5.1.1相交线
5.1.1相交线
E 1
直线AB、 交于点 交于点O, 直线 、CD交于点 ,OE 的平分线, 是∠AOD的平分线,已知 的平分线 ∠AOC=50°。求∠DOE的 ° 的 度数。 度数。
E A O C B D
解:∵∠AOC=50°(已知) ∵∠ ° 已知) ∴∠AOD=180°—∠AOC=180°—50° ∴∠ ° ∠ ° ° =130°(邻补角的定义) ° 邻补角的定义) 平分∠ ∵OE平分∠AOD(已知) 平分 (已知) ∴∠DOE=1/2∠AOD=130°÷ °÷2=65° ∴∠ ∠ °÷ ° 角平分线的定义) (角平分线的定义)
课堂作业
必做题:P.8 习题5.1 ,第1、2、7题
∵∠DOB=∠ AOC ,( 对顶角相等 ) 解:∵∠ ∠ ∠AOC =80°(已知) ° 已知) 等量代换) ∴∠DOB= 80 °(等量代换) ∴∠ ∵∠1=30°( 又∵∠ ° 已知 ) ° ° ∴∠2=∠ = ∴∠ ∠ DOB -∠ 1 = 80° 30° 50 ° ∠ B
G 如图,直线 、 交 于点 如图,直线AB、CD交EF于点 B A G、H,∠2=∠3,∠1=70度。 、 , ∠ , 度 2 的度数。 求∠4的度数。 的度数 3 H D ∵∠2=∠ 解:∵∠ ∠ 1 (对顶角相等) C 4 已知 ) ∠1=70 °( ∴∠2= ° 等量代换) ∴∠ 70° 等量代换) ( F ∠ 已知) 又∵ ∠2=∠3(已知) ∴∠3= ∴∠ 70 ° 等量代换) ( 3 ∴∠4=180°—∠ 110 °邻补角 的定义) 的定义) ∴∠ ° ∠ = (
2 E
1 F
二、 填空
1、一个角的对顶角有 一 个,邻补角最多有 、 两 个,而补角则可以有 无数 个。 2、右图中∠AOC的对顶角是 ∠DOB , 、右图中∠ 的对顶角是 和 D 邻补角是 ∠AOD和∠COB . 3、如图,直线 、CD相交于 A 、如图,直线AB、 相交于 )1 )2 E O,∠AOC=80°∠1=30°; , ° ° O C 的度数. 求∠2的度数 的度数
5.1.1相交线
相交线与平行线
5.1.1相交线 张爽
两条直线忧一个公共点,这两条直线 称为相交直线.这个点叫做它们的交点。 问题:两条相交直线,形成的小于平角 的角有几个?
A 2
D
1
O 4 C
3 B
互为邻补角定义:有一条公共边,并且另一 边互为反向延长线,具有这种位置关系的两 个角, 互为邻补角 。
作业:作业本 P9,1、7、8
E 三、填空(每空3分) 1 G 如图1,直线AB、CD交EF于点 A B 2 G、H,∠2=∠3,∠1=70°。求 ∠4的度数。 3 H D 解:∵∠2=∠ 1 (对顶角相等) C 4 ∠1=70 °(已知 ) 图1 ∴∠2= 70° (等量代换) F 又∵ ∠2=∠3(已知) ∴∠3= 70 ° 等量代换) ( ∴∠4=180°—∠ 3 = 110 °邻补角 的定义) (
归纳小结
角的 名称 对 顶 角 邻 补 角 特 征 性 质 相同点 不同点
①两条直线相 对顶 ①都是两条 ①有无公共 交形成的角; 角相 直线相交而 边 ②有公共顶点; 成的角; ②两直线相 等 ③没有公共边 ②都有一个 交时, ①两条直线相 对顶角只 公共顶点; 邻补 交而成; 有两对 ②有公共顶点; 角互 ③都是成对 邻补角有 ③有一条公共 四对 出现的 补 边
注意:①两个角;②一条公共边(包含有公 共顶点);③另一边互为反向延长线。 图中的邻补角还有∠2与∠3、 ∠3与∠4、 ∠4与∠1,共有四对
数量关系:邻补角互补(和是180°)。
A
2 1 3 O 4
D
C
B
互为对顶角定义:有一个公共顶点,并且一个 角的两边分别是另一个角两边的反向延长线, 具有这种位置关系的两个角, 互为对顶角. 注意:①两个角;②有公共顶点;③两边 分别互为反向延长线; ∠2与∠4也是对顶角,共有两对 数量关系:对顶角相等。
5.1.1相交线(课件)-2022-2023学年数学七年级下册(人教版)
右图的几何描述为:
直线AB、CD相交于点O.
C
A
O
B D
情境引入
剪刀是我们生活中的常见 工具,剪刀可以抽象成什么几何图形?当我 们使用剪刀时,如何控制剪刀开口大小?
合作探究
思考1:我们将剪刀抽象成如图所示的两条相交 直线,那么∠1 与∠3在数量上有什么关系呢? ∠2 与∠4呢?
思考Байду номын сангаас:∠1 与∠3在位置上又有什么关系呢? ∠2 与∠4在位置上又有什么关系呢
那么这两个角互为邻补角.图中∠1的邻补角有__∠__2_、___∠__4_.
对顶角:如果一个角的两边是另一个角的两边的 反向延长,线那么这两
个角互为对顶角.图中∠1的对顶角是__∠___3_.
性质:对顶角相等,邻补角互补
当堂检测
1、下列各图中, ∠1 、∠2是对顶角吗?
2、下列各图中, ∠1 、∠2是邻补角吗?
观察下列图片,说一说图中直线与直线的位置关系.
情境引入
观察下列图片,说一说直线与直线的位置关系.
