高一数学所有公式有哪些
高一数学公式大全
高一数学公式大全高中一年级数学公式大全:1. 一元二次方程的求根公式:对于一元二次方程ax^2 + bx + c = 0,求根公式为x = (-b ± √(b^2 - 4ac)) / (2a);2. 等差数列的通项公式:对于等差数列an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差,通项公式为an = a1 + (n-1)d;3. 等比数列的通项公式:对于等比数列an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比,通项公式为an = a1 * r^(n-1);4. 平方差公式:(a + b)^2 = a^2 + 2ab + b^2;5. 二次三项式的因式分解公式:a^2 - b^2 = (a+b)(a-b);6. 两点之间的距离公式:对于平面上两点A(x1, y1)和B(x2, y2),两点之间的距离公式为AB = √((x2-x1)^2 + (y2-y1)^2);7. 余弦定理:对于任意三角形ABC,AB^2 = BC^2 + AC^2 -2BC·AC·cos∠BAC;8. 正弦定理:对于任意三角形ABC,a/sin∠A = b/sin∠B =c/sin∠C;9. 高度公式:对于任意三角形ABC,三角形的高h_a可表示为h_a =2A/b,其中A表示三角形ABC的面积,b表示BC边的长度;10. 余角公式:sin(90-θ) = cosθ;11. 诱导公式:sin(A ± B) = sinAcosB ± cosAsinB,cos(A ± B) = cosAcosB ∓ sinAsinB;12. 乘法公式:sin(A + B) = sinAcosB + cosAsinB,sin(A - B) = sinAcosB - cosAsinB;13. 三角函数基本关系式:tanθ = sinθ/cosθ;14. 对数的换底公式:loga(b) = logc(b) / logc(a);15. 组合公式:C(n, m) = n! / (m!(n-m)!),其中C(n, m)表示从n个元素中取m个元素的组合数;16. 回文数判断公式:若一个n位数的各个数位上的数字自左至右和自右至左读都相同,则称其为回文数;17. 两平行线之间的距离公式:对于平行线L1和L2及点P,垂直于L1的线段PM与L2相交于点M,线段PM即为L1与L2之间的距离;18. 二项式定理:(a+b)^n = C(n,0)a^n + C(n,1)a^(n-1)b +C(n,2)a^(n-2)b^2 + ... + C(n,n)b^n,其中C(n,m)表示从n个元素中取m个元素的组合数;19. 勾股定理:直角三角形的斜边c的平方等于两直角边a和b的平方和;20. 平行线与三角形相交的性质:若一条直线与两条平行线相交,则所形成的三角形内部的对应角相等。
高一数学公式大全(完整资料).doc
【最新整理,下载后即可编辑】1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆ U A C B ⇔=ΦU C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card CA card ABC ---+.5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠.7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->- ⇔11()f x N M N>--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于)()(21<k f k f ,或)(1=k f 且22211k k a bk +<-<,或)(2=k f 且22122k abk k <-<+. 9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p abx ,2∈-=,则{}min max max ()(),()(),()2bf x f f x f p f q a=-=; []q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p ab x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 .设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩; (2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n>⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q pm ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3))(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或240a b ac <⎧⎨-<⎩. 12.真值表14.四种命题的相互关系逆命题 若q则p互 为 为 互 否 否 逆 逆逆否命题 若非q则非p15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2b a x +=对称.21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称;若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零.多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零.23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=- (2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a b x +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.(2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m+=对称.(3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系 a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f k y -=-,并不是)([1b kx fy +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数. 28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==.29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x =+∈,则)(x f 的周期T=2a ; (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 30.