灰色关联度分析

合集下载

(整理)灰色关联度分析法

(整理)灰色关联度分析法

灰色关联度分析法为了适应瞬息万变的市场需求, 企业不断调整自己的核心能力, 在产品的开发设计中更重视供应商的作用。

作为供应链合作关系运行的基础, 供应商的评价选择是一个至关重要的问题, 供应商的业绩对企业的影响越来越大,影响着企业的生存与发展。

因此, 进行科学全面的供应商评价就显得十分必要。

(1)确定比较对象产品质量、技术水平、供应能力、经济效益、市场影响度指标属于效益型指标;产品价格、地理位置、售后服务指标属于成本型指标。

i 指五个待选供应商编号,,5,,1 =i j 指八个指标8,,1j =,ij a 是第i 个供应商第j 个指标变量为了使每个属性变换后的最优值为1 且最差值为0,对数据进行标准0-1变换利润型指标标准化公式)/()(min maxmin j j j ij ij a a a a b --=成本型指标标准化公式)/()(min max max j j ij j ij a a a a b --=数据结果见下表。

(2)计算灰色关联系数)()(max max )()()()(max max )()(min min )(0000t x t x k x k x t x t x t x t x k s tsi s ts s ts -+--+-=ρρξ为比较数列对参考数列在第个指标上的关联系数,其中为]1,0[∈ρ分辨系数。

称式中)()(min min 0t x t x s ts-、)()(max max 0t x t x s ts-分别为两级最小差及两级最大差。

一般来讲,分辨系数ρ越大,分辨率越大;ρ越小,分辨率越小。

在这里ρ取0.5。

(3)计算灰色加权关联度 灰色加权关联度的计算公式为∑==nk i i k w r 1)(ξ这里i r 为第i 个评价对象对理想对象的灰色加权关联度。

关联系数和关联度值(4)评价分析根据灰色加权关联度的大小,对各评价对象进行排序,可建立评价对象的关联序,关联度越大其评价结果越好。

灰色关联分析详解+结果解读

灰色关联分析详解+结果解读

灰色关联分析1、作用对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。

在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。

因此,灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度。

2、输入输出描述输入:特征序列为至少两项或以上的定量变量,母序列(关联对象)为 1 项定量变量。

输出:反应考核指标与母序列的关联程度。

3、案例示例案例:分析 09-18 年内,影院数量,观影人数,票价、电影上线数量这些因素对全年电影票房的影响。

其中电影票房是母序列,影院数量,观影人数,票价、电影上线数量是特征序列。

4、案例数据灰色关联分析案例数据5、案例操作Step1:新建分析;Step2:上传数据;Step3:选择对应数据打开后进行预览,确认无误后点击开始分析;step4:选择【灰色关联分析】;step5:查看对应的数据数据格式,【灰色关联分析】要求特征序列为定量变量,且至少有一项;要求母序列为定量变量,且只有一项。

step6:设置量纲处理方式(包括初值化、均值化、无处理)、分辨系数(ρ越小,分辨力越大,一般ρ的取值区间为 ( 0 ,1 ),具体取值可视情况而定。

当ρ≤ 0.5463 时,分辨力最好,通常取ρ = 0.5 )step7:点击【开始分析】,完成全部操作。

6、输出结果分析输出结果 1:灰色关联系数图表说明:关联系数代表着该子序列与母序列对应维度上的关联程度值(数字越大,代表关联性越强)。

输出结果 2:关联系数图分析:输出结果 1 和输出结果 2 是一样的,输出结果 1 用了表格形式来呈现关联系数,输出结果 2 用了图表形式来呈现关联系数。

图表很直观地展现了,大多数年份的银幕数量和电影上线数量对票房影响更大。

灰色关联度分析

灰色关联度分析

灰色关联度分析一、 灰色关联分析及理论对于两系统之间的因素,其随时间或不同对象而变化的关联性的大小的量度,称为关联度。

在系统发展过程中,若两个因素变化的趋势具有一致性,即变化程度较高,即可谓二者的关联度较高;反之,则较低。

因此,灰色关联度分析方法,是根据因素之间发展趋势的相似或相异程度,即“灰色关联度”作为衡量因素之间关联程度的一种方法。

灰色系统理论提出了对各子系统进行灰色关联度分析的概念,意图透过一定方法,去寻求系统各子系统(或因素)之间数值的关系。

因此,灰色关联度分析对于一个系统的发展变化态势提供了量化的度量,非常适合动态历程分析。

灰色关联度分析方法模型灰色综合评价主要是依据以下模型:R=Y×W式中,R 为M 个被评价对象的综合评价结果向量;W 为N 个评价指标的权重向量;E 为各指标的评判矩阵,(矩阵略))(k i ξ为第i 个被评价对象的第K 个指标与第K 个最优指标的关联系数。

