-初二数学上期末复习(几何-全等三角形及轴对称)

合集下载

初二数学三角形与全等三角形、轴对称知识点归纳

初二数学三角形与全等三角形、轴对称知识点归纳

一、与三角形有关的线段1、不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形2、等边三角形:三边都相等的三角形3、等腰三角形:有两条边相等的三角形4、不等边三角形:三边都不相等的三角形5、在等腰三角形中,相等的两边都叫腰,另一边叫底,两腰的夹角叫做顶角,腰和底边的夹角叫做底角6、三角形分类:不等边三角形等腰三角形:底边和腰不等的等腰三角形等边三角形7、三角形两边之和大于第三边,两边之差小于第三边注:1)在实际运用中,只需检验最短的两边之和大于第三边,则可说明能组成三角形 2)在实际运用中,已经两边,则第三边的取值范围为:两边之差〈第三边<两边之和3)所有通过周长相加减求三角形的边,求出两个答案的,注意检查每个答案能否组成三角形8、三角形的高:从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC的边 BC上的高9、三角形的中线:连接△ABC的顶点A和它所对的边BC的中点D,所得线段AD叫做△ABC的边BC 上的中线注:两个三角形周长之差为x,则存在两种可能:即可能是第一个△周长大,也有可能是第一个△周长小10、三角形的角平分线:画∠A的平分线AD,交∠A所对的边BC于D,所得线段AD叫做△ABC的角平分线11、三角形的稳定性,四边形没有稳定性二、与三角形有关的角1、三角形内角和定理:三角形三个内角的和等于180度. 证明方法:利用平行线性质2、三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角3、三角形的一个外角等于与它不相邻的两个内角的和4、三角形的一个外角大于与它不相邻的任何一个内角5、三角形的外角和为360度6、等腰三角形两个底角相等一、全等三角形能够完全重合的两个三角形叫做全等三角形。

一个三角形经过平移、翻折、旋转可以得到它的全等形.2、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。

(2):全等三角形的周长相等、面积相等。

八年级上册数学轴对称知识点总结

八年级上册数学轴对称知识点总结

八年级上册数学轴对称知识点总结篇1:八年级上册数学轴对称知识点总结八年级上册数学轴对称知识点总结1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

5.等腰三角形的判定:等角对等边。

6.等边三角形角的特点:三个内角相等,等于60°,7.等边三角形的判定:三个角都相等的三角形是等腰三角形。

有一个角是60°的.等腰三角形是等边三角形有两个角是60°的三角形是等边三角形。

8.直角三角形中,30°角所对的直角边等于斜边的一半。

9.直角三角形斜边上的中线等于斜边的一半。

数学学习方法诀窍1细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。

例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。

二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。

这样就不能很好的将学到的知识点与解题联系起来。

三是,一部分同学不重视对数学公式的记忆。

记忆是理解的基础。

如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。

2养成良好的解题习惯要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。

全等、轴对称知识点归纳

全等、轴对称知识点归纳

全等三角形知识点归纳一、定义:能够完全重合的两个三角形称为全等三角形,重合的顶点叫做对应点,重合的边叫做对应边,重合的角叫做对应角.二、性质:(1)全等三角形的对应边相等;(2)全等三角形的对应角相等;(3)全等三角形的对应边上的高相等;(4)全等三角形的对应角的平分线相等;(5)全等三角形的对应边的中线相等;(6)全等三角形的周长相等;(7)全等三角形的面积相等.三、判定公理及推论:1、三组边分别相等的两个三角形全等(简称“SSS”或“边边边”);2、两边和它们的夹角分别相等的两个三角形全等(简称“SAS”或“边角边”);3、两角和它们的夹边分别相等的两个三角形全等(简称“ASA”或“角边角”);4、两角和其中一个角的对边分别相等的两个三角形全等(简称“AAS”或“角角边”);5、斜边和一条直角边分别相等的两个直角三角形全等(简称“HL”或“斜边,直角边”);注:A是英文角的缩写(angle),S是英文边的缩写(side).四、角平分线的定义:(1)角的平分线定义:如果以角的顶点为端点的射线把这个角分成两个相等的角,那么这条射线叫做这个角的角平分线.(2)三角形的角平分线的定义:三角形的一个内角的平分线与它的对边相交,连接这个角的顶点和交点之间的线段叫三角形的角平分线.五、角平分线的性质:角平分线上的点到角两边的距离相等.六、角平分线的判定:角的内部到角两边距离相等的点在这个角的平分线上.七、尺规作一个角的角平分线:(1)要点:三段弧;(2)依据:SSS.轴对称知识点归纳一、轴对称图形的定义:如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.二、轴对称的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.三、轴对称的性质:1、成轴对称的两个图形一定全等;2、如果两个图形成轴对称,那么对称轴是任何一对对应点所连线段的垂直平分线.四、轴对称与轴对称图形的区别:轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.五、线段的垂直平分线:(1)定义:经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线).(2)性质:线段的垂直平分线上的点与这条线段两个端点的距离相等;(3)判定:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.六、轴对称作图:(1)作出一些关键点或特殊点的对称点.(2)按原图形的连接方式连接所得到的对称点,即得到原图形的轴对称图形.七、用坐标表示轴对称:(1)点P(a,b)关于x轴对称的点的坐标是(a,-b);(2)点P(a,b)关于y轴对称的点的坐标是(-a,b);(3)点P(a,b)关于原点对称的点的坐标是(-a,-b).八、关于坐标轴夹角平分线对称:(1)点P(a,b)关于一、三象限夹角平分线对称的点的坐标是(b,a);(2)点P(a,b)关于二、四象限夹角平分线对称的点的坐标是(-b,-a).九、关于平行于坐标轴的直线对称:(3)点P(a,b)关于直线x=m对称的点的坐标是(2m-a,b);(4)点P(a,b)关于直线y=n对称的点的坐标是(a,2n-b).十、等腰三角形:有两条边相等的三角形是等腰三角形.相等的两条边叫做腰,另一条边叫做底边.两腰所夹的角叫做顶角,腰与底边的夹角叫做底角.十一、等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”);(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.十二、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等,简称为“等角对等边”.十二、等边三角形:三条边都相等的三角形叫做等边三角形,也叫做正三角形.十三、等边三角形的性质:(1)边:三条边都相等;(2)角:三个角都相等,并且都等于600;(3)对称性:它是轴对称图形,有三条对称轴.十四、等边三角形的判定方法:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.仅供个人用于学习、研究;不得用于商业用途。

人教八年级数学上册《全等三角形》、《轴对称》知识要点归纳

人教八年级数学上册《全等三角形》、《轴对称》知识要点归纳

第十一章《全等三角形》知识要点归纳一、知识网络二、基础知识梳理 1、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;(3)全等三角形周长、面积相等。

2、全等三角形的判定方法 (1)三边对应相等的两个三角形全等。

(2)两边和它们的夹角对应相等的两个三角形全等。

(3)两角和它们的夹边对应相等的两个三角形全等。

⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理A B C D E F 中和在DEF ABC ∆∆⎪⎩⎪⎨⎧===DF AC EF BC DEAB DEF(SSS) ABC ∆∆∴≌ A B C D EF中和在DEF ABC ∆∆⎪⎩⎪⎨⎧=∠=∠=EF BC E B DE AB DEF(SAS) ABC ∆∆∴≌ AB CDE F中和在DEF ABC ∆∆⎪⎩⎪⎨⎧∠=∠=∠=∠E B DE AB D A(4)两角和其中一角的对边对应相等的两个三角形全等。

(5)斜边和一条直角边对应相等的两个直角三角形全等。

注意:①全等三角形问题中,找准对应点,对应边,对应角。

(突出对应) ②题中已知平移、翻折、旋转相当已知全等;③判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

④要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

⑤要善于灵活选择适当的方法判定两个三角形全等。

其中:一般三角形有四 种判定方法 。

直角三角形有五 种判定方法。

3、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上DEF(ASA)ABC ∆∆∴≌ A B C DE F中和在DEF ABC ∆∆⎪⎩⎪⎨⎧=∠=∠∠=∠EF BC E B D A DEF(AAS)ABC ∆∆∴≌ A C BEFD中和在DEF Rt ABC Rt ∆∆⎩⎨⎧==DF AC DE AB )HL (DEF Rt ABC Rt ∆∆∴ ≌ ·ADP COB角平分线的性质)平分PD(PC OAPD OB PC AOB OP =∴⊥⊥∠ ·ADP CBAOB∠∠=∠∴=⊥⊥平分或:角平分线的判定)OP BOP(AOP PD PC OA PD OB PC注:①性质与判定都是由三个条件推出一个结论,要正确应用; ②会用尺规做一个角的平分线,依据为“边边边”。

初二数学全等三角形知识点总结

初二数学全等三角形知识点总结

初二数学全等三角形知识点总结1. 什么是全等三角形全等三角形指的是具有相同形状和大小的三角形。

当两个三角形的所有对应边长和对应角度相等时,它们是全等三角形。

2. 判断全等三角形的条件两个三角形全等的判断条件有三个:•SSS(边边边)法则:当两个三角形的三条边分别对应相等时,它们是全等的。

•SAS(边角边)法则:当两个三角形的一个边和两个角分别对应相等时,它们是全等的。

•ASA(角边角)法则:当两个三角形的两个角和一个边分别对应相等时,它们是全等的。

3. 全等三角形的性质全等三角形具有以下性质:•对应边相等性质:全等三角形的对应边相等。

•对应角相等性质:全等三角形的对应角相等。

•全等三角形的三个内角和完全相等。

4. 全等三角形的应用全等三角形的知识在解决实际问题中有着广泛的应用。

•测量不可直接测量的长度:通过构造辅助的全等三角形,可以测量一些不可直接测量的长度。

•几何证明:全等三角形的性质可以用于几何证明过程中,简化证明的步骤。

•建模和仿真:在建模和仿真过程中,全等三角形的概念可以用于确定相似物体的尺寸和位置。

5. 解题技巧和注意事项在解题过程中,需要注意以下技巧和事项:•注意给定条件:仔细阅读题目,了解给定条件,判断是否可以使用全等三角形的知识进行解题。

•画图辅助理解:通过画图,可以更清晰地理解问题,辅助解题。

•注意证明过程:在使用全等三角形进行几何证明时,需要注意证明过程的严谨性和逻辑性。

•多做练习:通过多做一些练习题,加深对全等三角形知识的理解和应用能力。

6. 总结全等三角形是初中数学中重要的概念,它可以帮助我们解决实际问题,简化几何证明过程,并应用于建模和仿真。

在学习和应用全等三角形的过程中,我们需要掌握判断全等三角形的条件,了解全等三角形的性质,注意解题技巧和注意事项。

通过不断练习和应用,我们可以更好地理解和掌握全等三角形的知识。

人教版八年级数学上册知识点总结和复习要点

人教版八年级数学上册知识点总结和复习要点

人教版八年级数学上册知识点总结和复习要点一、全等三角形1全等三角形的概念与性质概念:能够完全重合的两个三角形叫做全等三角形。

性质:全等三角形的对应边相等,对应角相等。

2全等三角形的判定条件SSS(边边边):三边对应相等的两个三角形全等。

SAS(边角边):两边及其夹角对应相等的两个三角形全等。

ASA(角边角):两角及其夹边对应相等的两个三角形全等。

AAS(角角边):两角及其一角的对边对应相等的两个三角形全等。

HL(直角、斜边):在一对直角三角形中,斜边及另一条直角边相等。

例子:若△ABC与△DEF中,AB = DE,AC = DF,∠A = ∠D,则根据SAS判定条件,△ABC ≌△DEF。

二、轴对称1轴对称的概念概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

2轴对称的性质性质:轴对称图形上对应点到对称轴的距离相等;对应点的连线与对称轴垂直。

例子:等腰三角形是轴对称图形,其对称轴是底边上的高(中线或顶角平分线)。

三、实数1平方根与立方根的概念平方根:如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方根)。

立方根:如果一个数的立方等于a,那么这个数就叫做a的立方根(或三次方根)。

2实数的分类与性质实数可以分为有理数和无理数两大类。

有理数包括整数和分数,而无理数则是无限不循环小数。

实数具有封闭性、有序性和传递性等性质。

例子:√4 = 2,是4的平方根;∛8 = 2,是8的立方根。

四、一次函数1一次函数的概念概念:一般地,形如y = kx + b(k,b是常数,k ≠0)的函数,叫做一次函数。

2一次函数的性质性质:一次函数的图像是一条直线;当k > 0时,函数值y随x的增大而增大;当k < 0时,函数值y随x的增大而减小。

例子:函数y = 2x + 1是一次函数,其图像是一条斜率为2、截距为1的直线。

五、整式的乘法与因式分解1整式的乘法整式的乘法包括单项式乘单项式、单项式乘多项式、多项式乘多项式等。

八年级上册几何知识点总结

八年级上册几何知识点总结

几何部分一. 全等三角形1、能完全重合的图像叫做全等图形。

两个图形全等, 它们的形状和大小都相同。

2、两个能重合的三角形叫全等三角形。

3、全等三角形的对应边相等, 对应角相等。

4、三角形全等的判定:1)三组对应边分别相等的两个三角形全等(简称SSS或“边边边”)。

2)有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。

3)有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。

4)有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”)5)三条中线(或高、角平分线)分别对应相等的两个三角形全等。

