高中数学必修2知识点总结:第四章_圆与方程

合集下载

高中数学必修二圆与方程

高中数学必修二圆与方程

高中数学必修二圆与方程高中数学必修二:圆与方程圆和方程作为高中数学必修二中的重要知识点,是数学学习中的基础内容。

圆是平面上到给定点距离等于定值的点的集合,是几何中的重要图形之一;而方程则是描述数学关系的一种数学语言。

本文将详细讲解圆和方程的相关知识,帮助读者更好地理解和掌握这些内容。

1. 圆的基本概念在几何中,圆是一个封闭曲线,由一个平面上所有到指定点距离相等的点组成。

圆的基本要素包括圆心、半径、直径、弦、弧等。

圆心是圆的中心点,通常用字母O表示;半径是从圆心到圆周上任意点的距离,通常用字母r表示;直径是通过圆心的两个端点的线段,通常用字母d表示。

弦是连接圆上两点的线段,弧是圆上的一段曲线。

圆的周长公式为C=2πr,面积公式为S=πr²。

2. 圆的相关定理在学习圆的过程中,我们需要掌握一些重要的定理,如圆的相交、切线、相切等相关定理。

其中,切线与圆的切点垂直、相切圆的切线垂径于切点等定理是解题中经常用到的重点内容。

此外,根据圆的位置关系,我们还可以推导出诸如同位角、同弦、相等弧等相关定理,这些定理在解题中能够帮助我们更快更准确地完成题目。

3. 圆的参数方程在高中数学中,我们还需要学习圆的参数方程。

当圆的中心不在坐标原点时,我们可以通过参数方程的方式来描述圆的位置。

圆的参数方程一般为x=rcosθ,y=rsinθ,其中θ为参数,r为半径。

通过参数方程,我们可以方便地描述圆的位置和形状,是解决复杂问题时的重要工具。

4. 一元二次方程另一个重要的数学概念是一元二次方程。

一元二次方程是指形式为ax²+bx+c=0的方程,其中a、b、c为常数且a≠0。

解一元二次方程的方法有因式分解、配方法、求根公式等。

掌握一元二次方程的解题方法对于高中数学的学习至关重要,同时也是解决实际问题的基础。

5. 二次函数一元二次方程的图像是抛物线,对应的函数为二次函数。

二次函数的一般形式为y=ax²+bx+c,其中a≠0。

高二数学必修二-第四章-圆与圆的方程知识点总结

高二数学必修二-第四章-圆与圆的方程知识点总结

第四章 圆 与 方 程★1、圆的定义:平面内到一定点的距离等于定长的点的集合叫做圆,定点为圆心,定长为圆的半径。

设M (x,y )为⊙A 上任意一点,则圆的集合可以写作:P = {M | |MA| = r }★2、圆的方程(1点00(,)M x y 与圆222()()x a y b r -+-=的位置关系:当2200()()x a y b -+->2r ,点在圆外; 当2200()()x a y b -+-=2r ,点在圆上 当2200()()x ay b -+-<2r ,点在圆内; (2 (x+D/2)2+(y+E/2)2=(D 2+E 2-4F)/4 (0422>-+F E D )当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为F E D r 42122-+=当0422=-+F E D时,表示一个点;当0422<-+F E D 时,方程不表示任何图形。

(3)求圆的方程的方法:①待定系数法:先设后求。

确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ;②直接法:直接根据已知条件求出圆心坐标以及半径长度。

另外要注意多利用圆的几何性质:如弦的中垂线必经过圆心,以此来确定圆心的位置。

★3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为相离与C l r d ⇔>;相切与C l r d ⇔=;相交与C l r d ⇔< (2)过圆外一点的切线k ,②若求得两个相同的解,带入切线方程,得到一条切线;接下来验证过该点的斜率不存在的直线(此 时,该直线一定为另一条切线)(3) 过圆上一点的切线方程:圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为★4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。

高一数学必修2第四单元知识点:圆的方程知识点

高一数学必修2第四单元知识点:圆的方程知识点

高一数学必修2第四单元知识点:圆的
方程知识点
方程,是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,通常在两者之间有一等号=。

xx为大家推荐了高一数学必修2第四单元知识点,请大家仔细阅读,希望你喜欢。

1。

圆的标准方程
在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是
(x-a)^2+(y-b)^2=r^2
2。