归纳:
两条直线的 位置关系
异面 共面
相交 平行
一般的相交
特殊的相交 (垂直)
在同一平面内,两条直线的位置关系有两种:相交和平行。
你能画出两条相交直线吗?如何定义相交?相交可以分为几类?
如果两条直线只有一个公共点,就说这两条直线相交.该公共点叫 做两直线的交点.
合作探究
已知:直线AB与CD相交于O点(如图),试说明:∠1=∠3、
∠2=∠4.
解:∵直线AB与CD相交于O点, ∴∠1+∠2=180° ∠2+∠3=180°, ∴∠1=∠3. 同理可得:∠2=∠4.
应用格式:∵直线AB与CD相交于O点 ∴∠1=∠3
人教版七年级数学下册5.1.1《相交线》教案
1.分组讨论:学生们将分成若干小组,每组讨论一个与相交线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相交线的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相交线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
其次,注重培养学生的空间想象力。在解决实际问题时,我发现部分学生难以将题目中的信息与几何图形联系起来。为了改善这一点,我计划在今后的教学中,多设计一些空间想象力训练的环节,如让学生自己动手画图、制作模型等。
再次,加强小组合作学习的引导。在小组讨论和实验操作过程中,我发现有些学生参与度不高,依赖性强。针对这个问题,我将在今后的教学中加强对小组合作学习的引导,鼓励每个学生积极参与,培养他们的团队协作能力。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相交线的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对相交线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
1.理论介绍:首先,我们要了解相交线的基本概念。相交线是两条在平面内不平行且在某一点相遇的直线。它在几何学中有着重要的作用,可以帮助我们分析图形的性质和解决实际问题。
5.1.1 相交线
课题 5.1.1 相交线【学习目标】 1、了解两条直线相交所构成的角,会找出图形中的一个角的邻补角和对顶角。
2、理解并掌握对顶角、邻补角的概念和性质,并能利用性质进行简单的计算。
3、经历观察、推断、交流等活动,进一步培养学生的识图能力、推理能力。
【学习重点】 邻补角和对顶角的概念及对顶角相等的性质。
【学习难点】 在较复杂的图形中准确辨认对顶角和邻补角。
【自主学习】1、观察马路旁的两根电线、操场的双杠,若把简单的物体看做直线的话,这些线之间有怎样的特点?请你举出类似这些数学模型的生活实例?2、如图,若把剪刀构造看作两条直线,这两条线有怎样的特点?3、小组成员讨论,谈一谈两直线有怎样的位置关系。
参考下面的图形填空。
(相信自己哦!)【探究学习】自学课本P 2-P 3页的内容,发挥自己的聪明才智完成下面的活动。
(注意与组员合作交流哦!) 活动1:画直线AB 和CD 相交于O 点,则图中共有几个角?若把任意两个角进行配对,则图中共有几组配对的角?问题:在图中分别画出AOC ∠和BOC ∠,观察这两个角的两条边,它们有怎样的特点?用量角器量一量这两个角的度数,与小组成员讨论,交流,说一说这两个角有怎样的数量关系?结论1:若两个角有一条 ,另一边互为 ,这样的两个角,互为 。
问题:在图中分别画出AOC ∠和BOD ∠,观察这两个角的两条边,它们有怎样的特点?结论2:若两个角的两条边互为 ,这样的两个角,互为 。
活动2:如图,请画出1∠的对顶角,2∠的邻补角。
(温馨提示:请参考对顶角、邻补角的概念画图。
)问题:图中1∠的对顶角有几个?量一量1∠和它的对顶角,它们有怎样的数量关系?结论3:任意一个角有 对顶角,并且 。
问题:图中2∠的邻补角有几个?量一量2∠的邻补角,这些邻补角之间有怎样的数量关系? 结论4:任意一个角最多有 邻补角,并且同角的 。
【随堂训练】1、如图,1∠和2∠是对顶角的是 ( )2、如图,直线a 、b ,140∠=,求2∠、3∠、4∠的度数?【要点归纳】 本节课你有什么收获: 【基础训练】1、任意一个角的对顶角有 个,邻补角最多有 个,而补角则可以有 个。
5.1.1相交线(同步课件)-2023-2024学年七年级数学下册同步精品课堂(人教版) (1)
谢谢聆听
人教版数学七年级下册
4
能不能说一说理由呢?
C
B
探究新知
人教版数学七年级下册
已知:直线 AB 与 CD 相交于 O 点. A
D
求证:∠1=∠2.
3 1O 2
4
证明:∵直线 AB 与 CD 相交于 O 点,C
B
∴∠1+∠3=180°, ∠2+∠3=180°, 平角的定义 ∴∠1=∠2. 等量代换 同理可得∠3=∠4.
例题讲解
人教版数学七年级下册
人教版数学七年级下册
第5.1.1 相交线
学习目标
人教版数学七年级下册
1.理解邻补角与对顶角的概念; 2.掌握邻补角与对顶角的性质,并能运用它们的性质进行角 的计算及解决简单实际问题.
情境引入 观察下列图片,你能从中找出2条直线吗?
人教版数学七年级下册
情境引入
人教版数学七年级下册
解:根据题意,∠1与∠3是邻补角,
a
∴∠1+∠3=180°, ∵2∠3=3∠1, ∴∠3=108°,∠1=72°
3 1
2 b
根据对顶角性质,得
∠2=∠3=108°.
