小学六年级奥数时钟问题2(含例题讲解分析和答案)1

合集下载

小学六年级奥数时钟问题(含例题讲解分析和答案)

小学六年级奥数时钟问题(含例题讲解分析和答案)

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

分。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。

(完整)小学六年级奥数时钟问题(含例题讲解分析和答案)

(完整)小学六年级奥数时钟问题(含例题讲解分析和答案)

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

分。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。

小学六年级奥数时钟问题(含例题讲解分析和答案)

小学六年级奥数时钟问题(含例题讲解分析和答案)

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。

例题精讲:模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。

小学奥数趣味学习《时钟问题》典型例题及解答

小学奥数趣味学习《时钟问题》典型例题及解答

小学奥数趣味学习《时钟问题》典型例题及解答时钟问题就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等,这类问题可转化为行程问题中的追及问题。

时钟的数量关系:分针的速度是时针的12倍,二者的速度差为5.5度/分。

通常按追及问题来对待,也可以按差倍问题来计算。

解题思路和方法:将两针重合,两针垂直,两针成一线,两针夹角60°等为“追及问题”后可以直接利用公式。

例题1:钟面上从时针指向8开始,再经过多少分钟,时针正好与分针第一次重合?(精确到1分)解:1、此类题型可以把钟面看成一个环形跑道,那么本题就相当于行程问题中的追及问题,即分针与时针之间的路程差是240°。

2、分针每分钟比时针多转6°-0.5°=5.5°,所以需要240÷5.5≈44(分钟)。

也就是从8时开始,再经过44分钟,时针正好与分针第一次重合。

例题2:从早晨6点到傍晚6点,钟面上时针和分针一共重合了多少次?解:我们可以把钟面看成一个环形跑道,这样分针和时针的转动就可以转化成追及问题。

从早晨6点到傍晚6点,一共经过了12小时,12个小时分针要跑12圈,时针只能跑1圈,分针比时针多跑12-1=11(圈)。

而分针每比时针多跑1圈,就会追上时针一次,也就是和时针重合1次,所以12小时内两针一共重合了11次。

例题3:一部记录中国军队时代变迁的纪录片时长有两个多小时,小明发现,纪录片播放结束时,手表上时针、分针的位置正好与开始时时针、分针的位置交换了一下,这部纪录片时长多少分钟?(精确到1分)解:1、解决本题的关键是认识到时针与分针合走的路程是1080°,进而转化成相遇问题来解决。

2、两个多小时,分针与时针位置正好交换,所以分针与时针所走的路程和正好是三圈,也就是分针和时针合走了360°×3=1080°,而分针和时针每分钟的合走6°+0.5°=6.5°,所以合走1080°需要1080÷6.5≈166(分钟),即这部纪录片时长166分钟。

小学六年级奥数时钟问题

小学六年级奥数时钟问题

时钟问题“时间就是生命”。

自从人类发明了计时工具——钟表,人们的生活就离不开它了。

什么时间起床,什么时间吃饭,什么时间上学……全都依靠钟表,如果没有钟表,生活就乱套了。

学习时钟问题前先来分析下时钟里分针与时针各自有什么特点:分针特点:时针特点:下面开始练一练重合问题例1现在是2点,什么时候时针与分针第一次重合例2 从中午12点开始,什么时候时针与分针第一次重合垂直问题例1在7点与8点之间,时针与分针在什么时刻相互垂直例2在1点2点之间,时针与分针在什么时刻相互垂直同一直线问题例1在3点与4点之间,时针和分针在什么时刻位于一条直线上例2在9点到10点之间,时针和分针在什么时刻位于一条直线上生活实际问题例1 晚上7点到8点之间电视里播出一部动画片,开始时分针与时针正好成一条直线,结束时两针正好重合。