根据R 的数值,进行排序。

(1)确定最优指标集设],,[**2*1n j j j F =,式中*k j 为第k 个指标的最优值。

此最优序列的每个指标值可以是诸评价对象的最优值,也可以是评估者公认的最优值。

选定最优指标集后,可构造矩阵D (矩阵略)式中ikj 为第i 个期货公司第k 个指标的原始数值。

(2)指标的规范化处理由于评判指标间通常是有不同的量纲和数量级,故不能直接进行比较,为了保证结果的可靠性,因此需要对原始指标进行规范处理。

设第k 个指标的变化区间为],[21k k j j ,1k j 为第k 个指标在所有被评价对象中的最小值,2k j 为第k 个指标在所有被评价对象中的最大值,则可以用下式将上式中的原始数值变成无量纲值)1,0(∈ikC 。

ikk k i ki k j j j j C --=21,m i,2,1=,n k ,,2,1 =(矩阵略)(3)计算综合评判结果 根据灰色系统理论,将],,,[}{**2*1*n C C C C=作为参考数列,将],,,[}{21i n i i C C C C =作为被比较数列,则用关联分析法分别求得第i 个被评价对象的第k 个指标与第k 个指标最优指标的关联系数,即i kkkii kki k k k ii k k kiCC C C C C C C k -+--+-=****i max max max max min min )ρρξ(式中)1,0(∈ρ,一般取5.0=ρ。