拓展训练
人教版数学七年级下册
2.观察下列各图,寻找对顶角(不含平角)
Hale Waihona Puke A Ca OD
b
DG
c E
A
O
BA
O
BC
CF
D B
H
⑴ 如图a,图中共有 2 对对顶角;
解:(1)35°,145°,145° (2)均为90° (3)65°, 115°, 65° (4)(180-m)°, m°, (180-m)°
人教版数学七年级下册5-1-1 相交线 教案
5.1.1相交线教学设计课题 5.1.1 相交线单元第五单元学科初中数学年级七下学习目标1.了解两直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质.2.理解对顶角性质的推导过程,能使用该性质进行简单的计算.3.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力.4.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.重点了解两直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质.难点理解对顶角性质的推导过程,能使用该性质进行简单的计算.教学过程教学环节教师活动学生活动设计意图导入新课【观察思考】握紧剪刀的把手时,随着把手之间的角逐渐变小,剪刀刃之间的角是怎么变化的?分析:随着把手之间的角逐渐变小,剪刀刃之间的角也逐渐变小.【观察思考】如果把剪刀的构造抽象成一个几何图形,会是什么样的图形?请你在纸上画出来.分析:剪刀的构造可看作两条相交的直线,剪刀刃之间的角就是相交直线所成的角.【复习回顾】相交线的概念:如果两条直线只有一个公共点,那么我们就说这两条直线相交,它们的公共点叫做交点.观察并思考.挖掘和利用现实生活背景,让学生将理论知识与现实生活相联系.分析:如上图,AB、CD为两条直线,点O是直线AB与直线CD的交点,我们就可以说直线AB与直线CD相交.【教学建议】引导学生观察剪刀把手夹角与刀刃夹角之间的大小关系,为后续学习邻补角、对顶角做铺垫.讲授新课【合作探究】任意画两条相交的直线,形成几个角?这些角有什么位置关系?分析:任意两条相交的直线,形成4个角;这4个角有公共顶点.【观察思考】在两条相交的直线所形成的4个角中,∠1与∠2有怎样的位置关系?分析:∠1与∠2:①有一条公共边OC;②另一边互为反向延长线;③具有这种关系的两个角,互为邻补角.问题:你还能找出其它的邻补角吗?分析:∠2与∠3;∠3与∠4;∠4与∠1问题:∠1与∠2的度数有什么关系?分析:∠1+∠2=180o【观察思考】在两条相交的直线所形成的4个角中,∠1与∠3思考并回答小组交流合作,观察思考积极回答问题.让学生了解平面内两直线相交所成的4个角之间有怎样的特征.让学生经历合作探究的过程,通过观察、发现、归纳、概括得出邻补角和对顶角的概念;培养学生发现问题,解决问题和抽象概括能力.有怎样的位置关系?分析:∠1与∠3:①有一个公共顶点O;②∠1的两边分别是∠3的两边的反向延长线;③具有这种关系的两个角,互为对顶角.问题:你还能找出其它的对顶角吗?分析:∠2与∠4【合作探究】∠1与∠3的度数有什么关系?分析:∠1+∠2=180o∠2+∠3=180o∠1+∠2=∠2+∠3∠1=∠3总结:对顶角的性质:对顶角相等.【教学建议】引导学生小组合作,自主实践,教师巡回指导,随时观察学生完成情况并进行相应指导.熟悉并掌握对顶角相等.通过分析已知求证,利用平角的定义和等式的性质进行推导,培养学生逻辑推理力.【典型例题】如图,直线a、b相交,若∠1 = 40°,求∠2、∠3、∠4的度数.解:由邻补角的定义,∠1 = 40°可得∠2 = 180°-∠1= 180°-40°= 140°由对顶角相等,可得∠3 = ∠1 = 40°∠4 = ∠2 = 140°【教学建议】教师适当引导,学生自主完成.思考并积极回答.通过例题,规范学生对解题步骤的书写,让学生感受数学的严谨性.【随堂练习】1.如图,直线AB、CD、EF 两两相交,图中共有___对对顶角,___对邻补角.答案:6;12.2.下列各组角中,∠1与∠2是对顶角的为( )答案:D3. 如图,直线AB、CD相交于点O,OE是射线. 则:∠BOC的对顶角是________________,∠AOC的对顶角是________________,∠AOC的邻补角是________________,∠BOE的邻补角是________________.答案:∠AOD;∠BOD;∠BOC、∠AOD;∠AOE.4. 如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=70°,求∠BOD,∠BOC的度数.解:因为OA平分∠EOC,∠EOC = 70°所以∠AOC = 35°由对顶角相等,得∠BOD =∠AOC = 35°自主完成练习进一步巩固本节课的内容. 了解学习效果,让学生经历运用知识解决问题的过程,给学生获得成功体验的空间.通过课堂练习巩固新知,加深对顶角、余角、补角的概念和性质的理解,并学会运用它们解决一些问题.由邻补角的定义,得∠BOC = 180°-∠AOC= 180°-35°= 145°【教学建议】教师给出练习,随时观察学生完成情况并相应指导,根据学生完成情况适当分析讲解.课堂小结以思维导图的形式呈现本节课所讲解的内容. 回顾本节课所讲的内容通过小结让学生进一步熟悉巩固本节课所学的知识.板书1.邻补角:有一条公共边,另一边互为反向延长线的两个角,互为邻补角.邻补角互补.2.对顶角:(1)概念:有公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,这样的两个角,互为对顶角.(2)对顶角相等.。
5.1.1相交线(教案)2022春七年级下册初一数学(人教版)
本章节的核心素养目标旨在培养学生以下能力:通过探究相交线的性质,增强学生的几何直观和空间想象力,提高其数学抽象素养;在对顶角和邻补角的学习过程中,加强学生的逻辑推理能力和数学思维能力,培养其严谨的科学态度;通过实际操作和问题解决,发展学生的数学建模素养,使其能够运用所学知识解决实际问题;同时,通过合作交流,提升学生的数学交流与表达能力,培养其团队合作精神。这些素养目标的实现将有助于学生形成稳固的数学基础,为未来的深入学习奠定坚实基础。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相交线》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条道路交叉口的情况?”这个问题与我们将要学习好奇心,让我们一同探索相交线的奥秘。
(二)新课讲授(用时10分钟)
三、教学难点与重点
1.教学重点
-识别相交线:使学生能够正确画出两条相交直线,并识别出图形中的对顶角和邻补角。
-对顶角性质:理解对顶角相等的概念,并能运用这一性质解决相关问题。
-邻补角定义:掌握邻补角的定义,知道它们的和为180°,并能应用于实际问题的解决。
-实际操作:学会使用直尺和圆规进行基本作图,培养动手操作能力。
举例解释:在讲解对顶角性质时,通过具体图形,如交叉的剪刀或十字架等,让学生观察并理解对顶角的相等性。在解决实际问题时,如道路交叉口的角度问题,引导学生运用对顶角和邻补角的知识。
2.教学难点
-理解对顶角的对称性:学生可能难以理解对顶角为什么相等,需要通过直观演示和实际操作来加深理解。
-邻补角的辨识:在复杂图形中,学生可能难以快速辨识出邻补角,需要通过多次练习和指导。
5.1.1相交线(教案)2022春七年级下册初一数学(人教版)
5.1.1相交线课件(新人教版七年级数学下)
尝试应用
学习体会
1.本节课你有哪些收获?
