浙江省绍兴市2018年中考数学一模试卷及答案解析
浙江省绍兴市中考数学真题及参考答案
浙江省2018 年· 初中毕业生学业考试绍兴市试卷数学试题卷卷Ⅰ(选择题)一、选择题(本大题有10小题,每题 4 分,共40 分. 请选出每题中一个最吻合题意的选项,不选、多项选择、错选,均不给分)1. 假如向东走2m 记为2m,则向西走3m 可记为()A.3m B .2m C .3m D .2m2. 绿水青山就是金山银山,为了创建优异的生态生活环境,浙江省2017 年清理河湖库塘淤泥约116000000 方,数字116000000 用科学记数法可以表示为()A.91.16 10 B .81.16 10 C .71.16 10 D .90.116 103. 有6 个同样的立方体搭成的几何体以以下图,则它的主视图是()A .B .C .D .4. 投掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则向上一面的数字为 2 的概率是()A.16B .13C .12D .565. 下边是一位同学做的四道题:① 2 2 2(a b) a b . ②2 2 4( 2a ) 4a . ③5 3 2a a a .④ 3 4 12a a a . 此中做对的一道题的序号是()A.① B .② C .③ D .④6. 如图,一个函数的图象由射线BA 、线段BC 、射线CD 构成,此中点A( 1,2) ,B(1,3) ,C (2,1) ,D (6,5) ,则此函数()A.当x 1时,y随x的增大而增大B.当x 1时,y随x的增大而减小C.当x 1时,y 随x的增大而增大D.当x 1时,y 随x 的增大而减小7. 学校门口的栏杆以以下图,栏杆从水平地点BD 绕O 点旋转到AC 地点,已知AB BD ,CD BD ,垂足分别为 B ,D ,AO 4m ,AB 1.6m,CO 1m ,则栏杆 C 端应下降的垂直距离CD 为()A.0.2 m B .0.3m C .0.4m D .0.5 m8. 利用如图 1 的二维码可以进行身份鉴别. 某校建立了一个身份鉴别系统,图 2 是某个学生的鉴别图案,黑色小正方形表示1,白色小正方形表示0. 将第一行数字从左到右挨次记为a,b ,c,d ,那么可以变换为该生所在班级序号,其序号为 3 2 1 0a 2b 2c 2d 2 .如图 2 第一行数字从左到右挨次为0,1,0,1,序号为 3 2 1 00 2 1 2 0 2 1 2 5 ,表示该生为 5 班学生. 表示 6 班学生的鉴别图案是()A .B .C .D .9. 若抛物线 2y x ax b 与x轴两个交点间的距离为2,称此抛物线为定弦抛物线. 已知某定弦抛物线的对称轴为直线x 1,将此抛物线向左平移 2 个单位,再向下平移 3 个单位,获得的抛物线过点()A.( 3, 6) B .( 3,0) C .( 3, 5) D .( 3, 1)10. 某班要在一面墙上同时展现数张形状、大小均同样的矩形绘画作品,将这些作品排成一个矩形(作品不完整重合). 现需要在每张作品的四个角落都钉上图钉,假如作品有角落相邻,那么相邻的角落共享一枚图钉(比方,用9 枚图钉将 4 张作品钉在墙上,如图). 如有34 枚图钉可供采纳,则最多可以展现绘画作品()A.16 张 B .18 张 C .20 张 D .21 张卷Ⅱ(非选择题)二、填空题(本大题有 6 小题,每题 5 分,共30 分)11. 因式分解: 2 24x y .12. 我国明朝数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托. 假如 1 托为5 尺,那么索长为尺,竿子长为尺.13. 如图,公园内有一个半径为20 米的圆形草坪, A ,B 是圆上的点,O为圆心,AOB ,从A 到B 只有路AB,一部分市民为走“捷径”,踩坏了花草,走出了一120条小道AB . 经过计算可知,这些市民其实不过少走了步(假设 1 步为0.5 米,结果保留整数).(参照数据: 3 1.732,取3.142 )14. 等腰三角形ABC 中,顶角 A 为40 ,点P 在以A 为圆心,BC 长为半径的圆上,且BP BA,则PBC 的度数为.15. 过双曲线y k (k 0)x 的动点A 作AB x 轴于点 B ,P 是直线AB 上的点,且满足AP 2AB ,过点P 作x轴的平行线交此双曲线于点 C . 假如APC 的面积为8,则k 的值是.16. 实验室里有一个水平搁置的长方体容器,从内部量得它的高是15cm ,底面的长是30cm,宽是20cm ,容器内的水深为xcm. 现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过极点 A 的三条棱的长分别是10cm,10cm,ycm( y 15) ,当铁块的顶部高出水面2cm 时,x,y 满足的关系式是.三、解答题(本大题有8 小题,第17~20 小题每题8 分,第21 小题10 分,第22、23 小题每题12 分,第24 小题14 分,共80 分. 解答应写出文字说明、证明过程或演算步骤)17. (1)计算:0 1 12 t an 60 12 (3 2) ( ).3(2)解方程: 2 2 1 0x x .18. 为认识某地区灵活机拥有量对道路通行的影响,学校九年级社会实践小组对2010 年~2017 年灵活车拥有量、车辆经过人民路路口和学校门口的堵车次数进行检查统计,并绘制成以下统计图:依据统计图,回答以下问题:(1)写出2016 年灵活车的拥有量,分别计算2010 年~2017 年在人民路路口和学校门口堵车次数的均匀数.(2)依据统计数据,联合生活实质,对灵活车拥有量与人民路路口和学校门口堵车次数,谈谈你的看法.19. 一辆汽车行驶时的耗油量为0.1 升/ 千米,如图是油箱节余油量y(升)关于加满油后已行驶的行程x(千米)的函数图象.(1)依据图象,直接写出汽车行驶400 千米时,油箱内的节余油量,并计算加满油时油箱的油量.(2)求y 关于x 的函数关系式,并计算该汽车在节余油量 5 升时,已行驶的行程.20. 学校拓展小组研制了绘图智能机器人(如图1),按序输入点P,P2 ,P3 的坐标,机器1人能依据图2,绘制图形. 若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式. 请依据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)P1(4,0) ,P2 (0,0) ,P3(6,6) .(2)P1(0,0) ,P2 (4,0) ,P3(6,6) .21. 如图1,窗框和窗扇用“滑块铰链”连接. 图3 是图 2 中“滑块铰链”的平面表示图,滑轨MN 安装在窗框上,托悬臂DE 安装在窗扇上,交点 A 处装有滑块,滑块可以左右滑动,支点B ,C ,D 一直在向来线上,延长DE 交MN 于点F . 已知AC DE 20 c m ,AE CD 10cm,BD 40cm .(1)窗扇完整打开,张角CAB 85 ,求此时窗扇与窗框的夹角DFB 的度数.(2)窗扇部分打开,张角CAB 60 ,求此时点 A ,B 之间的距离(精确到0.1cm ). (参照数据: 3 1.732, 6 2.449)22. 数学课上,张老师举了下边的例题:例1 等腰三角形ABC 中, A 110 ,求 B 的度数. (答案:35 )例2 等腰三角形ABC 中, A 40 ,求B的度数. (答案:40 或70 或100 )张老师启示同学们进行变式,小敏编了以下一题:变式等腰三角形ABC 中, A 80 ,求 B 的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,A的度数不一样,获得 B 的度数的个数也可能不一样. 假如在等腰三角形ABC 中,设 A x ,当 B 有三个不一样的度数时,请你探究x的取值范围.23. 小敏思虑解决以下问题:原题:如图1,点P ,Q分别在菱形ABCD 的边BC ,CD 上,PAQ B ,求证:AP AQ .(1)小敏进行探究,若将点P ,Q 的地点特别化:把PAQ 绕点 A 旋转获得EAF ,使AE BC ,点E ,F 分别在边BC ,CD 上,如图2,此时她证了然AE AF . 请你证明. (2)受以上(1)的启示,在原题中,增添辅助线:如图3,作AE BC ,AF CD ,垂足分别为 E ,F . 请你连续完成原题的证明.(3)假如在原题中增添条件:AB 4, B 60 ,如图 1. 请你编制一个计算题(不注明新的字母),并直接给出答案(依据编出的问题层次,给不一样的得分).24. 如图,公交车行驶在笔挺的公路上,这条路上有 A ,B ,C ,D 四个站点,每相邻两站之间的距离为 5 千米,从 A 站开往 D 站的车称为上行车,从 D 站开往A站的车称为下行车. 第一班上行车、下行车分别从 A 站、D 站同时发车,相向而行,且此后上行车、下行车每隔10 分钟分别在A,D 站同时发一班车,乘客只好到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30 千米/ 小时.(1)问第一班上行车到 B 站、第一班下行车到 C 站分别用时多少?(2)若第一班上行车行驶时间为t小时,第一班上行车与第一班下行车之间的距离为s千米,求s与t的函数关系式.(3)一乘客前去 A 站做事,他在B ,C 两站间的P 处(不含 B ,C 站),恰巧遇到上行车,BP x千米,此时,接到通知,一定在35 分钟内赶到,他可选择走到 B 站或走到 C 站乘下行车前去A站. 若乘客的步行速度是 5 千米/ 小时,求x 满足的条件.浙江省2018年初中毕业生学业考试绍兴市试卷数学参照答案一、选择题1-5: CBDAC 6-10: ACBBD二、填空题11. (2x y)(2 x y) 12. 20 ,15 13. 1514. 30 或110 15. 12 或416.6x 10 65y (0 x ) 或5 6120 15xy (6 x 8)2三、解答题17. 解:(1)原式 2 3 2 3 1 3 2 .(2)2 2 2 x ,2x1 1 2 ,x2 1 2 .18. 解:(1)3.40 万辆.人民路路口的堵车次数均匀数为120(次).学校门口的堵车次数均匀数为100(次).(2)不独一,如:2010 年~2013 年,跟着灵活车拥有量的增添,对道路的影响加大,年堵车次数也增添;尽管2017 年灵活车拥有量比2016 年增添,因为进行了交通综合治理,人民路路口堵车次数反而降低.19. 解:(1)汽车行驶400 千米,节余油量30 升,加满油时,油量为70 升.(2)设y kx b(k 0) ,把点(0,70) ,(400,30) 坐标分别代入得 b 70 ,k 0.1,∴y 0.1x 70,当y 5时,x 650 ,即已行驶的行程为650 千米.20. 解:(1)∵P1 (4,0) ,P2(0,0) ,4 0 4 0 ,∴绘制线段P1P2 ,P1P2 4 .(2)∵P1 (0,0),P2 (4,0) ,P3(6,6) ,0 0 0 ,∴绘制抛物线,设y ax(x 4) ,把点(6,6) 坐标代入得1 a ,2∴1y x(x 4) ,即212y x 2x.221. 解:(1)∵AC DE ,AE CD ,∴四边形ACDE 是平行四边形,∴CA/ / DE ,∴DFB CAB 85 .(2)如图,过点 C 作CG AB 于点G ,∵CAB 60 ,∴AG 20cos60 10 ,CG 20sin60 10 3 ,∵BD 40,CD 10 ,∴BC 30 ,在Rt BCG 中,BG 10 6 ,∴AB AG BG 10 10 6 34.5cm.22. 解:(1)当A为顶角,则 B 50 ,当A为底角,若B为顶角,则 B 20 ,若B为底角,则 B 80 ,∴ B 50 或20 或80 .(2)分两种状况:①当90 x 180 时, A 只好为顶角,∴B的度数只有一个.②当0 x 90 时,若A为顶角,则180 xB ,2若A为底角,则 B x 或 B (180 2x) ,当1802x180x180 2x 且x 且180 2x x ,即x 60 时,2B 有三个不一样的度数.综上①②,当0 x 90 且x 60 ,B有三个不一样的度数.23. 解:(1)如图1,在菱形ABCD 中,B C , B D ,AB AD ,180∵EAF B ,∴ C EAF 180 ,∴AEC AFC 180 ,∵AE BC ,∴AEB AEC 90 ,∴AFC 90 ,AFD 90 ,∴AEB AFD ,∴AE AF .(2)如图2,由(1),∵PAQ EAF B ,∴EAP EAF PAF PAQ PAF FAQ ,∵AE BC ,AF CD ,∴AEP AFQ 90 ,∵AE AF ,∴AEP AFQ ,∴AP AQ .(3)不独一,举比方下:层次1:①求 D 的度数. 答案: D 60 .②分别求BAD ,BCD 的度数. 答案:BAD BCD 120 .③求菱形ABCD 的周长. 答案:16.④分别求BC ,CD ,AD 的长. 答案:4,4,4.层次2:①求PC CQ 的值. 答案:4.②求BP QD 的值. 答案:4.③求APC AQC 的值. 答案:180 .层次3:①求四边形APCQ 的面积. 答案:4 3 .②求ABP 与AQD 的面积和. 答案:4 3.③求四边形APCQ 周长的最小值. 答案:4 4 3 .④求PQ 中点运动的路径长. 答案:2 3 .24. 解:(1)第一班上行车到 B 站用时5 130 6小时.第一班下行车到 C 站用时5 130 6小时.(2)当01t 时,s 15 60t .4当1 1t 时,s 60t 15 .4 2(3)由(2)知同时出发的一对上、下行车的地点关于BC 中点对称,设乘客到达 A 站总时间为t分钟,当x 2.5时,往 B 站用时30 分钟,还需再等下行车 5 分钟,t 30 5 10 45 ,不合题意.当x 2.5 时,只好往 B 站坐下行车,他离 B 站x千米,则离他右边近来的下行车离 C 站也是x千米,这辆下行车离 B 站(5 x) 千米.假如能乘上右边第一辆下行车,418 t 20,7 x 5 x5 30,5x ,∴75x ,7∴05x 吻合题意.7假如乘不上右边第一辆下行车,只好乘右边第二辆下行车,5 x ,7x 10 x 5 30 ,10x ,7∴510x ,7 71 427 t 28 ,7 7∴510x 吻合题意.7 7假如乘不上右边第二辆下行车,只好乘右边第三辆下行车,10 x ,7x 15 x 5 30 ,15x ,7∴10 15x ,7 75 135 t 37 ,不合题意.7 7∴综上,得010 x .7当x 2.5时,乘客需往 C 站乘坐下行车,离他左侧近来的下行车离 B 站是(5 x) 千米,离他右边近来的下行车离 C 站也是(5 x) 千米,假如乘上右边第一辆下行车,5x 5 x5 30,∴x 5,不合题意.假如乘不上右边第一辆下行车,只好乘右边第二辆下行车,x 5,5 x 10 x5 30,x 4 ,∴4 x 5,30 t 32,∴4 x 5吻合题意.假如乘不上右边第二辆下行车,只好乘右边第三辆下行车,x 4 ,5 x 15 x5 30,3 x 4,42 t 44 ,∴3 x 4 不合题意.∴综上,得 4 x 5 .综上所述,010x 或4 x 5 .7。
2018年浙江省绍兴市中考数学试卷及答案解析版
=2πr,
解得:n=180. 故选 D. 点评:正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的 母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.
8.(4 分)(2018•绍兴)如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶 壁内画有刻度,人们根据壶中水面的位置计时,用 x 表示时间,y 表示壶底到水面的高度,则 y 与 x 的函数关 系式的图象是( )
9.(4 分)(2018•绍兴)小敏在作⊙O 的内接正五边形时,先做了如下几个步骤: (1)作⊙O 的两条互相垂直的直径,再作 OA 的垂直平分线交 OA 于点 M,如图 1; (2)以 M 为圆心,BM 长为半径作圆弧,交 CA 于点 D,连结 BD,如图 2.若⊙O 的半径为 1,则由以上作 图得到的关于正五边形边长 BD 的等式是( )
浙江省绍兴市 2018 年中考数学试卷
一、选择题(本大题共 10 小题,每小题 4 分,共 40 分,请选出每小题中一个最符合题意的选项,不选、多选、
错选,均不得分)
1.(4 分)(2018•绍兴)﹣2 的绝对值是( )
A.2
B.﹣2
C.0
D.
考点:绝对值. 3718684
分析:根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答 案.
完全相同,则从袋子中随机摸出一个球是黄球的概率为( )
A.
B.
C.
D.
考点:概率公式. 3718684
分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的 比值就是其发生的概率,即可求出答案.
解答:解:根据题意可得:袋子中有 3 个白球,2 个黄球和 1 个红球,共 6 个, 从袋子中随机摸出一个球,它是黄球的概率 2÷6= .
浙江省绍兴市2018年中考数学试卷含答案解析(Word版)
浙江省绍兴市2018年中考数学试卷
、选择题
1•如果向东走2m记为+2m,则向西走3米可记为()
A. +3m
B. +2m
C. -3m
D. -2m
2•绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017 年清理河湖库塘淤泥约为116000000方,数字116000000用科学记数法可以表示为(
)
A. 1.16 109
B. 1.16 108
C. 1.16 107
3•有6个相同的立方体搭成的几何体如图所示, 则它的主视图是
D.
4•抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1, 2, 3,4,5, 6,则朝上一面的数字为2的概率是(
)A.
B. C.
_ 2 2 2
2)2=-4a4③ a43=a2,
5.下面是一位同学做的四道题①(a+b)=a +b , ②(2a
④a3 a4=a12。
其中做对的一道题的序号是
A.①
B.②
C.③
D.④
6•如图,一个函数的图像由射线BA,线段BC,射线CD,其中点A(-1,2),B (1,
3),
C(2,1),D(6,5),则此函数(
B.当x v 1,
A.当x v 1, y随x的增大而增大y随x的增大而减小
C.当x> 1, y随x的增大而增大
D.当x > 1, y随x的增大而减小
7•学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB丄BD ,。
2018年浙江绍兴中考数学试卷(word版,含答案)
浙江省2018年初中毕业生学业考试绍兴市试卷数学试题卷卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.如果向东走2m 记为2m +,则向西走3m 可记为( )A .3m +B .2m +C .3m -D .2m -2.绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116000000方,数字116000000用科学记数法可以表示为( )A .91.1610⨯B .81.1610⨯C .71.1610⨯D .90.11610⨯3.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .4.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( )A .16B .13C .12D .56 5.下面是一位同学做的四道题:①222()a b a b +=+.②224(2)4a a -=-.③532a a a ÷=.④3412a a a ⋅=.其中做对的一道题的序号是( )A .①B .②C .③D .④6.如图,一个函数的图象由射线BA 、线段BC 、射线CD 组成,其中点(1,2)A -,(1,3)B ,(2,1)C ,(6,5)D ,则此函数( )A .当1x <时,y 随x 的增大而增大B .当1x <时,y 随x 的增大而减小C .当1x >时,y 随x 的增大而增大D .当1x >时,y 随x 的增大而减小7.学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB BD ⊥,CD BD ⊥,垂足分别为B ,D ,4AO m =, 1.6AB m =,1CO m =,则栏杆C 端应下降的垂直距离CD 为( )A .0.2mB .0.3mC .0.4mD .0.5m8.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a ,b ,c ,d ,那么可以转换为该生所在班级序号,其序号为32102222a b c d ⨯+⨯+⨯+⨯.如图2第一行数字从左到右依次为0,1,0,1,序号为3210021202125⨯+⨯+⨯+⨯=,表示该生为5班学生.表示6班学生的识别图案是( )A .B .C .D .9.若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .(3,6)--B .(3,0)-C .(3,5)--D .(3,1)--10.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有34枚图钉可供选用,则最多可以展示绘画作品( )A .16张B .18张C .20张D .21张卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分)11.因式分解:224x y -= .12.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为 尺,竿子长为 尺.13.如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,120AOB ∠=,从A 到B 只有路AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少走了 步(假设1步为0.5米,结果保留整数).(参考数据:3 1.732≈,π取3.142)14.等腰三角形ABC 中,顶角A 为40,点P 在以A 为圆心,BC 长为半径的圆上,且BP BA =,则PBC ∠的度数为 .15.过双曲线(0)k y k x=>的动点A 作AB x ⊥轴于点B ,P 是直线AB 上的点,且满足2AP AB =,过点P 作x 轴的平行线交此双曲线于点C .如果APC ∆的面积为8,则k 的值是 .16.实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm ,底面的长是30cm ,宽是20cm ,容器内的水深为xcm .现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A 的三条棱的长分别是10cm ,10cm ,(15)ycm y ≤,当铁块的顶部高出水面2cm 时,x ,y 满足的关系式是 .三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22、23小题每小题12分,第24小题14分,共80分.解答应写出文字说明、证明过程或演算步骤)17.(1)计算:0112tan 6012(32)()3----+.(2)解方程:2210x x --=.18.为了解某地区机动机拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.19.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量.(2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.20.学校拓展小组研制了绘图智能机器人(如图1),顺次输入点1P ,2P ,3P 的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)1(4,0)P ,2(0,0)P ,3(6,6)P .(2)1(0,0)P ,2(4,0)P ,3(6,6)P .21.如图1,窗框和窗扇用“滑块铰链”连接.图3是图2中“滑块铰链”的平面示意图,滑轨MN 安装在窗框上,托悬臂DE 安装在窗扇上,交点A 处装有滑块,滑块可以左右滑动,支点B ,C ,D 始终在一直线上,延长DE 交MN 于点F .已知20AC DE cm ==,10AE CD cm ==,40BD cm =.(1)窗扇完全打开,张角85CAB ∠=,求此时窗扇与窗框的夹角DFB ∠的度数.(2)窗扇部分打开,张角60CAB ∠=,求此时点A ,B 之间的距离(精确到0.1cm ). (参考数据:3 1.732≈,6 2.449≈)22.数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,110A ∠=,求B ∠的度数.(答案:35)例2 等腰三角形ABC 中,40A ∠=,求B ∠的度数.(答案:40或70或100) 张老师启发同学们进行变式,小敏编了如下一题:变式 等腰三角形ABC 中,80A ∠=,求B ∠的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B ∠的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠=,当B ∠有三个不同的度数时,请你探索x 的取值范围.23.小敏思考解决如下问题:原题:如图1,点P ,Q 分别在菱形ABCD 的边BC ,CD 上,PAQ B ∠=∠,求证:AP AQ =.(1)小敏进行探索,若将点P ,Q 的位置特殊化:把PAQ ∠绕点A 旋转得到EAF ∠,使AE BC ⊥,点E ,F 分别在边BC ,CD 上,如图2,此时她证明了AE AF =.请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作AE BC ⊥,AF CD ⊥,垂足分别为E ,F .请你继续完成原题的证明.(3)如果在原题中添加条件:4AB =,60B ∠=,如图1.请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).24.如图,公交车行驶在笔直的公路上,这条路上有A ,B ,C ,D 四个站点,每相邻两站之间的距离为5千米,从A 站开往D 站的车称为上行车,从D 站开往A 站的车称为下行车.第一班上行车、下行车分别从A 站、D 站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A ,D 站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到B 站、第一班下行车到C 站分别用时多少?(2)若第一班上行车行驶时间为t 小时,第一班上行车与第一班下行车之间的距离为s 千米,求s 与t 的函数关系式.(3)一乘客前往A 站办事,他在B ,C 两站间的P 处(不含B ,C 站),刚好遇到上行车,BP x =千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B 站或走到C 站乘下行车前往A 站.若乘客的步行速度是5千米/小时,求x 满足的条件.浙江省2018年初中毕业生学业考试绍兴市试卷数学参考答案一、选择题1-5: CBDAC 6-10: ACBBD二、填空题11. (2)(2)x y x y +- 12. 20,15 13. 1514. 30或110 15. 12或4 16. 61065(0)56x y x +=<≤或12015(68)2x y x -=≤< 三、解答题17.解:(1)原式2323132=--+=.(2)2222x ±=, 112x =+,212x =-.18.解:(1)3.40万辆.人民路路口的堵车次数平均数为120(次).学校门口的堵车次数平均数为100(次).(2)不唯一,如:2010年~2013年,随着机动车拥有量的增加,对道路的影响加大,年堵车次数也增加;尽管2017年机动车拥有量比2016年增加,由于进行了交通综合治理,人民路路口堵车次数反而降低.19.解:(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升.(2)设(0)y kx b k =+≠,把点(0,70),(400,30)坐标分别代入得70b =,0.1k =-, ∴0.170y x =-+,当5y =时,650x =,即已行驶的路程为650千米.20.解:(1)∵1(4,0)P ,2(0,0)P ,4040-=>,∴绘制线段12PP ,124PP =.(2)∵1(0,0)P ,2(4,0)P ,3(6,6)P ,000-=,∴绘制抛物线,设(4)y ax x =-,把点(6,6)坐标代入得12a =, ∴1(4)2y x x =-,即2122y x x =-. 21.解:(1)∵AC DE =,AE CD =,∴四边形ACDE 是平行四边形,∴//CA DE ,∴85DFB CAB ∠=∠=.(2)如图,过点C 作CG AB ⊥于点G ,∵60CAB ∠=,∴20cos6010AG ==,20sin60103CG ==,∵40BD =,10CD =,∴30BC =,在Rt BCG ∆中,106BG =, ∴1010634.5AB AG BG cm =+=+≈.22.解:(1)当A ∠为顶角,则50B ∠=,当A ∠为底角,若B ∠为顶角,则20B ∠=,若B ∠为底角,则80B ∠=, ∴50B ∠=或20或80.(2)分两种情况:①当90180x ≤<时,A ∠只能为顶角,∴B ∠的度数只有一个.②当090x <<时,若A ∠为顶角,则1802x B -⎛⎫∠= ⎪⎝⎭, 若A ∠为底角,则B x ∠=或(1802)B x ∠=-, 当18018022x x -≠-且1802x x -≠且1802x x -≠,即60x ≠时, B ∠有三个不同的度数.综上①②,当090x <<且60x ≠,B ∠有三个不同的度数.23.解:(1)如图1,在菱形ABCD 中,180B C ∠+∠=,B D ∠=∠,AB AD =,∵EAF B ∠=∠,∴180C EAF ∠+∠=,∴180AEC AFC ∠+∠=,∵AE BC ⊥,∴90AEB AEC ∠=∠=,∴90AFC ∠=,90AFD ∠=,∴AEB AFD ∆≅∆,∴AE AF =.(2)如图2,由(1),∵PAQ EAF B ∠=∠=∠,∴EAP EAF PAF ∠=∠-∠PAQ PAF FAQ =∠-∠=∠,∵AE BC ⊥,AF CD ⊥,∴90AEP AFQ ∠=∠=,∵AE AF =,∴AEP AFQ ∆≅∆,∴AP AQ =.(3)不唯一,举例如下:层次1:①求D ∠的度数.答案:60D ∠=.②分别求BAD ∠,BCD ∠的度数.答案:120BAD BCD ∠=∠=.③求菱形ABCD 的周长.答案:16.④分别求BC ,CD ,AD 的长.答案:4,4,4.层次2:①求PC CQ +的值.答案:4.②求BP QD +的值.答案:4.③求APC AQC ∠+∠的值.答案:180.层次3:①求四边形APCQ 的面积.答案:43.②求ABP ∆与AQD ∆的面积和.答案:43.③求四边形APCQ 周长的最小值.答案:443+.④求PQ 中点运动的路径长.答案:23.24.解:(1)第一班上行车到B 站用时51306=小时.第一班下行车到C 站用时51306=小时. (2)当104t ≤≤时,1560s t =-. 当1142t <≤时,6015s t =-. (3)由(2)知同时出发的一对上、下行车的位置关于BC 中点对称,设乘客到达A 站总时间为t 分钟,当 2.5x =时,往B 站用时30分钟,还需再等下行车5分钟,3051045t =++=,不合题意.当 2.5x <时,只能往B 站坐下行车,他离B 站x 千米,则离他右边最近的下行车离C 站也是x 千米,这辆下行车离B 站(5)x -千米. 如果能乘上右侧第一辆下行车,5530x x -≤,57x ≤,∴507x <≤, 418207t ≤<, ∴507x <≤符合题意. 如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,57x >, 10530x x -≤,107x ≤, ∴51077x <≤,14272877t ≤<, ∴51077x <≤符合题意. 如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,107x >, 15530x x -≤,157x ≤, ∴101577x <≤,51353777t ≤<,不合题意. ∴综上,得1007x <≤. 当 2.5x >时,乘客需往C 站乘坐下行车,离他左边最近的下行车离B 站是(5)x -千米,离他右边最近的下行车离C 站也是(5)x -千米,如果乘上右侧第一辆下行车,55530x x --≤, ∴5x ≥,不合题意. 如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,5x <, 510530x x --≤,4x ≥,∴45x ≤<,3032t <≤, ∴45x ≤<符合题意.如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,4x <, 515530x x --≤,34x ≤<,4244t <≤, ∴34x ≤<不合题意.∴综上,得45x ≤<. 综上所述,1007x <≤或45x ≤<.。