分数指数幂(1)m na =0,,a m n N *>∈,且1n >). (2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质(1)n a =.(2)当na =; 当n为偶数时,,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)r s r s a a a a r s Q +⋅=>∈. (2) ()(0,,)r s rs a a a r s Q =>∈. (3)()(0,0,)r r r ab a b a b r Q =>>∈. 注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log ba Nb a N =⇔=(0,1,0)a a N >≠>. 34.对数的换底公式log log log m a m N N a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2)log log log aa a MM N N=-; (3)log log ()n a a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广 若0a >,0b >,0x >,1x a≠,则函数log ()ax y bx =(1)当a b >时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为增函数.,(2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<.(2)2log log log 2a a a m nm n +<. 38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-. 41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ). 44.常见三角不等式(1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan b aϕ= ).48.二倍角公式 sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Zππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=. 51.正弦定理2sin sin sin a b cR A B C===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-;2222cos c a b ab C =+-.53.面积定理 (1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222S ab C bc A ca B ===. (3)OABS ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解sin (1)arcsin (,||1)k x a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈. 特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈. s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Zπππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈. cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么 (1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2. 不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=.53. a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. 61. a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. 63.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).64.,A B d =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=.a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+-(11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ .注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .70. 三角形五“心”向量形式的充要条件 设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔==. (2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+. 71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号).(3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+(1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或. 74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-. 75.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩. 76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)截距式1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 79.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+=; 80.夹角公式 (1)2121tan ||1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π. 81. 1l 到2l 的角公式 (1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1到l 2的角是2π.82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数. (3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是:若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域 设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分. 86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内. 89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d . 其中22BA C Bb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=; ②斜率为k 的圆的切线方程为y kx =±。