5、直角三角形全等的判定:1)斜边和一条直角边对应相等的两个直角三角形全等(简称HL或“斜边直角边”)。

2)以上判定方法对于直角三角形全部适用。

二. 轴对称图形(一)轴对称与轴对称图形1.轴对称: 如果把一个图形沿着某一条直线折叠后, 能够与另一个图形重合, 那么这两个图形关于这条直线成轴对称, 这条直线叫做对称轴, 两个图形中的对应点叫做对称点。

2.轴对称图形:如果把一个图形沿着一条直线折叠, 直线两旁的部分能够互相重合, 那么这个图形叫做轴对称图形, 这条直线叫做对称轴。

轴对称和轴对称图形的区别和联系:区别: ①轴对称是指两个图形沿某直线对折能够完全重合, 而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。

②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。

3.联系: ①两部分都完全重合, 都有对称轴, 都有对称点。

4.②如果把成轴对称的两个图形看成是一个整体, 这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形, 这两个部分图形就成轴对称。

常见的轴对称图形: 圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等, 正多边形等。

(分别指出这些图形的对称轴的条数)怎样画轴对称图形: 画轴对称图形时, 应先确定对称轴, 再找出对称点。

八年级上册数学《全等三角形》知识归纳与题型突破含解析

八年级上册数学《全等三角形》知识归纳与题型突破含解析

第十二章 全等三角形知识归纳与题型突破(题型清单)一、全等图形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.二、全等三角形能够完全重合的两个三角形叫全等三角形.三、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.四、全等三角形的判定01 思维导图02 知识速记五、全等三角形的证明思路SAS HLSSS AAS SAS ASAAAS ASA AAS→ → → →→ → → → → → 找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边六、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1.证明线段相等的方法:(1) 证明两条线段所在的两个三角形全等.(2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3) 等式性质.2.证明角相等的方法:(1) 利用平行线的性质进行证明.(2) 证明两个角所在的两个三角形全等.(3) 利用角平分线的判定进行证明.(4) 同角(等角)的余角(补角)相等.(5) 对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明.4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5. 证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.七、 角平分线概念:从一个角的顶点引出一条射线,把这个角分成完全相同的角,这条射线叫做这个角的角平分线。

人教版八年级上册数学期末复习计划

人教版八年级上册数学期末复习计划

人教版八年级上册数学期末复习计划八年级上册数学期末复计划本学期初二数学教学内容繁多且难度大,因此本次复时间较短。

根据实际情况和学生情况,我们制定了以下复计划:一、复内容:1.第十一章:三角形2.第十二章:全等三角形3.第十三章:轴对称4.第十四章:整式的乘法与因式分解5.第十五章:分式二、复目标:一)整理本学期学过的知识与方法:1.综合复重要知识点并加入适当的练。

逐一讲解易错题,强调有针对性的解题方法,并查漏补缺。

2.归纳考试热点,以与课本同步的训练题型为主,让学生积极动手操作并得出结论。

对于学生可能不熟悉的考试题型,教师要讲解解题方法和步骤。

在课堂上精讲多练,尽可能让学生自己总结出解决问题的常用分析方法。

3.重点讲解全等三角形的性质及其判定定理。

记住性质是关键,学会判定是重点。

学生要学会选择判定方法,并熟悉不同图形之间的区别和联系。

对常见的证明题要多练多总结。

二)选择一个最具挑战性的问题,写下解决它的过程,包括遇到的困难、克服困难的方法与过程以及所获得的体会,并选择这个问题的原因。

三)进一步培养学生的应用意识,建立数形结合思想、化归思想、统计思想以及合情推理能力和演绎推理能力。

三、复安排:本次复共四周时间,具体安排如下:时间复内容备考复负责教师第16周第十一章:三角形第十二章:全等三角形第十三章:轴对称第十四章:整式与因式分解第十五章:分式XXX XXX XXX XXX XXX第17周第18周第19周四、复措施:1.对前三单元进行一次检测,对后两单元进行一次检测,重点讲解班级学生出现的错题和涉及到的重点问题。

2.作业布置少而精,有针对性,并且注重订正和改错。

3.在试题的选择上,面面俱到,突出重点难点,不重不漏。

八年级上学期期末复习专题《全等三角形及轴对称》

八年级上学期期末复习专题《全等三角形及轴对称》

期末复习专题三:全等三角形与轴对称全等三角形1. 全等三角形的概念及性质;2. 三角形全等的判定;3. 角平分线的性质及判定。

知识点一:证明三角形全等的思路通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析:⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩SAS SSSHL AAS SAS ASAAAS ASA AAS 找夹角已知两边找第三边找直角边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一对边 切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。

例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。

求证:ACF BDE ∆≅∆。

知识点二:构造全等三角形例2. 如图,在ABC ∆中,BE 是∠ABC 的平分线, AD BE ⊥,垂足为D 。

求证:21C ∠=∠+∠。

例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=。

F 为AB 延长线上一点,点E 在BC上,BE BF =,连接,AE EF 和CF 。

求证:AE CF =。

知识点三:常见辅助线的作法1. 连接四边形的对角线例4. 如图,AB //CD ,AD //BC ,求证:AB CD =。

2. 作垂线,利用角平分线的知识例5. 如图,,AP CP 分别是ABC ∆外角MAC ∠和NCA ∠的 平分线,它们交于点P 。

求证:BP 为MBN ∠的平分线。

例6. 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。

求证:2AC AE =。

解答过程:延长AE 至点F ,使EF AE =,连接DF 在ABE ∆与FDE ∆中 AE FE AEB FED BE DE =⎧⎪∠=∠⎨⎪=⎩∴ABE FDE ∆≅∆(SAS) ∴B EDF ∠=∠ADF ADB EDF ∠=∠+∠,ADC BAD B ∠=∠+∠ 又ADB BAD ∠=∠ ∴ADF ADC ∠=∠AB DF =,AB CD = ∴DF DC =在ADF ∆与ADC ∆中 AD AD ADF ADC DF DC =⎧⎪∠=∠⎨⎪=⎩∴ADF ADC ∆≅∆(SAS) ∴AF AC = 又2AF AE = ∴2AC AE =。

最新初二上册数学度末复习要点:全等三角形

最新初二上册数学度末复习要点:全等三角形

最新初二上册数学度末复习要点:全等三角形学习是一个循序渐进的过程,也是一个不断积存不断创新的过程。

下面小编为大伙儿整理了最新八年级上册数学期末复习要点:全等三角形,欢迎大伙儿参考阅读!一.定义1.全等形:形状大小相同,能完全重合的两个图形.2.全等三角形:能够完全重合的两个三角形.二.重点1.平移,翻折,旋转前后的图形全等.2.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.3.全等三角形的判定:SSS三边对应相等的两个三角形全等[边边边]SAS两边和它们的夹角对应相等的两个三角形全等[边角边]ASA两角和它们的夹边对应相等的两个三角形全等[角边角]AAS两个角和其中一个角的对边开业相等的两个三角形全等[边角边]与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。

金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟专门貌,属句有夙性,说字惊老师。

”因此看,宋元时期小学教师被称为“老师”有案可稽。

清代称主考官也为“老师”,而一样学堂里的先生则称为“教师”或“教习”。

可见,“教师”一说是比较晚的事了。

现在体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。

辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。

HL斜边和一条直角边对应相等的两个三角形全等[斜边,直角边]要练说,得练看。

看与说是统一的,看不准就难以说得好。

练看,确实是训练幼儿的观看能力,扩大幼儿的认知范畴,让幼儿在观看事物、观看生活、观看自然的活动中,积存词汇、明白得词义、进展语言。

在运用观看法组织活动时,我着眼观看于观看对象的选择,着力于观看过程的指导,着重于幼儿观看能力和语言表达能力的提高。

4.角平分线的性质:角的平分线上的点到角的两边的距离相等.5.角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上.以上确实是查字典数学网为大伙儿整理的最新八年级上册数学期末复习要点:全等三角形,如何样,大伙儿还中意吗?期望对大伙儿的学习有所关心,同时也祝大伙儿学习进步,考试顺利!死记硬背是一种传统的教学方式,在我国有悠久的历史。

八年级上期末复习几何专题(全等三角形、轴对称、勾股定理)

八年级上期末复习几何专题(全等三角形、轴对称、勾股定理)