★试卷3套精选★绍兴市2018年中考一模数学试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9【答案】D【解析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解: 根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为35,不符合题意;B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为12,不符合题意;C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为14,不符合题意;D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为13,符合题意,故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.2.下列说法正确的是()A.负数没有倒数B.﹣1的倒数是﹣1C.任何有理数都有倒数D.正数的倒数比自身小【答案】B【解析】根据倒数的定义解答即可.【详解】A 、只有0没有倒数,该项错误;B 、﹣1的倒数是﹣1,该项正确;C 、0没有倒数,该项错误;D 、小于1的正分数的倒数大于1,1的倒数等于1,该项错误.故选B.【点睛】本题主要考查倒数的定义:两个实数的乘积是1,则这两个数互为倒数,熟练掌握这个知识点是解答本题的关键.3.如图,一把矩形直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上,若∠ADE =125°,则∠DBC 的度数为( )A .125°B .75°C .65°D .55°【答案】D 【解析】延长CB ,根据平行线的性质求得∠1的度数,则∠DBC 即可求得.【详解】延长CB ,延长CB ,∵AD ∥CB,∴∠1=∠ADE=145,∴∠DBC=180−∠1=180−125=55.故答案选:D.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.4.如图所示,90,,E F B C AE AF ∠=∠=∠=∠=,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM ∆≅∆,其中正确的是有( )A .1个B .2个C .3个D .4个【答案】C 【解析】根据已知的条件,可由AAS 判定△AEB ≌△AFC ,进而可根据全等三角形得出的结论来判断各选项是否正确.【详解】解:如图:在△AEB 和△AFC 中,有90B C E F AE AF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△AEB ≌△AFC ;(AAS )∴∠FAM=∠EAN ,∴∠EAN-∠MAN=∠FAM-∠MAN ,即∠EAM=∠FAN ;(故③正确)又∵∠E=∠F=90°,AE=AF ,∴△EAM ≌△FAN ;(ASA )∴EM=FN ;(故①正确)由△AEB ≌△AFC 知:∠B=∠C ,AC=AB ;又∵∠CAB=∠BAC ,∴△ACN ≌△ABM ;(故④正确)由于条件不足,无法证得②CD=DN ;故正确的结论有:①③④;故选C .【点睛】此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难. 5.如图,在矩形AOBC 中,O 为坐标原点,OA 、OB 分别在x 轴、y 轴上,点B 的坐标为(0,33),∠ABO =30°,将△ABC 沿AB 所在直线对折后,点C 落在点D 处,则点D 的坐标为( )A .(32,332)B .(2,332)C .(332,32)D .(32,3﹣332) 【答案】A【解析】解:∵四边形AOBC 是矩形,∠ABO=10°,点B 的坐标为(0,33),∴AC=OB=33,∠CAB=10°,∴BC=AC•tan10°=33×3=1.∵将△ABC 沿AB 所在直线对折后,点C 落在点D 处,∴∠BAD=10°,AD=33.过点D 作DM ⊥x 轴于点M ,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=12AD=33,∴AM=33×cos10°=92,∴MO=92﹣1=32,∴点D 的坐标为(32,33).故选A .6.在数轴上到原点距离等于3的数是( )A .3B .﹣3C .3或﹣3D .不知道【答案】C【解析】根据数轴上到原点距离等于3的数为绝对值是3的数即可求解.【详解】绝对值为3的数有3,-3.故答案为C.【点睛】本题考查数轴上距离的意义,解题的关键是知道数轴上的点到原点的距离为绝对值.7.如图,在△ABC 中,DE ∥BC 交AB 于D ,交AC 于E ,错误的结论是( ).A .ADAEDB EC = B .ABACAD AE = C .AC ECAB DB = D .AD DEDB BC =【答案】D【解析】根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论.【详解】由DE ∥BC ,可得△ADE ∽△ABC ,并可得:AD AE DB EC =,AB ACAD AE =,AC ECAB DB =,故A ,B ,C 正确;D 错误;故选D.【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质.8.下列二次根式,最简二次根式是( )A B C D【答案】C【解析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.9.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )A.∠α=60°,∠α的补角∠β=120°,∠β>∠αB.∠α=90°,∠α的补角∠β=90°,∠β=∠αC.∠α=100°,∠α的补角∠β=80°,∠β<∠αD.两个角互为邻补角【答案】C【解析】熟记反证法的步骤,然后进行判断即可.解答:解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况;A、∠α的补角∠β>∠α,符合假命题的结论,故A错误;B、∠α的补角∠β=∠α,符合假命题的结论,故B错误;C、∠α的补角∠β<∠α,与假命题结论相反,故C正确;D、由于无法说明两角具体的大小关系,故D错误.故选C.10.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是( )A.8374y xy x+=⎧⎨-=⎩B.8374x yx y+=⎧⎨-=⎩C.8374x yx y-=⎧⎨+=⎩D.8374y xy x-=⎧⎨+=⎩【答案】C【解析】根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:8374x yx y-=⎧⎨+=⎩,故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.二、填空题(本题包括8个小题)11.已知扇形的弧长为2π,圆心角为60°,则它的半径为________.【答案】6.【解析】分析: 设扇形的半径为r,根据扇形的面积公式及扇形的面积列出方程,求解即可.详解: 设扇形的半径为r,根据题意得:60r=2 180ππ,解得:r=6故答案为6.点睛: 此题考查弧长公式,关键是根据弧长公式解答.12.如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为_____cm.【答案】13【解析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为6cm,圆柱高为2cm,∴AB=2cm,BC=BC′=3cm,∴AC2=22+32=13,∴AC13,∴这圈金属丝的周长最小为2AC=213cm.故答案为213.【点睛】本题考查了平面展开−最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.13.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.【答案】2 3【解析】试题解析:∵共6个数,小于5的有4个,∴P(小于5)=46=23.故答案为23.14.如图,AB是⊙O的直径,AC与⊙O相切于点A,连接OC交⊙O于D,连接BD,若∠C=40°,则∠B=_____度.【答案】25【解析】∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故答案为:25.15.已知,在同一平面内,∠ABC=50°,AD∥BC,∠BAD的平分线交直线BC于点E,那么∠AEB的度数为__________.【答案】65°或25°【解析】首先根据角平分线的定义得出∠EAD=∠EAB,再分情况讨论计算即可.【详解】解:分情况讨论:(1)∵AE平分∠BAD,∴∠EAD=∠EAB,∵AD∥BC,∴∠EAD=∠AEB,∴∠BAD=∠AEB,∵∠ABC=50°,∴∠AEB=12•(180°-50°)=65°.(2)∵AE平分∠BAD,∴∠EAD=∠EAB=12DAB ∠,∵AD∥BC,∴∠AEB=∠DAE=12DAB∠,∠DAB=∠ABC,∵∠ABC=50°,∴∠AEB= 12×50°=25°.故答案为:65°或25°.【点睛】本题考查平行线的性质、角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.【答案】8【解析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【详解】由俯视图可知:底层最少有5个小立方体,由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体,∴搭成这个几何体的小正方体的个数最少是5+2+1=8(个).故答案为:8【点睛】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.17.一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为______________.【答案】2【解析】分析:首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.详解:解方程x2-10x+21=0得x1=3、x2=1,∵3<第三边的边长<9,∴第三边的边长为1.∴这个三角形的周长是3+6+1=2.故答案为2.点睛:本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.18.关于x的一元二次方程2kx x+1=0-有两个不相等的实数根,则k的取值范围是▲.【答案】k<14且k≠1.【解析】根据一元二次方程kx2-x+1=1有两个不相等的实数根,知△=b2-4ac>1,然后据此列出关于k的方程,解方程,结合一元二次方程的定义即可求解:∵2kx x+1=0-有两个不相等的实数根,∴△=1-4k>1,且k≠1,解得,k<14且k≠1.三、解答题(本题包括8个小题)19.现在,某商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?小张按合算的方案,把这台冰箱买下,如果某商场还能盈利25%,这台冰箱的进价是多少元?【答案】(1)当顾客消费等于1500元时买卡与不买卡花钱相等;当顾客消费大于1500元时买卡合算;(2)小张买卡合算,能节省400元钱;(3)这台冰箱的进价是2480元.【解析】(1)设顾客购买x元金额的商品时,买卡与不买卡花钱相等,根据花300元买这种卡后,凭卡可在这家商场按标价的8折购物,列出方程,解方程即可;根据x的值说明在什么情况下购物合算(2)根据(1)中所求即可得出怎样购买合算,以及节省的钱数;(3)设进价为y元,根据售价-进价=利润,则可得出方程即可.【详解】解:设顾客购买x元金额的商品时,买卡与不买卡花钱相等.根据题意,得300+0.8x=x,解得x=1500,所以当顾客消费等于1500元时,买卡与不买卡花钱相等;当顾客消费少于1500元时,300+0.8x>x不买卡合算;当顾客消费大于1500元时,300+0.8x<x买卡合算;(2)小张买卡合算,3500﹣(300+3500×0.8)=400,所以,小张能节省400元钱;(3)设进价为y元,根据题意,得(300+3500×0.8)﹣y=25%y,解得y=2480答:这台冰箱的进价是2480元.【点睛】此题主要考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.20.先化简,再求值:22144(1)1a aa a a-+-÷--,其中a是方程a(a+1)=0的解.【答案】1 3【解析】根据分式运算性质,先化简,再求出方程的根a=0或-1,分式有意义分母不等于0,所以将a=-1代入即可求解.【详解】解:原式=()()2a a1 a11a1a2---⨯--=a a2 -∵a(a+1)=0,解得:a=0或-1,由题可知分式有意义,分母不等于0, ∴a=-1,将a=-1代入aa2得,原式=1 3【点睛】本题考查了分式的化简求值,中等难度,根据分式有意义的条件代值计算是解题关键.21.某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;补全条形统计图;如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?【答案】(1)2400,60;(2)见解析;(3)500【解析】整体分析:(1)由C品牌1200个占总数的50%可得鸡蛋的数量,用A品牌占总数的百分比乘以360°即可;(2)计算出B品牌的数量;(3)用B品牌与总数的比乘以1500.解:(1)共销售绿色鸡蛋:1200÷50%=2400个,A品牌所占的圆心角:4002400×360°=60°;故答案为2400,60;(2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,补全统计图如图:(3)分店销售的B种品牌的绿色鸡蛋为:8002400×1500=500个.22.如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;四边形BFDE是平行四边形.【答案】(1)见解析;(2)见解析;【解析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四边形BFDE是平行四边形.23.计算:﹣14﹣2×(﹣3)2+327÷(﹣13)如图,小林将矩形纸片ABCD沿折痕EF翻折,使点C、D分别落在点M、N的位置,发现∠EFM=2∠BFM,求∠EFC的度数.【答案】(1)﹣10;(2)∠EFC=72°.【解析】(1)原式利用乘方的意义,立方根定义,乘除法则及家减法法则计算即可;(2)根据折叠的性质得到一对角相等,再由已知角的关系求出结果即可.【详解】(1)原式=﹣1﹣18+9=﹣10;(2)由折叠得:∠EFM=∠EFC,∵∠EFM=2∠BFM,∴设∠EFM=∠EFC=x,则有∠BFM=12 x,∵∠MFB+∠MFE+∠EFC=180°,∴x+x+12x=180°,解得:x=72°,则∠EFC=72°.【点睛】本题考查了实数的性质及平行线的性质,解题的关键是熟练掌握实数的运算法则及平行线的性质.24.为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A 60≤x<70 17 0.17B 70≤x<80 30 aC 80≤x<90 b 0.45D 90≤x<100 8 0.08请根据所给信息,解答以下问题:表中a=______,b=______;请计算扇形统计图中B组对应扇形的圆心角的度数;已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.【答案】(1)0.3 ,45;(2)108°;(3)16.【解析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为17÷0.17=100(人),则a=30100=0.3,b=100×0.45=45(人).故答案为0.3,45;(2)360°×0.3=108°.答:扇形统计图中B组对应扇形的圆心角为108°.(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为212=16.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F 分别在边AC、BC上)若△CEF与△ABC相似.①当AC=BC=2时,AD的长为;②当AC=3,BC=4时,AD的长为;当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.【答案】解:(1)①2.②95或52.(2)当点D是AB的中点时,△CEF与△ABC相似.理由见解析.【解析】(1)①当AC=BC=2时,△ABC为等腰直角三角形;②若△CEF与△ABC相似,分两种情况:①若CE:CF=3:4,如图1所示,此时EF∥AB,CD为AB边上的高;②若CF:CE=3:4,如图2所示.由相似三角形角之间的关系,可以推出∠A=∠ECD与∠B=∠FCD,从而得到CD=AD=BD,即D点为AB的中点;(2)当点D是AB的中点时,△CEF与△ABC相似.可以推出∠CFE=∠A,∠C=∠C,从而可以证明两个三角形相似.【详解】(1)若△CEF与△ABC相似.①当AC=BC=2时,△ABC为等腰直角三角形,如答图1所示,此时D为AB边中点,AD=22AC=2.②当AC=3,BC=4时,有两种情况:(I)若CE:CF=3:4,如答图2所示,∵CE:CF=AC:BC,∴EF∥BC.由折叠性质可知,CD⊥EF,∴CD⊥AB,即此时CD为AB边上的高.在Rt△ABC中,AC=3,BC=4,∴BC=1.∴cosA=35.∴AD=AC•cosA=3×35=95.(II)若CF:CE=3:4,如答图3所示.∵△CEF∽△CAB,∴∠CEF=∠B.由折叠性质可知,∠CEF+∠ECD=90°.又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.同理可得:∠B=∠FCD,CD=BD.∴AD=BD.∴此时AD=AB=12×1=52.综上所述,当AC=3,BC=4时,AD的长为95或52.(2)当点D是AB的中点时,△CEF与△CBA相似.理由如下:如图所示,连接CD,与EF交于点Q.∵CD是Rt△ABC的中线∴CD=DB=12AB,∴∠DCB=∠B.由折叠性质可知,∠CQF=∠DQF=90°,∴∠DCB+∠CFE=90°,∵∠B+∠A=90°,∴∠CFE=∠A,又∵∠ACB=∠ACB,∴△CEF ∽△CBA .26.铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x <20)之间满足一次函数关系,其图象如图所示:求y 与x 之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?【答案】 (1)y =10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.【解析】(1)由待定系数法即可得到函数的解析式;(2)根据销售量×每千克利润=总利润列出方程求解即可;(3)根据销售量×每千克利润=总利润列出函数解析式求解即可.【详解】(1)设y 与x 之间的函数关系式为:y =kx+b ,把(2,120)和(4,140)代入得,21204140k b k b +=⎧⎨+=⎩, 解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为:y =10x+100;(2)根据题意得,(60﹣40﹣x)(10x+100)=2090,解得:x =1或x =9,∵为了让顾客得到更大的实惠,∴x =9,答:这种干果每千克应降价9元;(3)该干果每千克降价x 元,商贸公司获得利润是w 元,根据题意得,w =(60﹣40﹣x)(10x+100)=﹣10x 2+100x+2000,∴w =﹣10(x ﹣5)2+2250,∵a=-100<,∴当x =5时,w 2250=最大故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.【点睛】本题考查的是二次函数的应用,此类题目主要考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是()A.∠BDO=60°B.∠BOC=25°C.OC=4 D.BD=4【答案】D【解析】由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.【详解】解:∵△OAB绕O点逆时针旋转60°得到△OCD,∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B选项正确.故选D.【点睛】本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.2.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是()A.x x10060100-=B.x x10010060-=C.x x10060100+=D.x x10010060+=【答案】B【解析】解:设走路快的人要走x 步才能追上走路慢的人,根据题意得:10010060x x-=.故选B.点睛:本题考查了一元一次方程的应用.找准等量关系,列方程是关键.3.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A .(3,2)B .(3,1)C .(2,2)D .(4,2)【答案】A 【解析】∵正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13, ∴AD BG =13, ∵BG=6,∴AD=BC=2,∵AD ∥BG ,∴△OAD ∽△OBG , ∴OA OB =13, ∴2OA OA +=13, 解得:OA=1,∴OB=3,∴C 点坐标为:(3,2),故选A .4.如果将抛物线2y x 2=+向下平移1个单位,那么所得新抛物线的表达式是A .()2y x 12=-+B .()2y x 12=++C .2y x 1=+D .2y x 3=+ 【答案】C【解析】根据向下平移,纵坐标相减,即可得到答案.【详解】∵抛物线y=x 2+2向下平移1个单位,∴抛物线的解析式为y=x 2+2-1,即y=x 2+1.故选C .519273 ) A .﹣2和﹣1B .﹣3和﹣2C .﹣4和﹣3D .﹣5和﹣4 【答案】C 192733﹣3﹣3算,由3<3<4可知﹣34和﹣3之间.故选C .点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.6.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是( )A.8374y xy x+=⎧⎨-=⎩B.8374x yx y+=⎧⎨-=⎩C.8374x yx y-=⎧⎨+=⎩D.8374y xy x-=⎧⎨+=⎩【答案】C【解析】根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:8374x yx y-=⎧⎨+=⎩,故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.7.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差B.中位数C.众数D.平均数【答案】A【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差8.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.45B.35C.25D.15【答案】B【解析】试题解析:列表如下:∴共有20种等可能的结果,P(一男一女)=123=205.故选B.9.30cos︒的值是()A.22B.3C.12D.3【答案】D【解析】根据特殊角三角函数值,可得答案.【详解】解:330cos︒=,故选:D.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.10.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是( ) A .2017年第二季度环比有所提高 B .2017年第三季度环比有所提高 C .2018年第一季度同比有所提高 D .2018年第四季度同比有所提高 【答案】C【解析】根据环比和同比的比较方法,验证每一个选项即可.【详解】2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A 正确; 2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B 正确; 2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C 错误;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D 正确; 故选C . 【点睛】本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键. 二、填空题(本题包括8个小题)11.如图,已知CD 是ABC △的高线,且CD 2cm =,30B ∠=︒,则BC =_________.【答案】4cm【解析】根据三角形的高线的定义得到90BDC ∠=︒,根据直角三角形的性质即可得到结论. 【详解】解:∵CD 是ABC ∆的高线, ∴90BDC ∠=︒, ∵30B ∠=︒,2CD =, ∴24BC CD cm ==. 故答案为:4cm. 【点睛】本题考查了三角形的角平分线、中线、高线,含30°角的直角三角形,熟练掌握直角三角形的性质是解题的关键.12.如图,在▱ABCD 中,AD=2,AB=4,∠A=30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接。
浙江省绍兴市2018年中考数学试卷(解析版)
