2016-2017学年高中数学 第四章 圆与方程 28 圆与圆的位置关系、直线与圆的方程的应用课时作业
【高中数学】直线与圆、圆与圆的位置关系
12+22
5
弦长为 2 r2-d2=2 55. 5
答案:2 55 5
8.若 P(2,1)为圆(x-1)2+y2=25 的弦 AB 的中点,则直线 AB 的方程为________.
-1 解析:因为圆(x-1)2+y2=25 的圆心为(1,0),所以直线 AB 的斜率等于1-0=-1,由
2-1
点斜式得直线 AB 的方程为 y-1=-(x-2),即 x+y-3=0.
2 1- 4 2= 14.
2
[解题技法] 几何法判断圆与圆的位置关系的 3 步骤
(1)确定两圆的圆心坐标和半径长; (2)利用平面内两点间的距离公式求出圆心距 d,求 r1+r2,|r1-r2|; (3)比较 d,r1+r2,|r1-r2|的大小,写出结论.
[课时跟踪检测]
A级
1.若直线 2x+y+a=0 与圆 x2+y2+2x-4y=0 相切,则 a 的值为( )
高中数学学科
=0 的距离 d>2,即 |k+2| >2,解得 0<k<4.
k2+1
3
答案:
0,4 3
3.设直线 y=kx+1 与圆 x2+y2+2x-my=0 相交于 A,B 两点,若点 A,B 关于直线 l:
x+y=0 对称,则|AB|=________.
解析:因为点 A,B 关于直线 l:x+y=0 对称,所以直线 y=kx+1 的斜率 k=1,即 y
(2)直线被圆截得的弦长
Байду номын сангаас
弦心距
d、弦长
l
的一半
1l
及圆的半径 r
构成一直角三角形,且有
r2=d2+
1l 2
2.
2
考点一 直线与圆的位置关系
最新人教版高中数学必修2第四章《圆与方程》本章概要
第四章圆与方程
本章概要
本章主要内容包括圆的标准方程、圆的一般方程、直线与圆的位置关系、圆与圆的位置关系、空间直角坐标系中点的坐标及空间中两点间的距离公式.
圆与直线是常见的两个几何图形,在实际生活和生产实践中有广泛的应用,它是众多知识的交汇点之一,要注意与其他多方面知识的联系与运用.
圆这一章属于解析几何学的基础知识,它不但是进一步学习圆锥曲线与其他曲线方程的基础,也是学习导数、微分、积分等的基础,在解决实际问题中有广泛的应用.
平面解析几何的基本思想方法是利用平面直角坐标系,把点用坐标表示,直线、圆等用方程表示.并用代数方法研究几何问题,这就是人们常说的“坐标法”.这种方法与平面几何中的综合法、向量法都可以建立联系,另外还可以推广到空间中去解决立体几何问题.
学习策略
初中数学中我们学习了两方面的知识:直线形的和曲线形的.圆就是曲线形中我们重点学习过的内容,所以学习本章前要对圆的相关知识进行回顾复习.此外,学习本章时要注重处理问题的方法与技巧.
1.确定圆的方程,一般用待定系数法.如果条件与圆心和半径有关,通常选择圆的标准方程;如果已知点的坐标,条件与圆心无直接关系,一般选用圆的一般方程.
2.直线与圆的位置关系可以根据方程组解的情况来判断.但利用圆心到直线的距离与圆的半径进行比较更方便.
3.直线与圆相交,求弦长或求与弦长有关系的问题,利用平面几何中的垂径定理往往比较简单.
4.过一点作圆的切线,应首先判断点是否在圆上,如果点在圆上,可直接利用公式写出圆的切线方程;如果点在圆外,必有两条切线,如果关于斜率k的方程只有一解,则另一条切线必为斜率不存在的直线,务必要补上.
5.学习过程中要注意数形结合思想的运用,充分利用图形的性质减少运算量,节省时间,提高准确度,会起到事半功倍的效果.。
高中数学必修:圆与圆的位置关系
通过学习与实际生活密切相关的应用题,加强数学知识的应用能力和解决实际问题的能力 。
THANKS
感谢观看
02
相交与相切情况探讨
相交时性质分析
01
两圆相交于两点,这两 点称为交点。
02
每个圆的圆心到交点的 距离都等于该圆的半径 。
03
两圆圆心连线(称为连 心线)垂直平分两圆交 点连线。
04
两圆相交时,其公共弦 小于两圆半径之和且大 于两圆半径之差。
相切时性质分析
01
02
03
04
两圆相切时,它们仅有一个公 共点,称为切点。
03
忽视公共弦的存在性
在求解与圆有关的问题时,要注意考虑是否存在公共弦的情况,避免遗
漏解。
解题策略分享
画图辅助分析
在解决与圆有关的问题时,可以画出草图辅助分析,帮助理解题目 条件和解题思路。
利用已知条件列方程
根据题目给出的已知条件,列出相应的方程或不等式,通过求解方 程或不等式来解决问题。
分类讨论思想
注意安全
在使用尺规等尖锐工具时,要 注意安全,避免划伤皮肤。
06
知识点回顾与总结
关键知识点梳理
圆的标准方程和一般方程
两点间距离公式
能够熟练掌握并灵活运用两种方程形式。
用于计算两圆心的距离,从而判断两圆的 位置关系。
圆与圆的位置关系判断
公共弦问题
通过比较圆心距与两圆半径之和或之差的 关系,确定两圆的位置关系(相离、外切 、相交、内切、内含)。
例题2:已知两圆相切,且 圆心距为8cm,一圆的半径 为3cm,求另一圆的半径。
解析:设另一圆的半径为 $R$ cm,由于两圆相切, 则圆心距等于两圆半径之和 或之差,即$8 = R + 3$或 $8 = |R - 3|$,解得$R = 5$ cm或$R = 11$ cm(舍 去,因为此时两圆相离), 因此另一圆的半径为5cm。
高中数学 第四章 圆与方程 4.2.1 直线与圆的位置关系课件 新人教A版必修2
[解] 方法 1:联立直线和圆的方程组成方程组: y=x+b, x2+y2=1, 整理可得 2x2+2bx+b2-1=0,其中 Δ=4(2-b2). (1)当 Δ=0,即 b=± 2时,直线和圆相切,此时直线和圆 仅有一个公共点. (2)当 Δ>0,即- 2<b< 2时,直线和圆相交,此时直线和 圆有两个公共点. (3)当 Δ<0,即 b<- 2或 b> 2时,直线和圆相离,此时直 线和圆没有公共点.
请 做:课 时 作 业 27
(点击进入)
学科素养培优精品微课堂
根据直线与圆的位置关系求参数的值或范围 [开讲啦] 解析几何中的最值问题,一般是根据条件列出所 求目标——函数关系式,然后根据函数关系式的特征选用参数 法、配方法、判别式法等,应用不等式求出其最值(取值范围).对 于圆的最值问题,要利用圆的特殊几何性质,根据式子的几何 意义求解,这常常是简化运算的最佳途径.
若直线 l 斜率不存在,则直线方程为 x=-3.圆心到该直线
距离为 3,又圆半径为 5,所以求得弦长为 8,不合题意,舍去.
若直线 l 的斜率存在,设直线 l 的方程为 y+3=k(x+3),
即 kx-y+3k-3=0.
圆心到直线 l 的距离为 d=|31k+-k12|, Nhomakorabea则
|31k+-k12| 2+(2
解:设圆 C 的方程是(x-2)2+(y+1)2=r2(r>0), 则弦长 l=2 r2-d2, 其中 d 为圆心到直线 x-y-1=0 的距离,d= 2. ∴l=2 r2- 22=2 2.∴r2=4. ∴圆方程为(x-2)2+(y+1)2=4.
温馨 提 示
请 做:课堂达标练经典
(点击进入)
温馨 提 示
2016-2017学年高一数学2练习:第四章 圆与方程 含解析
第四章测评(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知圆C 关于y 轴对称,经过点A (1,0)且被x 轴分成两段弧,且两段弧长比为1∶2,则圆C 的方程为( )A 。
(x ±√33)2+y 2=43B 。
(x ±√33)2+y 2=13C.x 2+(y ±√33)2=43D.x 2+(y ±√33)2=13解析:设圆心C (0,a ),则半径为CA ,根据圆被x 轴分成的两段弧的长之比为1∶2,可得圆被x 轴截得的弦对的圆心角为2π3,故有tan π=|1|,解得a=±√3,半径r=√43,故圆的方程为x 2+(y ±√33)2=43.答案:C2.直线l :x-y=1与圆C :x 2+y 2—4x=0的位置关系是 ( )A.相离 B 。
相切C 。
相交 D.无法确定解析:圆C 的圆心为C (2,0),半径为2,圆心C 到直线l 的距离d=|2-1|√2=√22<2,所以圆C 与直线l 相交。
答案:C3。
圆x 2+y 2—4x=0在点P (1,√3)处的切线方程为( ) A 。
x+√3y-2=0 B .x+√3y —4=0 C 。
x-√3y+4=0 D .x —√3y+2=0解析:∵点P (1,√3)在圆x 2+y 2-4x=0上,∴点P 为切点。
从而圆心与点P 的连线应与切线垂直.又圆心为(2,0),设切线斜率为k , ∴0-√32-1·k=—1,解得k=√33。
∴切线方程为x-√3y+2=0。
答案:D4.两圆相交于点A (1,3),B (m ,—1),两圆的圆心均在直线x-y+c=0上,则m+c 的值为( ) A 。
-1 B .2 C .3 D 。
0解析:由条件可知,AB 的中点在直线x —y+c=0上,且AB 与该直线垂直,∴{m+12-1+c =0,3+11-m=-1,解得{m =5,c =-2,∴m+c=5-2=3.答案:C5.圆C 1:x 2+y 2+2x+2y-2=0与C 2:x 2+y 2—4x-2y+1=0的公切线有且仅有( ) A.1条 B .2条 C .3条 D .4条解析:两圆的标准方程分别为(x+1)2+(y+1)2=4,(x-2)2+(y-1)2=4.∴|C 1C 2|=√(2+1)2+(1+1)2=√13.∴|r 1—r 2|<|C 1C 2|〈r 1+r 2,即两圆相交, ∴两圆共有两条公切线.答案:B6.(2016河南洛阳八中段考试题)已知圆C 经过A (5,1),B (1,3)两点,圆心C 在x 轴上,则圆C 的方程为( ) A .(x —2)2+y 2=50 B 。
高二数学必修二 第四章《圆与方程》4.2直线、圆的位置关系
高二数学必修2 第四章 圆与方程§4.2直线、圆的位置关系§4.2.1直线与圆的位置关系(1)【学习目标】理解直线和圆的位置关系的判断方法,能根据给定直线、圆的方程判断直线与圆的位置关系.【学习重点】直线与圆的位置关系的判断方法的运用.【学习难点】用代数法判断直线与圆的位置关系.【学习过程】一、自主学习(阅读课本第126-127页,完成自主学习)1.复习导入:(1)直线的一般式方程为___________________(2)圆的标准方程为___________________,圆心为________,半径为______.(3)圆的一般方程为__________________,圆心为________,半径为_____________.2.完成下列问题:(1)平面几何中,直线与圆的位置关系有直线与圆_____、直线与圆_____、直线与圆_____三种.(2)直线与圆的三种位置关系的含义是:(3)判断直线与圆的位置关系的方法方法一:就是看由它们的方程组成的方程组_______________;(代数法)方法二:可以依据______________与___________的关系判断直线与圆的位置关系.(几何法)二、合作探究例1 :已知直线:360l x y +-=和圆心为C 的圆22240x y y +--=,判断直线l 与圆的位置关系.如果相交,求出它们的交点坐标.例2:已知圆的方程是222x y +=,直线y x b =+,当b 为何值时,圆与直线有两个公共点、一个公共点,没有公共点.三、达标检测1.已知直线l 的斜率为1,-且与圆2223x y +=只有一个公共点,求直线l 的方程.2.判断直线3420x y ++=与圆2220x y x +-=的位置关系.四、学习小结代数法判断直线与圆的位置关系的步骤:1.____________________________________________;2.____________________________________________;3.____________________________________________;4.____________________________________________;高二数学必修2 第四章圆与方程§4.2.1直线与圆的位置关系(2)【学习目标】掌握直线与圆的三种位置关系的判定方法.【学习重点】已知直线和圆的位置关系,求直线或圆的方程.【学习难点】圆的切线方程的求法.【学习过程】一、自主学习(阅读课本第126-127页,完成自主学习)1.知识回顾:(1)平面几何中,直线与圆的位置关系有直线与圆_____、直线与圆_____、直线与圆_____三种.