灰色关联分析

灰色关联分析

灰色关联分析灰色关联分析是一种常用于研究和预测多个影响因素之间关联程度的方法。

该分析方法可以通过对各个因素的数值进行比较,得出它们之间的关联强度,从而为决策提供依据。

下面将详细介绍灰色关联分析的原理、应用以及优势。

灰色关联分析的原理基于灰色系统理论,该理论是中国科学家陈纳德于1982年提出的一种对部分已知和部分未知信息进行分析的数学方法。

灰色关联分析将各个影响因素的数据进行标准化处理,然后计算各个因素之间的关联度。

通过对关联度进行排序,即可得出影响因素之间的关联程度大小。

灰色关联分析在各个领域都有广泛的应用,比如经济学、管理学、环境科学等。

在经济学领域,可以使用灰色关联分析来研究不同经济指标之间的关联程度,从而预测未来的经济趋势。

在管理学中,可以利用灰色关联分析来研究不同管理指标之间的关联程度,进而指导管理决策。

在环境科学领域,可以运用灰色关联分析来分析各个环境因素对生态系统的影响程度,以及控制污染等。

灰色关联分析相对于其他分析方法有一些独特的优势。

首先,它不要求数据分布满足正态分布等数学假设,可以对数据进行较好的处理。

其次,灰色关联分析可以处理样本量较小的情况,对于样本量不足的数据分析也有较好的适用性。

此外,由于灰色关联分析能够捕捉到数据之间的内在联系,因此对于某些非线性关系的分析,其结果可能更加准确。

然而,灰色关联分析也存在一些限制和不足之处。

首先,该分析方法依赖于数据的稳定性,对于非稳态的数据可能会导致分析结果不准确。

其次,灰色关联分析无法处理存在时间滞后效应的数据。

此外,该方法对数据的标准化要求较高,如果数据质量较差或者存在异常值,也会影响分析结果。

综上所述,灰色关联分析是一种研究和预测多个影响因素之间关联程度的有效方法。

它的原理基于灰色系统理论,可以在各个领域中广泛应用。

灰色关联分析相对于其他分析方法有一些独特的优势,但也存在一定限制。

在实际应用中,我们应该结合具体情况,合理选择分析方法,并充分考虑其适用性和局限性,以提高分析和决策的准确性。

灰色关联度公式

灰色关联度公式

灰色关联度公式灰色关联度分析方法是一种多因素间的关联度分析方法,适用于各种多因素间的关联度分析问题。

该方法在解决多因素间的关联度分析问题时,不需要事先建立准确的模型,也不需要事先明确各因素之间的关系,只需要给出各因素对应的历史数据序列即可。

灰色关联度公式是灰色关联度分析方法的核心,它通过比较多个因素的发展规律,评估它们之间的关联程度。

灰色关联度公式如下:$$\rho_ij = \frac{{min|y_{0i} - y_{0j}| + \Delta }}{{max|y_{0i} - y_{0j}| + \Delta }}$$其中,$\rho_ij$表示第$i$个因素和第$j$个因素的关联度,$y_{0i}$和$y_{0j}$分别表示第$i$个因素和第$j$个因素的数据序列,$\Delta$是关联度分析中的常数,用于处理零值和负值。

通过计算灰色关联度公式,可以得到各个因素间的关联度,从而进行比较和排序。

关联度越高,说明因素间的关联程度越大,反之,关联度越低,说明因素间的关联程度越小。

在实际应用中,灰色关联度分析方法常用于评估各种指标的综合质量,分析影响因素的重要性,确定影响因素的权重等。

下面是一些常见的应用场景和参考内容:1. 经济分析:可以使用灰色关联度分析方法分析影响经济增长的各个因素之间的关联程度,如GDP、消费水平、投资等因素间的关联度。

2. 产业分析:可以使用灰色关联度分析方法分析不同产业之间的关联程度,评估各个产业在整体产业结构中的重要性。

3. 市场营销:可以使用灰色关联度分析方法分析市场营销活动中各个因素的关联度,评估不同市场营销策略的效果。

4. 环境评价:可以使用灰色关联度分析方法评估环境影响因素之间的关联程度,确定主要的环境影响因素和其权重。

5. 工程管理:可以使用灰色关联度分析方法分析工程进度、质量、成本等因素之间的关联度,确定影响工程管理的主要因素和其权重。

总之,灰色关联度分析方法通过灰色关联度公式,可以帮助我们评估多个因素间的关联程度,并为决策提供依据。

灰色关联分析

灰色关联分析

灰色关联分析灰色关联分析(Grey Relational Analysis, GRA)什么是灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度[1]。

灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。

此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。

与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。

灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。

其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。

灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。

[2]关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。

而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。

[2]灰色关联分析的步骤[2]灰色关联分析的具体计算步骤如下:第一步:确定分析数列。

确定反映系统行为特征的参考数列和影响系统行为的比较数列。

反映系统行为特征的数据序列,称为参考数列。

影响系统行为的因素组成的数据序列,称比较数列。

设参考数列(又称母序列)为Y={Y(k) | k = 1,2,Λ,n};比较数列(又称子序列)X i={X i(k)| k = 1,2,Λ,n},i = 1,2,Λ,m。

(整理)灰色关联度分析法

(整理)灰色关联度分析法

灰色关联度分析法为了适应瞬息万变的市场需求, 企业不断调整自己的核心能力, 在产品的开发设计中更重视供应商的作用。

作为供应链合作关系运行的基础, 供应商的评价选择是一个至关重要的问题, 供应商的业绩对企业的影响越来越大,影响着企业的生存与发展。

因此, 进行科学全面的供应商评价就显得十分必要。

(1)确定比较对象产品质量、技术水平、供应能力、经济效益、市场影响度指标属于效益型指标;产品价格、地理位置、售后服务指标属于成本型指标。

i 指五个待选供应商编号,,5,,1 =i j 指八个指标8,,1j =,ij a 是第i 个供应商第j 个指标变量为了使每个属性变换后的最优值为1 且最差值为0,对数据进行标准0-1变换利润型指标标准化公式)/()(min maxmin j j j ij ij a a a a b --=成本型指标标准化公式)/()(min max max j j ij j ij a a a a b --=数据结果见下表。

(2)计算灰色关联系数)()(max max )()()()(max max )()(min min )(0000t x t x k x k x t x t x t x t x k s tsi s ts s ts -+--+-=ρρξ为比较数列对参考数列在第个指标上的关联系数,其中为]1,0[∈ρ分辨系数。