圆的一般方程
把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是
x^2+y^2+Dx+Ey+F=0
和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2
相关知识:圆的离心率e=0。

在圆上任意一点的曲率半径都是r。

精品小编为大家提供的高一数学必修2第四单元知识点,大家仔细阅读了吗?最后祝同学们学习进步。

高一必修2数学第一单元知识点:空间几何体
高一年级数学必修2第三单元知识点:直线与方程。

数学人教版必修二圆的方程知识点

数学人教版必修二圆的方程知识点

数学人教版必修二圆的方程知识点
数学人教版必修二中关于圆的方程的内容主要涉及以下几个知识点:
1. 圆的标准方程:圆的标准方程为:(x - a)² + (y - b)² = r²,其中(a, b)为圆心的坐标,r为圆的半径。

2. 圆的一般方程:圆的一般方程为:x² + y² + Dx + Ey + F = 0,其中D、E、F为常数。

一般方程推导出标准方程的方法是完成平方并合并同类项。

3. 圆的参数方程:若圆的圆心为(a, b),半径为r,则圆的参数方程为x = a + rcosθ,y = b + rsinθ,其中θ为参数。

4. 圆的切线方程:过圆上的一点M(x₁, y₁)的切线方程为xx₁ + yy₁ = r²,其中r为圆的半径。

5. 过圆心的直线方程:过圆心的直线方程为x/a + y/b = 1,其中a和b分别为圆心的横纵坐标。

6. 圆与直线的位置关系:可以利用圆的一般方程和直线的方程,通过解方程组来判断
圆与直线的位置关系。

以上是数学人教版必修二中有关圆的方程的主要知识点。

希望对你有所帮助!。

高中数学必修2第四章知识点总结

高中数学必修2第四章知识点总结

高中数学必修2第四章知识点总结4.1.1 圆的标准方程1、圆的标准方程:222()()x a y b r -+-=圆心为A(a,b),半径为r 的圆的方程2、点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:(1)2200()()x a y b -+->2r ,点在圆外 (2)2200()()x a y b -+-=2r ,点在圆上 (3)2200()()x a y b -+-<2r ,点在圆内4.1.2 圆的一般方程1、圆的一般方程:022=++++F Ey Dx y x2、圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0. ②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了. (3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。

4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2,2(ED --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点:(1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切; (3)当r d <时,直线l 与圆C 相交;4.2.2 圆与圆的位置关系两圆的位置关系.设两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点:(1)当21r r l +>时,圆1C 与圆2C 相离;(2)当21r r l +=时,圆1C 与圆2C 外切; (3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交;(4)当||21r r l -=时,圆1C 与圆2C 内切;(5)当||21r r l -<时,圆1C 与圆2C 内含;4.2.3 直线与圆的方程的应用1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题; 第三步:将代数运算结果“翻译”成几何结论.4.3.1空间直角坐标系1、点M 对应着唯一确定的有序实数组),,(z y x ,x 、y 、z 分别是P 、Q 、R 在x 、y 、z 轴上的坐标2、有序实数组),,(z y x ,对应着空间直角坐标系中的一点3、空间中任意点M 的坐标都可以用有序实数组),,(z y x 来表示,该数组叫做点M 在此空间直角坐标系中的坐标,记M ),,(z y x ,x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标。

高中的高二数学必修二第四章圆与圆的方程学习知识点优秀总结计划

高中的高二数学必修二第四章圆与圆的方程学习知识点优秀总结计划

第四章圆与方程★1、圆的定义:平面内到必定点的距离等于定长的点的会合叫做圆,定点为圆心,定长为圆的半径。

设 M (x,y )为⊙ A 上随意一点,则圆的会合能够写作:P = { M | |MA| = r }★2、圆的方程( 1)标准方程x a 2 y b 2 r 2,圆心a,b ,半径为 r ;点 M ( x0 , y0 ) 与圆 ( x a) 2 ( y b) 2 r 2 的地点关系:当( x0 a) 2 ( y0 b)2>r2,点在圆外; 当 ( x0 a)2 ( y0 b) 2=r2,点在圆上当 ( x a) 2 ( y0 b)2<r2,点在圆内;( 2)一般方程x2 y 2 Dx Ey F 0(x+D/2) 2+(y+E/2) 2=(D 2+E2-4F)/4 ( D 2 E 2 4F 0 )当 D 2 E 2 4F 0 时,方程表示圆,此时圆心为 D , E ,半径为 r 1 D2 E 2 4F2 2 2当 D 2 E 2 4F 0 时,表示一个点;当 D 2 E 2 4F 0 时,方程不表示任何图形。