(2)判断直线l与圆的位置关系方法一,就是看由它们的方程组成的方程组_______________;(代数法)方法二,可以依据_____________与___________的关系判断直线与圆的位置关系.(几何法)2.自我认知:(1)过圆上一点可作几条切线?(2)过圆外一点可作几条切线?(3)过圆内一点可作几条切线?二、合作探究例1:过点P(-1,0)向圆x2+y2=1引切线,求切线的方程.例2:过点P(-2,0)向圆x2+y2=1引切线,求切线的方程.例3:求圆C:x2+(y-1)2=9与直线l:x-y+1=0.的交点坐标推广:已知圆的方程为22(2)1x y ++=,(,)P x y 为圆上任一点,求21y x --的最大、最小值.三、达标检测1.分别过点12341(,(1,0),(2,0),(1,2)22P P P P ----向圆221x y +=引切线,求它们各自切线的方程.2.已知直线43350x y +-=与圆心在原点的圆C 相切,求圆C 的方程.3.求过点(1,2)P -且与圆22:5C x y +=相切的直线方程.4.求斜率为3,且与圆2210x y +=相切的直线方程.四、学习小结1.求圆的切线方程,一般有三种方法:一是设切点,利用切线公式法;二是设切线的斜率,用判别式法;三是设切线的斜率,用图形的几何性质来解,即圆心到切线的距离等于圆的半径(d =r ),求出k 的值.2、把直线与圆的方程联立得方程组,方程组的解即是交点的坐标.高二数学必修2 第四章 圆与方程§4.2.1直线与圆的位置关系(3)【学习目标】掌握直线与圆的三种位置关系的判定方法.【学习重点】根据直线和圆的位置关系,解决相关问题.【学习难点】圆的弦长的求法.【学习过程】一、自主学习(阅读课本第127-128页,完成自主学习)知识回顾 复习导入:1.平面几何中,直线与圆的位置关系有直线与圆_____、直线与圆_____、直线与圆____ 三种.2.判断直线l 与圆的位置关系方法一:就是看由它们的方程组成的方程组_______________;(代数法)方法二:可以依据______________与____________的关系判断直线与圆的位置关系.(几何法)二、合作探究例1:求直线360x y --=被圆22240x y x y +--=截得的弦长.例2:如果一条直线经过点3(3,)2M --且被圆2225x y +=所得的弦长为8,求这条直线的方程.例3:已知圆2246120x y x y +-+-=内的一点(4,2)A -,求以A 为中点的弦所在的直线方程.三、达标检测1.求直线:220l x y --=被圆22:(3)9C x y -+=所截得的弦长.2.已知直线l 的斜率为k ,且与圆x 2+y 2=r 2只有一个公共点,求直线l 的方程.3.已知圆C :x 2+(y -1)2=5,直线l :mx -y +1-m =0.求证:对m ∈R ,直线l 与圆C 总有两个不同交点;4.求直线:3x -y -6=0被圆x 2+y 2-2x -4y =0截得的弦长四、学习小结圆的弦长公式1.___________________________________________________;2.___________________________________________________;高二数学必修2 第四章圆与方程§4.2.2圆与圆的位置关系【学习目标】掌握圆和圆的位置关系及其判定方法.【学习重点】求弦长问题,判断圆和圆的位置关系.【学习难点】判断圆和圆的位置关系.【学习过程】一、自主学习(阅读课本第129-130页,完成自主学习)知识回顾:(1)平面几何中,圆与圆的位置关系有五类,分别是______、_______、_______、______、______(2)判断两圆的位置关系的步骤及其判断方法一(几何法):第一步:计算两圆的半径R,r;第二步:计算两圆的圆心距O1O2,即d;第三步:根据d与R,r之间的关系,判断两圆的位置关系.方法二(代数法):解两个圆的方程所组成的二元二次方程组.若方程组有两组不同的实数解,则两圆________;若方程组有两组相同的实数解,则两圆_______;若无实数解,两圆_______.二、合作探究例1:已知圆C1:x2+y2+2x+8y-8=0,圆C2:x2+y2-4x-4y-2=0,判断两圆的位置关系.例2:已知圆C1:x2+y2+2x-6y+1=0,圆C2:x2+y2-4x+2y-11=0,求两圆的公共弦所在的直线方程及公共弦长.三、达标检测1.判断下列两圆的位置关系,如果两圆相交,请求出公共弦的方程.(1)(x+2)2+(y-2)2=1与(x-2)2+(y-5)2=16,(2)x2+y2+6x-7=0与x2+y2+6y-27=0.2.求过点A(0,6)且与圆C:x2+y2+10x+10y=0切于原点的圆的方程.四、学习小结1.判断两圆的位置关系,一般情况下先化为标准方程,利用______判断较为准确直观.2.两个圆方程联立方程组,消去x2项、y2项,即得两圆的______所在的直线方程,利用勾股定理可求出两圆公共弦长.。
高中数学 第四章 圆与方程 4.2 4.2.2 圆与圆的位置关系 4.2.3 直线与圆的方程的应用学
4.2.2 圆与圆的位置关系4.2.3 直线与圆的方程的应用目标定位 1.掌握圆与圆的位置关系及判定方法.2.能利用直线与圆的位置关系解决简单的实际问题.3.理解坐标法解决几何问题的一般步骤.自主预习1.圆与圆位置关系的判定(1)几何法:若两圆的半径分别为r1、r2,两圆的圆心距为d,则两圆的位置关系的判断方法如下:位置关系外离外切相交内切内含图示d与r1、r2的关系d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r1-r2| d<|r1-r2|(2)代数法:通过两圆方程组成方程组的公共解的个数进行判断.⎭⎪⎬⎪⎫圆C 1方程圆C 2方程――→消元一元二次方程⎩⎪⎨⎪⎧Δ>0⇒相交Δ=0⇒内切或外切Δ<0⇒外离或内含2.用坐标方法解决平面几何问题的“三步曲”:即 时 自 测1.判断题(1)两圆无公共点,则两圆外离.( ×)(2)两圆有且只有一个公共点,则两圆内切和外切.(√)(3)设两圆的圆心距为l ,两圆半径长分别为r 1,r 2,则当|r 1-r 2|<l <r 1+r 2时,两圆相交.(√)(4)两圆外切时,有三条公切线:两条外公切线,一条内公切线.(√) 提示 (1)两圆无公共点,则两圆外离和内含.2.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系为( ) A.相离B.相交C.外切D.内切解析 圆O 1的圆心坐标为(1,0),半径长r 1=1;圆O 2的圆心坐标为(0,2),半径长r 2=2;1=r 2-r 1<|O 1O 2|=5<r 1+r 2=3,即两圆相交. 答案 B3.圆x 2+y 2+4x -4y +7=0与圆x 2+y 2-4x +10y +13=0的公切线的条数是( ) A.1B.2C.3D.4解析 两圆的圆心坐标和半径分别为(-2,2),(2,-5),1,4,圆心距d =(-2-2)2+(2+5)2>8,1+4=5<8,∴两圆相离,公切线有4条. 答案 D4.两圆x 2+y 2=r 2与(x -3)2+(y +1)2=r 2(r >0)外切,则r 的值是________.解析 由题意可知(3-0)2+(-1-0)2=2r ,∴r =102. 答案102类型一 与两圆相切有关的问题【例1】 求与圆x 2+y 2-2x =0外切且与直线x +3y =0相切于点M (3,-3)的圆的方程. 解 设所求圆的方程为(x -a )2+(y -b )2=r 2(r >0), 则(a -1)2+b 2=r +1,①b +3a -3=3,② |a +3b |2=r .③ 联立①②③解得a =4,b =0,r =2,或a =0,b =-43,r =6,即所求圆的方程为(x -4)2+y 2=4或x 2+(y +43)2=36. 规律方法 两圆相切时常用的性质有:(1)设两圆的圆心分别为O 1、O 2,半径分别为r 1、r 2,则两圆相切⎩⎪⎨⎪⎧内切⇔|O 1O 2|=|r 1-r 2|外切⇔|O 1O 2|=r 1+r 2(2)两圆相切时,两圆圆心的连线过切点(两圆若相交时,两圆圆心的连线垂直平分公共弦). 【训练1】 求与圆(x -2)2+(y +1)2=4相切于点A (4,-1)且半径为1的圆的方程. 解 设所求圆的圆心为P (a ,b ),则 (a -4)2+(b +1)2=1.①(1)若两圆外切,则有(a -2)2+(b +1)2=1+2=3,②联立①②,解得a =5,b =-1,所以,所求圆的方程为(x -5)2+(y +1)2=1; (2)若两圆内切,则有(a -2)2+(b +1)2=|2-1|=1,③联立①③,解得a =3,b =-1,所以,所求圆的方程为(x -3)2+(y +1)2=1. 综上所述,所求圆的方程为(x -5)2+(y +1)2=1或(x -3)2+(y +1)2=1. 类型二 与两圆相交有关的问题(互动探究)【例2】 已知两圆x 2+y 2-2x +10y -24=0和x 2+y 2+2x +2y -8=0.(1)判断两圆的位置关系; (2)求公共弦所在的直线方程; (3)求公共弦的长度. [思路探究]探究点一 当两圆相交时,其公共弦所在直线的方程是什么? 提示 两圆的方程相减即可得公共弦所在直线的方程. 探究点二 如何求公共弦长?提示 (1)代数法:将两圆的方程联立,求出两交点的坐标,利用两点间的距离公式求弦长. (2)几何法:求出公共弦所在的直线方程,半径、弦心距、半弦长构成直角三角形的三边长,利用勾股定理求弦长.解 (1)将两圆方程配方化为标准方程,C 1:(x -1)2+(y +5)2=50, C 2:(x +1)2+(y +1)2=10,则圆C 1的圆心为(1,-5),半径r 1=52, 圆C 2的圆心为(-1,-1),半径r 2=10.又∵|C 1C 2|=25,r 1+r 2=52+10,r 1-r 2=52-10, ∴r 1-r 2<|C 1C 2|<r 1+r 2,∴两圆相交.(2)将两圆方程相减,得公共弦所在直线方程为x -2y +4=0. (3)法一 由(2)知圆C 1的圆心(1,-5)到直线x -2y +4=0的距离d =|1-2×(-5)+4|1+(-2)2=35, ∴公共弦长l =2r 21-d 2=250-45=2 5.法二 设两圆相交于点A ,B ,则A ,B 两点满足方程组⎩⎪⎨⎪⎧x -2y +4=0,x 2+y 2+2x +2y -8=0, 解得⎩⎪⎨⎪⎧x =-4,y =0,或⎩⎪⎨⎪⎧x =0,y =2.即A (-4,0),B (0,2).所以|AB |=(-4-0)2+(0-2)2=25, 即公共弦长为2 5.规律方法 1.两圆相交时,公共弦所在的直线方程若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在直线的方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0.2.公共弦长的求法(1)代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长. (2)几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.【训练2】 已知圆C 1:x 2+y 2+2x -6y +1=0,圆C 2:x 2+y 2-4x +2y -11=0,求两圆的公共弦所在的直线方程及公共弦长.解 设两圆交点为A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标是方程组⎩⎪⎨⎪⎧x 2+y 2+2x -6y +1=0, ①x 2+y 2-4x +2y -11=0 ②的解, ①-②得:3x -4y +6=0. ∵A ,B 两点坐标都满足此方程,∴3x -4y +6=0即为两圆公共弦所在的直线方程. 易知圆C 1的圆心(-1,3),半径r 1=3. 又C 1到直线AB 的距离为d =|-1×3-4×3+6|32+(-4)2=95. ∴|AB |=2r 21-d 2=232-⎝ ⎛⎭⎪⎫952=245.即两圆的公共弦长为245.类型三 直线与圆的方程的应用【例3】 一艘轮船沿直线返回港口的途中,接到气象台的台风预报,台风中心位于轮船正西70 km 处,受影响的范围是半径为30 km 的圆形区域,已知港口位于台风中心正北40 km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?