初二数学几何总复习专题一.轴对称图形的识别和作图问题1.如图,由小正方形组成的L 形图中,请你用三种方法分别在下图中添画一个小正方形使它成为轴对称图形:2.如图是2×2的方格,在格点处有一个△ABC ,仿照图例在备用图中画出三种与△ABC 成轴对称的“格点三角形”.3.称图形的是()4. A5.点P (3,-4),则点P 关于y 轴对称的点的坐标是_______.6.如图,把一个长方形ABCD 沿AE 对折点B 落在F 点,EF 交AD 于点G ,如果∠BEA =38°,则∠EGA 的度数为______度.7.如图,把△ABC 沿EF 对折,叠合后的图形如图所示.若60A ∠=︒,195∠=︒,则∠2的度数为() A .24°B .25°C .30°D .35°8.如图,将△ABC 沿DE 、HG 、EF 翻折,三个顶点均落在点O 处.若1129∠=︒,则2∠的度数为() A .49°B .50°C .51°D .52°6图7图8图9.如图,在Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于D ,若CD =3,则点D 到AB 的距离是()A .5B .4C .3D .210.如图,AO 、OB 是互相垂直的墙壁,墙角O 处是一个老鼠洞,一只猫在A 处发现了B 处的一只老鼠正在向洞口逃窜.若猫以与老鼠同样的速度去追捕老鼠,请在图中作出最快能截住老鼠的位置C .(尺规作图,保留作图痕迹,不 写作法) 11.如图,已知A (-2,3),B (-3,1),C (1,-2).(1)请画出ABC △关于y 轴对称的A B C '''△(其中A B C ''',,分别是A B C ,,的对应点,不写画法); (2)B '的坐标为______; (3)△ABC 的面积是________. 12.已知:如图,∠ABC 及两点M ,N .求作:点P ,使得PM =PN ,且P 点到∠ABC 两边的距离相等.(不写画法,保留作图痕迹) 答:______即为所求.专题二.利用等腰三角形的性质求角的问题及分类思想 1.等腰三角形有一个角为40°,则另外两个角分别为_______.2.等腰三角形中,有一个角是50°,则它的一条腰上的高与底边的夹角是()AB C B'C'EF12BBBBBDCA3.一个等腰三角形的一边长是6,一个外角是120°,则它的周长为() A .12B .15C .16D .184.已知:如图1,P 、Q 是△ABC 边BC 上的两点,且BP=PQ=QC=AP=AQ ,求:∠BAC 的度数. 图15.如图2,在△ABC 中,∠B =∠C ,FD ⊥BC 于D ,DE ⊥AB 于E ,∠AFD =158°,则∠EDF 等于=__________. 图2图3图46. 如图3,在Rt △ABC 中,∠B =90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知∠BAE =10°, 则∠C 的度数为()7.如图4,AB=AC ,AD=AE ,∠BAD=40°,则∠CDE=_______. 8.如图5,△ABC 中,AB=AC ,BD=BC ,AD=DE=EB ,则∠A 为()A .30°B .36°C .45°D .54° 图5图6图79.如图6,△ABC 中,AB=AC=BD ,那么∠1与∠2之间的关系满足() A .∠1=2∠2B .2∠1+∠2=180°C .∠1+3∠2=180°D .3∠1-∠2=180°10.如图7,AC ⊥BC ,AC=BC ,CD ⊥AB ,DE ⊥BC ,则图中共有等腰三角形() A .1个B .2个C .5个D .4个11.如图8,∠A=90°,E 是BC 上一点,A 点和E 点关于BD 对称,B 点、C 点关于DE 对称,求∠ABC 和∠C 的度数. 图812.如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC=AD ,求△ABC 各角的度数. 专题三.利用等腰三角形的性质求线段的问题1.已知:在△ABC 中,AB <AC ,BC 边上的垂直平分DE 交BC 于点D ,交AC 于点E ,AC =8cm ,△ABE 的周长是14cm , 求:AB 的长。