高一必修一所有知识点公式
高一必修一所有知识点公式一、数学公式1. 数的四则运算公式- 相反数:a + (-a) = 0- 乘法的分配律:a(b + c) = ab + ac2. 二次根式的乘法公式- (a√b)(c√d) = ac√(bd)3. 平方差公式- a² - b² = (a + b)(a - b)4. 完全平方公式- a² + 2ab + b² = (a + b)²5. 因式分解公式- 平方差公式:a² - b² = (a + b)(a - b)- 完全平方公式:a² + 2ab + b² = (a + b)²- 二次根式的乘法公式:(a√b)(c√d) = ac√(bd)6. 二次方程求根公式- 一元二次方程ax² + bx + c = 0的根公式为:x = (-b±√(b²-4ac))/(2a)7. 三角函数公式- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:a² = b² + c² - 2bc*cosA- 正切公式:tanA = sinA/cosA8. 任意角的三角函数公式- sin(-θ) = -sinθ- cos(-θ) = cosθ- tan(-θ) = -tanθ- sin(π - θ) = sinθ- cos(π - θ) = -cosθ- tan(π - θ) = -tanθ- sin(π + θ) = -sinθ- cos(π + θ) = -cosθ- tan(π + θ) = tanθ二、物理公式1. 动力学公式- 速度公式:v = s/t- 加速度公式:a = (v - u)/t - 牛顿第二定律:F = ma - 动量公式:p = mv- 冲量公式:J = Ft- 功率公式:P = W/t- 动能公式:E = (1/2)mv²2. 机械能守恒公式- 势能公式:Ep = mgh- 动能公式:Ek = (1/2)mv²- 机械能守恒公式:Ep + Ek = 常数3. 电学公式- 电流公式:I = Q/t- 电阻公式:R = V/I- 电阻、电流、电压关系:V = IR- 等效电阻公式(并联):1/R = 1/R₁ + 1/R₂ + ... - 等效电阻公式(串联):1/R = 1/R₁ + 1/R₂ + ...4. 磁学公式- 磁感应强度公式:B = μ₀H- 磁场中力的公式:F = qvBsinθ- 洛伦兹力公式:F = q(E + vBsinθ)5. 光学公式- 薄透镜公式:1/f = 1/v - 1/u- 放大率公式:β = v/u- 光速与折射率之间的关系:c = v/n三、化学公式1. 质量守恒定律- 反应前物质的质量 = 反应后物质的质量2. 摩尔关系公式- 物质的摩尔数 = 质量(g)/相对分子质量(g/mol) - 物质的摩尔数 = 浓度(mol/L) ×体积(L)3. 摩尔体积公式- 摩尔体积 = 体积(L)/物质的摩尔数4. 氧化还原反应电子转移公式- 氧化剂 + n e⁻ → 还原剂- 还原剂→ n e⁻ + 氧化剂5. 离子反应中的离子平衡公式- 平衡常数Kc = [C]c[D]d/[A]a[B]b以上是高一必修一所有知识点的公式,希望对你的学习有所帮助。
高一数学公式大全
高一数学公式大全1. 代数公式1.1 二次方程根公式对于二次方程ax^2 + bx + c = 0,可以使用以下公式求解其根:x = (-b ± √(b^2 - 4ac)) / (2a)1.2 因式分解公式对于二次多项式的因式分解,可以使用以下公式:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^2a^2 - b^2 = (a + b)(a - b)等等。
2. 几何公式2.1 直角三角形对于直角三角形,可以使用以下公式:勾股定理:c^2 = a^2 + b^2正弦定理:a / sinA = b / sinB = c / sinC 余弦定理:c^2 = a^2 + b^2 - 2ab cosC2.2 圆对于圆,可以使用以下公式:圆的周长:C = 2πr圆的面积:A = πr^2等等。
3. 概率与统计公式3.1 概率对于概率计算,可以使用以下公式:概率 P(A) = n(A) / n(S)互斥事件概率:P(A ∪ B) = P(A) + P(B)独立事件概率:P(A ∩ B) = P(A) * P(B)3.2 统计对于统计分析,可以使用以下公式:平均值:mean = (x1 + x2 + ... + xn) / n方差:variance = ((x1 - mean)^2 + (x2 - mean)^2 + ... + (xn - mean)^2) / n标准差:standard deviation = √variance等等。
4. 其他重要公式4.1 指数与对数对于指数与对数运算,可以使用以下公式:指数公式:a^m * a^n = a^(m + n)对数公式:loga(xy) = loga(x) + loga(y)4.2 排列与组合对于排列与组合计算,可以使用以下公式:排列数:P(n, r) = n! / (n - r)!组合数:C(n, r) = n! / (r! * (n - r)!)等等。
高一数学所有公式归纳
高一数学所有公式归纳一、代数部分1. 二项式定理:(a+b)^n = C(n,0)a^n b^0 + C(n,1)a^(n-1) b^1 + ... + C(n,n-1)a^1 b^(n-1) + C(n,n)a^0 b^n2. 因式分解公式:a^2 - b^2 = (a+b)(a-b)3. 奇偶性公式:(-1)^n = 1 (n为偶数), (-1)^n = -1 (n为奇数)4. 平方差公式:a^2 - b^2 = (a+b)(a-b)5. 一元二次方程求根公式:x = (-b ± √(b^2 - 4ac)) / (2a)6. 二次根式化简公式:√(a ± √b) = √[(a + √b) / 2] ± √[(a - √b) / 2]二、几何部分1. 直角三角形勾股定理:a^2 + b^2 = c^2 (c为斜边,a、b为直角边)2. 正弦定理:a/sinA = b/sinB = c/sinC (a、b、c为三角形的边长,A、B、C为对应的角度)3. 余弦定理:c^2 = a^2 + b^2 - 2abcosC (a、b、c为三角形的边长,C为对应的角度)4. 正切定理:tanA = a/b (a、b为直角三角形的边长,A为对应的角度)5. 相似三角形比例公式:a/b = c/d = e/f (a、b、c、d、e、f为相似三角形的对应边长)6. 圆的面积公式:S = πr^2 (r为圆的半径)7. 圆的周长公式:C = 2πr (r为圆的半径)8. 扇形面积公式:S = θ/360° * πr^2 (θ为扇形的角度,r为半径)三、概率统计部分1. 排列公式:A(n, m) = n! / (n-m)! (n为总数,m为选取的个数)2. 