2019届高三物理一轮复习练习:选修3-1-8-2(随堂演练 课时作业)及答案

合集下载

整章一轮复习专题练习(二)含答案高中物理选修3-1磁场

整章一轮复习专题练习(二)含答案高中物理选修3-1磁场

高中物理专题复习选修3-1磁场单元过关检测考试范围:单元测试;满分:100分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、单选题1.如图所示,真空中直角坐标系XOY,在第一象限内有垂直纸面向外的匀强磁场,在第四象限内有垂直纸面向里的匀强磁场,磁感应强度的大小均为B,在第二象限内有沿x轴正向的匀强电场,第三象限内有一对平行金属板M、N,两板间距为d。

所加电压为U,两板间有垂直纸面向里、磁感应强度为B0的匀强磁场。

一个正离子沿平行于金属板的轴线射入两板间并做直线运动,从A点(﹣L,0)垂直于x轴进入第二象限,从P(0,2L)进入第一象限,然后离子垂直于x轴离开第一象限,不计离子的重力,求:(1)离子在金属板间运动速度V0的大小(2)离子的比荷q/m(3)从离子进入第一象限开始计时,离子穿越x轴的时刻2.如所示,半径为r、圆心为O1的虚线所围的圆形区域内存在垂直纸面向外的匀强磁场,在磁场右侧有一对竖直放置的平行金属板M和N,两板间距离为L,在MN板中央各有一个小孔O2、O3,O1、O2、O3在同一水平直线上,与平行金属板相接的是两条竖直放置间距也为L的足够长光滑金属导轨,导体棒PQ与导轨接触良好,与阻值为R的电阻形成闭合回路(导轨与导体棒的电阻不计),该回路处在磁感应强度大小为B,方向垂直纸面向里的匀强磁场中.整个装置处在真空室中.有一束电荷量为+q、质量为m的粒子流(重力不计),以速率v0从圆形磁场边界上的最低点E沿半径方向射人圆形磁场区域,最后从小孔O3射出.现释放导体棒PQ,其下滑h后开始匀速运动,此后粒子恰好不能从O3射出,而从圆形磁场的最高点F射出.求:(1)圆形磁场的磁感应强度B'.(2)粒子从E点到F点所用的时间.(3)棒下落h的整个过程中,电阻上产生的电热.3.如图所示,在空间存在水平方向的匀强磁场和竖直方向的匀强电场,电场强度为E,磁感应强度为B,在场区某点由静止释放一个带电液滴a,它运动到最低点处恰与一个原来处于静止的液滴b相碰,碰后两液滴合为一体,沿水平方向做直线运动,已知液滴a质量是液滴b质量的2倍,液滴a所带的电量是液滴b所带电量的4倍。

物理选修3-1第一章练习题(含答案)

物理选修3-1第一章练习题(含答案)

物理选修3-1第一章练习题1、用金属箔做成一个不带电的圆环,放在干燥的绝缘桌面上。

小明同学用绝缘材料做的笔套与头发摩擦后,将笔套自上而下慢慢靠近圆环,当距离约为0.5cm 时圆环被吸引到笔套上,如图所示。

对上述现象的判断与分析,下列说法正确的是 A. 摩擦使笔套带电B. 笔套靠近圆环时,圆环上、下部感应出异号电荷C. 圆环被吸引到笔套的过程中, 圆环所受静电力的合力大于圆环的重力D. 笔套碰到圆环后, 笔套所带的电荷立刻被全部中和2、如图所示,有一带正电的验电器,当一金属球A 靠近验电器的小球B (不接触)时,验电器的金箔张角减小,则 A 、金属球可能不带电 B 、金属球可能带负电 C 、金属球可能带正电 D 、金属球一定带负电3、将不带电的导体A 和带有负电荷的导体B 接触后,在导体A 中的质子数A .增加B .减少C .不变D .先增加后减少4、把两个完全相同的金属球A 和B 接触一下,再分开一段距离,发现两球之间相互排斥,则A 、B 两球原来的带电情况可能是A .带有等量异种电荷B .带有等量同种电荷C .带有不等量异种电荷D .一个带电,另一个不带电5、有A 、B 、C 三个塑料小球,A 和B ,B 和C ,C 和A 间都是相互吸引的,如果A 带正电,则 A .B 、C 球均带负电 B .B 球带负电,C 球带正电C .B 、C 球中必有一个带负电,而另一个不带电D .B 、C 球都不带电6、真空中有两个固定的带正电的点电荷,其电量Q1>Q2,点电荷q 置于Q1、Q2连线上某点时,正好处于平衡,则A .q 一定是正电荷B .q 一定是负电荷C .q 离Q2比离Q1远D .q 离Q2比离Q1近7、如图所示,两个完全相同的绝缘金属壳a 、b 的半径为R , 质量为m ,两球心之间的距离为L =3R 。

若使它们带上等量的异种电荷,电荷为q ,那么两球之间的万有引力F 引,库仑力F 库分别为8、关于点电荷的说法,正确的是:A.只有体积很小的带电体才能看成点电荷;B.体积很大的带电体一定不能看成点电荷;C.当两个带电体的大小及形状对它们之间的相互作用力的影响可以忽略,这两个带电体可看成质点;D.一切带电体都可以看成点电荷9、真空中有甲、乙两个点电荷,相距为r ,它们间的静电力为F 。

人教版高中物理选修3-1课后习题参考答案

人教版高中物理选修3-1课后习题参考答案

第一章第一节1.答:在天气干躁的季节,脱掉外衣时,由于摩擦,外衣和身体各自带了等量、异号的电荷。

接着用手去摸金属门把手时,身体放电,于是产生电击的感觉。

2.答:由于A、B都是金属导体,可移动的电荷是自由电子,所以,A带上的是负电荷,这是电子由B移动到A的结果。

其中,A得到的电子数为,与B失去的电子数相等。

3.答:图1-4是此问题的示意图。

导体B中的一部分自由受A的正电荷吸引积聚在B的左端,右端会因失去电子而带正电。

A对B左端的吸引力大于对右端的排斥力,A、B之间产生吸引力。

4.答:此现象并不是说明制造出了永动机,也没有违背能量守恒定律。

因为,在把A、B分开的过程中要克服A、B之间的静电力做功。

这是把机械转化为电能的过程。

第二节1.答:根据库仑的发现,两个相同的带电金属球接触后所带的电荷量相等。

所以,先把A球与B球接触,此时,B球带电;再把B球与C球接触,则B、C球分别带电;最后,B球再次与A球接触,B球带电。

2.答:(注意,原子核中的质子间的静电力可以使质子产生的加速度!)3.答:设A、B两球的电荷量分别为、,距离为,则。

当用C接触A时,A的电荷量变为,C的电荷量也是;C再与接触后,B的电荷量变为;此时,A、B间的静电力变为:。

在此情况下,若再使A、B间距增大为原来的2倍,则它们之间的静电力变为。

4.答:第四个点电荷受到其余三个点电荷的排斥力如图1-6所示。

共受三个力的作用,,由于,相互间距离分别为、、,所以,。

根据平行四边形定则,合力沿对角线的连线向外,且大小是。

由于对称性,每个电荷受到其他三个电荷的静电力的合力的大小都相等,且都沿对角线的连线向外。

5.答:带电小球受重力、静电斥力和线的拉力作用而平衡,它的受力示意图见图1-7。

静电斥力,又,,所以,第三节1.答:A、B两处电场强度之比为。

A、C两处电场强度之比为。

2.答:电子所在处的电场强度为,方向沿着半径指向外。

电子受到的电场力为,方向沿着半径指向质子。

高中物理选修3-1期末复习练习题(8)

高中物理选修3-1期末复习练习题(8)

E S R 1R 2R 3 R 4L 1L 2A图6 选修3-1测试题一、选择题1、两根材料相同的匀称导线a 和b ,a 长为L ,b 长为2L ,串联在电路上时沿长度方向的电势改变如图1所示,则a 、b 的横截面积之比A 、2:3B 、1:3C 、1:2D 、3:12、如图,在xOy 平面中有一通电直导线与Ox 、Oy 轴相交,导线中电流方向如图所示。

该区域有匀强磁场,通电直导线所受磁场力的方向与Oz 轴的正方向相同。

该磁场的磁感应强度的方向可能是A.沿x 轴正方向B.沿y 轴负方向C.沿z 轴正方向D.沿z 轴负方向3、关于带负电的粒子(重力可忽视不计),下面说法中正确的是①沿电场线方向飞入匀强电场,电场力做功,动能增加 ②垂直电场线方向飞入匀强电场,电场力做功,动能增加③垂直磁感线方向飞入匀强磁场,磁场力不做功,动能不变 ④沿磁感线方向飞入匀强磁场,磁场力做功,动能增加 A .①② B .②③ C .③④ D .①④4、如图所示的电路,当闭合开关时,灯L 1、L 2正常发光。

由于电路出现故障,突然发觉灯L 1变亮,灯L 2变暗,电流表的读数变小。

试依据上述现象推断,发生的故障可能是A .R 1断路B .R 2断路C .R 3短路D .R 4短路5、如图所示,相距为d 的水平金属板M 、N 在左侧有一对竖直金属板P 、Q ,板P 上的小孔S 正对极Q 上的小孔O ,M 、N 间有垂直纸面对里的匀强磁场,在小孔S 处有一带负电粒子,其重力和初速均不计,当变阻器的滑动触头在AB 的中点时,带负电粒子恰能在M 、N 间做直线运动,当滑动变阻器滑片滑到A 点后,A .粒子在M 、N 间运动过程中,动能肯定不变B .粒子在M 、N 间运动过程中,动能肯定增大C .粒子在M 、N 间运动过程中,动能肯定减小D .粒子可能从M 板的右边缘飞出6、光滑水平面上有一个带负电的小球A 和一个带正电的小球B ,空间存在着竖直向下的匀强磁场,如图所示,给小球B 一个合适的冲量,B 将在水平面上按图示的轨迹做匀速圆周运动。

2019届高三物理一轮复习人教版选修3-1带电粒子在电场中的曲线运动补充练习(教师版含解析)

2019届高三物理一轮复习人教版选修3-1带电粒子在电场中的曲线运动补充练习(教师版含解析)