初二数学 全等三角形压轴几何题复习题附解析

初二数学 全等三角形压轴几何题复习题附解析

初二数学全等三角形压轴几何题复习题附解析一、全等三角形旋转模型1.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.答案:C解析:(1)CF=CG;(2)CF=CG,见解析【分析】(1)结论CF=CG,由角平分线性质定理即可判断.(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF=CG;证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,∴CF=CG(角平分线上的点到角两边的距离相等);(2)CF=CG.理由如下:如图,过点C作CM⊥OA,CN⊥OB,∵OP平分∠AOB,CM⊥OA,CN⊥OB,∠AOB=120º,∴CM=CN(角平分线上的点到角两边的距离相等),∴∠AOC=∠BOC=60º(角平分线的性质),∵∠DCE=∠AOC,∴∠AOC=∠BOC=∠DCE=60º,∴∠MCO=90º-60º =30º,∠NCO=90º-60º =30º,∴∠MCN=30º+30º=60º,∴∠MCN=∠DCE ,∵∠MCF=∠MCN-∠DCN ,∠NCG=∠DCE-∠DCN ,∴∠MCF=∠NCG ,在△MCF 和△NCG 中,CMF CNG CM CNMCF NCG ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MCF ≌△NCG (ASA ),∴CF=CG (全等三角形对应边相等);【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等 .2.如图1,在Rt △ABC 中,AB =AC ,∠A =90°,点D 、E 分别在边AB 、AC 上,AD =AE ,连结DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是________,位置关系是__________;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连结MN ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若DE =2,BC =4,请直接写出△PMN 面积的最大值.答案:C解析:(1)PM=PN ,PM ⊥PN ,理由见详解;(2)△PMN 是等腰直角三角形,理由见详解;(3)△PMN 面积的最大值是94. 【分析】(1)利用三角形的中位线得出PM=12CE ,PN=12BD ,进而判断出BD=CE ,即可得出结论,再利用三角形的中位线得出PM ∥CE 得出∠DPM=∠DCA ,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=12BD,PN=12BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可得出结论.【详解】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=12BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=12CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN;故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形;理由:由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=12BD,PM=12CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC ,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN 是等腰直角三角形;(3)由(2)知,△PMN 是等腰直角三角形,PM=PN=12BD , ∴PM 最大时,△PMN 面积最大,即:BD 最大时,△PMN 面积最大,∴点D 在BA 的延长线上,∵DE =2,BC =4,∴2222AD =⨯=,24222AB =⨯= ∴BD=AB+AD=32,∴PM=32, ∴S △PMN 最大=12PM 2=21329()224⨯=; 【点睛】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=12CE ,PN=12BD ,解(2)的关键是判断出△ABD ≌△ACE ,解(3)的关键是判断出BD 最大时,△PMN 的面积最大,是一道中考常考题.3.发现规律:(1)如图①,ABC 与ADE 都是等边三角形,直线,BD CE 交于点F .直线BD ,AC 交于点H .求BFC ∠的度数(2)已知:ABC 与ADE 的位置如图②所示,直线,BD CE 交于点F .直线BD ,AC 交于点H .若ABC ADE α∠=∠=,ACB AED β∠=∠=,求BFC ∠的度数 应用结论:(3)如图③,在平面直角坐标系中,点O 的坐标为(0,0),点M 的坐标为(3,0),N 为y 轴上一动点,连接MN .将线段MN 绕点M 逆时针旋转60得到线段MK ,连接NK ,OK ,求线段OK 长度的最小值答案:A解析:(1)BFC ∠的度数为60︒;(2)BFC ∠的度数为180αβ︒--;(3)线段OK 长度的最小值为32 【分析】(1)通过证明BAD CAE ≅△△可得ABD ACE ∠=∠,再由三角形内角和定理进行求解即可;(2)通过证明ABC ADE 可得BAC DAE ∠=∠,AB AC AD AE=,可证ABD ACE ,可得ABD ACE ∠=∠,由外角性质可得BFC BAC ∠=∠,再有三角形内角和定理进行求解即可;(3)由旋转的性质可得MNK △是等边三角形,可得MK MN NK ==,60NMK NKM KNM ∠=∠=∠=︒,如图③将MOK 绕点M 顺时针旋转60︒,得到MQN △,连接OQ ,可得60OMQ ∠=︒,OK =NQ ,MO =MQ ,则当NQ 为最小值时,OK 有最小值,由垂线段最短可得当QN y ⊥轴时,NQ 有最小值,由直角三角形的性质即可求解.【详解】 (1)∵ABC 与ADE 是等边三角形∴AB=AC ,AD=AE ,60BAC DAE ABC ACB ∠=∠=∠=∠=︒∴BAD CAE ∠=∠∴()BAD CAE SAS ≅ ∴ABD ACE ∠=∠∵60ABD DBC ABC ∠+∠=∠=︒∴60ACE DBC ∠+∠=︒∴18060BFC DBC ACE ACB ∠=︒-∠-∠-∠=︒;(2)∵ABC ADE α∠=∠=,ACB AED β∠=∠=∴ABC ADE∴BAC DAE ∠=∠,AB AC AD AE= ∴BAD CAE ∠=∠,AB AD AC AE = ∴ABD ACE ∴ABD ACE ∠=∠ ∵BHC ABD BAC BFC ACE ∠=∠+∠=∠+∠ ∴BFC BAC ∠=∠ ∵180BAC ABC ACB ∠+∠+∠=︒ ∴180BFC αβ∠++=︒∴180BFC αβ∠=︒--;(3)∵将线段MN 绕点M 逆时针旋转60︒得到线段MK∴MN MK =,60NMK ∠=︒∴MNK △是等边三角形∴MK MN NK ==,60NMK NKM KNM ∠=∠=∠=︒如下图,将MOK 绕点M 顺时针旋转60︒,得到MQN △,连接OQ∴MOK MQN ≅,60OMQ ∠=︒∴OK =NQ ,MO =MQ∴MOQ △是等边三角形∴60QOM ∠=︒∴30NOQ ∠=︒∵OK =NQ∴当NQ 为最小值时,OK 有最小值,由垂线段最短可得当QN y ⊥轴时,NQ 有最小值∵点M 的坐标为(3,0)∴3OM OQ ==∵QN y ⊥轴,30NOQ ∠=︒ ∴1322NQ OQ == ∴线段OK 长度的最小值为32. 【点睛】本题属于几何变换综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,旋转的性质,三角形内角和定理等知识,灵活运用这些性质进行推理是解决本题的关键.4.△CDE 和△AOB 是两个等腰直角三角形,∠CDE =∠AOB =90°,DC =DE =1,OA =OB =a (a >1).(1)将△CDE 的顶点D 与点O 重合,连接AE ,BC ,取线段BC 的中点M ,连接OM . ①如图1,若CD ,DE 分别与OA ,OB 边重合,则线段OM 与AE 有怎样的数量关系?请直接写出你的结果;②如图2,若CD 在△AOB 内部,请你在图2中画出完整图形,判断OM 与AE 之间的数量关系是否有变化?写出你的猜想,并加以证明;③将△CDE 绕点O 任意转动,写出OM 的取值范围(用含a 式子表示);(2)是否存在边长最大的△AOB ,使△CDE 的三个顶点分别在△AOB 的三条边上(都不与顶点重合)?如果存在,请你画出此时的图形,并求出边长a 的值;如果不存在,请说明理由.答案:A解析:(1)①OM =12AE ;②OM =12AE ,证明详见解析;③12a -≤OM ≤12a +;(2)5【分析】(1)①利用△CDE ≌△AOB 得出BC =AE ,再由直角三角形斜边的中线等于斜边的一半求解.②作辅助线,利用△COF≌△EOA及三角形中位线得出OM=12 AE.③分两种情况,当OC与OB重合时OM最大,当OC在BO的延长线上时OM最小,据此求出OM的取值范围.(2)分两种情况:当顶点D在斜边AB上时,设点C,点E分别在OB,OA上.由DM+OM≥OF求出直角边a的最大值;当顶点D在直角边AO上时,点C,点E分别在OB,AB上时,利用△EHD≌△DOC,得出OD=EH,在Rt△DHE中,运用勾股定理ED2=DH2+EH2,得出方程,由△判定出a的最大值.【详解】解:(1)①∵△CDE和△AOB是两个等腰直角三角形,∴CD=ED,AO=B0,∠CDE=∠AOB,在△CDE和△AOB中,CD EDCDE AOBAO BO=⎧⎪∠=∠⎨⎪=⎩∴△CDE≌△AOB(SAS),∴BC=AE∵M为BC中点,∴OM=12BC,∴OM=12AE.②猜想:OM=12AE.证明:如图2,延长BO到F,使OF=OB,连接CF,∵M为BC中点,∴OM=12CF,∵△CDE和△AOB是两个等腰直角三角形,∴CD=ED,AO=BO=OF,∠CDE=∠AOB,∵∠AOC +∠COB =∠BOE +∠COB =90°,∴∠AOC =∠BOE ,∠FOC =∠AOE ,在△COF 和△EOA 中,CD ED FOC AOE OF AO =⎧⎪∠=∠⎨⎪=⎩∴△COF ≌△EOA ,∴CF =AE ,∴OM=12AE . ③Ⅰ、如图3,当OC 与OB 重合时,OM 最大,OM =11122a a -++= Ⅱ、如图4,当OC 在BO 的延长线上时,OM 最小,OM =12a +﹣1=12a -, 所以12a -≤OM ≤12a +, (2)解:根据△CDE 的对称性,只需分两种情况:①如图5,当顶点D在斜边AB上时,设点C,点E分别在OB,OA上.作OF⊥AB于点F,取CE的中点M,连接OD,MD,OM.∵△AOB和△CDE是等腰直角三角形,∠AOB=∠CDE=90°,OA=OB=a(a>1),DC=DE=1,∴AB=2a,OF=12AB=2a,∴CE=2,DM=12CE=22,在RT△COE中,OM=12CE=22,在RT△DOM中,DM+OM≥OD,又∵OD≥OF,∵DM+OM≥OF,即22+22≥22a,∴a≤2,∴直角边a的最大值为2.②如图6,当顶点D在直角边AO上时,点C,点E分别在OB,AB上,作EH⊥AO于点H.∵∠AOB=∠CDE=∠DHE=90°,∵∠HED+∠EDH=∠CDO+∠EDH=90°,∴∠HED=∠CDO,∵DC=DE,在△EHD和△DOC中,EHD COD HED CDO DE DC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EHD ≌△DOC (AAS )设OD =x ,∴OD =EH =AH =x ,DH =a ﹣2x ,在Rt △DHE 中,ED 2=DH 2+EH 2,∴1=x 2+(a ﹣2x )2,整理得,5x 2﹣4ax +a 2﹣1=0,∵x 是实数,∴△=(4a )2﹣4×5×(a 2﹣1)=20﹣4a 2≥0,∴a 2≤5,∴a 2的最大值为5,∴a 的最大值为5.综上所述,a 的最大值为5.【点睛】 本题主要考查了几何变换综合题及三角形全等的判定和性质,解题的关键是在取最大值时,对三角形的位置进行讨论分别求值.5.如图,在ABC 中,,AB AC BAC α=∠=,过A 作AD BC ⊥于点D ,点E 为直线AD 上一动点,把线段CE 绕点E 顺时针旋转α,得到线段EF ,连接FC 、FB ,直线AD 与BF 相交于点G .(1)(发现)如图1,当60α=︒时,填空:①AE BF的值为___________; ②AGB ∠的度数为___________; (2)(探究)如图2,当120α=︒时,请写出AE BF的值及AGB ∠的度数,并就图2的情形给出证明;(3)(应用)如图3,当90α=︒时,若15AB ACE =∠=︒,请直接写出DFG 的面积.答案:G解析:(1)1;60°;(2)3AE BF =,∠G =30°,理由见解析;(3) 【分析】(1)①根据已知条件可以证明三角形ABC 和三角形EFC 都是等边三角形,然后根据等边三角形的性质证明△AEC ≌△BFC ,即BF =AE 从而得出答案;②根据①中的证明∠ABG =90°,∠BAG =30°,从而计算出∠AGB 的度数;(2)根据题目已知条件可以计算出BC =,同理可以证得CF =,再证ECA FCB ∠=∠即△ACE ∽△BCF ,从而得到比值和角的度数;(3)根据第(2)问的计算结论分E 在AD 上和E 在DA 的延长线上分类讨论求解即可.