一元二次方程教学设计
苏科版数学七年级上册4.1《一元二次方程》教学设计
苏科版数学七年级上册4.1《一元二次方程》教学设计一. 教材分析《一元二次方程》是苏科版数学七年级上册第四单元的第一节内容。
本节内容主要介绍一元二次方程的定义、解法及其应用。
教材通过引入生动有趣的故事情境,激发学生的学习兴趣,让学生在情境中感受数学与生活的紧密联系。
教材内容由浅入深,逐步引导学生掌握一元二次方程的知识,为学生后续学习函数、不等式等知识打下基础。
二. 学情分析七年级的学生已经具备了一定的代数基础,掌握了方程、不等式等基本概念。
但学生对于一元二次方程的理解和应用还需加强。
通过本节课的学习,学生需要能够理解一元二次方程的概念,掌握一元二次方程的解法,并能运用一元二次方程解决实际问题。
三. 教学目标1.知识与技能:理解一元二次方程的概念,掌握一元二次方程的解法,能够运用一元二次方程解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,引导学生发现一元二次方程的解法规律,培养学生的逻辑思维能力。
3.情感态度与价值观:培养学生对数学的兴趣,感受数学与生活的紧密联系,培养学生的团队合作意识。
四. 教学重难点1.重点:一元二次方程的概念、解法及应用。
2.难点:一元二次方程的解法及其在实际问题中的应用。
五. 教学方法1.情境教学法:通过引入生动有趣的故事情境,激发学生的学习兴趣,让学生在情境中感受数学与生活的紧密联系。
2.启发式教学法:引导学生观察、分析、归纳,发现一元二次方程的解法规律。
3.小组合作学习:培养学生团队合作意识,提高学生解决问题的能力。
六. 教学准备1.教学课件:制作生动有趣的故事情境课件,引导学生进入学习状态。
2.教学素材:准备一些实际问题,供学生练习使用。
3.板书设计:设计简洁明了的板书,帮助学生理解和记忆一元二次方程的知识。
七. 教学过程1.导入(5分钟)利用课件展示一个生动有趣的故事情境,引导学生进入学习状态。
例如,讲述一个关于国王奖励国际数学家的问题,引发学生对数学的兴趣。
一元二次不等式教案5篇
一元二次不等式教案一元二次不等式教案5篇作为一名优秀的教育工作者,总不可避免地需要编写教案,借助教案可以更好地组织教学活动。
那么教案应该怎么写才合适呢?以下是小编整理的一元二次不等式教案,仅供参考,希望能够帮助到大家。
一元二次不等式教案1教学内容3.2一元二次不等式及其解法三维目标一、知识与技能1.巩固一元二次不等式的解法和解法与二次函数的关系、一元二次不等式解法的步骤、解法与二次函数的关系两者之间的区别与联系;2.能熟练地将分式不等式转化为整式不等式(组),正确地求出分式不等式的解集;3.会用列表法,进一步用数轴标根法求解分式及高次不等式;4.会利用一元二次不等式,对给定的与一元二次不等式有关的问题,尝试用一元二次不等式解法与二次函数的有关知识解题.二、过程与方法1.采用探究法,按照思考、交流、实验、观察、分析得出结论的方法进行启发式教学;2.发挥学生的主体作用,作好探究性教学;3.理论联系实际,激发学生的学习积极性.三、情感态度与价值观1.进一步提高学生的运算能力和思维能力;2.培养学生分析问题和解决问题的能力;3.强化学生应用转化的数学思想和分类讨论的数学思想.教学重点1.从实际问题中抽象出一元二次不等式模型.2.围绕一元二次不等式的解法展开,突出体现数形结合的思想.教学难点1.深入理解二次函数、一元二次方程与一元二次不等式的关系.教学方法启发、探究式教学教学过程复习引入师:上一节课我们通过具体的问题情景,体会到现实世界存在大量的不等量关系,并且研究了用不等式或不等式组来表示实际问题中的不等关系。
回顾下等比数列的性质。
生:略师:某同学要把自己的计算机接入因特网,现有两种ISP公司可供选择,公司A每小时收费1.5元(不足1小时按1小时计算),公司B的收费原则是第1小时内(含恰好1小时,下同)收费1.7元,第2小时内收费1.6元以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算)那么,一次上网在多少时间以内能够保证选择公司A的上网费用小于等于选择公司B所需费用。
《一元二次方程》数学教案8篇
《一元二次方程》数学教案8篇作为一位兢兢业业的人民教师,通常需要准备好一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
那么什么样的教案才是好的呢?这里作者为大家分享了8篇《一元二次方程》数学教案,希望在一元二次方程教案的写作这方面对您有一定的启发与帮助。
元二次方程教案篇一一、教材分析:1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。
本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。
2、教学目标要求:(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;(2)能根据具体问题的实际意义,检验结果是否合理;(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
3、教学重点和难点:重点:列一元二次方程解与面积有关问题的应用题。
难点:发现问题中的等量关系。
二.教法、学法分析:1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。
教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。
还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。
同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。