江苏省赣榆高级中学2019届高三物理一轮复习 人教版选修3-1带电粒子在电场中的曲线运动补充练习1、如果不计重力的电子,只受电场力作用,那么,电子在电场中可能做 ( )A .匀速直线运动B .匀加速直线运动C .匀变速曲线运动D .匀速圆周运动 【解析】电子绕核运动便可看成匀速圆周运动 【答案】B C D2、一束由不同种正离子组成的粒子流以相同的速度,从同一位置沿垂直于电场方向射入匀强电场中,所有离子的轨迹都是一样的,这说明所有粒子( ) A.都具有相同的比荷 B.都具有相同的质量C.都具有相同的电量D.都属于同一元素的同位素【解析】当粒子从偏转电场中飞出时的侧移,速度的偏角相同时,则粒子的轨迹相同.由及知:当粒子的比荷相同时,侧移、偏角相同.【答案】A3、如图9-5-14所示,电子在电势差为U 1的加速电场中由静止开始运动,然后射入电势差为U 2的两块平行极板间的电场中,射入方向跟极板平行,整个装置处在真空中,重力可忽略,在满足电子能射出平行板区的条件下,下述四种情况中,一定能使电子的偏转角θ变大的是( )A.U 1变大、U 2变大B.U 1变小、U 2变大C.U 1变大、U 2变小D.U 1变小、U 2变小【解析】 故B 对 【答案】B4、如图9-5-15所示,虚线表示某点电荷Q 所激发电场的等势面,已知a 、b 两点在同一等势面上, c 、d 两点在另一个等势面上.甲、乙两个带电粒子以相同的速率,沿不同的方向从同一点a 射入电场,在电场中沿不同的轨迹adb 曲线、acb 曲线运动.则 下列说法正确的是 ( ) ①两粒子所带的电荷符号不同②甲粒子经过c 点时的速度大于乙粒子经过d 点的速度 ③两个粒子的电势能都是先减小后增大④经过b 点时,两粒子的动能一定相等y θ222121⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==vL dm Uq at y 2000tan dmv UqL v at v vy ===θmq y θdU LU dmv qL U v at v v y12202002tan ====θ图9-5-14图9-5-A .①②B .①③C .③④D .①④【解析】由图轨迹可知Q 和乙是同种电荷,Q 和甲是异种电荷,故①对;乙先做负功后做正功,电势能先增大后减小.甲先做正功后做负功,电势能先减小后增大.到达b 点两者速度又相等,但质量未知,动能不一定相等.故②对,③④错. 【答案】A5、.a 、b 、c 三个粒子由同一点垂直场强方向进入偏转电场,其轨迹如图9-5-16所示,其中b 恰好飞出电场,由此可以肯定(①在b 飞离电场的同时,a 刚好打在负极板上 ②b 和c 同时飞离电场③进入电场时,c 的速度最大,a 的速度最小 ④动能的增量相比,c 的最小,a 和b 的一样大 A.①B.①②C.③④D.①③④【解析】根据类平抛运动的竖直方向分运动可知,加速度相同,竖向位移c 最小,a 、b 相同,得a 、b 飞行时间相等,c 时间最短,故速度c 比b 大; b 射程大于a ,故b 的速度大于a .比较竖向位移可知电场力做功c 的最小,a 和b 的一样大.选①③④对 【答案】D6、一个初动能为的电子,垂直电场线飞入平行板电容器中,飞出电容器的动能为,如果此电子的初速度增至原来的2倍,则当它飞出电容器时的动能变为 【解析】电子穿过匀强电场,电场力做功与在场强方向上偏转成正比.若初速度加倍,穿过电场的时间减半,偏移为原来的1/4.电场力做功也为原来的1/4.原来的动能增量,速度加倍后电子动能增量将是原来的1/4,而进入时初动能为,因此飞出时的动能.【答案】7、质量为、带电量为的小球用一绝缘细线悬于点,开始时它在 之间来回摆动,、与竖直方向的夹角均为,如图9-5-17所示. (1)如果当它摆动到点时突然施加一竖直向上的、大小为 的匀强电场.则此时线中的拉力 .(2)如果这一电场是在小球从点摆到最低点时突然加上去的,则当αk E k E 2k E k k E E =∆k E 4k k E E 25.4'=k k E E 25.4'=m q +o AB OA OB OC θB q mg E /==1T AC 图9-5-17图9-5小球运动到点时线中的拉力 = .【解析】(1)当小球摆动到点时,速度为零,向心加速度为零,此时合外力便为零,因为电场力与重力已抵消,故拉力(2)从A 到C 点由动能定理可得: ① 在最低点C 点:② 联立 ①②可得:【答案】(1)(2)8、一质量为,带电量为+q 的小球从距地面高h 处以一定初速度水平抛出.在距抛出点水平距离L 处,有一根管口比小球直径略大的竖直细管.管上口距地面h /2,为使小球能无碰撞地通过管子,可在管子上方的整个区域加一个场强方向水平向左的匀强电场,如图图9-5-18所示,求: (1)小球初速v 0 (2)电场强度E 的大小.(3)小球落地时动能E K .【解析】电场中粒子运动,在水平方向上:①竖直方向上: ② 又有 ③ 联立 ①②③得:, , 小球落地时动能:9、如图9=5-19所示,两块长3cm 的平行金属板AB 相距1cm ,并与300V 直流电源的两极相连接,,如果在两板正中间有一电子( m =9×10-31kg ,e =-1.6×10-19C ),沿着垂直于电场线方向以2×107m/s 的速度飞入,则 (1)电子能否飞离平行金属板正对空间?(2)如果由A 到B 分布宽1cm 的电子带通过此电场,能飞离电场的电子数占总数的百分之几?B 2T B 01=T 021)cos 1(2-=-mv mgl θlm v T 22=)cos 1(22θ-=mg T 01=T )cos 1(22θ-=mg T m m qEt v /0=2/2/2gt h =qEL mv =2/20h gh L v /20=qh mgL E /2=mgh EqL mgh mv E k =-+=2/20B A ϕϕ<h图9-5-A析】(1)当电子从正中间沿着垂直于电场线方向以2×107m/s 的速度飞入时,若能飞出电场,则电子在电场中的运动时间为 在沿AB 方向上,电子受电场力的作用,在AB 方向上的位移为:,其中联立求解,得y =0.6cm ,而cm ,所以,故粒子不能飞出电场. (2)从(1)的求解可知,与B 板相距为y 的电子带是不能飞出电场的,而能飞出电场的电子带宽度为cm ,所以能飞出电场的电子数占总电子数的百分 比为:10、如图9-5-20所示,在的空间中,存在沿轴方向的匀强电场;在的空间中,存在沿轴负方向的匀强电场,场强大小也为.一电子在处的P 点以沿轴正方向的初速度v 0开始运动,不计电子重力.求: (1)电子的方向分运动的周期.(2)电子运动的轨迹与y 轴的各个交点中,任意两个交点的距离.【解析】 电子在电场中运动的受力情况及轨迹如图甲所示.在的空间中,沿y 轴正方向以v 0的速度做匀速直线运 动,沿轴负方向做匀加速直线运动,设加速度的大小为, 则解得, 0v l t =221at y ⨯=m deU m eE m F a AB ===5.02=d 2dy >4.06.01=-=-=y d x00400010014.000100=⨯=⨯=d x n 0>x x E 0<x x E ),(me -d x =y x 0>x x a ma eE F ==2121at d =10t v OA =eE md t 21=eEmdv OA 20=y x EE o 0v d 图9-5-20x甲电子从A 点进入的空间后,沿y 轴正方向仍做v 0的匀速直线运动,沿轴负方向做加速度大小仍为的匀减速直线运动,到达Q 点.根据运动的对称性得,电子在轴方向速度减为零的时间,电子沿y 轴正方向的位移= 电子到达Q 点后,在电场力作用下,运动轨迹 QCP 1与QAP 关于QB 对称,而后的运 动轨迹沿y 轴正方向重复PAQCP 1,所以有: (1)电子的方向分运动的周期 (2)电子运动的轨迹与y 轴的各个交点中,任意两个交点的距离0<x x a x =2t eEmdt 21=AB eEmdv OA 20=x eEmdt T 2441==)3,2,1(2220====n eEmdnv OA n AC n s。