这部动画片播出了多长时间前面几个例题都是利用追及问题的解法,先找出时针与分针所行的路程差是多少格,再除以它们的速度差求出准确时间。

但是,有些时钟问题不太容易求出路程差,因此不能用追及问题的方法求解。

如果将追及问题变为相遇问题,那么有时反而更容易。

其他问题例1 3点过多少分时,时针和分针离“3”的距离相等,并且在“3”的两边例2小明做作业的时间不足1时,他发现结束时手表上时针、分针的位置正好与开始时时针、分针的位置交换了一下。

小明做作业用了多少时间课后练习1.时针与分针在9点多少分时第一次重合2.王师傅2点多钟开始工作时,时针与分针正好重合在一起。

5点多钟完工时,时针与分针正好又重合在一起。

王师傅工作了多长时间点50分以后,经过多长时间,时针与分针第一次在一条直线上4.小红8点钟开始画一幅画,正好在时针与分针第三次垂直时完成,此时是几点几分点36分时,时针与分针形成的夹角是多少度点过多少分时,时针和分针离“2”的距离相等,并且在“2”的两边7.早晨小亮从镜子中看到表的指针指在6点20分,他赶快起床出去跑步,可跑步回来妈妈告诉他刚到6点20分。

小学六年级奥数时钟问题

小学六年级奥数时钟问题

小学六年级奥数时钟问题教学目标:1.行程问题中时钟的标准制定;2.时钟的时针与分针的追及与相遇问题的判断及计算;3.时钟的周期问题.知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为分。

例题精讲:模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30) /3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30) /3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600* (3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。

奥数专题 时钟问题

奥数专题 时钟问题

奥数专题时钟问题第一部分基础知识点部分【开门见山这一段话多半录自百度百科】时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

不同在于时钟问题有别于其他行程问题是:它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟:1.整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度;时针速度:每分钟走十二分之一小格,每分钟走0.5度速度差:每分钟6-0.5=5.5度;每分钟1-1/12=11/12小格2.需要注意的是在许多时钟问题中,往往遇到各种“怪钟”、“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,但是在题目中总会给出标准时钟与特殊钟表的比例关系,在独立分析的基础上必须要学会十字交叉法。

当你做过一个题目后,这个十字交叉法其实没有啥精妙之处,与浓度问题中的十字交叉类似,实际就是个一元一次方程变种格式而已。

【温故知新】追击问题的三个特点:同时出发;同向而行;同时停止。

追击问题的重要公式:路程差除以时间差=追击时间。

常用的等量关系:快者路程-慢者路程=距离;在实际题目中,路程差相对变化多一些,主要的类型有:重合问题(路程)例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为65又11分之5 分。

认识钟面:时钟问题解法与算法公式:时钟问题的关键点:时针每小时走30度;分针每分钟走6度分针走一分钟(转6度)时,时针走0.5度,分针与时针的速度差为5.5度。

*************************************************************************** 第二部分以知促行【例题1】从12时到13时,钟的时针与分针可成直角的机会有:A.1次B.2次C.3次D.4次【解析】时针与分针成直角,即时针与分针的角度差为90度或者为270度,理论上讲应为2次,还要验证:根据角度差/速度差=分钟数,可得90/5.5= 16又4/11<60,表示经过16又4/11分钟,时针与分针第一次垂直;同理,270/5.5 = 49又1/11<60,表示经过49又1/11分钟,时针与分针第二次垂直。

(完整)小学六年级奥数时钟问题(含例题讲解分析和答案)

(完整)小学六年级奥数时钟问题(含例题讲解分析和答案)

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上 2 人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为 6 度。

分针速度:每分钟走 1 小格,每分钟走 6 度1时针速度:每分钟走小格,每分钟走0.5 度12注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

5例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为65 分。

11例题精讲:模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走( 3600-30 )/3600 个小时,手表又比闹钟快那么它一小时走(3600+30 )/3600 个小时,则标准时间走 1 小时手表则走 ( 3600-30 )/3600* ( 3600+30 ) /3600 个小时,则手表每小时比标准时间慢1—【( 3600-30 )/3600* (3600+30 ) /3600 】=1 —14399/14400=1/14400 个小时,也就是1/14400*3600= 四分之一秒,所以一昼夜24 小时比标准时间慢四分之一乘以24 等于 6 秒【巩固】小强家有一个闹钟,每时比标准时间快 3 分。