2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。
因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
三.教学流程分析:本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:活动1复习回顾解决课前参与活动2封面设计问题的探究活动3草坪规划问题的延伸活动4课堂回眸这有名程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
《一元二次方程》数学教案(优秀5篇)
《一元二次方程》数学教案(优秀5篇)元二次方程教案篇一教学设计思想解一元二次方程有四种方法,直接开平方法、配方法、公式法、因式分解法,这四种方法各有千秋。
直接开平方法很简单,在这里不做过多的介绍。
为保证学生掌握基本的运算技能,教学中进行了一定量的训练,但要避免学生简单的模仿。
我们在探究一元二次方程解法的过程中,要加强思想方法的渗透,发展学生的思维能力。
在解一元二次方程的几种方法中,均需要用到转化的思想方法。
如配方法需要将方程转化为能直接开平方的形式,公式法能根据一元二次方程转化为两个一元一次方程,所有这些均体现了转化的思想。
在教学时老师引导学生在主动进行观察、思考核探究的基础上,体会数学思想方法在其中的作用,充分发展学生的思维能力。
教学目标知识与技能:1.会用配方法、公式法、因式分解法解简单数字系数的一元二次方程。
2.能够根据一元二次方程的特点,灵活选用解方程的方法,体会解决问题策略的多样性。
过程与方法:1.参与对一元二次方程解法的探索,体验数学发现的过程,对结果比较、验证、归纳、理清几种解法之间的关系,并能根据方程的特点灵活选择适当的方法解一元二次方程。
2.在探究一元二次方程的过程中体会转化、降次的数学思想。
情感态度价值观:在解一元二次方程的实践中,交流、总结经验和规律,体验数学活动乐趣。
教学重难点重点:掌握配方法、公式法、因式分解法解一元二次方程的步骤,并熟练运用上述方法解题。
难点:根据方程的特点灵活选择适当的方法解一元二次方程。
教学方法探索发现,讲练结合元二次方程教案篇二一、教学目标1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。
3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。
二、重点·难点·疑点及解决办法1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
《解一元二次方程》教学设计【优秀9篇】
《解一元二次方程》教学设计【优秀9篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《解一元二次方程》教学设计【优秀9篇】在近几年中考中,经常出现利用一元二次方程解决的应用题,这类问题主要考查同学们利用一元二次方程的相关知识分析问题和解决实际问题的能力,这对大部分同学而言仍具有一定的挑战性。
一元二次方程优秀教案
一元二次方程优秀教案一元二次方程是初中数学的主要内容,在初中代数中占重要地位。
学生积极动手、动脑、动口为主线来完成。
在教学中渗透类比化归等数学思想,让学生充分观察、体验,同时营造轻松愉快的学习氛围,以此激发学生的学习兴趣并渗透环保内容。
以下是小编整理的关于一元二次方程教案,欢迎查阅!一元二次方程教案1教学目标1、知识与能力目标:要求学生会根据实际问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分析的能力。
2、过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念。
3.、情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识并与校园绿化相结合。
教学重点、难点教学重点:通过实际问题模型建立一元二次方程的概念,认识一元二次方程一般形式.2。
难点:通过实际问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念。
教学过程:(一)创设情景,导入新课问题一:学校有一块面积为900平方米的长方形绿地,并且长比宽多10米,则绿地的长和宽为多少分析:设长方形绿地的宽为x米,则列方程,整理可得。
问题二:有一块矩形绿化带,长100cm,宽50cm,在它的四角各栽种一个同样的正方形花坛,如果去掉四周矩形的底面积为3600cm2,那么四周花坛面积是多大的正方形分析:设长方形绿地的宽为x米,则列方程,整理可得。
问题三:要组织一次环保竞赛,参加的每两个班之间都要比赛一场。
根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个班参赛【设计意图】因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。
同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。
情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课,并激发学生环保意识。
九年级数学上人教版《一元二次方程的概念》教案
《一元二次方程的概念》教案一、教学目标1.理解一元二次方程的概念,能根据定义识别一元二次方程,并了解一元二次方程的有关概念。
2.通过观察、比较、分析等方法,自主发现一元二次方程的特点,培养学生的观察能力、抽象概括能力和归纳能力。
3.初步感受方程的思想方法,培养学生对数学的兴趣和良好的学习习惯。
二、教学重点与难点重点:一元二次方程的概念。
难点:识别一元二次方程,并理解一元二次方程的一般形式。