【详解】解:(1)①∵AB =AC ,CE =EF ,∠BAC =∠FEC =60°∴△ABC 和△EFC 都是等边三角形∴∠ACB =∠ECF =60°,AC =CB ,CE =CF∴∠ACE =∠BCF∴△ACE ≌△BCF∴A E =BF ,即1AE BF= ②∵△ACE ≌△BCF∴∠EAC =∠CBF 由①可知△ABC 是等边三角形∴AD 平分∠BAC ,BD ⊥AD∴∠CAE =∠CBF =30°∴∠AGB =∠180°-∠CBF -∠BDG =60°(2)AE BF = ∵AB =AC ,∠BAC =120°,AD ⊥BC∴∠ABD =30°=∠ACB∴22BD AB AC CD === ∴BC =同理∵∠FEC =120°,EF =EC ∴CF =∴BC CF AC CE=,∠ACB =∠ECF =30° ∴△ACE ∽△BCF∴∠CAE =∠CBF∴3AE AC BF BC == ∵AD ⊥BC ,∠BAC =120°,∴∠CAE =∠CBF =60°又∵∠BDG =90°∴∠G =30°(3)第一种情况,如图所示,当E 在AD 上时 ∵AB AC ==∠BAC =90°,AD ⊥BC ∴sin 4562BC AD BD CD AB =====∠DAC =45° ∵∠ACE =15° ∴∠CED =∠CAD +∠ACE =60° ∴2tan 60DC DE ==∴AE AD DE =-=BC CF AC CE==,∠ACB =∠ECF =45° 又∵AD ⊥BC ,∠BAC =90°,∴∠CAE =∠CBF =45°∴△ACE ∽△BCF∴BF BC AE AC==∴2BF == ∵∠ADC =∠BDG∴∠G =∠ACB =45°∴BG ==∴2FG BG BF =-=过点D 作DM ⊥BG 交BG 于M ,∵∠G =∠ACB =45°,∠BDG =90°∴=DG BD CD ==∴2DM DG == ∴132DFG S FG DM ==△第二种情况:当E 在DA 的延长线上时过点D 作DM ⊥BG 交BG 于M , 同上可证2BF BC AE AC ==,6BGBD ==,3DM = ∵∠ACE =15°,∠DAC =45°∴∠DEC =30° ∵AD ⊥CD ,6CD = ∴32tan 30DC DE == ∴=6DG BD CD ==326AE DE AD =-=-∴2623FB AE ==-∴6FG BF BG =+=1332DFG S FG DM ==△ 故答案为:3或33.【点睛】本题主要考查了相似三角形的性质与判定,旋转的性质,三角函数等知识点,解题的关键在于能够熟练的掌握相关知识点.6.问题提出(1)如图①,在ABC 中,AD 是BC 边上的高,若∠BAD =45°,∠DAC =30°,则ABD ACDS S= .问题探究(2)如图②,在正方形ABCD 中,边长为8,点E 是AB 的中点,作∠EDF =45°,交BC 于点F ,求DEF 的面积.问题解决(3)如图③,某市为迎接城市运动会,打造融体育、文化、饮食、旅游为一体的综合商业品牌,规划了如图所示的矩形ABCD 观光区,如图,在矩形ABCD 中,AB =16km ,AD =12km ,要求在边AB 上确定一点E 为观光区的南门,在边BC 上确定一点F 为观光区的东门,且∠EDF =30°,同时为了方便市民游览,还要修建一条观光通道FG ,使FG ∥AB ,交DE 于点G (观光带的宽度不计),为了节约成本,要使FG 的长度最小,那么是否存在符合条件的修建方案?若存在,请求出FG 的最小值;若不存在,请说明理由.答案:B解析:3(2)803,(3) 323. 【分析】(1)根据∠BAD =45°,∠DAC =30°,求出BD 、AD 、DC 的关系即可;(2)将△DCF 绕点D 顺时针旋转90°得到△DAG ,可证△DEF ≌△DEG ,得到EF =CF +AE ,求出CF 长即可;(3) 作DM ⊥DF ,交BA 延长线于点M ,作EN ⊥DF 于N ,EH ⊥DM 于H ,作△DME 的外接圆⊙O ,连接OD 、OE 、OM ,作OQ ⊥ME 于Q ,求出△DEF 的面积最小值,再用面积求FG 最小值.【详解】解:(1)∵AD 是BC 边上的高,若∠BAD =45°,∠DAC =30°,∴AD =BD ,AD = tan 603DC DC ︒=,12312ABD ACD BD AD SS CD AD ⋅==⋅ (2) 将△DCF 绕点D 顺时针旋转90°得到△DAG ,∵∠DAG =∠C =90°,∠DAE =90°,∴G 、A 、E 三点共线,由旋转可知,∠FDG =∠CDA =90°,DF =DG ,∴∠GDE =∠FDE =45°,DE =DE ,∴△GDE ≌△FDE ,∴GE=EF,∴EF=AE+CF,设EF为x,则CF=x-4,BF=12-x,2224(12)x x+-=,解得,x=20 3,DEF的面积=DEG的面积=120808233⨯⨯=;(3)作DM⊥DF,交BA延长线于点M,作EN⊥DF于N,EH⊥DM于H,作△DME的外接圆⊙O,连接OD、OE、OM,作OQ⊥ME于Q,∵∠FDM=∠CDA=90°,∴∠ADM=∠CDF,∵∠C=∠DAM=90°,∴△ADM∽△CDF,∴34MD ADDF DC==,∵∠FDE=30°,∴∠EDM=60°,∵1sin302EN DE DE=︒=,3sin60EH DE DE=︒=,∴3EHEN=,1432192DEFDMEDF ENSS DM EH⋅==⋅,设⊙O的半径为R,∵∠MDE=60°,∴∠MOE=120°,∠MOQ=60°,3sin60RMQ OM=︒=ME3R,OQ=12R,OD +OQ ≥AD , 1122R R +≥,解得,8R ≥, 138122DME S ≥⨯⨯⨯,即483DME S ≥,DME S △的最小值为483,DEF S △的最小值为4348364⨯=, 1()62DEF DGF EGF S S S FG CF BF FG =+=+=, FG 的最小值为643263=.【点睛】本题考查了全等三角形的判定与性质,相似三角形的判定与性质,三角形的外接圆,解直角三角形等,解题关键是充分理解题意,恰当的构建全等三角形、相似三角形和外接圆. 7.如图1所示,矩形ABCD 中,点E ,F 分别为边AB ,AD 的中点,将△AEF 绕点A 逆时针旋转α(0°<α≤360°),直线BE 、DF 相交于点P .(1)若AB =AD ,将△AEF 绕点A 逆时针旋转至如图2所示的位置,则线段BE 与DF 的数量关系是 .(2)若AD =nAB (n ≠1),将△AEF 绕点A 逆时针旋转,则(1)中的结论是否仍然成立?若成立,请就图3所示的情况加以证明,若不成立,请写出正确结论,并说明理由. (3)若AB =8,BC =12,将△AEF 旋转至AE ⊥BE ,请算出DP 的长.答案:B解析:(1)BE =DF ;(2)不成立,结论:DF =nBE ;理由见解析(3)634或634【分析】(1)如图2中,结论:BE=DF,BE⊥DF.证明△ABE≌△ADF(SAS),利用全等三角形的性质可得结论;(2)结论:DF=nBE,BE⊥DF,证明△ABE∽△ADF(SAS),利用相似三角形的性质可得结论;(3)分两种情形画出图形,利用相似三角形的性质以及勾股定理求解即可.【详解】解:(1)结论:BE=DF,BE⊥DF,理由:∵四边形ABCD是矩形,AB=AD,∴四边形ABCD是正方形,AE=12AB,AF=12AD,∴AE=AF,∵∠DAB=∠EAF=90°,∴∠BAE=∠DAF,∴△ABE≌△ADF(SAS),∴BE=DF,故答案为:BE=DF;(2)结论不成立,结论:DF=nBE,∵AE=12AB,AF=12AD,AD=nAB,∴AF=nAE,∴AF∶AE=AD∶AB,∴AF∶AE=AD∶AB,∵∠DAB=∠EAF=90°,∴∠BAE=∠DAF,∴△BAE∽△DAF,∴DF∶BE=AF∶AE=n,∠ABE=∠ADF,∴DF=nBE;(3)如图4-1中,当点P在BE的延长线上时,在Rt△AEB中,∵∠AEB=90°,AB=8,AE=12AB=4,∴BE=22AB AE-=43,∵△ABE∽△ADF,∴ABAD =BE DF,∴812=43DF,∴DF=63,∵四边形AEPF是矩形,∴AE=PF=4,∴PD=DF-PF=634-;如图4-2中,当点P在线段BE上时,同法可得DF=63PF=AE=4,∴PD=DF+PF=634,综上所述,满足条件的PD的值为634-或634.【点睛】此题考查了矩形的性质,全等三角形的判定及性质,旋转的性质,相似三角形的判定及性质,勾股定理,注意应用分类思想解决问题,是一道较难的几何综合题.8.探究:(1)如图①,在△ABC中,∠ACB=90°,CD⊥AB于点D,若∠B=28°,则∠ACD的度数是.拓展:(2)如图②,∠MCN=90°,射线CP在∠MCN的内部,点A、B分别存CM、CN 上,分别过点A、B作AD⊥CP、BE⊥CP于点D、E,若AC=CB,则AD、DE、BE三者间的数量关系为.请说明理由;应用:(3)如图③,点A、B分别在∠MCN的边CM、CN上,射线CP在∠MCN的内部,点D、E在射线CP上,连结AD、BE、AE,且使∠MCN=∠ADP=∠BEP.当AC=BC 时,△≌△;此时如果CD=2DE,且S△CBE=6,则△ACE的面积是.答案:D解析:(1)28° (2)DE =AD ﹣BE ;理由见解析 (3)ACD ;CBE ;9【分析】(1)利用直角三角形的两锐角互余,即可得出结论;(2)利用同角的余角相等判断出∠CAD =∠BCE ,进而判断出△ACD ≌△CBE ,即可得出结论;(3)利用等式的性质判断出∠ADC =∠CEB ,进而判断出△ACD ≌△CBE ,得出S △ACD =S △CBE ,再求出S △ADE =3,即可得出结论.【详解】解:探究:∵CD ⊥AB ,∴∠CDB =90°,∵∠B =28°,∴∠BCD =90°﹣∠B =68°,∵∠ACB =90°,∴∠ACD =90°﹣∠BCD =28°,故答案为:28°;拓展:(2)∵∠MCN =90°,∴∠ACD+∠BCE =90°,∵AD ⊥CP ,BE ⊥CP ,∴∠ADC =∠BEC =90°,∴∠ACD+∠CAD =90°,∴∠CAD =∠BCE ,在△ACD 和△CBE 中,ADC CEB CAD BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS ),∴CD =BE ,AD =CE ,∴DE =CE ﹣CD =AD ﹣BE ,故答案为:DE =AD ﹣BE ;应用:(3)∵∠MCN =∠ACD+∠BCD ,∠MCN =∠ADP ,∴∠ADP =∠ACD+∠BCD ,∵∠ADP =∠ACD+∠CAD , ∴∠CAD =∠BCE , ∵∠ADP =∠BEP , ∴∠ADC =∠CEB , 在△ACD 和△CBE 中,ADC CEB CAD BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△CBE (AAS ), ∴S △ACD =S △CBE , ∵S △CBE =6, ∴S △ACD =6, ∵CD =2DE , ∴S △ACD =2S △ADE , ∴S △ADE=12S △ACD =3, ∴S △ACE =S △ACD +S △ADE =9, 故答案为:ACD ,CBE ,9. 【点睛】此题是三角形综合题,主要考查了直角三角形的性质,同角的余角相等,等式的性质,全等三角形的判定和性质,判断出△ACD ≌△CBE 是解本题的关键. 9.已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”.请利用上面信息解决以下问题:已知Rt ABC 中,AC BC =,90C ∠=︒,D 为AB 边的中点,90EDF ∠=︒,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .(1)当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图①),求证:12DEF CEF ABC S S S +=△△△; (2)当EDF ∠绕D 点旋转到DE 和AC 不垂直时,在图②和图③这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABCS 又有怎样的数量关系?请写出你的猜想,不需要证明.答案:D解析:(1)见解析;(2)图2成立,图3不成立:12DEF CEF ABC S S S -=△△△ 【分析】(1)根据等腰直角三角形和正方形的性质得到AED 、DFB △、EDF 、ECF △为全等的等腰直角三角形,据此即可证明;(2)对于图2:过点D 作DM AC ⊥,DN BC ⊥,根据中位线的性质和等量代换证得MD ND =和MDE NDF ∠=∠,结合90DME DNF ∠=∠=︒,证得DME DNF ∆≅∆,根据全等三角形的性质即可求证;对于图3:根据ASA 证明DME DNF ∆≅∆,根据全等三角形的性质即可求证. 【详解】(1)证明:连接CD∵D 为AB 边的中点,AC BC = ∴AD=CD=BD∴45DAC DCA DCB DBC ∠=∠=∠=∠=︒ 又∵DE AC ⊥,90EDF ∠=︒,90C ∠=︒, ∴四边形ECFD 为矩形 ∴∠CFD=90° 又∵∠DCF=45° ∴CF=DF∴四边形ECFD 是正方形 ∴DE=DF∴DEF CEF DEC DFC S S S S +=+△△△△又∵12DCF DBF ABC S S S +=△△△,且DCF DBF S S =△△ ∴12DEF CEF ABC S S S +=△△△ (2)图2成立,图3不成立 对于图2:过点D 作DM AC ⊥,DN BC ⊥,如图2,则90DME DNF MDN ∠=∠=∠=︒又∵90C ∠=︒ ∴DMBC ,DN AC∵D 为AB 边的中点∴根据中位线定理得到:12DN AC =,12MD BC = ∵AC=BC ∴MD=ND ∵90EDF ∠=︒∴90MDE EDN ∠+∠=︒,90NDF EDN ∠+∠=︒ ∴MDE NDF ∠=∠ 在DME ∆与DNF ∆中DME DNFMD NDMDE NDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴DME DNF ∆≅∆ ∴DME DNF S S ∆∆=∴DEF CEF DMCN DECF S S S S ∆∆==+四边形四边形∴12DMCN ABC S S =△ ∴12DEF CEF ABC S S S +=△△△对于图3: 连接DC ,在DEC ∆与DBF ∆中135DCE DBF DC DBCDE BDF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴DEC DBF ∆≅∆∴12DEF CFE DBC CFE ABC DBFEC S S S S S S ∆∆∆∆∆==+=+五边形 ∴12DEF CEF ABC S S S ∆∆∆-=. 