浙江省 2018 年初中毕业生学业考试绍兴市试卷数学试题卷一、选择题(本大题有10 小题,每题 4 分,共 40 分.请选出每题中一个最切合题意的选项,不选、多项选择、错选,均不给分)1. 假如向东走记为,则向西走可记为()A. B. C. D.【答案】 C【分析】【剖析】第一审清题意,明确“正”和“负”所表示的意义;再依据题意作答.【解答】假如向东走2m 时,记作 +2m,那么向西走3m 应记作 - 3m.应选C.【评论】考察了相反意义的量,相反意义的量用正数和负数来表示.2.绿水青山就是金山银山,为了创建优秀的生态生活环境,浙江省2017 年清理河湖库塘淤泥约116000000 方,数字116000000 用科学记数法能够表示为()A. B. C. D.【答案】 B【分析】【剖析】科学记数法的表示形式为a×10n的形式,此中1a10n为整数.确立n的≤|| <,值时,要看把原数变为 a 时,小数点挪动了多少位,n 的绝对值与小数点挪动的位数同样.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.【解答】解:将 116000000 用科学记数法表示为:.应选 B.【评论】此题考察了科学记数法的表示方法.科学记数法的表示形式为a10n的形式,此中1a ×≤| |< 10,n 为整数,表示时重点要正确确立 a 的值以及 n 的值.3.有 6 个同样的立方体搭成的几何体以下图,则它的主视图是()A. B. C. D.【答案】 D【分析】试题剖析:依据主视图是从正面看获得的图形,可得答案.解:从正面看第一层三个小正方形,第二层左侧一个小正方形,右边一个小正方形.应选: C.考点:简单组合体的三视图.视频4.扔掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1, 2, 3,4, 5, 6,则朝上一面的数字为 2 的概率是()A. B. C. D.【答案】 A【分析】【剖析】直接得出2的个数,再利用概率公式求出答案.【解答】∵一枚质地均匀的骰子,其六个面上分别标有数字1, 2, 3, 4,5, 6,扔掷一次,∴向上一面的数字是2的概率为:应选A.【评论】考察概率的计算,明确概率的意义是解题的重点,概率等于所讨状况数与总状况数的比.5. 下边是一位同学做的四道题:①.②.③.④.此中做对的一道题的序号是()A.①B.②C.③D.④【答案】 C【分析】【剖析】依据完整平方公式,同底数幂的乘法,同底数幂的除法以及积的乘方进行选择即可.【解答】①.故错误 .②.故错误 .③.正确 .④故错误 .应选 C.【评论】考察完整平方公式,同底数幂的乘法,同底数幂的除法以及积的乘方,熟记它们的运算法则是解题的重点.6. 如图,一个函数的图象由射线、线段、射线构成,此中点,,,,则此函数()A. 当时,随的增大而增大B. 当时,随的增大而减小C. 当时,随的增大而增大D. 当时,随的增大而减小【答案】 A【分析】【剖析】依据一次函数的图象对各项剖析判断即可.【解答】察看图象可知:A. 当时,图象奉上涨趋向,随的增大而增大,正确.B. 当时,图象奉上涨趋向,随的增大而减小,故错误.C. 当时,随的增大而减小, 当时,随的增大而增大,故错误.D. 当时,随的增大而减小, 当时,随的增大而增大,故错误.应选 A.【评论】考察一次函数的图象与性质,读懂图象是解题的重点.7. 学校门口的栏杆以下图,栏杆从水平地点绕点旋转到地点,已知,,垂足分别为,,,,,则栏杆端应降落的垂直距离为()A. B. C. D.【答案】 C【分析】【剖析】依据相像三角形的判断定理可得△AOB∽△ COD ,依据相像三角形的性质计算即可 .【解答】,,△AOB∽△ COD ,即解得:应选 C.【评论】考察了相像三角形的判断与性质,掌握相像三角形的判断方法是解题的重点.8.利用如图 1 的二维码能够进行身份辨别.某校成立了一个身份辨别系统,图2是某个学生的辨别图案,黑色小正方形表示1,白色小正方形表示 0.将第一行数字从左到右挨次记为,,,,那么能够变换为该生所在班级序号,其序号为.如图 2第一行数字从左到右挨次为 0, 1,0, 1,序号为,表示该生为 5 班学生 .表示 6 班学生的辨别图案是()A. B. C. D.【答案】 B【分析】【剖析】依据班级序号的计算方法一一进行计算即可.【解答】 A.第一行数字从左到右挨次为1, 0, 1,0,序号为,表示该生为 10班学生 .B. 第一行数字从左到右挨次为0, 1, 1, 0,序号为,表示该生为6班学生 .C. 第一行数字从左到右挨次为1, 0, 0,1,序号为,表示该生为9班学生 .D. 第一行数字从左到右挨次为0, 1, 1,1,序号为,表示该生为7班学生 .应选 B.【评论】属于新定义题目,读懂题目中班级序号的计算方法是解题的重点.9.若抛物线与轴两个交点间的距离为2.,称此抛物线为定弦抛物线已知某定弦抛物线的对称轴为直线,将此抛物线向左平移 2 个单位,再向下平移 3 个单位,获得的抛物线过点()A. B. C. D.【答案】 B【分析】【剖析】依据抛物线与轴两个交点间的距离为2,对称轴为直线,求得抛物线与轴两个交点分别为用待定系数法求出抛物线的分析式,依据平移规律求得平移后的抛物线分析式,再把点的坐标代入进行考证即可.【解答】抛物线与轴两个交点间的距离为2,对称轴为直线,可知抛物线与轴两个交点分别为代入得:解得:抛物线的方程为:将此抛物线向左平移 2 个单位,再向下平移 3 个单位,获得的抛物线为:即当时,抛物线过点应选 B..【评论】考察待定系数法求二次函数分析式,二次函数的图形与性质,以及平移规律.掌握待定系数法求二次函数分析式是解题的重点.10.某班要在一面墙上同时展现数张形状、大小均同样的矩形绘画作品,将这些作品排成一个矩形(作品不完整重合),现需要在每张作品的四个角落都钉上图钉,假如作品有角落相邻,那么相邻的角落共享一枚图钉(比如,用 9 枚图钉将 4 张作品钉在墙上,如图),如有 34 枚图钉可供采用,则最多能够展现绘画作品()A.16张B.18张C.20张D.21张【答案】 D【分析】【剖析】每张作品都要钉在墙上,要用 4 个图钉,相邻的能够用同一个图钉钉住两个角或者四个角,相邻的越多,用的图钉越少,把这些作品摆成长方形,使周围的最少.【解答】B.C.D.A.最少需要图钉最少需要图钉最少需要图钉最少需要图钉枚 .枚 .枚 . 还节余枚图钉枚 ..应选 D.【评论】考察学生的空间想象能力以及着手操作能力,能力,而且让学生能够独立达成近似问题的解决.经过这道题使学生掌握空间想象能力和着手二、填空题(本大题有 6 小题,每题 5 分,共 30 分)11. 因式分解:__________.【答案】【分析】【剖析】依据平方差公式直接进行因式分解即可.【解答】原式故答案为:【评论】考察因式分解,常用的方法有:提取公因式法,公式法,十字相乘法.12.我国明朝数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托 .假如 1 托为 5 尺,那么索长为 __________尺,竿子长为 __________ 尺.【答案】(1). 20(2). 15【分析】【剖析】设索长为尺,竿子长为尺.依据题目中的等量关系列方程组求解即可【解答】设索长为尺,竿子长为尺.依据题意得:.解得:故答案为: 20,15.【评论】考察二元一次方程组的应用,解题的重点是找到题目中的等量关系.13. 如图,公园内有一个半径为20 米的圆形草坪,,是圆上的点,为圆心,,从到只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小道.经过计算可知,这些市民其实只是少走了__________步(假定 1 步为0.5 米,结果保存整数).(参照数据:,取3.142)【答案】 15【分析】【剖析】过O 作 OC⊥ AB 于 C,分别计算出弦AB 的长和弧AB 的长即可求解 .【解答】过 O 作 OC⊥ AB 于 C,如图,∴AC=BC,∵∴∴∴∴又∵弧AB 的长=米步.故答案为: 15.【评论】考察了弧长的计算,垂径定理的应用,熟记弧长公式是解题的重点.14. 等腰三角形中,顶角为,点在以为圆心,长为半径的圆上,且,则的度数为__________.【答案】或【分析】【剖析】画出表示图,分两种状况进行议论即可.【解答】如图:分两种状况进行议论.易证≌,同理:≌,故答案为:或【评论】考察全等三角形的判断与性质,等腰三角形的性质等,注意分类议论思想在数学中的应用.15. 过双曲线的动点作轴于点,是直线上的点,且知足,过点作轴的平行线交此双曲线于点.假如的面积为8,则的值是__________.【答案】 12 或 4【分析】【剖析】画出表示图,分两种状况进行议论即可.【解答】如图:设点 A 的坐标为:则点 P 的坐标为:点 C 的纵坐标为:,代入反比率函数,点C的横坐标为:解得:如图:设点 A 的坐标为:则点 P 的坐标为:点 C 的纵坐标为:,代入反比率函数,点C的横坐标为:解得:故答案为: 12 或 4.【评论】考察反比率函数图象上点的坐标特点,注意数形联合思想在数学中的应用.16. 实验室里有一个水平搁置的长方体容器,从内部量得它的高是,底面的长是,宽是,容器内的水深为.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过极点的三条棱的长分别是,,,当铁块的顶部超出水面时,,知足的关系式是 __________ .【答案】或【分析】【剖析】依据长方体实心铁块的搁置状况能够分两种状况进行议论.依据铁块的顶部超出现在水面,列出函数关系式.【解答】当长,宽分别为,的面与容器地面重合时,依据铁块的顶部超出水面,整理得:.当长,宽分别为,的面与容器地面重合时,依据铁块的顶部超出水面,整理得:.故答案为:或【评论】考察函数关系式的成立,解题的重点是找到题目中的等量关系.三、解答题(本大题有 8 小题,第 17~ 20 小题每题 8 分,第 21 小题 10 分,第 22、23小题每题 12 分,第 24 小题 14 分,共 80 分 .解答应写出文字说明、证明过程或演算步骤)17. ( 1)计算:.( 2)解方程:.【答案】( 1) 2;( 2),.【分析】【剖析】依据实数的运算法例直接进行运算即可.用公式法直接解方程即可.【解答】( 1)原式.( 2),,.【评论】此题主要考察了实数的综合运算能力以及解一元二次方程,是各地中考题中常有的计算题型.解决实数的综合运算题目的重点是娴熟掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.为认识某地域灵活机拥有量对道路通行的影响,学校九年级社会实践小组对2010 年~ 2017 年灵活车拥有量、车辆经过人民路路口和学校门口的堵车次数进行检查统计,并绘制成以下统计图:依据统计图,回答以下问题:( 1)写出 2016 年灵活车的拥有量,分别计算2010 年~ 2017 年在人民路路口和学校门口堵车次数的均匀数.( 2)依据统计数据,联合生活实质,对灵活车拥有量与人民路路口和学校门口堵车次数,谈谈你的看法 .【答案】( 1) 3.40 万辆 .人民路路口的堵车次数均匀数为120 次;学校门口的堵车次数均匀数为100次;( 2)看法析 .【分析】【剖析】( 1)察看图象,即可得出写出2016 年灵活车的拥有量,依据均匀数的计算方法计算计算 2010 年~ 2017 年在人民路路口和学校门口堵车次数的均匀数即可.( 2)言之有理即可.【解答】( 1) 3.40 万辆 .人民路路口的堵车次数均匀数为120(次) .学校门口的堵车次数均匀数为100(次) .( 2)不独一,如: 2010 年~ 2013 年,跟着灵活车拥有量的增添,对道路的影响加大,年堵车次数也增添;只管 2017 年灵活车拥有量比 2016 年增添,因为进行了交通综合治理,人民路路口堵车次数反而降低 .【评论】考察了折线统计图和条形统计图 ,依据折线统计图和条形统计图得出解题所需的数据是解题的重点.19.一辆汽车行驶时的耗油量为 0.1 升 /千米,如图是油箱节余油量(升)对于加满油后已行驶的行程(千米)的函数图象 .( 1)依据图象,直接写出汽车行驶400 千米时,油箱内的节余油量,并计算加满油时油箱的油量;( 2)求对于的函数关系式,并计算该汽车在节余油量 5 升时,已行驶的行程.【答案】( 1)汽车行驶400 千米,节余油量30 升,加满油时,油量为70 升;( 2)已行驶的行程为 650千米.【分析】【剖析】( 1)察看图象,即可获得油箱内的节余油量 , 依据耗油量计算出加满油时油箱的油量;用待定系数法求出一次函数分析式,再代入进行运算即可.【解答】( 1)汽车行驶400 千米,节余油量30 升,即加满油时,油量为70 升.( 2)设,把点,坐标分别代入得,,∴,当时,,即已行驶的行程为650 千米 .【评论】考察待定系数法求一次函数分析式,一次函数图象上点的坐标特点等,重点是掌握待定系数法求函数分析式.20. 学校拓展小组研制了画图智能机器人(如图1),按序输入点,,的坐标,机器人能依据图 2,绘制图形 .若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请依据以下点的坐标,求出线段的长度或抛物线的函数关系式.( 1),,.( 2),,.【答案】( 1)绘制线段,;( 2)绘制抛物线.【分析】【剖析】( 1),,,绘制线段,.( 2),,,,绘制抛物线,用待定系数法求函数分析式即可.【解答】( 1)∵,,,∴绘制线段,.( 2)∵,,,,∴绘制抛物线,设,把点坐标代入得,∴,即.【评论】属于新定义问题,考察待定系数法求二次函数分析式,解题的重点是弄懂程序框图. 21. 如图1,窗框和窗扇用“滑块铰链”连结.图3是图 2 中“滑块铰链”的平面表示图,滑轨安装在窗框上,托悬臂安装在窗扇上,交点处装有滑块,滑块能够左右滑动,支点,,一直在一直线上,延伸交于点.已知,,.( 1)窗扇完整翻开,张角,求此时窗扇与窗框的夹角的度数 .( 2)窗扇部分翻开,张角,求此时点,之间的距离(精准到).(参照数据:,)【答案】( 1);( 2).学 &科 &网 ...学 &科 & 网 ...学& 科 &网 ...学 & 科& 网 ...学 &科 & 网 ...学& 科 & 网...学 & 科& 网 ...学 &科 &网 ...学&科 &网 ...学 &科 &网 ...学 &科& 网 ...( 2)如图,过点作于点,依据锐角三角函数进行求解即可.【解答】( 1)∵,,∴四边形是平行四边形,∴,∴.( 2)如图,过点作于点,∵,∴,,∵,,∴,在中,,∴.【评论】考察平行四边形的判断与性质,平行线的判断与性质,解直角三角形等,注意协助线的作法 .22.数学课上,张老师举了下边的例题:例 1等腰三角形中,,求的度数 .(答案:)例 2等腰三角形中,,求的度数 .(答案:或或)张老师启迪同学们进行变式,小敏编了以下一题:变式等腰三角形中,,求的度数.( 1)请你解答以上的变式题.( 2)解( 1)后,小敏发现,的度数不一样,获得的度数的个数也可能不一样.假如在等腰三角形中,设,当有三个不一样的度数时,请你探究的取值范围 .【答案】( 1)或或;( 2)当且,有三个不一样的度数 .1为顶角和为底角,两种状况进行议论 .【分析】【剖析】()分( 2)分①当时,②当时,两种状况进行议论 .【解答】( 1)当为顶角,则,当为底角,若为顶角,则,若为底角,则,∴或或.( 2)分两种状况:①当时,只好为顶角,∴的度数只有一个 .②当时,若为顶角,则,若为底角,则或,当且且,即时,有三个不一样的度数.综上①②,当且,有三个不一样的度数.【评论】考察了等腰三角形的性质,注意分类议论思想在数学中的应用.23.小敏思虑解决以下问题:原题:如图1,点,分别在菱形的边,上,,求证:.( 1)小敏进行探究,若将点,的地点特别化:把绕点旋转获得,使,点,分别在边,上,如图2,此时她证了然.请你证明 .( 2)受以上( 1)的启迪,在原题中,增添协助线:如图 3,作,,垂足分别为, .请你持续达成原题的证明.( 3)假如在原题中增添条件:,,如图 1.请你编制一个计算题(不标明新的字母),并直接给出答案(依据编出的问题层次,给不一样的得分).【答案】( 1)证明看法析;( 2)证明看法析;( 3)看法析【分析】【剖析】( 1)证明,即可求证.( 2)如图 2,,即可求证.( 3)不独一 .【解答】( 1)如图 1,在菱形中,,,,∵,∴,∴,∵,∴,∴,,∴,∴.( 2)如图2,由( 1),∵,∴,∵,,∴,∵,∴,∴.( 3)不独一,举比以下:层次 1:①求的度数 .答案:.②分别求,的度数 .答案:.③求菱形的周长 .答案: 16.④分别求,,的长 .答案:4,4, 4.层次 2:①求的值 .答案: 4.②求的值 .答案: 4.③求的值 .答案:.层次3:①求四边形的面积 .答案:.②求与的面积和 .答案:.③求四边形周长的最小值 .答案:.④求中点运动的路径长 .答案:.【评论】考察菱形的性质,三角形全等的判断与性质等,娴熟掌握全等三角形的判断方法是解题的重点 .24. 如图,公交车行驶在笔挺的公路上,这条路上有,,,四个站点,每相邻两站之间的距离为 5 千米,从站开往站的车称为上行车,从站开往站的车称为下行车.第一班上行车、下行车分别从站、站同时发车,相向而行,且此后上行车、下行车每隔10 分钟分别在,站同时发一班车,乘客只好到站点上、下车(上、下车的时间忽视不计),上行车、下行车的速度均为30千米 /小时 .( 1)问第一班上行车到站、第一班下行车到站分别用时多少?( 2)若第一班上行车行驶时间为小时,第一班上行车与第一班下行车之间的距离为千米,求与的函数关系式 .( 3)一乘客前去站做事,他在,两站间的处(不含,站),恰好碰到上行车,千米,此时,接到通知,一定在35分钟内赶到,他可选择走到站或走到站乘下行车前去站 .若乘客的步行速度是 5 千米 /小时,求知足的条件 .【答案】( 1)第一班上行车到站用时小时,第一班下行车到站用时小时;( 2)当时,,当时,;( 3)或.1站、第一班下行车到站【分析】【剖析】()依据速度 =行程除以时间即可求出第一班上行车到的用时 .( 2)分当时和当时两种状况进行议论 .【解答】( 1)第一班上行车到第一班下行车到站用时站用时小时 .小时 .( 2)当时,.当( 3)由(时,.2)知同时出发的一对上、下行车的地点对于中点对称,设乘客抵达站总时间为分钟,当时,往站用时30分钟,还需再等下行车 5 分钟,,不合题意 .当时,只好往站坐下行车,他离站千米,则离他右边近来的下行车离站也是千米,这辆下行车离站千米.假如能乘上右边第一辆下行车,,,∴,,∴切合题意 .假如乘不上右边第一辆下行车,只好乘右边第二辆下行车,,,,∴,,∴切合题意 .假如乘不上右边第二辆下行车,只好乘右边第三辆下行车,,,,∴,,不合题意.∴综上,得.当时,乘客需往站乘坐下行车,离他左侧近来的下行车离站是千米,离他右边近来的下行车离站也是千米,假如乘上右边第一辆下行车,,∴,不合题意 .假如乘不上右边第一辆下行车,只好乘右边第二辆下行车,,,,∴,,∴切合题意 .假如乘不上右边第二辆下行车,只好乘右边第三辆下行车,,,,,∴不合题意 .∴综上,得.综上所述,或.【评论】考察一次函数,一元一次不等式等的实质应用. 解题的重点是学会由分类议论的思想思虑问题,学会建立一次函数和一元一次不等式.。
浙江省绍兴2018中考数学试卷(附答案)
浙江省2018年初中毕业生学业考试绍兴市试卷数学试题卷卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.如果向东走2m 记为2m +,则向西走3m 可记为( )A .3m +B .2m +C .3m -D .2m -2.绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116000000方,数字116000000用科学记数法可以表示为( )A .91.1610⨯B .81.1610⨯C .71.1610⨯D .90.11610⨯3.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .4.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( )A .16B .13C .12D .565.下面是一位同学做的四道题:①222()a b a b +=+.②224(2)4a a -=-.③532a a a ÷=.④3412a a a ⋅=.其中做对的一道题的序号是( )A .①B .②C .③D .④6.如图,一个函数的图象由射线BA 、线段BC 、射线CD 组成,其中点(1,2)A -,(1,3)B ,(2,1)C ,(6,5)D ,则此函数( )A .当1x <时,y 随x 的增大而增大B .当1x <时,y 随x 的增大而减小C .当1x >时,y 随x 的增大而增大D .当1x >时,y 随x 的增大而减小7.学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB BD ⊥,CD BD ⊥,垂足分别为B ,D ,4AO m =, 1.6AB m =,1CO m =,则栏杆C 端应下降的垂直距离CD 为( )A .0.2mB .0.3mC .0.4mD .0.5m8.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a ,b ,c ,d ,那么可以转换为该生所在班级序号,其序号为32102222a b c d ⨯+⨯+⨯+⨯.如图2第一行数字从左到右依次为0,1,0,1,序号为3210021202125⨯+⨯+⨯+⨯=,表示该生为5班学生.表示6班学生的识别图案是( )A .B .C .D .9.若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .(3,6)--B .(3,0)-C .(3,5)--D .(3,1)--10.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有34枚图钉可供选用,则最多可以展示绘画作品( )A .16张B .18张C .20张D .21张卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分)11.因式分解:224x y -= .12.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为 尺,竿子长为 尺.13.如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,120AOB ∠= ,从A 到B 只有路 AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少走了 步(假设1步为0.5米,结果保留整数). 1.732≈,π取3.142)14.等腰三角形ABC 中,顶角A 为40 ,点P 在以A 为圆心,BC 长为半径的圆上,且BP BA =,则PBC ∠的度数为 .15.过双曲线(0)k y k x=>的动点A 作AB x ⊥轴于点B ,P 是直线AB 上的点,且满足2AP AB =,过点P 作x 轴的平行线交此双曲线于点C .如果APC ∆的面积为8,则k 的值是 .16.实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm ,底面的长是30cm ,宽是20cm ,容器内的水深为xcm .现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A 的三条棱的长分别是10cm ,10cm ,(15)ycm y ≤,当铁块的顶部高出水面2cm 时,x ,y 满足的关系式是 .三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22、23小题每小题12分,第24小题14分,共80分.解答应写出文字说明、证明过程或演算步骤)17.(1)计算:0112tan 602)()3-+ . (2)解方程:2210x x --=.18.为了解某地区机动机拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.19.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量.(2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.20.学校拓展小组研制了绘图智能机器人(如图1),顺次输入点1P ,2P ,3P 的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)1(4,0)P ,2(0,0)P ,3(6,6)P. (2)1(0,0)P ,2(4,0)P ,3(6,6)P.21.如图1,窗框和窗扇用“滑块铰链”连接.图3是图2中“滑块铰链”的平面示意图,滑轨MN 安装在窗框上,托悬臂DE 安装在窗扇上,交点A 处装有滑块,滑块可以左右滑动,支点B ,C ,D 始终在一直线上,延长DE 交MN 于点F .已知20AC DE cm ==,10AE CD cm ==,40BD cm =.(1)窗扇完全打开,张角85CAB ∠= ,求此时窗扇与窗框的夹角DFB ∠的度数.(2)窗扇部分打开,张角60CAB ∠=,求此时点A ,B 之间的距离(精确到0.1cm ).1.732≈2.449≈)22.数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,110A ∠= ,求B ∠的度数.(答案:35 )例2 等腰三角形ABC 中,40A ∠= ,求B ∠的度数.(答案:40 或70 或100 ) 张老师启发同学们进行变式,小敏编了如下一题:变式 等腰三角形ABC 中,80A ∠= ,求B ∠的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B ∠的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠= ,当B ∠有三个不同的度数时,请你探索x 的取值范围. 23.小敏思考解决如下问题:原题:如图1,点P ,Q 分别在菱形ABCD 的边BC ,CD 上,PAQ B ∠=∠,求证:AP AQ =.(1)小敏进行探索,若将点P ,Q 的位置特殊化:把PAQ ∠绕点A 旋转得到EAF ∠,使AE BC ⊥,点E ,F 分别在边BC ,CD 上,如图2,此时她证明了AE AF =.请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作AE BC ⊥,AF CD ⊥,垂足分别为E ,F .请你继续完成原题的证明.(3)如果在原题中添加条件:4AB =,60B ∠= ,如图1.请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).24.如图,公交车行驶在笔直的公路上,这条路上有A ,B ,C ,D 四个站点,每相邻两站之间的距离为5千米,从A 站开往D 站的车称为上行车,从D 站开往A 站的车称为下行车.第一班上行车、下行车分别从A 站、D 站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A ,D 站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到B 站、第一班下行车到C 站分别用时多少?(2)若第一班上行车行驶时间为t 小时,第一班上行车与第一班下行车之间的距离为s 千米,求s 与t 的函数关系式.(3)一乘客前往A 站办事,他在B ,C 两站间的P 处(不含B ,C 站),刚好遇到上行车,BP x =千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B 站或走到C 站乘下行车前往A 站.若乘客的步行速度是5千米/小时,求x 满足的条件.浙江省2018年初中毕业生学业考试绍兴市试卷数学参考答案一、选择题1-5: CBDAC 6-10: ACBBD二、填空题11. (2)(2)x y x y +- 12. 20,15 13. 1514. 30 或110 15. 12或4 16. 61065(0)56x y x +=<≤或12015(68)2x y x -=≤< 三、解答题17.解:(1)原式132=+=.(2)x =11x =21x =.18.解:(1)3.40万辆.人民路路口的堵车次数平均数为120(次).学校门口的堵车次数平均数为100(次).(2)不唯一,如:2010年~2013年,随着机动车拥有量的增加,对道路的影响加大,年堵车次数也增加;尽管2017年机动车拥有量比2016年增加,由于进行了交通综合治理,人民路路口堵车次数反而降低.19.解:(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升.(2)设(0)y kx b k =+≠,把点(0,70),(400,30)坐标分别代入得70b =,0.1k =-, ∴0.170y x =-+,当5y =时,650x =,即已行驶的路程为650千米.20.解:(1)∵1(4,0)P ,2(0,0)P ,4040-=>, ∴绘制线段12PP ,124PP =.(2)∵1(0,0)P ,2(4,0)P ,3(6,6)P,000-=,∴绘制抛物线,设(4)y ax x =-,把点(6,6)坐标代入得12a =, ∴1(4)2y x x =-,即2122y x x =-. 21.解:(1)∵AC DE =,AE CD =,∴四边形ACDE 是平行四边形,∴//CA DE ,∴85DFB CAB ∠=∠= .(2)如图,过点C 作CG AB ⊥于点G ,∵60CAB ∠= ,∴20cos6010AG == ,20sin60CG == ,∵40BD =,10CD =,∴30BC =,在Rt BCG ∆中,BG =∴1034.5AB AG BG cm =+=+≈.22.解:(1)当A ∠为顶角,则50B ∠=,当A ∠为底角,若B ∠为顶角,则20B ∠= ,若B ∠为底角,则80B ∠= ,∴50B ∠= 或20 或80 .(2)分两种情况:①当90180x ≤<时,A ∠只能为顶角,∴B ∠的度数只有一个.②当090x <<时,若A ∠为顶角,则1802x B -⎛⎫∠= ⎪⎝⎭, 若A ∠为底角,则B x ∠= 或(1802)B x ∠=- , 当18018022x x -≠-且1802x x -≠且1802x x -≠,即60x ≠时, B ∠有三个不同的度数.综上①②,当090x <<且60x ≠,B ∠有三个不同的度数.23.解:(1)如图1,在菱形ABCD 中,180B C ∠+∠= ,B D ∠=∠,AB AD =,∵EAF B ∠=∠,∴180C EAF ∠+∠= ,∴180AEC AFC ∠+∠= ,∵AE BC ⊥,∴90AEB AEC ∠=∠=,∴90AFC ∠= ,90AFD ∠= , ∴AEB AFD ∆≅∆,∴AE AF =.(2)如图2,由(1),∵PAQ EAF B ∠=∠=∠,∴EAP EAF PAF ∠=∠-∠PAQ PAF FAQ =∠-∠=∠,∵AE BC ⊥,AF CD ⊥,∴90AEP AFQ ∠=∠= ,∵AE AF =,∴AEP AFQ ∆≅∆,∴AP AQ =.(3)不唯一,举例如下:层次1:①求D ∠的度数.答案:60D ∠= .②分别求BAD ∠,BCD ∠的度数.答案:120BAD BCD ∠=∠= .③求菱形ABCD 的周长.答案:16.④分别求BC ,CD ,AD 的长.答案:4,4,4.层次2:①求PC CQ +的值.答案:4.②求BP QD +的值.答案:4.③求APC AQC ∠+∠的值.答案:180 .层次3:①求四边形APCQ 的面积.答案:②求ABP ∆与AQD ∆的面积和.答案:③求四边形APCQ 周长的最小值.答案:4+④求PQ 中点运动的路径长.答案:24.解:(1)第一班上行车到B 站用时51306=小时. 第一班下行车到C 站用时51306=小时.(2)当104t ≤≤时,1560s t =-. 当1142t <≤时,6015s t =-. (3)由(2)知同时出发的一对上、下行车的位置关于BC 中点对称,设乘客到达A 站总时间为t 分钟,当 2.5x =时,往B 站用时30分钟,还需再等下行车5分钟,3051045t =++=,不合题意.当 2.5x <时,只能往B 站坐下行车,他离B 站x 千米,则离他右边最近的下行车离C 站也是x 千米,这辆下行车离B 站(5)x -千米. 如果能乘上右侧第一辆下行车,5530x x -≤,57x ≤,∴507x <≤, 418207t ≤<, ∴507x <≤符合题意. 如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,57x >, 10530x x -≤,107x ≤, ∴51077x <≤,14272877t ≤<, ∴51077x <≤符合题意. 如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,107x >, 15530x x -≤,157x ≤, ∴101577x <≤,51353777t ≤<,不合题意. ∴综上,得1007x <≤. 当 2.5x >时,乘客需往C 站乘坐下行车,离他左边最近的下行车离B 站是(5)x -千米,离他右边最近的下行车离C 站也是(5)x -千米, 如果乘上右侧第一辆下行车,55530x x --≤, ∴5x ≥,不合题意.如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,5x <, 510530x x --≤,4x ≥,∴45x ≤<,3032t <≤, ∴45x ≤<符合题意.如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,4x <, 515530x x --≤,34x ≤<,4244t <≤, ∴34x ≤<不合题意.∴综上,得45x ≤<. 综上所述,1007x <≤或45x ≤<.。
2018年浙江省绍兴市中考数学试卷(含详细解析)