三、教具准备投影仪、小黑板。
四、教学过程1.复习导入首先引导学生回顾“元”和“次”的含义,并请学生举例说明一元一次方程和二元一次方程的概念。
接着让学生思考:什么样的方程是一元二次方程?请学生尝试给出定义,并引导学生进行讨论和修正,最终得出结论。
然后教师进行总结和强调,让学生明确一元二次方程的概念和一般形式。
2.探索新知教师出示一些方程,让学生判断是否是一元二次方程,并说明理由。
通过这些例题,引导学生深入理解一元二次方程的概念,并掌握识别一元二次方程的方法。
同时,通过比较一元二次方程与一元一次方程、二元一次方程的区别和联系,培养学生的分析能力和归纳能力。
3.巩固练习教师出示一些练习题,让学生自主完成并进行检查和纠正。
通过这些练习题,让学生加深对一元二次方程的认识和理解,并巩固所学知识。
同时,教师可适当出示一些拓展题目,引导学生进一步思考和探索一元二次方程的应用和拓展。
4.课堂小结教师引导学生回顾本节课所学内容,并总结一元二次方程的概念和一般形式。
同时强调识别一元二次方程的方法和注意事项,以及解题时需要注意的问题。
最后教师可适当进行情感教育和价值观的培养,引导学生感受数学的思想方法和实际应用价值,培养学生对数学的兴趣和良好的学习习惯。
5.布置作业教师布置适量的练习题,让学生巩固所学知识并拓展思维。
同时提醒学生注意解题规范和解题策略的选择,培养学生的解题能力和数学素养。
一元二次方程的教案(必备3篇)
一元二次方程的教案(必备3篇)1.一元二次方程的教案第1篇一、教学目标知识与技能(1)理解一元二次方程的意义。
(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。
过程与方法在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
情感、态度与价值观通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。
二、教材分析:教学重点难点重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。
难点:准确理解一元二次方程的意义。
三、教学方法创设情境——主体探究——合作交流——应用提高四、学案(1)预学检测3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?五、教学过程(一)创设情境、导入新(1)自学本P2—P3并完成书本(2)请学生分别回答书本内容再(二)主体探究、合作交流(1)观察下列方程:(35-2x)2=9004x2-9=03y2-5y=7它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?(2)一元二次方程的概念与一般形式?如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56(三)应用迁移、巩固提高例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?x2-x=13x(x-1)=5(x+2)x2=(x-1)2例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。
解:去括号得3x2-3x=5x+10移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0其中二次项系数为3,一次项系数为-8,常数项为-10.学生练习:书本P4练习(四)总结反思拓展升华总结1.一元二次方程的定义是怎样的?2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。
《一元二次方程》优秀教案(精选5篇)
《一元二次方程》优秀教案(精选5篇)《一元二次方程》优秀教案1学习目标1、一元二次方程的求根公式的推导2、会用求根公式解一元二次方程.3、通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯学习重、难点重点:一元二次方程的求根公式.难点:求根公式的条件:b2 -4ac≥0学习过程:一、自学质疑:1、用配方法解方程:2x2-7x+3=0.2、用配方解一元二次方程的步骤是什么?3、用配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?二、交流展示:刚才我们已经利用配方法求解了一元二次方程,那你能否利用配方法的基本步骤解方程ax2+bx+c=0(a≠0)呢?三、互动探究:一般地,对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,它的根是用求根公式解一元二次方程的方法称为公式法由此我们可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系数a、b、c确定的.因此,在解一元二次方程时,先将方程化为一般形式,然后在b2-4ac≥0的前提条件下,把各项系数a、b、c的值代入,就可以求得方程的根.注:(1)把方程化为一般形式后,在确定a、b、c时,需注意符号.(2)在运用求根公式求解时,应先计算b2-4ac的值;当b2-4ac≥0时,可以用公式求出两个不相等的实数解;当b2-4ac<0时,方程没有实数解.就不必再代入公式计算了.四、精讲点拨:例1、课本例题总结:其一般步骤是:(1)把方程化为一般形式,进而确定a、b,c的值.(注意符号)(2)求出b2-4ac的值.(先判别方程是否有根)(3)在b2-4ac≥0的前提下,把a、b、c的直代入求根公式,求出的值,最后写出方程的根.例2、解方程:(1)2x2-7x+3=0 (2) x2-7x-1=0(3) 2x2-9x+8=0 (4) 9x2+6x+1=0五、纠正反馈:做书上第P90练习。