【点睛】本题考查了全等三角形的判定和性质,中位线的性质,等腰直角三角形的性质,题目较为综合,利用作出的辅助线将不规则的三角形转化为直角三角形进行解决.10.如图1,ABC ∆中,CA CB =,ACB α∠=,D 为ABC ∆内一点,将CAD ∆绕点C 按逆时针方向旋转角α得到CBE ∆,点,AD 的对应点分别为点,BE ,且,,A D E 三点在同一直线上.(1)填空:CDE ∠=______(用含α的代数式表示);(2)如图2,若60α=︒,请补全图形,再过点C 作CF AE ⊥于点F ,然后探究线段CF ,AE ,BE 之间的数量关系,并证明你的结论;(3)如图3,若90α=︒,52AC =ABEC 面积的最大值______. 解析:(1)1802α-;(2)33AE BE =+;证明见解析;(3)21)2. 【分析】(1)由旋转的性质可得CD CE =,DCE α∠=,即可求解;(2)由旋转的性质可得AD BE =,CD CE =,60DCE ∠=︒,可证CDE ∆是等边三角形,由等边三角形的性质可得33DF EF CF ==,即可求解; (3)如图3中,过点C 作CF BE ⊥交BE 的延长线于F ,设AE 交BC 于J .证明90ACJ BEJ,推出点E 在以AB 为直径的圆上运动,即图中BC 上运动,当CEEB 时,四边形ABEC 的面积最大,此时EC EB =,分别求出ABC ∆,BCE ∆的面积即可解决问题. 【详解】解:(1)如图1中,将CAD ∆绕点C 按逆时针方向旋转角α得到CBE ∆ACD BCE ∴∆≅∆,DCE α∠= CD CE ∴=1802CDE α︒-∴∠=. 故答案为:1802α︒-. (2)23AE BE CF =+理由如下:如图2中,将CAD ∆绕点C 按逆时针方向旋转角60︒得到CBE ∆ACD BCE ∴∆≅∆AD BE ∴=,CD CE =,60DCE ∠=︒ CDE ∴∆是等边三角形,且CF DE ⊥3DF EF ∴==AE AD DF EF =++23AE BE CF ∴=+. (3)如图3中,过点C 作CWBE 交BE 的延长线于W ,设AE 交BC 于J .CAD ∆绕点C 按逆时针方向旋转90︒得到CBE ∆,CAD CBE ,CAD CBE ∴∠=∠, AJC BJE ,90ACJBEJ,∴点E 在以AB 为直径的圆上运动,即图中BC 上运动,当CEEB 时,四边形ABEC的面积最大,此时EC EB =,CD CE =,90DCE ∠=︒, 45CED ∴∠=︒, 90AEW AEB , 45CEW , CF EW , 45WCE CEW ,CWEW ,设CWEWx ,则2EC EB x ==,在Rt BCW 中,222BC CW BW ,222(2)(52)x xx ,225(22)2x ,21225(21)2BCESBE CW x , 2521252115252222ABCBCEABECS SS四边形.【点睛】本题考查了圆的性质,等腰三角形的性质,全等三角形的判定和性质,解直角三角形等知识,熟悉相关性质,灵活运用所学知识解决问题是解题的关键. 11.综合与实践 实践操作:①如图1,ABC ∆是等边三角形,D 为BC 边上一个动点,将ACD ∆绕点A 逆时针旋转60︒得到AEF ∆,连接CE .②如图2,在ABC ∆中,AD BC ⊥于点D ,将ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,延长FE 与BC 交于点G .③如图3,将图2中得到AEF ∆沿AE 再一次折叠得到AME ∆,连接MB . 问题解决:(1)小明在探索图1时发现四边形ABCE 是菱形.小明是这样想的:请根据小明的探索直接写出图1中线段CD ,CF ,AC 之间的数量关系为 : (2)猜想图2中四边形ADGF 的形状,并说明理由; 问题再探:(3)在图3中,若AD=6,BD=2,则MB 的长为 .答案:C解析:(1)CD+CF=AC ;(2)四边形ADGF 为正方形;理由见解析;(3)13【分析】(1)先证明C 、F 、E 在同一直线上,再证明△BAD ≌△CAF (SAS ),则∠ADB=∠AFC ,BD=CF ,可得AC=CF+CD ;(2)先根据∠ADC=∠DAF=∠F=90°,证明得四边形ADGF 是矩形,由邻边相等可得四边形ADGF 是正方形;(3)证明△BAM ≌△EAD (SAS ),根据BM=DE 及勾股定理可得结论. 【详解】 解:(1)如图:由旋转得:∠DAF=60°=∠BAC,AD=AF,∴∠BAD=∠CAF,∵△ABC是等边三角形,∴AB=AC,∴△BAD≌△CAF(SAS),∴∠ADB=∠AFC,BD=CF,∵∠ADC+∠ADB=∠AFC+∠AFE=180°,∴C、F、E在同一直线上,∴AC=BC=BD+CD=CF+CD,+=;故答案为:CD CF AC(2)四边形ADGF是正方形,理由如下:如图:∵Rt△ABD绕点A逆时针旋转90°得到△AEF,∴AF=AD,∠DAF=90°,∵AD⊥BC,∴∠ADC=∠DAF=∠F=90°,∴四边形ADGF是矩形,∵AF=AD,∴四边形ADGF是正方形;(3)如图3,连接DE,∵四边形ADGF是正方形,DG=FG=AD=AF=6,∵△ABD绕点A逆时针旋转90°,得到△AEF,∴∠BAD=∠EAF,BD=EF=2,∴EG=FG-EF=6-2=4,∵将△AFE沿AE折叠得到△AME,∴∠MAE=∠FAE,AF=AM,∴∠BAD=∠EAM,∴∠BAD+∠DAM=∠EAM+∠DAM,即∠BAM=∠DAE,∵AF=AD,∴AM=AD,在△BAM和△EAD中,∵AM ADBAM DAEAB AE=⎧⎪∠=∠⎨⎪=⎩,∴△BAM≌△EAD(SAS),∴BM=DE=22EG DG+=2246213+=.故答案为:213.【点睛】本题属于四边形综合题,主要考查了旋转的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是熟练掌握等边三角形和全等三角形的性质,依据图形的性质进行计算求解.12.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,其中A(3,0),B(﹣1,0),与y轴交于点C,抛物线的对称轴交x轴于点D,直线y=kx+b1经过点A,C,连接CD.(1)求抛物线和直线AC的解析式:(2)若抛物线上存在一点P,使△ACP的面积是△ACD面积的2倍,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使线段AQ绕Q点顺时针旋转90°得到线段QA1,且A1好落在抛物线上?若存在,求出点Q的坐标;若不存在,请说明理由.答案:A解析:(1)2y x 2x 3=-++;3y x =-+ ;(2)(﹣1,0)或(4,﹣5);(3)存在;(1,2)和(1,﹣3) 【分析】(1)将点A ,B 坐标代入抛物线解析式中,求出b ,c 得出抛物线的解析式,进而求出点C 的坐标,再将点A ,C 坐标代入直线AC 的解析式中,即可得出结论;(2)利用抛物线的对称性得出BD =AD ,进而判断出△ABC 的面积和△ACP 的面积相等,即可得出结论;(3)分点Q 在x 轴上方和在x 轴下方,构造全等三角形即可得出结论. 【详解】解:(1)把A (3,0),B (﹣1,0)代入y =﹣x 2+bc+c 中,得93010b c b c -++=⎧⎨--+=⎩,∴23b c =⎧⎨=⎩, ∴抛物线的解析式为y =﹣x 2+2x+3, 当x =0时,y =3, ∴点C 的坐标是(0,3),把A (3,0)和C (0,3)代入y =kx+b 1中,得11303k b b +=⎧⎨=⎩,∴113k b =-⎧⎨=⎩∴直线AC 的解析式为y =﹣x+3; (2)如图,连接BC , ∵点D 是抛物线与x 轴的交点, ∴AD =BD , ∴S △ABC =2S △ACD , ∵S △ACP =2S △ACD ,∴S △ACP =S △ABC ,此时,点P 与点B 重合, 即:P (﹣1,0),过B 点作PB ∥AC 交抛物线于点P ,则直线BP 的解析式为y =﹣x ﹣1①, ∵抛物线的解析式为y =﹣x 2+2x+3②, 联立①②解得,10x y =-⎧⎨=⎩或45x y =⎧⎨=-⎩,∴P (4,﹣5),∴即点P 的坐标为(﹣1,0)或(4,﹣5);(3)如图,①当点Q在x轴上方时,设AC与对称轴交点为Q',由(1)知,直线AC的解析式为y=﹣x+3,当x=1时,y=2,∴Q'坐标为(1,2),∵Q'D=AD=BD=2,∴∠Q'AB=∠Q'BA=45°,∴∠AQ'B=90°,∴点Q'为所求,②当点Q在x轴下方时,设点Q(1,m),过点A1'作A1'E⊥DQ于E,∴∠A1'EQ=∠QDA=90°,∴∠DAQ+∠AQD=90°,由旋转知,AQ=A1'Q,∠AQA1'=90°,∴∠AQD+∠A1'QE=90°,∴∠DAQ=∠A1'QE,∴△ADQ≌△QEA1'(AAS),∴AD=QE=2,DQ=A1'E=﹣m,∴点A1'的坐标为(﹣m+1,m﹣2),代入y=﹣x2+2x+3中,解得,m=﹣3或m=2(舍),∴Q的坐标为(1,﹣3),∴点Q的坐标为(1,2)和(1,﹣3).【点睛】本题考查的是二次函数的综合题,涉及解析式的求解,与三角形面积有关的问题,三角形“k”字型全等,解题的关键是利用数形结合的思想,设点坐标并结合几何图形的性质列式求解.13.如图,在等边三角形ABC中,点D是射线CB上一动点,连接DA,将线段DA绕点D 逆时针旋转60°得到线段DE,过点E作EF∥BC交直线AB于点F,连接CF.(1)如图1,若点D为线段BC的中点,则四边形EDCF是;(2)如图2,若点D为线段CB延长线上任意一点,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若点D为射线CB上任意一点,当∠DAB=15°,△ABC的边长为2时,请直接写出线段BD的长.答案:A-31.解析:(1)平行四边形;(2)成立,见解析;(3)423【分析】(1)证明△ADB≌△DEO(AAS)和四边形EOBF为平行四边形,进而求解;(2)证明△OED≌△DAC(SAS),则∠EOD=∠ACD=60°=∠ABC,故OE∥AB,进而求解;(3)分点D在线段BC上、点D(D′)在BC的延长线上两种情况,利用勾股定理和等腰直角三角形的性质分别求解即可.【详解】解:(1)过点E作DE的垂线交CB的延长线于点O,设BA交ED于点R,∵点D为线段BC的中点,则AD⊥BC且∠BAD=30°,∵∠ADE=60°,∴∠EDB=∠ADB﹣ADE=90°﹣60°=30°,∵EF∥BC,∴∠EFD=∠ABC=60°,∠FED=∠EDO=30°,∴∠ERF=90°,∴DE⊥AB,∵AD=ED,∠BAD=∠EDO=30°,∠ADB=∠DEO=90°,∴△ADB≌△DEO(AAS),∴OE=BD=12BC=12AB,则OB=OD﹣BD=AB﹣12AB=12AB,∴OB=BD=CD,∵OE⊥DE,DE⊥AB,∴OE∥AB,∵EF∥BC,∴四边形EOBF为平行四边形,∴EF=OB=CD,而EF∥CD,∴四边形EFCD为平行四边形,故答案为:平行四边形;(2)如图2,在CD的延长线上截取DO=AC,连接OE,设∠ADC的度数为α,∵∠EDO=180°﹣∠EDA﹣∠ADC=180°﹣60°﹣α=120°﹣α,∠DAC=180°﹣∠ACD﹣∠ADC=120°﹣α=∠EDO,而AC =OD ,DE =AD ,∴△OED ≌△DAC (SAS ),∴∠EOD =∠ACD =60°=∠ABC ,∴OE ∥AB ,而EF ∥BC ,∴四边形EFCD 为平行四边形;(3)①当点D 在线段BC 时,过点A 作AH ⊥BC ,则∠BAH =30°,而∠DAB =15°,BH =12BC =1, 即BD 是∠BAH 的角平分线,过点D 作DG ⊥AB 于点G ,设DH =x ,则DG =DH =x ,BD =BH ﹣DH =1﹣x ,在△BDG 中,∠BDG =30°,则BG =12BD =12x - 由勾股定理得:()21x -=212x -⎛⎫ ⎪⎝⎭+2x ,解得:x =33, ∴BD =1﹣x =423-,②当点D (D ′)在BC 的延长线上时,∵∠BAD ′=15°,∴∠D ′AH =30°+15°=45°,则D ′H =AH 2213-=∴BD ′=D ′H ﹣BH 31;综上,BD 的长度为423-31.【点评】本题是四边形综合题,主要考查了平行四边形性质、三角形全等、等边三角形性质等知识点,综合性强,难度较大.14.探究:如图①和②,在四边形ABCD 中,AB=AD ,∠BAD=90°,点E 、F 分别在BC 、CD 上,∠EAF=45°.(1)如图①,若∠B 、∠ADC 都是直角,把ABE △绕点A 逆时针旋转90°至△ADG ,使AB 与AD 重合,则能得EF=BE+DF ,请写出推理过程;(2)如图②,若∠B 、∠D 都不是直角,则当∠B 与∠D 满足数量关系 时,仍有EF=BE+DF ;(3)拓展:如图③,在ABC 中,∠BAC=90°,AB=AC=22,点D 、E 均在边BC 上,且∠DAE=45°.