称式中)()(min min 0t x t x s ts-、)()(max max 0t x t x s ts-分别为两级最小差及两级最大差。

一般来讲,分辨系数ρ越大,分辨率越大;ρ越小,分辨率越小。

在这里ρ取0.5。

(3)计算灰色加权关联度 灰色加权关联度的计算公式为∑==nk i i k w r 1)(ξ这里i r 为第i 个评价对象对理想对象的灰色加权关联度。

关联系数和关联度值(4)评价分析根据灰色加权关联度的大小,对各评价对象进行排序,可建立评价对象的关联序,关联度越大其评价结果越好。

灰色关联分析

灰色关联分析

灰色关联分析简介灰色关联分析是一种用于评估多个因素之间相关性的统计分析方法。

它可以帮助我们理解一组因素对于某个指标的影响程度,并且可以用来预测未来的趋势。

原理灰色关联分析基于灰色理论,其核心思想是将样本数据转化为灰色数列,然后通过计算灰色相关度来评估因素之间的关联性。

在灰色关联分析中,我们首先需要确定一个参考数列和一个比较数列,然后根据数列的发展趋势和规律性对它们进行排序。

最后,通过计算两个数列之间的关联度来评估它们之间的关联程度。

灰色关联度的计算方法灰色关联度可以通过以下公式计算:$$ \\rho(i,j) = \\frac{{\\min(\\Delta^*+(k-1)\\Delta^*,\\Delta^*+\\delta^*+(k-1)\\Delta^*,\\Delta^*-\\delta^*+(k-1)\\Delta^*)}}{{\\max(\\Delta^*+(k-1)\\Delta^*,\\Delta^*+\\delta^*+(k-1)\\Delta^*,\\Delta^*-\\delta^*+(k-1)\\Delta^*)}} $$其中,$\\Delta^*$表示相邻数据的差值绝对值的最大值,$\\delta^*$表示数列中数据的最大值与最小值之差。

灰色关联分析步骤1.数据预处理:将原始数据进行标准化处理,使其具有可比性。

2.建立关联矩阵:根据参考数列和比较数列计算灰色关联度,并构建关联矩阵。

3.确定权重:根据关联矩阵的行列和大小确定各因素的权重,权重越大表示因素对目标的影响越大。

4.计算综合关联度:将灰色关联度与权重相乘并求和,得到各个因素的综合关联度。

5.分析结果:根据综合关联度的大小对因素进行排序和评估,得出各因素对目标的贡献程度。

适用领域灰色关联分析在许多领域都有广泛的应用,包括经济、环境、工程等。

它可以用于评估多个因素对某个现象的影响程度,帮助决策者制定合理的决策和策略。

优势与局限灰色关联分析具有以下优势:•可以在样本数据不完整或不完全的情况下进行分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设 X i (xi (1), xi (2), , xn (n)) 为因素 X i 的行为序列
初值化
一般地,初值化方法适用于较稳定的社会经济现象的无量纲化,因 为这样的数列多数呈稳定增长趋势,通过初值化处理,可使增长趋 势更加明显。
均值化
一般说来,均值化方法比较适合于没有明显升降趋势现象的数据处理。 区间化
灰色关联度分析
主讲: 孙玉虎
中国矿业大学徐海学院
➢何为灰色关联度分析? ➢如何计算? ➢有何应用?
灰色关联度分析
灰色系统
是指部分信息已知而部分信息未知的系统,灰色系 统理论所要考察和研究的是对信息不完备的系统,通过 已知信息来研究和预测未知领域从而达到了解整个系统 的目的。
关联度
关联度是事物之间、因素之间关联性大小的量度。它 定量地描述了事物或因素之间相互变化的情况,即变 化的大小、方向与速度等的相对性。如果事物或因素 变化的态势基本一致,则可以认为它们之间的关联度 较大,反之,关联度较小。
i 1,2,...,n
如果各指标在综合评价中所起的作用不同,可对关联系数求加权平均值,即
W ' 1 P P 0i k 1