解 以台风中心为坐标原点,以东西方向为x 轴建立直角坐标系(如图),其中取10 km 为单位长度,则受台风影响的圆形区域所对应的圆的方程为x 2+y 2=9, 港口所对应的点的坐标为(0,4),轮船的初始位置所对应的点的坐标为(7,0), 则轮船航线所在直线l 的方程为x 7+y4=1, 即4x +7y -28=0.圆心(0,0)到航线4x+7y-28=0的距离d=|28|42+72=2865,而半径r=3,∴d>r,∴直线与圆相离,所以轮船不会受到台风的影响.规律方法解决直线与圆的方程的实际应用题时应注意以下几个方面:【训练3】台风中心从A地以20千米/时的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,B城市处于危险区内的时间为( )A.0.5小时B.1小时C.1.5小时D.2小时解析以台风中心A为坐标原点建立平面直角坐标系,如图,则台风中心在直线y=x上移动,又B(40,0)到y=x的距离为d=202,由|BE|=|BF|=30知|EF|=20,即台风中心从E到F时,B城市处于危险区内,时间为t=20千米20千米/时=1小时.故选B.答案 B[课堂小结]1.判断圆与圆位置关系的方式通常有代数法和几何法两种,其中几何法较简便易行、便于操作.2.直线与圆的方程在生产、生活实践以及数学中有着广泛的应用,要善于利用其解决一些实际问题,关键是把实际问题转化为数学问题;要有意识用坐标法解决几何问题,用坐标法解决平面几何问题的思维过程:1.圆x 2+y 2=1与圆x 2+y 2+2x +2y +1=0的交点坐标为( ) A.(1,0)和(0,1) B.(1,0)和(0,-1) C.(-1,0)和(0,-1)D.(-1,0)和(0,1)解析 由⎩⎪⎨⎪⎧x 2+y 2=1,x 2+y 2+2x +2y +1=0;解得⎩⎪⎨⎪⎧x =0,y =-1或⎩⎪⎨⎪⎧x =-1,y =0. 答案 C2.圆x 2+y 2-2x -5=0和圆x 2+y 2+2x -4y -4=0的交点为A 、B ,则线段AB 的垂直平分线方程为( ) A.x +y -1=0 B.2x -y +1=0 C.x -2y +1=0D.x -y +1=0解析 直线AB 的方程为:4x -4y +1=0,因此它的垂直平分线斜率为-1,过圆心(1,0),方程为y =-(x -1),即两圆连心线. 答案 A3.已知两圆x 2+y 2=10和(x -1)2+(y -3)2=20相交于A 、B 两点,则直线AB 的方程是________.解析 ⎩⎪⎨⎪⎧x 2+y 2=10,x 2+y 2-2x -6y =10⇒2x +6y =0,即x +3y =0. 答案 x +3y =04.已知圆C 1:x 2+y 2-2mx +4y +m 2-5=0,圆C 2:x 2+y 2+2x -2my +m 2-3=0,当m 的取值满足什么条件时,圆C 1与圆C 2相切?解 对于圆C 1与圆C 2的方程,化为标准方程得C 1:(x -m )2+(y +2)2=9,C 2:(x +1)2+(y -m )2=4,所以两圆的圆心分别为C 1(m ,-2),C 2(-1,m ),半径分别为r 1=3,r 2=2,且|C 1C 2|=(m +1)2+(m +2)2.当圆C 1与圆C 2相外切时,则|C 1C 2|=r 1+r 2,即(m +1)2+(m +2)2=3+2,解得m =-5或m =2.当圆C 1与圆C 2相内切时,则|C 1C 2|=|r 1-r 2|,即(m +1)2+(m +2)2=|3-2|,解得m =-1或m =-2.综上可知,当m =-5或m =2或m =-1或m =-2时,两圆相切.基 础 过 关1.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ) A.内切B.相交C.外切D.相离解析 两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17.∵3-2<d <3+2,∴两圆相交. 答案 B2.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m 等于( ) A.21B.19C.9D.-11解析 圆C 2的标准方程为(x -3)2+(y -4)2=25-m . 又圆C 1:x 2+y 2=1,∴|C 1C 2|=5.又∵两圆外切,∴5=1+25-m ,解得m =9. 答案 C3.一辆卡车宽1.6米,要经过一个半径为3.6米的半圆形隧道,则这辆卡车的平顶车蓬蓬顶距地面的高度不得超过( ) A.1.4米B.3.5米C.3.6米D.2米解析 建立如图所示的平面直角坐标系.如图设蓬顶距地面高度为h ,则A (0.8,h -3.6)半圆所在圆的方程为:x 2+(y +3.6)2=3.62把A (0.8,h -3.6)代入得0.82+h 2=3.62.∴h =40.77≈3.5(米).答案 B4.两圆x 2+y 2-x +y -2=0和x 2+y 2=5的公共弦长为________.解析 由⎩⎪⎨⎪⎧x 2+y 2-x +y -2=0,x 2+y 2=5,①②②-①得两圆的公共弦所在的直线方程为x -y -3=0, ∴圆x 2+y 2=5的圆心到该直线的距离为d =|-3|1+(-1)2=32,设公共弦长为l ,∴l =25-⎝ ⎛⎭⎪⎫322= 2. 答案25.已知圆C 1:x 2+y 2=4和圆C 2:x 2+y 2+4x -4y +4=0关于直线l 对称,则直线l 的方程为________.解析 圆C 2可化为(x +2)2+(y -2)2=4,则圆C 1,C 2的圆心为C 1(0,0),C 2(-2,2),所以C 1C 2的中点为(-1,1),kC 1C 2=2-0-2-0=-1,所以所求直线的斜率为1,所以直线l 的方程为y -1=x +1,即x -y +2=0. 答案 x -y +2=06.求与圆O :x 2+y 2=1外切,切点为P ⎝ ⎛⎭⎪⎫-12,-22,半径为2的圆的方程.解 设所求圆的圆心为C (a ,b ),则所求圆的方程为 (x -a )2+(y -b )2=4.∵两圆外切,切点为P ⎝ ⎛⎭⎪⎫-12,-22,∴|OC |=1+2=3,|CP |=2.∴⎩⎨⎧a 2+b 2=9,⎝ ⎛⎭⎪⎫a +122+⎝ ⎛⎭⎪⎫b +322=4,解得⎩⎪⎨⎪⎧a =-32,b =-332. ∴圆心C 的坐标为⎝ ⎛⎭⎪⎫-32,-332,故所求圆的方程为⎝ ⎛⎭⎪⎫x +322+⎝ ⎛⎭⎪⎫y +3322=4.7.已知圆C 1:x 2+y 2-10x -10y =0和圆C 2:x 2+y 2+6x -2y -40=0.求: (1)它们的公共弦所在直线的方程; (2)公共弦长.解 (1)由⎩⎪⎨⎪⎧x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,两方程相减,得公共弦所在直线方程为2x +y -5=0. (2)圆x 2+y 2-10x -10y =0的圆心C 1的坐标为(5,5),半径r =52,又点C 1到相交弦的距离d =|2×5+5-5|22+12=2 5. ∴公共弦长为2(52)2-(25)2=230.能 力 提 升8.设两圆C 1,C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|等于( ) A.4B.4 2C.8D.8 2解析 ∵两圆与两坐标轴都相切,且都经过点(4,1), ∴两圆圆心均在第一象限且横、纵坐标相等. 设两圆的圆心分别为(a ,a ),(b ,b ),则有(4-a )2+(1-a )2=a 2,(4-b )2+(1-b )2=b 2, 即a ,b 为方程(4-x )2+(1-x )2=x 2的两个根, 整理得x 2-10x +17=0,∴a +b =10,ab =17. ∴(a -b )2=(a +b )2-4ab =100-4×17=32, ∴|C 1C 2|=(a -b )2+(a -b )2=32×2=8. 答案 C9.以圆C 1:x 2+y 2+4x +1=0与圆C 2:x 2+y 2+2x +2y +1=0相交的公共弦为直径的圆的方程为( )A.(x -1)2+(y -1)2=1 B.(x +1)2+(y +1)2=1C.⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45D.⎝ ⎛⎭⎪⎫x -352+⎝ ⎛⎭⎪⎫y -652=45解析 两圆方程相减得公共弦所在直线的方程为x -y =0,因此所求圆的圆心的横、纵坐标相等,排除C ,D 选项,画图(图略)可知所求圆的圆心在第三象限,排除A.故选B. 答案 B10.与直线x +y -2=0和曲线x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是________.解析 曲线化为(x -6)2+(y -6)2=18,其圆心C 1(6,6)到直线x +y -2=0的距离为d =|6+6-2|2=5 2.过点C 1且垂直于x +y -2=0的直线为y -6=x -6,即y =x ,所以所求的最小圆的圆心C 2在直线y =x 上,如图所示,圆心C 2到直线x +y -2=0的距离为52-322=2,则圆C 2的半径长为 2.设C 2的坐标为(x 0,x 0),则|x 0+x 0-2|2=2, 解得x 0=2(x 0=0舍去),所以圆心坐标为(2,2),所以所求圆的标准方程为(x -2)2+(y -2)2=2.答案 (x -2)2+(y -2)2=211.已知隧道的截面是半径为4 m 的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7 m ,高为3 m 的货车能不能驶入这个隧道?假设货车的最大宽度为a m ,那么要正常驶入该隧道,货车的限高为多少?解 以某一截面半圆的圆心为坐标原点,半圆的直径AB 所在直线为x 轴,建立如图所示的平面直角坐标系,那么半圆的方程为x 2+y 2=16(y ≥0).将x =2.7代入,得y =16-2.72=8.71<3,所以,在离中心线2.7 m 处,隧道的高度低于货车的高度.因此,货车不能驶入这个隧道.将x =a 代入x 2+y 2=16(y ≥0)得y =16-a 2.所以,货车要正常驶入这个隧道,最大高度(即限高)为16-a 2m.探 究 创 新12.已知圆C 1:x 2+y 2-4x -2y -5=0与圆C 2:x 2+y 2-6x -y -9=0.(1)求证:两圆相交;(2)求两圆公共弦所在的直线方程;(3)在平面上找一点P ,过点P 引两圆的切线并使它们的长都等于6 2.(1)证明 圆C 1:(x -2)2+(y -1)2=10, 圆C 2:(x -3)2+⎝ ⎛⎭⎪⎫y -122=734. ∵|C 1C 2|=(2-3)2+⎝ ⎛⎭⎪⎫1-122=52.且732-10<52<732+10, ∴圆C 1与圆C 2相交.(2)解 联立两圆方程,得⎩⎪⎨⎪⎧x 2+y 2-4x -2y -5=0,x 2+y 2-6x -y -9=0, ∴两圆公共弦所在的直线方程为2x -y +4=0.(3)解 设P (x ,y ),由题意,得⎩⎨⎧2x -y +4=0,x 2+y 2-6x -y -9=(62)2,解方程组,得点P 的坐标为(3,10)或⎝ ⎛⎭⎪⎫-233,-265.。
高中数学-圆与圆的位置关系 、直线与圆的方程的应用
学点一
学点二
学点三
1.两圆的五种位置关系是: 外离 、 外切 、
相交 、 内切 、 内含 .
2.圆与圆的位置关系的判断方法:
设圆心距为d,两圆半径分别为r1,r2,
(1)d>r1+r2
两圆外离 ;
(2)d=r1+r2
两圆外切
;
(3)|r1-r2|<d<r1+r2 两圆相交 ;
(4)d=|r1-r2| 两圆内切
解得
x=-2
x=4
或
y=6
y=-2.
∴A,B的坐标分别是(-2,6),(4,-2). 故|AB|= (2 4)2 (6 2)2 10 解法二:同解法一《先求出公共弦所在直线l的方程为
4x+3y-10=0.
过C1作C1D⊥AB于D,圆C1的圆心C1(5,5),半径r1=5 2
则|C1D|=
返回
设r>0,两圆(x-1)2+(y+3)2=r2与x2+y2=16不可能( )
A.相切
B.相交
C.内切或内含
D.外切或外离
D(圆心距d= (1- 0)2 (-3- 0)2 10
∴d<4+r,∴两圆不可能外切或外离. 故应选D.)
返回
学点二 两圆的相交问题
求圆心在直线x+y=0上,且过两圆x2+y2-2x+10y-24=0, x2+y2+2x+2y-8=0的交点的圆的方程.