小学六年级奥数时钟问题(含例题讲解分析和答案)

小学六年级奥数时钟问题(含例题讲解分析和答案)

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

分。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。

小学奥数 时钟问题 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  时钟问题 精选练习例题 含答案解析(附知识点拨及考点)

1.行程问题中时钟的标准制定;2.时钟的时针与分针的追及与相遇问题的判断及计算; 3.时钟的周期问题.时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度 时针速度:每分钟走112小格,每分钟走0.5度 注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。

知识点拨教学目标时钟问题模块一、时针与分针的追及与相遇问题【例 1】 当时钟表示1点45分时,时针和分针所成的钝角是多少度?【考点】行程问题之时钟问题 【难度】1星 【题型】解答 【解析】 142.5度 【答案】142.5度【巩固】 在16点16分这个时刻,钟表盘面上时针和分针的夹角是____度. 【考点】行程问题之时钟问题 【难度】1星 【题型】填空 【关键词】希望杯,六年级,一试【解析】 16点的时候夹角为120度,每分钟,分针转6度,时针转0.5度,16:16的时候夹角为120-6×16+0.5×16=32度.【答案】32度【例 2】 有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【考点】行程问题之时钟问题 【难度】2星 【题型】解答【解析】 在10点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“l”,有时针速度为“112”,于是需要时间:1650(1)541211÷-=.所以,再过65411分钟,时针与分针将第一次重合.第二次重合时显然为12点整,所以再经过65(1210)6054651111-⨯-=分钟,时针与分针第二次重合.标准的时钟,每隔56511分钟,时针与分针重合一次. 我们来熟悉一下常见钟表(机械)的构成:一般时钟的表盘大刻度有12个,即为小时数;小刻度有60个,即为分钟数.所以时针一圈需要12小时,分针一圈需要60分钟(1小时),时针的速度为分针速度的112.如果设分针的速度为单位“l”,那么时针的速度为“112”. 例题精讲【答案】65411分钟【巩固】 钟表的时针与分针在4点多少分第一次重合?【考点】行程问题之时钟问题 【难度】2星 【题型】解答 【解析】 此题属于追及问题,追及路程是20格,速度差是11111212-=,所以追及时间是:11920211211÷=(分)。

六年级《时钟问题》奥数解析

六年级《时钟问题》奥数解析

六年级《时钟问题》奥数解析分针每分钟旋转的速度:360°÷60=6°时针每分钟旋转的速度:360°÷(12×60)=0.5°在钟面上总是分针追赶时针的局面,或是分针超越时针的局面。

这里的转动角度用度数来表示,相当于行走的路程。

因此钟面上两针的运动是一类典型的追及行程问题。

分析正3时时,分针在12的位置上,时针在3的位置上,两针相隔90°。

当两针第一次重合,就是3时过多少分。

在正3时到两针重合的这段时间内,分针要比时针多行走90°。

而可知每分钟分针比时针多行走6-0.5=5.5(度)。

相应的所用的时间就很容易计算出来了。

解360÷12×3=90(度)90÷(6-0.5)=90÷5.5≈16.36(分)答两针重合时约为3时16.36分。

分析在正5时时,时针与分针相隔150°。

然后随时间的消逝,分针先是追上时针,在此时间内,分针需比时针多行走150°,然后超越时针180°就成一条直线且指向相反了。

解360÷12×5=150(度)(150+180)÷(6—0.5)=60(分)5时60分即6时正。

答分针与时针在同一条直线上且指向相反时应是5时60分,即6时正。

例3钟面上12时30分时,时针在分针后面多少度?解(6—0.5)×30=55×3=165(度)答时针在分针后面165度。

例4钟面上6时到7时之间两针相隔90°时,是几时几分?分析从6时正作为起点,此时两针成180°。

当分针在时针后面90°时或分针超越时针90°时,就是所求的时刻。

解(180—90)÷(6—0.5)=90÷5.5≈16.36(分钟)(180+90)÷(6—0.5)=270÷5.5≈49.09(分钟)答两针相隔90°时约为6时16.36分,或约为6时49.09分。