2.预习时的疑难问题解决了吗?你还有哪些疑惑?
3.你认为本节还有哪些需要注意的地方?
当堂达标
当堂达标
3.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求 ∠2的度数.
作业布置
必做题:1.课本第7---8页习题5.1第1、2题; 2.课本第9---10页习题5.1第8、9题. 选做题:《同步探究》第2页第2、3题.
课中探究
对顶角的性质: ___________________________
尝试应用
1.如图1所示,∠1和∠2是对顶角的图形有( ) A.1个 B.2个 C.3个 D.4个 2.如图2所示,AB与CD相交所成的四个角中,∠1的 邻补角是____,∠1的对顶角是___;若∠1=40°, 则∠2=___,∠3=__,∠4=___;若∠1=90°,则 ∠2=___,∠3=___,∠4= __.
课中探究
活动(二)观察图形,回答问题: 问题5:如图所示,任意两条相交的直线形成的4个
角中,两两相配共能组成几对角?
问题6:这些角有什么位置关系?
课中探究
结论: 邻补角的性质 问题7:对顶角大小有什么关系? 猜想:对顶角____________ 问题8:你能根据“同角的补角相等” 来说说你的发现是正确的吗? 说理过程:
人教版初中数学七年级下册
第五章
相交线与平行线
5.1.1 相交线
创设情景
情境引入
从图片中你能发现哪些几何图形? 你还能列举出生活中相交线的例子吗?
课中探究
探究一:邻补角,对顶角的概念 活动(一)根据问题,说一说、画一画:
问题1:一把张开的剪刀,你能联想出什么几何图形?
人教版七年级数学下册 5.1.1相交线 课件(共18张PPT)
变式2:若∠2是∠1的3倍,求∠3的度数? 解:设∠1=x°,则∠2=3x°
根据邻补角的定义,得 x+3x=180 所以 x=45 则∠1=45°
根据对顶角相等,可得 ∠3=∠1=45°
今天我们学了什么?
邻补角、对顶角概念 邻补角、对顶角性质
今天我们学了什么?
两直线相交
C
2
B
1
3
4
A
D
位置 特征
1、两直线相交,形成小于平角的角有哪几个?
2、以∠1和∠2为例分析这两个角存在怎样的
位置关系和大小关系?像这样的角还有哪些?
3、以∠1和∠3为例分析这两个角存在怎样的
位置关系?像这样的角还有哪些?
C
2
B
1 o3
4
A
D
动手画出两条相交直线
1、两条直线相交,形成的小于平角的角
有哪几个?
C
2
B
1
o3
4
A
1 2
(1)不是
1 2
(2) 是
1 2
(3) 不是
1
2
(4) 不是
2 1
(5)是
7、你能得到对顶角∠1和∠3的大小关系吗?
C
2
B
动动手:(1)、用量角器测
1
o3
量对顶角∠1和∠3,比较他们
4
的大小
A
D
(2)将对顶角∠1和∠3
进行翻折,比较它们的大小?
4、你能得到对顶角∠1和∠3的大小关系吗?
猜猜看:若直线CD绕点O转 C
例、如图,直线a、b相交,∠1=40°,求
∠2、∠3、∠4的度数。
b
解:由邻补角的定义可知 ∠2=180°-∠1
5.1.1相交线
5.1.1 相交线
7.如图5-1-1-4,已知直线a、b、c相交于点O,∠1=30°,∠2=70°,则∠3= .
拓展延伸
(1)两条直线相交形成两对对顶角. (2)判断两个角是否为对顶角,应抓住两点:一是两个角是否有公共顶点,二是 两角的两边是否互为反向延长线,即是否构成两条相交直线.
温馨提示 对顶角相等,但相等的角不一定是对顶角.
5.1.1 相交线
例2 如图5-1-1-2,直线AB、CD相交于O点,若∠AOD+∠BOC=280°,求 ∠BOD的度数.
5.1.1 相交线
知识点一 邻补角及其性质 1.(2016江西南昌二中月考)如图5-1-1-1,点O在直线AB上,若∠1=40°,则 ∠2的度数是 ( )
图5-1-1-1 A.50° B.60° C.140° D.150° 答案 C 由题意知∠AOB是平角,即∠1+∠2=180°,又因为∠1=40°,所 以∠2=180°-∠1=140°.
初中数学人教版 七年级下册
第五章5.1相.1交相线交与线平行线
5.1.1 相交线
知识点一 邻补角及其性质
定义
性质
图例
邻补角
两个角有一条公共边,它们的另 一边互为反向延长线,具有这种 关系的两个角,互为邻补角.