若BD=1,求DE 的长.答案:B解析:(1)见解析;(2)∠B+∠D=180°;(3)53【分析】(1)根据已知条件证明△EAF ≌△GAF ,进而得到EF=FG ,即可得到答案;(2)先作辅助线,把△ABE 绕A 点旋转到△ADG ,使AB 和AD 重合,根据(1),要使EF=BE+DF ,需证明△EAF ≌△GAF ,因此需证明F 、D 、G 在一条直线上,即180ADG ADF ∠+∠=︒,即180B D ∠+∠=︒;(3)先作辅助线,把△AEC 绕A 点旋转到△AFB ,使AB 和AC 重合,连接DF ,根据已知条件证明△FAD ≌△EAD ,设DE=x ,则DF=x ,BF=CE=3﹣x ,然后再Rt BDF 中根据勾股定理即可求出x 的值,即DE 的长.【详解】(1)解:如图,∵把△ABE 绕点A 逆时针旋转90°至△ADG ,使AB 与AD 重合,∴AE=AG ,∠BAE=∠DAG ,BE=DG ,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF 和△GAF 中AF AF EAF GAF AE AG =⎧⎪∠=∠⎨⎪=⎩∴△EAF ≌△GAF (SAS ),∴EF=GF ,∵BE=DG ,∴EF=GF=BE+DF ;(2)解:∠B+∠D=180°,理由是:如图,把△ABE 绕A 点旋转到△ADG ,使AB 和AD 重合,则AE=AG ,∠B=∠ADG ,∠BAE=∠DAG ,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴F 、D 、G 在一条直线上,和(1)类似,∠EAF=∠GAF=45°,在△EAF 和△GAF 中AF AF EAF GAF AE AG =⎧⎪∠=∠⎨⎪=⎩∴△EAF ≌△GAF (SAS ),∴EF=GF ,∵BE=DG ,∴EF=GF=BE+DF ;故答案为:∠B+∠D=180°;(3)解:∵△ABC 中,AB=AC=22,∠BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:BC=22AB AC +=4,如图,把△AEC 绕A 点旋转到△AFB ,使AB 和AC 重合,连接DF .则AF=AE ,∠FBA=∠C=45°,∠BAF=∠CAE ,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC ﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD 和△EAD 中AD AD FAD EAD AF AE =⎧⎪∠=∠⎨⎪=⎩∴△FAD ≌△EAD ,∴DF=DE ,设DE=x ,则DF=x ,∵BD=1,∴BF=CE=4﹣1﹣x=3﹣x ,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:222DF BF BD =+,22(3)1x x =-+,解得:x=53, 即DE=53. 【点睛】本题综合考查三角形的性质和判定、正方形的性质应用、全等三角形的性质和判定、勾股定理等知识,解题关键在于正确做出辅助线得出全等三角形.15.在ABC 中,AB =AC ,M 是平面内任意一点,将线段AM 绕点A 按顺时针方向旋转与∠BAC 相等的角度,得到线段AN ,连结NB .(感知)如图①,若M 是线段BC 上的任意一点,易证ABN ACM △≌△,可知∠NAB =∠MAC ,BN =MC .(探究)(1)如图②,点E 是AB 延长线上的点,若点M 是∠CBE 内部射线BD 上任意一点,连结MC ,(感知)中的结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.(拓展)(2)如图③,在DEF 中,DE =8,∠DEF =60°,∠EDF =75°,P 是EF 上的任意点,连结DP ,将DP 绕点D 按顺时针方向旋转75°,得到线段DQ ,连结EQ ,则EQ 的最小值为 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学上学期期末考试复习建议(几何部分)一. 考试范围第十一章 三角形 第十二章 全等三角形 第十三章 轴对称 二. 复习目的1. 通过复习使学生对已学过的数学知识系统化, 条理化. 更有利于学生掌握基础知识和基本方法, 为进一步学习数学打下良好的基础.2. 逐步培养学生识图能力, 逻辑思维和推理论证的能力, 作图能力, 分析问题和解决问题的能力, 提高学生的数学素质.3. 使学生初步会运用数形结合、转化与化归、分类讨论等数学思想方法.三. 总体复习建议1. 重视基础: 对每一章的知识点进行总结, 使学生掌握所有重要的定义、公式、性质和判定; 掌握每章必须掌握的基本方法(包括解题规范) , 且“每一步推理都要有根据”; 关注教材中数学应用(包括尺规作图) 的实例及其数学原理.2. 优选例题习题, 使学生熟悉一些基本题型, 掌握常用辅助线的添加. 证明书写格式要规范, 思路清楚.3. 适当的综合题的训练.4. 关注新旧教材的对比与变化.5. 充分利用区里的教育资源.第十二章 全等三角形 第十三章 轴对称 一、通过框架图进行知识梳理轴对称等腰三角形 等边三角形画轴对称图形画轴对称图形的对称轴 关于坐标轴对称的点的坐标的关系 生活中的轴对称二、基本尺规作图: 作法及原理作一条线段等于已知线段;作一个角等于已知角;作已知角的平分线;作已知线段的垂直平分线(作已知线段的中点) ;三、适当总结证明方法:(1) 证明线段相等的方法①利用线段中点. ②利用数量相等.③证明两条线段所在的两个三角形全等④利用角平分线的性质证明角平分线上的点到角两边的距离相等⑤等腰三角形顶角平分线、底边上的高线平分底边⑥线段垂直平分线上的点到线段两端点的距离相等(2) 证明角相等的方法:①利用数量相等. ②利用平行线的性质进行证明.③利用角平分线证明. ④证明两个角所在的两个三角形全等⑤同角(或等角) 的余角(或补角) 相等⑥等腰三角形底边上的高线或底边中线平分顶角⑦等式性质⑧等边对等角(3) 证明两条线段的位置关系(平行、垂直) 的方法.(4) 常添加的辅助线:截长补短倍长中线角分线双垂直角分线翻折平行线+角分线: 等腰三角形角分线+垂直: 补全等腰三角形四、从图形变换的角度来复习全等同时复习几何的平移、轴对称两种变换, 归纳定义及性质, 渗透旋转变换的思想全等三角形的常见图形平移型:A'AB C C'B'轴对称型:旋转型:补充习题(一) 全等的性质和判定1. 如图, 正方形ABCD 的边长为4, 将一个足够大的直角三角板的直角顶点放于点A 处, 该三角板的两条直角边与CD 交于点F , 与CB 延长线交于点E . 四边形AECF 的面积是( ) . A A. 16 B. 12 C. 8 D. 42. 已知: 如图, AC 、BD 相交于点O , ∠A = ∠D , 请你再补充一个条件, 使△AOB ≌△DOC , 你补充的条件是____________.CA A' BABCB'C' ABCC' B'AB CC' B'B (C' )C (B' ) AA'ABB'C'CABB'C' C A'AA'B (C' )C (B' )A A'BB' C C' AA'B' BCC' ABB'C'C A'ABCDO3. 在△ABC 与△A'B'C' 中, 已知∠A = ∠A', CD 和C'D' 分别为∠ACB 和∠A'C'B' 的平分线, 再从以下三个条件: ①∠B = ∠B', ②AC = A'C', ③CD = C'D' 中任取两个为题设, 另一个为结论, 则可以构成 ( ) 个正确的命题.A . 1B . 2C . 3D . 4 4. 根据下列已知条件, 不能唯一确定......△ABC 的大小和形状的是( ) . B A. AB =3, BC =4, AC =5 B. AB =4, BC =3, ∠A =30º C. ∠A =60º, ∠B =45º, AB =4D. ∠C =90º, AB =6, AC = 55. 如图, 已知△ABC , 则甲、乙、丙三个三角形中和△ABC 全等的是( ) . Dbaca cc aa丙72︒50︒乙50︒甲50︒CBA50︒72︒58︒A. 只有乙B. 只有丙C. 甲和乙D. 乙和丙6. 已知: 如图, CB = DE , ∠B = ∠E , ∠BAE = ∠CAD . 求证: ∠ACD = ∠ADC .7. 如图, 锐角△ABC 中, D , E 分别是AB , AC 边上的点, △ADC ≌△ADC ′, △AEB ≌△AE B′, 且C ′D ∥EB ′∥BC , 记BE , CD 交于点F , 若BAC x ∠=︒, 则∠BFC 的大小是__________°. (用含x 的式子表示) (1802x -)E ABCDF E DB'C'ABC第6题图第7题图(二) 轴对称图形和垂直平分线1. 在下列各图中, 对称轴最多的图形有________条对称轴.2. (1) 点P (3, − 5) 关于x 轴的对称点坐标为( ) D A. (−3, −5) B. (5, 3) C. (−3, 5) D. (3, 5)(2) 如图, 数轴上A B ,两点表示的数分别为1-和3, 点B 关于点A 的对称点为C , 则点C 所表示的数为( ) A A. 23-- B. 13--C. 23-+D. 13+(3) 如图, 在正方形网格纸上有三个点A , B , C , 现要在图中网格范围内再找格点D , 使得A , B , C , D 四点组成的凸四边形是轴对称图形, 在图中标出所有满足条件的点D 的位置. (两个解)3. 如图, 在Rt △ABC 中, ∠ACB = 90°, ∠A = 15°, AB 的垂直平分线与 AC 交于点D , 与AB 交于点E , 连结BD . 若AD =12cm, 则BC 的长为 cm.4. 如图, 已知△ABC 中, ∠BAC = 120°, 分别作AC , AB 边的垂直平分线PM , PN 交于点P , 分别交BC 于点E 和点F . 则以下各说法中: ①∠P = 60°, ②∠EAF = 60°, ③点P 到点B 和点C 的距离相等, ④PE = PF , 正确的说法是______________. (填序号) ①②③FEPMN CAB第3题图第4题图5. 已知∠AOB =45°, 点P 在∠AOB 的内部, P 1与P 关于OB 对称, P 2与P 关于OA 对称, 则P 1、P 2与O 三点构成的三角形是( ) D A. 直角三角形 B. 等腰三角形 C. 等边三角形 D. 等腰直角三角形(三) 等腰三角形的性质和判定1. 等腰直角三角形的底边长为5, 则它的面积是( ). D A. 50B. 25C. 12.5D. 6.252. 已知: 如图3, △ABC 中, 给出下列四个命题: ① 若AB =AC , AD ⊥BC , 则∠1=∠2; ②若AB =AC , ∠1=∠2, 则BD =DC ; ③若AB =AC , BD =DC , 则AD ⊥BC ;④若AB =AC , AD ⊥BC , BE ⊥AC , 则∠1=∠3; 其中, 真命题的个数是( ). D A. 1个 B. 2个 C. 3个 D. 4个A O B3. 如图, 在△ABC 中, D 是BC 边上一点, 且AB = AD = DC , ∠BAD = 40°, 则∠C 为( ) . B A. 25° B. 35°C. 40°D. 50°4. 如图, 在△ABC 中, AB = AC , ∠BAC = 30°. 点D 为△ABC 内一点, 且DB = DC , ∠DCB = 30°. 点E 为BD 延长线上一点, 且AE = AB .(1) 求∠ADE 的度数;(2) 若点M 在DE 上, 且DM = DA , 求证: ME = DC .5. 已知: 如图, △ABC 中, 点,D E 分别在,AB AC 边上, F 是CD 中点, 连BF 交AC 于点E , 180ABE CEB ∠+∠=︒, 比较线段BD 与CE 的大小, 并证明你的结论.(提示, 注意AE = AB ; 过D 作AC 的平行线交BE 于点G )(四) 等边三角形(30° 角直角三角形)1. 下列条件中, 不能..得到等边三角形的是( ) . B A. 有两个内角是60°的三角形 B. 有两边相等且是轴对称图形的三角形 C. 三边都相等的三角形D. 有一个角是60°且是轴对称图形的三角形2. 如图, △ABC 中, AB =AC , ∠BAC =120°, DE 垂直平分AC . 根据以上条件, 可知∠B =______, ∠BAD =_______, BD : DC =_______. (30, 90, 2: 1)3. 如图, 在纸片△ABC 中, AC = 6, ∠A = 30º, ∠C = 90º, 将∠A 沿DE 折叠, 使点A 与点B 重合, 则折痕DE 的长为_____. (2)4. 如图所示△ABC 中, AB = AC , AG 平分∠BAC ; ∠FBC = ∠BFG = 60︒, 若FG = 3, FB = 7, 求BC 的长. (答案10. 提示: 延长AG 、FG 与BC 相交)ABCDABCDEADMC(五) 最值问题1. 如图, P 、Q 为ABC 边上的两个定点. 在BC 边上求作一点M , 使PM +MQ 最短2. 已知: 如图, 牧马营地在M 处, 每天牧马人要赶着马群到草地吃草, 再到河边饮水, 最后回到营地M . 请在图上画出最短的放牧路线..M河草地第1题图第2题图3. 如图, 四边形EFGH 是一长方形的台球桌面, 现在黑、白两球分别位于A 、B 两点的位置上. 试问怎样撞击黑球A , 才能使黑球A 先碰到球台边EF , 反弹一次后再击中白球B ?4. 如图, MN 是正方形ABCD 的一条对称轴, 点P 是直线MN 上的一个动点, 当PC +PD 最小时, ∠PCD = _________°. (45)DAMNBCP5. 已知两点M (4, 2) , N (1, 1) , 点P 是x 轴上一动点, 若使PM +PN 最短, 则点P 的坐标应为___________. (2, 0)6. 