k
(k)
i
k 1,2,...,P
式中 W k 为各指标权重。
依据各观察对象的关联度,得出综合评价结果。
例2 利用灰色关联度分析对6位教师工作状况进行综合评价 1、评价指标包括:专业素质、外语水平、教学工作量、科研成果、论文、 著作与出勤。 2、对原始数据经过处理后得到以下数值,见表
确定参考数列
对一个抽象系统或现象进行分析,首先要选准反映系统行为特征的 数据序列(参考序列)。我们称之为找系统行为的映射量,用映射量 来间接地表征系统行为。比如:
国民平均受教育的年限
教育的发达程度
刑事案件的发案率
社会治安面貌和社会秩序
原始数据的处理
由于各因素各有不同的计量单位,因而原始数据存在量纲和数量级上的 差异,不同的量纲和数量级不便于比较,或者比较时难以得出正确结论。 因此,在计算关联度之前,通常要对原始数据进行无量纲化处理。
两极最大差与最小差:
关联系数:
式中 为分辩系数,用来削弱Δ(max)过大而使关联系数失真的影响。 人为引入这个系数是为了提高关联系数之间的差异显著性。
关联度的计算与比较
由于每个比较数列与参考数列的关联程度是通过n 个关联系数来反映的, 关联信息分散,不便于从整体上进行比较。因此,有必要对关联信息作集 中处理。而求平均值便是一种信息集中的方式。即用比较数列与参考数列 各个时期的关联系数之平均值来定量反映这两个数列的关联程度,其计算 公式为:
灰色关联度分析的运用
➢因 素 分 析 ➢综 合 评 价
因素分析
第一步 对数据做均值化处理
第二步 计算各比较数列同参考数列在同一时期的绝对差 再分别计算出其余4年的各绝对差
第三步 找出两极最大差与最小差
第四步 计算关联系数,取分辨系数
,则计算公式为:
第五步 计算关联度。
利用表4,分别求各个数列每个时期的关联系数的平均值即得关联度:
就可求得两级最大差Δ(max)和两级最小差Δ(min) 计算关联系数
计算第i 个被评价对象与最优参考序列间的关联 系数。
计算关联度
对各评价对象分别计算其p个指标与参考序列对应元素的关联系数的
均值,以反映各评价对象与参考序列的关联关系,称其为关联度,
记为 0i
1
P
(k)
P 0i k 1
第j 项指标实际值的最大值;如果是逆向指标,则是最小值;如果是适度标,
便是该指标的适度值。
无量纲化
此时,各指标的最优值均为1。为叙述方便,把无量纲化后的数 据仍记为xij,则最优参考序列为x0={1,1,…,1}。
求两极最大差和最小差 计算各被评价对象序列与最优参考序列间的绝对差列: 在此基础上,依公式
基本思想:
根据序列曲线几何形状的相似程度来判断其联 系是否紧密,曲线越接近,相应序列之间的关 联度就越大,反之就越小。
100
90
90
85
80
80
80
75
70
60
60
50 周阿舍 劉阿華 蕭阿薔
總成績 考試成績 出席率
圖一 某老師給學生的評分表曲線圖
灰色关联度的计算
➢ 确定参考数列 ➢ 处理原始数据 ➢ 计算关联系数 ➢ 关联度的计算与比较
设有n 个被评价对象,每个被评价对象有p 个评价指标。这 样,第i 个被评价对象可描述为
步骤:
确定参考序列
根据各评价指标的经济含义,在n 个被评价对象中选出各项指 标的最优值组成参考序列
实际上,参考序列
构成了一个相对理想化的最优样本,是综合评价的标
准。如果第j 项指标是数值越大越好的正向指标,则 就是n 个被评价对象
一般地,三种方法不宜混合、重叠作用,在进行系统因素分析时, 可根据实际情况选用其中一个。
若系统 因素 X i 与系统主行为 X
可以将其逆化或倒数化后进行计算。
0
呈负相关关系,我们
逆化
倒数化
关联系数的计算
设经过数据处理后的参考数列为:
比较数列为:
从几何角度看,关联程度实质上是参考数列与比较数列曲线形状的相似程度。凡 比较数列与参考数列的曲线形状接近,则两者间的关联度较大;反之,如果曲线 形状相差较大,则两者间的关联度较小。因此,可用曲线间的差值大小作为关联 度的衡量标准。 则:
第六步 排关联序 由关联度数值可看出,r03>r01>r02。这表明,三种工资对工资总 额的关联程度的排列顺序为:承包工资、计时工资、档案工资。即该 公路施工企业的工资发展方向是以承包工资为主导,计时工资和档案 工资对样本中确定一个理想化的最优样本,以此为参考数列,通过计 算各样本序列与该参考序列的关联度,对被评价对象做出综合比 较和排序。
相关文档
最新文档