邻补角互补.如图, ∠1+∠2=180°,∠1+∠4=180°, ∠2+∠3=180°,∠3+∠4=180°.
图5-1-1-4
5.1.1 相交线
5.1.1相交线
在我们的生活的世界中,蕴涵着大 量的相交线和平行线,
这节课我们就来学习相交线所成的角
注意观察用剪刀剪布时剪把手张 角的变化与剪刀张角是怎样变化的
如果把剪刀的构造看作是两条相交的 直线,以上就关系到两条直线相交所 成的角的问题,
画直线AB、CD相交于点O A
1
2 4
O
D
3
C
B
练习:下列说法对不对 1.邻补角可以看成是平角被过它顶点的一 条射线分成的两个角 2.邻补角是互补的两个角,互补的 两个角是邻补角 3.对顶角相等,相等的两个角是对顶角
[练习]课本P9-1,2
例题:如图,直线a,b相交, 1 求
2 , 3, 4
40
的度数
巩固练习 教科书5页练习 已知,如图 AOC 35 , COF 80 求: AOD 和 DOF 的度数
,
[作业]课本 P 10-7,8
一判断题 1如果两个角有公共顶点和一条公共过,而且 这两个角互为补角,那么它们互为邻补角( )
2两条直线相交,如果它们所成的邻补角相等, 那么一对对顶角就互补( ) 二填空题
如图,直线AB、CD、EF相交于点O, AOE
的对顶角是 若
,
,
COF
的邻补角是
130
AOC
:AOE
=
=2:3, EOD
则 BOC
相交线(第1课时)5.1.1相交线
相交线的定义
01
相交线是指两条直线在同一平面 内,且有一个公共点。
02
相交线可以分为垂直相交线和斜 相交线。
相交线的性质
相交线的两个角是补 角或邻补角。
相交线的对顶角相等。
相交线的两个角相等 相交时,其中一个角 是直角。
斜相交线
两条直线在相交时,角不是直角 。
垂直线的作图方法
确定垂直线的位置
在作图时,首先需要确定垂直线的位置,可以通过测量或计算来 确定。
绘制垂直线
根据确定的位置,使用直尺或三角板等工具绘制垂直线。在绘制 过程中,要保持线条的垂直和长度的一致。
检查垂直性
绘制完成后,需要检查绘制的线条是否真正垂直。可以通过使用 量角器或垂直尺等工具进行检查。
楼梯等的位置和大小。
确定建筑物的立体结构
03
相交线可以用来确定建筑物的立体结构,例如确定楼层、屋顶、
地下室等的位置和高度。
交通规划中的应用
01
02
03
道路规划
相交线可以用来规划道路, 例如确定道路的走向、交 叉口的位置和形状等。
交通信号灯控制
相交线可以用来控制交通 信号灯,例如确定红灯、 绿灯、黄灯的时间长度和 切换顺序。
PART 02
相交线的判定定理
REPORTING
WENKU DESIGN
平行线的判定定理
平行线的同位角相等
平行线的同旁内角互补
如果两条直线被第三条直线所截,且 同位角相等,则这两条直线平行。
如果两条直线被第三条直线所截,且 同旁内角互补,则这两条直线平行。
平行线的内错角相等
如果两条直线被第三条直线所截,且 内错角相等,则这两条直线平行。
垂直线与锐角和钝角
人教版七年级下册数学第一单元5.1.1 相交线教案与教学反思
第五章相交线与平行线5.1 相交线5.1.1 相交线【知识与技能】1.能结合具体的图形找出邻补角和对顶角,进而理解邻补角和对顶角的定义;2.理解对顶角的性质;3.能运用邻补角的性质、对顶角的性质进行简单的推理或计算.【过程与方法】通过画图、看图、归纳等掌握邻补角、对顶角的概念;通过先观察,再猜想,最后再推理的方法掌握“对顶角相等”这一重要定理.【情感态度】经历画图、看图、猜想、推理等过程,初步体会几何学习的基本方法.【教学重点】邻补角、对顶角的概念,对顶角的性质.【教学难点】1.邻补角与补角的区别与联系.2.初步体验推理的方法.一、情境导入,初步认识问题1参见教材P2“探究”问题2填空:如图,直线AB、CD交于点O,因为∠1与∠3是______角,所以∠1+∠3=_______,因为∠2与∠3是______,所以∠2+∠3=_______,根据_________,所以∠1______∠2,这就证明了对顶角的一个重要的性质定理:__________________________________.【教学说明】全班同学合作交流,共同完成上面两个问题,教师巡回指导.二、思考探究,获取新知思考1.邻补角与补角有怎样的关系?2.推理的依据一般有哪些?【归纳结论】1.定义:(1)邻补角:有一条公共边,且另一边互为反向延长线的两个角互为邻补角;(2)对顶角:如果两个角有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,那么这两个角叫做对顶角.2.性质定理:(1)如果两个角互为邻补角,那么这两个角的和等于180°;(2)对顶角相等.3.邻补角与补角的关系:邻补角一定互补,互补的两个角不一定是邻补角.邻补角是具有特殊位置关系的补角.4.推理是今后经常遇到的事情,推理的依据是已知、定义、公理、定理等.三、运用新知,深化理解1.如图,找出图中的对顶角与邻补角.第1题图第2题图2.如图,∠B+∠2=180°,问∠1与∠B是否相等,∠B与∠3是否相等,为什么?【教学说明】题1可以抢答的形式让同学们回答,对于题2,教师应及时给予引导,鼓励学生大胆完成.【答案】略.四、师生互动,课堂小结1.补角、对顶角定义.2.邻补角、对顶角的性质.1.布置作业:从教材“习题5.1”中选取.2.完成练习册中本课时的练习.本节课通过画图量角,让学生有对对顶角相等、邻补角互补知识的感性认识.学生对概念的理解及简单的一些推理说明基本能掌握.对于课堂上个别学生在解题过程中出现乱、繁的现象,课后应及时补差补缺.争取让每个孩子掌握这些概念及推理说明方法.【素材积累】1、走近一看,我立刻被这美丽的荷花吸引住了,一片片绿油油的荷叶层层叠叠地挤摘水面上,是我不由得想起杨万里接天莲叶无穷碧这句诗。
5.1.1相交线
A O C D
并且它们是一对对顶角。
B
答:正确。如图,直线AB、CD相交于点O,
∠AOD的两个邻角是∠AOC和∠DOB, 都是∠AOD的邻补角,是一对对顶角。 其它角的邻角也如此。
问题5:邻补角一定互为补角。对顶角又有什
么样的数量关系呢?