(2)圆C1:(x+1)2+(y-3)2=49,
其圆心C1(-1,3),半径R=7,
圆C2:(x-2)2+(y+1)2=4,
直线与圆、圆与圆的位置关系教案(绝对经典)
第4节 直线与圆、圆与圆的位置关系【最新考纲】 1.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系;2.能用直线和圆的方程解决一些简单的问题;3.初步了解用代数方法处理几何问题的思想.【高考会这样考】 1.考查直线与圆的相交、相切问题,判断直线与圆、圆与圆的位置关系;2.计算弦长、面积,考查与圆有关的最值;根据条件求圆的方程.要 点 梳 理1.直线与圆的位置关系设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0,圆心C (a ,b )到直线l 的距离为d ,由⎩⎨⎧(x -a )2+(y -b )2=r 2,Ax +By +C =0消去y (或x ),得到关于x (或y )的一元二次方程,其判别式为Δ.2.圆与圆的位置关系设两个圆的半径分别为R ,r ,R >r ,圆心距为d ,则两圆的位置关系可用下表来表示:[友情提示]1.圆的切线方程常用结论(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y =r2.2.过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条,若仅求得一条,除了考虑运算过程是否正确外,还要考虑斜率不存在的情况,以防漏解.基础自测1.思考辨析(在括号内打“√”或“×”)(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.()(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.()(3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.()(4)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点分别为A,B,则O,P,A,B四点共圆且直线AB的方程是x0x+y0y=r2.()解析(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的充分不必要条件;(2)除外切外,还有可能内切;(3)两圆还可能内切或内含.答案(1)×(2)×(3)×(4)√2.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()A.内切B.相交C.外切D.相离解析两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d=42+12=17.∵3-2<d<3+2,∴两圆相交.答案 B3.已知直线y=mx与圆x2+y2-4x+2=0相切,则m值为()A.±3B.±33 C.±32 D.±1解析将y=mx代入x2+y2-4x+2=0,得(1+m2)x2-4x+2=0,因为直线与圆相切,所以Δ=(-4)2-4(1+m2)×2=8(1-m2)=0,解得m=±1.答案 D4.已知圆的方程为x2+y2=1,则在y轴上截距为2的切线方程为________.解析在y轴上截距为2且斜率不存在的直线显然不是切线,故设切线方程为y=kx+2,则|2|k 2+1=1,所以k =±1,故所求切线方程为y =x +2或y =-x + 2. 答案 x -y +2=0或x +y -2=05.圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________.解析 由⎩⎨⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所以,所求弦长为2 2. 答案 22题型分类 深度解析考点一 直线与圆的位置关系考点一 直线与圆的位置关系【例1】 (1)已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( ) A.相切B.相交C.相离D.不确定(2)(一题多解)圆x 2+y 2=1与直线y =kx +2没有公共点的充要条件是________. 解析 (1)因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b 2=1a 2+b 2<1,故直线与圆O 相交.(2)法一 将直线方程代入圆方程,得(k 2+1)x 2+4kx +3=0,直线与圆没有公共点的充要条件是Δ=16k 2-12(k 2+1)<0,解得-3<k < 3. 法二 圆心(0,0)到直线y =kx +2的距离d =2k 2+1,直线与圆没有公共点的充要条件是d >1, 即2k 2+1>1,解得-3<k < 3. 答案 (1)B (2)-3<k < 3规律方法 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系. (2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.【变式练习1】 (1)圆(x -1)2+(y +2)2=6与直线2x +y -5=0的位置关系是( )A.相切B.相交但直线不过圆心C.相交过圆心D.相离(2)已知圆C :(x -1)2+y 2=r 2(r >0),设条件p :0<r <3,条件q :圆C 上至多有2个点到直线x -3y +3=0的距离为1,则p 是q 的( ) A.充分不必要条件 B .必要不充分条件 C.充要条件D.既不充分也不必要条件解析 (1)由题意知 圆心(1,-2)到直线2x +y -5=0的距离d =|2×1-2-5|22+12=5<6且2×1+(-2)-5≠0,所以直线与圆相交但不过圆心.(2)由题意知,圆心C (1,0)到直线x -3y +3=0的距离d =|1+3|2=2,至多有2点到直线的距离为1时,0<r <3;反之也成立,故选C. 答案 (1)B (2)C考点二 圆的切线、弦长问题【例2】 (1)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.(2)过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,则切线方程为________.解析 (1)圆C :x 2+y 2-2ay -2=0,即C :x 2+(y -a )2=a 2+2,圆心为C (0,a ),C 到直线y =x +2a 的距离为d =|0-a +2a |2=|a |2.又由|AB |=23,得⎝ ⎛⎭⎪⎫2322+⎝ ⎛⎭⎪⎫|a |22=a 2+2,解得a 2=2,所以圆的面积为π(a 2+2)=4π.(2)当直线的斜率不存在时,直线方程为x =2,此时,圆心到直线的距离等于半径,直线与圆相切,符合题意;当直线的斜率存在时,设直线方程为y -4=k (x -2),即kx -y +4-2k =0,∵直线与圆相切,∴圆心到直线的距离等于半径,即d =|k -1+4-2k |k 2+(-1)2=|3-k |k 2+1=1,解得k =43,∴所求切线方程为43x -y +4-2×43=0,即4x -3y +4=0. 综上,切线方程为x =2或4x -3y +4=0. 答案 (1)4π (2)x =2或4x -3y +4=0 规律方法 1.弦长的两种求法(1)代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长. (2)几何方法:若弦心距为d ,圆的半径长为r ,则弦长l =2r 2-d 2. 2.圆的切线方程的两种求法(1)代数法:设切线方程为y -y 0=k (x -x 0),与圆的方程组成方程组,消元后得到一个一元二次方程,然后令判别式Δ=0进而求得k .(2)几何法:设切线方程为y -y 0=k (x -x 0),利用点到直线的距离公式表示出圆心到切线的距离d ,然后令d =r ,进而求出k .【变式练习2】 (1)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________. (2)过原点O 作圆x 2+y 2-6x -8y +20=0的两条切线,设切点分别为P ,Q ,则线段PQ 的长为________.解析 (1)设P (3,1),圆心C (2,2),则|PC |=2,半径r =2,由题意知最短的弦过P (3,1)且与PC 垂直,所以最短弦长为222-(2)2=2 2.(2)将圆的方程化为标准方程为(x -3)2+(y -4)2=5,则圆心为(3,4),半径长为 5. 由题意可设切线的方程为y =kx ,则圆心(3,4)到直线y =kx 的距离等于半径长5,即|3k -4|k 2+1=5,解得k =12或k =112,则切线的方程为y =12x 或y =112x .联立切线方程与圆的方程,解得两切点坐标分别为(4,2),⎝⎛⎭⎫45,225,此即为P ,Q 的坐标,由两点间的距离公式得|PQ |=4. 答案 (1)22 (2)4 考点三 圆与圆的位置关系【例3】 已知两圆x 2+y 2-2x -6y -1=0,x 2+y 2-10x -12y +m =0. (1)m 取何值时两圆外切? (2)m 取何值时两圆内切?(3)当m =45时,求两圆的公共弦所在直线的方程和公共弦的长. 解 因为两圆的标准方程分别为(x -1)2+(y -3)2=11, (x -5)2+(y -6)2=61-m ,所以两圆的圆心分别为(1,3),(5,6),半径分别为11,61-m ,(1)当两圆外切时,由(5-1)2+(6-3)2=11+61-m ,得m =25+1011. (2)当两圆内切时,因为定圆半径11小于两圆圆心之间的距离5, 所以61-m -11=5,解得m =25-1011.(3)由(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0,得两圆的公共弦所在直线的方程为4x +3y -23=0. 故两圆的公共弦的长为2(11)2-⎝⎛⎭⎪⎫|4+3×3-23|42+322=27.规律方法 1.判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x 2,y 2项得到. 【变式练习3】 (1)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A.内切B.相交C.外切D.相离(2)已知圆C 1:(x -a )2+(y +2)2=4与圆C 2:(x +b )2+(y +2)2=1 相外切,则ab 的最大值为( ) A.62B.32C.94D.2 3解析 (1)∵圆M :x 2+(y -a )2=a 2,∴圆心坐标为M (0,a ),半径r 1为a ,圆心M 到直线x +y =0的距离d =|a |2,由几何知识得⎝ ⎛⎭⎪⎫|a |22+(2)2=a 2,解得a =2.∴M (0,2),r 1=2.又圆N 的圆心坐标N (1,1),半径r 2=1,∴|MN |=(1-0)2+(1-2)2=2,r 1+r 2=3,r 1-r 2=1. ∴r 1-r 2<|MN |<r 1+r 2,∴两圆相交,故选B.(2)由圆C 1与圆C 2相外切,可得(a +b )2+(-2+2)2=2+1=3,即(a +b )2=9,根据基本不等式可知ab ≤⎝ ⎛⎭⎪⎫a +b 22=94,当且仅当a =b 时等号成立. 答案 (1)B (2)C课后练习A 组(时间:40分钟)一、选择题1.圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( ) A.-43B.-34C. 3D.2解析 由圆的方程x 2+y 2-2x -8y +13=0得圆心坐标为(1,4),由点到直线的距离公式得d =|1×a +4-1|1+a 2=1,解之得a =-43. 答案 A2.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A.2x +y -5=0 B.2x +y -7=0 C.x -2y -5=0D.x -2y -7=0解析 ∵过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条, ∴点(3,1)在圆(x -1)2+y 2=r 2上, ∵圆心与切点连线的斜率k =1-03-1=12,∴切线的斜率为-2,则圆的切线方程为y -1=-2(x -3),即2x +y -7=0. 答案 B3.(2018·洛阳一模)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“|AB |=2”的( )A.充分不必要条件 B .必要不充分条件 C.充要条件D.既不充分也不必要条件解析 依题意,因|AB |=2,则圆心O 到直线l 的距离等于12-⎝ ⎛⎭⎪⎫222=22,即有1k 2+1=22,k =±1.因此,“k =1”是“|AB |=2”的充分不必要条件,选A. 答案 A4.圆x 2+2x +y 2+4y -3=0上到直线x +y +1=0的距离为2的点共有( ) A.1个B.2个C.3个D.4个解析 圆的方程化为(x +1)2+(y +2)2=8,圆心(-1,-2)到直线距离d =|-1-2+1|2=2,半径是22,结合图形可知有3个符合条件的点. 答案 C5.过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( ) A.y =-34 B.y =-12 C.y =-32D.y =-14解析 圆(x -1)2+y 2=1的圆心为(1,0),半径为1,以|PC |=(1-1)2+(-2-0)2=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12. 答案 B 二、填空题6.已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.解析 由圆x 2+y 2=12知圆心O (0,0),半径r =23, ∴圆心(0,0)到直线x -3y +6=0的距离d =61+3=3,|AB |=212-32=2 3.过C 作CE ⊥BD 于E .如图所示,则|CE |=|AB |=2 3. ∵直线l 的方程为x -3y +6=0,∴直线l 的倾斜角∠BPD =30°,从而∠BDP =60°, 因此|CD |=|CE |sin 60°=23sin 60°=4. 答案 47.已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=________.解析 由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴, 则圆心C (2,1)满足直线方程x +ay -1=0, 所以2+a -1=0,解得a =-1,所以A 点坐标为(-4,-1). 从而|AC |2=36+4=40.又r =2,所以|AB |2=40-4=36.即|AB |=6. 答案 68.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|PQ |的最小值是________.解析 把圆C 1、圆C 2的方程都化成标准形式,得 (x -4)2+(y -2)2=9,(x +2)2+(y +1)2=4.圆C 1的圆心坐标是(4,2),半径长是3;圆C 2的圆心坐标是(-2,-1),半径是2.圆心距d =(4+2)2+(2+1)2=35>5.故圆C 1与圆C 2相离,所以,|PQ |的最小值是35-5.答案 35-5 三、解答题9.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. 解 (1)设圆心的坐标为C (a ,-2a ), 则(a -2)2+(-2a +1)2=|a -2a -1|2.化简,得a 2-2a +1=0,解得a =1. 所以C 点坐标为(1,-2),半径r =|AC |=(1-2)2+(-2+1)2= 2. 故圆C 的方程为(x -1)2+(y +2)2=2.(2)①当直线l 的斜率不存在时,直线l 的方程为x =0,此时直线l 被圆C 截得的弦长为2,满足条件.②当直线l 的斜率存在时,设直线l 的方程为y =kx , 由题意得|k +2|1+k2=1,解得k =-34,则直线l 的方程为y =-34x .综上所述,直线l 的方程为x =0或3x +4y =0.10.已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求|MN |. 解 (1)易知圆心坐标为(2,3),半径r =1, 由题设,可知直线l 的方程为y =kx +1, 因为l 与C 交于两点,所以|2k -3+1|1+k 2<1. 解得4-73<k <4+73. 所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得 (1+k 2)x 2-4(1+k )x +7=0.所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2. OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8.由题设可得4k (1+k )1+k 2+8=12,解得k =1,所以l 的方程为y =x +1. 故圆心C 在l 上,所以|MN |=2.B 组(时间:20分钟)11.已知圆C :(x -1)2+y 2=25,则过点P (2,-1)的圆C 的所有弦中,以最长弦和最短弦为对角线的四边形的面积是( ) A.1031B.921C.1023D.911解析 易知P 在圆C 内部,最长弦为圆的直径10, 又最短弦所在直线与最长弦垂直,且|PC |=2, ∴最短弦的长为2r 2-|PC |2=225-2=223, 故所求四边形的面积S =12×10×223=1023.答案 C12.过点A (1,2)的直线l 将圆C :(x -2)2+y 2=4分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k =________.解析 易知点A (1,2)在圆(x -2)2+y 2=4的内部,圆心C 的坐标为(2,0),当直线l 被圆截得的弦的弦心距最长时,劣弧所对的圆心角最小,此时l ⊥CA ,如图所示,所以k =-1k CA =-1-2=22. 答案 2213在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.(1)解 不能出现AC ⊥BC 的情况,理由如下:设A (x 1,0),B (x 2,0),则x 1,x 2满足方程x 2+mx -2=0,所以x 1x 2=-2.又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12, 所以不能出现AC ⊥BC 的情况.(2)证明 BC 的中点坐标为⎝⎛⎭⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝⎛⎭⎫x -x 22. 由(1)可得x 1+x 2=-m ,所以AB 的中垂线方程为x =-m 2.联立⎩⎨⎧x =-m 2,①y -12=x 2⎝⎛⎭⎫x -x 22,② 又x 22+mx 2-2=0,③由①②③解得x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝⎛⎭⎫-m 2,-12,半径r =m 2+92. 故圆在y 轴上截得的弦长为2r 2-⎝⎛⎭⎫m22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.。