高中物理复习手册 01(选修3-1)例题参考答案

高中物理复习手册 01(选修3-1)例题参考答案

高中物理总复习知识要点归纳(选修3-1)参考答案Lex Li10.01 电荷及其守恒定律例01、AB 虽然A 、B 起初都不带电,但带正电的小球C 对A 、B 内的电荷有力的作用,使A 、B 中的自由电子向左移动,使得A 端积累了负电荷,B 端积累了正电荷,其下部贴有的金属箔片因为接触带电,也分别带上了与A 、B 同种的电荷.由于同种电荷间存在斥力,所以金属箔片都张开,A 正确.C 只要一直在A 、B 附近,先把A 、B 分开,A 、B 上的电荷因受C 的作用力不可能中和,因而A 、B 仍带等量异种的感应电荷,此时即使再移走C ,因A 、B 已经绝缘,所带电荷量也不能变,金属箔片仍张开,B 正确.但如果先移走C ,A 、B 上的感应电荷会立刻在其相互之间库仑力作用下吸引中和,不再带电,所以金属箔片都不会张开,C 错.先把A 、B 分开,再移走C ,A 、B 仍然带电,但重新让A 、B 接触后,A 、B 上的感应电荷完全中和,金属箔片都不会张开,D 错.例02、当两小球接触时,带电荷量少的负电荷先被中和,剩余的正电荷再重新分配.由于两小球相同,剩余正电荷必均分,即接触后两小球带电荷量Q A ′=Q B ′=(Q A +Q B )/2=6.4×10-9-3.2×10-92C =1.6×10-9 C.在接触过程中,电子由B 球转移到A 球,不仅将自身电荷中和,且继续转移,使B 球带Q B ′的正电,这样,共转移的电子电荷量为:ΔQ=-Q B +Q B ′=3.2×10-9C +1.6×10-9C =4.8×10-9C.转移的电子数n =ΔQ e =4.8×10-9 C1.6×10-19C =3.0×1010(个). 例03、依题意得:(1)A 、B 带同种电荷,设电荷量为Q ,C 与A 接触后,由于形状相同,二者平分电荷量,A 、C 所带的电荷量均为12Q.C 与B 接触后平分二者电荷量,则B 、C 的电荷量均为12⎝ ⎛⎭⎪⎫12Q +Q =34Q ,A 、B 最终的电荷量之比为⎝ ⎛⎭⎪⎫12Q ∶⎝ ⎛⎭⎪⎫34Q =2∶3.(2)A 、B 带异种电荷,设电荷量分别为Q 、-Q ,A 、C 接触后,平分电荷量, A 、C 的电荷量均变为12Q ,C 与B 接触后,平分二者的电荷量,C 、B 的电荷量均为12⎝ ⎛⎭⎪⎫12Q -Q =-14Q ,则A 、B 最终的电荷量之比为⎝ ⎛⎭⎪⎫12Q ∶|-14Q|=2∶1.10.02 库仑定律例04、AD 点电荷是一个理想化的模型,当带电体的大小和形状对作用力的影响可以忽略时带电体可看成点电荷.点电荷不是以带电荷量的多少来确定的,电荷量必须是元电荷的整数倍.故A 、D 对.例05、B 根据库仑定律有:在A 点放一电荷量为+q 的点电荷时:F =k Qq L 2AB在C 处放电荷量为-2q 的点电荷时:F′=k 2QqL 2BC ,而L AB ∶L BC =1∶2, 联立以上三式,解得F′=F2.例06、D 四个小球均处于静止状态,表明对于每一个小球,它受到的其他三个小球的库仑力的合力都为零.设三角形边长为L ,故AB 、AC 距离为L ,AD 距离为33L.以小球A 为研究对象,由库仑定律知,B 、C 对A 球的库仑力大小均为F =k Q 2L 2,两力的合力F 合=2Fcos30°=3k Q 2L 2.球A 、D 间的库仑力F′=kQq33L 2=3k Qq L 2.根据平衡知识得:F 合=F′,即3k Q 2L 2=3k QqL 2,所以Q =3q ,Q 与q 的比值为3,D 正确.例07、依题意得:放入C 电荷后,每个电荷受到两个力作用,可由三个自由点电荷平衡条件知:C 应带正电,在B 右端,设距B 为x ,三个电荷才能都处于平衡状态.以A 为研究对象,有k 4qq C r+x 2=k 4q 2r 2①以B 为研究对象,有k qq C x 2=k 4q 2r 2②解①②式得,q C =4q ,x =r. 例08、依题意得:(1)A 球受到B 球沿BA 方向的库仑力和C 球的库仑力作用后,产生水平向右的加速度,所以C 球对A 球的库仑力为引力,C 球带负电.对A 球,有k q 2r 2=k qQr2·sin 30°,所以Q =2q.(2)又根据牛顿第二定律,有k qQ r 2·cos 30°=ma ,将A 、B 、C 作为整体,则F =3ma =33kq 2r 2.例09、依题意得:因为B 静止于光滑绝缘的倾角为30°的斜面上且恰与A 等高,设A 、B 之间的水平距离为L. 依据题意可得:tan 30°=h L , L =h tan 30°=1033cm =10 3cm ,对B 进行受力分析如图所示,依据物体平衡条件解得库仑力: F =mgtan 30°=303×10-3×10×33N =0.3 N. 依据F =k Q 1Q 2r 2得:F =k Q 2L2. 解得:Q =FL 2k=0.39×109×103×10-2 C =1.0×10-6 C.10.03 电场强度例10、依题意得:【思路点拨】(1)电场强度可由定义式E =Fq 求得.(2)E 与试探电荷无关(E 不变).(3)静电力可由F =Eq 求得.(1)场源电荷在A 点产生的场强:E =F q =7.2×10-52×10-8 N/C =3.6×103N/C ,方向水平向左. (2)试探电荷为q′=-4×10-8 C 时,场强不变,即E =3.6×103 N/C. 试探电荷q′受到的静电力F′=q′E=1.44×10-4 N ,方向水平向右.例11、A 考查电场强度与电场力的关系,a 点的电场线密度比b 点大,电场强度大,同一电荷受到的电场力大,F a >F b ,如果Q 是正电荷,由于电场力对q 做正功,q 受到的电场力方向向右,q 带正电,A 正确,B 不正确.如果Q 是负电荷,由于电场力对q 做正功,q 受到的电场力方向向右,q 带负电;C 、D 不正确.例12、ACD 根据粒子运动轨迹弯曲的情况,可以确定粒子所受电场力的方向沿该点电场线的切线方向,故此粒子带正电,A 选项正确.由于电场线越密,场强越大,粒子所受电场力就越大,根据牛顿第二定律可知其加速度也越大,故此粒子在N 点加速度大,C 选项正确,B 选项错误.粒子从M 点到N 点,电场力做正功,根据动能定理知此粒子在N 点动能大,故D 选项正确.例13、D 由于电场线方向未知,故无法确定a 、b 的电性,A 错;根据a 、b 的运动轨迹,a 受向左的电场力,b 受向右的电场力,所以电场力对a 、b 均做正功,两带电粒子动能均增大,则速度均增大,B 、C 均错;a 向电场线稀疏处运动,电场强度减小,电场力减小,故加速度减小,b 向电场线密集处运动,故加速度增大,D 正确.例14、BCD 如图所示,由于带电粒子在静电力作用下做曲线运动,所以静电力应指向轨迹的凹侧,且沿电场线,即沿电场线向左,B 正确;由于电场线方向未知,故不能确定带电粒子的电性,A 错误;加速度由静电力产生,由于a 处电场线较b 处密,所以a 处电场强度大,由E =Fq 知,带电粒子在a 处受静电力大,故加速度大,且方向与静电力方向相同,C 、D 正确.例15、C 烧断前,小球受三个力而平衡,线的拉力与重力和电场力的合力等大反向,烧断线后,拉力消失,而另外两个力不变,合力与拉力方向相反,则小球将沿着悬线的延长线做初速度为零的匀加速直线运动.故C 正确.例16、解:依题意得:物体受力情况如图所示,将各力沿斜面和垂直斜面两个方向进行正交分解,则沿斜面方向上:F f +mgsin θ=qEcos θ① 垂直斜面方向上: mgcos θ+qEsin θ=F N ② 其中F f =μF N ③由①②③得:μ=qEcos θ-mgsin θmgcos θ+qEsin θ10.04 电势能和电势例17、qElcos θ qElcos θ qElcos θ 与路径无关,只与初、末位置有关解析 由功的定义W =Flcos θ可得,静电力所做的功等于静电力与静电力方向的分位移lcos θ的乘积.因为无论沿哪个路径移动电荷,静电力的方向总是水平向左,静电力方向的分位移都是lcos θ,所以静电力做的功都是qElcos θ,即静电力做功的特点是与路径无关,只与初、末位置有关.例18、AD 若在C 点释放正电荷,由于它只受到向右的电场力作用,故电荷在电场力作用下沿直线由C 向B 运动,电场力做正功,电势能减少,A 对,B 错.若从C 点释放负电荷,电荷在向左的电场力作用下由C 向A 运动,电场力做正功,电势能减少,C 错D 对.例19、CD 根据电场力做功和电势能变化的关系,不管是正电荷做功还是负电荷做功,只要做正功电势能就减少;只要做负功电势能就增加.正、负电荷在电势高低不同的位置具有的电势能不同,正电荷在电势高处具有的电势能多;负电荷在电势低处具有的电势能多.所以C 、D 正确.例20、D 因B 、C 、D 三点位于点电荷+Q 周围电场中的同一等势面上,故U AB =U AC =U AD ,由电场力做功W =qU 知W AB =W AC =W AD .例21、解:依题意得:(1)静电力做负功,电势能增加,无穷远处的电势为0,电荷在无穷远处的电势能也为0,电势能的变化量等于静电力所做的功,即W =E p∞-E pA =0-E pA .所以E pA =-W =1.2×10-4J , φA =E pA q =1.2×10-41.0×10-8 V =1.2×104 V. (2)A 点的电势是由电场本身决定的,跟A 点是否有电荷存在无关,所以q 移入电场前,A 点的电势仍为1.2×104 V.例22、BD 电子带负电,由a→b 电场力做负功电势能增加,由c→d 电场力做正功,电势能减小,故A 、C 错误.由b→c,电场力对电子先做负功后做正功,由对称性,b 、c 两点电子电势能相等,故总功为零,B 正确,由d→a 电场力对电子先做正功后做负功,故电子的电势能先减小后增加,再由对称性可确定电势能变化量为零,故D 正确.例23、ABD 根据等量异种点电荷电场线及等势线的分布可知b 、d 两点电势相同,电场强度大小相等、方向不同,选项A 对,C 错.c 点电势为0,由a 经b 到c ,电势越来越低,正电荷由a 经b 到c 电势能越来越小,选项B 、D 正确.例24、D 由于不能确定电场线方向,故不能确定粒子带负电,A 、C 错误,等势面互相平行,故一定是匀强电场,B 错误,粒子受电场力一定沿电场线指向轨迹凹侧,而电场线和等势面垂直,由此可确定电场力一定做负功,故动能不断减少,D 正确.例25、D 由题中所给的等势面分布图是对称的及电场线与等势面垂直可得,P 、Q 两点应为等量异种电荷,A 错;a 、b 两点电场强度大小相等,但方向不同,故B 错;因P 处为正电荷,因此c 点的电势高于d 点的电势,C 错;因P 处为正电荷,故Q 处为负电荷,负电荷从靠负电荷Q 较近的a 点移到靠正电荷P 较近的c 点时,电场力做正功,电势能减小,选项D 正确.例26、C 由题图可以看出a 处电场线更密,所以E a >E b ,根据对称性,a 处的电势应与右侧负电荷附近对称点的电势相等,再根据沿电场线方向电势降低可以判定φb >φa ,故C 项正确.例27、BD 电场线的疏密表示电场的强弱,A 项错误;沿着电场线方向电势逐渐降低,B 项正确;+q 在a 点所受静电力方向沿电场线的切线方向,由于电场线为曲线,所以+q 不会沿电场线运动,C 项错误;在d 点固定一点电荷-Q 后,a 点电势仍高于b 点,+q 由a 移至b 的过程中,静电力做正功,电势能减小,D 项正确.例28、BD 此题已知电场中的一簇等势面,并且知道各等势面电势的高低,可知电场线与等势面垂直,且指向左.由粒子运动的轨迹知,粒子所受电场力的方向与电场线方向相反,所以粒子带负电,A 错,B 正确;粒子从J 到K 运动过程中,电场力做正功,所以电势能减小,C 错;只有电场力做功,动能与电势能之和保持不变,D 对.例29、解:依题意得:设小球的电荷量为q ,因小球做直线运动,则它受到的静电力Eq 和重力mg 的合力必沿初速度方向,如图所示.有mg =Eqtan θ由此可知,小球做匀减速直线运动的加速度大小为: a =F 合m =mg msin θ=g sin θ设从O 点到最高点的路程为s ,有v 20=2as 运动的水平距离为l =scos θ由上面公式可得静电力做功W =-Eql =-12mv 20cos 2 θ电势能之差ΔE p =-W =12mv 20cos 2θ例30、解:依题意得:(1)ΔE p =-mgl =-4.5×10-3 J ΔE p 电=Eql =3×10-3 J(2)E p =3×10-3J E p =φB q , φB =3×10-32×10-6 V =1.5×103V (3)A→B 由动能定理得:mgl -Eql =12mv 2B所以v B =1 m/s ,在B 点对小球 F T -mg =mv 2Bl ,F T =5×10-2 N10.05 电势差例31、C 根据U AB =75 V 可得,φA -φB =75 V ,所以φA =φB +75 V ;根据U BC =-200 V 可得φB -φC =-200 V ,所以φC =φB +200 V ,比较可知,φC >φA >φB .例32、ABC A 、B 、C 三点处在一根电场线上,沿着电场线的方向电势降低,故φA >φB >φC ,A 正确;由电场线的密集程度可看出电场强度的大小关系为E C >E B >E A ,B 对;电场线密集的地方电势降低较快,故U BC <U AB ,C 对D 错.例33、解:依题意得:(1)根据U =W q 则U AB =-6×10-4-3×10-6=200 V ,即φA -φB =200 VU BC =9×10-4-3×10-6=-300 V ,即φB -φC =-300 V U CA =φC -φA =100 V ,(2)若φB =0,则φA =200 V ,φC =300 V E pA =φA q =200×(-3×10-6) J =-6×10-4 J. E pC =φC q =300×(-3×10-6) J =-9×10-4 J.例34、解:依题意得:(1)从A 点移动到B 点位移大小l =2R ,方向与电场力的夹角θ=135°. 故从A 点移动到B 点,电场力做功:W AB =qElcos θ=4×10-8×1.2×102×2×0.2×cos135° J=-9.6×10-7J (2)由公式U AB =W AB q 得A 、B 两点间的电势差:U AB =-9.6×10-74×10-8V =-24 V例35、B 由W AB =qU AB 得W AB =-1.0×10-8×2 J=-2.0×10-8 J ,故选项B 正确.例36、BC 上升过程中,电场力做正功,小球与弹簧组成的系统机械能增加,A 错;小球上升,重力做负功,重力势能增加,增加量等于小球克服重力所做的功W 2,B 对;电场力做正功,小球的电势能减少,减少量等于电场力对小球所做的功W 1,C 对;小球的机械能的增加量为它增加的动能、重力势能之和12mv 2+W 2,D 错.例37、C 由图可判断b 点电势高于a 点电势,设各等势面间电势差为U ,则由能量守恒,-2Uq +26 eV =Uq +5 eV所以Uq =7 eV ,所以,点电荷能量为,7 eV +5 eV =12 eV 所以,当电势能为-8 eV 时,动能为,12 eV -(-8) eV =20 eV.例38、BC 带电微粒只受电场力的作用,由A 点运动到B 点动能减少0.1 J ,由W =qU ,可得U AB=W AB q =-0.11×10-2V =-10 V <0,即φA -φB =-10 V ,又φA =-10 V ,则φB =0.故A 项不正确.因为沿电场线的方向电势越来越低,而φA =-10 V ,φB =0,所以电场线的方向向左,故B 项正确.微粒从A 向B 运动的过程中,合外力(即电场力)的方向是水平向左的.根据曲线运动的特点可知,合外力的方向一定指向曲线内侧,则C 正确,D 错误.例39、解:依题意得:(1)负电荷从M 点移到N 点时,所受电场力的方向与场强方向相反,故电场力做负功为 W MN =qEx =-4×10-8×2×102×0.3 J=-2.4×10-6J.因电场力做负功,电荷的电势能增加,增加的电势能等于电荷克服电场力做的功,所以电荷电势能增加了2.4×10-6 J.(2)M 、N 两点间的电势差:U MN =W MN q =-2.4×10-6J-4×10-8C =60 V.例40、解:依题意得:(1)设a 、b 间距离为d ,由题设条件有W 1=qEd. E =W 1qd = 1.2×10-74×10-8×5×10-2 V/m =60 V/m.(2)设b 、c 间距离为d′,b 、c 两点沿场强方向距离为d 1.W 2=qEd 1=qEd′cos 60°=4×10-8×60×12×10-2×0.5 J=1.44×10-7 J. (3)电荷从a 移到c 电场力做功W =W 1+W 2,又W =qU ac ,则 U ac =W 1+W 2q =1.2×10-7+1.44×10-74×10-8 V =6.6 V.10.06 电势差与电场强度的关系例41、C 由匀强电场的特点知A 、B 错误,C 正确;电势降低最快的方向才是电场强度方向,D 错误.例42、B 根据电场强度的方向应与等势面垂直,且由较高的等势面指向较低的等势面,可知该电场强度的方向水平向左.由场强与电势差的关系得:E =Ud=100 V/m.例43、C A 、B 两点沿电场线方向的距离:d =l·cos 60°=0.1×12m =0.05 mB 点的电势低于A 点电势:U BA =-Ed =-100×0.05 V=-5 V. 