六年级奥林匹克数学基础教程24时钟问题.doc

六年级奥林匹克数学基础教程24时钟问题.doc

小学数学奥数基础教程时钟问题“就是生命”。

自从人了然工具——表,人的生活就离不开它了。

什么起床,什么吃,什么上学⋯⋯全都依赖表,假如没有表,生活就乱套了。

就是研究面上和分关系的。

大家都知道,面的一周分60格,分每走60格,正好走5格,所以的速度是分速度垂直、两成直、两成多少度角提出。

因与分的速度不一样,而且都沿方向,所以常将化追及来解。

例1在是2点,什么候与分第一次重合?剖析:如右所示,2点分指向12,指向2,分在后边例2在7点与8点之,与分在什么刻互相垂直?专心爱心专心1剖析与解:7点时分针指向12,时针指向7(见右图),分针在时针后边5×7=35(格)。

时针与分针垂直,即时针与分针相差15格,在7点与8点之间,有下列图所示的两种状况:(1)顺时针方向看,分针在时针后边15格。

从7点开始,分针要比时针多走35-15=20(格),需(2)顺时针方向看,分针在时针前方15格。

从7点开始,分针要比时针多走35+15=50(格),需例3在3点与4点之间,时针和分针在什么时辰位于一条直线上?剖析与解:3点时分针指向12,时针指向3(见右图),分针在时针后边5×3=15(格)。

时针与分针在一条直线上,可分为时针与分针重合、时针与分针成180°角两种状况(见下列图):(1)时针与分针重合。

从3点开始,分针要比时针多走15格,需15÷专心爱心专心2(2)时针与分针成180°角。

从3点开始,分针要比时针多走15+30例4夜晚7点到8点之间电视里播出一部动画片,开始时分针与时针正好成一条直线,结束时两针正好重合。

这部动画片播出了多长时间?剖析与解:这道题能够利用例3的方法,先求出开始的时辰和结束的时辰,再求出播出时间。

但在这里,我们能够简化一下。

由于开始时两针成180°,结束时两针重合,分针比时针多转半圈,即多走30格,所以播出时间为例1~例4都是利用追及问题的解法,先找出时针与分针所行的行程差是多少格,再除以它们的速度差求出正确时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级奥数时钟问题2(含例题讲解分析和答案)1 小学六年级奥数时钟问题教学目标:1(行程问题中时钟的标准制定,2(时钟的时针与分针的追及与相遇问题的判断及计算,3(时钟的周期问题.知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题~不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题~其中包括时钟的快慢~时钟的周期~时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时~而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟~具体为:整个钟面为360度~上面有12个大格~每个大格为30度,60个小格~每个小格为6度。

分针速度:每分钟走1小格~每分钟走6度1时针速度:每分钟走小格~每分钟走0.5度 12注意:但是在许多时钟问题中~往往我们会遇到各种“怪钟”~或者是“坏了的钟”~它们的时针和分针每分钟走的度数会与常规的时钟不同~这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看~分针快~时针慢~所以分针与时针的问题~就是他们之间的追及问题。

另外~在解时钟的快慢问题中~要学会十字交叉法。

5例如:时钟问题需要记住标准的钟~时针与分针从一次重合到下一次重合~所需时间为分。

6511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快 30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒,【解析】闹钟比标准的慢那么它一小时只走,3600-30,/3600个小时~手表又比闹钟快那么它一小时走,3600+30,/3600个小时~则标准时间走1小时手表则走,3600-30,/3600*,3600+30,/3600个小时~则手表每小时比标准时间慢1—【,3600-30,/3600*,3600+30,/3600】=1—14399/14400=1/14400个小时~也就是1/14400*3600=四分之一秒~所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。