平面直角坐标系xOy 中, 已知点A (0, 4) , 直线x = 3, 一个动点P 自OA 的中点M 出发, 先到达x 轴上的某点(设为点E ) , 再到达直线x = 6上某点(设为点F ) 最后运动到点A , 求使点P 运动的路径中最短的点E 、F 的坐标. E (4, 0) , F (6, 1)几何专题复习 (一) 分类讨论1. ① 等腰三角形的一个角是110︒, 求其另两角? ② 等腰三角形的一个角是80︒, 求其另两角?③ 等腰三角形两内角之比为2: 1, 求其三个内角的大小? 2. ① 等腰三角形的两边长为5cm 、6cm, 求其周长? ② 等腰三角形的两边长为10cm 、21cm, 求其周长?3. ① 等腰三角形一腰上的中线将周长分为12cm 和21cm 两部分, 求其底边长? ② 等腰三角形一腰上的中线将周长分为24cm 和27cm 两部分, 求其底边长?4. 等腰三角形一腰上的高与另一腰的夹角为30°, 则其顶角为_______.(按高的位置分类)5. 等腰三角形一边上的高等于底边的一半, 则其顶角为___________.6. 等腰三角形一腰上的高等于腰的一半, 则其顶角为___________.7. 等腰三角形一边上的高等于这边的一半, 则其顶角为___________.8. △ABC 中, AB = AC, AB 的中垂线EF 与AC 所在直线相交所成锐角为40︒, 则∠B = _____. (按一腰中垂线与另一腰的交点所在位置分类)9. 已知: ()()ABC x C B A ∆-轴上一点且为、,4,00,2为等腰三角形 , 问满足条件的C 点有几个? 4个10. 在正方形ABCD 所在平面上找一点P, 使△PAD 、△PAB 、△PBC 、△PCD 均为等腰三角形, 这样的P 点有几个? 9个11. 平面内有一点D 到△ABC 三个顶点的距离DA = DB = DC , 若∠DAB = 30°, ∠DAC = 40°, 则∠BDC 的大小是_________°. (20或140)(二) 几何作图1. 如图, 某地区要在区域S 内建一个超市M , 按照要求, 超市M 到两个新建的居民小区A , B 的距离相等, 到两条公路OC , OD 的距离也相等. 这个超市应该建在何处? (本题要求: 尺规作图, 不写作法, 保留作图痕迹)SD2. 尺规作图作AOB 的平分线方法如下: 以O 为圆心, 任意长为半径画弧交OA 、OB 于C 、D , 再分别以点C 、D 为圆心, 以大于12CD 长为半径画弧, 两弧交于点P , 则作射线OP 即为所求. 由作法得OCP ODP △≌△的根据是( ) . DA. SASB. ASAC. AASD. SSS3. 如图, 用圆规以直角顶点O 为圆心, 以适当半径画一条弧 交两直角边于A 、B 两点, 若再以A 为圆心, 以OA 为半径画弧, 与弧AB 交于点C , 则∠AOC 等于 __________ °4. 小明同学在学习了全等三角形的相关知识后发现, 只用两把完全相同的长方形直尺就可以作出一个锐角的平分线. 如图: 一把直尺压住射线OB , 另一把直尺压住射线OA 并且与第一把直尺交于点P , 小明说: “射线OP 就是∠BOA 的角平分线. ”你认为小明的想法正确吗? 请说明理由.5. 阅读下列材料:木工张师傅在加工制作家具的时候, 用下面的方法在木板上画直角:如图1, 他首先在需要加工的位置画一条线段AB , 接着分别以点A 、点B 为圆心, 以大于12AB 的适当长为半径画弧, 两弧相交于点C , 再以C 为圆心, 以同样长为半径画弧交AC 的延长线于点D (点D 需落在木板上) , 连接DB . 则∠ABD 就是直角. 木工张师傅把上面的这种作直角的方法叫做“三弧法.图2EF ACBD 图1OAB解决下列问题:(1) 利用图1就∠ABD是直角作出合理解释(要求: 先写出已知、求证, 再进行证明);(2) 图2表示的一块残缺的圆形木板, 请你用“三弧法”, 在木板上...画出一个以EF为一条直角边的直角三角形EFG(要求: 尺规作图, 不写作法, 保留作图痕迹) .(三) 操作问题第1题图①图②第2题图1. 如图①, 一张四边形纸片ABCD, ∠A=50︒, ∠C=150︒. 若将其按照图②所示方式折叠后, 恰好MD'∥AB, ND'∥BC, 则∠D的度数为( ). CA. 70°B. 75°C. 80°D. 85°2. 如图所示, 把一个三角形纸片ABC顶角向内折叠3次之后, 3个顶点不重合, 那么图中∠1+ ∠2+∠3+∠4+∠5+∠6的值为( ) CA. 180°B. 270°C. 360°D. 无法确定3. 将一个菱形纸片依次按下图①、②的方式对折, 然后沿图③中的虚线裁剪, 成图④样式. 将纸展开铺平. 所得到的图形是图中的( ) A4. 如图, 等边△ABC的边长为1cm, D、E分别是AB、AC上的点, 将△ADE沿直线DE折叠, 点A落在点A´处, 且点在△ABC外部, 则阴影部分图形的周长为____________cm. (3)5. 如图, 将一张三角形纸片ABC 折叠, 使点A 落在BC 边上, 折痕EF ∥BC , 得到△EFG ; 再继续将纸片沿△BEG 的对称轴EM 折叠, 依照上述做法, 再将△CFG 折叠, 最终得到矩形EMNF , 折叠后的△EMG 和△FNG 的面积分别为1和2, 则△ABC 的面积为( ) A . 6B . 9C . 12D . 186. 将如图1所示的长方形纸片ABCD 沿过点A 的直线折叠, 使点B 落在AD 边上, 折痕为AE (如图2) ; 再继续将纸片沿过点E 的直线折叠, 使点A 落在EC 边上, 折痕为EF (如图3) , 则在图3中, ∠F AE = _______°, ∠AFE = _______°. (45, 67.5)图1 图2 图37.(1) 已知ABC △中, 90A ∠=, 67.5B ∠=, 请画一条直线, 把这个三角形分割成两个等腰三角形. (请你选用下面给出的备用图, 把所有不同的分割方法都画出来. 只需画图, 不必说明理由, 但要在图中标出相等两角的度数)(2) 已知ABC △中, C ∠是其最小的内角, 过顶点B 的一条直线把这个三角形分割成了两个等腰三角形, 请探求ABC ∠与C ∠之间的所有可能的关系.8. 当身边没有量角器时, 怎样得到一些特定度数的角呢? 动手操作有时可以解“燃眉之急”. 如图, 已知矩形ABCD , 我们按如下步骤操作可以得到一个特定的角: (1) 以点A 所在直线为折痕, 折叠纸片, 使点B 落在AD 上, 折痕与BC 交于E ; (2) 将纸片展平后, 再一次折叠纸片, 以E 所在直线为折痕, 使点A 落在BC 上, 折痕EF 交AD 于F . 则∠AFE = _______°. (67.5)A BC 备用图①A BC 备用图②ABC备用图③AC B GFEACBAM GFECB NM G FEACB A BCD ED CB AFD CEA9. 如图(1)所示Rt △ABC 中, ∠A = 90°, 三边a b c >>. 现以△ABC 某一边的垂直平分线为对称轴, 作△ABC 的轴对称图形, 记作一次操作. 例如, 若图(1)中△ABC 以a 边的垂直平分线为对称轴, 作轴对称图形得到图(2)中的△ABC , 记作“a 操作”一次; 图(2)中△ABC 继续以b 边的垂直平分线为对称轴, 作轴对称图形得到图(3)中的△ABC , 记作“b 操作”一次. 现对图(1)中的△ABC 分别按以下顺序连续进行若干次操作, 则最后得到的△ABC 与图(1)中△ABC 重合的是( ) . BA. a 操作 − b 操作 − c 操作B. b 操作 − c 操作 − b 操作 − c 操作C. a 操作 − c 操作 − b 操作 − a 操作D. b 操作 − a 操作 − b 操作 − a 操作c ba a(1)ABC (2) a 操作 (3) b 操作BCAA BCACB四、探究性问题1. 已知: 如图, Rt △ABC 中, AB = AC , ∠BAC = 90°, 直线AE 是经过点A 的任一直线, BD ⊥AE 于D , CE ⊥AE 于E , BD > CE . (1) AD 与CE 的大小关系如何? 请说明理由. (2) 求证: DE =BD -CE .2. 已知: 如图, B 、A 、C 三点共线, 并且Rt △ABD ≌Rt △ECA , M 是DE 的中点. 问题:(1) 判断△ADE 的形状并证明;(2) 判断线段AM 与线段DE 的关系并证明; (3) 判断△MBC 的形状并证明.MCDAEB3.已知: 在△ABC 中, ∠CAB = 2α, 且030α<<, AP 平分∠CAB .(1) 如图1, 若21α=, ∠ABC = 32°, 且AP 交BC 于点P , 试探究线段AB , AC 与PB 之间的数量关系, 并对你的结论加以证明;(2) 如图2, 若∠ABC = 60α-, 点P 在△ABC 的内部, 且使∠CBP = 30°, 求∠APC 的度数(用含α的代数式表示) .五、关于旋转的问题、动点问题1. 已知: 如图, △AOB 和△COD 都是等边三角形, 作直线AC 、直线BD 交于E . 求证: (1) AC =BD ; (2) ∠AEB =60°.2. 已知: 如图, 等边三角形ABC 中, AB = 2, 点P 是AB 边上的一动点(点P 可以与点A 重合, 但不与点B 重合) , 过点P 作PE ⊥BC , 垂足为E , 过点E 作EF ⊥AC , 垂足为F , 过点F 作FQ ⊥AB , 垂足为Q . 设BP = x , AQ = y . (1) 请用x 的代数式表示y (直接写出) ; (2) 当BP 的长等于多少时, 点P 与点Q 重合; (128x y =+; 43) 3. 已知: 如图, △ABC 中, ∠A =90°, AB =AC . D 是斜边BC 的中点; E 、F 分别在线段AB 、AC 上, 且∠EDF =90°.(1) 求证: △DEF 为等腰直角三角形.(2) 如果E 点运动到AB 的反向..延长线...上, F 在直线..CA 上且仍保持∠EDF =90°, 那么△DEF 还仍然是等腰直角三角形吗? 请画图(右图) 并直接写出....你的结论. 图1ABCP图2AC PBACB P EFQC4. 如图所示, 长方形ABCD 中, AB = 4, BC 点E 是折线段A —D —C 上的一个动点(点E 与点A 不重合) , 点P 是点A 关于BE 的对称点. 在点E 运动的过程中, 能使△PCB 为等腰三角形.....的点E 的位置共有( ) . CA. 2个B. 3个C. 4个D. 5个5. 如图ABC △中, 10AB AC ==厘米, 8BC =厘米, 点D 为AB 中点. (1) 如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动, 同时, 点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等, 经过1秒后, BPD △与CQP △是否全等, 请说明理由;②若点Q 的运动速度与点P 的运动速度不相等, 当点Q 的运动速度为多少时, 能够使BPD △与CQP △全等?(2) 若点Q 以②中的运动速度从点C 出发, 点P 以原来的运动速度从点B 同时出发, 都逆时针沿ABC △三边运动, 求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? ( (1) ①SAS 全等; ②415厘米/秒. (2) 经过803秒点P 与点Q 第一次在边AB 上相遇. )六、综合应用1. 在平面直角坐标系中, 直线l 过点M (3,0), 且平行于y 轴.如果△ABC 三个顶点的坐标分别是A (-2,0), B (-1,0),C (-1,2), △ABC 关于y 轴的对称图形是△A 1B 1C 1, △A 1B 1C 1关于直线l 的对称图形是△A 2B 2C 2, 在右面的坐标系中画出△A 2B 2C 2,并写出它的三个顶点的坐标.AB CDEPB2. 已知: 如图, 在△ABC 中, AB = AC , ∠BAC = α, 且60° < α < 120°. P 为△ABC 内部一点, 且PC = AC , ∠PCA = 120° − α.(1) 用含α的代数式表示∠APC , 得∠APC = ________; (2) 求证: ∠BAP = ∠PCB ; (3) 求∠PBC 的度数.3. 在△ABC 中, AD 是△ABC 的角平分线.(1) 如图1, 过C 作CE ∥AD 交BA 延长线于点E , 若F 为CE 的中点, 连结AF , 求证: AF ⊥AD ;(2) 如图2, M 为BC 的中点, 过M 作MN ∥AD 交AC 于点N , 若AB = 4, AC = 7, 求NC 的长.4.在ABC △中, BA BC BAC =∠=α,, M 是AC 的中点, P 是线段BM 上的动点, 将线段PA 绕点P 顺时针旋转2α得到线段PQ .(1) 若α=60︒且点P 与点M 重合(如图1) , 线段CQ 的延长线交射线BM 于点D , 请补全图形, 并写出CDB ∠的度数;(2) 在图2中, 点P 不与点B M ,重合, 线段CQ 的延长线与射线BM 交于点D , 猜想CDB ∠的大小(用含α的代数式表示) , 并加以证明.图1 图2BCPA5. 在Rt△ABC中, ∠ACB = 90°, ∠A = 30°, BD是△ABC的角平分线, DE⊥AB于点E.(1) 如图1, 连接EC, 求证: △EBC是等边三角形;(2) 点M是线段CD上的一点(不与点C, D重合) , 以BM为一边, 在BM的下方作∠BMG = 60°, MG交DE延长线于点G. 请你在图2中画出完整图形, 并直接写出MD, DG与AD之间的数量关系;(3) 如图3,点N是线段AD上的一点, 以BN为一边, 在BN的下方作∠BNG= 60°, NG交DE延长线于点G. 试探究ND, DG与AD数量之间的关系, 并说明理由.。

相关文档
最新文档