例44、解:依题意得:(1)因为正电荷q 从a 到b 和从a 到c 电场力做功相等,所以由W =qU 可得U ab =U ac ,b 、c 两点在同一等势面上,根据电场线与等势面垂直,得到场强方向与ac 平行,垂直指向bc.U ab =W ab q =3.0×10-85.0×10-10V =60 V(2)由U =Ed 可得,E =U d =U ac =600.2×cos37°=375 V/m场强方向平行于ac ,垂直指向bc 边向右.例45、C 根据场强在数值上等于沿场强方向单位距离上降落的电势,因为ab 段上各点的场强大于在bc 段上各点的场强,虽然ab =bc ,但ab 段上降落的电势多.例46、解:依题意得:(1)U Aa =E·d Aa =2×105×0.02 V=4×103 V. U ab =E·d ab =2×105×0.1×cos 60° V=1×104V.U AB =E·d AB =2×105×(0.02+0.1×cos 60°+0.03) V =2×104V. (2)据动能定理得 W F +W 电=0,所以W F =-W 电=-qU ba =qU ab =1×10-7×1×104 J =1×10-3 J.例47、A 在匀强电场中,沿某一方向电势降落,则在这一方向上电势均匀降落,故OA 的中点C 的电势φC =3 V(如图所示),因此B 、C 为等势面.O 点到BC 的距离 d =OCsin α,而sin α=OBOB 2+OC 2=12,所以d =12OC =1.5×10-2m .根据E =U d 得,匀强电场的电场强度E =U d =31.5×10-2 V/m =200 V/m ,故选项A 正确,选项B 、C 、D 错误.例48、BC 由A 到C ,电子的速度越来越小,可知其动能越来越小,电势能越来越大,电场力对其做负功,则电子应顺着电场线运动,即电场线方向由A 到C ,由此可知这是-Q 形成的电场,因此越靠近-Q ,电场线越密,场强也就越大,电子所受电场力也就越大,所以A 不对,B 对.又因为沿电场线方向电势逐渐降低,所以C 对.又因为此电场不是匀强电场,沿电场线方向电势不是均匀降落,故U AB ≠U BC ,所以D 错,故B 、C 正确.例49、B 本题考查电场线、等势线、电场力的功.由带电粒子的运动轨迹,结合曲线运动的特点可知带电粒子所受的电场力方向,但因为电场线的方向不确定,故不能判断带电粒子带电的性质,A 错;由电场线的疏密可知,a 加速度将减小,b 加速度将增大,B 正确;因为是非匀强电场,故MN 电势差并不等于NQ 两点电势差,C 错;但因为等势线1与2之间的电场强度比2与3之间的电场强度要大,故1、2之间的电势差要大于2、3之间的电势差,但两粒子的带电荷量大小不确定,故无法比较动能变化量的大小,D 错误.例50、解:依题意得:(1)把带电量为q =-1.5×10-8 C 的点电荷由A 点移到B 点,克服电场力做了4.2×10-5 J 的功.说明A 点的电势高于B 点的电势,电场的方向由上向下,因此,上板Q 1带正电,下板Q 2带负电.(2)A 、B 两点的电势差为U AB =W AB q =-4.2×10-5-1.5×10-8 V =2 800 V ,设B 点的电势为φB ,根据U AB =φA -φB 得φB =φA -U AB =800 V -2 800 V =-2 000 V 电场强度为E =U AB d =U AB |AB|cos60°= 2 8001×10-2×0.5V/m =5.6×103 V/m ,方向为竖直向下.10.07 静电现象的应用例51、kqR+L 22向左 导体棒在点电荷+q 产生的电场中发生静电感应,左端表面出现负电荷,右端表面出现正电荷.棒内任何一点都有两个电场,即外电场(+q 在该点形成的电场E 0)和附加电场(棒上感应电荷在该点形成的电场E′).达到静电平衡时棒内的电场为0,即E′=E 0.题中所求的即为E′,于是我们通过上述等式转化为求E 0.棒的中点到+q 的距离为r =R +L 2,于是E′=E 0=kqR+L 22,E′和E 0的方向相反,即方向向左.例52、B 首先画出电场线(如图所示),沿电场线方向电势降低,b 点电势比d 点低,B 正确.金属杆ab 在静电平衡后是一个等势体,a 点电势等于b 点电势,也比d 点低,选项A 、C 均错误.静电平衡后的导体内部场强为零,选项D 错误.例53、B 带正电的小球A 放在不带电的空心球C 内,通过静电感应,空心球外壳带正电,内壁带负电.因此,金属空心球C 和带电小球B 带异种电荷,所以B 受C 球的吸引往右偏离竖直方向,而由于空心球C 能屏蔽小球B 所产生的外部电场,因此A 球不受B 球电场的影响,而保持竖直位置不变,选项B 正确.例54、C 电荷如何运动,由电荷的受力决定,而电荷的重力不计,则只需考虑电荷是否受电场力.根据电场中导体的特点,即可判断.空心导体处在带正电的带电体附近,根据电场中导体的特点,空心导体起到了静电屏蔽的作用,使得内部电场强度为零,电荷不受电场力的作用,所以做匀速直线运动,C 选项正确.例55、B 静电平衡状态下,整个金属板是个等势体,所以金属板附近电场线与金属板表面垂直,选项A 、D 错误;金属板接地,金属板只带有正电荷,且分布在金属板的左表面,所以金属板右表面没有电场存在,选项B 正确,C 错误.10.08 电容器的电容例56、D 电容是电容器的固有属性,根据电容定义C =QU ,电容的物理意义是指电容器两极板间的电压每改变1 V 时所改变的电荷量的多少,电容C 不表示电容器容纳或已容纳电荷量的多少.例57、解:依题意得: C =Q U =4×10-82F =2×10-8F又因C =ΔQ ΔU 得ΔU=ΔQ C =1×10-84×10-8 V =0.25 V所以U′=U -ΔU=2 V -0.25 V =1.75 V.例58、AD 在电容定义式C =QU 中,C 由电容器结构决定,与Q 、U 无关,A 正确,B 、C 均错误,Q与U 成正比,D 正确.例59、D 带电液滴在重力和电场力作用下处于平衡状态,电场力方向向上,电场方向向下,故液滴带负电,A 选项错误.由C =εr S4kπd 和Q =CU 可知,当两极板间距离增大的过程中,C 变小,所以Q 变小,因此电容器放电,放电电流的方向从a 到b ,负电荷由B 板经电源和电阻R 流向A 板,选项B 错误.断开S ,由C =εr S 4kπd ,Q =CU 和U =Ed 知E =4kπQεr S ,Q 不变,S 减小,所以E 增大,电场力大于重力,液滴加速上升,C 选项错误.由E =4kπQεr S知,Q 不变,d 减小,E 不变,液滴静止不动,D 选项正确.例60、BD F 向上压膜片电极,使得电容器极板间的正对距离变小,电容变大,电容器和电源相连电压不变,由C =QU 知Q 变大,电源对电容器充电,外电路中产生顺时针方向的瞬时电流,电流表也就有示数了,直到再次充满,B 对,A 、C 错;只要压力F 发生变化,极板间距离就变化,电容也就变化,电流表就有示数,D 对.例61、AB A 板向上移动,正对面积S 减小,或B 板向右移动,距离d 增大,根据C =εr S4πkd ,电容C 均减小,由U =QC 知电势差U 变大,静电计指针偏转角度增大,A 、B 对;A 、B 板间插入电介质,相对介电常数εr 增大,根据C =εr S 4πkd ,电容C 增大,由U =QC 知电势差U 变小,静电计指针偏转角度减小,C 错;由U =QC得,减小电荷量Q ,电势差U 变小,静电计指针偏转角度减小,D 错.例62、B 极板带的电荷量Q 不变,当减小两极板间距离,同时插入电介质,则电容C 一定增大,由U =QC可知两极板间电压U 一定减小,静电计指针的偏转角也一定减小,选项B 正确.例63、CD 本题考查电容器电容的定义式,电场强度与电势差的关系,电场力做功与电势能改变的关系.由电容器电容的定义式可知,电容器的带电量为Q =CU ,A 项错误;两板间的电场为匀强电场,根据匀强电场场强与电势差的关系可知,两板间电场强度E =Ud ,B 项错误;MP 两点间的电势差就等于NP 间的电势差,即U MP =ELsinθ=ULsin θd ,C 项正确;由于下板带正电,因此板间场强方向竖直向上,将带电量为+q 的电荷从M 点移到P 点,电场力做正功,电势能减少量就等于电场力做的功,即为qU MP =qULsin θd,D 项正确.例64、AD E =U d =Q/C d =Qεr S/4πkd d =4πkQεr S ,由S 减小,致使E 变大;根据-φP =Ed ,E P =(-q)(-φP )负电荷在此电场中具有的电势能是正的.例65、解:依题意得:(1)由公式C =QU 得:Q =CU =3×10-10×12 C=3.6×10-9 C.(2)若带电微粒恰在极板间静止,则qE =mg ,而E =Ud解得:q =mgd U =2.0×10-3×10×1.20×10-312 C =2.0×10-6 C 微粒带负电荷.10.09 带电粒子在电场中的运动例66、C 下落过程中,微粒的速度先增大后减小,故动能先增大后减小,重力势能逐渐减小,A 错.微粒在下落了h +d 2高度后,重力做功mg(h +d 2),但电场力做功为-q×U d ×d 2=-12qU ,B 错.微粒落入电场中,电场力做功-12qU ,根据电场力做功与电势能变化关系知其电势能增加量为12qU ,C 对.根据题意mg(h +d 2)-12qU =0,mg(h′+d)-qU =0,故h′=2h ,D 错.例67、C 由运动学和动力学规律画出如图所示的v -t 图象可知,电子一直向B 板运动,选项C 正确.例68、解:依题意得:加速过程,由动能定理得eU =12mv 20①进入偏转电场,电子在平行于板面的方向上做匀速运动,l =v 0t ② 在垂直于板面的方向做匀加速直线运动,加速度a =F m =eU ′dm ③偏距y =12at 2④能飞出的条件为y≤d2⑤联立①~⑤式解得U′≤2Ud2l2=4.0×102 V. 即要使电子能飞出,所加电压最大为400 V.例69、ACD由一条电场线无法确定电场的强弱,故选项B 错误.例70、解:依题意得:(1)电子在加速电场中运动,由动能定理;eU 0=12mv 20 解得:v 0=4×107m/s(2)电子在偏转电场中运动沿初速度方向:L 1=v 0t 可得t =2.5×10-9s 在垂直速度方向:y =12at 2=12Uedm t 2=2.5×10-3 m =0.25 cm(3)偏转角的正切:tan θ=v y v x =at v x =eUdmtv 0=0.05(4)电子离开偏转电场后做匀速直线运动:若沿电场方向的偏移距离为y′,则: y′L 2=tan θ,所以y′=0.75 cm ,所以Y =y +y′=1 cm 例71、D 带电粒子在重力作用下下落,此过程中重力做正功,当带电粒子进入平行板电容器时,电场力对带电粒子做负功,若带电粒子在下极板处返回,由动能定理得mg(d2+d)-qU =0;若电容器下极板上移d 3,设带电粒子在距上极板d′处返回,则重力做功W G =mg(d2+d′),电场力做功W 电=-qU′=-q d′ d-d 3U =-q 3d′2d U ,由动能定理得W G +W 电=0,联立各式解得d′=25d ,选项D 正确.例72、解:依题意得:(1)设场强为E ,把小球A 、B 看做一个系统,由于绳未断前做匀速运动,则有:2qE =3mg ,得E =3mg2q(2)细绳断后,根据牛顿第二定律, 对A 有:qE -mg =ma A ,得a A =g2方向向上;对B 有:qE -2mg =2ma B ,a B =-g4方向向下.例73、解:依题意得:(1)依据几何三角形解得:电子在C 点时的速度为:v t =v 0cos 30°①而E k =12mv 2②联立①②得:E k =12m(v 0cos 30°)2=9.7×10-18J.(2)对电子从O 到C ,由动能定理,有:eU =12mv 2t -12mv 20③联立①③得:U =m v 2t -v 22e=15.2 V.例74、12(q 1+q 2)El 12[(q 1+q 2)E +(m 2-m 1)g]l场力对A 、B 都做正功,W 1=q 1E l 2,W 2=q 2E l 2,电场力所做总功为W 1+W 2=12(q 1+q 2)El ,重力所做总功为m 2g l 2-m 1g l 2,根据动能定理,竖直位置处两球的总动能为12(q 1+q 2)El +12(m 2-m 1)gl.例75、C 由题意可知,微粒在竖直方向上做匀变速运动,在相等时间间隔内,位移不等,A 、B 错;由轨迹可知,微粒所受合外力向上,电场力大于重力.在同一时间间隔内电场力做的功大于重力做的功,C 对,D 错.例76、解:依题意得:球在光滑轨道上做圆周运动,在a 、b 两点时,静电力和轨道的作用力的合力提供向心力,由b 到a 只有电场力做功,利用动能定理,可求解E 及a 、b 两点的动能.质点所受电场力的大小为:F =qE ①设质点质量为m ,经过a 点和b 点时的速度大小分别为v a 和v b ,由牛顿第二定律有:F +N a =m v 2ar ②N b -F =m v 2br③设质点经过a 点和b 点时的动能分别为E ka 和E kb ,有:E ka =12mv 2a ④ E kb =12mv 2b ⑤根据动能定理有E kb -E ka =2rF ⑥联立①②③④⑤⑥式得: E =16q (N b -N a )⑦ E ka =r 12(N b +5N a )⑧ E kb =r12(5N b +N a )⑨例77、解:依题意得:(1)分析水平方向的分运动有:v 2=2aL =2qEL m ,所以E =12mv 2qL.(2)A 与O 之间的电势差 U AO =E·L=12 mv 2q.(3)设小球落地时的动能为E kA ,空中飞行的时间为t ,分析水平方向和竖直方向的分运动有: v 0=qE m ·t,v A =gt ,E kA =12mv 2A 解得:E kA=2mg 2L 2v 20.11.01 电源和电流例78、C I =Q t =0.2+0.31 A =0.5 A ,故选C.例79、解:依题意得:NaCl 溶液导电是靠自由移动的Na +和Cl -,它们在电场力作用下向相反方向运动.故溶液中电流方向与Na +定向移动的方向相同,即由A 指向B.Na +和Cl -都是一价离子,每个离子的电荷量为e =1.6×10-19C ,NaCl 溶液导电时,Na +由A 向B 定向移动,Cl -由B 向A 运动,负离子的运动可以等效地看作正离子沿相反方向的运动,所以,每秒钟通过M 横截面的电荷量为两种离子电荷量的绝对值之和,则有:I =q t =q 1+q 2t=1.0×1018×1.6×10-19+1.0×1018×1.6×10-192A =0.16 A.例80、解:依题意得:(1)1 s 内通过铜导线横截面的电荷量为q =It =1 C.所以1 s 内通过铜导线横截面的电子个数为N =q e =11.6×10-19=6.25×1018(个).(2)由电流的微观表达式I =nqSv 得自由电子的平均移动速率 v =I nqS =18.5×1028×1.6×10-19×1×10-6 m/s≈7.35×10-5m/s. 例81、D 电荷的定向移动形成电流,电流在金属导体中的传导速率等于光速,而金属导体中自由电子的定向移动速率比光速小得多,A 、B 、C 错,D 对.例82、依题意得:截取电子运动轨道的任一截面,在电子运动一周的时间T 内,通过这个截面的电荷量q =e , 则有I =q t =e T.再由库仑力提供向心力有:k e 2r 2=m 4π2T 2·r 得T =2πremr k ,解得I =e 22πr 2mkmr. 例83、依题意得:(1)由E =U d 得d =U E =3×1093×106 m =1 000 m.(2)释放的能量:E 能=qU =500×3×109 J =1.5×1012 J. (3)由电流的定义得:I =q t =5000.01 A =5×104 A.11.02 电动势例84、D 在电源内部和外部都存在着由正极指向负极的电场,在电源外部,正电荷受静电力作用,能不断地定向移动形成电流,此过程静电力做正功使电荷的电势能减少,在电源内部,正电荷受静电力方向与移动方向相反,静电力不能使正电荷定向移动,而非静电力使正电荷由负极移动到正极,克服静电力做功,使电荷的电势能增加,故D 正确.例85、BD 在电源内部是非静电力驱使电子从正极流向负极做正功,静电力做负功,A 错误,B 正确;从能量守恒的角度看,电源内部把其他形式的能转化为电能,C 错误,D 正确.例86、D 电动势的关系式E =W/q 是比值定义式而非决定式,不能说和W 成正比和q 成反比,故A 错误;虽然电动势的单位跟电压的单位一致,但电动势是和非静电力所做的功对应的物理量,而电压是和静电力所做的功对应的物理量,故B 错误;非静电力所做的功多少还和移动的电荷量有关,故选项C 错误;D 选项正确.例87、依题意得:对于铅蓄电池所在电路,20 s 时间内通过的电荷量q 1=I 1t =2 C ;对于干电池所在电路,20 s 时间内通过的电荷量q 2=I 2t =4 C.由电动势定义式E =W 非q ,可得,电源消耗的化学能分别为W 1=q 1E 1=4 J ,W 2=q 2E 2=6 J.因为E 1>E 2,故铅蓄电池把化学能转化为电能的本领大.电动势表征电源的转化本领.例88、D 只有电路开路时,电动势才等于电源两端的电压值,对于E =W q 及U =Wq ,前者表示非静电力做的功;后者表示电场力做的功,电动势和电压的意义不同,电动势反映电源把其他形式的能转。