( 3)求圆的方程的方法:待定系数法:先设后求。

确立一个圆需要三个独立条件,若利用圆的标准方程,需求出 a, b, r;若利用一般方程,需要求出 D, E, F;直接法:直接依据已知条件求出圆心坐标以及半径长度。

此外要注意多利用圆的几何性质:如弦的中垂线必经过圆心,以此来确立圆心的地点。

★3、直线与圆的地点关系:直线与圆的地点关系有相离,相切,订交三种状况:( 1 )设直线l : Ax By C 02 22,圆心 C a, b 到l 的距离为,圆 C : x a y brAa Bb C,则有 d r l与 C相离; d r l 与 C相切; d rl与 C订交dB 2A2( 2)过圆外一点的切线:设点斜式方程,用圆心到该直线距离=半径,求解k,①若求得两个不一样的解,带入所设切线的方程即可;②若求得两个同样的解,带入切线方程,获得一条切线;接下来考证过该点的斜率不存在的直线(此时,该直线必定为另一条切线)(3)过圆上一点的切线方程:圆 (x-a)2+(y-b) 2=r 2,圆上一点为 (x0, y0) ,则过此点的切线方程为0 0-b)(y-b)= r 2(x -a)(x-a)+(y两圆的地点关系判断条件公切线条数外离d>r 1+r2 4 条外切d=r1+r2 3 条订交| r1-r2| <d<r1+2 条r2内切d= | r1-r2| 1 条内含d< | r1-r2| 0 条★4、圆与圆的地点关系:经过两圆半径的和(差),与圆心距(d)之间的大小比较来确立。

高中数学必修2--圆与方程知识点归纳总结

高中数学必修2--圆与方程知识点归纳总结

圆与方程知识点1.圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-.特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+.2.点与圆的位置关系:(1).设点到圆心的距离为d,圆半径为r:a.点在圆内d<r;b.点在圆上d=r;c.点在圆外d>r(2).给定点),(00y x M 及圆222)()(:r b y a x C =-+-.①M 在圆C 内22020)()(r b y a x <-+-⇔②M 在圆C 上22020)()r b y a x =-+-⇔(③M 在圆C 外22020)()(r b y a x >-+-⇔(3)涉及最值:1圆外一点B ,圆上一动点P ,讨论PB 的最值min PB BN BC r ==-max PB BM BC r==+2圆内一点A ,圆上一动点P ,讨论PA 的最值min PA AN r AC==-max PA AM r AC==+思考:过此A 点作最短的弦?(此弦垂直AC )3.圆的一般方程:022=++++F Ey Dx y x .(1)当0422>-+F E D 时,方程表示一个圆,其中圆心⎪⎭⎫⎝⎛--2,2E D C ,半径2422FE D r -+=.(2)当0422=-+F E D 时,方程表示一个点⎪⎭⎫ ⎝⎛--2,2E D .(3)当0422<-+F E D 时,方程不表示任何图形.注:方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422 AF E D -+.4.直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-圆心到直线的距离22B A C Bb Aa d +++=1)无交点直线与圆相离⇔⇔>r d ;2)只有一个交点直线与圆相切⇔⇔=r d ;3)有两个交点直线与圆相交⇔⇔<r d ;弦长|AB|=222d r -还可以利用直线方程与圆的方程联立方程组⎩⎨⎧=++++=++022F Ey Dx y x C By Ax 求解,通过解的个数来判断:(1)当0>∆时,直线与圆有2个交点,,直线与圆相交;(2)当0=∆时,直线与圆只有1个交点,直线与圆相切;(3)当0<∆时,直线与圆没有交点,直线与圆相离;5.两圆的位置关系(1)设两圆2121211)()(:r b y a x C =-+-与圆2222222)()(:r b y a x C =-+-,圆心距221221)()(b b a a d -+-=1条公切线外离421⇔⇔+>r r d ;2条公切线外切321⇔⇔+=r r d ;3条公切线相交22121⇔⇔+<<-r r d r r ;4条公切线内切121⇔⇔-=r r d ;5无公切线内含⇔⇔-<<210r r d ;外离外切相交内切(2)两圆公共弦所在直线方程圆1C :221110x y D x E y F ++++=,圆2C :222220x y D x E y F ++++=,则()()()1212120D D x E E y F F -+-+-=为两相交圆公共弦方程.补充说明:1若1C 与2C 相切,则表示其中一条公切线方程;2若1C 与2C 相离,则表示连心线的中垂线方程.(3)圆系问题过两圆1C :221110x y D x E y F ++++=和2C :222220x y D x E y F ++++=交点的圆系方程为()22221112220x y D x E y F x y D x E y F λ+++++++++=(1λ≠-)补充:1上述圆系不包括2C ;22)当1λ=-时,表示过两圆交点的直线方程(公共弦)3过直线0Ax By C ++=与圆220x y Dx Ey F ++++=交点的圆系方程为()220x y Dx Ey F Ax By C λ+++++++=6.过一点作圆的切线的方程:(1)过圆外一点的切线:①k 不存在,验证是否成立②k 存在,设点斜式方程,用圆心到该直线距离=半径,即⎪⎩⎪⎨⎧+---=-=-1)()(2110101R x a k y b R x x k y y 求解k,得到切线方程【一定两解】例1.经过点P(1,—2)点作圆(x+1)2+(y —2)2=4的切线,则切线方程为。