2018年浙江省绍兴市中考数学试卷一、选择题(每小题只有一个选项符合题意.共10小题,每小题4分,共40分)1.(4.00分)如果向东走2m记为+2m,则向西走3m可记为()A.+3m B.+2m C.﹣3m D.﹣2m2.(4.00分)绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116 000 000方,数字116 000 000用科学记数法可以表示为()A.1.16×109B.1.16×108C.1.16×107D.0.116×1093.(4.00分)有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.4.(4.00分)抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是()A.B.C.D.5.(4.00分)下面是一位同学做的四道题:①(a+b)2=a2+b2,②(﹣2a2)2=﹣4a4,③a5÷a3=a2,④a3•a4=a12.其中做对的一道题的序号是()A.①B.②C.③D.④6.(4.00分)如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大 D.当x>1时,y随x的增大而减小7.(4.00分)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC 位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为()A.0.2m B.0.3m C.0.4m D.0.5m8.(4.00分)利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是()A. B. C. D.9.(4.00分)若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)10.(4.00分)某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有34枚图钉可供选用,则最多可以展示绘画作品()A.16张B.18张C.20张D.21张二、填空题(本题包括6小题,每小题5分,共30分)11.(5.00分)因式分解:4x2﹣y2=.12.(5.00分)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为尺,竿子长为尺.13.(5.00分)如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,∠AOB=120°,从A到B只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通过计算可知,这些市民其实仅仅少走了步(假设1步为0.5米,结果保留整数).(参考数据:≈1.732,π取3.142)14.(5.00分)等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为.15.(5.00分)过双曲线y=(k>0)上的动点A作AB⊥x轴于点B,P是直线AB上的点,且满足AP=2AB,过点P作x轴的平行线交此双曲线于点C.如果△APC的面积为8,则k的值是.16.(5.00分)实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为x cm.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A的三条棱的长分别10cm,10cm,y cm(y≤15),当铁块的顶部高出水面2cm时,x,y满足的关系式是.三、填空题(本题包括8小题,第17-20题每小题8分,第21小题10分,第22、23小题每小题8分,第24题14分,共80分)17.(8.00分)(1)计算:2tan60°﹣﹣(﹣2)0+()﹣1.(2)解方程:x2﹣2x﹣1=0.18.(8.00分)为了解某地区机动车拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.19.(8.00分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.20.(8.00分)学校拓展小组研制了绘图智能机器人(如图1),顺次输入点P1,P2,P3的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)P1(4,0),P2(0,0),P3(6,6);(2)P1(0,0),P2(4,0),P3(6,6).21.(10.00分)如图1,窗框和窗扇用“滑块铰链”连接,图3是图2中“滑块铰链”的平面示意图,滑轨MN安装在窗框上,托悬臂DE安装在窗扇上,交点A处装有滑块,滑块可以左右滑动,支点B,C,D始终在一直线上,延长DE交MN于点F.已知AC=DE=20cm,AE=CD=10cm,BD=40cm.(1)窗扇完全打开,张角∠CAB=85°,求此时窗扇与窗框的夹角∠DFB的度数;(2)窗扇部分打开,张角∠CAB=60°,求此时点A,B之间的距离(精确到0.1cm).(参考数据:≈1.732,≈2.449)22.(12.00分)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.23.(12.00分)小敏思考解决如下问题:原题:如图1,点P,Q分别在菱形ABCD的边BC,CD上,∠PAQ=∠B,求证:AP=AQ.(1)小敏进行探索,若将点P,Q的位置特殊化;把∠PAQ绕点A旋转得到∠EAF,使AE⊥BC,点E,F分别在边BC,CD上,如图2.此时她证明了AE=AF,请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作AE⊥BC,AF⊥CD,垂足分别为E,F.请你继续完成原题的证明.(3)如果在原题中添加条件:AB=4,∠B=60°,如图1,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).24.(14.00分)如图,公交车行驶在笔直的公路上,这条路上有A,B,C,D四个站点,每相邻两站之间的距离为5千米,从A站开往D站的车称为上行车,从D站开往A站的车称为下行车,第一班上行车、下行车分别从A站、D站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A,D站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到B站、第一班下行车到C站分别用时多少?(2)若第一班上行车行驶时间为t小时,第一班上行车与第一班下行车之间的距离为s千米,求s与t的函数关系式;(3)一乘客前往A站办事,他在B,C两站间的P处(不含B,C站),刚好遇到上行车,BP=x千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B站或走到C站乘下行车前往A站.若乘客的步行速度是5千米/小时,求x满足的条件.2018年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(每小题只有一个选项符合题意.共10小题,每小题4分,共40分)1.(4.00分)如果向东走2m记为+2m,则向西走3m可记为()A.+3m B.+2m C.﹣3m D.﹣2m【分析】根据正数和负数表示相反意义的量,向东走记为正,可得向西走的表示方法.【解答】解:若向东走2m记作+2m,则向西走3m记作﹣3m,故选:C.【点评】本题考查了正数和负数,相反意义的量用正数和负数表示.2.(4.00分)绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116 000 000方,数字116 000 000用科学记数法可以表示为()A.1.16×109B.1.16×108C.1.16×107D.0.116×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:116000000=1.16×108,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4.00分)有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(4.00分)抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是()A.B.C.D.【分析】让向上一面的数字是2的情况数除以总情况数6即为所求的概率.【解答】解:∵抛掷六个面上分别刻有的1,2,3,4,5,6的骰子有6种结果,其中朝上一面的数字为2的只有1种,∴朝上一面的数字为2的概率为,故选:A.【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.5.(4.00分)下面是一位同学做的四道题:①(a+b)2=a2+b2,②(﹣2a2)2=﹣4a4,③a5÷a3=a2,④a3•a4=a12.其中做对的一道题的序号是()A.①B.②C.③D.④【分析】直接利用完全平方公式以及同底数幂的乘除运算法则、积的乘方运算法则分别计算得出答案.【解答】解:①(a+b)2=a2+2ab+b2,故此选项错误;②(﹣2a2)2=4a4,故此选项错误;③a5÷a3=a2,正确;④a3•a4=a7,故此选项错误.故选:C.【点评】此题主要考查了完全平方公式以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.6.(4.00分)如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大 D.当x>1时,y随x的增大而减小【分析】根据函数图象和题目中的条件,可以写出各段中函数图象的变化情况,从而可以解答本题.【解答】解:由函数图象可得,当x<1时,y随x的增大而增大,故选项A正确,选项B错误,当1<x<2时,y随x的增大而减小,当x>2时,y随x的增大而增大,故选项C、D错误,故选:A.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.(4.00分)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC 位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为()A.0.2m B.0.3m C.0.4m D.0.5m【分析】由∠ABO=∠CDO=90°、∠AOB=∠COD知△ABO∽△CDO,据此得=,将已知数据代入即可得.【解答】解:∵AB⊥BD,CD⊥BD,∴∠ABO=∠CDO=90°,又∵∠AOB=∠COD,∴△ABO∽△CDO,则=,∵AO=4m,AB=1.6m,CO=1m,∴=,解得:CD=0.4,故选:C.【点评】本题主要考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定与性质.8.(4.00分)利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是()A. B. C. D.【分析】根据规定的运算法则分别计算出每个选项第一行的数即可作出判断.【解答】解:A、第一行数字从左到右依次为1、0、1、0,序号为1×23+0×22+1×21+0×20=10,不符合题意;B、第一行数字从左到右依次为0,1,1,0,序号为0×23+1×22+1×21+0×20=6,符合题意;C、第一行数字从左到右依次为1,0,0,1,序号为1×23+0×22+0×21+1×20=9,不符合题意;D、第一行数字从左到右依次为0,1,1,1,序号为0×23+1×22+1×21+1×20=7,不符合题意;故选:B.【点评】本题主要考查图形的变化类,解题的关键是根据题意弄清题干规定的运算规则,并将图形的变化问题转化为数字问题.9.(4.00分)若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)【分析】根据定弦抛物线的定义结合其对称轴,即可找出该抛物线的解析式,利用平移的“左加右减,上加下减”找出平移后新抛物线的解析式,再利用二次函数图象上点的坐标特征即可找出结论.【解答】解:∵某定弦抛物线的对称轴为直线x=1,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为y=x(x﹣2)=x2﹣2x=(x﹣1)2﹣1.将此抛物线向左平移2个单位,再向下平移3个单位,得到新抛物线的解析式为y=(x﹣1+2)2﹣1﹣3=(x+1)2﹣4.当x=﹣3时,y=(x+1)2﹣4=0,∴得到的新抛物线过点(﹣3,0).故选:B.【点评】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数图象与几何变换以及二次函数的性质,根据定弦抛物线的定义结合其对称轴,求出原抛物线的解析式是解题的关键.10.(4.00分)某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有34枚图钉可供选用,则最多可以展示绘画作品()A.16张B.18张C.20张D.21张【分析】分别找出展示的绘画作品展示成一行、二行、三行、四行、五行的时候,34枚图钉最多可以展示的画的数量,比较后即可得出结论.【解答】解:①如果所有的画展示成一行,34÷(1+1)﹣1=16(张),∴34枚图钉最多可以展示16张画;②如果所有的画展示成两行,34÷(2+1)=11(枚)……1(枚),11﹣1=10(张),2×10=20(张),∴34枚图钉最多可以展示20张画;③如果所有的画展示成三行,34÷(3+1)=8(枚)……2(枚),8﹣1=7(张),3×7=21(张),∴34枚图钉最多可以展示21张画;④如果所有的画展示成四行,34÷(4+1)=6(枚)……4(枚),6﹣1=5(张),4×5=20(张),∴34枚图钉最多可以展示20张画;⑤如果所有的画展示成五行,34÷(5+1)=5(枚)……4(枚),5﹣1=4(张),5×4=20(张),∴34枚图钉最多可以展示20张画.综上所述:34枚图钉最多可以展示21张画.故选:D.【点评】本题考查了规律型中图形的变化类,观察图形,求出展示的绘画作品展示成一行、二行、三行、四行、五行时,最多可以展示的画的数量是解题的关键.二、填空题(本题包括6小题,每小题5分,共30分)11.(5.00分)因式分解:4x2﹣y2=(2x+y)(2x﹣y).【分析】原式利用平方差公式分解即可.【解答】解:原式=(2x+y)(2x﹣y),故答案为:(2x+y)(2x﹣y)【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.(5.00分)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为20尺,竿子长为15尺.【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设索长为x尺,竿子长为y尺,根据题意得:,解得:.答:索长为20尺,竿子长为15尺.故答案为:20;15.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.13.(5.00分)如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,∠AOB=120°,从A到B只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通过计算可知,这些市民其实仅仅少走了15步(假设1步为0.5米,结果保留整数).(参考数据:≈1.732,π取3.142)【分析】作OC⊥AB于C,如图,根据垂径定理得到AC=BC,再利用等腰三角形的性质和三角形内角和计算出∠A=30°,则OC=10,AC=10,所以AB≈69(步),然后利用弧长公式计算出的长,最后求它们的差即可.【解答】解:作OC⊥AB于C,如图,则AC=BC,∵OA=OB,∴∠A=∠B=(180°﹣∠AOB)=(180°﹣120°)=30°,在Rt△AOC中,OC=OA=10,AC=OC=10,∴AB=2AC=20≈69(步);而的长=≈84(步),的长与AB的长多15步.所以这些市民其实仅仅少走了15步.故答案为15.【点评】本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.14.(5.00分)等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为30°或110°.【分析】分两种情形,利用全等三角形的性质即可解决问题;【解答】解:如图,当点P在直线AB的右侧时.连接AP.∵AB=AC,∠BAC=40°,∴∠ABC=∠C=70°,∵AB=AB,AC=PB,BC=PA,∴△ABC≌△BAP,∴∠ABP=∠BAC=40°,∴∠PBC=∠ABC﹣∠ABP=30°,当点P′在AB的左侧时,同法可得∠ABP′=40°,∴∠P′BC=40°+70°=110°,故答案为30°或110°.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.(5.00分)过双曲线y=(k>0)上的动点A作AB⊥x轴于点B,P是直线AB上的点,且满足AP=2AB,过点P作x轴的平行线交此双曲线于点C.如果△APC的面积为8,则k的值是12或4.【分析】设点A的坐标为(x,),分点P在AB的延长线上、点P在BA的延长线上两种情况,根据比例系数k的几何意义、反比例函数图象上点的坐标特征计算.【解答】解:设点A的坐标为(x,),当点P在AB的延长线上时,∵AP=2AB,∴AB=AP,∵PC∥x轴,∴点C的坐标为(﹣x,﹣),由题意得,×2x×=8,解得,k=4,当点P在BA的延长线上时,∵AP=2AB,PC∥x轴,∴点C的坐标为(x,),∴P′C′=x,由题意得,×x×=8,解得,k=12,当点P在第三象限时,情况相同,故答案为:12或4.【点评】本题考查的是比例系数k的几何意义、反比例函数图象上点的坐标特征,根据坐标表示出线段的长度是解题的关键.16.(5.00分)实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为x cm.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A的三条棱的长分别10cm,10cm,y cm(y≤15),当铁块的顶部高出水面2cm时,x,y满足的关系式是y=(0<x≤)或y=(6≤x<8).【分析】分两种情况:利用实心铁块浸在水中的体积等于容器中水位增加后的体积减去原来水的体积建立方程求解即可.【解答】解:①当长方体实心铁块的棱长为10cm和ycm的那一面平放在长方体的容器底面时,则铁块浸在水中的高度为8cm,此时,水位上升了(8﹣x)cm(x<8),铁块浸在水中的体积为10×8×y=80ycm3,∴80y=30×20×(8﹣x),∴y=,∵y≤15,∴x≥6,即:y=(6≤x<8),②当长方体实心铁块的棱长为10cm和10cm的那一面平放在长方体的容器底面时,同①的方法得,y=(0<x≤),故答案为:y=(0<x≤)或y=(6≤x<8)【点评】此题主要考查了从实际问题列一次函数关系式,正确找出相等关系是解本题的关键.三、填空题(本题包括8小题,第17-20题每小题8分,第21小题10分,第22、23小题每小题8分,第24题14分,共80分)17.(8.00分)(1)计算:2tan60°﹣﹣(﹣2)0+()﹣1.(2)解方程:x2﹣2x﹣1=0.【分析】(1)首先计算特殊角的三角函数、二次根式的化简、零次幂、负整数指数幂,然后再计算加减即可;(2)首先计算△,然后再利用求根公式进行计算即可.【解答】解:(1)原式=2﹣2﹣1+3=2;(2)a=1,b=﹣2,c=﹣1,△=b2﹣4ac=4+4=8>0,方程有两个不相等的实数根,x===1,则x1=1+,x2=1﹣.【点评】此题主要考查了实数的运算和一元二次方程的解法,关键是熟练掌握特殊角的三角函数、二次根式的化简、零次幂、负整数指数幂以及一元二次方程的求根公式.18.(8.00分)为了解某地区机动车拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.【分析】(1)根据统计图中的数据可以解答本题;(2)根据统计图中的数据,结合生活实际,进行说明即可,本题答案不唯一,只要合情合理即可.【解答】解:(1)由图可得,2016年机动车的拥有量为3.40万辆,==120(次),==100(次)即;2010年~2017年在人民路路口和学校门口堵车次数的平均数分别是120次、100次;(2)随着人民生活水平的提高,居民的汽车拥有量明显增加,同时随着汽车数量的增加,也给交通带来了压力,堵车次数明显增加,学校路口学生通过次数较多,政府和交通部分加强重视,进行治理,堵车次数明显好转,人民路口堵车次数不断增加,引起政府重视,加大治理,交通有所好转.【点评】本题考查折线统计图、条形统计图、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.19.(8.00分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.【分析】(1)由图象可知:汽车行驶400千米,剩余油量30升,行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升),故加满油时油箱的油量是40+30=70升.(2)设y=kx+b(k≠0),把(0,70),(400,300)坐标代入可得:k=﹣0.1,b=70,求出解析式,当y=5 时,可得x=650.【解答】解:(1)由图象可知:汽车行驶400千米,剩余油量30升,∵行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升)∴加满油时油箱的油量是40+30=70升.(2)设y=kx+b(k≠0),把(0,70),(400,300)坐标代入可得:k=﹣0.1,b=70∴y=﹣0.1x+70,当y=5 时,x=650即已行驶的路程的为650千米.【点评】该题是根据题意和函数图象来解决问题,考查学生的审题识图能力和待定系数法求解析式以及根根解析式求值.20.(8.00分)学校拓展小组研制了绘图智能机器人(如图1),顺次输入点P1,P2,P3的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)P1(4,0),P2(0,0),P3(6,6);(2)P1(0,0),P2(4,0),P3(6,6).【分析】(1)根据图2判断出绘制直线,根据两点间的距离公式可得答案;(2)根据图2判断出绘制抛物线,利用待定系数法求解可得.【解答】解:(1)∵P1(4,0),P2(0,0),4﹣0=4>0,∴绘制线段P1P2,P1P2=4;(2)∵P1(0,0),0﹣0=0,∴绘制抛物线,设y=ax(x﹣4),把(6,6)代入得:6=12a,解得:a=,∴y=x(x﹣4)=x2﹣2x.【点评】本题主要考查二次函数的应用,解题的关键是看图2的判断条件及待定系数法求函数解析式.21.(10.00分)如图1,窗框和窗扇用“滑块铰链”连接,图3是图2中“滑块铰链”的平面示意图,滑轨MN安装在窗框上,托悬臂DE安装在窗扇上,交点A处装有滑块,滑块可以左右滑动,支点B,C,D始终在一直线上,延长DE交MN于点F.已知AC=DE=20cm,AE=CD=10cm,BD=40cm.(1)窗扇完全打开,张角∠CAB=85°,求此时窗扇与窗框的夹角∠DFB的度数;(2)窗扇部分打开,张角∠CAB=60°,求此时点A,B之间的距离(精确到0.1cm).(参考数据:≈1.732,≈2.449)【分析】(1)根据平行四边形的判定和性质可以解答本题;(2)根据锐角三角函数和题意可以求得AB的长,从而可以解答本题.【解答】解:(1)∵AC=DE=20cm,AE=CD=10cm,∴四边形ACDE是平行四边形,∴AC∥DE,∴∠DFB=∠CAB,∵∠CAB=85°,∴∠DFB=85°;(2)作CG⊥AB于点G,∵AC=20,∠CGA=90°,∠CAB=60°,∴CG=,AG=10,∵BD=40,CD=10,∴CB=30,∴BG==,∴AB=AG+BG=10+10≈10+10×2.449=34.49≈34.5cm,即A、B之间的距离为34.5cm.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(12.00分)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.【分析】(1)由于等腰三角形的顶角和底角没有明确,因此要分类讨论;(2)分两种情况:①90≤x<180;②0<x<90,结合三角形内角和定理求解即可.【解答】解:(1)若∠A为顶角,则∠B=(180°﹣∠A)÷2=50°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×80°=20°;若∠A为底角,∠B为底角,则∠B=80°;故∠B=50°或20°或80°;(2)分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.【点评】本题考查了等腰三角形的性质及三角形内角和定理,进行分类讨论是解。
浙江省绍兴市中考数学试卷及答案解析
2018年浙江省绍兴市中考数学试卷一、选择题(每题只有一个选项切合题意.共10小题,每题4分,共40分)1.(4分)假如向东走2m记为+2m,则向西走3m可记为()A.+3mB.+2mC.﹣3m D.﹣2m2.(4分)绿水青山就是金山银山,为了创建优秀的生态生活环境,浙江省2017年清理河湖库塘淤泥约116000000方,数字116000000用科学记数法能够表示为()A.1.16×109B.1.16×108C.1.16×107D.0.116×1093.(4分)有6个同样的立方体搭成的儿何体以下图,则它的主视图是()A. B. C. D.4.(4分)投掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则向上一面的数字为2的概率是()A. B. C. D.5.(4分)下边是一位同学做的四道题:①(a+b)2=a2+b2,②(﹣2a2)2=﹣4a4,③a5÷a3=a2,④a3?a4=a12.此中做对的一道题的序号是()A.①B.②C.③D.④6.(4分)如图,一个函数的图象由射线BA、线段BC、射线CD构成,此中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数()第1页(共28页)A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大D.当x>1时,y随x的增大而减小7.(4分)学校门口的栏杆以下图,栏杆从水平地点BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应降落的垂直距离CD为()A.0.2m B.0.3m C.0.4m D.0.5m8.(4分)利用如图1的二维码能够进行身份辨别.某校成立了一个身份辨别系统,图2是某个学生的辨别图案,黑色小正方形表示1,白色小正方形表示,将第一行数字从左到右挨次记为a,b,c,d,那么能够变换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2第一行数字从左到右挨次为0,,,,序号为0×23+1×22+0×21+1×20,表示该生为5班学生.表示6班101=5学生的辨别图案是()A.B.C.D.9.(4分)若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,第2页(共28页)再向下平移3个单位,获得的抛物线过点()A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)10.(4分)某班要在一面墙上同时展现数张形状、大小均同样的矩形绘画作品,将这些作品排成一个矩形(作品不完整重合).现需要在每张作品的四个角落都钉上图钉,假如作品有角落相邻,那么相邻的角落共享一枚图钉(比如,用9枚图钉将4张作品钉在墙上,如图)如有34枚图钉可供采用,则最多能够展现绘画作品()A.16张B.18张C.20张D.21张二、填空题(本题包含6小题,每题5分,共30分)11.(5分)因式分解:4x2﹣y2=.12.(5分)我国明朝数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.假如1托为5尺,那么索长为尺,竿子长为尺.13.(5分)如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,∠AOB=120°,从A到B只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小道AB.经过计算可知,这些市民其实只是少B走了步(假定1步为0.5米,结果保存整数).(参照数据:≈1.732,π取3.142)14.(5分)等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为.15.(5分)过双曲线y=(k>0)上的动点A作AB⊥x轴于点B,P是直线AB第3页(共28页)上的点,且知足AP=2AB,过点P作x轴的平行线交此双曲线于点C.假如△APC的面积为8,则k的值是.16.(5分)实验室里有一个水平搁置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为xcm.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过极点A的三条棱的长分别10cm,10cm,ycm(y≤15),当铁块的顶部超出水面2cm时,x,y知足的关系式是.三、填空题(本题包含8小题,第17-20题每题8分,第21小题10分,第22、23小题每题8分,第24题14分,共80分).(分)()计算:2tan60°﹣﹣(﹣2)0+()﹣1.1781(2)解方程:x2﹣2x﹣1=0.18.(8分)为认识某地域灵活车拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年灵活车拥有量、车辆经过人民路路口和学校门口的堵车次数进行检查统计,并绘制成以下统计图:依据统计图,回答以下问题:(1)写出2016年灵活车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的均匀数.2)依据统计数据,联合生活实质,对灵活车拥有量与人民路路口和学校门口堵车次数,谈谈你的见解.19.(8分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱节余油量y(升)第4页(共28页)对于加满油后已行驶的行程x(千米)的函数图象.1)依据图象,直接写出汽车行驶400千米时,油箱内的节余油量,并计算加满油时油箱的油量;(2)求y对于x的函数关系式,并计算该汽车在节余油量5升时,已行驶的路程.20.(8分)学校拓展小组研制了画图智能机器人(如图1),按序输入点P1,P2,P3的坐标,机器人能依据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请依据以下点的坐标,求出线段的长度或抛物线的函数关系式.1)P1(4,0),P2(0,0),P3(6,6);2)P1(0,0),P2(4,0),P3(6,6).21.