高三物理一轮复习练习题选修3-3.1

高三物理一轮复习练习题选修3-3.1

(本栏目内容,在学生用书中以活页形式分册装订!)1.当密闭在气球内的空气(可视为理想气体)温度缓慢升高时( )A .气体分子的体积增大B .气体分子的动能增大C .气体分子的平均动能增大D .单位体积内分子数增多解析: 温度是分子平均动能的标志,温度升高,分子的平均动能增大.答案: C2.下列说法中正确的是( )A .液体中悬浮微粒的布朗运动是做无规则运动的液体分子撞击微粒而引起的B .物体的温度越高,其分子的平均动能越大C .物体里所有分子动能的总和叫做物体的内能D .只有通过热传递的方式才能改变物体的内能解析: 布朗运动是液体分子撞击微粒不平衡引起的,A 正确;物体的温度越高,分子的平均动能越大,B 正确;物体里所有分子动能和分子势能的总和叫做物体的内能,C 错误;做功和热传递都可以改变物体的内能,D 错误.答案: AB3.关于分子热运动和布朗运动,下列说法正确的是( )A .布朗运动是指在显微镜中看到的液体分子的无规则运动B .布朗运动反映了液体分子在永不停息地做无规则运动C .悬浮微粒越大,同一时刻与它碰撞的液体分子越多,布朗运动越显著D .当物体温度达到0 ℃ 时,物体分子的热运动就会停止解析: 布朗运动是指在显微镜中看到的悬浮小颗粒的无规则运动,A 错;布朗运动间接反映了液体分子运动的无规则性,B 对;悬浮微粒越大,液体分子对它的撞击作用的不平衡性越小,布朗运动越不明显,C 错;热运动在0 ℃时不会停止D 错.答案: B4.一滴油酸酒精溶液含质量为m 的纯油酸,滴在液面上扩散后形成的最大面积为S .已知纯油酸的摩尔质量为M 、密度为ρ,阿伏加德罗常数为N A ,下列表达式中正确的有( )A .油酸分子的直径d =M ρSB .油酸分子的直径d =m ρSC .油酸所含的分子数N =m MN A D .油酸所含的分子数N =M mN A 解析: 设油酸分子的直径为d ,则有dS =m ρ d =m ρS,故B 正确;设油酸所含的分子数为N ,则有N =m MN A ,故C 正确.答案:BC5.关于分子间相互作用力,以下说法中正确的是()A.当分子间距离r=r0时,分子力为零,说明此时分子间既不存在引力,也不存在斥力B.分子力随分子间距离的变化而变化,当r>r0,时,随着距离的增大,分子间的引力和斥力都增大,但引力比斥力增大得快,故分子力表现为引力C.当分子间的距离r<r0时,随着距离的减小,分子间的引力和斥力都增大,但斥力比引力增大得快,故分子力表现为斥力D.当分子间的距离r>10-9 m时,分子间的作用力可以忽略不计解析:分子间距离为r0时分子力为零,并不是分子间无引力和斥力,A错误;当r>r0时,随着距离的增大,分子间的引力和斥力都减小,但斥力比引力减小得快,故分子力表现为引力,B错误.答案:CD6.关于热力学定律,下列说法正确的是()A.在一定条件下物体的温度可以降到0 KB.物体从单一热源吸收的热量可全部用于做功C.吸收了热量的物体,其内能一定增加D.压缩气体总能使气体的温度升高解析:根据热力学第三定律可知,绝对零度不可能达到,A错误;物体从外界吸收热量、对外做功,根据热力学第一定律可知内能可能增加、减少和不变,C错误;压缩气体,外界对气体做正功,可能向外界放热,内能可能减少、温度降低,D错误;物体从单一热源吸收的热量全部用于做功而引起其他变化是可能的,B正确.答案: B7.根据你学的热学中的有关知识,判断下列说法中正确的是()A.机械能可以全部转化为内能,内能也可以全部用来做功以转化成机械能B.凡与热现象有关的宏观过程都具有方向性,在热传递中,热量只能从高温物体传递给低温物体,而不能从低温物体传递给高温物体C.尽管技术不断进步,热机的效率仍不能达到100%,制冷机却可以使温度降到-293 ℃D.第一类永动机违背能量守恒定律,第二类永动机不违背能量守恒定律,随着科技的进步和发展,第二类永动机可以制造出来解析:机械能可以全部转化为内能,而内能在引起其他变化时也可以全部转化为机械能,A正确;凡与热现象有关的宏观过程都具有方向性,在热传递中,热量可以自发地从高温物体传递给低温物体,也能从低温物体传递给高温物体,但必须借助外界的帮助,B错误;尽管技术不断进步,热机的效率仍不能达到100%,制冷机也不能使温度降到-293 ℃,只能无限接近-273 ℃,却永远不能达到,C错误;第一类永动机违背能量守恒定律,第二类永动机不违背能量守恒定律,而是违背了热力学第二定律,第二类永动机不可能制造出来,D 错误.答案: A8.(1)在将空气压缩装入气瓶的过程中,温度保持不变,外界做了24 kJ的功.现潜水员背着该气瓶缓慢地潜入海底,若在此过程中,瓶中空气的质量保持不变,且放出了5 kJ的热量.在上述两个过程中,空气的内能共减小______kJ,空气______(选填“吸收”或“放出”)的总热量为________kJ.(2)已知潜水员在岸上和海底吸入空气的密度分别为1.3 kg/m3和2.1 kg/m3,空气的摩尔质量为0.029 kg/mol,阿伏加德罗常数N A=6.02×1023mol-1.若潜水员呼吸一次吸入2 L空气,试估算潜水员在海底比在岸上每呼吸一次多吸入空气的分子数.(结果保留一位有效数字)解析: (1)第一个过程内能不变,放出24 kJ 的热量;第二个过程放热,内能减小5 kJ.(2)设空气的摩尔质量为M ,在海底和岸上的密度分别为ρ海和ρ岸,一次吸入空气的体积为V ,则有Δn =(ρ海-ρ岸)V MN A ,代入数据得Δn =3×1022. 答案: (1)5 放出 29 (2)3×10229.(2011上海单科)在“用单分子油膜估测分子大小”实验中,(1)某同学操作步骤如下;①取一定量的无水酒精和油酸,制成一定浓度的油酸酒精溶液;②在量筒中滴入一滴该溶液,测出它的体积;③在蒸发皿内盛一定量的水,再滴入一滴油酸酒精溶液,待其散开稳定;④在蒸发皿上覆盖透明玻璃,描出油膜形状,用透明方格纸测量油膜的面积.改正其中的错误:________________________________________________________________________________________________________________________________________________(2)若油酸酒精溶液体积浓度为0.10%,一滴溶液的体积为4.8×10-3 mL ,其形成的油膜面积为40 cm 2,则估测出油酸分子的直径为________m.解析: (1)②由于一滴溶液的体积太小,直接测量时相对误差太大,应用微小量累积法减小测量误差.③液面上不撒痱子粉时,滴入的油酸酒精溶液在酒精挥发后剩余的油膜不能形成一块完整的油膜,油膜间的缝隙会造成测量误差增大甚至实验失败.(2)由油膜的体积等于一滴油酸酒精溶液内纯油酸的体积可得:d =V S=4.8×10-3×10-6×0.10%40×10-4 m =1.2×10-9 m. 答案: (1)②在量筒中滴入N 滴溶液③在水面上先撒上痱子粉(2)1.2×10-910.某学习小组做了如下实验:先把空的烧瓶放入冰箱冷冻,取出烧瓶,并迅速把一个气球紧套在烧瓶颈上,封闭了一部分气体,然后将烧瓶放进盛满热水的烧杯里,气球逐渐膨胀起来,如图.(1)在气球膨胀过程中,下列说法正确的是________.A .该密闭气体分子间的作用力增大B .该密闭气体的内能增加C .该密闭气体的压强是由于气体重力而产生的D .该密闭气体的体积是所有气体分子的体积之和(2)若某时刻该密闭气体的体积为V ,密度为ρ,平均摩尔质量为M ,阿伏加德罗常数为N A ,则该密闭气体的分子个数为________.(3)若将该密闭气体视为理想气体,气球逐渐膨胀起来的过程中,气体对外做了0.6 J 的功,同时吸收了0.9 J 的热量,则该气体内能变化了________J ;若气球在膨胀过程中迅速脱离瓶颈,则该气球内气体的温度________(填“升高”、“降低”或“不变”).解析: (1)该密闭气体吸热,内能增加,B 正确;气球膨胀分子间的距离增大,分子间的作用力减小,A 错误;气体的压强是由于气体分子频繁的撞击容器壁产生的,C 错误;因气体分子之间存在间隙,所以密闭气体的体积,大于所有气体分子的体积之和,D 错误.(2)该密闭气体的分子个数为n =ρV MN A . (3)根据热力学第一定律ΔU =W +Q 得:ΔU =-0.6+0.9=0.3 (J);气球在膨胀过程中对外界做功,气球内气体的温度必降低.答案: (1)B (2)ρV MN A (3)0.3 降低 11.目前,环境污染已非常严重,瓶装纯净水已经占领柜台.再严重下去,瓶装纯净空气也会上市.设瓶子的容积为500 mL ,空气的摩尔质量M =29×10-3 kg/mol.按标准状况计算,N A =6.0×1023 mol -1,试估算:(1)空气分子的平均质量是多少?(2)一瓶纯净空气的质量是多少?(3)一瓶中约有多少个气体分子?解析: (1)m =M N A =29×10-36.0×1023 kg =4.8×10-26 kg (2)m 空=ρV 瓶=MV 瓶V m =29×10-3×500×10-622.4×10-3 kg =6.5×10-4 kg (3)分子数N =nN A =V 瓶V m ·N A =500×10-6×6.0×102322.4×10-3 =1.3×1022个答案: (1)4.8×10-26 kg (2)6.5×10-4 kg(3)1.3×1022个12.一定质量的气体,在从一个状态(①)变化到另一个状态(②)的过程中,吸收热量280 J ,并对外做功120 J ,试问:(1)这些气体的内能发生了怎样的变化?(2)如果这些气体又返回原来的状态,并放出了240 J 热量,那么在返回的过程中是气体对外界做功,还是外界对气体做功?做功多少?解析: (1)由热力学第一定律可得ΔU =W +Q =-120 J +280 J =160 J气体的内能增加了160 J.(2)由于气体的内能仅与状态有关,所以气体从②状态回到①状态的过程中内能的变化应等于从①状态到②状态的过程中内能的变化,则从②状态到①状态的内能应减少160 J即ΔU ′=-160 J ,又Q ′=-240 J ,根据热力学第一定律得:ΔU ′=W ′+Q ′,所以W ′=ΔU ′-Q ′=-160 J -(-240 J)=80 J ,即外界对气体做功80 J.答案: (1)增加了160 J (2)外界对气体做功 80 J。

高中物理选修3-1知识点归纳和测试题(完整版)

高中物理选修3-1知识点归纳和测试题(完整版)

物理选修3-1一、电场1.两种电荷、电荷守恒定律、元电荷(e =1.60×10-19C );带电体电荷量等于元电荷的整数倍 2.库仑定律:F KQ Q r=122(真空中的点电荷){F:点电荷间的作用力(N); k:静电力常量k =9.0×109N •m 2/C 2;Q 1、Q 2:两点电荷的电量(C);r:两点电荷间的距离(m); 作用力与反作用力;方向在它们的连线上;同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E Fq=(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理);q :检验电荷的电量(C)}4.真空点(源)电荷形成的电场E KQr =2{r :源电荷到该位置的距离(m ),Q :源电荷的电量} 5.匀强电场的场强ABU E d={U AB :AB 两点间的电压(V),d:AB 两点在场强方向的距离(m)} 6.电场力:F =qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:U AB =φA -φB ,U AB =W AB/q =qP E Δ减8.电场力做功:W AB =qU AB =qEd =ΔE P 减{W AB :带电体由A 到B 时电场力所做的功(J),q:带电量(C),U AB :电场中A 、B 两点间的电势差(V )(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m);ΔE P 减 :带电体由A 到B 时势能的减少量}9.电势能:E PA =q φA {E PA :带电体在A 点的电势能(J),q:电量(C),φA :A 点的电势(V)} 10.电势能的变化ΔE P 减=E PA -E PB {带电体在电场中从A 位置到B 位置时电势能的减少量} 11.电场力做功与电势能变化W AB =ΔE P 减=qU AB (电场力所做的功等于电势能的减少量)12.电容C =Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13.平行板电容器的电容εSC 4πkd=(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)常见电容器14.带电粒子在电场中的加速(Vo =0):W =ΔE K 增或22mVt qU =15.带电粒子沿垂直电场方向以速度V 0进入匀强电场时的偏转(不考虑重力作用) : 类平抛运动(在带等量异种电荷的平行极板中:dU E = 垂直电场方向:匀速直线运动L =V 0t平行电场方向:初速度为零的匀加速直线运动22at d =, F qE qUa m m m===注: (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直; (3)常见电场的分布要求熟记;(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;(6)电容单位换算:1F =106μF =1012PF ;(7)电子伏(eV)是能量的单位,1eV =1.60×10-19J ;(8)其它相关内容:静电屏蔽、示波管、示波器及其应用、等势面带电粒子在匀强电场中的类平抛运动一、模型原题一质量为m ,带电量为q 的正粒子从两极板的中部以速度v 0水平射入电压为U 的竖直向下的匀强电场中,如图所示,已知极板长度为L ,极板间距离为d 。