高中数学:第四章 圆与方程

高中数学:第四章 圆与方程

知识网络
要点归纳
题型研修
题型研修
第四章 圆与方程
例 2 如图所示,在平面直角坐标系 xOy 中,已知圆 C1:(x+ 3)2+(y-1)2=4 和圆 C2:(x-4)2+(y-5)2=4.
(1)若直线 l 过点 A(4,0),且被圆 C1 截得的弦长为 2 3,求 直线 l 的方程;
知识网络
要点归纳
题型研修
题型研修
第四章 圆与方程
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直 的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截 得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件 的点P的坐标.
解 (1)由于直线 x=4 与圆 C1 不相交, 所以直线 l 的斜率存 在.设直线 l 的方程为 y=k(x-4),圆 C1 的圆心到直线 l 的距离为 d,因为直线 l 被圆 C1 截得的弦长为 2 3,所以 d = 22- 32 = 1. 由 点 到 直 线 的 距 离 公 式 得 d =
知识网络 要点归纳 题型研修
要点归纳
第四章 圆与方程
(3)求圆的方程常用待定系数法,此时要善于根据已知条件 的特征来选择圆的方程.如果已知圆心或半径长,或圆心 到直线的距离,通常可用圆的标准方程;如果已知圆经过 某些点,通常可用圆的一般方程. 2.点与圆的位置关系 (1)点在圆上 ①如果一个点的坐标满足圆的方程,那么该点在圆上. ②如果点到圆心的距离等于半径,那么点在圆上.
题型研修
要点归纳
题型研修
第四章 圆与方程
跟踪演练 1 已知圆经过点 A(2,-1),圆心在直线 2x+y =0 上且与直线 x-y-1=0 相切,求圆的方程.
解 法一 设圆的方程为 x2+y2+Dx+Ey+F=0,

高二数学必修二-第四章-圆与圆的方程知识点汇总

高二数学必修二-第四章-圆与圆的方程知识点汇总

高二数学必修二-第四章-圆与圆的方程知识点汇总————————————————————————————————作者:————————————————————————————————日期:第四章 圆 与 方 程★1、圆的定义:平面内到一定点的距离等于定长的点的集合叫做圆,定点为圆心,定长为圆的半径。

设M (x,y )为⊙A 上任意一点,则圆的集合可以写作:P = {M | |MA| = r }★2、圆的方程(1)标准方程()()222r b y a x =-+-,圆心()b a ,,半径为r ;点00(,)M x y 与圆222()()x a y b r -+-=的位置关系:当2200()()x a y b -+->2r ,点在圆外; 当2200()()x a y b -+-=2r ,点在圆上 当2200()()x a y b -+-<2r ,点在圆内; (2)一般方程022=++++F Ey Dx y x(x+D/2)2+(y+E/2)2=(D 2+E 2-4F)/4 (0422>-+F E D )当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为F E D r 42122-+=当0422=-+F E D 时,表示一个点;当0422<-+F E D 时,方程不表示任何图形。