(10分)如图1,窗框和窗扇用“滑块铰链”连结,图3是图2中“滑块铰链”的平面表示图,滑轨MN安装在窗框上,托悬臂DE安装在窗扇上,交点A处装有滑块,滑块能够左右滑动,支点B,C,D一直在向来线上,延伸DE交MN于点F.已知AC=DE=20cm,AE=CD=10cm,BD=40cm.第5页(共28页)1)窗扇完整翻开,张角∠CAB=85°,求此时窗扇与窗框的夹角∠DFB的度数;2)窗扇部分翻开,张角∠CAB=60°,求此时点A,B之间的距离(精准到0.1cm).(参照数据:≈1.732,≈2.449)22.(12分)数学课上,张老师举了下边的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启迪同学们进行变式,小敏编了以下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不一样,获得∠B的度数的个数也可能不一样,假如在等腰三角形ABC中,设∠A=x°,当∠B有三个不一样的度数时,请你探究x的取值范围.23.(12分)小敏思虑解决以下问题:原题:如图1,点P,Q分别在菱形ABCD的边BC,CD上,∠PAQ=∠B,求证:AP=AQ.(1)小敏进行探究,若将点P,Q的地点特别化;把∠PAQ绕点A旋转获得∠EAF,使AE⊥BC,点E,F分别在边BC,CD上,如图2.此时她证了然AE=AF,请你证明.(2)受以上(1)的启迪,在原题中,增添协助线:如图3,作AE⊥BC,AF⊥CD,垂足分别为E,F.请你持续达成原题的证明.(3)假如在原题中增添条件:AB=4,∠B=60°,如图1,请你编制一个计算题(不第6页(共28页)标明新的字母),并直接给出答案(依据编出的问题层次,给不一样的得分).24.(14分)如图,公交车行驶在笔挺的公路上,这条路上有A,B,C,D四个站点,每相邻两站之间的距离为5千米,从A站开往D站的车称为上行车,从D站开往A站的车称为下行车,第一班上行车、下行车分别从A站、D站同时发车,相向而行,且此后上行车、下行车每隔10分钟分别在A,D站同时发一班车,乘客只好到站点上、下车(上、下车的时间忽视不计),上行车、下行车的速度均为30千米/小时.1)问第一班上行车到B站、第一班下行车到C站分别用时多少?2)若第一班上行车行驶时间为t小时,第一班上行车与第一班下行车之间的距离为s千米,求s与t的函数关系式;3)一乘客前去A站做事,他在B,C两站间的P处(不含B,C站),恰好碰到上行车,BP=x千米,此时,接到通知,一定在35分钟内赶到,他可选择走到B站或走到C站乘下行车前去A站.若乘客的步行速度是5千米/小时,求x满足的条件.第7页(共28页)2018年浙江省绍兴市中考数学试卷参照答案与试题分析一、选择题(每题只有一个选项切合题意.共10小题,每题4分,共40分)1.(4分)假如向东走2m记为+2m,则向西走3m可记为()A.+3mB.+2mC.﹣3m D.﹣2m【剖析】依据正数和负数表示相反意义的量,向东走记为正,可得向西走的表示方法.【解答】解:若向东走2m记作+2m,则向西走3m记作﹣3m,应选:C.【评论】本题考察了正数和负数,相反意义的量用正数和负数表示.2.(4分)绿水青山就是金山银山,为了创建优秀的生态生活环境,浙江省2017年清理河湖库塘淤泥约116000000方,数字116000000用科学记数法能够表示为()A.1.16×109B.1.16×108C.1.16×107D.0.116×109【剖析】科学记数法的表示形式为a×10n的形式,此中1≤|a|<10,n 为整数.确定n的值时,要看把原数变为a时,小数点挪动了多少位,n的绝对值与小数点挪动的位数同样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:116000000=1.16×108,应选:B.【评论】本题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,此中1≤|a|<10,n为整数,表示时重点要正确确立 a的值以及n的值.3.(4分)有6个同样的立方体搭成的儿何体以下图,则它的主视图是()第8页(共28页)A.B.C.D.【剖析】依据从正面看获得的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,应选:D.【评论】本题考察了简单组合体的三视图,从正面看获得的图形是主视图.4.(4分)投掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则向上一面的数字为2的概率是()A.B.C.D.【剖析】让向上一面的数字是2的状况数除以总状况数6即为所求的概率.【解答】解:∵投掷六个面上分别刻有的1,2,3,4,5,6的骰子有6种结果,此中向上一面的数字为2的只有1种,∴向上一面的数字为2的概率为,应选:A.【评论】本题主要考察了概率公式的应用,明确概率的意义是解答的重点,用到的知识点为:概率等于所讨状况数与总状况数之比.5.(4分)下边是一位同学做的四道题:①(a+b)2=a2+b2,②(﹣2a2)2=﹣4a4,③a5÷a3=a2,④a3?a4=a12.此中做对的一道题的序号是()A.①B.②C.③D.④【剖析】直接利用完整平方公式以及同底数幂的乘除运算法例、积的乘方运算法则分别计算得出答案.【解答】解:①(a+b)2=a2+2ab+b2,故此选项错误;第9页(共28页)②(﹣2a2)2=4a4,故此选项错误;③a5÷a3=a2,正确;a3?a4=a7,故此选项错误.应选:C.【评论】本题主要考察了完整平方公式以及同底数幂的乘除运算、积的乘方运算,正确掌握有关运算法例是解题重点.6.(4分)如图,一个函数的图象由射线BA、线段BC、射线CD构成,此中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大D.当x>1时,y随x的增大而减小【剖析】依据函数图象和题目中的条件,能够写出各段中函数图象的变化状况,进而能够解答本题.【解答】解:由函数图象可得,当x<1时,y随x的增大而增大,应选项A正确,选项B错误,当1<x<2时,y随x的增大而减小,当x>2时,y随x的增大而增大,应选项C、D错误,应选:A.【评论】本题考察函数的图象,解答本题的重点是明确题意,利用数形联合的思想解答.7.(4分)学校门口的栏杆以下图,栏杆从水平地点BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应降落的垂直距离CD为()第10页(共28页)A .0.2mB .0.3mC .0.4mD .0.5m【剖析】由∠ABO=∠CDO=90°、∠AOB=∠COD 知△ABO ∽△CDO ,据此得=,将已知数据代入即可得.【解答】解:∵AB ⊥BD ,CD ⊥BD , ∴∠ABO=∠CDO=90°, 又∵∠AOB=∠COD , ∴△ABO ∽△CDO , 则=,AO=4m ,AB=1.6m ,CO=1m , ∴=,解得:CD=0.4, 应选:C .【评论】本题主要考察相像三角形的应用,解题的重点是娴熟掌握相像三角形的判断与性质.8.(4分)利用如图1的二维码能够进行身份辨别.某校成立了一个身份辨别系统,图2是某个学生的辨别图案,黑色小正方形表示 1,白色小正方形表示 0,将第一行数字从左到右挨次记为a ,b ,c ,d ,那么能够变换为该生所在班级序号,其序号为a ×23+b ×22+c ×21+d ×20,如图2第一行数字从左到右挨次为 0,, ,,序号为 0×23+1×22+0×21+1×20 ,表示该生为5 班学生.表示 6班10 1 =5学生的辨别图案是()第11页(共28页)A.B.C.D.【剖析】依据规定的运算法例分别计算出每个选项第一行的数即可作出判断.【解答】解:A、第一行数字从左到右挨次为1、0、1、0,序号为1×23+0×22+1×21+0×20=10,不切合题意;B、第一行数字从左到右挨次为0,1,1,0,序号为0×23+1×22+1×21+0×20=6,切合题意;C、第一行数字从左到右挨次为1,0,0,1,序号为1×23+0×22+0×21+1×20=9,不切合题意;D、第一行数字从左到右挨次为0,1,1,1,序号为0×23+1×22+1×21+1×20=7,不切合题意;应选:B.【评论】本题主要考察数字的变化类,解题的重点是依据题意弄清题干规定的运算规则.9.(4分)若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,获得的抛物线过点()A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)【剖析】依据定弦抛物线的定义联合其对称轴,即可找出该抛物线的分析式,利用平移的“左加右减,上加下减”找出平移后新抛物线的分析式,再利用二次函数图象上点的坐标特点即可找出结论.【解答】解:∵某定弦抛物线的对称轴为直线x=1,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线分析式为y=x(x﹣2)=x2﹣2x=(x﹣1)2﹣1.将此抛物线向左平移2个单位,再向下平移3个单位,获得新抛物线的分析式为y=(x﹣1+2)2﹣1﹣3=(x+1)2﹣4.当x=﹣3时,y=(x+1)2﹣4=0,第12页(共28页)∴获得的新抛物线过点(﹣3,0).应选:B.【评论】本题考察了抛物线与x轴的交点、二次函数图象上点的坐标特点、二次函数图象与几何变换以及二次函数的性质,依据定弦抛物线的定义联合其对称轴,求出原抛物线的分析式是解题的重点.10.(4分)某班要在一面墙上同时展现数张形状、大小均同样的矩形绘画作品,将这些作品排成一个矩形(作品不完整重合).现需要在每张作品的四个角落都钉上图钉,假如作品有角落相邻,那么相邻的角落共享一枚图钉(比如,用9枚图钉将4张作品钉在墙上,如图)如有34枚图钉可供采用,则最多能够展现绘画作品()A.16张B.18张C.20张D.21张【剖析】分别找出展现的绘画作品展现成一行、二行、三行、四行、五行的时候,枚图钉最多能够展现的画的数目,比较后即可得出结论.【解答】解:①假如全部的画展现成一行,34÷(1+1)﹣1=16(张),34枚图钉最多能够展现16张画;②假如全部的画展现成两行,34÷(2+1)=11(枚)1(枚),11﹣1=10(张),2×10=20(张),34枚图钉最多能够展现20张画;③假如全部的画展现成三行,34÷(3+1)=8(枚)2(枚),8﹣1=7(张),3×7=21(张),34枚图钉最多能够展现21张画;④假如全部的画展现成四行,34÷(4+1)=6(枚)4(枚),6﹣1=5(张),4×5=20(张),34枚图钉最多能够展现20张画;⑤假如全部的画展现成五行,34÷(5+1)=5(枚)4(枚),第13页(共28页)5﹣1=4(张),5×4=20(张),34枚图钉最多能够展现20张画.综上所述:34枚图钉最多能够展现21张画.应选:D.【评论】本题考察了规律型中图形的变化类,察看图形,求出展现的绘画作品展现成一行、二行、三行、四行、五行时,最多能够展现的画的数目是解题的重点.二、填空题(本题包含6小题,每题5分,共30分)11.(5分)因式分解:4x2﹣y2=(2x+y)(2x﹣y).【剖析】原式利用平方差公式分解即可.【解答】解:原式=(2x+y)(2x﹣y),故答案为:(2x+y)(2x﹣y)【评论】本题考察了因式分解﹣运用公式法,娴熟掌握平方差公式是解本题的重点.12.(5分)我国明朝数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.假如1托为5尺,那么索长为20尺,竿子长为15尺.【剖析】设索长为x尺,竿子长为y尺,依据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出对于x、y的二元一次方程组,解之即可得出结论.【解答】解:设索长为x尺,竿子长为y尺,依据题意得:,解得:.答:索长为20尺,竿子长为15尺.故答案为:20;15.【评论】本题考察了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的重点.第14页(共28页)13.(5分)如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,∠AOB=120°,从A到B只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小道AB.经过计算可知,这些市民其实只是少B走了15步(假定1步为0.5米,结果保存整数).(参照数据:≈1.732,π取3.142)【剖析】作OC⊥AB于C,如图,依据垂径定理获得AC=BC,再利用等腰三角形的性质和三角形内角和计算出∠A=30°,则OC=10,AC=10,所以AB≈69(步),而后利用弧长公式计算出的长,最后求它们的差即可.【解答】解:作OC⊥AB于C,如图,则AC=BC,OA=OB,∴∠A=∠B=(180°﹣∠AOB)=(180°﹣120°)=30°,在Rt△AOC中,OC=OA=10,AC=OC=10,AB=2AC=20≈69(步);而的长=≈84(步),的长与AB的长多15步.所以这些市民其实只是少B走了15步.故答案为15.【评论】本题考察了垂径定理:垂径定理和勾股定理相联合,结构直角三角形,可解决心算弦长、半径、弦心距等问题.第15页(共28页)14.(5分)等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为30°或110°.【剖析】分两种情况,利用全等三角形的性质即可解决问题;【解答】解:如图,当点P在直线AB的右边时.连结AP.AB=AC,∠BAC=40°,∴∠ABC=∠C=70°,AB=AB,AC=PB,BC=PA,∴△ABC≌△BAP,∴∠ABP=∠BAC=40°,∴∠PBC=∠ABC﹣∠ABP=30°,当点P′在AB的左边时,同法可得∠ABP′=40,°∴∠P′BC=40+70°°=110°,故答案为30°或110°.【评论】本题考察全等三角形的判断和性质、等腰三角形的性质等知识,解题的重点是学会用分类议论的思想思虑问题,属于中考常考题型.15.(5分)过双曲线y=(k>0)上的动点A作AB⊥x轴于点B,P是直线AB上的点,且知足AP=2AB,过点P作x轴的平行线交此双曲线于点C.假如△APC的面积为8,则k的值是12或4.【剖析】设点A的坐标为(x,),分点P在AB的延伸线上、点P在BA的延伸线上两种状况,依据比率系数k的几何意义、反比率函数图象上点的坐标特点计第16页(共28页)算.【解答】解:设点A的坐标为(x,),当点P在AB的延伸线上时,∵AP=2AB,AB=AP,∵PC∥x轴,∴点C的坐标为(﹣x,﹣),由题意得,×2x×=8,解得,k=4,当点P在BA的延伸线上时,∵AP=2AB,PC∥x轴,∴点C的坐标为(x,),∴P′C′=x,由题意得,×x×=8,解得,k=12,当点P在第三象限时,状况同样,故答案为:12或4.【评论】本题考察的是比率系数k的几何意义、反比率函数图象上点的坐标特点,依据坐标表示出线段的长度是解题的重点.16.(5分)实验室里有一个水平搁置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为xcm.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过极点A的三条棱的长分别10cm,第17页(共28页)10cm,ycm(y≤15),当铁块的顶部超出水面2cm时,x,y知足的关系式是y=(0<x≤)或y=(6≤x<8).【剖析】分两种状况:利用实心铁块浸在水中的体积等于容器中水位增添后的体积减去本来水的体积成立方程求解即可.【解答】解:①当长方体实心铁块的棱长为10cm和ycm的那一面平放在长方体的容器底面时,则铁块浸在水中的高度为8cm,此时,水位上涨了(8﹣x)cm(x<8),铁块浸在水中的体积为10×8×y=80ycm3,80y=30×20×(8﹣x),∴y=,y≤15,∴x≥6,即:y=(6≤x<8),②当长方体实心铁块的棱长为10cm和10cm的那一面平放在长方体的容器底面时,同①的方法得,y=(0<x≤),故答案为:y=(0<x≤)或y=(6≤x<8)【评论】本题主要考察了从实质问题列一次函数关系式,正确找出相等关系是解本题的重点.三、填空题(本题包含8小题,第17-20题每题8分,第21小题10分,第22、23小题每题8分,第24题14分,共80分).(分)()计算:2tan60°﹣﹣(﹣2)0+()﹣1.1781(2)解方程:x2﹣2x﹣1=0.第18页(共28页)【剖析】(1)第一计算特别角的三角函数、二次根式的化简、零次幂、负整数指数幂,而后再计算加减即可;2)第一计算△,而后再利用求根公式进行计算即可.【解答】解:(1)原式=2﹣2﹣1+3=2;2)a=1,b=﹣2,c=﹣1,=b2﹣4ac=4+4=8>0,方程有两个不相等的实数根,x===1,则x1=1+,x2=1﹣.【评论】本题主要考察了实数的运算和一元二次方程的解法,重点是娴熟掌握特别角的三角函数、二次根式的化简、零次幂、负整数指数幂以及一元二次方程的求根公式.18.(8分)为认识某地域灵活车拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年灵活车拥有量、车辆经过人民路路口和学校门口的堵车次数进行检查统计,并绘制成以下统计图:依据统计图,回答以下问题:(1)写出2016年灵活车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的均匀数.2)依据统计数据,联合生活实质,对灵活车拥有量与人民路路口和学校门口堵车次数,谈谈你的见解.第19页(共28页)【剖析】(1)依据统计图中的数据能够解答本题;2)依据统计图中的数据,联合生活实质,进行说明即可,本题答案不独一,只需通情达理即可.【解答】解:(1)由图可得,2016年灵活车的拥有量为 3.40万辆,==120(次),==100(次)即;2010年~2017年在人民路路口和学校门口堵车次数的均匀数分别是120次、100次;2)跟着人民生活水平的提升,居民的汽车拥有量显然增添,同时跟着汽车数目的增添,也给交通带来了压力,堵车次数显然增添,学校路口学生经过次数许多,政府和交通部分增强重视,进行治理,堵车次数显然好转,人民路口堵车次数不停增添,惹起政府重视,加大治理,交通有所好转.【评论】本题考察折线统计图、条形统计图、加权均匀数,解答本题的重点是明确题意,利用数形联合的思想解答.19.(8分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱节余油量y(升)对于加满油后已行驶的行程x(千米)的函数图象.1)依据图象,直接写出汽车行驶400千米时,油箱内的节余油量,并计算加满油时油箱的油量;(2)求y对于x的函数关系式,并计算该汽车在节余油量5升时,已行驶的路程.【剖析】(1)由图象可知:汽车行驶400千米,节余油量30升,行驶时的耗油第20页(共28页)量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升),故加满油时油箱的油量是40+30=70升.2)设y=kx+b(k≠0),把(0,70),(400,300)坐标代入可得:k=﹣0.1,b=70,求出分析式,当y=5时,可得x=650.【解答】解:(1)由图象可知:汽车行驶400千米,节余油量30升,∵行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升)∴加满油时油箱的油量是40+30=70升.2)设y=kx+b(k≠0),把(0,70),(400,300)坐标代入可得:k=﹣0.1,b=70y=﹣0.1x+70,当y=5时,x=650即已行驶的行程的为650千米.【评论】该题是依据题意和函数图象来解决问题,考察学生的审题识图能力和待定系数法求分析式以及根根分析式求值.20.(8分)学校拓展小组研制了画图智能机器人(如图1),按序输入点P1,P2,P3的坐标,机器人能依据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请依据以下点的坐标,求出线段的长度或抛物线的函数关系式.1)P1(4,0),P2(0,0),P3(6,6);2)P1(0,0),P2(4,0),P3(6,6).【剖析】(1)依据图2判断出绘制直线,依据两点间的距离公式可得答案;(2)依据图2判断出绘制抛物线,利用待定系数法求解可得.第21页(共28页)【解答】解:(1)∵P1(4,0),P2(0,0),4﹣0=4>0,∴绘制线段P1P2,P1P2=4;2)∵P1(0,0),0﹣0=0,∴绘制抛物线,设y=ax(x﹣4),把(6,6)代入得:6=12a,解得:a=,y=x(x﹣4)=x2﹣2x.【评论】本题主要考察二次函数的应用,解题的重点是看图2的判断条件及待定系数法求函数分析式.21.(10分)如图1,窗框和窗扇用“滑块铰链”连结,图3是图2中“滑块铰链”的平面表示图,滑轨MN安装在窗框上,托悬臂DE安装在窗扇上,交点A处装有滑块,滑块能够左右滑动,支点B,C,D一直在向来线上,延伸DE交MN于点F.已知AC=DE=20cm,AE=CD=10cm,BD=40cm.1)窗扇完整翻开,张角∠CAB=85°,求此时窗扇与窗框的夹角∠DFB的度数;2)窗扇部分翻开,张角∠CAB=60°,求此时点A,B之间的距离(精准到0.1cm).(参照数据:≈1.732,≈2.449)【剖析】(1)依据平行四边形的判断和性质能够解答本题;2)依据锐角三角函数和题意能够求得AB的长,进而能够解答本题.【解答】解:(1)∵AC=DE=20cm,AE=CD=10cm,∴四边形ACDE是平行四边形,AC∥DE,∴∠DFB=∠CAB,第22页(共28页)∵∠CAB=85°,∴∠DFB=85°;2)作CG⊥AB于点G,AC=20,∠CGA=90°,∠CAB=60°,∴CG=,AG=10,BD=40,CD=10,CB=30,∴BG==,AB=AG+BG=10+10≈10+10×2.449=34.49≈34.5cm,即A、B之间的距离为34.5cm.【评论】本题考察解直角三角形的应用,解答本题的重点是明确题意,找出所求问题需要的条件,利用数形联合的思想解答.22.(12分)数学课上,张老师举了下边的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启迪同学们进行变式,小敏编了以下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不一样,获得∠B的度数的个数也可能不一样,假如在等腰三角形ABC中,设∠A=x°,当∠B有三个不一样的度数时,请你探究x的取值范围.【剖析】(1)因为等腰三角形的顶角和底角没有明确,所以要分类议论;(2)分两种状况:①90≤x<180;②0<x<90,联合三角形内角和定理求解即可.第23页(共28页)【解答】解:(1)若∠A为顶角,则∠B=(180°﹣∠A)÷2=50°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×80°=20°;若∠A为底角,∠B为底角,则∠B=80°;故∠B=50°或20°或80°;(2)分两种状况:①当90≤x<180时,∠A只好为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不一样的度数.综上所述,可知当0<x<90且x≠60时,∠B有三个不一样的度数.【评论】本题考察了等腰三角形的性质及三角形内角和定理,进行分类议论是解题的重点.23.(12分)小敏思虑解决以下问题:原题:如图1,点P,Q分别在菱形ABCD的边BC,CD上,∠PAQ=∠B,求证:AP=AQ.(1)小敏进行探究,若将点P,Q的地点特别化;把∠PAQ绕点A旋转获得∠EAF,使AE⊥BC,点E,F分别在边BC,CD上,如图2.此时她证了然AE=AF,请你证明.第24页(共28页)。
。2018年浙江省绍兴市中考数学一模试卷(1)
2018年浙江省绍兴市中考数学一模试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)二次函数y=(x﹣1)2+2的最小值是()A.﹣2 B.2 C.﹣1 D.12.(4分)已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断3.(4分)已知一个扇形的半径为R,圆心角为n°,当这个扇形的面积与一个直径为R的圆面积相等时,则这个扇形的圆心角n的度数是()A.180°B.120°C.90°D.60°4.(4分)如图,点A、C、B在⊙O上,已知∠AOB=∠ACB=a,则a的值为()A.135°B.100°C.110° D.120°5.(4分)如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.B.C.D.6.(4分)小洋用一张半径为24cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.120πcm2B.240πcm2C.260πcm2D.480πcm27.(4分)二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论:(1)c<0;(2)b>0;(3)4a+2b+c>0;(4)(a+c)2<b2.其中不正确的有()A.1个 B.2个 C.3个 D.4个8.(4分)如图,PA、PB分别切⊙O于A、B两点,射线PD与⊙O相交于C,D 两点,点E是CD中点,若∠APB=40°,则∠AEP的度数是()A.40°B.50°C.60°D.70°9.(4分)利用平方根去根号可以构造一个整系数方程.例如:x=+1时,移项得x﹣1=,两边平方得(x﹣1)2=()2,所以x2﹣2x+1=2,即x2﹣2x﹣1=0.仿照上述构造方法,当x=时,可以构造出一个整系数方程是()A.4x2+4x+5=0 B.4x2+4x﹣5=0 C.x2+x+1=0D.x2+x﹣1=010.(4分)如图,AB是⊙O的直径,弦CD⊥AB于点G.点F是CD上一点,且满足=,连接AF并延长交⊙O于点E.连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是()A.①②④B.①②③C.②③④D.①③④二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)比较三角函数值的大小:sin30°tan30°(填入“>”或“<”).12.(5分)有9张卡片,每张卡片上分别写有不同的从1到9的一个自然数,从中任意抽出一张卡片,则抽到的卡片上的数是3的倍数的概率是.13.(5分)如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为.14.(5分)大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么PB的长度为cm.15.(5分)如图,已知在Rt△ABC中,∠C为直角,AC=5,BC=12,在Rt△ABC 内从左往右叠放边长为1的正方形小纸片,第一层小纸片的一条边都在AB上,依次这样往上叠放上去,则最多能叠放个.16.(5分)如图,在⊙O中,AB为⊙O的直径,AB=4.动点P从A点出发,以每秒π个单位的速度在⊙O上按顺时针方向运动一周.设动点P的运动时间为t 秒,点C是圆周上一点,且∠AOC=40°,当t=秒时,点P与点C中心对称,且对称中心在直径AB上.三、解答题(本大题共8小题,共计80分)17.(8分)计算:(1)(﹣1)2+tan45°﹣;(2)已知=,求的值.18.(8分)动手画一画,请把如图补成以A为对称中心的中心对称图形.19.(8分)甲口袋中装有两个相同的小球,它们的标号分别为2和7,乙口袋中装有两个相同的小球,它们的标号分别为4和5,丙口袋中装有三个相同的小球,它们的标号分别为3,8,9.从这3个口袋中各随机地取出1个小球.(1)求取出的3个小球的标号全是奇数的概率是多少?(2)以取出的三个小球的标号分别表示三条线段的长度,求这些线段能构成三角形的概率.20.(10分)如图,在△ABC中,AC=8厘米,BC=16厘米,点P从点A出发,沿着AC边向点C以1cm/s的速度运动,点Q从点C出发,沿着CB边向点B以2cm/s 的速度运动,如果P与Q同时出发,经过几秒△PQC和△ABC相似?21.(10分)如图,阳光通过窗口照到教室内,竖直窗框在地面上留下 2.1m长的影子如图所示,已知窗框的影子DE的点E到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度(即AB的值).22.(10分)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC 与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.23.(12分)阅读理解:如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;拓展探究:(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E 恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.24.(14分)已知x轴上有点A(1,0),点B在y轴上,点C(m,0)为x轴上一动点且m<﹣1,连接AB,BC,tan∠ABO=,以线段BC为直径作⊙M交直线AB于点D,过点B作直线l∥AC,过A,B,C三点的抛物线为y=ax2+bx+c,直线l与抛物线和⊙M的另一个交点分别是E,F.(1)求B点坐标;(2)用含m的式子表示抛物线的对称轴;(3)线段EF的长是否为定值?如果是,求出EF的长;如果不是,说明理由.(4)是否存在点C(m,0),使得BD=AB?若存在,求出此时m的值;若不存在,说明理由.2018年浙江省绍兴市中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)二次函数y=(x﹣1)2+2的最小值是()A.﹣2 B.2 C.﹣1 D.1【分析】考查对二次函数顶点式的理解.抛物线y=(x﹣1)2+2开口向上,有最小值,顶点坐标为(1,2),顶点的纵坐标2即为函数的最小值.【解答】解:根据二次函数的性质,当x=1时,二次函数y=(x﹣1)2+2的最小值是2.故选:B.【点评】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.2.(4分)已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P 在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.【解答】解:∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙0内,故选:A.【点评】本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O 上,③当r<d时,点P在⊙O外.3.(4分)已知一个扇形的半径为R,圆心角为n°,当这个扇形的面积与一个直径为R的圆面积相等时,则这个扇形的圆心角n的度数是()A.180°B.120°C.90°D.60°【分析】根据扇形和圆的面积公式列方程即可得到结论.