一元二次方程教学设计(精选6篇)
一元二次方程教学设计(精选6篇)一元二次方程教学设计1一、教学内容分析华师版九年级(上)23章《一元二次方程的根的判别式》一节,教材中作为阅读材料。
从推导到应用都比较简单。
但是它在整个中学数学中占有重要的地位。
从知识的发展来看,学生通过对一元二次方程的根的判别式的学习,可以巩固已学过实数、整式、二次根式、一元一次不等式、一元二次方程的相关概念、一元二次方程的解法等知识,既可以根据它来判断一元二次方程的根的情况,又可以为今后研究二次函数的图像与x轴交点情况,二次三项式以及二次曲线等奠定基础,并且用它可以解决许多其它综合性问题。
通过这一节的学习,使学生会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等,培养学生的探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力,并向学生渗透分类的数学思想,感受数学的简洁美。
教学重点:根的判别式的正确理解和运用教学难点:含字母系数的一元二次方程根的判别式的运用。
二、学情分析学生已经学过一元二次方程的四种解法,并对的作用已经有所了解,在此基础上来进一步研究作用,它是前面知识的深化与总结。
九年级学生的认识水平渐渐由具体直觉占优势过渡到抽象思维占优势。
教师的指导方法应适应他们的认知特点和相应规律。
从数学思想方法上来说,学生对分类讨论、归纳总结的数学思想已经有所接触。
所以可以通过让学生动手、动脑来培养学生探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力。
三、教学目标知识和技能目标:1、能运用根的判别式,判别方程根的情况和进行有关的推理论证;2、会运用根的判别式求一元二次方程中字母系数的取值范围;过程和方法目标:1、经历一元二次方程的根的判别式的产生的过程;2、向学生渗透分类的数学思想;3、培养学生的逻辑思维能力以及推理论证能力。
情感态度价值观目标:1、体验数学的简洁美;2、培养学生的探索、创新精神和协作精神。
四、教法、学法:教法:1、探索发现:本着“以学生发展为本”的教育理念,教师启发、诱导,学生探索发现新知识;2、观察演示:通过典型例题的分析、研究,引发学生的思考、质疑、解疑;3、归纳总结:通过课堂小结,完善认知结构,提高认识能力;4、讲练结合:通过变式训练、拓展训练,让学生学会分类、类比、转化等数学思想,培养学生分析问题和解决问题的能力。
一元二次方程的解法教学设计 人教版〔优秀篇〕
一元二次方程及其解法《一元二次方程的解法》教案清江中学钱旭东【教学目标】1.知识与技能:能用直接开平方等方法解简单的一元二次方程.2.过程与方法:经历一元二次方程解法的探究和发现过程,体会转化的思想方法.3.情感态度与价值观:通过对一元二次方程解法由易到难、由简单到复杂的探究,初步养成对知识的探索精神和严谨的治学态度.【重点难点】一元二次方程解法的理解和运用.【教学模式】结合本节课的教学内容和学生的认知情况,采用“问题解决”的教学模式.【辅助手段】教具准备:多媒体课件.【教学过程】一、提出问题有一天,一个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框多3尺,竖着比门框多1尺,另一个醉汉教他沿着门的两个对角斜着拿杆,这个醉汉一试,不多不少正好进去了。
你能知道竹竿有多长吗?(学生思考)师:数学来源于生活,生活中也处处有数学。
在上面的问题中,如果我们用数学的眼光来看,门可以看成我们熟悉的什么图形?生:矩形.师:那么,醉汉三次摆放的竹竿中存在什么图形?生:直角三角形.师:我们可以把生活问题数学化,将上述醉汉进门的问题转化为我们熟悉的数学问题.师:这是我们熟悉的问题,如果我们设竹竿长为x尺,你能得到相应的数量关系吗?请尝试一下.学生独立完成.师:我们请一位同学说一下他的成果.师:这个结果对不对,这是一元二次方程吗?生:对!是一元二次方程.师:能整理成一般形式吗?试一试.学生很快完成,得到结果x2-8x+10=0.设计说明:以一个古代笑话“醉汉进门”的问题作为本节课的问题情境,生活气息浓厚,趣味性强,学生容易产生兴趣,能够很快进入状态,为后面的学习做好心理上的准备.该情境问题,简单易懂,起点低,且和本课所学内容密切相关,不同学生都可以进行探索,有所收获.师生一起对问题进行探究,将生活问题数学化,进而列出方程,为后面的深入探究打下很好的基础.二、探究新知探索一:从简单开始师:要求出醉汉的竹竿长度,我们必须要求出x2-8x+10=0的解,这是解决前面问题时出现的新问题.师:如果解方程x2-8x+10=0感觉很难的话,我们可以退一步,先从最简单的情况入手.谁能写出一个最简单的一元二次方程?生2:x2=0.师:真是够简单的!大家会解这个方程吗?生:会! x=0.师:很好,我们就从这样的方程开始!请解决下面问题.探索一:A组解下列方程(1)x2=3(2) x2=16(3)2x2=22(4) 0.5x2=-1B组解下列方程(1)(x+1)2=2(2) (x-3)2=8(3)5(2x+3)2=10学生都能很快解决,信心十足.师:这是我们自己发现的解法,给它起个名字吧!生:直接开平方法!发现解法:直接开平方法设计说明:面对探究过程中的出现的新问题,教师可以引导学生退回到最简单的情形去解决,渗透了从简单到复杂,由易到难的解决问题的思想方法.学生在解决简单的一元二次方程前,就已经具备了平方根、开平方等知识,这些知识储备为学生发现直接开平方法提供了可能.教师在教学中要充分运用学生已有的知识经验,为课堂教学服务,从而提高课堂教学效果!探索二:向目标迈进师:我们已经解决了(x+h)2=k这类方程,但是它离我们所要解决的目标x2-8x+10=0还有很大的距离.前面解决的一元二次方程太特殊了,怎么办?生:再复杂一点.