(3)求圆的方程的方法:①待定系数法:先设后求。

确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ;②直接法:直接根据已知条件求出圆心坐标以及半径长度。

另外要注意多利用圆的几何性质:如弦的中垂线必经过圆心,以此来确定圆心的位置。

★3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为22B A C Bb Aa d +++=,则有相离与C l r d ⇔>;相切与C l r d ⇔=;相交与C l r d ⇔<(2)过圆外一点的切线:设点斜式方程,用圆心到该直线距离=半径,求解k ,①若求得两个不同的解,带入所设切线的方程即可;②若求得两个相同的解,带入切线方程,得到一条切线;接下来验证过该点的斜率不存在的直线(此 时,该直线一定为另一条切线)(3) 过圆上一点的切线方程:圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为(x 0-a)(x-a)+(y 0-b)(y-b)= r 2两圆的位置关系 判断条件 公切线条数外离 d>r1+r2 4条 外切 d=r1+r2 3条 相交 |r1-r2|<d<r1+r2 2条 内切 d=|r1-r2| 1条 内含d<|r1-r2|0条★4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。

必修二数学圆与方程知识点总结

必修二数学圆与方程知识点总结

必修二数学圆与方程知识点总结必修二数学圆与方程知识点总结总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,它可以提升我们发现问题的能力,因此十分有必须要写一份总结哦。

总结一般是怎么写的呢?下面是小编收集整理的必修二数学圆与方程知识点总结,希望对大家有所帮助。

必修二数学圆与方程知识点总结1圆的一般方程圆的标准方程是一个关于x和y的二次方程,将它展开并按x、y 的降幂排列,得:x+y—2ax—2by+a+b—R=0设D=—2a,E=—2b,F=a+b—R;则方程变成:x+y+Dx+Ey+F=0任意一个圆的方程都可写成上述形式。

把它和下述的一般形式的二元二次方程比较,可以看出它有这样的特点:(1)x2项和y2项的系数相等且不为0(在这里为1);(2)没有xy的乘积项。

Ax+Bxy+Cy+Dx+Ey+F=0圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为(x—a1)(x—a2)+(y—b1)(y—b2)=0 圆的离心率e=0,在圆上任意一点的曲率半径都是r。

经过圆x+y=r上一点M(a0,b0)的切线方程为a0·x+b0·y=r 在圆(x+y=r)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为a0·x+b0·y=r。

圆的性质有哪些1、圆是定点的距离等于定长的点的集合2、圆的内部可以看作是圆心的距离小于半径的点的集合3、圆的外部可以看作是圆心的距离大于半径的点的集合4、同圆或等圆的半径相等。

圆是一种几何图形,指的是平面中到一个定点距离为定值的所有点的集合。

这个给定的点称为圆的圆心。

作为定值的距离称为圆的半径。

当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹就是一个圆。

圆的直径有无数条;圆的对称轴有无数条。

圆的直径是半径的2倍,圆的半径是直径的一半。

用圆规画圆时,针尖所在的点叫做圆心,一般用字母O表示。

数学必修2第四章知识点小结及典型习题

数学必修2第四章知识点小结及典型习题

第四章 圆与方程一、圆的定义:平面内到一定点的距离等于定长的点的集合(或点的轨迹)叫圆,定点为圆心,定长为圆的半径.二、圆的方程:(标准方程和一般方程)(一)标准方程:()()222r b y a x =-+-,圆心()b a ,,半径为r圆的参数方程(还未学习,暂作了解)()()()222cos 0sin x a r x a y b r r y b r θθ=+⎧-+-=>⇔⎨=+⎩,θ为参数 ()222cos 0sin x r x y r r y r θθ=⎧+=>⇔⎨=⎩,θ为参数 1、求标准方程的方法——关键是求出圆心()b a ,和半径r①待定系数法:往往已知圆上三点坐标,例如教材119P例2 ②利用平面几何性质:往往涉及到直线与圆的位置关系,特别是:相切和相交。