人教版版2018-2019学年高中物理选修3-1全套课时作业含解析

人教版版2018-2019学年高中物理选修3-1全套课时作业含解析
答案:ACD
三、非选择题
9.如图所示,大球A原来的电荷量为Q,小球B原来不带电,现在让小球与大球接触,达到稳定状态时,发现A、B两球所带的电荷量与体积成正比,小球获得的电荷量为q.现给A球补充电荷,使其电荷量再次为Q,再次让小球接触大球,每次都给大球补充到电荷量为Q,经过反复多次接触后,小球的带电荷量不再发生变化,求此时小球的带电荷量.
解析:根据同种电荷相互排斥可知,金属球A上的负电荷将排斥金属导体MN上的自由电子,使其向N端移动,N端带负电,M端带正电,故两端的金箔片均张开,C正确,A、B、D均错误.
答案:C
5.绝缘细线上端固定,下端挂一轻质小球a,a的表面镀有铝膜,在a近旁放一绝缘金属球b.开始时,a、b都不带电,如图所示.现使b带电,则( )
答案:D
4.如图所示,原来不带电的金属导体MN,在其两端下面都悬挂有金属验电箔片,若使带负电的金属球A靠近导体的M端,可能看到的现象( )
A.只有M端验电箔片张开,且M端带正电
B.只有N端验电箔片张开,且N端带负电
C.两端的验电箔片都张开,且左端带负电,右端带正电
D.两端的验电箔片都张开,且两端都带正电或负电
答案:B
二、多项选择题
6.用金属箔做成一个不带电的圆环,放在干燥的绝缘桌面上.小明同学用绝缘材料做的笔套与头发摩擦后,将笔套自上向下慢慢靠近圆环,当距离约为0.5 cm时圆环被吸引到笔套上,如图所示.对上述现象的判断与分析,下列说法正确的是( )
A.摩擦使笔套带电
B.笔套靠近圆环时,圆环上、下部感应出异号电荷
答案:BC
8.如图所示,在真空中把一个绝缘导体向带负电的球P慢慢靠近.关于绝缘导体两端的电荷,下列说法中正确的是( )
A.两端的感应电荷越来越多

高中物理选修3-1课后习题和答案以及解释

高中物理选修3-1课后习题和答案以及解释

课后练习一第10讲库仑定律和场强1.如图1-15所示,用一根跟毛皮摩擦过的硬橡胶棒,靠近不带电验电器的金属小球a,然后用手指瞬间接触一下金属杆c后拿开橡胶棒,这时验电器小球A和金箔b的带电情况是()A.a带正电,b带负电B.a带负电,b带正电C.a、b均带正电D.a、b均不带电答案:C详解:毛皮摩擦过的橡胶棒带负电,靠近小球a,会在球上感应出正电荷,而负电荷就远离棒,到了金属杆c上。

此时用手指触碰c,会把杆上的负电荷转移走,于是整个验电器就带正电了。

球带正电,金箔也带正电。

2.如图1-4所示,真空中两个自由的点电荷A和B,分别带有-Q和+4Q的电荷,现放入第三个点电荷C,使点电荷A、B、C都处于平衡,则点电荷C应放在什么区域?点电荷C带什么电?答案:应该放入一个“+”电荷,并且放在A的左边。

详解:首先电荷不可能放中间,否则该电荷必受到两个同方向的力。

电荷放在右边也不可能,本身B处电荷电荷量就大,如果离它更近,必然是受到的两个电场力大小不一。

因此要放在A左边,并且只能是带正电才可行,因为如果带负电,AB两处电荷不可能平衡。

3.将一定量的电荷Q,分成电荷量q、q'的两个点电荷,为使这两个点电荷相距r时,它们之间有最大的相互作用力,则q值应为______。

答案:详解:二者相互作用力就是看乘积的大小了。

数学上有如下规律,两个正数和一定,必然在二者相等时积最大。

于是答案是。

4.两个点电荷甲和乙同处于真空中.(1)甲的电荷量是乙的4倍,则甲对乙的作用力是乙对甲的作用力的______倍.(2)若把每个电荷的电荷量都增加为原来的2倍,那么它们之间的相互作用力变为原来的______倍;(3)保持原电荷电荷量不变,将距离增为原来的3倍,那么它们之间的相互作用力变为原来的______倍;(4)保持其中一电荷的电荷量不变,另一个电荷的电荷量变为原来的4倍,为保持相互作用力不变,则它们之间的距离应变为原来的______倍;(5)把每个电荷的电荷都增大为原来的4倍,那么它们之间的距离必须变为原来的______倍,才能使其间的相互作用力不变。

高中物理,选修3---1,全册新课教学,课时同步强化训练汇总,(附参考答案)

高中物理,选修3---1,全册新课教学,课时同步强化训练汇总,(附参考答案)

高中物理选修3----1全册新课教学课时同步强化训练汇总(附详细参考答案)一、第一章《静电场》1.《电荷及其守恒定律》2.《库仑定律》3.《电场强度》4.《电势能和电势》5.《电势差》6.《电势差与电场强度的关系》7.《静电现象的应用》8.《电容器的电容》9.《带电粒子在电场中的运动》10、★★选修3--1第一章《静电场》单元质量检测试卷(一)11、★★选修3--1第一章《静电场》单元质量检测试卷(二)二、第二章《恒定电流》1.《电源和电流》2.《电动势》3.《欧姆定律》4.《串联电路和并联电路》5.《焦耳定律》6.《导体的电阻》7.《闭合电路的欧姆定律》8.《多用电表的原理》9.《实验:练习使用多用电表》10.《实验:测定电池的电动势和内阻》11.《简单的逻辑电路》12、★★选修3--1第二章《恒定电流》单元质量检测试卷(一)13、★★选修3--1第二章《恒定电流》单元质量检测试卷(二)三、第三章《磁场》1.《磁现象和磁场》2.《磁感应强度》3.《几种常见的磁场》4.《通电导线在磁场中受到的力》5.《运动电荷在磁场中受到的力》6.《带电粒子在匀强磁场中的运动》7、★★选修3--1第三章《磁场》单元质量检测试卷(一)8、★★选修3--1第三章《磁场》单元质量检测试卷(二)§§1.1《电荷及其守恒定律》课时同步强化训练班级:_________ 姓名:__________ 成绩:___________(40分钟50分)一、选择题(本题共6小题,每小题5分,共30分)1.(多选)当把用丝绸摩擦过的玻璃棒去接触验电器的金属球后,金属箔片张开,此时,金属箔片所带的电荷的带电性质和起电方式是( )A.正电荷B.负电荷C.接触起电D.感应起电2.下列说法正确的是( )A.物体所带的电荷量可以为任意实数B.不带电的物体上,既没有正电荷也没有负电荷C.摩擦起电的过程,是靠克服摩擦力做功产生了电荷D.利用静电感应使金属导体带电,实质上是导体中的自由电子趋向或远离带电体3.导体A带5Q的正电荷,另一完全相同的导体B带Q的负电荷,将两导体接触后再分开,则B导体的带电荷量为( )A.-QB.QC.2QD.4Q4.(多选)挂在绝缘细线下的通草球,由于电荷的相互作用而靠近或远离,如图甲、乙所示。