【解答】解:根据题意得,=()2π,解得:n=90,故选:C.【点评】本题考查了扇形的面积公式,熟记扇形的面积公式是解题的关键.4.(4分)如图,点A、C、B在⊙O上,已知∠AOB=∠ACB=a,则a的值为()A.135°B.100°C.110° D.120°【分析】先运用“在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半”,再运用周角360°即可解.【解答】解:∵∠ACB=a∴优弧所对的圆心角为2a∴2a+a=360°∴a=120°.故选:D.【点评】本题利用了圆内接四边形的性质和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.(4分)如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.B.C.D.【分析】直接连接DC,得出CD⊥AB,再结合勾股定理以及锐角三角函数关系得出答案【解答】解:连接DC,由网格可得:CD⊥AB,则DC=,AC=,故sinA=.故选:D.【点评】此题主要考查了锐角三角函数关系,正确构造直角三角形是解题关键.6.(4分)小洋用一张半径为24cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.120πcm2B.240πcm2C.260πcm2D.480πcm2【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【解答】解:圆锥的侧面积=?2π?10?24=240π(cm2),所以这张扇形纸板的面积为240πcm2.故选:B.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.(4分)二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论:(1)c<0;(2)b>0;(3)4a+2b+c>0;(4)(a+c)2<b2.其中不正确的有()A.1个 B.2个 C.3个 D.4个【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点得出c的值,然后根据图象经过的点的情况进行推理,进而对所得结论进行判断.【解答】解:抛物线的开口向上,则a>0;对称轴为x=﹣=1,即b=﹣2a,故b<0,故(2)错误;抛物线交y轴于负半轴,则c<0,故(1)正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c<0,故(3)错误;把x=1代入y=ax2+bx+c得:y=a+b+c<0,把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c <0,则(a+b+c)(a﹣b+c)>0,故(4)错误;不正确的是(2)(3)(4);故选:C.【点评】本题考查二次函数图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=4a+2b+c,然后根据图象判断其值.8.(4分)如图,PA、PB分别切⊙O于A、B两点,射线PD与⊙O相交于C,D 两点,点E是CD中点,若∠APB=40°,则∠AEP的度数是()A.40°B.50°C.60°D.70°【分析】连接OP,OA,OE,先根据垂径定理求得∠PEO=90°,然后根据切线的性质求得,∠APO=∠BPO=∠APB=20°∠PAO=90°,即可进一步证得A、O、E、P 四点共圆,根据圆周角的性质即可求得.【解答】解:连接OP,OA,OE,∵点E是CD中点,∴OE⊥DC,∴∠PEO=90°,∵PA、PB分别切⊙O于A、B两点,∴OA⊥PA,∠APO=∠BPO=∠APB=20°∴∠PAO=90°,∴∠POA=70°,∴A、O、E、P四点在以OP为直径的圆上,∴∠AEP=∠AOP=70°,故选:D.【点评】本题考查了切线的性质,垂径定理,四点共圆的判定以及圆周角定理,作出辅助线构建直角三角形以及证得A、O、E、P四点共圆本题是关键.9.(4分)利用平方根去根号可以构造一个整系数方程.例如:x=+1时,移项得x﹣1=,两边平方得(x﹣1)2=()2,所以x2﹣2x+1=2,即x2﹣2x﹣1=0.仿照上述构造方法,当x=时,可以构造出一个整系数方程是()A.4x2+4x+5=0 B.4x2+4x﹣5=0 C.x2+x+1=0D.x2+x﹣1=0【分析】利用已知将原式变形,结合完全平方公式得出答案.【解答】解:由题意可得:x=,可变形为:2x=﹣1,则(2x+1)=,故(2x+1)2=6,则可以构造出一个整系数方程是:4x2+4x﹣5=0.故选:B.【点评】此题主要考查了一元二次方程的定义,正确应用完全平方公式是解题关键.10.(4分)如图,AB是⊙O的直径,弦CD⊥AB于点G.点F是CD上一点,且满足=,连接AF并延长交⊙O于点E.连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是()A.①②④B.①②③C.②③④D.①③④【分析】①由AB是⊙O的直径,弦CD⊥AB,根据垂径定理可得:=,DG=CG,继而证得△ADF∽△AED;②由=,CF=2,可求得DF的长,继而求得CG=DG=4,则可求得FG=2;③由勾股定理可求得AG的长,即可求得tan∠ADF的值,继而求得tan∠E=;④首先求得△ADF的面积,由相似三角形面积的比等于相似比,即可求得△ADE 的面积,继而求得S△DEF=4.【解答】解:①∵AB是⊙O的直径,弦CD⊥AB,∴=,DG=CG,∴∠ADF=∠AED,∵∠FAD=∠DAE(公共角),∴△ADF∽△AED;故①正确;②∵=,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG﹣CF=2;故②正确;③∵AF=3,FG=2,∴AG==,∴在Rt△AGD中,tan∠ADG==,∴tan∠E=;故③错误;④∵DF=DG+FG=6,AD==,∴S△ADF=DF?AG=×6×=3 ,∵△ADF∽△AED,∴=()2,∴=,∴S△AED=7 ,∴S△DEF=S△AED﹣S△ADF=4 ;故④正确.故选:A.【点评】此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、勾股定理以及三角函数等知识.此题综合性较强,难度适中,注意掌握数形结合思想的应用.二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)比较三角函数值的大小:sin30°<tan30°(填入“>”或“<”).【分析】根据特殊角三角函数值,可得答案.【解答】解:sin30°=,tan30°=,<,即sin30°<tan30°,故答案为:<.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.12.(5分)有9张卡片,每张卡片上分别写有不同的从1到9的一个自然数,从中任意抽出一张卡片,则抽到的卡片上的数是3的倍数的概率是.【分析】先得出3的倍数,再根据概率公式即可得出结论.【解答】解:∵1~9中3的倍数有3,6,9三个数,∴P==.故答案为:.【点评】本题考查的是概率公式,熟记随机事件的概率公式是解答此题的关键.13.(5分)如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为7.【分析】根据已知条件可以推出△CEF∽△OME∽△PFN然后把它们的直角边用含x的表达式表示出来,利用对应边的比相等,即可推出x的值答题【解答】解:如图∵在Rt△ABC中∠C=90°,放置边长分别3,4,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF,∵EF=x,MO=3,PN=4,∴OE=x﹣3,PF=x﹣4,∴(x﹣3):4=3:(x﹣4),∴(x﹣3)(x﹣4)=12,∴x1=0(不符合题意,舍去),x2=7.故答案为:7.【点评】本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x的表达式表示出对应边.14.(5分)大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么PB的长度为(15﹣5)cm.【分析】先利用黄金分割的定义计算出AP,然后计算AB﹣AP即得到PB的长.【解答】解:∵P为AB的黄金分割点(AP>PB),∴AP=AB=×10=5﹣5,∴PB=AB﹣PA=10﹣(5﹣5)=(15﹣5)cm.故答案为(15﹣5).【点评】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.15.(5分)如图,已知在Rt△ABC中,∠C为直角,AC=5,BC=12,在Rt△ABC 内从左往右叠放边长为1的正方形小纸片,第一层小纸片的一条边都在AB上,依次这样往上叠放上去,则最多能叠放22个.【分析】求出AB的长后,根据相似的判定与性质每一层的靠上的边的长度,从而判定可放置的正方形的个数及层数.【解答】解:由勾股定理得:AB==13.由三角形的面积计算公式可知:△ABC的高==.如图所示:根据题意有:△CAB∽△CEF∴==∴EF==10∴第一层可放置10个小正方形纸片.同法可得总共能放4层,依次可放置10、7、4、1个小正方形纸片,∴最多能叠放10+7+4+1=22(个)故答案为:22个.【点评】本题考查了相似三角形的性质与判定、正方形的性质等问题,解题的关键是在掌握所需知识点的同时,要具有综合分析问题、解决问题的能力.16.(5分)如图,在⊙O中,AB为⊙O的直径,AB=4.动点P从A点出发,以每秒π个单位的速度在⊙O上按顺时针方向运动一周.设动点P的运动时间为t 秒,点C是圆周上一点,且∠AOC=40°,当t=或或或秒时,点P 与点C中心对称,且对称中心在直径AB上.【分析】根据中心对称的定义,可得P点的位置,根据弧长公式,可得,根据路程除以速度等于时间,可得答案.【解答】解:如图,当∠AOP1=40°时,P1与C1对称,=4π×=,t=÷π=;当∠AOP2=140°时,P2与C1对称,=4π×=π,t=÷π=;当∠AOP3=220°时,P3与C2对称,=4π×=,t=÷π=;当∠AOP4=320°时,P4与C1对称,=4π×=π,t=÷π=;故答案为:或或或.【点评】本题考查了中心对称,利用中心对称得出P点的位置是解题关键,又利用了弧长公式,要分类讨论,以防遗漏.三、解答题(本大题共8小题,共计80分)17.(8分)计算:(1)(﹣1)2+tan45°﹣;(2)已知=,求的值.【分析】(1)根据算术平方根、乘方和特殊的三角函数值进行计算即可;(2)先根据已知化为用x的代数式表示y或用y的代数式表示x,再代入计算即可.【解答】解:(1)(﹣1)2+tan45°﹣,=1+1﹣2,=0,(2)∵=,∴x=y,∴==.【点评】本题考查了实数的运算、特殊的三角函数值、比例的性质,属于基础题,熟练运算计算法则和比例的基本性质是关键.18.(8分)动手画一画,请把如图补成以A为对称中心的中心对称图形.【分析】利用中心对称图形的性质得出关于A点对称的图形,进而得出答案.【解答】解:如图所示【点评】此题主要考查了作图旋转变换,根据题意得出对应点位置是解题关键.19.(8分)甲口袋中装有两个相同的小球,它们的标号分别为2和7,乙口袋中装有两个相同的小球,它们的标号分别为4和5,丙口袋中装有三个相同的小球,它们的标号分别为3,8,9.从这3个口袋中各随机地取出1个小球.(1)求取出的3个小球的标号全是奇数的概率是多少?(2)以取出的三个小球的标号分别表示三条线段的长度,求这些线段能构成三角形的概率.【分析】(1)因为此题需要三步完成,所以采用树状图法最简单,所以先画树状图,然后根据树状图求得所有等可能的结果与取出的3个小球的标号全是奇数的情况,然后利用概率公式即可求得答案;(2)根据(1)中的树状图求得这些线段能构成三角形的情况,再根据概率公式求解即可.【解答】解:(1)画树状图得:∴一共有12种等可能的结果,取出的3个小球的标号全是奇数的有2种情况,∴取出的3个小球的标号全是奇数的概率是:=.(2)∵这些线段能构成三角形的有2、4、3,7、4、8,7、4、9,7、5、3,7、5、8,7、5、9共6种情况,∴这些线段能构成三角形的概率为=.。
浙江省绍兴市上虞市2018年中考数学一模试卷(有答案)AUPwUU
浙江省绍兴市上虞市2018年中考数学一模试卷(解析版)一、选择题(本大题共10小题,每小题4分,共40分)1.﹣5的相反数是()A.B.5 C.﹣ D.﹣5【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣5的相反数是5,故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.杭绍台城际铁路的建设,使浙江南北联通更加紧密,迎来“高铁时代”,该铁路总投资350亿元.将350亿用科学记数法表示为()A.3.50×102B.350×108C.3.50×1010D.3.50×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于350亿有11位,所以可以确定n=11﹣1=10.【解答】解:350亿=35 000 000 000=3.50×1010.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【解答】解:A、主视图是第一层三个小正方形,第二层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,故A错误;B、主视图是第一层两个小正方形,第二层中间一个小正方形,第三层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,第三层一个小正方形,故B错误;C、主视图是第一层两个小正方形,第二层左边一个小正方形,左视图是第一层两个小正方形,第二层左边一个小正方形,故C正确;D、主视图是第一层两个小正方形,第二层右边一个小正方形,左视图是第一层一个小正方形,第二层左边一个小正方形,故D错误;故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.4.如图,小聪把一块含有60°角的直角三角形板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.60°【分析】先根据两直线平行,内错角相等求出∠3,再根据直角三角形的性质用∠2=60°﹣∠3代入数据进行计算即可得解.【解答】解:∵直尺的两边互相平行,∠1=25°,∴∠3=∠1=25°,∴∠2=60°﹣∠3=60°﹣25°=35°.故选:C.【点评】本题考查了平行线的性质,三角板的知识,熟记平行线的性质是解题的关键.5.下列图形中,是轴对称图形但不是中心对称图形的是()A.B. C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形但不是中心对称图形,故本选项正确;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项错误.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取到的是一个红球、一个白球的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况,∴取到的是一个红球、一个白球的概率为:=.故选:C.【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2 C.D.10﹣5【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE ﹣BG=2、HE=CH﹣CE=2、∠HEG=90°,由勾股定理可得GH的长.【解答】解:如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),AG2+BG2=AB2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE﹣BG=8﹣6=2,同理可得HE=2,在RT△GHE中,GH===2,故选:B.【点评】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键.8.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.右面两个图框是用法国“小九九”计算7×8和8×9的两个示例.若用法国“小九九”计算7×9,左、右手依次伸出手指的个数是()A.2,3 B.3,3 C.2,4 D.3、4【分析】按照题中示例可知:要计算a×b,左手应伸出(a﹣5)个手指,未伸出的手指数为5﹣(a﹣5)=10﹣a;右手应伸出(b﹣5)个手指,未伸出的手指数为5﹣(b﹣5)=10﹣b.【解答】解:要计算7×9,左手应伸出手指:7﹣5=2(个);右手应伸出手指:9﹣5=4(个).故选:C.【点评】此题考查数字的变化规律.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.9.如图,⊙O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()A.B.C.D.【分析】根据题意分1<x≤与<x≤2两种情况,确定出y与x的关系式,即可确定出图象.【解答】解:当P在OC上运动时,根据题意得:sin∠APB=,∵OA=1,AP=x,sin∠APB=y,∴xy=1,即y=(1<x≤),当P在上运动时,∠APB=∠AOB=45°,此时y=(<x≤2),图象为:故选:C.【点评】此题考查了动点问题的函数图象,列出y与x的函数关系式是解本题的关键.10.如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y=上(k>0,x>0),则k的值为()A.25B.18C.9 D.9【分析】根据等边三角形的性质表示出D,C点坐标,进而利用反比例函数图象上点的坐标特征得出答案.【解答】解:过点D作DE⊥x轴于点E,过C作CF⊥x轴于点F,如图所示.可得:∠ODE=30∠BCD=30°,设OE=a,则OD=2a,DE=a,∴BD=OB﹣OD=10﹣2a,BC=2BD=20﹣4a,AC=AB﹣BC=4a﹣10,∴AF=AC=2a﹣5,CF=AF=(2a﹣5),OF=OA﹣AF=15﹣2a,∴点D(a,a),点C[15﹣2a,(2a﹣5)].∵点C、D都在双曲线y=上(k>0,x>0),∴a•a=(15﹣2a)×(2a﹣5),解得:a=3或a=5.当a=5时,DO=OB,AC=AB,点C、D与点B重合,不符合题意,∴a=5舍去.∴点D(3,3),∴k=3×3=9.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征以及等边三角形的性质,解题的关键是找出点D、C的坐标.二、填空题11.(5.00分)分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(5.00分)在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A',则点A'关于原点对称的点A''的坐标为(﹣1,﹣3).【分析】直接利用平移的性质得出点A'的坐标,再利用关于原点对称点的性质得出答案.【解答】解:∵点A(2,3)向左平移一个单位得到点A',∴A′(1,3),∴点A'关于原点对称的点A''的坐标为:(﹣1,﹣3).故答案为:(﹣1,﹣3).【点评】此题主要考查了平移变换以及关于原点对称点的性质,正确记忆关于原点对称点的性质是解题关键.13.(5.00分)如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为40°.【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE的内角和,则可求得∠BOD.【解答】解:∵∠1、∠2、∠3、∠4的外角的角度和为220°,∴∠1+∠2+∠3+∠4+220°=4×180°,∴∠1+∠2+∠3+∠4=500°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣500°=40°,故答案为:40°.【点评】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.14.(5.00分)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是x<﹣1或x>4.【分析】观察两函数图象的上下位置关系,即可得出结论.【解答】解:观察函数图象可知:当x<﹣1或x>4时,直线y=mx+n在抛物线y=ax2+bx+c的上方,∴不等式mx+n>ax2+bx+c的解集为x<﹣1或x>4.故答案为:x<﹣1或x>4.【点评】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.15.(5.00分)“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为26.【分析】根据垂径定理和勾股定理求解.【解答】解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE=AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2,即r2=52+(r﹣1)2,解得:r=13,所以CD=2r=26,即圆的直径为26.【点评】本题利用了垂径定理和勾股定理求解.16.(5.00分)如图,平面直角坐标系中O是原点,▱OABC的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD,CE分别交OA,OB于点F,G,连结FG,则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是20;④OD=;其中正确的结论是①(填写所有正确结论的序号)【分析】①证明△CDB∽△FDO,列比例式得:=,再由D、E为OB的三等分点,则==2,可得结论正确;②如图2,延长BC交y轴于H证明OA≠AB,则∠AOB≠∠EBG,所以△OFD∽△BEG不成立;=S▱OABC﹣S△OFC﹣S△CBG﹣S△AFG=12,根据相似三角形面积的比③如图3,利用面积差求得:S△CFG等于相似比的平方进行计算并作出判断;④根据勾股定理进行计算OB的长,根据三等分线段OB可得结论.【解答】解:①∵四边形OABC是平行四边形,∴BC∥OA,BC=OA,∴△CDB∽△FDO,∴=,∵D、E为OB的三等分点,∴==2,∴=2,∴BC=2OF,∴OA=2OF,∴F是OA的中点;所以①结论正确;②如图2,延长BC交y轴于H,由C(3,4)知:OH=4,CH=3,∴OC=5,∴AB=OC=5,∵A(8,0),∴OA=8,∴OA≠AB,∴∠AOB≠∠EBG,∴△OFD∽△BEG不成立,所以②结论错误;③由①知:F为OA的中点,同理得;G是AB的中点,∴FG是△OAB的中位线,∴FG=OB,FG∥OB,∵OB=3DE,∴FG=DE,∴=,过C作CQ⊥AB于Q,S▱OABC=OA•OH=AB•CQ,∴4×8=5CQ,∴CQ=,S△OCF=OF•OH=×4×4=8,S△CGB=BG•CQ=××=8,S△AFG=×4×2=4,=S▱OABC﹣S△OFC﹣S△CBG﹣S△AFG=8×4﹣8﹣8﹣4=12,∴S△CFG∵DE∥FG,∴△CDE∽△CFG,∴=()2=,∴=,∴=,=;∴S四边形DEGF所以③结论错误;④在Rt△OHB中,由勾股定理得:OB2=BH2+OH2,∴OB==,∴OD=,所以④结论错误;故本题结论正确的有:①;故答案为:①.【点评】本题是四边形的综合题,考查了平行四边形的性质、图形与坐标特点、勾股定理、三角形的中位线定理、三角形相似的性质和判定、平行四边形和三角形面积的计算等知识,难度适中,熟练掌握平行四边形和相似三角形的性质是关键.三、解答题(本大题共8小题,共80分)17.(8.00分)(1)计算:|﹣3|+(π﹣2017)0﹣2sin30°+()﹣1;(2)解不等式组:【分析】(1)根据零指数幂的意义、特殊角锐角三角函数、负整数指数幂的意义即可求出答案.(2)根据不等式组的解法即可求出答案.【解答】解:(1)原式=3+1﹣2×+3=6(2)由2x≥﹣9﹣x得:x≥﹣3,由5x﹣1>3(x+1)得:x>2∴该不等式组的解集为:x>2【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.18.(8.00分)中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”,某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)本次调查所得数据的众数是1部,中位数是2部,扇形统计图中“1部”所在扇形的圆心角为126度.(2)请将条形统计图补充完整;(3)没有读过四大古典名著的两名学生准备从四大古典名著中各自随机选择一部来阅读,则他们选中同一名著的概率为.【分析】(1)先根据调查的总人数,求得1部对应的人数,进而得到本次调查所得数据的众数以及中位数,根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“1部”所在扇形的圆心角;(2)根据1部对应的人数为40﹣2﹣10﹣8﹣6=14,即可将条形统计图补充完整;(3)根据树状图所得的结果,判断他们选中同一名著的概率.【解答】解:(1)调查的总人数为:10÷25%=40,∴1部对应的人数为40﹣2﹣10﹣8﹣6=14,∴本次调查所得数据的众数是1部,∵2+14+10=26>21,2+14<20,∴中位数为2部,扇形统计图中“1部”所在扇形的圆心角为:×360°=126°;故答案为:1,2,126;(2)条形统计图如图所示,(3)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,画树状图可得:共有16种等可能的结果,其中选中同一名著的有4种,故P(两人选中同一名著)==.故答案为:.【点评】本题主要考查了扇形统计图以及条形统计图的运用,解题时注意:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.19.(8.00分)如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C作直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧的长l.【分析】(1)连接OC,根据等腰三角形的性质得到∠OAC=∠DAC,求得∠DAC=∠OCA,推出AD∥OC,得到∠OCF=∠AEC=90°,于是得到结论;(2)连接OD,DC,根据角平分线的定义得到∠DAC=∠OAC,根据三角函数的定义得到∠ECD=30°,得到∠OCD=60°,得到∠BOC=∠COD=60°,OC=2,于是得到结论.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴AD∥OC,∵∠AEC=90°,∴∠OCF=∠AEC=90°,∴EF是⊙O的切线;(2)连接OD,DC,∵∠DAC=DOC,∠OAC=BOC,∴∠DAC=∠OAC,∴∠DOC=∠BOC,∴CD=CB=2,∵ED=1,∴sin∠ECD=,∴∠ECD=30°,∴∠OCD=60°,∵OC=OD,∴△DOC是等边三角形,∴∠BOC=∠COD=60°,OC=2,∴l==π.【点评】本题考查了切线的判定和性质,等边三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.20.(8.00分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)【分析】延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.【解答】解:延长FE交CB的延长线于M,过A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC•tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHE=60°,sin∠FAG=,∴sin60°==,∴FG=2.17,∴DM=FG+GM﹣DF≈3.05米.答:篮框D到地面的距离是3.05米.【点评】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.21.(10.00分)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如表:鲜鱼销售单价(元/kg)20单位捕捞成本(元/kg)5﹣捕捞量(kg)950﹣10x(1)在此期间该养殖场每天的捕捞量与前一天末的捕捞量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?【分析】(1)由图表中的数据可知该养殖场每天的捕捞量比前一天减少10kg;(2)根据收入=捕捞量×单价﹣捕捞成本,列出函数表达式;(3)将实际转化为求函数最值问题,从而求得最大值.【解答】解:(1)根据捕捞量与天数x的关系:950﹣10x可知:该养殖场每天的捕捞量与前一天减少10kg;(2)由题意,得y=20×(950﹣10x)﹣(5﹣)×(950﹣10x)=﹣2x2+40x+14250;(3)∵﹣2<0,y=﹣2x2+40x+14250=﹣2(x﹣10)2+14450,又∵1≤x≤20且x为整数,∴当1≤x≤10时,y随x的增大而增大;当10≤x≤20时,y随x的增大而减小;当x=10时即在第10天,y取得最大值,最大值为14450.【点评】此题考查二次函数的性质及其应用,要运用图表中的信息,将实际问题转化为求函数最值问题,从而来解决实际问题,比较简单.22.(12.00分)如图1,在四边形ABCD中,如果对角线AC和BD相交并且相等,那么我们把这样的四边形称为等角线四边形.(1)①在“平行四边形、矩形、菱形”中,矩形一定是等角线四边形(填写图形名称);②若M、N、P、Q分别是等角线四边形ABCD四边AB、BC、CD、DA的中点,当对角线AC、BD还要满足AC⊥BD时,四边形MNPQ是正方形.(2)如图2,已知△ABC中,∠ABC=90°,AB=4,BC=3,D为平面内一点.①若四边形ABCD是等角线四边形,且AD=BD,则四边形ABCD的面积是3+2;②设点E是以C为圆心,1为半径的圆上的动点,若四边形ABED是等角线四边形,写出四边形ABED面积的最大值,并说明理由.【分析】(1)①只有矩形的对角线相等,所以矩形是等角线四边形;②当AC⊥BD时,四边形MNPQ是正方形,首先证明四边形MNPQ是菱形,再证明有一个角是直角即可;=S△ADE+S梯形DEBC计算,求出相关线段即可;(2)①如图2中,作DE⊥AB于E.根据S四边形ABCD②如图3中,设AE与BD相交于点Q,连接CE,只要证明当AC⊥BD且A、C、E共线时,四边形ABED的面积最大即可.【解答】解:(1)①在“平行四边形、矩形、菱形”中,∵矩形的对角线相等,∴矩形一定是等角线四边形,故答案为矩形.②当AC⊥BD时,四边形MNPQ是正方形.