相切:利用到圆心与切点的连线垂直直线相交:利用到点到直线的距离公式及垂径定理2、特殊位置的圆的标准方程设法(无需记,关键能理解)条件 方程形式圆心在原点 ()2220x y r r +=≠过原点 ()()()2222220x a y b a b a b -+-=++≠ 圆心在x 轴上 ()()2220x a y r r -+=≠ 圆心在y 轴上 ()()2220x y b r r +-=≠圆心在x 轴上且过原点 ()()2220x a y a a -+=≠ 圆心在y 轴上且过原点 ()()2220x y b b b +-=≠与x 轴相切()()()2220x a y b b b -+-=≠与y 轴相切 ()()()2220x a y b a a -+-=≠与两坐标轴都相切()()()2220x a y b a a b -+-==≠ (二)圆的一般方程:()2222040x y Dx Ey F D E F ++++=+-> 1、圆的一般方程的特点:(1)①2x 和2y 的系数相同,且不等于0.②没有xy 这样的二次项.(2) 求圆的一般方程采用待定系数法:圆的一般方程中有三个待定的系数D 、E 、F ,只要求出这三个系数,圆的方程就确定了.如教材122P 例4(3)与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修2知识点总结第四章 圆与方程4.1.1 圆的标准方程1、圆的标准方程:222()()x a y b r -+-=圆心为A(a,b),半径为r 的圆的方程2、点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:(1)2200()()x a y b -+->2r ,点在圆外 (2)2200()()x a y b -+-=2r ,点在圆上 (3)2200()()x a y b -+-<2r ,点在圆内4.1.2 圆的一般方程1、圆的一般方程:022=++++F Ey Dx y x2、圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0. ②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了.(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。