对顶角相等。
· 我们可以做下面的推理:
A O B
C
A 1
2
D 3 B
没有公共边,但它们不是对顶角。 (3)相邻的两个角是邻补角。 答:不正确。如图,∠AOB 与∠BOC 有 公共顶点和一条公共边,是相邻的两
A
答:不正确。如上图,∠AOB与∠COD有公共顶点O,而且
A
B
C
O
个角,但不互补,所以不是邻补角。
(4) 两条直线相交得到的四个角中, 同一个角的两个邻角都是它的邻补角,
E A O D C B F
找对顶角的对数方法: 每两条相交直线形成 两对对顶角
思考 (1)若三条直线两两相交,能构成几对对顶角? (2)四条直线相交于一点能构成几对对顶角? (3)五条呢?六条呢?N条呢?
例3 直线AB,CD交于点O,OE平分∠AOD,∠BOC= ∠BOD-300,求∠COE的度数 C A O
第五章 相交线与平行线 5.1.1 相交线
江西信丰古陂中学
ห้องสมุดไป่ตู้徐党生
点与直线有两种位置关系:
点A在直线m外,或者说,直线m不经过点A, 或者说,点A不属于直线m;
m
P
·
·
A
点 P在直线m上,或者说,直线m经过点P, 或者说,点P属于直线m.
直线与直线在同一平面内也有两种位置关系:
1. 两条直线相交。
5.1.1相交线
E
B
那么∠AOE=(C )度
(A)80;(B)100;(C)130(D)150。
三、填空(每空3分) 如图1,直线AB、CD交EF于点
E 1
G
A
2
B
G、H,∠2=∠3,∠1=70度。求
∠4的度数。
C
解:∵∠2=∠ 1 (对顶角相等)
∠1=70 °(已知 )
3H D 4
图1 F
∴∠2= 70°(等量代换)
A
(2)∠AOC=80°;∠1=30°;求∠2的度数
D
1 2E
解:∵∠DOB=∠ AOC ,( 对顶角相等 )
∠AOC =80°(已知)
C
∴∠DOB= 80 °(等量代换)
B
又∵∠1=30°( 已知 )
∴∠2=∠ DOB -∠ 1 = 80°- 30°= 50 °
2 . 如图,已知直线a有这样的角吗?
∠2和∠3、∠3和∠4、 ∠1和∠4也是邻补角。
∠ 1和∠ 3有怎样的位置关系?
∠ 1和∠ 3有 一个公共顶点O ,
没有公共边, 但是∠ 1的 两
边分别是∠ 3的两边的反向延 A
长线,具有这种位置关系的两
2
D
个角,互为 对顶角 。
1
3
图中还有这样的角吗?
O4
∠2和∠4也是对顶角
1、两条直线相交得4个角,其中一个角是900, 其余各角是多少度?
2.如图AB,BC,AD都是直线,且∠1=∠2,那么
∠3=∠1吗?为什么? A
1
B
2
C3
达标测试
一、判断(每题10分) 1、有公共顶点且相等的两个角是对顶角。( × )
2、两条直线相交,有两组对顶角。
人教版七年级数学下册5.1.1《相交线》说课稿
人教版七年级数学下册5.1.1《相交线》说课稿一. 教材分析《相交线》是人教版七年级数学下册第五章第一节的内容,主要介绍了相交线的定义、性质和应用。
本节课的内容是学生学习几何知识的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
在教材中,通过生动的实例和丰富的图片,引导学生认识相交线,理解相交线的性质,并学会运用相交线解决实际问题。
教材内容由浅入深,循序渐进,既注重了知识的传授,又重视了学生的动手实践和合作交流。
二. 学情分析七年级的学生已经掌握了平行线的知识,对于图形的认知和观察能力有一定的基础。
但是,对于相交线的定义和性质,学生可能还存在一定的模糊认识。
此外,学生的空间想象能力和逻辑思维能力还有待提高。
三. 说教学目标1.知识与技能目标:学生能够理解相交线的定义,掌握相交线的性质,并能够运用相交线解决实际问题。
2.过程与方法目标:通过观察、操作、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,克服困难,体验成功,培养自信心和合作精神。
四. 说教学重难点1.教学重点:相交线的定义、性质和应用。
2.教学难点:相交线的性质的理解和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和启发式教学法,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,增强学生的直观感受和动手实践能力。
六. 说教学过程1.导入:通过展示生活中常见的相交线的例子,如交叉的电线、道路等,引导学生思考相交线的特点,激发学生的学习兴趣。
2.新课导入:介绍相交线的定义,引导学生观察和描述相交线的性质。
3.实例分析:通过几何画板展示相交线的性质,让学生直观地感受相交线的特点。
4.小组讨论:学生分组讨论相交线的性质,总结出相交线的性质定理。
5.练习巩固:设计一些相关的练习题,让学生运用所学的知识解决实际问题。
6.课堂小结:引导学生总结本节课所学的知识,巩固对相交线的理解。
5.1.1相交线(共35张ppt)
所以 ∠1 =∠3(同角的补角相等).