师:对,为了离目标近一些,我们把研究的方程再复杂点,从简单的角度看,我们先研究x2-8x=0(常数项为0)呢?还是先研究x2+10=0(一次项为0)呢?生:先研究x2+10=0.师:我们会解方程x2+10=0吗?学生思考,很快有人举手.生3:这个方程无解.师:很好!请看下面问题.探索二:A组解下列方程(1)x2-7=0(2)y2-25=0(3)3t2-45=0学生观察后都能发现,上面三个方程都可以使用直接开平方法解决.师:这类方程大家很快就解决了,它可以转化为我们前面已经解决的类型.现在我们继续探索方程x2-8x=0(常数项为0)的解法.学生思考,过了一会儿,有人发言.生4:方程x2-8x=0可以化为x(x-8)=0,所以解为x1=0,x2=8.师:精彩!类似的,请大家解决下面问题.B组解下列方程(1)x2-x=0(2) y2+5y=0(3)2x2-6x=0(4)x2=3x多数学生很快解决,信心更足.师:这是我们探索过程中发现的有一个解法,也给它起个名字吧!生:提公因式法!师:因为提公因式是因式分解的一种方法,所以我们也可以称这种方法为因式分解法.发现解法:因式分解法设计说明:从简单问题入手,但解决简单问题是为了解决后面的复杂问题,教师通过对一元二次方程的逐步复杂化,让学生的探索逐步深入.虽然方程越来越复杂,但师生一起解决问题的目标没有变,学生的兴趣和信心没有变。
一元二次方程数学教学教案5篇
一元二次方程数学教学教案5篇一元二次方程数学教学教案1一、教材分析1、教材的地位和作用一元二次方程是中学教学的主要内容,在初中代数中占有重要的地位,在一元二次方程的前面,学生学了实数与代数式的运算,一元一次方程(包括可化为一元一次方程的分式方程)和一次方程组,上述内容都是学习一元二次方程的基础,通过一元二次方程的学习,就可以对上述内容加以巩固,一元二次方程也是以后学习(•指数方式,对数方程,三角方程以及不等式,函数,二次曲线等内容)的基础,此外,学习一元二次方程对其他学科也有重要的意义。
2、教学目标及确立目标的依据九年义务教育大纲对这部分的要求是:“使学生了解一元二次方程的概念”,依据教学大纲的要求及教材的内容,针对学生的理解和接受知识的实际情况,以提高学生的素质为主要目的而制定如下教学目标。
知识目标:使学生进一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。
能力目标:通过一元二次方程概念的教学,培养学生善于观察,发现,探索,归纳问题的能力,培养学生创造性思维和逻辑推理的能力。
德育目标:培养学生把感性认识上升到理性认识的辩证唯物主义的观点。
3、重点,难点及确定重难点的依据“一元二次方程”有着承上启下的作用,在今后的学习中有广泛的应用,因此本节课做为起始课的重点是一元二次方程的概念,一元二次方程(特别是含有字母系数的)化成一般形式是本节课的难点。
二、教材处理在教学中,我发现有的学生对概念背得很熟,但在准确和熟练应用方面较差,缺乏应变能力,针对学生中存在的这些问题,本节课突出对教学概念形成过程的教学,采用探索发现的方法研究概念,并引导学生进行创造性学习。
三、教学方法和学法教学中,我运用启发引导的方法让学生从一元一次方程入手,类比发现并归纳出一元二次方程的概念,启发学生发现规律,并总结规律,最后达到问题解决。
四、教学手段采用投影仪五、教学程序1、新课导入:(1)什么叫一元一次方程?(并引入一元二次方程的概念做铺垫)(2)列方程解应用题的方法,步骤?(并引例打基础)课本引例(如图)由教师提出并分析其中的数量关系。
《一元二次方程》优秀教案(精选5篇)
《一元二次方程》优秀教案(精选5篇)《一元二次方程》优秀教案1教学目标:1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型2、理解什么是一元二次方程及一元二次方程的一般形式。
3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
教学重点1、一元二次方程及其它有关的概念。
2、利用实际问题建立一元二次方程的数学模型。
教学难点1、建立一元二次方程实际问题的数学模型.2、把一元二次方程化为一般形式教学方法:指导自学,自主探究课时:第一课时教学过程:(学生通过导学提纲,了解本节课自己应该掌握的内容)一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程.。
2、你发现上述三个方程有什么共同特点?你能把这些特点用一个方程概括出来吗?3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)1、下列哪些是一元二次方程?哪些不是?①②③④x2+2x-3=1+x2 ⑤ax2+bx+c=02、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。
(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?三、反思:(学生,进一步加深本节课所学内容)这节课你学到了什么?四、自查自省:(通过当堂小测,及时发现问题,及时应对)1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个(1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。
一元二次方程教案第一课时
一元二次方程教案第一课时一、教学目标知识与技能:学生能够理解一元二次方程的概念,掌握一元二次方程的一般形式,并能正确地识别和转换一元二次方程。
过程与方法:通过观察、分析和归纳,学生能够掌握一元二次方程的解法,并能够运用一元二次方程解决实际问题。
情感态度与价值观:培养学生对数学的兴趣和爱好,激发学生的学习热情,培养学生的逻辑思维能力和创新精神。
二、教学重点和难点教学重点:一元二次方程的概念、一般形式及其解法。