组合公式:C(n, m) = n! / (m! * (n-m)!) (n为总数,m为选取的个数)3. 期望公式:E(X) = Σx * P(x) (X为随机变量,x为可能的取值,P(x)为概率)4. 方差公式:Var(X) = Σ(x-E(X))^2 * P(x) (X为随机变量,x为可能的取值,P(x)为概率,E(X)为期望)5. 标准差公式:SD(X) = √Var(X) (X为随机变量)四、微积分部分1. 导数定义公式:f'(x) = lim(h→0) [f(x+h) - f(x)] / h (f(x)为函数,f'(x)为导数)2. 导数四则运算法则:(cf(x))' = cf'(x), (f(x)±g(x))' = f'(x)±g'(x), (f(x)g(x))' = f'(x)g(x) + f(x)g'(x), (f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x)) / g^2(x)3. 积分定义公式:∫f(x)dx = F(x) + C (f(x)为函数,F(x)为其原函数,C为常数)4. 不定积分法则:∫(f(x)±g(x))dx = ∫f(x)dx ± ∫g(x)dx, ∫cf(x)dx =c∫f(x)dx (c为常数)5. 定积分公式:∫[a,b] f(x)dx = F(b) - F(a) (f(x)为函数,F(x)为其原函数,[a,b]表示积分区间)五、数列部分1. 等差数列通项公式:a(n) = a(1) + (n-1)d (a(n)为第n项,a(1)为首项,d为公差)2. 等差数列前n项和公式:S(n) = n/2 * (a(1) + a(n)) (S(n)为前n 项和,a(1)为首项,a(n)为第n项)3. 等比数列通项公式:a(n) = a(1) * r^(n-1) (a(n)为第n项,a(1)为首项,r为公比)4. 等比数列前n项和公式:S(n) = a(1) * (1 - r^n) / (1 - r) (S(n)为前n项和,a(1)为首项,r为公比)这些公式是高一数学中常见的公式,通过运用它们,可以解决各种代数、几何、概率统计、微积分和数列的问题。
高一数学公式总结
高一数学公式总结1500字高一数学公式总结一、代数公式1. 二次根式公式:(a+b)² = a² + 2ab + b²2. 二次根式方差公式:(a-b)² = a² - 2ab + b²3. 二次根式与一次根式乘法公式:a√b · c√d = (a · c)√(b · d)4. 一次根式除法公式:a√b / c√d = (a / c)√(b / d)5. 两个一次根式相加时的简化公式:a√b ± c√b = (a ± c)√b6. 两个一次根式相减时的简化公式:a√b ± c√b = (a ± c)√b7. 复数加法公式:(a+bi) + (c+di) = (a+c) + (b+d)i8. 复数减法公式:(a+bi) - (c+di) = (a-c) + (b-d)i9. 复数乘法公式:(a+bi) · (c+di) = (ac-bd) + (ad+bc)i10. 复数除法公式:(a+bi) / (c+di) = [(ac+bd)/(c²+d²)] + [(bc-ad)/(c²+d²)]i二、三角公式1. 正弦定理:a/sinA = b/sinB = c/sinC = 2R (其中a、b、c为三角形的边长,A、B、C为对应的角度,R为外接圆半径)2. 余弦定理:c² = a² + b² - 2abcosC (其中c为三角形的边长,a、b为其他两边的长度,C为它们的夹角)3. 正弦函数和余弦函数的和差公式:sin(x ± y) = sinx·cosy ± cosx·siny和cos(x ± y) = cosx·cosy ∓ sinx·siny4. 三角函数和差公式:sin(x ± y) = sinx·cosy ± cosx·siny和cos(x ± y) = cosx·cosy ∓sinx·siny5. 三角函数积化和差公式:sinx·siny = (1/2)(cos(x-y) - cos(x+y))和cosx·cosy = (1/2)(cos(x-y) + cos(x+y))6. 二倍角公式:sin2x = 2sinx·cosx和cos2x = cos²x - sin²x三、解析几何公式1. 点与直线的距离公式:d = |Ax0 + By0 + C| / √(A² + B²)2. 点到平面的距离公式:d = |Ax0 + By0 + Cz0 + D| / √(A² + B² + C²)3. 直线斜率公式:k = (y₂ - y₁) / (x₂ - x₁)4. 平面斜率公式:k = (z₂ - z₁) / (x₂ - x₁)5. 两点间距离公式:d = √[(x₂ - x₁)² + (y₂ - y₁)² + (z₂ - z₁)²]6. 两点间中点坐标公式:(x, y) = (x₁ + x₂) / 2, (y₁ + y₂) / 2, (z₁ + z₂) / 27. 点到直线的距离公式:d = |Ax₀ + By₀ - C| / √(A² + B²)8. 点到平面的距离公式:d = |Ax₀ + By₀ + Cz₀ + D| / √(A² + B² + C²)9. 平面一般方程:Ax + By + Cz + D = 0四、概率统计公式1. 计数原理:设一个操作共有m种可能,第一步有n₁种选择,第二步有n₂种选择,...,则共有n₁n₂...种可能。
高一数学必修一所有公式归纳
高一数学必修一所有公式归纳高一数学必修一所有公式归纳是如下:1、锐角三角函数公式:sinα=∠α的对边/斜边。
2、三倍角公式:sin3α=4sinα·sin(π/3+α)sin(π/3-α)。
3、辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t)。
4、降幂公式:sin^2(α)=(1-cos(2α))/2=versin(2α)/2。
5、推导公式:tanα+cotα=2/sin2α。
数学必修一数学公式如下:1、2sinAcosB=sin(A+B)+sin(A-B)。
2、tan(A+B)=(tanA+tanB)/(1-tanAtanB)。
3、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。
4、tan(A-B)=(tanA-tanB)/(1+tanAtanB)。
5、-ctgA+ctgBsin(A+B)/sinAsinB。
数学必修一公式归纳:一、指数与指数幂的运算1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时。
2、分数指数幂。
正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3、实数指数幂的运算性质。
高中高一数学公式大全
高中高一数学公式大全一、代数1. 二次方程求根公式:根据二次方程 ax^2 + bx + c = 0 的系数 a、b、c 求解方程的根 x 的公式为 x = (-b ± √(b^2 - 4ac)) / (2a)。
2. 因式分解公式:对于多项式,如 a^2 - b^2 ,可以利用差平方公式将其因式分解为 (a - b)(a + b)。