有一天晚上10点整,小强对准了闹钟,他想第二天早晨6?00起床,他应该将闹钟的铃定在几点几分,【解析】 6:24【巩固】小翔家有一个闹钟,每时比标准时间慢3分。

有一天晚上9点整,小翔对准了闹钟,他想第二天早晨6?30起床,于是他就将闹钟的铃定在了6?30。

这个闹钟响铃的时间是标准时间的几点几分,【解析】 7点【巩固】当时钟表示1点45分时,时针和分针所成的钝角是多少度,【解析】 142.5度【例 2】有一座时钟现在显示10时整(那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?第 1 页共 5 页小学六年级奥数【解析】在lO点时~时针所在位置为刻度10~分针所在位置为刻度12,当两针重合时~分针必须追上50116个小刻度~设分针速度为“l”~有时针速度为“”~于是需要时间:(所以~50(1)54,,,1212116再过分钟~时针与分针将第一次重合(第二次重合时显然为12点整~所以再经过5411655分钟~时针与分针第二次重合(标准的时钟~每隔分钟~时65(1210)605465,,,,111111针与分针重合一次( 我们来熟悉一下常见钟表(机械)的构成:一般时钟的表盘大刻度有12个~即为小时数,小刻度有60个~即为分钟数(所以时针一圈需要12小时~分针一圈需要60分钟(111小时)~时针的速度为分针速度的(如果设分针的速度为单位“l”~那么时针的速度为“”( 1212【巩固】钟表的时针与分针在4点多少分第一次重合, 111119【解析】此题属于追及问题~追及路程是20格~速度差是~所以追及时间是:1,,2021,,12121211,分,。

【巩固】现在是3点,什么时候时针与分针第一次重合,439090【解析】根据题意可知~点时~时针与分针成度~第一次重合需要分针追度~90(60.5)16,,,11,分,【例 3】钟表的时针与分针在8点多少分第一次垂直,3401525,,【解析】此题属于追及问题~但是追及路程是4格,由原来的40格变为15格,~速度2711111113差是~所以追及时间是:,分,。

1,,2527,,12121211【例 4】 2点钟以后,什么时刻分针与时针第一次成直角,【解析】根据题意可知~2点时~时针与分针成60度~第一次垂直需要90度~即分针追了90+60=150,度,~3,分, 150(60.5)27,,,11【例 5】 8时到9时之间时针和分针在“8”的两边,并且两针所形成的射线到“8”的距离相等(问这时是8时多少分?【解析】 8点整的时候~时针较分针顺时针方向多40格~设在满足题意时~时针走过x格~那么分针走过11240-x格~所以时针、分针共走过x+(40-x)=40格(于是~所需时间为分钟~40(1)36,,,1213第 2 页共 5 页小学六年级奥数12即在8点分钟为题中所求时刻( 3613【例 6】现在是10点,再过多长时间,时针与分针将第一次在一条直线上, 【解析】时针的速度是 360?12?60=0.5(度/分),分针的速度是 360?60=6(度/分),即分针与时针的速度差是6-0.5=5.5(度/分),10点时~分针与时针的夹角是60度~ ,第一次在一条直线时~分针与时针的夹角是180度~,即分针与时针从60度到180度经过的时间为所求。

,所以答案为9(分) (18060)5.521,,,11【巩固】在9点与10点之间的什么时刻,分针与时针在一条直线上, 在9点与10点之间的什么时刻,分针与时针在一条直线上,99090【解析】根据题意可知~点时~时针与分针成度~第一次在一条直线上需要分针追度~第二次在41270 一条直线上需要分针追度~答案为,分,和,分,270(60.5)49,,,90(60.5)16,,,1111【例 7】晚上8点刚过,不一会小华开始做作业,一看钟,时针与分针正好成一条直线。