教学难点:如何正确识别和转换一元二次方程,以及如何运用一元二次方程解决实际问题。
三、教学过程导入新课:通过实例引导学生了解一元二次方程的概念,并通过对比一元一次方程,突出一元二次方程的特点和差异。
知识讲解:详细讲解一元二次方程的一般形式、解法及其在实际问题中的应用,并配以相应的例题进行说明。
练习与巩固:提供相应的练习题目,让学生在课堂上进行练习,并引导学生通过自主思考和小组讨论解决问题。
总结与回顾:对本节课的知识点进行总结和回顾,加深学生对一元二次方程的理解和应用。
布置作业:根据学生的学习情况布置适量的作业,以巩固和拓展课堂所学知识。
四、教学方法和手段教学方法:采用讲解、演示、小组讨论等多种教学方法相结合的方式进行教学,以提高学生的参与度和学习效果。
教学手段:运用多媒体课件、板书等多种教学手段辅助教学,提高教学效果和学生的学习兴趣。
五、课堂练习、作业与评价方式课堂练习:提供相应的练习题目,让学生通过自主思考和小组讨论解决问题,巩固所学知识。
作业:根据学生的学习情况布置适量的作业,以巩固和拓展课堂所学知识。
作业可以分为基础题目和提高题目两个层次,以满足不同学生的需求。
评价方式:通过学生的课堂表现、练习和作业等多种方式进行评价,以全面了解学生的学习情况和进步程度。
同时,鼓励学生积极参与评价,提高评价的客观性和准确性。
六、辅助教学资源与工具教学课件:提供相应的多媒体课件,包括文字、图片、视频等多种形式的内容,以辅助教学。
初中一元二次方程教案模板
初中一元二次方程教案模板一、教学目标:1. 知识与能力目标:学生能够理解一元二次方程的概念,掌握一元二次方程的解法,并能够应用一元二次方程解决实际问题。
2. 过程与方法目标:通过探索一元二次方程的解法,培养学生逻辑思维能力和解决问题的能力。
3. 情感、态度与价值观目标:培养学生对数学的兴趣,感受数学在生活中的应用,培养学生的团队合作意识。
二、教学重点、难点:1. 教学重点:一元二次方程的概念,一元二次方程的解法及其应用。
2. 教学难点:一元二次方程的解法,特别是因式分解法和求根公式的运用。
三、教学过程:1. 导入新课:通过生活中的实际问题,引导学生列出方程,从而引出一元二次方程的概念。
2. 自主学习:学生自主探究一元二次方程的解法,总结解题步骤和技巧。
3. 课堂讲解:讲解一元二次方程的概念,解析一元二次方程的解法,并通过例题演示解题过程。
4. 练习巩固:学生独立完成练习题,教师进行个别辅导,巩固所学知识。
5. 拓展应用:学生分组讨论,运用一元二次方程解决实际问题,分享解题心得。
6. 总结反思:教师引导学生总结一元二次方程的特点和解题方法,反思自己在学习过程中的优点和不足。
四、教学方法:1. 情境教学法:通过设置生活情境,激发学生的学习兴趣,引导学生主动参与。
2. 启发式教学法:教师提问引导学生思考,激发学生的探究欲望。
3. 合作学习法:学生分组讨论,培养学生的团队合作意识和沟通能力。
4. 案例教学法:通过讲解典型例题,培养学生解决问题的能力。
五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答和练习完成情况。
2. 练习作业:检查学生完成练习题的情况,评估学生的掌握程度。
3. 小组讨论:评估学生在团队合作中的表现,包括沟通能力和解决问题的能力。
4. 学生自评:让学生反思自己在学习过程中的优点和不足,鼓励自我提高。
六、教学资源:1. 教材:一元二次方程相关章节的内容。
2. 课件:教师制作的课件,包括图片、文字和动画等。
一元二次方程教案(教案)一元二次方程的解法
一元二次方程教案(教案)一元二次方程的解法第1篇第2篇第3篇第4篇第5篇更多顶部第一篇:配方法解一元二次方程的教案第二篇:一元二次方程复习教案(正式)第三篇:4.2.3一元二次方程的解法(教案)第四篇:教案一元二次方程的应用第五篇:一元二次方程根的分布教案更多相关范文第一篇:配方法解一元二次方程的教案配方法解一元二次方程的教案教学内容:本节内容是:人教版义务教育课程标准实验教科书数学九年级上册第22章第2节第1课时。
一、教学目标(一)知识目标1、理解求解一元二次方程的实质。
2、掌握解一元二次方程的配方法。
(二)能力目标1、体会数学的转化思想。
2、能根据配方法解一元二次方程的一般步骤解一元二次方程。
(三)情感态度及价值观通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。
二、教学重点配方法解一元二次方程的一般步骤三、教学难点具体用配方法的一般步骤解一元二次方程。
四、知识考点运用配方法解一元二次方程。
五、教学过程(一)复习引入1、复习:解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
2、引入:二次根式的意义:若x2=a(a为非负数),则x叫做a的平方根,即x=±√a。
实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。
(二)新课探究通过实际问题的解答,引出我们所要学习的知识点。
通过问题吸引学生的注意力,引发学生思考。
问题1:一桶某种油漆可刷的面积为1500dm2李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?问题1重在引出用直接开平方法解一元二次方程。
这一问题学生可通过“平方根的意义”的讲解过程具体的解答出来,具体解题步骤:2解:设正方体的棱长为x dm,则一个正方体的表面积为6xdm2列出方程:60x2=1500x2=25x=±5因为x为棱长不能为负值,所以x=5即:正方体的棱长为5dm。
一元二次方程教案设计
一元二次方程教案设计【篇一:认识一元二次方程教学设计】认识一元二次方程教学设计选自:新北师大版九年级数学(上)第二章第一节第一课时课题:认识一元二次方程(一)课型:新授课一、理论依据根据课标要求,本课时要让学生体验从具体情境中抽象出数学符号的过程,理解方程,并通过用方程表述数量关系的过程,体会模型的思想,建立符号意识。