同理 ∠2 =∠4 .
例 如图,直线 a,b 相交,∠1 = 40°,求 ∠2 ,∠3 ,∠4 的度数.
解:由邻补角定义,可得
∠2 = 180°- ∠1
b
= 180°- 40°
= 140°;
a
由对顶角相等,得
12 43
∠3 = ∠1 = 40°,∠4 = ∠2 = 140°.
如果把剪子的构造抽象成一个几何图形,会 是什么样的图形?请你在笔记本上画出.
探究
仔细观察你所画的图形,当两条直线相交时, 所形成的四个角中,∠1 与∠2 有怎样的位置关系?
C
∠1 与∠2 的顶点所 在的位置有什么特点? A
23
1 4O
B
D
探究
仔细观察你所画的图形,当两条直线相交时, 所形成的四个角中,∠1 与∠2 有怎样的位置关系?
(5)对顶角有__∠__1_和__∠__3_,__∠__2_和__∠__4_,_
_∠__5_和__∠__7_,__∠__6__和__∠__8__.
2.如图,直线AB、CD 相交于点O,∠AOE= 90°,如果∠1=20°,那么∠2=__2_0_°__,∠3= __7_0_°__,∠4=_1_6_0_°__.
(2)当 a 与 b 所成角 α 为 90° 时,其余的
角分别为多少? 均为90°
误区一 不能准确判断对顶角 1.下列图形中,∠1 与∠2 是对顶角的是( )
错解 A或C或D 正解 B
错因分析 不理解互为对顶角的条件:(1)有公 共顶点;(2)角的两边互为反向延长线. A,C 或 D 中的∠1 和∠2 不符合对顶角的条件.判断对顶角 一定要抓住对顶角形成的前提条件是两直线相交.
B 5.1.1 相交线
例:如图,直线,a b 相交,140∠=︒,求234∠∠∠,,的度数.学生活动:思考“例题”,讨论后作出解答,并把过程板书在黑板上. 教学时,教师先让学生辨让未知角与已知角的关系,用指出通过什么途径去求这些未知角的度数的,然后板书出规范的求解过程。
解:由邻补角的定义,可得2180118040140∠=︒-∠=︒-︒=︒; 由对顶角相等,可得3140∠=∠=︒,42140∠=∠=︒.教师针对学生的回答进行点评.P三.课堂练习:如图,取两根木条a ,b ,将它们钉在一起,并把它们想象成两条直线,就得到一个相交线模型.你能说出其中的一些邻补角与对顶角吗?如果其中一个角是35︒,其他三个角各是多少度?如果这个角是90︒,115︒,m ︒呢?四.课堂小结:教师引导,主要由学生自己归纳这节课的知识点。
1.邻补角和对顶角邻补角和对顶角是结合图形描述的,是把剪刀剪开布片过程看作是两条直线相交形成的角的变化,这些角之间存在不变的位置关系,就出现了邻补角和对顶角.邻补角有一条公共边,从位置关系上说是相邻的,从数量关系上说是互补的.对顶角形成的前提条件是两条相交直线构成的,有公共顶点没有公共边.2.区别邻补角和对顶角的方法在两条直线相交构成的四个角中,首先要看是有一条公共边还是有公共顶点,再看边是否是互为反向延长线;若有一条公共边,另一条边互为反向延长线的两个角是邻补角,而有公共顶点,角的两边互为反向延长线的两个角是对顶角.要注意的是邻补角不一定都是两条直线相交形成的,而对顶角必须是两条直线相交形成的.如图中的一条直线AB 与端点在这条直线上的射线CD 组成的两个角∠ACD 与∠DCB ,它们也是邻补角.两条直线相交构成了四个角时,从角的个数上说,一个角的邻补角有两个,而一个角的对顶角只有一个.但若是图中的角,邻补角就只有一个.3.对顶角的性质“对顶角相等”这一性质,是通过“同角的补角相等”推出的,每一步都有根据.五.布置作业:课本第7页习题5.1的第1,2题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这种位置关系的两个角,互为对顶角.如图,
∠1和∠3是对顶角. 2.性质:对顶角相等.
知2-讲
要点精析: (1)对顶角都是成对出现的,当两个角互为对顶角时,
其中一个角叫做另一个角的对顶角;
(2)对顶角的两边互为反向延长线即在同一直线上, 其实质是:对顶角是两直线相交所成的没有公共 边的两个角; (3)对顶角的条件:
①有公共顶点;②两边互为反向延长线.
知2-讲
例2〈铜仁〉如图,∠1与∠2是对顶角的是( C )
判断两个角是不是对顶角,要紧扣对顶角的定义, 导引: A图中∠1和∠2的顶点不同;B图中∠1和∠2的两
边都不是互为反向延长线;C图中的∠1和∠2符合
定义;D图中∠1和∠2有一条公共边.
知2-讲
总
结
判断两个角是否互为对顶角的方法: 一看它们有没有公共顶点;
知2-练
3
如图,直线AB,CD相交于点O,则∠1______ ∠2,根据的是____________;∠2+∠3= ________,根据的是________________.
知2-练
4
如图,直线AB,CD交于点O,下列说法中,错 误的是( )
A.∠AOC与∠BOD是对顶角 B.∠AOE与∠BOE是邻补角 C.∠DOE与∠BOC是对顶角 D.∠AOD与∠BOC都是∠AOC的邻补角
知2-导
问题:学生根据观察和度量完成下表: 两直线相交 所形成 的角
B
2 1 4 3
分类
位置关 系
数量关 系
C A
O
D
知2-导
归
纳
∠1与∠3有一个公共顶点O,并且∠1的两边分别是
∠3的两边的反向延长线,具有这种位置 关系的两个角, 互为对顶角(opposite angles). 在上图中, ∠1与∠2互补, ∠3与∠2互 补,由 “同角的补角相等”,可以得出∠1=∠3.类似 地, ∠2=∠4. 这样,我们得到对顶角的性质:对顶角相等.