3. 二项式定理:根据二项式 (a + b)^n 的展开式,可以得到每一项的系数,公式为 (a + b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1) b^1 + ... + C(n, n)a^0 b^n ,其中 C(n, k) 表示从 n 个元素中取出 k 个元素的组合数。
二、几何1. 直角三角形的勾股定理:在直角三角形中,设直角边的长为a,另外两边的长分别为 b 和 c,满足条件 a^2 + b^2 = c^2。
2. 圆的周长和面积公式:圆的周长公式为C = 2πr ,面积公式为A = πr^2 ,其中 r 表示圆的半径。
3. 相似三角形的边长比例:对于相似三角形 ABC 和 DEF ,它们对应的边长之比满足 AB/DE = BC/EF = AC/DF 。
三、函数1. 直线的斜率公式:设直线上两个点的坐标分别为 (x1, y1) 和(x2, y2),那么直线的斜率 k = (y2 - y1) / (x2 - x1)。
2. 一次函数的图像方程:一次函数的图像方程为 y = kx + b ,其中 k 表示斜率,b 表示截距。
3. 幂函数的性质:幂函数 y = x^a 其中 a 是常数,当 a > 0 时,函数是递增的,当 a = 0 时,函数是常数函数,当 a < 0 时,函数是递减的。
以上只是高中高一数学公式的一部分,希望能对您的学习有所帮助。
高一数学公式大全
高一数学公式大全对于高中生来说,数学是很容易拉开分数的学科,学好数学科目至关重要,下面是给大家带来的高一数学公式,希望能帮助到大家!高一数学公式1正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圆半径余弦定理b2=a2+c2-2accosb注:角b是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+dx+ey+f=0注:d2+e2-4f0抛物线标准方程y2=2pxy2=-2p_2=2pyx2=-2py直棱柱侧面积s=c_h斜棱柱侧面积s=c_h正棱锥侧面积s=1/2c_h正棱台侧面积s=1/2(c+c)h圆台侧面积s=1/2(c+c)l=pi(r+r)l球的表面积s=4pi_r2圆柱侧面积s=c_h=2pi_h圆锥侧面积s=1/2_c_l=pi_r_l弧长公式l=a_ra是圆心角的弧度数r0扇形面积公式s=1/2_l_r锥体体积公式v=1/3_s_h圆锥体体积公式v=1/3_pi_r2h斜棱柱体积v=sl注:其中,s是直截面面积,l是侧棱长柱体体积公式v=s_h圆柱体v=pi_r2h高一数学公式2【和差化积】2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB【某些数列前n项和】1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角弧长公式l=a_r a是圆心角的弧度数r 0 扇形面积公式s=1/2_l_r乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b=-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/a X1_X2=c/a 注:韦达定理高一数学公式3圆的公式1、圆体积=4/3(pi)(r^3)2、面积=(pi)(r^2)3、周长=2(pi)r4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f0】椭圆公式1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.3、椭圆面积公式:s=πab4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
高一数学知识点公式大全总结
高一数学知识点公式大全总结一、代数部分1. 二次根式求解法设$\sqrt{a}=b$,则$a=b^2$2. 平方差公式$(a+b)(a-b)=a^2-b^2$3. 平方和公式$(a+b)^2=a^2+2ab+b^2$4. 方程组解法联立两个方程,可以使用消元法或代入法等方式求解。
5. 一次函数的斜率$y=kx+b$中,斜率$k$的计算公式为$k=\frac{y_2-y_1}{x_2-x_1}$6. 一次函数的截距$y=kx+b$中,截距$b$的计算公式为$b=y-kx$7. 一元一次方程求解方法对于形如$ax+b=0$的方程,解为$x=-\frac{b}{a}$8. 一元二次方程求解方法对于形如$ax^2+bx+c=0$的方程,求解公式为$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$9. 分式的运算法则加减法:通分后相加或相减,分母相同。
乘法:相乘后约分。
除法:转换为乘法,分子乘以倒数。
10. 根式的运算法则加减法:合并同类项,并进行化简。
乘法:相乘后合并同类项,并进行化简。
除法:转换为乘法,除数的倒数乘以被除数。
二、几何部分1. 三角形内角和定理三角形的内角之和等于180度,即$\angle A+\angle B+\angle C=180^\circ$2. 直线与平行线的夹角当两条直线平行时,与这两条直线相交的直线与其中任一条直线的夹角相等,即$\angle A=\angle B$3. 三角形的面积公式设三角形的底为$b$,高为$h$,则三角形的面积$S=\frac{1}{2}bh$4. 直角三角形的勾股定理设直角三角形的两个直角边分别为$a$和$b$,斜边为$c$,则$a^2+b^2=c^2$5. 等腰三角形的性质等腰三角形的两边边长相等,底角也相等。
6. 正方形的性质正方形的四条边相等,四个内角都为90度。
7. 平行四边形的性质平行四边形的对边相等且平行,相邻两个内角互补。
高一数学公式归纳大全
高一数学公式归纳大全
高一数学主要涉及的知识点有:函数、解析几何、三角函数、不等式等。
以下是一些常用的公式归纳:
1.函数- 函数的定义:f(x) = {x | A→B},其中A、B是数集,→表示对应关系。
- 函数的性质:单调性、奇偶性、周期性等。
- 基本初等函数:y = 指数函数、对数函数、反比例函数、正弦函数、余弦函数、正切函数等。
2. 解析几何- 坐标系:直角坐标系、平面直角坐标系。
- 直线方程:斜率截距式、一般式、点斜式。
- 圆的方程:圆的标准方程、一般方程、参数方程。
- 椭圆、双曲线、抛物线的方程及性质。
3. 三角函数- 三角函数的定义:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数。
- 三角函数的性质:周期性、奇偶性、单调性等。
- 三角函数的公式:和差化积、积化和差、倍角公式、半角公式、万能公式等。
- 解三角形:正弦定理、余弦定理、正弦公式、余弦公式。
4. 不等式- 基本不等式:a² + b²≥ 2ab,(a > , b > )- 绝对值不等式:|x + a| ≤ b → -b ≤ x ≤ b- 解不等式:一元一次不等式、一元二次不等式、复合不等式、绝对值不等式等。
这里只是简要归纳了一些常用的公式,实际上高一数学涉及的知识点还有很多,学生在学习过程中要不断总结和整理,形成自己的知识体系。
在解题时,要熟练掌握这些公式,并能够灵活运用。
高一数学所有的公式
高一数学所有的公式