2019届高三物理一轮复习练习:选修3-1-6-2(随堂演练 课时作业)及答案

2019届高三物理一轮复习练习:选修3-1-6-2(随堂演练 课时作业)及答案

1.(2019年高考山东卷)图中虚线为一组间距相等的同心圆,圆心处固定一带正电的点电荷.一带电粒子以一定初速度射入电场,实线为粒子仅在电场力作用下的运动轨迹,a、b、c三点是实线与虚线的交点.则该粒子( )A.带负电B.在c点受力最大C.在b点的电势能大于在c点的电势能D.由a点到b点的动能变化大于由b点到c点的动能变化解析:物体做曲线运动时,合力方向指向轨迹的凹侧,说明粒子带正电,A错误;由库仑定律F=k q1q2r2知离圆心越远,粒子所受的力越小,B错误;粒子从b点到c点过程中,电场力做正功,电势能减小,C正确;点电荷的等势面与虚线重合,依题意得U ab>U bc,又电场力做功W=qU,则W ab>W bc,由动能定理得粒子由a点到b点的动能变化大于由b点到c点的动能变化,D正确.答案:CD2.(2019年聊城月考)如图所示,在固定的等量异种电荷连线上,靠近负电荷的b点释放一初速为零的带负电荷的质点(重力不计),在两点电荷连线上运动过程中,以下说法正确的是( )A.带电质点的动能越来越小B.带电质点的电势能越来越大C.带电质点的加速度越来越大D.带电质点通过各点处的电势越来越高解析:负电荷在两点电荷间受的静电力水平向左,故静电力对其做正功,动能增大,电势能减小,经过各点处的电势越来越高,D正确,A、B错误;因电场强度在两点电荷连线中点最小,故带电质点的加速度先减小后增大,C错误.答案:D3.(2019年高考天津卷)两个固定的等量异号点电荷所产生电场的等势面如图中虚线所示,一带负电的粒子以某一速度从图中A点沿图示方向进入电场在纸面内飞行,最后离开电场,粒子只受静电力作用,则粒子在电场中( )A.做直线运动,电势能先变小后变大B.做直线运动,电势能先变大后变小C.做曲线运动,电势能先变小后变大D.做曲线运动,电势能先变大后变小解析:由题图等势面可知两固定的等量异号点电荷的电场分布如图所示.带负电的粒子在等量异号点电荷所产生电场中的偏转轨迹如图所示,则粒子在电场中做曲线运动.静电力对带负电的粒子先做正功后做负功,电势能先变小后变大,故C正确.答案:C4.如图为光滑绝缘水平的直线轨道,在轨道的竖直平面内加一个斜向上方的匀强电场.有一质量为1.0×10-2kg、带电量为+1.0×10-4 C的可视为质点的物块,从轨道上的A点无初速度释放,沿直线运动0.2 m到达轨道上的B点,此时速度为2 m/s.(g取10 m/s2)求:(1)A、B两点间的电势差U AB.(2)场强大小可能的取值范围.解析:(1)A到B过程中只有静电力做功,根据动能定理得:qU AB=12mv2B-0解得:U AB=200 V(2)设场强的竖直分量为E y,水平分量为E x,则有:mg≥qE yqE x x=12mv2B-0解得:E y≤1 000 V/m,E x=1 000 V/m场强的最大值为:E max=E2x+E2y=1 000 2 V/m场强的取值范围为:1 000 V/m<E≤1 000 2 V/m.答案:(1)200 V (2)1 000 V/m<E≤1 000 2 V/m[命题报告·教师用书独具]一、选择题(本题共10小题,每小题7分,共70分,每小题至少有一个选项正确,把正确选项前的字母填在题后的括号内)1.某电场的电场线的分布如图所示,以下说法正确的是( )A.c点场强大于b点场强B.a点电势高于b点电势C.若将一试探电荷+q由a点释放,它将沿电场线运动到b点D.若在d点再固定一点电荷-Q,将一试探电荷+q由a移至b的过程中,电势能减小解析:根据电场线的疏密程度表示电场强度的大小可知c点的电场强度小于b点的电场强度,A错误;根据沿电场线方向电势逐渐降低可知a点电势高于b点电势,B正确;只有当电场线为直线时,试探电荷由静止释放,才能沿电场线运动,所以C错误;若在d点再固定一点电荷-Q,将一试探电荷+q由a移到b的过程中,静电力做正功,电势能减小,D正确.答案:BD2.将一正电荷从无限远处移入电场中M点,静电力做功W1=6×10-9J,若将一个等量的负电荷从电场中N 点移向无限远处,静电力做功W2=7×10-9 J,则M、N两点的电势φM、φN,有如下关系( ) A.φM<φN<0 B.φN>φM>0C.φN<φM<0 D.φM>φN>0解析:对正电荷φ∝-φM=W1q;对负电荷φN-φ∞=W2-q,即φ∝-φN=W2q.而W2>W1,φ∝=0,且W1q和W2q均大于0,则φN<φM<0,正确答案选C.答案:C3.(2019年南昌模拟)一带电粒子射入一固定的点电荷的电场中,沿如图所示的虚线由a点运动到b点.a、b两点到点电荷的距离分别为r a和r b,且r a>r b.若不计重力,则( )A .带电粒子一定带正电B .库仑力先做正功后做负功C .带电粒子在b 点的动能大于在a 点的动能D .带电粒子在b 点的电势能大于在a 点的电势能解析:由带电粒子的运动轨迹可知,带电粒子与场源电荷电性相同,但场源电荷的电性未知,故A 错;带电粒子运动过程中,先是力与速度的夹角为钝角,然后是力与速度的夹角为锐角,故库仑力先做负功后做正功,B 错;带电粒子由a 到b 的整个过程是克服静电力做功,动能减少,故带电粒子在b 点的动能小于在a 点的动能,C 错;由动能和电势能之和不变可知,带电粒子在b 点的电势能大于在a 点的电势能,D 对.答案:D4.(2019年广州测试)如图所示表示某静电场等势面的分布,电荷量为1.6×10-9C 的正电荷从A 经B 、C 到达D 点.从A 到D ,静电力对电荷做的功为( )A .4.8×10-8J B .-4.8×10-8J C .8.0×10-8 JD .-8.0×10-8J解析:静电力做功与电荷运动的路径无关,只与电荷的起始位置和终止位置有关.从A 到D ,静电力对电荷做的功为W =qU AD =q(φA -φD )=(-40+10)×1.6×10-9J =-4.8×10-8J ,A 、C 、D 错误,B 正确.答案:B5.(2019年银川模拟)如图所示,空间分布着竖直向上的匀强电场E ,现在电场区域内某点O 处放置一负点电荷Q ,并在以O 点为球心的球面上选取a 、b 、c 、d 四点,其中a 、c 连线为球的水平大圆直径,b 、d 连线与电场方向平行.不计空气阻力,则下列说法中正确的是( )A .b 、d 两点的电场强度大小相等,电势相等B .a 、c 两点的电场强度大小相等,电势相等C .若从a 点抛出一带正电小球,小球可能沿a 、c 所在圆周做匀速圆周运动D .若从a 点抛出一带负电小球,小球可能沿b 、d 所在圆周做匀速圆周运动 解析:设球半径为R ,E b =E -k Q R 2,E d =E +k QR2,故A 错误;E a =E 2+QR22,E c = E 2+Q R22,且a 、c 在同一等势面上,故B 正确;当带电小球所受重力和匀强电场E 对其静电力大小相等,方向相反,且k QqR=m v2R时,小球能沿a、c所在圆周做匀速圆周运动,C正确、D错误.答案:BC6.(2019年唐山模拟)如图所示,+Q和-Q是两个等量异种点电荷,以点电荷+Q为圆心作圆,A、B为圆上两点,MN是两电荷连线的中垂线;与两电荷连线交点为O,下列说法正确的是( )A.A点的电场强度大于B点的电场强度B.电子在A点的电势能小于在B点的电势能C.把质子从A点移动到B点,静电力对质子做功为零D.把质子从A点移动到MN上任何一点,质子的电势能变化都相同解析:由等量异种点电荷的电场线和等势线分布可知:E A<E B,φA>φB,A错误、B正确;W AB=U AB q=(φA -φB)q>0,故C错误.MN为一条等势线,D正确.答案:BD7.(2019年德州模拟)如图,虚线AB和CD分别为椭圆的长轴和短轴,相交于O点,两个等量异种点电荷分别固定在椭圆的两个焦点M、N上,A、E两点关于M点对称.下列说法正确的是( )A.A、B两点电势、场强均相同B.C、D两点电势、场强均相同C.A点的场强小于E点的场强D.带正电的试探电荷在O点的电势能小于在E点的电势能解析:取无穷远处电势为零,CD左侧电势均为正,右侧电势均为负,CD线上电势为零,所以A错、B对;M、N两点电荷在A处的场强方向相反,在E处的场强方向相同,所以A点的场强小于E点的场强,C对;由于O点电势为零,E点电势为正,所以带正电的试探电荷在O点的电势能小于在E点的电势能,D对.答案:BCD8.如图所示,在xOy平面内有一个以O为圆心、半径R=0.1 m的圆,P为圆周上的一点,O、P两点连线与x轴正方向的夹角为θ.若空间存在沿y轴负方向的匀强电场,场强大小E=100 V/m,则O、P两点的电势差可表示为( )A.U OP=-10sin θ (V) B.U OP=10sin θ (V)C.U OP=-10cos θ (V) D.U OP=10cos θ (V)解析:由于电场强度方向向下,据题可知U OP<0,则U OP=-ERsin θ=-100×0.1sin θ(V)=-10sin θ(V),故正确答案为A.答案:A9.如图所示,空间有与水平方向成θ角的匀强电场.一个质量为m 的带电小球,用长L 的绝缘细线悬挂于O 点.当小球静止时,细线恰好处于水平位置.现用一个外力将小球沿圆弧缓慢地拉到最低点,此过程小球的电荷量不变.则该外力做的功为( )A .mgLB .mgLtan θC .mgLcot θD .mgL/cos θ解析:小球静止时受力如图所示,则静电力F =mgsin θ.细线在电场方向的距离如图所示.由动能定理W外-F(Lcos θ+Lsin θ)+mgL =0,将F =mgsin θ代入可解得W 外=mgLcot θ,故选项C 正确.答案:C10.(2019年高考上海卷)如图所示,质量分别为m A 和m B 的两小球带有同种电荷,电荷量分别为q A 和q B ,用绝缘细线悬挂在天花板上.平衡时,两小球恰处于同一水平位置,细线与竖直方向间夹角分别为θ1与θ2(θ1>θ2).两小球突然失去各自所带电荷后开始摆动,最大速度分别为v A 和v B ,最大动能分别为E kA 和E kB .则( )A .m A 一定小于mB B .q A 一定大于q BC .v A 一定大于v BD .E kA 一定大于E kB解析:对两球受力分析可知,A 、B 所受静电力大小相等,方向沿水平方向,则有:F 电=mgtan θ,与电荷量的大小无关,所以有m ∝1tan θ,故m A <m B ,选项A 对、B 错;两球自静止摆至最低点的过程中,机械能守恒,且在最低点时速度最大,动能最大,由于lcos θ相等,故l A >l B ,所以A 球在运动到最低点的过程中,重心下降的高度大,即ΔE pA >ΔE pB ,由机械能守恒定律得,E kA >E kB ,所以v A >v B ,故选项C 、D 正确.答案:ACD二、非选择题(本题共2小题,共30分,解答时应写出必要的文字说明、方程式和演算步骤,有数值计算的要注明单位)11.(15分)如图所示,在足够长的光滑绝缘水平直线轨道上方h 高度的P 点,固定电荷量为+Q 的点电荷.一质量为m 、带电荷量为+q 的物块(可视为质点),从轨道上的A 点以初速度v 0沿轨道向右运动,当运动到P 点正下方B 点时速度为v.已知点电荷产生的电场在A 点的电势为φ(取无穷远处电势为零),PA 连线与水平轨道的夹角为60°.试求:(1)物块在A 点时受到轨道的支持力大小; (2)点电荷+Q 产生的电场在B 点的电势. 解析:(1)物块受到点电荷的库仑力F =kQqr 2由几何关系可知r =h/sin 60°设物块在A 点时受到轨道的支持力大小为F N ,由平衡条件有F N -mg -Fsin 60°=0 解得F N =mg +33kQq8h2(2)设点电荷产生的电场在B 点的电势为φB ,由动能定理有q(φ-φB )=12mv 2-12mv 2解得φB =φ+2-v 22q答案:(1)mg +33kQq8h 2(2)φ+20-v 22q12.(15分)(2019年金华模拟)如图所示,一竖直固定且光滑绝缘的直圆筒底部放置一可视为点电荷的场源电荷A ,其电荷量Q =+4×10-3C ,场源电荷A 形成的电场中各点的电势表达式为φ=kQr,其中k 为静电力常量,r 为空间某点到场源电荷A 的距离.现有一个质量为m =0.1 kg 的带正电的小球B ,它与A 球间的距离为a =0.4 m ,此时小球B 处于平衡状态,且小球B 在场源电荷A 形成的电场中具有的电势能的表达式为E p =kQq r,其中r 为A 与B 之间的距离.另一质量也为m 的不带电绝缘小球C 从距离B 的上方H =0.8 m 处自由下落,落在小球B 上立刻与小球B 粘在一起以2 m/s 的初速度向下运动,它们到达最低点后又向上运动,向上运动到达的最高点为P(g 取10 m/s 2,k =9×109N·m 2/C 2).求:(1)小球C 与小球B 碰撞前的速度大小为多少,小球B 的电荷量q 为多少? (2)小球C 与小球B 一起向下运动的过程中,最大速度为多少? 解析:(1)设小球C 自由下落H 时获得速度为v 0,由机械能守恒得: mgH =12mv 2解得v 0=2gH =4 m/s小球B 在碰撞前处于平衡状态,对B 球由平衡条件得: mg =kqQ a2 代入数据得:q =49×10-8 C≈4.4×10-9C.(2)设当B 和C 向下运动的速度最大为v m 时,与A 相距x ,对B 和C 整体,由平衡条件得:2mg =k Qqx 2代入数据得:x =0.28 m由能量守恒得:12(2m)v 2+kQq a +2mga =12×(2m)v 2m +2mgx +k Qq x代入数据得v m =2.5 m/s.答案:(1)4 m/s 4.4×10-9C (2)2.5 m/s。

高中物理选修3-1 运动电荷在磁场中受到的力 课后作业(含解析)

高中物理选修3-1  运动电荷在磁场中受到的力 课后作业(含解析)

运动电荷在磁场中受到的力课后作业一、选择题考点一洛伦兹力1.大量的带电荷量均为+q的粒子在匀强磁场中运动,下列说法中正确的是()A.只要速度大小相同,所受洛伦兹力就相同B.如果把+q改为-q,速度反向但大小不变,且与磁场方向不平行,则洛伦兹力的大小方向均不变C.只要带电粒子在磁场中运动,它一定受到洛伦兹力作用D.带电粒子受到的洛伦兹力越小,则该磁场的磁感应强度就越小答案B解析带电粒子在磁场中运动时受到的磁场力不仅与其速度的大小有关,还与其速度的方向有关,当速度方向与磁场方向在一条直线上时,不受磁场力作用,所以A、C、D错误;根据左手定则,不难判断B是正确的.2.关于运动电荷和磁场的说法中,正确的是()A.运动电荷在某点不受洛伦兹力作用,这点的磁感应强度必为零B.电荷的运动方向、磁感应强度方向和电荷所受洛伦兹力的方向一定两两互相垂直C.电子射线垂直进入磁场发生偏转,这是因为洛伦兹力对电子做功的结果D.电荷与磁场没有相对运动,电荷就一定不受磁场的作用力答案D解析运动电荷的速度方向如果和磁场方向平行,运动电荷不受洛伦兹力作用,所以A错误;电荷运动方向不一定垂直于磁感应强度方向,但洛伦兹力一定垂直于磁感应强度方向,故B错误;洛伦兹力对运动电荷不做功,所以C错误;只有运动的电荷在磁场中运动方向与磁场方向不平行才受磁场力作用,所以电荷与磁场没有相对运动,电荷就一定不受磁场的作用力,故D正确.3.下列四副图关于各物理量方向间的关系中,正确的是()答案B解析由左手定则可知,安培力的方向总是与磁感应强度的方向垂直,故A错误;磁场的方向向下,电流的方向向里,由左手定则可知安培力的方向向左,故B正确;由左手定则可知,洛伦兹力的方向总是与磁感应强度的方向垂直,应为垂直纸面向外,故C错误;通电螺线管内部产生的磁场的方向沿螺线管的轴线的方向,由题图D可知电荷运动的方向与磁感线的方向平行,不受洛伦兹力,故D错误.4.两个带电粒子以相同的速度垂直磁感线方向进入同一匀强磁场,两粒子质量之比为1∶4,电荷量之比为1∶2,则两带电粒子受洛伦兹力之比为()A.2∶1 B.1∶1 C.1∶2 D.1∶4答案C解析带电粒子的速度方向与磁感线方向垂直时,洛伦兹力F=q v B与电荷量成正比,与质量无关,C项正确.考点二带电粒子(带电体)在磁场中的运动5.电视显像管原理的示意图如图1所示,当没有磁场时,电子束将打在荧光屏正中的O点,安装在管径上的偏转线圈可以产生磁场,使电子束发生偏转.设垂直纸面向里的磁场方向为正方向,若使电子打在荧光屏上的位置由a点逐渐移动到b点,下列变化的磁场能够使电子发生上述偏转的是()图1答案A解析电子偏转到a点时,根据左手定则可知,磁场方向垂直纸面向外,对应的B-t图的图线应在t轴下方;电子偏转到b点时,根据左手定则可知,磁场方向垂直纸面向里,对应的B-t图的图线应在t轴上方,A正确.6.两个完全相同的带等量的正电荷的小球a和b,从同一高度自由落下,分别穿过高度相同的水平方向的匀强电场和匀强磁场,如图2所示,然后再落到地面上,设两球运动所用的总时间分别为t a、t b,则()图2A.t a=t b B.t a>t bC.t a<t b D.条件不足,无法比较答案C解析a球进入匀强电场后,始终受到水平向右的电场力F电=qE作用,这个力不会改变a 在竖直方向运动的速度,故它下落的总时间t a与没有电场时自由下落的时间t0相同.b球以某一速度进入匀强磁场瞬间它就受到水平向右的洛伦兹力作用,这个力只改变速度方向,会使速度方向向右发生偏转,又因为洛伦兹力始终与速度方向垂直,当速度方向变化时,洛伦兹力的方向也发生变化,不再沿水平方向.如图所示为小球b在磁场中某一位置时的受力情况,从图中可以看出洛伦兹力F洛的分力F1会影响小球竖直方向的运动,使竖直下落的加速度减小(小于g),故其下落的时间t b大于没有磁场时小球自由下落的总时间t0.综上所述,t a<t b.7. (多选)如图3所示,在一绝缘、粗糙且足够长的水平管道中有一带正电荷的小球,管道半径略大于球体半径,整个管道处于方向与管道垂直的水平匀强磁场中;现给球施加一个水平向右的初速度v0,以后小球的速度随时间变化的图象可能正确的是()图3答案 ACD解析 给小球施加一个水平向右的初速度,小球将受到向上的洛伦兹力,还受重力、可能有向后的滑动摩擦力;若重力小于洛伦兹力,小球受到向下的弹力,则受到摩擦力,做减速运动,当洛伦兹力等于重力时,做匀速运动,故C 正确.若重力大于洛伦兹力,小球受到向上的弹力,则受到摩擦力,将做减速运动,随洛伦兹力的减小,压力变大,摩擦力变大,加速度逐渐变大,最后速度为零,故D 正确.若洛伦兹力等于小球的重力,小球将做匀速直线运动,故A 正确.故选A 、C 、D.8.(多选)质量为m 、电荷量为q 的带正电小球,从倾角为θ的粗糙绝缘斜面(μ<tan θ)上由静止下滑,斜面足够长,整个斜面置于方向垂直纸面向外的匀强磁场中,其磁感应强度为B ,如图4所示.带电小球运动过程中,下面说法中正确的是( )图4A .小球在斜面上运动时做匀加速直线运动B .小球在斜面上运动时做加速度增大,而速度也增大的变加速直线运动C .小球最终在斜面上匀速运动D .小球在斜面上下滑过程中,当小球对斜面压力刚好为零时的速率为mg cos θBq答案 BD解析 据题意,小球运动过程中受到重力、支持力、摩擦力和垂直斜面向上的洛伦兹力,小球加速度为:a =g sin θ-μ(mg cos θ-q v B )m,小球做加速运动,则加速度也增加,小球最终将脱离斜面,故选项A 、C 错误,选项B 正确;当小球对斜面压力为0时,有:mg cos θ-q v B=0,速度为:v =mg cos θqB,故选项D 正确.考点三 速度选择器和磁流体发电机9.(多选)如图5所示,水平放置的平行板电容器两板间有垂直纸面向里的匀强磁场,开关S 闭合时一带电粒子恰好水平向右匀速穿过两板,重力不计.对相同状态入射的粒子,下列说法正确的是( )图5A .保持开关闭合,若滑片P 向上滑动,粒子可能从下板边缘射出B .保持开关闭合,若将磁场方向反向,粒子仍可能沿直线射出C .保持开关闭合,若A 板向上移动后,调节滑片P 的位置,粒子仍可能沿直线射出D .如果开关断开,调节滑片P 的位置,粒子可能继续沿直线射出答案 AC解析 带电粒子匀速通过两板间,电场力和洛伦兹力相等.若开关闭合,滑片P 向上滑动,两板间电压减小,电场力减小,若粒子带负电则粒子向下偏转,A 正确.若开关闭合,磁场反向,洛伦兹力也反向,粒子不能沿直线射出,B 错误.开关闭合,A 板向上移动后,调节滑片P 的位置,可使电场强度不变,粒子仍可能沿直线射出,C 正确.开关断开,电容器通过滑动变阻器放电,粒子不再受电场力作用,也就不能沿直线射出,D 错误.10.(多选)目前世界上有一种新型发电机叫磁流体发电机,如图6表示它的原理:将一束等离子体(包含正、负离子)喷射入磁场,在磁场中有两块金属板A 、B ,于是金属板上就会聚集电荷,产生电压.以下说法正确的是( )图6A .B 板带正电B .A 板带正电C .其他条件不变,只增大射入速度,U AB 增大D .其他条件不变,只增大磁感应强度,U AB 增大答案 ACD解析 根据左手定则,正离子进入磁场受到的洛伦兹力向下,A 正确,B 错误.最后,离子受力平衡有qB v =q U AB d,可得U AB =B v d ,C 、D 正确.二、非选择题11.(带电体在磁场中的运动)质量为m 、带电荷量为+q 的小球,用一长为l 的绝缘细线悬挂在方向垂直纸面向里的匀强磁场中,磁感应强度为B ,如图7所示,用绝缘的方法使小球位于能使悬线呈水平的位置A ,然后由静止释放,小球运动的平面与B 的方向垂直,小球第一次和第二次经过最低点C 时悬线的拉力F T1和F T2分别为多少?(重力加速度为g )图7答案 3mg -qB 2gl 3mg +qB 2gl解析 小球由A 运动到C 的过程中,洛伦兹力始终与v 的方向垂直,对小球不做功,只有重力做功,由动能定理有mgl =12m v C 2,解得v C =2gl . 在C 点,由左手定则可知洛伦兹力向上,其受力情况如图甲所示.由牛顿第二定律,有F T1+F 洛-mg =m v C 2l,又F 洛=q v C B ,所以F T1=3mg -qB 2gl . 同理可得小球第二次经过C 点时,受力情况如图乙所示,所以F T2=3mg +qB 2gl .12.(带电体在磁场中的运动)如图8所示,质量为m =1 kg 、电荷量为q =5×10-2 C 的带正电荷的小滑块,从半径为R =0.4 m 的光滑固定绝缘14圆弧轨道上由静止自A 端滑下.整个装置处在方向互相垂直的匀强电场与匀强磁场中.已知E =100 V /m ,方向水平向右,B =1 T ,方向垂直纸面向里,g =10 m/s 2.求:图8(1)滑块到达C 点时的速度;(2)在C 点时滑块所受洛伦兹力;(3)在C 点滑块对轨道的压力.答案 (1)2 m/s ,方向水平向左(2)0.1 N ,方向竖直向下(3)20.1 N ,方向竖直向下解析 以滑块为研究对象,自轨道上A 点滑到C 点的过程中,受重力mg ,方向竖直向下;电场力qE ,方向水平向右;洛伦兹力F 洛=q v B ,方向始终垂直于速度方向;轨道的支持力F N 的方向始终指向圆心.(1)滑块从A 到C 的过程中洛伦兹力和支持力不做功,由动能定理得mgR -qER =12m v C 2 得v C =2(mg -qE )R m=2 m/s ,方向水平向左. (2)根据洛伦兹力公式得:F 洛=q v C B =5×10-2×2×1 N =0.1 N ,方向竖直向下.(3)在C 点,由牛顿第二定律得F N -mg -q v C B =m v C 2R得:F N =mg +q v C B +m v C 2R=20.1 N 由牛顿第三定律可知,滑块对轨道的压力为20.1 N ,方向竖直向下.。