因此,本课时我主要通过丰富的实例,如“地毯四周有多宽”、“梯子的底端滑动多少米”等问题,建立一元二次方程,让学生通过观察归纳出一元二次方程的有关概念,从中体会方程的模型思想。
二、教材分析方程是刻画现实世界的一个有效的数学模型,随着数学应用的广泛性,方程的工具作用显得更加重要。
在前面学生已经学习了一元一次方程,二元一次方程组,可化为一元一次方程的分式方程等等,已经初步地感受了方程的模型作用,并且积累了一些利用方程解决实际问题的一些经验,解决了一些实际问题。
但是,在现实生活中,有关方程的模型并不都是线性的,另一种方程——即一元二次方程,在生活中同样具有广泛的应用。
由此,确定了本节课的教学目标和教学重难点。
(一)教学目标知识与技能目标:理解一元二次方程的概念;掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项。
过程与方法目标:通过具体的实际问题,经历抽象一元二次方程概念的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型。
感态度与价值观目标:从生活实际中抽象出数学问题,让学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.(二)教学重难点重点:一元二次方程的概念及它的一般形式难点:如何把实际问题转化为数学方程三、教学过程(一)知识回顾1.什么叫做方程?曾学过哪些方程?2.什么叫做一元一次方程?目的:通过对这两个问题情境的回顾,加深学生对“元”和“次”的理解,为本节课的学习做铺垫。
同时,便于与一元一次方程进行类比,从而得到一元二次方程的概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程教学设计天津四中李可教学任务分析教学目标知识技能1、理解一元二次方程的概念.2、掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.教学思考1、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力.2、通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.3、由知识来源于实际,树立转化的思想,由设未知数、列方程向学生渗透方程的思想,从而进一步提高学生分析问题、解决问题的能力.解决问题在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.情感态度1、培养学生主动探究知识、自主学习和合作交流的意识.2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识.重点一元二次方程的概念及一般形式.难点1、由实际问题向数学问题的转化过程.2、正确识别一般式中的“项”及“系数”.教学流程安排活动流程图活动内容和目的活动1 创设情境引入新课活动2 启发探究获得新知活动3 运用新知体验成功活动4 归纳小结拓展提高活动5 布置作业分层落实复习一元一次方程有关概念;通过实际问题引入新知。
通过类比一元一次方程的概念和一般形式,让学生获得一元二次方程的有关概念。
巩固训练,加深对一元二次方程有关概念的理解。
回顾梳理本节内容,拓展提高学生对知识的理解。
分层次布置作业,提高学生学习数学的兴趣。
教学过程设计问题与情景师生行为设计意图「活动1」问题1:2008年奥运会将在北京举办,许多大学生都希望为奥运奉献自己的一份力量。
现组委会决定对高校奥运志愿者进行分批培训,由已合格人员培训第一轮人员,再由前面所有合格人员培训第二轮人员,以此类推来完成此次培训任务。
某高校学生李红已受训合格,成为一名志愿者,并由她负责培训本校志愿者。
若每轮培训中每个志愿者平均培训x人。
(1)已知经过第一轮培训后该校共有11人合格, 请列出满足条件的方程:(2)若两轮培训后该校共有121人合格,你能列出满足条件的方程吗?问题2:有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒底面积为3600cm2,那么铁皮各角应切去多大的正方形?问题3:我校为丰富校园文化氛围,要设计一座2米高的人体雕像,使雕像的上部(腰以上)与全部高度的乘积,等于下部(腰以下)高度的平方,求雕像下部的高度.通过多媒体播放视频短片,引入情境,提出问题.在第(1)问中,通过教师引导,学生列出方程,解决问题.在第(2)问中,遵循刚才解决问题的思路,由学生思考,列出方程.活动中教师应重点关注:学生对题目的理解,可举例,由特殊到一般,帮助学生理解题意,从而引导学会列出满足条件的方程通过多媒体演示,把文字转化为图形,帮助学生理解题意,从而由学生独立思考,列出满足条件的方程.此题是与实际问题结合的题目,通过演示高度关系,帮助学生理解题意,从而列出符合题意的方程。
通过创设情境,引导学生复习一元一次方程的概念和一般形式,为后面学习一元二次方程的有关内容做好铺垫.通过解决实际问题引入一元二次方程的概念,同时可提高学生利用方程思想解决实际问题的能力.通过解决实际问题引入一元二次方程的概念.让学生通过数形结合的方法,转化实际问题,从而得到方程,为引入一元二次方程的概念做好准备.问题与情景师生行为设计意图「活动2」1、一元二次方程的概念:等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程。