高中数学必修2__第四章《圆与方程》知识点总结与练习
第三节圆_的_方_程[知识能否忆起]1.圆的定义及方程 定义 平面内与定点的距离等于定长的点的集合(轨迹) 标准 方程 (x -a )2+(y -b )2=r 2(r >0)圆心:(a ,b ),半径:r一般 方程 x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)圆心:⎝⎛⎭⎫-D 2,-E 2, 半径:12D 2+E 2-4F2.点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2.[小题能否全取]1.(教材习题改编)方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是( ) A.14<m <1 B .m <14或m >1C .m <14D .m >1解析:选B 由(4m )2+4-4×5m >0得m <14或m >1.2.(教材习题改编)点(1,1)在圆(x -a )2+(y +a )2=4内,则实数a 的取值范围是( ) A .(-1,1)B .(0,1)C .(-∞,-1)∪(1,+∞)D .(1,+∞)解析:选A ∵点(1,1)在圆的内部, ∴(1-a )2+(1+a )2<4, ∴-1<a <1.3.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .x 2+(y -2)2=1B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1解析:选A 设圆心坐标为(0,b ),则由题意知(0-1)2+(b -2)2=1,解得b =2,故圆的方程为x 2+(y -2)2=1.4.(2012·潍坊调研)圆x 2-2x +y 2-3=0的圆心到直线x +3y -3=0的距离为________.解析:圆心(1,0),d =|1-3|1+3=1.答案:15.(教材习题改编)圆心在原点且与直线x +y -2=0相切的圆的方程为 ____________________.解析:设圆的方程为x 2+y 2=a 2(a >0) ∴|2|1+1=a ,∴a =2,∴x 2+y 2=2. 答案:x 2+y 2=21.方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是: (1)B =0;(2)A =C ≠0;(3)D 2+E 2-4AF >0.2.求圆的方程时,要注意应用圆的几何性质简化运算. (1)圆心在过切点且与切线垂直的直线上. (2)圆心在任一弦的中垂线上.(3)两圆内切或外切时,切点与两圆圆心三点共线.圆的方程的求法典题导入[例1] (1)(2012·顺义模拟)已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段弧长之比为1∶2,则圆C 的方程为( )A.⎝⎛⎭⎫x ±332+y 2=43B.⎝⎛⎭⎫x ±332+y 2=13C .x 2+⎝⎛⎭⎫y ±332=43D .x 2+⎝⎛⎭⎫y ±332=13(2)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为________________. [自主解答] (1)由已知知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为2π3,设圆心(0,b ),半径为r ,则r sin π3=1,r cos π3=|b |,解得r =23,|b |=33,即b =±33.故圆的方程为x 2+⎝⎛⎭⎫y ±332=43.(2)圆C 的方程为x 2+y 2+Dx +F =0,则⎩⎪⎨⎪⎧26+5D +F =0,10+D +F =0, 解得⎩⎪⎨⎪⎧D =-4,F =-6.圆C 的方程为x 2+y 2-4x -6=0. [答案] (1)C (2)x 2+y 2-4x -6=0由题悟法1.利用待定系数法求圆的方程关键是建立关于a ,b ,r 或D ,E ,F 的方程组. 2.利用圆的几何性质求方程可直接求出圆心坐标和半径,进而写出方程,体现了数形结合思想的运用.以题试法1.(2012·浙江五校联考)过圆x 2+y 2=4外一点P (4,2)作圆的两条切线,切点分别为A ,B ,则△ABP 的外接圆的方程是( )A .(x -4)2+(y -2)2=1B .x 2+(y -2)2=4C .(x +2)2+(y +1)2=5D .(x -2)2+(y -1)2=5解析:选D 易知圆心为坐标原点O ,根据圆的切线的性质可知OA ⊥P A ,OB ⊥PB ,因此P ,A ,O ,B 四点共圆,△P AB 的外接圆就是以线段OP 为直径的圆,这个圆的方程是(x -2)2+(y -1)2=5.与圆有关的最值问题典题导入[例2] (1)(2012·湖北高考)过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )A .x +y -2=0B .y -1=0C .x -y =0D .x +3y -4=0(2)P (x ,y )在圆C :(x -1)2+(y -1)2=1上移动,则x 2+y 2的最小值为________. [自主解答] (1)当圆心与P 的连线和过点P 的直线垂直时,符合条件.圆心O 与P 点连线的斜率k =1,∴直线OP 垂直于x +y -2=0.(2)由C (1,1)得|OC |=2,则|OP |min =2-1,即(x 2+y 2)min =2-1.所以x 2+y 2的最小值为(2-1)2=3-2 2.[答案] (1)A (2)3-2 2由题悟法解决与圆有关的最值问题的常用方法 (1)形如u =y -bx -a的最值问题,可转化为定点(a ,b )与圆上的动点(x ,y )的斜率的最值问题(如A 级T 9);9.(2012·南京模拟)已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.解析:y -2x -1表示圆上的点P (x ,y )与点Q (1,2)连线的斜率,所以y -2x -1的最小值是直线PQ与圆相切时的斜率.设直线PQ 的方程为y -2=k (x -1)即kx -y +2-k =0.由|2-k |k 2+1=1得k =34,结合图形可知,y -2x -1≥34,故最小值为34. 答案:34(2)形如t =ax +by 的最值问题,可转化为动直线的截距的最值问题(如以题试法2(2)); (3)形如(x -a )2+(y -b )2的最值问题,可转化为动点到定点的距离的最值问题(如例(2)).以题试法2.(1)(2012·东北三校联考)与曲线C :x 2+y 2+2x +2y =0相内切,同时又与直线l :y =2-x 相切的半径最小的圆的半径是________.(2)已知实数x ,y 满足(x -2)2+(y +1)2=1则2x -y 的最大值为________,最小值为________.解析:(1)依题意,曲线C 表示的是以点C (-1,-1)为圆心,2为半径的圆,圆心C (-1,-1)到直线y =2-x 即x +y -2=0的距离等于|-1-1-2|2=22,易知所求圆的半径等于22+22=322.(2)令b =2x -y ,则b 为直线2x -y =b 在y 轴上的截距的相反数,当直线2x -y =b 与圆相切时,b 取得最值.由|2×2+1-b |5=1.解得b =5±5,所以2x -y 的最大值为5+5,最小值为5- 5.答案:(1)322 (2)5+5 5-5与圆有关的轨迹问题典题导入[例3] (2012·正定模拟)如图,已知点A (-1,0)与点B (1,0),C 是圆x 2+y 2=1上的动点,连接BC 并延长至D ,使得|CD |=|BC |,求AC 与OD 的交点P 的轨迹方程.[自主解答] 设动点P (x ,y ),由题意可知P 是△ABD 的重心. 由A (-1,0),B (1,0),令动点C (x 0,y 0), 则D (2x 0-1,2y 0),由重心坐标公式得 ⎩⎪⎨⎪⎧x =-1+1+2x 0-13,y =2y 03,则⎩⎪⎨⎪⎧x 0=3x +12,y 0=3y 2(y 0≠0),代入x 2+y 2=1,整理得⎝⎛⎭⎫x +132+y 2=49(y ≠0), 故所求轨迹方程为⎝⎛⎭⎫x +132+y 2=49(y ≠0).由题悟法求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: (1)直接法:直接根据题目提供的条件列出方程. (2)定义法:根据直线、圆、圆锥曲线等定义列方程. (3)几何法:利用圆与圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.以题试法3.(2012·郑州模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为( )A .x 2+y 2=32B .x 2+y 2=16C .(x -1)2+y 2=16D .x 2+(y -1)2=16解析:选B 设P (x ,y ),则由题意可得2(x -2)2+y 2=(x -8)2+y 2,化简整理得x 2+y 2=16.与圆有关的交汇问题是近几年高考命题的热点,这类问题,要特别注意圆的定义及其性质的运用. 同时,要根据条件,合理选择代数方法或几何方法, 凡是涉及参数的问题,一定要注意参数的变化对问 题的影响,以便确定是否分类讨论.同时要有丰富 的相关知识储备,解题时只有做到平心静气地认真 研究,不断寻求解决问题的方法和技巧,才能真正 把握好问题.[典例] (2011·江苏高考)设集合A =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪m2≤(x -2)2+y 2≤m 2,x ,y ∈R ,B ={(x ,y )|2m ≤x +y ≤2m +1,x ,y ∈R }.若A ∩B ≠∅,则实数m 的取值范围是________.[解析] 由题意知A ≠∅,则m 2≤m 2,即m ≤0或m ≥12.因为A ∩B ≠∅,则有:(1)当2m +1<2,即m <12时,圆心(2,0)到直线x +y =2m +1的距离为d 1=|2-2m -1|2≤|m |,化简得2m 2-4m +1≤0,解得1-22≤m ≤1+22,所以1-22≤m ≤12; (2)当2m ≤2≤2m +1,即12≤m ≤1时,A ∩B ≠∅恒成立;(3)当2m >2,即m >1时,圆心(2,0)到直线x +y =2m 的距离为d 2=|2-2m |2≤|m |,化简得m 2-4m +2≤0, 解得2-2≤m ≤2+2, 所以1<m ≤2+ 2.综上可知:满足题意的m 的取值范围为⎣⎡⎦⎤12,2+2. [答案] ⎣⎡⎦⎤12,2+2 [题后悟道] 该题是圆与集合,不等式交汇问题,解决本题的关键点有: ①弄清集合代表的几何意义;②结合直线与圆的位置关系求得m 的取值范围. 针对训练若直线l :ax +by +4=0(a >0,b >0)始终平分圆C :x 2+y 2+8x +2y +1=0,则ab 的最大值为( )A .4B .2C .1D.14解析:选C 圆C 的圆心坐标为(-4,-1), 则有-4a -b +4=0,即4a +b =4. 所以ab =14(4a ·b )≤14⎝ ⎛⎭⎪⎫4a +b 22=14×⎝⎛⎭⎫422=1.当且仅当a =12,b =2取得等号.1.圆(x +2)2+y 2=5关于原点P (0,0)对称的圆的方程为( ) A .(x -2)2+y 2=5 B .x 2+(y -2)2=5 C .(x +2)2+(y +2)2=5D .x 2+(y +2)2=5解析:选A 圆上任一点(x ,y )关于原点对称点为(-x ,-y )在圆(x +2)2+y 2=5上,即(-x +2)2+(-y )2=5.即(x -2)2+y 2=5.2.(2012·辽宁高考)将圆x 2+y 2-2x -4y +1=0平分的直线是( )A .x +y -1=0B .x +y +3=0C .x -y +1=0D .x -y +3=0解析:选C 要使直线平分圆,只要直线经过圆的圆心即可,圆心坐标为(1,2).A ,B ,C ,D 四个选项中,只有C 选项中的直线经过圆心.3.(2012·青岛二中期末)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -3)2+⎝⎛⎭⎫y -732=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y -3)2=1D.⎝⎛⎭⎫x -322+(y -1)2=1 解析:选B 依题意设圆心C (a,1)(a >0),由圆C 与直线4x -3y =0相切,得|4a -3|5=1,解得a =2,则圆C 的标准方程是(x -2)2+(y -1)2=1.4.(2012·海淀检测)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解析:选A设圆上任一点为Q (x 0,y 0),PQ 的中点为M (x ,y ),则⎩⎨⎧x =4+x 02,y =-2+y2,解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.因为点Q 在圆x 2+y 2=4上,所以(2x -4)2+(2y +2)2=4,即(x -2)2+(y +1)2=1.5.(2013·杭州模拟)若圆x 2+y 2-2x +6y +5a =0,关于直线y =x +2b 成轴对称图形,则a -b 的取值范围是( )A .(-∞,4)B .(-∞,0)C .(-4,+∞)D .(4,+∞)解析:选A 将圆的方程变形为(x -1)2+(y +3)2=10-5a ,可知,圆心为(1,-3),且10-5a >0,即a <2.∵圆关于直线y =x +2b 对称,∴圆心在直线y =x +2b 上,即-3=1+2b ,解得b =-2,∴a -b <4.6.已知点M 是直线3x +4y -2=0上的动点,点N 为圆(x +1)2+(y +1)2=1上的动点,则|MN |的最小值是( )A.95B .1C.45D.135解析:选C 圆心(-1,-1)到点M 的距离的最小值为点(-1,-1)到直线的距离d =|-3-4-2|5=95,故点N 到点M 的距离的最小值为d -1=45. 7.如果三角形三个顶点分别是O (0,0),A (0,15),B (-8,0),则它的内切圆方程为________________.解析:因为△AOB 是直角三角形,所以内切圆半径为r =|OA |+|OB |-|AB |2=15+8-172=3,圆心坐标为(-3,3),故内切圆方程为(x +3)2+(y -3)2=9.答案:(x +3)2+(y -3)2=98.(2013·河南三市调研)已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称,直线4x -3y -2=0与圆C 相交于A ,B 两点,且|AB |=6,则圆C 的方程为__________.解析:设所求圆的半径是R ,依题意得,抛物线y 2=4x 的焦点坐标是(1,0),则圆C 的圆心坐标是(0,1),圆心到直线4x -3y -2=0的距离d =|4×0-3×1-2|42+(-3)2=1,则R 2=d 2+⎝⎛⎭⎫|AB |22=10,因此圆C 的方程是x 2+(y -1)2=10.答案:x 2+(y -1)2=109.(2012·南京模拟)已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.解析:y -2x -1表示圆上的点P (x ,y )与点Q (1,2)连线的斜率,所以y -2x -1的最小值是直线PQ与圆相切时的斜率.设直线PQ 的方程为y -2=k (x -1)即kx -y +2-k =0.由|2-k |k 2+1=1得k =34,结合图形可知,y -2x -1≥34,故最小值为34. 答案:3410.过点C (3,4)且与x 轴,y 轴都相切的两个圆的半径分别为r 1,r 2,求r 1r 2. 解:由题意知,这两个圆的圆心都在第一象限, 且在直线y =x 上,故可设两圆方程为 (x -a )2+(y -a )2=a 2,(x -b )2+(y -b )2=b 2,且r 1=a ,r 2=b .由于两圆都过点C , 则(3-a )2+(4-a )2=a 2,(3-b )2+(4-b )2=b 2 即a 2-14a +25=0,b 2-14b +25=0. 则a 、b 是方程x 2-14x +25=0的两个根. 故r 1r 2=ab =25.11.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2). 则直线CD 的方程为y -2=-(x -1), 即x +y -3=0.