理由:如图1中,∵M 、N 、P 、Q 分别是等角线四边形ABCD 四边AB 、BC 、CD 、DA 的中点,∴PQ=MN=AC ,PN=QM=BD ,PQ ∥AC ,MQ ∥BD ,∵AC=BD ,∴MN=NP=PQ=QM ,∴四边形MNPQ 是菱形,∵∠1=∠2,∠2=∠3,∠1=90°,∴∠3=90°,∴四边形NMPQ 是正方形.故答案为AC ⊥BD .(2)①如图2中,作DE ⊥AB 于E .在Rt △ABC 中,∵∠ABC=90°,AB=4,BC=3,∴AC==5,∵AD=BD ,DE ⊥AB ,∴AE=BE=2,∵四边形ABCD 是等角线四边形,∴BD=AC=AD=5,在Rt △BDE 中,DE==,∴S 四边形ABCD =S △ADE +S 梯形DEBC=•AE•DE+•(DE+BC)•BE=×+(+3)×2=3+2.故答案为3+2.②如图3中,设AE与BD相交于点Q,连接CE,作DH⊥AE于H,BG⊥AE于G.则DH≤DQ,BG≤BQ,∵四边形ABED是等角线四边形,∴AE=BD,=S△ABE+S△ADE=•AE•DH+•AE•BG=•AE•(GB+DH)≤•AE•(BQ+QD),∵S四边形ABED≤AE•BD,即S四边形ABED∴当G、H重合时,即BD⊥AE时,等号成立,∵AE=BD,∴S≤AE2,四边形ABED即线段AE最大时,四边形ABED的面积最大,∵AE≤AC+CE,∴AE≤5+1,∴AE≤6,∴AE的最大值为6,∴当A、C、E共线时,取等号,∴四边形ABED的面积的最大值为×62=18.【点评】本题考查四边形综合题、中点四边形、三角形中位线定理、正方形的判定和性质、圆等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,会求圆上一点到圆外一定点的距离的最大值或最小值,属于中考压轴题.23.(12.00分)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.【分析】(Ⅰ)先求出AC,再分三种情况讨论计算即可得出结论;(Ⅱ)方法1、先判断出OC=ED,OC=PF,进而得出OC=OP=OF,即可得出∠OCF=∠OFC,∠OCP=∠OPC,最后判断出△ADP∽△CDF,得出比例式即可得出结论.方法2、先判断出∠CEF=∠FDC,得出点E,C,F,D四点共圆,再判断出点P也在此圆上,即可得出∠DAP=∠DCF,此后同方法1即可得出结论.方法3、先判断出△PME∽△DNP即可得出,进而用两边对应成比例夹角相等判断出△ADP∽△CDF,得出比例式即可得出结论.【解答】解:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,∴AC==10,要使△PCD是等腰三角形,①当CP=CD时,AP=AC﹣CP=10﹣6=4,②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA,∴PD=PA,∴PA=PC,∴AP=AC=5,③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,=AD•DC=AC•DQ,∵S△ADC∴DQ==,∴CQ==,∴PC=2CQ=,∴AP=AC﹣PC=10﹣=;所以,若△PCD是等腰三角形时,AP=4或5或;(Ⅱ)方法1、如图2,连接PF,DE,记PF与DE的交点为O,连接OC,∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC=ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,∴∠PCD+∠FCD=90°,在Rt△ADC中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法2、如图,∵四边形ABCD和DPEF是矩形,∴∠ADC=∠PDF=90°,∴∠ADP=∠CDF,∵∠DGF+∠CDF=90°,∴∠EGC+∠CDF=90°,∵∠CEF+∠CGE=90°,∴∠CDF=∠FEC,∴点E,C,F,D四点共圆,∵四边形DPEF是矩形,∴点P也在此圆上,∵PE=DF,∴,∴∠ACB=∠DCF,∵AD∥BC,∴∠ACB=∠DAP,∴∠DAP=∠DCF,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法3、如图3,过点P作PM⊥BC于M交AD于N,∴∠PND=90°,∵PN∥CD,∴,∴,∴AN=,∴ND=8﹣=(10﹣)同理:PM=(10﹣)∵∠PND=90°,∴∠DPN+∠PDN=90°,∵四边形PEFD是矩形,∴∠DPE=90°,∴∠DPN+∠EPM=90°,∴∠PDN=∠EPM,∵∠PND=∠EMP=90°,∴△PND∽△EMP,∴=,∵PD=EF,DF=PE.∴,∵,∴,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴=,∵AP=,∴CF=.【点评】此题是四边形综合题,主要考查了矩形的性质,勾股定理,等腰三角形的性质,相似三角形的判定和性质,解(Ⅰ)的关键是分三种情况讨论计算,解(Ⅱ)的关键是判断出△ADP ∽△CDF,是一道中考常考题.24.(14.00分)已知:如图所示,在平面直角坐标系xOy中,四边形OABC是矩形,OA=4,OC=3,动点P从点C出发,沿射线CB方向以每秒2个单位长度的速度运动;同时,动点Q从点O出发,沿x轴正半轴方向以每秒1个单位长度的速度运动.设点P、点Q的运动时间为t (s).(1)当t=1s时,求经过点O,P,A三点的抛物线的解析式;(2)当t=2s时,求tan∠QPA的值;(3)当线段PQ 与线段AB 相交于点M ,且BM=2AM 时,求t (s )的值;(4)连接CQ ,当点P ,Q 在运动过程中,记△CQP 与矩形OABC 重叠部分的面积为S ,求S 与t 的函数关系式.【分析】(1)可求得P 点坐标,由O 、P 、A 的坐标,利用待定系数法可求得抛物线解析式; (2)当t=2s 时,可知P 与点B 重合,在Rt △ABQ 中可求得tan ∠QPA 的值;(3)用t 可表示出BP 和AQ 的长,由△PBM ∽△QAM 可得到关于t 的方程,可求得t 的值;(4)当点Q 在线段OA 上时,S=S △CPQ ;当点Q 在线段OA 上,且点P 在线段CB 的延长线上时,由相似三角形的性质可用t 表示出AM 的长,由S=S 四边形BCQM =S 矩形OABC ﹣S △COQ ﹣S △AMQ ,可求得S 与t 的关系式;当点Q 在OA 的延长线上时,设CQ 交AB 于点M ,利用△AQM ∽△BCM 可用t 表示出AM ,从而可表示出BM ,S=S △CBM ,可求得答案.【解答】解:(1)当t=1s 时,则CP=2,∵OC=3,四边形OABC 是矩形,∴P (2,3),且A (4,0),∵抛物线过原点O ,∴可设抛物线解析式为y=ax 2+bx , ∴,解得,∴过O 、P 、A 三点的抛物线的解析式为y=﹣x 2+3x ;(2)当t=2s 时,则CP=2×2=4=BC ,即点P 与点B 重合,OQ=2,如图1,∴AQ=OA ﹣OQ=4﹣2=2,且AP=OC=3,∴tan ∠QPA==;(3)当线段PQ 与线段AB 相交于点M ,则可知点Q 在线段OA 上,点P 在线段CB 的延长线上,如图2,则CP=2t,OQ=t,∴BP=PC﹣CB=2t﹣4,AQ=OA﹣OQ=4﹣t,∵PC∥OA,∴△PBM∽△QAM,∴=,且BM=2AM,∴=2,解得t=3,∴当线段PQ与线段AB相交于点M,且BM=2AM时,t为3s;(4)当0≤t≤2时,如图3,由题意可知CP=2t,=×2t×3=3t;∴S=S△PCQ当2<t≤4时,设PQ交AB于点M,如图4,由题意可知PC=2t,OQ=t,则BP=2t﹣4,AQ=4﹣t,同(3)可得==,∴BM=•AM,∴3﹣AM=•AM,解得AM=,=S矩形OABC﹣S△COQ﹣S△AMQ=3×4﹣×t×3﹣×(4﹣t)×=24﹣﹣3t;∴S=S四边形BCQM当t>4时,设CQ与AB交于点M,如图5,由题意可知OQ=t,AQ=t﹣4,∵AB∥OC,∴=,即=,解得AM=,∴BM=3﹣=,=×4×=;∴S=S△BCM综上可知S=.【点评】本题为二次函数与四边形的综合应用,涉及待定系数法、矩形的性质、相似三角形的判定和性质、三角函数的定义、方程思想及分类讨论思想等知识.在(1)中求得P点坐标是解题的关键,在(2)中确定P、B重合是解题的关键,在(3)中由相似三角形的性质得到关于t的方程是解题的关键,在(4)中确定出P、Q的位置,从而确定出S为哪一部分图形的面积是解题的关键.本题为“运动型”问题,用t和速度表示出相应线段的长度,化“动”为“静”是解这类问题的一般思路.本题考查知识点较多,综合性较强,特别是最后一问,情况较多,难度较大.一、选择题(本大题共10小题,每小题4分,共40分)1.﹣5的相反数是()A.B.5 C.﹣ D.﹣5【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣5的相反数是5,故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.杭绍台城际铁路的建设,使浙江南北联通更加紧密,迎来“高铁时代”,该铁路总投资350亿元.将350亿用科学记数法表示为().50×1011。
精品解析:2018年浙江省绍兴市中考数学试卷(原卷版)
浙江省2018年初中毕业生学业考试绍兴市试卷数学试题卷一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1. 如果向东走记为,则向西走可记为()A. B. C. D.2. 绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116000000方,数字116000000用科学记数法可以表示为()A. B. C. D.3. 有6个相同的立方体搭成的几何体如图所示,则它的主视图是()学§科§网...学§科§网...A. B. C. D.4. 抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是()A. B. C. D.5. 下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④6. 如图,一个函数的图象由射线、线段、射线组成,其中点,,,,则此函数()A. 当时,随的增大而增大B. 当时,随的增大而减小C. 当时,随的增大而增大D. 当时,随的增大而减小7. 学校门口的栏杆如图所示,栏杆从水平位置绕点旋转到位置,已知,,垂足分别为,,,,,则栏杆端应下降的垂直距离为()A. B. C. D.8. 利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为,,,,那么可以转换为该生所在班级序号,其序号为.如图2第一行数字从左到右依次为0,1,0,1,序号为,表示该生为5班学生.表示6班学生的识别图案是()A. B. C. D.9. 若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. B. C. D.10. 某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合),现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图),若有34枚图钉可供选用,则最多可以展示绘画作品( )A. 16张B. 18张C. 20张D. 21张二、填空题(本大题有6小题,每小题5分,共30分)11. 因式分解:__________.12. 我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为__________尺,竿子长为__________尺.13. 如图,公园内有一个半径为20米的圆形草坪,,是圆上的点,为圆心,,从到只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路.通过计算可知,这些市民其实仅仅少走了__________步(假设1步为0.5米,结果保留整数).(参考数据:,取3.142)14. 等腰三角形中,顶角为,点在以为圆心,长为半径的圆上,且,则的度数为__________.15. 过双曲线的动点作轴于点,是直线上的点,且满足,过点作轴的平行线交此双曲线于点.如果的面积为8,则的值是__________.16. 实验室里有一个水平放置的长方体容器,从内部量得它的高是,底面的长是,宽是,容器内的水深为.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点的三条棱的长分别是,,,当铁块的顶部高出水面时,,满足的关系式是__________.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22、23小题每小题12分,第24小题14分,共80分.解答应写出文字说明、证明过程或演算步骤)17. (1)计算:.(2)解方程:.18. 为了解某地区机动机拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.19. 一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量(升)关于加满油后已行驶的路程(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求关于的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.20. 学校拓展小组研制了绘图智能机器人(如图1),顺次输入点,,的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1),,.(2),,.21. 如图1,窗框和窗扇用“滑块铰链”连接.图3是图2中“滑块铰链”的平面示意图,滑轨安装在窗框上,托悬臂安装在窗扇上,交点处装有滑块,滑块可以左右滑动,支点,,始终在一直线上,延长交于点.已知,,.(1)窗扇完全打开,张角,求此时窗扇与窗框的夹角的度数.(2)窗扇部分打开,张角,求此时点,之间的距离(精确到).(参考数据:,)22. 数学课上,张老师举了下面的例题:例1 等腰三角形中,,求的度数.(答案:)例2 等腰三角形中,,求的度数.(答案:或或)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形中,,求的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,的度数不同,得到的度数的个数也可能不同.如果在等腰三角形中,设,当有三个不同的度数时,请你探索的取值范围.23. 小敏思考解决如下问题:原题:如图1,点,分别在菱形的边,上,,求证:.(1)小敏进行探索,若将点,的位置特殊化:把绕点旋转得到,使,点,分别在边,上,如图2,此时她证明了.请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作,,垂足分别为,.请你继续完成原题的证明.(3)如果在原题中添加条件:,,如图1.请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).24. 如图,公交车行驶在笔直的公路上,这条路上有,,,四个站点,每相邻两站之间的距离为5千米,从站开往站的车称为上行车,从站开往站的车称为下行车.第一班上行车、下行车分别从站、站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在,站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到站、第一班下行车到站分别用时多少?(2)若第一班上行车行驶时间为小时,第一班上行车与第一班下行车之间的距离为千米,求与的函数关系式.(3)一乘客前往站办事,他在,两站间的处(不含,站),刚好遇到上行车,千米,此时,接到通知,必须在35分钟内赶到,他可选择走到站或走到站乘下行车前往站.若乘客的步行速度是5千米/小时,求满足的条件.。
2018年浙江省绍兴市上虞市中考数学一模试卷带解析答案
②设点 E 是以 C 为圆心,1 为半径的圆上的动点,若四边形 ABED 是等角线四 边形,写出四边形 ABED 面积的最大值,并说明理由. 23. (12 分)如图,矩形 ABCD 中,AB=6,AD=8,P,E 分别是线段 AC、BC 上的点,且四边形 PEFD 为矩形. (Ⅰ)若△PCD 是等腰三角形时,求 AP 的长; (Ⅱ绍兴市上虞市中考一模数学试卷
一、选择题(本大题共 10 小题,每小题 4 分,共 40 分) 1. (4 分)﹣5 的相反数是( A. B.5 ) C.﹣ D.﹣5
2. (4 分) 杭绍台城际铁路的建设, 使浙江南北联通更加紧密, 迎来 “高铁时代” , 该铁路总投资 350 亿元.将 350 亿用科学记数法表示为( A.3.50×102 B.350×108 C.3.50×1010 ) D.3.50×1011
第 7 页(共 36 页)
2018 年浙江省绍兴市上虞市中考一模数学试卷
参考答案与试题解析
一、选择题(本大题共 10 小题,每小题 4 分,共 40 分) 1. (4 分)﹣5 的相反数是( A. B.5 ) C.﹣ D.﹣5
【解答】解:﹣5 的相反数是 5, 故选:B. 2. (4 分) 杭绍台城际铁路的建设, 使浙江南北联通更加紧密, 迎来 “高铁时代” , 该铁路总投资 350 亿元.将 350 亿用科学记数法表示为( A.3.50×102 B.350×108 C.3.50×1010 ) D.3.50×1011
A.25
B.18
C.9
D.9
二、填空题(每题 5 分,满分 30 分) 11. (5 分)分解因式:xy2﹣4x= .
12. (5 分)在平面直角坐标系中,把点 A(2,3)向左平移一个单位得到点 A', 则点 A'关于原点对称的点 A''的坐标为 .
浙江省绍兴市上虞市2018年中考数学一模试卷(解析版)
浙江省绍兴市上虞市2018年中考数学一模试卷(解析版)一、选择题(本大题共10小题,每小题4分,共40分)1.﹣5的相反数是()A.B.5 C.﹣ D.﹣5【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣5的相反数是5,故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.杭绍台城际铁路的建设,使浙江南北联通更加紧密,迎来“高铁时代”,该铁路总投资350亿元.将350亿用科学记数法表示为()A.3.50×102B.350×108C.3.50×1010D.3.50×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于350亿有11位,所以可以确定n=11﹣1=10.【解答】解:350亿=35 000 000 000=3.50×1010.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【解答】解:A、主视图是第一层三个小正方形,第二层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,故A错误;B、主视图是第一层两个小正方形,第二层中间一个小正方形,第三层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,第三层一个小正方形,故B错误;C、主视图是第一层两个小正方形,第二层左边一个小正方形,左视图是第一层两个小正方形,第二层左边一个小正方形,故C正确;D、主视图是第一层两个小正方形,第二层右边一个小正方形,左视图是第一层一个小正方形,第二层左边一个小正方形,故D错误;故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.4.如图,小聪把一块含有60°角的直角三角形板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.60°【分析】先根据两直线平行,内错角相等求出∠3,再根据直角三角形的性质用∠2=60°﹣∠3代入数据进行计算即可得解.【解答】解:∵直尺的两边互相平行,∠1=25°,∴∠3=∠1=25°,∴∠2=60°﹣∠3=60°﹣25°=35°.故选:C.【点评】本题考查了平行线的性质,三角板的知识,熟记平行线的性质是解题的关键.5.下列图形中,是轴对称图形但不是中心对称图形的是()A.B. C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形但不是中心对称图形,故本选项正确;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项错误.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取到的是一个红球、一个白球的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况,∴取到的是一个红球、一个白球的概率为:=.故选:C.【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2 C.D.10﹣5【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE﹣BG=2、HE=CH﹣CE=2、∠HEG=90°,由勾股定理可得GH的长.【解答】解:如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),AG2+BG2=AB2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE﹣BG=8﹣6=2,同理可得HE=2,在RT△GHE中,GH===2,故选:B.【点评】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键.8.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.右面两个图框是用法国“小九九”计算7×8和8×9的两个示例.若用法国“小九九”计算7×9,左、右手依次伸出手指的个数是()A.2,3 B.3,3 C.2,4 D.3、4【分析】按照题中示例可知:要计算a×b,左手应伸出(a﹣5)个手指,未伸出的手指数为5﹣(a﹣5)=10﹣a;右手应伸出(b﹣5)个手指,未伸出的手指数为5﹣(b﹣5)=10﹣b.【解答】解:要计算7×9,左手应伸出手指:7﹣5=2(个);右手应伸出手指:9﹣5=4(个).故选:C.【点评】此题考查数字的变化规律.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.9.如图,⊙O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O 出发(P点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()A.B.C.D.【分析】根据题意分1<x≤与<x≤2两种情况,确定出y与x的关系式,即可确定出图象.【解答】解:当P在OC上运动时,根据题意得:sin∠APB=,∵OA=1,AP=x,sin∠APB=y,∴xy=1,即y=(1<x≤),当P在上运动时,∠APB=∠AOB=45°,此时y=(<x≤2),图象为:故选:C.【点评】此题考查了动点问题的函数图象,列出y与x的函数关系式是解本题的关键.10.如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB 边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y=上(k>0,x>0),则k的值为()A.25B.18C.9 D.9【分析】根据等边三角形的性质表示出D,C点坐标,进而利用反比例函数图象上点的坐标特征得出答案.【解答】解:过点D作DE⊥x轴于点E,过C作CF⊥x轴于点F,如图所示.可得:∠ODE=30∠BCD=30°,设OE=a,则OD=2a,DE=a,∴BD=OB﹣OD=10﹣2a,BC=2BD=20﹣4a,AC=AB﹣BC=4a﹣10,∴AF=AC=2a﹣5,CF=AF=(2a﹣5),OF=OA﹣AF=15﹣2a,∴点D(a,a),点C[15﹣2a,(2a﹣5)].∵点C、D都在双曲线y=上(k>0,x>0),∴a•a=(15﹣2a)×(2a﹣5),解得:a=3或a=5.当a=5时,DO=OB,AC=AB,点C、D与点B重合,不符合题意,∴a=5舍去.∴点D(3,3),∴k=3×3=9.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征以及等边三角形的性质,解题的关键是找出点D、C的坐标.二、填空题11.(5.00分)分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(5.00分)在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A',则点A'关于原点对称的点A''的坐标为(﹣1,﹣3).【分析】直接利用平移的性质得出点A'的坐标,再利用关于原点对称点的性质得出答案.【解答】解:∵点A(2,3)向左平移一个单位得到点A',∴A′(1,3),∴点A'关于原点对称的点A''的坐标为:(﹣1,﹣3).故答案为:(﹣1,﹣3).【点评】此题主要考查了平移变换以及关于原点对称点的性质,正确记忆关于原点对称点的性质是解题关键.13.(5.00分)如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为40°.【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE的内角和,则可求得∠BOD.【解答】解:∵∠1、∠2、∠3、∠4的外角的角度和为220°,∴∠1+∠2+∠3+∠4+220°=4×180°,∴∠1+∠2+∠3+∠4=500°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣500°=40°,故答案为:40°.【点评】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.14.(5.00分)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B (4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是x<﹣1或x>4.【分析】观察两函数图象的上下位置关系,即可得出结论.【解答】解:观察函数图象可知:当x<﹣1或x>4时,直线y=mx+n在抛物线y=ax2+bx+c的上方,∴不等式mx+n>ax2+bx+c的解集为x<﹣1或x>4.故答案为:x<﹣1或x>4.【点评】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.15.(5.00分)“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为26.【分析】根据垂径定理和勾股定理求解.【解答】解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE=AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2,即r2=52+(r﹣1)2,解得:r=13,所以CD=2r=26,即圆的直径为26.【点评】本题利用了垂径定理和勾股定理求解.16.(5.00分)如图,平面直角坐标系中O是原点,▱OABC的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD,CE分别交OA,OB于点F,G,连结FG,则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是20;④OD=;其中正确的结论是①(填写所有正确结论的序号)【分析】①证明△CDB∽△FDO,列比例式得:=,再由D、E为OB的三等分点,则==2,可得结论正确;②如图2,延长BC交y轴于H证明OA≠AB,则∠AOB≠∠EBG,所以△OFD∽△BEG不成立;=S▱OABC﹣S△OFC﹣S△CBG﹣S△AFG=12,根据相似三③如图3,利用面积差求得:S△CFG角形面积的比等于相似比的平方进行计算并作出判断;④根据勾股定理进行计算OB的长,根据三等分线段OB可得结论.【解答】解:①∵四边形OABC是平行四边形,∴BC∥OA,BC=OA,∴△CDB∽△FDO,∴=,∵D、E为OB的三等分点,∴==2,∴=2,∴BC=2OF,∴OA=2OF,∴F是OA的中点;所以①结论正确;②如图2,延长BC交y轴于H,由C(3,4)知:OH=4,CH=3,∴OC=5,∴AB=OC=5,∵A(8,0),∴OA=8,∴OA≠AB,∴∠AOB≠∠EBG,∴△OFD∽△BEG不成立,所以②结论错误;③由①知:F为OA的中点,同理得;G是AB的中点,∴FG是△OAB的中位线,∴FG=OB,FG∥OB,∵OB=3DE,∴FG=DE,∴=,过C作CQ⊥AB于Q,S▱OABC=OA•OH=AB•CQ,∴4×8=5CQ,∴CQ=,S△OCF=OF•OH=×4×4=8,S△CGB=BG•CQ=××=8,S△AFG=×4×2=4,=S▱OABC﹣S△OFC﹣S△CBG﹣S△AFG=8×4﹣8﹣8﹣4=12,∴S△CFG∵DE∥FG,∴△CDE∽△CFG,∴=()2=,∴=,∴=,=;∴S四边形DEGF所以③结论错误;④在Rt△OHB中,由勾股定理得:OB2=BH2+OH2,∴OB==,∴OD=,所以④结论错误;故本题结论正确的有:①;故答案为:①.【点评】本题是四边形的综合题,考查了平行四边形的性质、图形与坐标特点、勾股定理、三角形的中位线定理、三角形相似的性质和判定、平行四边形和三角形面积的计算等知识,难度适中,熟练掌握平行四边形和相似三角形的性质是关键.三、解答题(本大题共8小题,共80分)17.(8.00分)(1)计算:|﹣3|+(π﹣2017)0﹣2sin30°+()﹣1;(2)解不等式组:【分析】(1)根据零指数幂的意义、特殊角锐角三角函数、负整数指数幂的意义即可求出答案.(2)根据不等式组的解法即可求出答案.【解答】解:(1)原式=3+1﹣2×+3=6(2)由2x≥﹣9﹣x得:x≥﹣3,由5x﹣1>3(x+1)得:x>2∴该不等式组的解集为:x>2【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.18.(8.00分)中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”,某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)本次调查所得数据的众数是1部,中位数是2部,扇形统计图中“1部”所在扇形的圆心角为126度.(2)请将条形统计图补充完整;(3)没有读过四大古典名著的两名学生准备从四大古典名著中各自随机选择一部来阅读,则他们选中同一名著的概率为.