高一数学涵盖了许多基础的数学概念和公式。
以下是一些可能在高一数学课程中遇到的一些主题和相应的公式:
1. **代数学**
-一次方程:\[ax + b = 0\]
-二次方程:\[ax^2 + bx + c = 0\]
-因式分解公式:\[a^2 - b^2 = (a + b)(a - b)\]
2. **几何学**
-勾股定理:\[c^2 = a^2 + b^2\]
-直角三角形三边关系:\(\sin \theta = \frac{对边}{斜边}\),\(\cos \theta = \frac{邻边}{斜边}\),\(\tan \theta = \frac{对边}{邻边}\)
3. **函数与图像**
-一次函数:\[y = mx + b\]
-二次函数:\[y = ax^2 + bx + c\]
-绝对值函数:\[y = |x|\]
4. **三角学**
-弧度和角度的转换:\[1°= \frac{\pi}{180} \text{弧度}\]
-三角函数关系:\(\sin^2 \theta + \cos^2 \theta = 1\)
5. **指数与对数**
-指数法则:\(a^{m+n} = a^ma^n\)
-对数法则:\(\log_ab + \log_ac = \log_a(bc)\)
6. **集合论**
-交集:\(A \cap B\)
-并集:\(A \cup B\)
-补集:\(A'\)
这只是高一数学中的一小部分内容,具体的公式和概念可能会因学校和地区的不同而有所变化。
如果有特定的主题或公式需要详细了解,请提出具体的问题。
高一数学知识点全总结公式
高一数学知识点全总结公式数学是一门抽象而又实用的学科,它涵盖了许多重要的知识点和公式。
在高一数学学习中,掌握这些知识点和公式是非常关键的。
本文将全面总结高一数学的重要知识点和公式,以帮助学生更好地学习和应用这些内容。
一、代数与函数1. 代数基本公式- 二次方程求根公式:对于二次方程ax²+bx+c=0(其中a≠0),其根的公式为x=(-b±√(b²-4ac))/(2a)。
- 二次完全平方公式:对于完全平方三项式(a±b)²,展开后得到a²±2ab+b²。
2. 线性方程与不等式- 一元一次方程:形式为ax+b=c,解为x=(c-b)/a。
- 一元一次不等式:形式为ax+b>c或ax+b<c,解为x>(c-b)/a 或x<(c-b)/a。
3. 幂指与对数函数- 指数函数:y=a^x,其中a为底数,x为指数。
- 对数函数:y=loga(x),其中a为底数,x为对数结果。
4. 三角函数- 正弦函数:y=sin(x)。
- 余弦函数:y=cos(x)。
- 正切函数:y=tan(x)。
二、空间与图形1. 直线与曲线- 一次函数:y=kx+b,其中k为斜率,b为截距。
- 二次函数:y=ax²+bx+c。
- 指数函数:y=a^x,其中a>0且a≠1。
- 对数函数:y=loga(x),其中a>0且a≠1。
2. 平面图形- 三角形周长公式:P=a+b+c,其中a、b、c为三边长度。
- 三角形面积公式:S=1/2bh,其中b为底边长度,h为高。
- 圆周长公式:C=2πr,其中r为半径。
- 圆面积公式:S=πr²,其中r为半径。
3. 空间图形- 立方体体积公式:V=a³,其中a为边长。
- 球体体积公式:V=4/3πr³,其中r为半径。
三、数列与数学归纳法1. 等差数列- 通项公式:an=a₁+(n-1)d,其中a₁为首项,d为公差。
数学高一知识点及公式
数学高一知识点及公式高中数学知识点及公式一、函数与方程1. 一次函数一次函数的标准方程为:y = kx + b,其中k为斜率,b为常数。
斜率公式:k = (y₂ - y₁) / (x₂ - x₁),其中(x₁, y₁)和(x₂, y₂)为直线上两点的坐标。
2. 二次函数二次函数的标准方程为:y = ax² + bx + c,其中a、b、c为常数且a ≠ 0。
顶点坐标公式:顶点的横坐标为x = -b / (2a),纵坐标为y = -Δ / (4a),其中Δ为判别式,Δ = b² - 4ac。
3. 指数函数指数函数的标准方程为:y = a^x,其中a为底数,a > 0且a ≠ 1。
公式:a^m * a^n = a^(m+n),a^m / a^n = a^(m-n),(a^m)^n = a^(mn),(ab)^n = a^n * b^n。
4. 对数函数对数函数的标准方程为:y = logₐx,其中a为底数,a > 0且a ≠ 1。
公式:logₐ(mn) = logₐm + logₐn,logₐ(m/n) = logₐm - logₐn,logₐ(m^n) = n * logₐm。
5. 三角函数常见三角函数有正弦函数、余弦函数和正切函数。
正弦函数的定义:y = sin(x),取值范围为[-1, 1]。
余弦函数的定义:y = cos(x),取值范围为[-1, 1]。
正切函数的定义:y = tan(x),取值范围为实数。
二、平面几何1. 直线直线的一般方程为:Ax + By + C = 0,其中A、B、C为实数且A² + B² ≠ 0。
直线的斜率公式:k = -A / B。
2. 平面平面的一般方程为:Ax + By + Cz + D = 0,其中A、B、C、D为实数且A² + B² + C² ≠ 0。
平面的法向量:平面的法向量为(A, B, C)。
高一数学所有公式大全
高一数学所有公式大全1. 代数1.1 一次方程- 一次方程的定义:- 形如 $ax + b = 0$ 的方程,其中 $a \neq 0$,$x$ 是未知数,$b$ 是常数。
- 一次方程的解法:- 将方程转化为标准形式,即 $x = \frac{-b}{a}$。
1.2 二次方程- 二次方程的定义:- 形如 $ax^2 + bx + c = 0$ 的方程,其中 $a \neq 0$,$x$ 是未知数,$b$ 和 $c$ 是常数。
- 二次方程的解法:- 使用公式 $x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$ 计算方程的根。
1.3 等差数列- 等差数列的定义:- 一个数列,其中任意两个相邻的项之差都相等。
- 等差数列的通项公式:- $a_n = a_1 + (n-1)d$,其中 $a_n$ 是第 $n$ 项,$a_1$ 是首项,$d$ 是公差,$n$ 是项数。
1.4 等比数列- 等比数列的定义:- 一个数列,其中任意两个相邻的项之比都相等。
- 等比数列的通项公式:- $a_n = a_1 \cdot r^{(n-1)}$,其中 $a_n$ 是第 $n$ 项,$a_1$ 是首项,$r$ 是公比,$n$ 是项数。
2. 几何2.1 直线与角- 直线与角的定义:- 直线是一个无限延伸的曲线,两个非相邻点可以唯一确定一条直线。
- 角是由两条相交的直线所形成的两个射线之间的空间部分。
- 直线与角的性质:- 两条相交直线所形成的相邻内角互补,即它们之和等于$180^\circ$。
2.2 三角形- 三角形的定义:- 有三条边和三个角的图形。
- 三角形的性质:- 三角形的内角和等于 $180^\circ$。
- 根据边的长度,三角形可以分为等边三角形、等腰三角形和普通三角形。
2.3 圆- 圆的定义:- 由与圆心距离相等的所有点组成的图形。
- 圆的性质:- 圆上的任意弧所对的圆心角等于该圆上的任意两条切线所夹的角。