(2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0.① 又∵直径|CD |=410,∴|P A |=210, ∴(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.∴圆心P (-3,6)或P (5,-2). ∴圆P 的方程为(x +3)2+(y -6)2=40 或(x -5)2+(y +2)2=40.12.(2012·吉林摸底)已知关于x ,y 的方程C :x 2+y 2-2x -4y +m =0. (1)当m 为何值时,方程C 表示圆;(2)在(1)的条件下,若圆C 与直线l :x +2y -4=0相交于M 、N 两点,且|MN |=455,求m 的值.解:(1)方程C 可化为(x -1)2+(y -2)2=5-m ,显然只要5-m >0,即m <5时方程C 表示圆.(2)因为圆C 的方程为(x -1)2+(y -2)2=5-m ,其中m <5,所以圆心C (1,2),半径r =5-m ,则圆心C (1,2)到直线l :x +2y -4=0的距离为d =|1+2×2-4|12+22=15,因为|MN |=455,所以12|MN |=255, 所以5-m =⎝⎛⎭⎫152+⎝⎛⎭⎫2552, 解得m =4.1.(2012·常州模拟)以双曲线x 26-y 23=1的右焦点为圆心且与双曲线的渐近线相切的圆的方程是( )A .(x -3)2+y 2=1B .(x -3)2+y 2=3C .(x -3)2+y 2=3D .(x -3)2+y 2=9解析:选B 双曲线的渐近线方程为x ±2y =0,其右焦点为(3,0),所求圆半径r =|3|12+(±2)2=3,所求圆方程为(x -3)2+y 2=3.2.由直线y =x +2上的点P 向圆C :(x -4)2+(y +2)2=1引切线PT (T 为切点),当|PT |最小时,点P 的坐标是( )A .(-1,1)B .(0,2)C .(-2,0)D .(1,3)解析:选B 根据切线长、圆的半径和圆心到点P 的距离的关系,可知|PT |=|PC |2-1,故|PT |最小时,即|PC |最小,此时PC 垂直于直线y =x +2,则直线PC 的方程为y +2=-(x-4),即y =-x +2,联立方程⎩⎪⎨⎪⎧y =x +2,y =-x +2,解得点P 的坐标为(0,2).3.已知圆M 过两点C (1,-1),D (-1,1),且圆心M 在x +y -2=0上. (1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,P A 、PB 是圆M 的两条切线,A ,B 为切点,求四边形P AMB 面积的最小值.解:(1)设圆M 的方程为(x -a )2+(y -b )2=r 2(r >0).根据题意,得⎩⎪⎨⎪⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0.解得a =b =1,r =2,故所求圆M 的方程为(x -1)2+(y -1)2=4. (2)因为四边形P AMB 的面积S =S △P AM +S △PBM =12|AM |·|P A |+12|BM |·|PB |, 又|AM |=|BM |=2,|P A |=|PB |,所以S =2|P A |, 而|P A |=|PM |2-|AM |2=|PM |2-4,即S =2|PM |2-4.因此要求S 的最小值,只需求|PM |的最小值即可, 即在直线3x +4y +8=0上找一点P ,使得|PM |的值最小, 所以|PM |min =|3×1+4×1+8|32+42=3,所以四边形P AMB 面积的最小值为S =2|PM |2min -4=232-4=2 5.1.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .5 2B .10 2C .15 2D .20 2解析:选B 由题意可知,圆的圆心坐标是(1,3),半径是10,且点E (0,1)位于该圆内,故过点E (0,1)的最短弦长|BD |=210-(12+22)=25(注:过圆内一定点的最短弦是以该点为中点的弦),过点E (0,1)的最长弦长等于该圆的直径,即|AC |=210,且AC ⊥BD ,因此四边形ABCD 的面积等于12|AC |×|BD |=12×210×25=10 2.2.已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是________.解析:l AB :x -y +2=0,圆心(1,0)到l 的距离d =32,则AB 边上的高的最小值为32-1. 故△ABC 面积的最小值是12×22×⎝⎛⎭⎫32-1=3- 2.答案:3- 23.(2012·抚顺调研)已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.解:(1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4. 故线段AP 中点的轨迹方程为(x -1)2+y 2=1.(2)设PQ 的中点为N (x ,y ),在Rt △PBQ 中,|PN |=|BN |,设O 为坐标原点,连接ON ,则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2,所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.第四节直线与圆、圆与圆的位置关系[知识能否忆起]一、直线与圆的位置关系(圆心到直线的距离为d ,圆的半径为r )相离相切相交图形量化 方程观点 Δ<0 Δ=0 Δ>0 几何观点d >rd =rd <r二、圆与圆的位置关系(⊙O 1、⊙O 2半径r 1、r 2,d =|O 1O 2|) 相离外切相交内切内含图形量化 d >r 1+r 2d =r 1+r 2|r 1-r 2|<d <r 1+r 2d =|r 1-r 2|d <|r 1-r 2|[小题能否全取]1.(教材习题改编)圆(x -1)2+(y +2)2=6与直线2x +y -5=0的位置关系是( ) A .相切 B .相交但直线不过圆心 C .相交过圆心D .相离解析:选B 由题意知圆心(1,-2)到直线2x +y -5=0的距离d =5,0<d <6,故该直线与圆相交但不过圆心.2.(2012·银川质检)由直线y =x +1上的一点向圆x 2+y 2-6x +8=0引切线,则切线长的最小值为( )A.7B .2 2C .3D. 2解析:选A 由题意知,圆心到直线上的点的距离最小时,切线长最小.圆x 2+y 2-6x +8=0可化为(x -3)2+y 2=1,则圆心(3,0)到直线y =x +1的距离为42=22,切线长的最小值为(22)2-1=7.3.直线x -y +1=0与圆x 2+y 2=r 2相交于A ,B 两点,且AB 的长为2,则圆的半径为( )A.322B.62C .1D .2解析:选B 圆心(0,0)到直线x -y +1=0的距离d =12.则r 2=⎝⎛⎭⎫12|AB |2+d 2=32,r =62. 4.(教材习题改编)若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围是________.解析:由题意知21+k 2>1,解得-3<k < 3.答案:(-3, 3)5.已知两圆C 1:x 2+y 2-2x +10y -24=0,C 2:x 2+y 2+2x +2y -8=0,则两圆公共弦所在的直线方程是____________.解析:两圆相减即得x-2y+4=0.答案:x-2y+4=01.求圆的弦长问题,注意应用圆的几何性质解题,即用圆心与弦中点连线与弦垂直的性质,可用勾股定理或斜率之积为-1列方程来简化运算.2.对于圆的切线问题,要注意切线斜率不存在的情况.直线与圆的位置关系的判断典题导入[例1](2012·陕西高考)已知圆C:x2+y2-4x=0,l是过点P(3,0)的直线,则() A.l与C相交B.l与C相切C.l与C相离D.以上三个选项均有可能[自主解答]将点P(3,0)的坐标代入圆的方程,得32+02-4×3=9-12=-3<0,所以点P(3,0)在圆内.故过点P的直线l定与圆C相交.[答案] A本例中若直线l为“x-y+4=0”问题不变.解:∵圆的方程为(x-2)2+y2=4,∴圆心(2,0),r=2.=32>2.又圆心到直线的距离为d=62∴l与C相离.由题悟法判断直线与圆的位置关系常见的方法(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系.(2)代数法:联立直线与圆的方程消元后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内可判断直线与圆相交.以题试法1.(2012·哈师大附中月考)已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是( )A .(-22,22)B .(-2,2) C.⎝⎛⎭⎫-24,24D.⎝⎛⎭⎫-18,18 解析:选C 易知圆心坐标是(1,0),圆的半径是1,直线l 的方程是y =k (x +2),即kx -y +2k =0,根据点到直线的距离公式得|k +2k |k 2+1<1,即k 2<18,解得-24<k <24.直线与圆的位置关系的综合典题导入[例2] (1)(2012·广东高考)在平面直角坐标系xOy 中,直线3x +4y -5=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长等于( )A .33B .2 3 C. 3D .1(2)(2012·天津高考)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞)[自主解答] (1)圆x 2+y 2=4的圆心(0,0),半径为2,则圆心到直线3x +4y -5=0的距离d =532+42=1.故|AB |=2r 2-d 2=24-1=2 3.(2)圆心(1,1)到直线(m +1)x +(n +1)y -2=0的距离为|m +n |(m +1)2+(n +1)2=1,所以m +n+1=mn ≤14(m +n )2,整理得[(m +n )-2]2-8≥0,解得m +n ≥2+22或m +n ≤2-2 2.[答案] (1)B (2)D由题悟法1.圆的弦长的常用求法:(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝⎛⎭⎫l 22=r 2-d 2. (2)代数方法:运用韦达定理及弦长公式: |AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]. [注意] 常用几何法研究圆的弦的有关问题.2.求过一点的圆的切线方程时,首先要判断此点与圆的位置关系,若点在圆内,无解;若点在圆上,有一解;若点在圆外,有两解.以题试法2.(2012·杭州模拟)直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( )A.⎣⎡⎦⎤-34,0B.⎣⎡⎦⎤-33,33 C .[-3, 3]D.⎣⎡⎦⎤-23,0 解析:选B 如图,设圆心C (2,3)到直线y =kx +3的距离为d ,若|MN |≥23,则d 2=r 2-⎝⎛⎭⎫12|MN |2≤4-3=1,即|2k |21+k 2≤1,解得-33≤k ≤ 33.圆与圆的位置关系典题导入[例3] (1)(2012·山东高考)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( )A .内切B .相交C .外切D .相离(2)设两圆C 1、C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=________. [自主解答] (1)两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17.∵3-2<d <3+2,∴两圆相交.(2)由题意可设两圆的方程为(x -r i )2+(y -r i )2=r 2i ,r i >0,i =1,2.由两圆都过点(4,1)得(4-r i )2+(1-r i )2=r 2i ,整理得r 2i -10r i +17=0,此方程的两根即为两圆的半径r 1,r 2,所以r 1r 2=17,r 1+r 2=10,则|C 1C 2|=(r 1-r 2)2+(r 1-r 2)2=2×(r 1+r 2)2-4r 1r 2=2×100-68=8. [答案] (1)B (2)8由题悟法两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.以题试法3.(2012·青岛二中月考)若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________.解析:依题意得|OO 1|=5+20=5,且△OO 1A 是直角三角形,S △O O 1A =12·|AB |2·|OO 1|=12·|OA |·|AO 1|,因此|AB |=2·|OA |·|AO 1||OO 1|=2×5×255=4. 答案:4[典例](2012·东城模拟)直线l过点(-4,0)且与圆(x+1)2+(y-2)2=25交于A,B两点,如果|AB|=8,那么直线l的方程为()A.5x+12y+20=0B.5x-12y+20=0或x+4=0C.5x-12y+20=0D.5x+12y+20=0或x+4=0[尝试解题]过点(-4,0)的直线若垂直于x轴,经验证符合条件,即方程为x+4=0满足题意;若存在斜率,设其直线方程为y=k(x+4),由被圆截得的弦长为8,可得圆心(-1,2)到直线y=k(x+4)的距离为3,即|3k-2|1+k2=3,解得k=-512,此时直线方程为5x+12y+20=0,综上直线方程为5x+12y+20=0或x+4=0.[答案] D——————[易错提醒]—————————————————————————1.解答本题易误认为斜率k一定存在从而错选A.2.对于过定点的动直线设方程时,可结合题意或作出符合题意的图形分析斜率k是否存在,以避免漏解.——————————————————————————————————————针对训练1.过点A(2,4)向圆x2+y2=4所引切线的方程为__________________.解析:显然x=2为所求切线之一.当切线斜率存在时,设切线方程为y-4=k(x-2),即kx -y +4-2k =0,那么|4-2k |k 2+1=2,k =34,即3x -4y +10=0.答案:x =2或3x -4y +10=02.已知直线l 过(2,1),(m,3)两点,则直线l 的方程为________________. 解析:当m =2时,直线l 的方程为x =2; 当m ≠2时,直线l 的方程为y -13-1=x -2m -2,即2x -(m -2)y +m -6=0.因为m =2时,方程2x -(m -2)y +m -6=0, 即为x =2,所以直线l 的方程为2x -(m -2)y +m -6=0. 答案:2x -(m -2)y +m -6=0一、选择题1.(2012·人大附中月考)设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为( )A .相切B .相交C .相切或相离D .相交或相切解析:选C 圆心到直线l 的距离为d =1+m 2,圆半径为m .因为d -r =1+m 2-m =12(m -2m +1)=12(m -1)2≥0,所以直线与圆的位置关系是相切或相离.2.(2012·福建高考)直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( )A .2 5B .2 3 C. 3D .1解析:选B 因为圆心(0,0)到直线x +3y -2=0的距离为1,所以AB =24-1=2 3.3.(2012·安徽高考)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)解析:选C 欲使直线x -y +1=0与圆(x -a )2+y 2=2有公共点,只需使圆心到直线的距离小于等于圆的半径2即可,即|a -0+1|12+(-1)2≤2,化简得|a +1|≤2,解得-3≤a ≤1.4.过圆x 2+y 2=1上一点作圆的切线与x 轴,y 轴的正半轴交于A ,B 两点,则|AB |的最小值为( )A. 2B. 3 C .2 D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则切线方程为x 0x +y 0y =1.分别令x =0,y =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |= ⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2.当且仅当x 0=y 0时,等号成立.5.(2013·兰州模拟)若圆x 2+y 2=r 2(r >0)上仅有4个点到直线x -y -2=0的距离为1,则实数r 的取值范围为( )A .(2+1,+∞)B .(2-1, 2+1)C .(0, 2-1)D .(0, 2+1)解析:选A 计算得圆心到直线l 的距离为22= 2>1,如图.直线l :x -y -2=0与圆相交,l 1,l 2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l 2的距离 2+1.6.(2013·临沂模拟)已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形P ACB 的最小面积是2,则k 的值为( )A. 2B.212 C .2 2 D .2解析:选D 圆心C (0,1)到l 的距离d =5k 2+1, 所以四边形面积的最小值为2×⎝⎛⎭⎫12×1×d 2-1=2, 解得k 2=4,即k =±2.又k >0,即k =2.7.(2012·朝阳高三期末)设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则实数m 的值是________.