做完作业再看钟,还不到9点,而且分针与时针恰好重合。

小华做作业用了多长时间, 8【解析】根据题意可知~从在一条直线上追到重合~需要分针追180度~,分, 180(60.5)32,,,110【例 8】某人下午六时多外出买东西,出门时看手表,发现表的时针和分针的夹角为110,七时前回家0时又看手表,发现时针和分针的夹角仍是110(那么此人外出多少分钟?00【解析】如下示意图~开始分针在时针左边110位置~后来追至时针右边110位置(2202201000于是~分针追上了110+110=220~对应格(所需时间为分钟(所以此,,,(1)406612人外出40分钟(11评注:通过上面的例子~看到有时是将格数除以~有时是将格数除以~这是因(1),(1),1212为有时格数是时针、分针共同走过的~对应速度和,有时格数是分针追上时针的~对应速度差(对0于这个问题~大家还可以将题改为:“在9点多钟出去~9点多钟回来~两次的夹角都是110”,答案还是40分钟(【例 9】上午9点多钟,当钟表的时针和分针重合时,钟表表示的时间是9点几分,11,,【解析】时针与分针第一次重合的经过的时间为:,分,~当钟表的时针和分针重合45149,,,,,1211,,1时~钟表表示的时间是9点分。

4911【例 10】小红上午8点多钟开始做作业时,时针与分针正好重合在一起。

10点多钟做完时,时针与分针正好又重合在一起。

小红做作业用了多长时间,第 3 页共 5 页小学六年级奥数17,,【解析】 8点多钟时,时针和分针重合的时刻为:,分,10点多钟时,时针和分针重合40143,,,,,1211,,671016,,的时刻为:,分,~小红做作业1054843210时分时分时分,,50154,,,,,1111111211,,10用了时间 210时分11【例 11】小红在9点与10点之间开始解一道数学题,当时时针和分针正好成一条直线,当小红解完这道题时,时针和分针刚好第一次重合,小红解这道题用了多少时间,14,,【解析】 9点和10点之间分针和时针在一条直线上的时刻为:,分,~时针与分针第15116,,,,,1211,,11,,一次重合的时刻为: ,分,~所以这道题目所用的时间为:45149,,,,,1211,, 148,分, 491632,,111111【例 12】一部动画片放映的时间不足1时,小明发现结束时手表上时针、分针的位置正好与开始时时针、分针的位置交换了一下。

这部动画片放映了多长时间,【解析】根据题意可知~时针恰好走到分针的位置~分针恰好走到时针的位置~它们一共走了一圈~即5,分, 360(60.5)55,,,13【例 13】有一座时钟现在显示10时整。

那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合,【解析】根据题意可知~10点时~时针与分针成60度~第一次重合需要分针追360-60=300,度,~根据题意可知~10点时~时针与分针成60度~第一次重合需要分针追360-60=300,度,~65分。

,分,第二次重合需要追360度~即65300(60.5)54,,,,分,1111模块二、时间标准及闹钟问题【例 14】钟敏家有一个闹钟,每时比标准时间快2分。

星期天上午9点整,钟敏对准了闹钟,然后定上铃,想让闹钟在11点半闹铃,提醒她帮助妈妈做饭。

钟敏应当将闹钟的铃定在几点几分上, 【解析】闹钟与标准时间的速度比是62:60=31:30, 11点半与9点相差 150分~根据十字交叉法~闹钟走了150×31?30=155(分),所以闹钟的铃应当定在11点35分上。

【例 15】小翔家有一个闹钟,每时比标准时间慢2分。

有一天晚上9点整,小翔对准了闹钟,他想第二天早晨6?40起床,于是他就将闹钟的铃定在了6?40。

这个闹钟响铃的时间是标准时间的几点几分,【解析】闹钟与标准时间的速度比是 58:60=29:30 晚上9点与次日早晨6点40分相差580分~即标准时间过了580×30?29=600(分),所以标准时间是7点。

【例 16】有一个时钟每时快20秒,它在3月1日中午12时准确,下一次准确的时间是什么时间, 【解析】时钟与标准时间的速度差是 20秒/时~因为经过12小时~时钟的指针回到起始的位置~所以到下一次准确时间时~时钟走了12×3600?20=2160(小时) 即 90天~所以下一次准确的时间是5月30日中午12时。

相关文档
最新文档