高一知识点归纳数学公式总结
高一知识点归纳数学公式总结一、代数1.二次方程:对于二次方程ax²+bx+c=0,解可以用以下公式表示:x = (-b ± √(b²-4ac))/(2a)2.因式分解:通过找到一个或多个公因子,将多项式表示为乘法形式。
3.二项式定理:二项式定理用于展开一个二项式的幂:(a + b)^n = C(n,0) * a^n + C(n,1) * a^(n-1) * b + ... + C(n,r) * a^(n-r) * b^r + ... + C(n,n) * b^n4.指数和对数:(a^m) * (a^n) = a^(m+n)(a^m) / (a^n) = a^(m-n)(a^m)^n = a^(m*n)loga(m*n) = loga(m) + loga(n)loga(m/n) = loga(m) - loga(n)loga(m^n) = n*loga(m)5.等差数列公式:第n个数:an = a1 + (n-1)d数列总和:Sn = (n/2)*(a1 + an)6.等比数列公式:第n个数:an = a1 * r^(n-1)数列总和:Sn = (a1 * (r^n - 1))/(r - 1)7.排列与组合:n个元素中取r个元素的排列数:A(n,r) = n!/(n-r)!n个元素中取r个元素的组合数:C(n,r) = n!/(r!(n-r)!)二、几何1.正弦定理:在任意三角形ABC中,边长分别为a、b、c:a/sinA = b/sinB = c/sinC2.余弦定理:在任意三角形ABC中,边长分别为a、b、c:c² = a² + b² - 2ab*cosC3.正切定理:在任意三角形ABC中,边长分别为a、b、c:(a+b)/(a-b) = (tan((A+B)/2))/(tan((A-B)/2))4.勾股定理:直角三角形斜边的平方等于两直角边平方和:c² = a² + b²5.面积公式:三角形的面积:S = (1/2)*b*h梯形的面积:S = (a+b) * h / 2圆的面积:S = π * r²三、概率与统计1.排列:n个元素的全排列数:P(n) = n!2.组合:n个元素中取r个元素的组合数:C(n,r) = n! / (r! * (n-r)!)3.事件概率:P(A and B) = P(A) * P(B|A)P(A or B) = P(A) + P(B) - P(A and B)4.正态分布:正态分布是一个对称的连续概率分布,由均值和标准差两个参数决定。
高一数学常用公式
高一数学常用公式1.平方差公式 22b a -=2.完全平方公式 (a ±b)2 =3.立方差公式:=-33b a4. 立方和公式:=+33b a5.差的立方公式:=-3)(b a6. 和的立方公式:=+3)(b a3.一元二次方程ax 2+bx+c=0的求根公式 =x4.根与系数的关系, 又叫韦达定理:=+21x x ,=21x x5.二次函数y=ax 2+bx+c 的对称轴、顶点坐标公式:对称轴:=x 顶点坐标( )6.集合12{,,,}n a a a 的子集个数共有 个;真子集有 个;非空子集有 个;非空的真子集有 个7.奇函数(关于 对称):=-)(x f ;偶函数(关于 对称):=-)(x f8.分数指数幂 (1)=n ma (0,,a m n N *>∈,且1n >). (2)=-n m a (0,,a m n N *>∈,且1n >).9.根式的性质(1)()n n a = . (2)⎩⎨⎧=为偶数时当为奇数时当n n n n a10.有理指数幂的运算性质(1) =⋅s r a a . (2) ()=s r a . (3)()=rab . 11.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.12.对数的换底公式 (0a >,且1a ≠,0m >,且1m ≠, 0N >). 推论(1)log log m n a a n b b m =;(2)ab b a log 1log =;(3)d dc b a c b a log log log log =⋅⋅ 13.对数的运算法则 若a >0,a ≠1,M >0,N >0,则(1)()=MN a log ; (2) =⎪⎭⎫⎝⎛N M a log ; (3) =n a M log . 14.对数恒等式:=N a a log15..斜率公式 ⑴=K (α为直线的倾斜角); ⑵=K (111(,)P x y 、222(,)P x y ). 16.直线的五种方程(1)点斜式 (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 (b 为直线l 在y 轴上的截距).(3)两点式 (12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 (a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 (其中A 、B 不同时为0).17.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+①⇔21//l l ; ②⇔⊥21l l .(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①⇔21//l l ; ②⇔⊥21l l .18.距离公式⑴平面两点间距离=d (点),(111y x p ,),(222y x p )⑵点到直线的距离 =d (点00(,)P x y ,直线l :0Ax By C ++=).⑶两条平行直线间的距离=d (直线1l :01=++C By Ax ,直线2l :02=++C By Ax ) ⑷空间两点距离=d (点),,(1111z y x p ,),,(2222z y x p )19.中点坐标公式⑴平面两点的中点坐标 ( )(点),(111y x p ,),(222y x p )⑵空间两点的中点坐标( )(点),,(1111z y x p ,),,(2222z y x p )20. 圆的四种方程(1)圆的标准方程 . (2)圆的一般方程21.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种(d 为圆心与点P 间的距离) d r >⇔点P 在圆 ; d r =⇔点P 在圆 ; d r <⇔点P 在圆 .22.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: (其中d 为圆心到直线的距离).⑴⇔>r d ∆⇔ 0; ⑵⇔<r d ∆⇔ 0; ⑶⇔=r d ∆⇔ 0;23.两圆位置关系的判定方法: 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21⑴⇔+>21r r d ⇔ 条公切线 ⑵⇔+=21r r d ⇔ 条公切线 ⑶⇔-=21r r d ⇔ 条公切线 ⑷⇔-<21r r d ⇔ 条公切线 ⑸⇔+<<-2121r r d r r ⇔ 条公切线24. ⑴异面直线所成角范围: ; ⑵直线与平面所成角为: ;⑶二面角所成角为: ; ⑷倾斜角的范围:25.圆的周长C = ;圆的面积S = (r 为圆的半径)26.扇形的面积S= (l 为扇形的弧长,r 为半径)27.球的半径是R ,则其体积=v ,其表面积S= .28.柱体、锥体的体积=柱体V(S 是柱体的底面积、h 是柱体的高).=锥体V (S 是锥体的底面积、h 是锥体的高). 29、圆柱的表面积 S= 圆锥的表面积S=圆台的表面积S=。