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1,即|1-2m -1|1+m 2=1,解得m =±33. 答案:±338.(2012·东北三校联考)若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________.解析:由题意可知圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为2 4-⎝ ⎛⎭⎪⎫c a 2+b 22,由于a 2+b 2=c 2,所以所求弦长为2 3. 答案:2 39.(2012·江西高考)过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.解析:∵点P 在直线x +y -22=0上,∴可设点P (x 0,-x 0+22),且其中一个切点为M .∵两条切线的夹角为60°,∴∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2.由两点间的距离公式得OP = x 20+(-x 0+22)2=2,解得x 0= 2.故点P 的坐标是( 2, 2).答案:( 2, 2)10.(2012·福州调研)已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB |=423,求|MQ |及直线MQ 的方程; (2)求证:直线AB 恒过定点.解:(1)设直线MQ 交AB 于点P ,则|AP |=223,又|AM |=1,AP ⊥MQ ,AM ⊥AQ ,得|MP |= 12-89=13, 又∵|MQ |=|MA |2|MP |,∴|MQ |=3. 设Q (x,0),而点M (0,2),由x 2+22=3,得x =±5, 则Q 点的坐标为(5,0)或(-5,0).从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.(2)证明:设点Q (q,0),由几何性质,可知A ,B 两点在以QM 为直径的圆上,此圆的方程为x (x -q )+y (y -2)=0,而线段AB 是此圆与已知圆的公共弦,相减可得AB 的方程为qx-2y +3=0,所以直线AB 恒过定点⎝⎛⎭⎫0,32. 11.已知以点C ⎝⎛⎭⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若|OM |=|ON |,求圆C 的方程.解:(1)证明:由题设知,圆C 的方程为(x -t )2+⎝⎛⎭⎫y -2t 2=t 2+4t 2, 化简得x 2-2tx +y 2-4ty =0, 当y =0时,x =0或2t ,则A (2t,0);当x =0时,y =0或4t,则B ⎝⎛⎭⎫0,4t , 所以S △AOB =12|OA |·|OB | =12|2t |·⎪⎪⎪⎪4t =4为定值. (2)∵|OM |=|ON |,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN , ∴C 、H 、O 三点共线,则直线OC 的斜率k =2t t =2t 2=12,∴t =2或t =-2. ∴圆心为C (2,1)或C (-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.12.在平面直角坐标系xOy 中,已知圆x 2+y 2-12x +32=0的圆心为Q ,过点P (0,2),且斜率为k 的直线与圆Q 相交于不同的两点A 、B .(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA +OB 与PQ 共线?如果存在,求k 值;如果不存在,请说明理由.解:(1)圆的方程可写成(x -6)2+y 2=4,所以圆心为Q (6,0).过P (0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x 2+(kx +2)2-12x +32=0,整理得(1+k 2)x 2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k 2)=42(-8k 2-6k )>0,解得-34<k <0,即k 的取值范围为⎝⎛⎭⎫-34,0. (2)设A (x 1,y 1)、B (x 2,y 2)则OA +OB =(x 1+x 2,y 1+y 2),由方程①得x 1+x 2=-4(k -3)1+k 2.② 又y 1+y 2=k (x 1+x 2)+4.③ 因P (0,2)、Q (6,0),PQ =(6,-2), 所以OA +OB 与PQ 共线等价于-2(x 1+x 2)=6(y 1+y 2),将②③代入上式,解得k =-34. 而由(1)知k ∈⎝⎛⎭⎫-34,0,故没有符合题意的常数k .1.已知两圆x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,则它们的公共弦所在直线的方程为________________;公共弦长为________.解析:由两圆的方程x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,相减并整理得公共弦所在直线的方程为2x +y -5=0.圆心(5,5)到直线2x +y -5=0的距离为105=25,弦长的一半为50-20=30,得公共弦长为230. 答案:2x +y -5=0 2302.(2012·上海模拟)已知圆的方程为x 2+y 2-6x -8y =0,a 1,a 2,…,a 11是该圆过点(3,5)的11条弦的长,若数列a 1,a 2,…,a 11成等差数列,则该等差数列公差的最大值是________.解析:容易判断,点(3,5)在圆内部,过圆内一点最长的弦是直径,过该点与直径垂直的弦最短,因此,过(3,5)的弦中,最长为10,最短为46,故公差最大为10-4610=5-265. 答案:5-2653.(2012·江西六校联考)已知抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,圆M 的圆心在x 轴的正半轴上,圆M 与y 轴相切,过原点O 作倾斜角为π3的直线n ,交直线l 于点A ,交圆M 于不同的两点O 、B ,且|AO |=|BO |=2.(1)求圆M 和抛物线C 的方程;(2)若P 为抛物线C 上的动点,求PM ,·PF ,的最小值;(3)过直线l 上的动点Q 向圆M 作切线,切点分别为S 、T ,求证:直线ST 恒过一个定点,并求该定点的坐标.解:(1)易得B (1,3),A (-1,-3),设圆M 的方程为(x -a )2+y 2=a 2(a >0), 将点B (1,3)代入圆M 的方程得a =2,所以圆M 的方程为(x -2)2+y 2=4,因为点A (-1,-3)在准线l 上,所以p 2=1,p =2,所以抛物线C 的方程为y 2=4x . (2)由(1)得,M (2,0),F (1,0),设点P (x ,y ),则PM ,=(2-x ,-y ),PF ,=(1-x ,-y ),又点P 在抛物线y 2=4x 上,所以PM ,·PF ,=(2-x )(1-x )+y 2=x 2-3x +2+4x =x 2+x +2,因为x ≥0,所以PM ,·PF ,≥2,即PM ,·PF ,的最小值为2.(3)证明:设点Q (-1,m ),则|QS |=|QT |=m 2+5,以Q 为圆心,m 2+5为半径的圆的方程为(x +1)2+(y -m )2=m 2+5,即x 2+y 2+2x -2my -4=0,①又圆M 的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0,②由①②两式相减即得直线ST 的方程3x -my -2=0,显然直线ST 恒过定点⎝⎛⎭⎫23,0.1.两个圆:C 1:x 2+y 2+2x +2y -2=0与C 2:x 2+y 2-4x -2y +1=0的公切线有且仅有( )A .1条B .2条C .3条D .4条解析:选B 由题知C 1:(x +1)2+(y +1)2=4,则圆心C 1(-1,-1),C 2:(x -2)2+(y。
高中数学第四章圆与方程4.1圆的方程4.1.2圆的一般方程课件新人教A版必修2
所以圆的方程为(x+1)2+(y+2)2=10.
法三 线段 AB 中垂线的方程为 2x+y+4=0.它与直 线 x-2y-3=0 的交点(-1,-2)为圆心,由两点间距离 得 r2=10,
所以圆的方程为(x+1)2+(y+2)2=10.
(2)法一 设圆的方程为
x2+y2+Dx+Ey+F=0,(*)
D=2, 所以E=4, F=-5.
所以圆的方程为 x2+y2+2x+4y-5=0.
法二 设圆的方程为(x-a)2+(y-b)2=r2,则
(2-a)2+(-3-b)2=r2, a=-1,
(-2-a)2+(-5-b)2=r2,⇒b=-2,
a-2b-3=0,
r2=10.
类型 2 求圆的方程 [典例 2] (1)已知圆经过 A(2,-3)和 B(-2,-5), 若圆心在直线 x-2y-3=0 上,求圆的方程; (2)求过点 A(-1,0),B(3,0)和 C(0,1)的圆的方程. 解:(1)法一 设圆的方程为 x2+y2+Dx+Ey+F=0, 则
4+(-3)2+2D+(-3)E+F=0, (-2)2+(-5)2+(-2)D+(-5)E+F=0, -D2 -2·-E2-3=0.
把 A、B、C 三点坐标代入方程(*)得
1-D+F=0, D=-2,
9+3D+F=0,所以E=2,
1+E+F=0, F=-3.
故所求圆的方程为 x2+y2-2x+2y-3=0.
法二 线段 AB 的中垂线方程为 x=1,线段 AC 的中
垂线方程为 x+y=0,
x=1,
解析:由-D2=2,-E2=-4,12 D2+E2-4F=4, 解得 F=4.
答案:4
高中数学 第4章 圆与方程 4.2 直线、圆的位置关系 4.2.2 圆与圆的位置关系教材梳理素材 新人教A版必修2
4.2.2 圆与圆的位置关系疱丁巧解牛知识·巧学一、判断圆与圆的位置关系设两圆分别为圆O 1、圆O 2,试利用两圆的方程研究两圆的位置关系.1.代数法:代数方法的实质仍是通过方程组解的个数得到交点个数,从而决定位置关系.可以建立适当坐标系,设两圆的方程,联立方程组研究其公共解的组数来解决.但过程烦琐,位置关系还得借助图形(例如方程组只有唯一一组解,这时两圆是内切还是外切呢),因此说利用代数方法研究圆的位置并不方便,不是理想的方法.2.几何法:设两圆圆心距为d ,两圆半径分别为r 1、r 2,则d>r 1+r 2,两圆外离;d=r 1+r 2,两圆外切;|r 1-r 2|<d<r 1+r 2,两圆相交;d=|r 1-r 2|,两圆内切;d<|r 1-r 2|,两圆内含. 方法归纳 判断两个圆的位置关系有两种,第一种是代数法,研究两圆的方程所组成的方程组的解的个数;第二种是研究两圆的圆心距与两圆半径之间的关系.第一种方法因涉及两个二元二次方程组成的方程组,其解法一般较为烦琐,故使用较少,在研究两圆的位置关系时,显然几何法是比较实用、比较直观、比较简单的方法.具体如下:设两圆圆心距为d ,两圆半径分别为r 1、r 2,圆与圆的位置关系可分为相离、相切、相交、内含,其判断方法是几何法.设圆O 1的圆心为O 1,半径为r 1,圆O 2的圆心为O 2,半径为r 2.两圆相交⇔|r 1-r 2|<|O 1O 2|<r 1+r 2;两圆相切⎩⎨⎧+=⇔-<⇔;||;||21212121r r O O r r O O 外切内切两圆相离⇔|O 1O 2|>r 1+r 2;两圆内含⇔|O 1O 2|<|r 1-r 2|.二、圆系方程我们知道两圆相交(相切)有两个(或一个)交点,经过这些交点可作无穷多个圆,这无穷多个圆可组成一个圆系.常见圆系方程有如下几种:(1)与圆x 2+y 2+Dx+Ey+F=0同心的圆系方程为x 2+y 2+Dx+Ey+λ=0;(2)过直线Ax+By+C=0与圆x 2+y 2+Dx+Ey+F=0交点的圆系方程为x 2+y 2+Dx+Ey+F+λ(Ax+By+C)=0;(3)过两圆x 2+y 2+D 1x+E 1y+F 1=0,x 2+y 2+D 2x+E 2y+F 2=0交点的圆系方程为x 2+y 2+D 1x+E 1y+F 1+λ(x 2+y 2+D 2x+E 2y+F 2)=0(λ≠-1),此圆系不含圆x 2+y 2+D 2x+E 2y+F 2=0.联想发散 对过两已知圆的圆系方程,当λ=-1时,得到(D 1-D 2)x+(E 1-E 2)y+F 1-F 2=0,此为两圆公共弦所在直线方程.因此,如果两圆相交,两圆的方程相减就得到两圆公共弦所在直线的方程.由此可推广:经过两曲线f(x,y)=0,g(x,y)=0交点的曲线系方程为f(x,y)+λg(x,y)=0. 问题·探究问题1 以已知线段AB 为弦作出两个不同的圆,这时两个圆的方程是否能确定?反过来,如果已知两个确定的圆相交于两点C 、D ,那么CD 所在的直线的方程能否确定呢?探究:由于以线段AB 为弦的圆有无数多个,所以随机作出的两个不同的圆的方程不能确定.而当两圆确定时,如果它们相交,则有且只有两个交点,这两个交点就确定了两个圆的公共弦所在直线的方程,故CD 所在直线的方程是确定的.问题2 向平静的池塘水面随便抛掷两颗石子,则落水后它们各自发出了以石子落下水的点为圆心,半径在不断扩大的圆,你能想象出抛掷后在同一时刻它们所发出的两个圆的位置关系吗?探究:由于抛掷的前后时间不同,抛掷的地点不同,容易想象,抛掷后同一时刻两颗石子发出的圆可能有外离、外切、相交、内切、内含等各种情况.典题·热题例1 实数k 为何值时,两圆C 1:x 2+y 2+4x-6y+12=0,C 2:x 2+y 2-2x-14y+k=0相交、相切、相离?思路解析:利用两圆的圆心距与半径的和与差的关系判断.解:将两圆的一般方程化为标准方程,C 1:(x+2)2+(y-3)2=1,C 2:(x-1)2+(y-7)2=50-k.圆C 1的圆心为C 1(-2,3),半径r 1=1;圆C 2的圆心为C 2(1,7),半径r 2=k -50(当k<50时).从而|C 1C 2|=5)73()12(22=-+--当5501=-+k ,即k=34时,两圆外切.当|150--k |=5,即650=-k ,k=14时,两圆内切.当14<k <34时,则6504<-<k ,即r 2-r 1<|C 1C 2|<r 2+r 1,此时,两圆相交. 当k <14或34<k <50时,两圆相离.深化升华 给出两圆的方程判断两个圆的位置关系,一般情况下,先把圆的方程配方为标准方程后,求得圆心和半径,利用几何法去判断两圆的位置关系.例2 (2020江苏高考)如图4-2-1,圆O 1与圆O 2的半径都是1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN(M 、N 分别为切点),使得PM=PN 2,试建立适当的坐标系,并求动点P 的轨迹方程.图4-2-1思路解析:建立适当的直角坐标系,而题中的等量关系是同一点出发的两切线的长间的关系,由直线与圆相切,由勾股定理得出切线长,构成方程化简即可.解:以O 1O 2的中点O 为原点,O 1O 2所在的直线为x 轴,建立平面直角坐标系,则O 1(-2,0),O 2(2,0),由已知PM=PN 2,得PM 2=2PN 2. 因为两圆的半径均为1,所以)1(212221-=-PO PO .设P(x,y),则(x+2)2+y 2-1=2[(x-2)2+y 2-1],即(x-6)2+y 2=33.所以所求轨迹方程为(x-6)2+y 2=33(或x 2+y 2-12x+3=0).方法归纳 求动点的轨迹方程时,先要观察原题中是否已有坐标系,没有的话要先建立适当的直角坐标系.设轨迹上任一点坐标(x ,y),由题中条件列出关系式求解,常用的方法有直接法、代入法和定义法等.并且要注意对最后得到的结果进行检验,看是否有多余的解或漏掉的解.例3 已知两个圆C 1:x 2+y 2=4,C 2:x 2+y 2-2x-4y+4=0,直线l :x+2y=0,求经过C 1和C 2的交点且和l 相切的圆的方程.思路解析:所求圆经过C 1、C 2的交点,故可用圆系方程求解.圆与直线相切的问题可利用圆心到切线的距离等于半径.求经过两圆交点的圆可考虑圆系,但要考虑λ≠-1,另外由于圆系中不包括圆x 2+y 2=4,因此应检验圆x 2+y 2=4是否也满足条件.解:设所求圆的方程为x 2+y 2+4-2x-4y+λ(x 2+y 2-4)=0,即(1+λ)x 2+(1+λ)y 2-2x-4y+4(1-λ)=0.所以圆心为(λλ++12,11), 半径为)11(16)14()12(2122λλλλ+--+-++-, 即22)1()1(16164215|1411|λλλλ+--+=+++. 解之,得λ=±1,舍去λ=-1,故所求圆的方程为x 2+y 2-x-2y=0.深化升华 过两圆x 2+y 2+D 1x+E 1y+F 1=0,x 2+y 2+D 2x+E 2y+F 2=0交点的圆系方程为x 2+y 2+D 1x+E 1y+F 1+λ(x 2+y 2+D 2x+E 2y+F 2)=0(λ≠-1),要注意此圆系不能表示圆x 2+y 2+D 2x+E 2y+F 2=0.。
高中数学 圆与圆的位置关系
典例导学
即时检测
一
二
三
一、判断两圆的位置关系
当实数k为何值时,两圆C1:x2+y2+4x-6y+12=0,C2:x2+y2-2x14y+k=0相交、相切、相离? 思路分析:求圆C1的圆心C1,半径r1→求圆C2的圆心C2,半径r2→ 求C1C2→利用C1C2与|r1-r2| 和r1+r2的关系求k 解:将两圆的一般方程化为标准方程, C1:(x+2)2+(y-3)2=1, C2:(x-1)2+(y-7)2=50-k. 圆C1的圆心为C1(-2,3),半径r1=1;
典例导学
即时检测
一
二
三
1.☉A的方程x2+y2-2x-2y-7=0与☉B的方程x2+y2+2x+2y-2=0的位 置关系是 . 解析:☉A的方程可写为(x-1)2+(y-1)2=9, ☉B的方程可写为(x+1)2+(y+1)2=4, ∴两圆心A,B之间的距离满足
3-2<|AB|= (1 + 1)2 + (1 + 1)2 =2 2<3+2,
∵|r1-r2|<d<r1+r2, ∴两圆相交 .