4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2,2(ED --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点:(1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切; (3)当r d <时,直线l 与圆C 相交;4.2.2 圆与圆的位置关系两圆的位置关系.设两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点:(1)当21r r l +>时,圆1C 与圆2C 相离;(2)当21r r l +=时,圆1C 与圆2C 外切; (3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交;(4)当||21r r l -=时,圆1C 与圆2C 内切;(5)当||21r r l -<时,圆1C 与圆2C 内含;4.2.3 直线与圆的方程的应用1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题; 第二步:通过代数运算,解决代数问题; 第三步:将代数运算结果“翻译”成几何结论.4.3.1空间直角坐标系1、点M 对应着唯一确定的有序实数组),,(z y x ,x 、y 、z 分别是P 、Q 、R 在x 、y 、z 轴上的坐标2、有序实数组),,(z y x ,对应着空间直角坐标系中的一点3、空间中任意点M 的坐标都可以用有序实数组),,(z y x 来表示,该数组叫做点M 在此空间直角坐标系中的坐标,记M ),,(z y x ,x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖一、知识概述 1、圆的标准方程圆心为(a ,b),半径为r 的圆的标准方程为(x -a)2+(y -b)2=r 2.由于圆的标准方程中含有三个参数a ,b ,r ,因此必须具备三个独立条件才能确定一个圆.2、圆的一般方程对于方程x2+y2+Dx+Ey+F=0.(1)当D2+E2-4F>0时,方程表示以为圆心、为半径的圆.此时方程就叫做圆的一般方程.(2)当D2+E2-4F=0时,方程表示一个点.(3)当D2+E2-4F<0时,方程不表示任何图形.即圆的一般方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0).圆的一般方程也含有三个待定的系数D,E,F,因此必须具备三个独立条件,才能确定一个圆.3、圆的参数方程(1)以(a,b)为圆心,r为半径的圆的参数方程为,特别地,以原点为圆心的圆的参数方程为.(2)θ的几何意义:圆上的点与圆心的连线与过圆心和x轴平行的直线所成的角.4、用待定系数法求圆的方程的大致步骤是:(1)根据题意选择方程的形式:标准方程或一般方程;(2)根据条件列出关于a,b,r或D,E,F的方程组;(3)解出a,b,r或D,E,F,代入标准方程或一般方程.二、重难点知识归纳:1、理解圆的定义,以及圆的标准方程与一般方程的推导.2、注意圆的一般方程成立的条件.3、利用待定系数法求圆的方程.三、典型例题剖析例1、(1)已知圆心在直线5x-3y=8上,又圆与坐标轴相切,求此圆的方程;(2)圆心在y=-2x上且与直线y=1-x相切于(2,-1),求圆的方程.分析:(1)圆心在5x-3y=8上,又与两坐标轴相切,则圆心又在y=x或y=-x上,这样就能求出圆心及半径;(2)圆心在y=-2x上,与y=1-x相切于(2,-1),知圆心在过(2,-1)且垂直于y=1-x的直线上;解:(1)设所求圆的方程为(x-x0)2+(y-y0)2=r2,圆心在5x-3y=8上,又与坐标轴相切,解得或∴圆心坐标为(4,4)或(1,-1),半径为r=|x0|=4或r=|x0|=1.∴所求圆的方程为(x-4)2+(y-4)2=16,或(x-1)2+(y+1)2=1.(2)设圆心为(a,-2a),由题意,圆与y=1-x相切于点(2,-1),则.解得a=1,所求圆心为(1,-2),半径r=.所求圆的方程为(x-1)2+(y+2)2=2.例2、已知曲线C:x2+y2-2x-4y+m=0 (1)当m为何值时,曲线C表示圆;(2)若曲线C与直线x +2y-4=0交于M、N两点,且OM⊥ON(O为坐标原点),求m的值.分析:要考虑圆的一般方程成立的前提条件.解:(1)由D2+E2-4F=4+16-4m=20-4m>0,得m<5.(2)设M(x1,y1),N(x2,y2),由OM⊥ON得x1x2+y1y2=0.联立方程组消去y得5x2-8x+4m-16=0.由韦达定理得x1+x2=①,x1x2=②.又由x+2y-4=0得y=(4-x),∴x1x2+y1y2=x1x2+(4-x1)·(4-x2)=x1x2-(x1+x2)+4=0.将①、②代入得m=.例3、已知动点M到定点A(3,0)与定点O(0,0)的距离之比为常数k(k>0),求动点M的轨迹.分析:按直接法求出轨迹方程.为说明轨迹类型,对k进行分类讨论.解:设M(x,y),由题意得,即|MA|2=k2|MO|2.代入坐标得(x-3)2+y2=k2(x2+y2),化简得(k2-1)x2+(k2-1)y2+6x-9=0.①当k=1时,方程化为,轨迹是线段AO的垂直平分线.②当k>0且k1时,方程化为,轨迹是以为圆心,为半径的圆.