高一数学公式大全总结
高一数学公式大全总结在高一数学学习中,数学公式是非常重要的一部分,掌握好数学公式可以帮助我们更好地理解和应用数学知识。
下面就为大家总结一些高一数学常用的公式,希望对大家的学习有所帮助。
一、代数部分。
1. 一次函数的标准方程,y=ax+b。
其中,a为斜率,b为截距。
2. 二次函数的一般式,y=ax^2+bx+c。
其中,a≠0,称为二次项系数;b为一次项系数;c为常数项。
3. 平面直角坐标系中两点间距离公式,AB=√((x2-x1)^2+(y2-y1)^2)。
4. 二次函数顶点坐标公式,顶点坐标为(-b/2a, -Δ/4a)。
其中,Δ=b^2-4ac为判别式。
二、几何部分。
1. 直角三角形中,勾股定理,a^2+b^2=c^2。
其中,a、b为直角边,c为斜边。
2. 圆的面积公式,S=πr^2。
其中,r为半径。
3. 圆的周长公式,C=2πr。
其中,r为半径。
4. 正多边形内角和公式,S=(n-2)×180°。
其中,n为边数。
三、概率统计部分。
1. 事件A的概率公式,P(A)=n(A)/n(S)。
其中,n(A)为事件A的样本点数,n(S)为样本空间的样本点数。
2. 事件A与事件B同时发生的概率公式,P(A∩B)=P(A)×P(B|A)。
其中,P(B|A)为在事件A发生的条件下,事件B发生的概率。
3. 二项分布的概率公式,P(X=k)=C(n,k)×p^k×(1-p)^(n-k)。
其中,C(n,k)为组合数,p为事件发生的概率,n为试验次数,k为成功次数。
四、导数与微分部分。
1. 函数y=f(x)的导数公式,y'=lim(Δx→0)(f(x+Δx)-f(x))/Δx。
其中,y'为导数。
2. 常见函数的导数公式:指数函数的导数,(a^x)'=a^xlna。
对数函数的导数,(loga(x))'=1/(xlna)。
三角函数的导数,(sinx)'=cosx,(cosx)'=-sinx,(tanx)'=sec^2x。
高一数学公式总结
高一数学公式总结数学是一门高级学科,广泛应用于科学、工程、经济等领域。
学好数学需要掌握各种公式,下面是高中一年级的数学公式总结。
一、代数公式1. 同底数幂相乘,底数不变,指数相加:a^m * a^n = a^(m + n)2. 同底数幂相除,底数不变,指数相减:a^m / a^n = a^(m - n)3. 幂的幂,底数不变,指数相乘:(a^m)^n = a^(m * n)4. 零指数等于1:a^0 = 1 (a ≠ 0)5. 负指数等于倒数:a^(-n) = 1 / a^n (a ≠ 0)6. a^m * b^m = (a * b)^m7. a^m / b^m = (a / b)^m (b ≠ 0)8. (a / b)^(-m) = b^m / a^m (a ≠ 0, b ≠ 0)二、三角函数公式1. 正弦定理:a / sinA = b / sinB = c / sinC2. 余弦定理:c^2 = a^2 + b^2 - 2abcosC3. 正弦函数的定义:sinA = 对边 / 斜边4. 余弦函数的定义:cosA = 邻边 / 斜边5. 正切函数的定义:tanA = 对边 / 邻边6. 余切函数的定义:cotA = 邻边 / 对边三、初等几何公式1. 勾股定理:c^2 = a^2 + b^22. 面积公式:三角形面积 = (底边 * 高) / 23. 三角形内角和等于180度:A + B + C = 180°四、排列组合公式1. 排列数公式:A(n, m) = n! / (n-m)!2. 组合数公式:C(n, m) = n! / (m!(n-m)!)五、指数函数公式1. 对数的定义:a^b = c 可以写成 loga(c) = b2. 对数的性质:loga(x * y) = loga(x) + loga(y),loga(x / y) = loga(x) - loga(y),loga(x^r) = r * loga(x)六、等式与不等式公式1. 同底数幂相等,指数相等:a^m = a^n,m = n2. 两边开方,注意正负:(a + b)^2 = a^2 + 2ab + b^2,(a - b)^2 = a^2 - 2ab + b^23. 二次函数顶点坐标:顶点坐标为 (-b / (2a), f(-b / (2a)))4. 一元二次不等式的解法:将不等式转化为等式求解,再通过一些方法确定不等式的解集以上是高一数学公式的部分总结,掌握这些公式对于学好数学至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学所有公式有哪些1. 集合与常用逻辑用语
2. 平面向量
3. 函数、基本初等函数的图像与性质
4. 函数与方程、函数模型及其应用
5.三角函数的图形与性质
6.三角恒等变化与解三角形
7.空间几何体
8.空间点、直线、平面位置关系
9.空间向量与立体几何
10.直线与圆的方程
2高一数学的知识点:立体几何初步1、柱、锥、台、球的结构特征
(1)棱柱:
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
(4)圆柱:
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;
④侧面展开图是一个矩形。
(5)圆锥:
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)
注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法
斜二测画法特点:
①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
高一数学知识点总结:直线与方程
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k表示。
即。
斜率反映直线与轴的倾斜程度。
当时,。
当时,;当时,不存在。
②过两点的直线的斜率公式:
注意下面四点:
(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
高一数学知识点总结:幂函数
定义:
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域
性质:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。
当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;
排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
高一数学知识点总结:指数函数
(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a 不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无界。
奇偶性
定义
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。