典例导学
即时检测
一
二
三
(3)两圆的圆心距 d= (������ + 1)2 + (0-0)2 =|a+1|.
∵-4<a<-2或0<a<2, ∴-3<a+1<-1或1<a+1<3,
即1<|a+1|<3.而两圆的半径分别为2和1, ∴2-1<|a+1|<2+1,即两圆圆心距大于两圆半径差的绝对值而小 于两圆半径和, ∴两圆相交. 已知两圆的方程判断两圆的位置关系时,关键是求出 两圆的半径的差或和与圆心距之间的大小关系,即要先确定圆心坐 标和半径.如果给出圆的一般方程,一般是先化为标准方程,再进行 判断.
高中数学第4章圆与方程4.2.1直线与圆的位置关系人教A版必修2
直线与圆的相交问题 [探究问题] 1.已知直线 l 与圆相交,如何利用通过求交点坐标的方法求弦 长?
[提示] 将直线方程与圆的方程联立解出交点坐标,再利用|AB| = (x2-x1)2+(y2-y1)2求弦长.
2.若直线与圆相交、圆的半径为 r、圆心到直线的距离为 d,如 何求弦长?
[提示] 通过半弦长、弦心距、半径构成的直角三角形,如图所 示,求得弦长 l=2 r2-d2.
可设直线斜率为 k,则直线方程为 y=k(x-2),
所以 d=|-k12-+21k|= 210,解得 k=-3 或 k=13,
所以直线方程为 y=-3(x-2)或 y=13(x-2), 即 3x+y-6=0 或 x-3y-2=0.
求弦长常用的三种方法: (1)利用圆的半径 r,圆心到直线的距离 d,弦长 l 之间的关系12l2 +d2=r2 解题. (2)利用交点坐标,若直线与圆的交点坐标易求出,求出交点坐标 后,直接用两点间距离公式计算弦长.
2.判断直线与圆位置关系的途径主要有两个:一是圆心到直线 的距离与圆的半径进行大小比较;二是直线与圆的方程组成的方程组 解的个数.两者相比较,前者较形象、直观,便于运算.
3.与圆有关的弦长、切线问题常利用几何法求解,体现了直观 想象的数学素养,但注意验证所求直线的斜率不存在的情形,避免漏 解.
当堂达标 固双基
3.若本例改为“过点(2,0)的直线被圆 C:x2+y2-2y-4=0 截 得的弦长为 10,求该直线方程”,又如何求解?
[解] 由例题知,圆心 C(0,1),半径 r= 5,又弦长为 10, 所 以圆心到直线的距离
d=
r2-
2102=
5-52=
10 2.
又直线过点(2,0),知直线斜率一定存在,
高中数学第四章圆与方程4.2.2圆与圆的位置关系课件新人教A版必修2
距离公式求解;二是先求出两圆公共弦所在的直线方程,再利用半
径长、弦心距和弦长的一半构成的直角三角形求解.
3.已知圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0 相交,则过两圆交点的圆的方程可设为
x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1).
延伸探究2将本例改为“若圆x2+y2-2x=0与圆x2+y2-8x-8y+m=0相 外切,试求实数m的值.”
解圆 x2+y2-2x=0 的圆心为 A(1,0),半径为 r1=1,圆 x2+y2-8x-8y+m=0
的圆心为 B(4,4),半径为 r2= 32-������.因为两圆相外切,
所以 (4-1)2 + (4-0)2=1+ 32-������,解得 m=16.
则有,
位置关系 外离 外切
相交
内切
内含
图示
d 与 r1,r2 的关系
d>r1+r2
d=r1+r2
|r1-r2|< d<r1+r2
d=|r1-r2|
d<|r1-r2|
(2)代数法:圆 O1:x2+y2+D1x+E1y+F1=0(������12 + ������12-4F1>0),圆 O2:x2+y2+D2x+E2y+F2=0(������22 + ������22-4F2>0),两圆的方程联立得方程 组,则有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【红对勾】2016-2017学年高中数学第四章圆与方程 28 圆与圆的位置关系、直线与圆的方程的应用课时作业新人教A版必修2
——基础巩固类——
1.圆x2+y2=1和x2+y2-6y+5=0的位置关系为( )
A.外切 B.内切
C.相离 D.内含
解析:方程x2+y2-6y+5=0化为x2+(y-3)2=4,所以两圆的圆心为C1(0,0),C2(0,3),半径为r1=1,r2=2,而
|C1C2|=3=r1+r2.则两圆相外切,故选A.
答案:A
2.已知点A,B分别在两圆x2+(y-1)2=1与(x-2)2+(y-5)2=9上,则A,B两点之间的最短距离为( )
A.2 5 B.25-2
C.25-4 D.2
解析:两圆心之间的距离为 2-0 2+ 5-1 2=25>4=r1+r2,所以两圆相离,所以A、B两点之间的最短距离为25-4,故选C.
答案:C
3.圆x2+y2-2x-5=0和圆x2+y2+2x-4y-4=0的交点为A、B,则线段AB的垂直平分线方程为( )
A.x+y-1=0 B.2x-y+1=0
C.x-2y+1=0 D.x-y+1=0
解析:直线AB的方程为4x-4y+1=0,因此它的垂直平分线斜率为-1,过圆心(1,0),方程为y=-(x-1),即两圆连心线.故选A.
答案:A
4.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( ) A.(x-4)2+(y-6)2=6
B.(x±4)2+(y-6)2=6
C.(x-4)2+(y-6)2=36
D.(x±4)2+(y-6)2=36
解析:由题意知,半径为6的圆与x 轴相切, 设所求圆的圆心坐标为(a ,b),则b =6, 再由a 2
+32
=5,可以解得a =±4,
故所求圆的方程为(x±4)2
+(y -6)2
=36.故选D. 答案:D
5.一辆货车宽2米,要经过一个半径为10米的半圆形隧道,则这辆货车的平顶车篷的篷顶距离地面高度不得超过( )
A .2.4米
B .3米
C .3.6米
D .2.0米
解析:以半圆直径所在直线为x 轴,过圆心且与x 轴垂直的直线为y 轴,建立如图所示坐标系.
由半圆的半径为10可知,
半圆所在的圆的方程为x 2
+y 2
=10(y≥0),
由图可知当车恰好在隧道中间行走时车篷可达到最高. 此时x =1或x =-1,代入x 2
+y 2
=10, 得y =3(负值舍去).故选B. 答案:B
6.过两圆x 2
+y 2
-x -y -2=0与x 2
+y 2
+4x -4y -8=0的交点和点(3,1)的圆的方程是________.
解析:设所求圆方程为(x 2
+y 2
-x -y -2)+λ(x 2
+y 2
+4x -4y -8)=0(λ≠-1),将(3,1)代入得λ=-25,故所求圆的方程为x 2+y 2
-133
x +y +2=0.
答案:x 2+y 2
-133
x +y +2=0
7.两圆相交于两点A(1,3)和B(m ,-1),两圆圆心都在直线x -y +c =0上,则m +c 的值为________.
解析:由题意知,线段AB 的中点在直线x -y +c =0上, 且k AB =4
1-m =-1,即m =5,
又点⎝
⎛⎭
⎪
⎫1+m 2,1在该直线上,
所以1+m 2-1+c =0,所以c =-2,所以m +c =3.
答案:3
8.已知圆C 1:x 2
+y 2
-2mx +4y +m 2
-5=0,圆C 2:x 2
+y 2
+2x -2my +m 2
-3=0,则当m 为何值时,
(1)圆C 1与圆C 2相切; (2)圆C 1与圆C 2内含.
解:对于圆C 1,圆C 2的方程,经配方后有 圆C 1:(x -m)2
+(y +2)2
=9, 圆C 2:(x +1)2
+(y -m)2
=4. (1)①若圆C 1与圆C 2外切,则有 m+1 2
+ -2-m 2
=3+2=5. 即m 2
+3m -10=0,解得m =-5或m =2. ②若圆C 1与圆C 2内切,
则有 m+1 2
+ -2-m 2
=3-2=1, 即m 2
+3m +2=0,解得m =-1或m =-2.
综上所述,当m =-1或m =-2或m =-5或m =2时,两圆相切. (2)若圆C 1与圆C 2内含,则有 m+1 2
+ m+2 2
<3-2=1. 即m 2
+3m +2<0,解得-2<m<-1. 故当-2<m<-1时,圆C 1与圆C 2内含.
9.如图,已知一艘海监船O 上配有雷达,其监测范围是半径为25 km 的圆形区域.一艘外籍轮船从位于海监船正东40 km 的A 处出发,径直驶向位于海监船正北30 km 的B 处岛屿,速度为28 km/h.
问:这艘外籍轮船能否被海监船监测到?若能,持续时间多长?(要求用坐标法)
解:
如图,以O 为原点,东西方向为x 轴建立直角坐标系, 则A(40,0),B(0,30), 圆O 方程为x 2
+y 2
=252
, 直线AB 方程:x 40+y
30=1,
即3x +4y -120=0, 设O 到AB 距离为d ,则d =
|-120|
5
=24<25, 所以外籍轮船能被海监船监测到.
设监测时间为t ,则t =2252
-242
28=1
2(h).
答:外籍轮船能被海监船监测到,时间是0.5 h.
——能力提升类——
10.已知M ={(x ,y)|x 2
+y 2
≤4},N ={(x ,y)|(x -1)2
+(y -1)2
≤r 2
(r>0)},且M∩N =N ,则r 的取值范围是( )
A .(0,2-1)
B .(0,1]
C .(0,2-2]
D .(0,2]
解析:因为M∩N=N ,所以两个圆内含或内切,则2-r≥
2,得r∈(0,2-2],故选C. 答案:C
11.若圆x 2
+y 2
=4与圆x 2
+y 2
+2ay -6=0(a>0)的公共弦长为23,则a =________. 解析:由已知,两个圆的方程作差可以得到相应弦的直线方程为y =1
a
,圆心(0,0)到直
线的距离d =
⎪⎪⎪⎪
⎪⎪1a 1
=22- 3 2
=1,解得a =±1.
答案:1
12.已知圆M 过两点C(1,-1),D(-1,1),且圆心M 在x +y -2=0上. (1)求圆M 的方程;
(2)设P 是直线3x +4y +8=0上的动点,PA ,PB 是圆M 的两条切线,A ,B 为切点,求四边形PAMB 面积的最小值.
解:(1)设圆M 的方程为(x -a)2
+(y -b)2
=r 2
(r>0). 根据题意,得⎩⎪⎨⎪⎧
1-a 2
+ -1-b 2
=r 2
, -1-a 2+ 1-b 2=r 2
,
a +
b -2=0,
解得a =b =1,r =2,
故所求圆M 的方程为(x -1)2
+(y -1)2
=4. (2)因为四边形PAMB 的面积
S =S △PAM +S △PBM =12|AM|·|PA|+1
2|BM|·|PB|,
又|AM|=|BM|=2,|PA|=|PB|,所以S =2|PA|, 而|PA|=|PM|2
-|AM|2
=|PM|2
-4, 即S =2|PM|2-4.
因此要求S 的最小值,只需求|PM|的最小值即可,即在直线3x +4y +8=0上找一点P ,使得|PM|的值最小,
所以|PM|min =|3×1+4×1+8|
32+42
=3, 所以四边形PAMB 面积的最小值为 S =2|PM|2
-4=232
-4=2 5.。