眼疾口快:请抢答下列各式是否为一元二次方程:2、2、一元二次方程的一般式:3、由以上问题得到3个方程,由学生观察归纳这3个方程的特征,给出名称并类比一元一次方程的定义,得出一元二次方程的定义.活动中教师应重点关注:(1) 引导学生观察所列出的3个方程的特点;(2) 让学生类比前面复习过的一元一次方程定义得到一元二次方程定义.(3) 强调定义中体现的3个特征:①整式;②一元;③2次.由学生以抢答的形式来完成此题,并让学生找出错误理由.其中(1)~(6)题较为简单,学生可非常容易给出答案;而(7),(8)两题有一定难度,(7)需要进行分类讨论.此活动中,教师应注意对学生给出的答案作出点评和归纳.引导学生类比一元一次方程的一般形式,总结归纳一元二次方程的一般形式及项、系数的概念.让学生充分感受所列方程的特点,再通过类比的方法得到定义,从而达到真正理解定义的目的.这组练习目的在于巩固学生对一元二次方程定义中3个特征的理解.(7),(8)两个题目的设置,目的在于进一步加深学生对定义的掌握,尤其结合字母系数,加大题目难度,提高学生对变式的理解能力.此环节采取抢答的形式,提高学生学习数学的兴趣和积极性.此环节让学生通过自主探究,类比一元一次方程一般形式,得出一元二次方程一般形式和项,系数的概念,从而达到真正理解并掌握的目的.问题与情境师生行为设计意图试一试:下面给出了某个方程的几个特点:(1)它的一般形式为(2)它的二次项系数为5;(3)常数项是一次项系数的倒数的相反数。
「活动3」例1.天津四中为树立学生的团结、拼搏精神,组织了一次篮球比赛,参赛的每两个队之间都要比赛一场,依据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,请问全校有多少个队参赛?(列方程并整理成一般形式)先由教师在大屏幕上显示问题,由学生经过思考,给出符合条件的答案,全体学生进行判断是否正确.在此环节可设置一个小游戏,让答对学生给出类似条件,找其他同学回答给出的新问题,让大家进行判断给出的方程是否正确.此环节中,教师应注意板书学生给出的方程要,并且及时引导学生不要给出类似的条件.此题为与实际问题结合的题目,让学生思考解决问题的方法,列出满足题意的方程.以此题为例,教师板书整理一元二次方程的过程,让学生学会如何整理任意一元二次方程的一般形式,并能准确找到各项系数.教师在此活动中应重点关注:(1)由一个学生列出方程,并解释解题方法,教师进行引导,点评,引起其他学生的关注,认同.(2)教师在归纳点评过程中,应注意把两队只打一场比赛解释清楚,以便学生理解题意.(3)整理一般形式后,教师应强调整理过程中应用到的等式变形方法,如去括号,移项,合并同类项,去分母等.(4)让学生指出各项系数时,教师强调系数须带符合.此题设置的目的在于加深学生对一般形式的理解采取游戏的形式以提高学生对数学学习的兴趣,参与课堂活动的积极性,还可鼓励学生课下继续以合作的形式进行学习.整理一元二次方程的一般形式为本节课的重点,由实际问题出发列方程为本节的难点,所以在此设置此题,加强巩固练习.由篮球比赛引入题目,可激发学生兴趣,引起学生关注.此题有在实际生活中应用的意义,通过此题让学生理解比赛赛制安排原则.问题与情境师生行为设计意图小试牛刀:你能否把下列方程整理成一般形式?例2、当m取何值时,方程是关于x的一元二次方程?考考你:判断下列关于x的方程是否是一元二次方程:( 为有理数);「活动4」1.问题:本节课你又学会了哪些新知识?2.思维拓展:若方程x2m+n +xm-n +3=0是关于x的一元二次方程,求m,n的值。
巩固练习学生整理一般形式的方法,并准确找出各项系数.此环节可找学生口答结果.此题是字母系数问题,由学生思考解题过程,让学生讲解此题,教师进行总结点评.大屏幕显示解题过程.此题由学生思考,讨论,并由学生给出结果并进行解释.此活动过程中,教师应重点关注:(1)此题目在上一题的基础上继续加大难度,第(1)题须强调先进行整理,再考虑二次项系数是否为零;第(2)题须先求出m值,再代入二次项系数中,验证是否为0,得到结果.(2)学生解答过程中,教师把学生整理的一般形式书写在黑板上,以便全体学生理解.学生反思本节课中学到的知识,总结活动中的经验。
小结时,教师应重点关注:(1)学生是否能抓住本节课的重点;(2)学生是否掌握一些基本方法。
此题让学生进行思考,讨论,让学生进行讲解,教师作适当归纳,可留疑,让学生课下思考。
让学生再思考,若题目让学生落实将刚才教师板书的整理一般形式的过程,再次突出本节课的重点内容此题为一元二次方程概念中常见题型,通过此题让学生加深对定义和一般形式的理解,为其他字母系数问题做好准备。
此题仍涉及字母系数问题,难度加大,以达到让学生掌握本节课重难点的目的.通过此题让学生掌握解此类字母系数题目的方法,以及整理一般形式对于解一元二次方程题目的重要性小结反思中,不同学生有不同的体会,要尊重学生的个体差异,激发学生主动参与意识,.为每个学生都创造了数学活动中获得活动经验的机会。
此题需进行分类讨论,开拓学生思维,体现数学的严谨性。
「活动5」课后作业:(A)教科书第98页习题17.1第1、2、5、6、7题.(B)请根据所给方程:(16-2x)(10-2x)=112,联系实际,编写一道应用题(要求题目完整,题意清楚,不要求解方程)。
中“+”变成“-”时,如何解决,留作课下思考。
(A)组题目为巩固型作业,即必做题。
(B)组题目为思维拓展型作业,即为学有余力的学生设置。
分层次布置作业,尊重学生的个体差异,激发学生学习积极性。
教学设计说明本节课是一元二次方程的第一课时,通过对本节课的学习,学生将掌握一元二次方程的定义、一般形式、及有关概念,并学会利用方程解决实际问题。
在教学过程中,注重中难点的体现。
在本节课的活动1中,通过实际问题引入学生熟悉的一元一次方程,让学生掌握利用方程解决问题,从而顺利过渡到后面的问题。
活动2中让学生观察活动1中得到的3个方程,并通过类比一元一次方程的定义和一般形式,从而获得本课的新知识。
活动3意在强化学生所学知识,并运用到实际问题中去。
教学过程中,应随时注意学生们出现的问题,及时进行反馈,使学生熟练掌握所学知识。