例4、已知曲线C:x2+y2+2kx+(4k+10)y+10k+20=0,其中k-1.(1)求证:曲线C都表示圆,并且这些圆心都在同一条直线上;(2)证明:曲线C过定点;(3)若曲线C与x轴相切,求k的值.(1)证明:原方程可化为(x+k)2+(y+2k+5)2=5(k+1)2.①∵k-1,∴5(k+1)2>0.故方程表示圆心在(-k,-2k-5)、半径为|k+1|的圆.设圆心为(x,y),有消去k,得2x-y-5=0.∴这些圆的圆心都在直线2x-y-5=0上.(2)证明:将原方程变形为k(2x+4y+10)+(x2+y2+10y+20)=0.②上式关于参数k是恒等式.解得∴曲线C过定点(1,-3).(3)解:∵圆C与x轴相切,∴圆心到x轴的距离等于半径,即|-2k-5|=|k+1|.两边平方,得(2k+5)2=5(k+1)2..例5、直线l经过点P(5,5),且和圆C:x2+y2=25相交,截得弦长为,求l的方程.解析:设直线l的方程为y-5=k(x-5),且与圆C交于两点A(x1,y1)、B(x2,y2),消去y得,,解得k>0.,.由斜率公式,得..两边平方,整理得2k2-5k+2=0.解得k=或k=2符合题意.故直线l的方程为x-2y+5=0或2x-y-5=0.判断直线l与圆C位置关系的两种方法:①判断直线l与圆C的方程组成的方程组是否有解.如果有解,直线l与圆C有公共点.有两组实数解时,直线l与圆相交;有一组实数解时,直线l与圆相切;无实数解时,直线l与圆C相离.②判断圆C的圆心到直线l的距离d与圆的半径长r的关系.如果d<r,直线与圆相交;如果d=r,直线l与圆相切;如果d>r,直线l与圆C相离.✧圆与圆的位置关系设圆CR,圆C2的半径是r,圆心距为d,则1的半径为①当d>R+r时,两圆相离;②当d=R+r时,两圆外切;③当|R-r|<d<R+r时,两圆相交;④当d=|R-r|时,两圆内切;⑤当d<|R-r|时,两圆内含.✧空间直角坐标系空间直角坐标系三要素:原点、坐标轴方向、单位长.常用对称点坐标:x,-y,-z);点P(x,y,z)关于x轴对称:点P1(x,y,-z);点P(x,y,z)关于y轴对称:点P2(-x,-y,z);点P(x,y,z)关于z轴对称:点P3(-点P(x,y,z)关于平面xOy对称:点Px,y,-z);4(x,y,z);点P(x,y,z)关于平面yOz对称:点P5(-x,-y,z);点P(x,y,z)关于平面xOz对称:点P6(点P(x,y,z)关于原点成中心对称:点Px,-y,-z).7(-✧空间两点间的距离公式空间点、间的距离是.典型例题剖析例1、(1)求圆心在C(2,-1),且截直线y=x-1所得弦长为的圆的方程;(2)求圆x2+y2=4上与直线4x+3y-12=0距离最小的点的坐标.分析:(1)应用圆的标准方程,只需借助几何图形,用勾股定理求出r;(2)借助图形转化为圆心到直线的距离与半径之间的关系,可求出过圆心与4x+3y-12=0垂直的直线方程.解:(1)设圆的方程为(x-2)2+(y+1)2=r2,由题设圆心到直线y=x-1的距离.又直线y=x-1被圆截得弦长为,.所求圆的方程为(x-2)2+(y+1)2=4.(2)过圆心(0,0)作直线4x+3y-12=0的垂线,垂线方程为.①直线①与圆x2+y2=4的靠近直线4x+3y-12=0的交点就是所要求的点.解方程组解得.点是与直线4x+3y-12=0距离最远的点,而点是与直线4x+3y-12=0距离最短的点.故所求点的坐标为.例2、设P在x轴上,它到点的距离为到点的距离的两倍,求点P的坐标.解析:因为点P在x轴上,设点P的坐标为(x,0,0)则,故点P的坐标为(1,0,0)或(-1,0,0).例3、求与两平行直线x+3y-5=0和x+3y-3=0相切,圆心在2x+y+3=0上的圆的方程.解析:设所求圆的方程是(x-a)2+(y-b)2=r2.由已知,两平行线之间的距离是.所以,所求圆的半径长是.由于圆心(a,b)到直线x+3y-5=0和x+3y-3=0的距离都是,于是,且.即|a+3b-5|=1,且|a+3b-3|=1.又圆心在2x+y+3=0上,于是有2a+b+3=0.解方程组,得或当时,不满足|a+3b-3|=1,所以,所以,所求圆的方程为.例4、求半径为4,与圆x2+y2-4x-2y-4=0相切且和直线y=0相切的圆的方程.、解析:依题意,所求圆与直线y=0相切且半径为4,则圆心的坐标为或,又已知圆的圆心坐标为,半径r=3,若两圆相切,则或.(1)当圆心为时,有(a-2)2+(4-1)2=72,解得,或(a-2)2+(4-1)2=12,无解.故所求圆的方程为或.(2)当圆心为时,有(a-2)2+(-4-1)2=72,解得,或(a-2)2+(-4-1)2=12,无解.故所求的圆的方程为或.综合(1)(2)可知所求圆的方程为或或或例5、由一点A(-3,3)发出的光线l射到x轴上,被x轴反射,其反射光线所在直线与圆C:x2+y2-4x -4y+7=0相切,求光线l所在直线的方程.解析:因为点A(-3,3)关于x轴的对称点为,设直线l1的斜率为k,则过点的直线l 的方程为y+3=-k(x+3),将y=-k(x+3)-3代入圆的方程,整理得(1+k2)x2+2(3k2+5k-2)x+(9k2+30k+8)=0,若直线l1与圆相切,则,即12k2+25k+12=0,解之得,或.所以,所求直线l的方程为y-3=(x+3),或y-3=(x+3),即3x+4y-3=0,或4x+3y+3=0。

相关文档
最新文档