【分析】(1)先根据调查的总人数,求得1部对应的人数,进而得到本次调查所得数据的众数以及中位数,根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“1部”所在扇形的圆心角;(2)根据1部对应的人数为40﹣2﹣10﹣8﹣6=14,即可将条形统计图补充完整;(3)根据树状图所得的结果,判断他们选中同一名著的概率.【解答】解:(1)调查的总人数为:10÷25%=40,∴1部对应的人数为40﹣2﹣10﹣8﹣6=14,∴本次调查所得数据的众数是1部,∵2+14+10=26>21,2+14<20,∴中位数为2部,扇形统计图中“1部”所在扇形的圆心角为:×360°=126°;故答案为:1,2,126;(2)条形统计图如图所示,(3)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,画树状图可得:共有16种等可能的结果,其中选中同一名著的有4种,故P(两人选中同一名著)==.故答案为:.【点评】本题主要考查了扇形统计图以及条形统计图的运用,解题时注意:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.19.(8.00分)如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C作直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧的长l.【分析】(1)连接OC,根据等腰三角形的性质得到∠OAC=∠DAC,求得∠DAC=∠OCA,推出AD∥OC,得到∠OCF=∠AEC=90°,于是得到结论;(2)连接OD,DC,根据角平分线的定义得到∠DAC=∠OAC,根据三角函数的定义得到∠ECD=30°,得到∠OCD=60°,得到∠BOC=∠COD=60°,OC=2,于是得到结论.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴AD∥OC,∵∠AEC=90°,∴∠OCF=∠AEC=90°,∴EF是⊙O的切线;(2)连接OD,DC,∵∠DAC=DOC,∠OAC=BOC,∴∠DAC=∠OAC,∴∠DOC=∠BOC,∴CD=CB=2,∵ED=1,∴sin∠ECD=,∴∠ECD=30°,∴∠OCD=60°,∵OC=OD,∴△DOC是等边三角形,∴∠BOC=∠COD=60°,OC=2,∴l==π.【点评】本题考查了切线的判定和性质,等边三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.20.(8.00分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)【分析】延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.【解答】解:延长FE交CB的延长线于M,过A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC•tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHE=60°,sin∠FAG=,∴sin60°==,∴FG=2.17,∴DM=FG+GM﹣DF≈3.05米.答:篮框D到地面的距离是3.05米.【点评】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.21.(10.00分)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如表:鲜鱼销售单价(元/kg)20单位捕捞成本(元/kg)5﹣捕捞量(kg)950﹣10x(1)在此期间该养殖场每天的捕捞量与前一天末的捕捞量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?【分析】(1)由图表中的数据可知该养殖场每天的捕捞量比前一天减少10kg;(2)根据收入=捕捞量×单价﹣捕捞成本,列出函数表达式;(3)将实际转化为求函数最值问题,从而求得最大值.【解答】解:(1)根据捕捞量与天数x的关系:950﹣10x可知:该养殖场每天的捕捞量与前一天减少10kg;(2)由题意,得y=20×(950﹣10x)﹣(5﹣)×(950﹣10x)=﹣2x2+40x+14250;(3)∵﹣2<0,y=﹣2x2+40x+14250=﹣2(x﹣10)2+14450,又∵1≤x≤20且x为整数,∴当1≤x≤10时,y随x的增大而增大;当10≤x≤20时,y随x的增大而减小;当x=10时即在第10天,y 取得最大值,最大值为14450.【点评】此题考查二次函数的性质及其应用,要运用图表中的信息,将实际问题转化为求函数最值问题,从而来解决实际问题,比较简单.22.(12.00分)如图1,在四边形ABCD 中,如果对角线AC 和BD 相交并且相等,那么我们把这样的四边形称为等角线四边形.(1)①在“平行四边形、矩形、菱形”中, 矩形 一定是等角线四边形(填写图形名称);②若M 、N 、P 、Q 分别是等角线四边形ABCD 四边AB 、BC 、CD 、DA 的中点,当对角线AC 、BD 还要满足 AC ⊥BD 时,四边形MNPQ 是正方形.(2)如图2,已知△ABC 中,∠ABC=90°,AB=4,BC=3,D 为平面内一点.①若四边形ABCD 是等角线四边形,且AD=BD ,则四边形ABCD 的面积是 3+2 ;②设点E 是以C 为圆心,1为半径的圆上的动点,若四边形ABED 是等角线四边形,写出四边形ABED 面积的最大值,并说明理由.【分析】(1)①只有矩形的对角线相等,所以矩形是等角线四边形;②当AC ⊥BD 时,四边形MNPQ 是正方形,首先证明四边形MNPQ 是菱形,再证明有一个角是直角即可;(2)①如图2中,作DE ⊥AB 于E .根据S 四边形ABCD =S △ADE +S 梯形DEBC 计算,求出相关线段即可;②如图3中,设AE 与BD 相交于点Q ,连接CE ,只要证明当AC ⊥BD 且A 、C 、E 共线时,四边形ABED 的面积最大即可.【解答】解:(1)①在“平行四边形、矩形、菱形”中,∵矩形的对角线相等,∴矩形一定是等角线四边形,故答案为矩形.②当AC⊥BD时,四边形MNPQ是正方形.理由:如图1中,∵M、N、P、Q分别是等角线四边形ABCD四边AB、BC、CD、DA的中点,∴PQ=MN=AC,PN=QM=BD,PQ∥AC,MQ∥BD,∵AC=BD,∴MN=NP=PQ=QM,∴四边形MNPQ是菱形,∵∠1=∠2,∠2=∠3,∠1=90°,∴∠3=90°,∴四边形NMPQ是正方形.故答案为AC⊥BD.(2)①如图2中,作DE⊥AB于E.在Rt△ABC中,∵∠ABC=90°,AB=4,BC=3,∴AC==5,∵AD=BD,DE⊥AB,∴AE=BE=2,∵四边形ABCD是等角线四边形,∴BD=AC=AD=5,在Rt △BDE 中,DE==, ∴S 四边形ABCD =S △ADE +S 梯形DEBC =•AE•DE +•(DE +BC )•BE =×+(+3)×2 =3+2.故答案为3+2.②如图3中,设AE 与BD 相交于点Q ,连接CE ,作DH ⊥AE 于H ,BG ⊥AE 于G .则DH ≤DQ ,BG ≤BQ ,∵四边形ABED 是等角线四边形,∴AE=BD ,∵S 四边形ABED =S △ABE +S △ADE =•AE•DH +•AE•BG=•AE•(GB +DH )≤•AE•(BQ +QD ),即S 四边形ABED ≤AE•BD ,∴当G 、H 重合时,即BD ⊥AE 时,等号成立,∵AE=BD ,∴S 四边形ABED ≤AE 2,即线段AE 最大时,四边形ABED 的面积最大,∵AE ≤AC +CE ,∴AE ≤5+1,∴AE ≤6,∴AE的最大值为6,∴当A、C、E共线时,取等号,∴四边形ABED的面积的最大值为×62=18.【点评】本题考查四边形综合题、中点四边形、三角形中位线定理、正方形的判定和性质、圆等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,会求圆上一点到圆外一定点的距离的最大值或最小值,属于中考压轴题.23.(12.00分)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC 上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.【分析】(Ⅰ)先求出AC,再分三种情况讨论计算即可得出结论;(Ⅱ)方法1、先判断出OC=ED,OC=PF,进而得出OC=OP=OF,即可得出∠OCF=∠OFC,∠OCP=∠OPC,最后判断出△ADP∽△CDF,得出比例式即可得出结论.方法2、先判断出∠CEF=∠FDC,得出点E,C,F,D四点共圆,再判断出点P也在此圆上,即可得出∠DAP=∠DCF,此后同方法1即可得出结论.方法3、先判断出△PME∽△DNP即可得出,进而用两边对应成比例夹角相等判断出△ADP∽△CDF,得出比例式即可得出结论.【解答】解:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,∴AC==10,要使△PCD是等腰三角形,①当CP=CD时,AP=AC﹣CP=10﹣6=4,②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA,∴PD=PA,∴PA=PC,∴AP=AC=5,③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,=AD•DC=AC•DQ,∵S△ADC∴DQ==,∴CQ==,∴PC=2CQ=,∴AP=AC﹣PC=10﹣=;所以,若△PCD是等腰三角形时,AP=4或5或;(Ⅱ)方法1、如图2,连接PF,DE,记PF与DE的交点为O,连接OC,∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC=ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,∴∠PCD+∠FCD=90°,在Rt△ADC中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法2、如图,∵四边形ABCD和DPEF是矩形,∴∠ADC=∠PDF=90°,∴∠ADP=∠CDF,∵∠DGF+∠CDF=90°,∴∠EGC+∠CDF=90°,∵∠CEF+∠CGE=90°,∴∠CDF=∠FEC,∴点E,C,F,D四点共圆,∵四边形DPEF是矩形,∴点P也在此圆上,∵PE=DF,∴,∴∠ACB=∠DCF,∵AD∥BC,∴∠ACB=∠DAP,∴∠DAP=∠DCF,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法3、如图3,过点P作PM⊥BC于M交AD于N,∴∠PND=90°,∵PN∥CD,∴,∴,∴AN=,∴ND=8﹣=(10﹣)同理:PM=(10﹣)∵∠PND=90°,∴∠DPN+∠PDN=90°,∵四边形PEFD是矩形,∴∠DPE=90°,∴∠DPN+∠EPM=90°,∴∠PDN=∠EPM,∵∠PND=∠EMP=90°,∴△PND∽△EMP,∴=,∵PD=EF,DF=PE.∴,∵,∴,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴=,∵AP=,∴CF=.【点评】此题是四边形综合题,主要考查了矩形的性质,勾股定理,等腰三角形的性质,相似三角形的判定和性质,解(Ⅰ)的关键是分三种情况讨论计算,解(Ⅱ)的关键是判断出△ADP ∽△CDF ,是一道中考常考题.24.(14.00分)已知:如图所示,在平面直角坐标系xOy 中,四边形OABC 是矩形,OA=4,OC=3,动点P 从点C 出发,沿射线CB 方向以每秒2个单位长度的速度运动;同时,动点Q 从点O 出发,沿x 轴正半轴方向以每秒1个单位长度的速度运动.设点P 、点Q 的运动时间为t (s ).(1)当t=1s 时,求经过点O ,P ,A 三点的抛物线的解析式;(2)当t=2s 时,求tan ∠QPA 的值;(3)当线段PQ 与线段AB 相交于点M ,且BM=2AM 时,求t (s )的值;(4)连接CQ ,当点P ,Q 在运动过程中,记△CQP 与矩形OABC 重叠部分的面积为S ,求S 与t 的函数关系式.【分析】(1)可求得P 点坐标,由O 、P 、A 的坐标,利用待定系数法可求得抛物线解析式;(2)当t=2s 时,可知P 与点B 重合,在Rt △ABQ 中可求得tan ∠QPA 的值; (3)用t 可表示出BP 和AQ 的长,由△PBM ∽△QAM 可得到关于t 的方程,可求得t 的值;(4)当点Q 在线段OA 上时,S=S △CPQ ;当点Q 在线段OA 上,且点P 在线段CB 的延长线上时,由相似三角形的性质可用t 表示出AM 的长,由S=S 四边形BCQM =S 矩形OABC ﹣S △COQ ﹣S △AMQ ,可求得S 与t 的关系式;当点Q 在OA 的延长线上时,设CQ 交AB 于点M ,利用△AQM ∽△BCM 可用t 表示出AM ,从而可表示出BM ,S=S △CBM ,可求得答案.【解答】解:(1)当t=1s 时,则CP=2,∵OC=3,四边形OABC是矩形,∴P(2,3),且A(4,0),∵抛物线过原点O,∴可设抛物线解析式为y=ax2+bx,∴,解得,∴过O、P、A三点的抛物线的解析式为y=﹣x2+3x;(2)当t=2s时,则CP=2×2=4=BC,即点P与点B重合,OQ=2,如图1,∴AQ=OA﹣OQ=4﹣2=2,且AP=OC=3,∴tan∠QPA==;(3)当线段PQ与线段AB相交于点M,则可知点Q在线段OA上,点P在线段CB的延长线上,如图2,则CP=2t,OQ=t,∴BP=PC﹣CB=2t﹣4,AQ=OA﹣OQ=4﹣t,∵PC∥OA,∴△PBM∽△QAM,∴=,且BM=2AM,∴=2,解得t=3,∴当线段PQ与线段AB相交于点M,且BM=2AM时,t为3s;(4)当0≤t≤2时,如图3,由题意可知CP=2t,=×2t×3=3t;∴S=S△PCQ当2<t≤4时,设PQ交AB于点M,如图4,由题意可知PC=2t,OQ=t,则BP=2t﹣4,AQ=4﹣t,同(3)可得==,∴BM=•AM,∴3﹣AM=•AM,解得AM=,=S矩形OABC﹣S△COQ﹣S△AMQ=3×4﹣×t×3﹣×(4﹣t)×=24∴S=S四边形BCQM﹣﹣3t;当t>4时,设CQ与AB交于点M,如图5,由题意可知OQ=t,AQ=t﹣4,∵AB∥OC,∴=,即=,解得AM=,∴BM=3﹣=,=×4×=;∴S=S△BCM综上可知S=.【点评】本题为二次函数与四边形的综合应用,涉及待定系数法、矩形的性质、相似三角形的判定和性质、三角函数的定义、方程思想及分类讨论思想等知识.在(1)中求得P点坐标是解题的关键,在(2)中确定P、B重合是解题的关键,在(3)中由相似三角形的性质得到关于t的方程是解题的关键,在(4)中确定出P、Q的位置,从而确定出S为哪一部分图形的面积是解题的关键.本题为“运动型”问题,用t和速度表示出相应线段的长度,化“动”为“静”是解这类问题的一般思路.本题考查知识点较多,综合性较强,特别是最后一问,情况较多,难度较大.一、选择题(本大题共10小题,每小题4分,共40分)1.﹣5的相反数是()A.B.5 C.﹣ D.﹣5【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣5的相反数是5,故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.杭绍台城际铁路的建设,使浙江南北联通更加紧密,迎来“高铁时代”,该铁路总投资350亿元.将350亿用科学记数法表示为().50×1011。
精品解析:浙江省绍兴市2018年中考数学试题(解析版)
B. 当 时, 随 的增大而减小
C. 当 时, 随 的增大而增大
D. 当 时, 随 的增大而减小
【答案】A
【解析】
【分析】根据一次函数 图象对各项分析判断即可.
【详解】观察图象可知:
A.当 时,图象呈上升趋势, 随 的增大而增大,正确.
B.当 时,图象呈上升趋势, 随 的增大而减小, 故错误.
解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.
故选C.
考点:简单组合体的三视图.
4.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是()
A. B. C. D.
【答案】A
【解析】
【详解】【分析】直接得出2的个数,再利用概率公式求出答案.
D.第一行数字从左到右依次为0,1,1,1,序号为 ,表示该生为7班学生.
故选B.
【点睛】属于新定义题目,读懂题目中班级序号的计算方法是解题的关键.
9.若抛物线 与 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线 ,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )
A. B. C. D.
【答案】B
【解析】
【分析】根据班级序号的计算方法一一进行计算即可.
【详解】A.第一行数字从左到右依次为1,0,1,0,序号为 ,表示该生为10班学生.
B.第一行数字从左到右依次为0,1, 1,0,序号为 ,表示该生为6班学生.
C.第一行数字从左到右依次为1,0,0,1,序号为 ,表示该生为9班学生.
∴该抛物线解析式为y=x(x-2)=x2-2x=(x-1)2-1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年浙江省绍兴市中考数学一模试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)二次函数y=(x﹣1)2+2的最小值是()A.﹣2 B.2 C.﹣1 D.12.(4分)已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断3.(4分)已知一个扇形的半径为R,圆心角为n°,当这个扇形的面积与一个直径为R的圆面积相等时,则这个扇形的圆心角n的度数是()A.180°B.120°C.90°D.60°4.(4分)如图,点A、C、B在⊙O上,已知∠AOB=∠ACB=a,则a的值为()A.135°B.100°C.110°D.120°5.(4分)如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.B.C.D.6.(4分)小洋用一张半径为24cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.120πcm2B.240πcm2C.260πcm2D.480πcm27.(4分)二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论:(1)c<0;(2)b>0;(3)4a+2b+c>0;(4)(a+c)2<b2.其中不正确的有()A.1个B.2个C.3个D.4个8.(4分)如图,PA、PB分别切⊙O于A、B两点,射线PD与⊙O相交于C,D两点,点E是CD中点,若∠APB=40°,则∠AEP的度数是()A.40°B.50°C.60°D.70°9.(4分)利用平方根去根号可以构造一个整系数方程.例如:x=+1时,移项得x﹣1=,两边平方得(x﹣1)2=()2,所以x2﹣2x+1=2,即x2﹣2x﹣1=0.仿照上述构造方法,当x=时,可以构造出一个整系数方程是()A.4x2+4x+5=0 B.4x2+4x﹣5=0 C.x2+x+1=0 D.x2+x﹣1=010.(4分)如图,AB是⊙O的直径,弦CD⊥AB于点G.点F是CD上一点,且满足=,连接AF并延长交⊙O于点E.连接AD、DE,若CF=2,AF=3.给出下列结论:=4.①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF其中正确的是()A.①②④B.①②③C.②③④D.①③④二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)比较三角函数值的大小:sin30°tan30°(填入“>”或“<”).12.(5分)有9张卡片,每张卡片上分别写有不同的从1到9的一个自然数,从中任意抽出一张卡片,则抽到的卡片上的数是3的倍数的概率是.13.(5分)如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x 的三个正方形,则x的值为.14.(5分)大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么PB的长度为cm.15.(5分)如图,已知在Rt△ABC中,∠C为直角,AC=5,BC=12,在Rt△ABC内从左往右叠放边长为1的正方形小纸片,第一层小纸片的一条边都在AB 上,依次这样往上叠放上去,则最多能叠放个.16.(5分)如图,在⊙O中,AB为⊙O的直径,AB=4.动点P从A点出发,以每秒π个单位的速度在⊙O上按顺时针方向运动一周.设动点P的运动时间为t秒,点C是圆周上一点,且∠AOC=40°,当t=秒时,点P与点C中心对称,且对称中心在直径AB上.三、解答题(本大题共8小题,共计80分)17.(8分)计算:(1)(﹣1)2+tan45°﹣;(2)已知=,求的值.18.(8分)动手画一画,请把如图补成以A为对称中心的中心对称图形.19.(8分)甲口袋中装有两个相同的小球,它们的标号分别为2和7,乙口袋中装有两个相同的小球,它们的标号分别为4和5,丙口袋中装有三个相同的小球,它们的标号分别为3,8,9.从这3个口袋中各随机地取出1个小球.(1)求取出的3个小球的标号全是奇数的概率是多少?(2)以取出的三个小球的标号分别表示三条线段的长度,求这些线段能构成三角形的概率.20.(10分)如图,在△ABC中,AC=8厘米,BC=16厘米,点P从点A出发,沿着AC边向点C以1cm/s的速度运动,点Q从点C出发,沿着CB边向点B 以2cm/s的速度运动,如果P与Q同时出发,经过几秒△PQC和△ABC相似?21.(10分)如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m长的影子如图所示,已知窗框的影子DE的点E到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度(即AB的值).22.(10分)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.23.(12分)阅读理解:如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB 上的相似点,并说明理由;(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;拓展探究:(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.24.(14分)已知x轴上有点A(1,0),点B在y轴上,点C(m,0)为x 轴上一动点且m<﹣1,连接AB,BC,tan∠ABO=,以线段BC为直径作⊙M 交直线AB于点D,过点B作直线l∥AC,过A,B,C三点的抛物线为y=ax2+bx+c,直线l与抛物线和⊙M的另一个交点分别是E,F.(1)求B点坐标;(2)用含m的式子表示抛物线的对称轴;(3)线段EF的长是否为定值?如果是,求出EF的长;如果不是,说明理由.(4)是否存在点C(m,0),使得BD=AB?若存在,求出此时m的值;若不存在,说明理由.2018年浙江省绍兴市中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.【解答】解:根据二次函数的性质,当x=1时,二次函数y=(x﹣1)2+2的最小值是2.故选:B.2.【解答】解:∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙0内,故选:A.3.【解答】解:根据题意得,=()2π,解得:n=90,故选:C.4.【解答】解:∵∠ACB=a∴优弧所对的圆心角为2a∴2a+a=360°∴a=120°.故选:D.5.【解答】解:连接DC,由网格可得:CD⊥AB,则DC=,AC=,故sinA=.故选:D.6.【解答】解:圆锥的侧面积=•2π•10•24=240π(cm2),所以这张扇形纸板的面积为240πcm2.故选:B.7.【解答】解:抛物线的开口向上,则a>0;对称轴为x=﹣=1,即b=﹣2a,故b<0,故(2)错误;抛物线交y轴于负半轴,则c<0,故(1)正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c<0,故(3)错误;把x=1代入y=ax2+bx+c得:y=a+b+c<0,把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c<0,则(a+b+c)(a﹣b+c)>0,故(4)错误;不正确的是(2)(3)(4);故选:C.8.【解答】解:连接OP,OA,OE,∵点E是CD中点,∴OE⊥DC,∴∠PEO=90°,∵PA、PB分别切⊙O于A、B两点,∴OA⊥PA,∠APO=∠BPO=∠APB=20°∴∠PAO=90°,∴∠POA=70°,∴A、O、E、P四点在以OP为直径的圆上,∴∠AEP=∠AOP=70°,故选:D.9.【解答】解:由题意可得:x=,可变形为:2x=﹣1,则(2x+1)=,故(2x+1)2=6,则可以构造出一个整系数方程是:4x2+4x﹣5=0.故选:B.10.【解答】解:①∵AB是⊙O的直径,弦CD⊥AB,∴=,DG=CG,∴∠ADF=∠AED,∵∠FAD=∠DAE(公共角),∴△ADF∽△AED;故①正确;②∵=,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG﹣CF=2;故②正确;③∵AF=3,FG=2,∴AG==,∴在Rt△AGD中,tan∠ADG==,∴tan∠E=;故③错误;④∵DF=DG+FG=6,AD==,=DF•AG=×6×=3,∴S△ADF∵△ADF∽△AED,∴=()2,∴=,=7,∴S△AED=S△AED﹣S△ADF=4;∴S△DEF故④正确.故选:A.二、填空题(本大题共6小题,每小题5分,共30分)11.【解答】解:sin30°=,tan30°=,<,即sin30°<tan30°,故答案为:<.12.【解答】解:∵1~9中3的倍数有3,6,9三个数,∴P==.故答案为:.13.【解答】解:如图∵在Rt△ABC中∠C=90°,放置边长分别3,4,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF,∵EF=x,MO=3,PN=4,∴OE=x﹣3,PF=x﹣4,∴(x﹣3):4=3:(x﹣4),∴(x﹣3)(x﹣4)=12,∴x1=0(不符合题意,舍去),x2=7.故答案为:7.14.【解答】解:∵P为AB的黄金分割点(AP>PB),∴AP=AB=×10=5﹣5,∴PB=AB﹣PA=10﹣(5﹣5)=(15﹣5)cm.故答案为(15﹣5).15.【解答】解:由勾股定理得:AB==13.由三角形的面积计算公式可知:△ABC的高==.如图所示:根据题意有:△CAB∽△CEF∴==∴EF==10∴第一层可放置10个小正方形纸片.同法可得总共能放4层,依次可放置10、7、4、1个小正方形纸片,∴最多能叠放10+7+4+1=22(个)故答案为:22个.16.【解答】解:如图,当∠AOP1=40°时,P1与C1对称,=4π×=,t=÷π=;当∠AOP2=140°时,P2与C1对称,=4π×=π,t=÷π=;当∠AOP3=220°时,P3与C2对称,=4π×=,t=÷π=;当∠AOP4=320°时,P4与C1对称,=4π×=π,t=÷π=;故答案为:或或或.三、解答题(本大题共8小题,共计80分)17.【解答】解:(1)(﹣1)2+tan45°﹣,=1+1﹣2,=0,(2)∵=,∴x=y,∴==.18.【解答】解:如图所示19.【解答】解:(1)画树状图得:∴一共有12种等可能的结果,取出的3个小球的标号全是奇数的有2种情况,∴取出的3个小球的标号全是奇数的概率是:=.(2)∵这些线段能构成三角形的有2、4、3,7、4、8,7、4、9,7、5、3,7、5、8,7、5、9共6种情况,∴这些线段能构成三角形的概率为=.20.【解答】解:设经过x秒,两三角形相似,则CP=AC﹣AP=8﹣x,CQ=2x,(1)当CP与CA是对应边时,,即,解得x=4秒;(2)当CP与BC是对应边时,,即,解得x=秒;故经过4或秒,两个三角形相似.21.【解答】解:连接AB,由于阳光是平行光线,即AE∥BD,所以∠AEC=∠BDC.又因为∠C是公共角,所以△AEC∽△BDC,从而有=.又AC=AB+BC,DC=EC﹣ED,EC=3.9,ED=2.1,BC=1.2,于是有=,解得AB=1.4 m.答:窗口的高度为1.4 m.22.【解答】(1)证明:如图1,在△ABC中,∵∠CAB=90°,AD⊥BC于点D,∴∠CAD=∠B=90°﹣∠ACB.∵AC:AB=1:2,∴AB=2AC,∵点E为AB的中点,∴AB=2BE,∴AC=BE.在△ACD与△BEF中,,∴△ACD≌△BEF,∴CD=EF,即EF=CD;(2)解:如图2,作EH⊥AD于H,EQ⊥BC于Q,∵EH⊥AD,EQ⊥BC,AD⊥BC,∴四边形EQDH是矩形,∴∠QEH=90°,∴∠FEQ=∠GEH=90°﹣∠QEG,又∵∠EQF=∠EHG=90°,∴△EFQ∽△EGH,∴EF:EG=EQ:EH.∵AC:AB=1:,∠CAB=90°,∴∠B=30°.在△BEQ中,∵∠BQE=90°,∴sinB==,∴EQ=BE.在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH==,∴EH=AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=BE:AE=1:=:3.23.【解答】解:(1)点E是四边形ABCD的边AB上的相似点.理由:∵∠A=55°,∴∠ADE+∠DEA=125°.∵∠DEC=55°,∴∠BEC+∠DEA=125°.∴∠ADE=∠BEC.(2分)∵∠A=∠B,∴△ADE∽△BEC.∴点E是四边形ABCD的AB边上的相似点.(2)作图如下:(3)∵点E是四边形ABCM的边AB上的一个强相似点,∴△AEM∽△BCE∽△ECM,∴∠BCE=∠ECM=∠AEM.由折叠可知:△ECM≌△DCM,∴∠ECM=∠DCM,CE=CD,∴∠BCE=∠BCD=30°,∴BE=CE=AB.在Rt△BCE中,tan∠BCE==tan30°,∴,∴.24.【解答】解:(1)∵tan∠ABO=,且A(1,0),∴OB=2,即:点B的坐标为(0,2).(2)点C(m,0),A(1,0),B(0,2)在抛物线y=ax2+bx+c上,∴解之得:b=﹣,a=,∴x=﹣=.即:抛物线的对称轴为x=(3)∵EB=﹣(1+m),FB=﹣m,EF=FB﹣EB=1,∴线段EF的长是定值.(4)①当D在线段AB上时,如下图所示:连接CD∵BC是⊙M的直径,∴∠CDB=90°,∵若BD=AB,即BD=DA则易证CB=CA∴=1﹣m解之得m=﹣,即:存在一点C(﹣,0),使得BD=AB.②如图2中,当交点D在AB的延长线上时,∵△AOB∽△ADC,∴=,∴=,解得m=﹣,∴存在一点C(﹣,0),使得BD=AB.综上所述,满足条件的m的值为﹣或﹣.。