例1 如图所示,直线AB,CD,
EF相交于点O,指出∠AOC,
∠EOB的邻补角.
知1-讲
找一个角的邻补角时,可先固定一边,反向延长另一边, 导引:
则由固定的一边和另一边的反向延长线组成的角即是原角 的邻补角.∠AOC的邻补角有两个:固定射线OA,反向
延长射线OC得到∠AOD;固定射线OC,反向延长射线
知2-讲
总 结
对顶角和邻补角经常在求角的度数的题目中同 时用到,只要分清楚对顶角、邻补角的性质,就是 对顶角相等、邻补角互补,此类题目容易解答.
知2-练
1
如图,取两根木条a,b,将它们钉在一起,并把它 们想象成两条直线,就得到一个相交线的模型.你 能说出其中的一些邻补角与对顶角吗?两根木条 所成的角中,如果∠α=35°,其他三 个角各等于 多少度?如果∠α等于90°,115°,m°呢
交的直线,这就关系到两条相交 直线所成 的角的问题.
知1-导
探究
任意画两条相交的直线,形成四个角 (如图), ∠1 与∠2有怎样的位置关系? 分别量一下各个角的度数, ∠1与∠2的度 数有什 么关系?在上页图中剪刀把手之间的角变化的过程中, 这个关系还保持吗? 为什么?
知1-导
归
纳
∠1与∠2有一条公共边OC,它们的另一边互为
角的 特征 名称 ①两条直线相交 对顶 面成的角②有一 角 个公共顶点③没 有公共边 ①两条直线相交 邻补 面成的角②有一 角 个公共顶点③有 一条公共边
性质 相同点
不同点
对顶 都是两直 对顶角没有公共 角相 线相交而 边而邻补角有一 等 成的角, 条公共边;两条 都有一个 直线相交时,一 邻补 公共顶点, 个有的对顶角有 角互 它们都是 一个,而一个角 补 成对出现。 的邻补角有两个.
反向延长线(∠1与∠2互补), 具有这种关系的两个角, 互为邻补角)adjacent angles on a straight line).
知1-讲
1. 定义:两个角有一条公共边,它们的另一边互为 反向延长线,具有这种关系的两个角互为邻补角. 如图,∠1和∠2是一对邻补角. 2. 性质:邻补角互补,即互为邻补角的两个角之和 为180°.
知2-练
2
如图,小强和小丽一起玩跷跷板,横板AB绕O 上下转动,当小强从A到A′的位置时, ∠AOA′=45°,则∠BOB′的度数为________, 理由是___________________________________
_________________________________________.
用.所以研究这些问题对今后的工作和学习都是有用
的,也将为后面的 学习做些准备.我
们先研究直线相交
的问题.
知1-导
知识点
1
邻补角
如图,观察剪刀剪开布片过程中有关角的变化.可 以发现,握紧剪刀的把手时,随着两 个把手之间的角 逐渐变小,剪刀刃之间的角也相应变小,直到剪开布
片.如果把剪刀的构造看作 两条相
知1-讲
要点精析: (1)邻补角是成对出现的,而且互为邻补角,单独一个 角不能成为邻补角;
(2)邻补角是集数形结合为一体的概念之一,它既指明
了位置关系,又包含了数量关系;“邻”指位置相 邻;“补”指两个角之和为180°. (3)互为邻补角的“两要素”: ①有一条边是公共边;
②另一边互为反向延长线.
知1-练
1
邻补角是(
)
A.和为180°的两个角 B.有公共顶点且互补的两个角 C.有一条公共边且和为180°的两个角
D.有公共顶点且有一条公共边,另一边互为
反向延长线的两个角
知1-练
2 识别邻补角应同时满足以下三条:
①有公共______;②有一条公共边;
③两角的另一边______________. 3 下列选项中,∠1与∠2互为邻补角的是( )
二看这两个角的两边是否互为反向延长线,实质就
是看这两个角是否是两条直线相交所成的没有公共 边的两个角.
知2-讲
例3 如图,直线a, b相交,∠1 = 40°, 求∠2, ∠3, ∠4的度数. 由邻补角的定义,得 解: ∠2 = 180°-∠1 = 180°-40°=140°;
由对顶角相等,得
∠3= ∠1=40° , ∠4= ∠2 = 140°.
OA得到∠BOC,它们都是∠AOC的邻补角.同理, ∠EOB的邻补角也有两个,为∠BOF和∠AOE.
∠AOC的邻补角是∠AOD,∠BOC;∠EOB的邻补角是 解:
∠BOF和∠AOE.
知1-讲
总 结
判断两个角是不是邻补角,应从两个方面去看:
一看这两个角有没有公共边; 二看这两个角的另一边是否互为反向延长线.
第5章 相交线与平行线
5.1
相交线
第1课时
相交线
1
课堂讲解 课时流程
逐点 导讲练
邻补角 对顶角及其性质
2
课堂 小结
作业 提升
如图所示,图中的道路是有宽度的,是有限长的, 而且也不是完全直的,当我们把它们看成直线时,这 些直线有些是相交线,有些是平行线.相交线、平行 线都有许多重要性质,并且在生产和生活中有广泛应
知1-练
4 如图,∠1的邻补角是(
A.∠BOC B.∠BOE和∠AOF
)
C.∠AOF
D.∠BOC和∠AOF
知2-导
知识点
探究
2
对顶角及其性质
任意画两条相交的直线,形成四个角 (如图), ∠1
与∠3有怎样的位置关系? 分别量一下各个角的度数, ∠1与∠3的度 数有什
么关系?在知1图中剪刀
把手之间的角变化的过程 中,这个关系还保持吗? 为什么?