到的任何生成树一定是最小生成树。
2、能
a.选择边e1使其权值最小
b.若已经选定边e1 e2 e3 ……ek,则从E-{e1,e2,e3……ek},选择边ek+1
c .G[e1,e2,e3……ek]为无圈图,且可以不连通
d .ek+1的权值w (eK+1)尽可能小
e .当a 、b 、c 不能进行时,停止。
习题三:
1.证明:e 是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u ,v )必含e .
证明:必要性: e 是G 的割边,故G −e 至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ∀∈∀∈,因为G −e
中的u,v 不连通,而在G 中u 与v 连通,所以e 在每一条(u,v)路上,G 中的(u,v)必含e 。
充分性:取12,u V v V ∈∈,由假设G 中所有(u,v)路均含有边e ,从而在G −e 中
不存在从u 与到v 的路,这表明G −e 不连通,所以e 是割边。
3.设G 是阶大于2的连通图,证明下列命题等价:
(1) G 是块
(2) G 无环且任意一个点和任意一条边都位于同一个圈上;
(3) G 无环且任意三个不同点都位于同一条路上。
(1)→(2):
G 是块,任取G 的一点u ,一边e ,在e 边插入一点v ,使得e 成为两条边,由此得到新图G 1,显然G 1的是阶数大于2的块,由定理4,G 1中的u,v 位于同一个圈上,于是G 中u 与边e 都位于同一个圈上。
(2)→(3):
G 无环,且任意一点和任意一条边都位于同一个圈上,任取G 的点u ,边e ,若u 不在e 上,则三个不同点位于同一个圈,即位于同一条路,如u 在e 上,由定理e 的两点在同一个圈上,在e 边插入一个点v ,使得e 成为2条边,由此得到新图G 1,显然G 1的是阶数大于2的块,则两条边的三个不同点在同一条路上。
(3)→(1):
G 连通,若G 不是块,则G 中存在着割点u ,划分为不同的子集块V 1, V 2, V 1, V 2无环,12,x v y v ∈∈,点u 在每一条(x,y)的路上,由于x,y 的任意性,则三个不同点不能位于同一条路上,则与已知矛盾,G 是块。
7.证明:若v 是简单图G 的一个割点,则v 不是补图G
̅的割点。
证明:v 是单图G 的割点,则G −v 至少两个连通分支。
现任取x,y ∈V(G −v), 如果x,y 在G −v 的同一分支中,令u 是与x,y 处于不同分支的点,那么,通过u ,可说明,x,与y 在G −v 的补图中连通。
若x,y 在G −v 的不同分支中,则它们在G −v 的补图中邻接。
所以,若v 是G 的割点,则v 不是其补图的割点。
12.对图3——20给出的图G1和G2,求其连通度和边连通度,给出相应的最小点割和最小边割。
解:()12G κ= 最小点割 {6,8}
1()2G λ= 最小边割{(6,5),(8,5)} {(6,7),(8,7)}{(6,9),(8,9)}
()25G κ= 最小点割{6,7,8,9,10}
2()5G λ= 最小边割{(2,7),(1,6),(5,10),(4,9),(3,8)}
13.设H 是连通图G 的子图,举例说明:有可能k(H)> k(G).
解:
通常k(H)<k(G).
e
H
整个图为G,割点e左边的图H为G的的子图,k(H)=3k(G)=1,则k(H)>k(G).。