高中物理选修3-1经典习题(附答案)

高中物理选修3-1经典习题(附答案)

一、选择题(每空3 分,共24 分)1、如图所示,实线为一簇电场线,虚线是间距相等的等势面,一带电粒子沿着电场线方向运动,当它位于等势面φ1上时,其动能为18eV,当它运动到等势面φ3上时,动能恰好等于零,设φ2=0,则,当粒子的动能为6eV时,其电势能为()A.12eV B.2eV C.3eV D.02、如图所示,将带正电的甲球放在不带电的乙球左侧,两球在空间形成了稳定的静电场,实线为电场线,虚线为等势线。

A、B两点与两球球心连线位于同一直线上,C、D两点关于直线AB对称,则( )A.A点和B点的电势相同B.C点和D点的电场强度相同C.正电荷从A点移至B点,电场力做正功D.负电荷从C点移至D点,电势能增大3、如图所示,有四个等量异种电荷,放在正方形的四个顶点处。

A、B、C、D为正方形四个边的中点,O为正方形的中心,下列说法中正确的是( )A.A、B、C、D四个点的电场强度相同B.O点电场强度等于零D.将一带正电的试探电荷匀速从A点沿直线移动到C点,试探电荷具有的电势能增大4、如图所示的同心圆是电场中的一簇等势线,一个电子只在电场力作用下沿着直线由A→C运动时的速度越来越小,B为线段AC的中点,则下列说法正确的是( )A.电子沿AC方向运动时受到的电场力越来越小B.电子沿AC方向运动时它具有的电势能越来越大C.电势差UAB=UBCD.电势φA<φB<φC5、如图所示,直线MN是某电场中的一条电场线(方向未画出)。

虚线是一带电的粒子只在电场力的作用下,由a到b 的运动轨迹,轨迹为一抛物线。

下列判断正确的是( )A.电场线MN的方向一定是由N指向MB.带电粒子由a运动到b的过程中动能一定逐渐减小C.带电粒子在a点的电势能一定大于在b点的电势能D.带电粒子在a点的加速度一定大于在b点的加速度6、如图,a、b、c、d是匀强电场中的四个点,它们正好是一个梯形的四个顶点,电场线与梯形所在的平面平行.ab 平行cd,且cd边长为ab边长的三倍,已知a点的电势是2 V,b点的电势是6 V,c点的电势是20 V.由此可知,d 点的电势为C.8 V D.12 V7、如图为某电场的电场线,A、B两点的电势分别为、,正点电荷在A、B两点的电势能分别为E PA、E PB,则有A.<,E PA>E PBB.<,E PA<E PBC.>,E PA<E PBD.>,E PA>E PB8、以下说法正确的是()A.首先提出场的概念的物理学家是库仑B.电势降低的方向就是电场线的方向C.电场实际并不存在,而是人们假想出的D.点电荷实际不存在,是理想化模型二、多项选择(每空5 分,共30分)9、如图所示实线为等量异号点电荷周围的电场线,虚线为以一点电荷为中心的圆,M点是两点电荷连线的中点.若将一试探正点电荷从虚线上N点移动到M点,则A.电荷所受电场力大小不变B.电荷所受电场力逐渐增大C.电荷电势能逐渐减小D.电荷电势能保持不变10、两个带等量正电的点电荷,固定在图中P、Q两点,MN为PQ连线的中垂线,交PQ于O点,A点为MN上的一点。

【原创】高中物理选修3-1校本作业及答案

【原创】高中物理选修3-1校本作业及答案

第一章静电场第1讲静电现象及其微观解释[目标定位]1.了解电荷及静电现象的产生.2.了解静电的应用及防护.3.掌握电荷守恒定律并能解答相应问题.[自主预习]一、静电的产生1.使物体带电的三种方式:、、。

2.静电感应:导体因受附近带电体的影响而的现象叫做静电感应.利用静电感应使物体带电的方式叫.3.电荷:物理学规定:用丝绸摩擦过的玻璃棒带,用毛皮摩擦过的橡胶棒带.同种电荷相互,异种电荷相互。

二、原子结构与电荷守恒1.原子结构:物质是由、分子、离子等微粒组成;原子是由和组成;原子核是由和质子组成.质子带正电,电子带负电,物体电性.2.电荷守恒定律:电荷既不能创生,也不能消灭,只能从物体的,或者从转移到.在转移的过程中,电荷的总量.这个规律叫做电荷守恒定律.3.物体带电的本质:想一想摩擦起电的物体所带的电荷是哪里来的?三、静电的应用与防护1.静电的应用:、静电喷雾、、静电杀菌等.2.防止静电危害的方法之一是:.想一想油罐车车尾为什么拖着一条长长的铁链?[重难点解析]一、三种起电方式1.摩擦起电:当两个物体相互摩擦时,一些束缚不紧的电子会从一个物体转移到另一个物体,于是原来呈电中性的物体由于得到电子而带负电,失去电子的物体则带正电.2.感应起电:当一个带电体靠近导体时,由于电荷之间相互吸引或排斥,导体中的自由电荷便会趋向或远离带电体,使导体靠近带电体的一端带异号电荷,远离带电体的一端带同号电荷.3.接触起电:当导体与带电导体接触时,电子从一个物体转移到另一个物体上,使导体带上与带电体相同性质的电荷.4.三种起电方式的实质都是自由电子的转移.例1绝缘细线上端固定,下端挂一轻质小球a,a的表面镀有铝膜;在a的旁边有一绝缘金属球b,开始时a、b都不带电,如图1所示,现使b带电,则()A.b将吸引a,吸住后不放开B.b先吸引a,接触后又把a排斥开C.a、b之间不发生相互作用D.b立即把a排斥开图1答案B解析b球带电后,使a产生静电感应,感应的结果是a靠近b的一侧出现与b异种的感应电荷,远离b 的一侧出现与b同种的感应电荷.虽然a上的感应电荷等量异号,但因为异种电荷离b更近,所以b对a的电场力为引力.当b吸引a使两者接触后,由于接触带电,b、a又带上同种电荷,有斥力作用,因而又把a 排斥开,所以B项正确.借题发挥(1)带电体具有吸引轻小物体的性质,所以两物体吸引不一定是因为带有异种电荷.也可能是因为其中一个是轻小物体.(2) 在处理带电物体间发生相互作用时,需特别注意带电物体具有吸引不带电的轻小物体的特性,所以当两物体相互吸引时,其可能情况是一个带电,另一个不带电,也可能是两物体带异种电荷.二、电荷守恒定律的理解和应用1.三种起电方式的本质都是电子的转移,在转移的过程中电荷的总量不变注意(1)电中性的物体内部也有电荷的存在,只是电荷量的代数和为零,对外不显电性;(2)电荷的中和是指带等量异号电荷的两物体接触时,经过电子的转移,最终达到电中性的过程.2.接触带电时电荷量的分配与导体的形状、大小有关,当两个完全相同的金属球接触后,电荷将平均分配,即最后两个球一定带等量的同种电荷.若两个球原先带同号电荷,电荷量相加后均分;若两个球原先带异号电荷,则电荷先中和再均分.例2一带负电绝缘金属小球放在潮湿的空气中,经过一段时间后,发现该小球上的电荷几乎不存在了,这说明()A.小球上原有的负电荷逐渐消失了B.在此现象中,电荷不守恒C.小球上负电荷减少的主要原因是潮湿的空气将电子导走了D.该现象是由于电子的转移引起的,仍然遵循电荷守恒定律答案CD解析绝缘金属小球上的电荷量减少是由于电子通过空气导电转移到外界,使小球上的电荷量减少,但这些电子并没有消失,就小球和整个外界组成的系统而言,其电荷总量保持不变,因此C、D选项正确.例3半径相同的两金属小球A、B带有相同的电荷量,相隔一定的距离,今让第三个半径相同的不带电金属小球C,先后与A、B接触后移开.(1)若A、B两球带同种电荷,接触后两球的电荷量大小之比为多大;(2)若A、B两球带异种电荷,接触后两球的电荷量大小之比为多大.答案 (1)2∶3 (2)2∶1解析 (1)设A 、B 带同种电荷且电荷量均为q ,则A 、C 接触后,A 、C 所带电荷量为q A =q C =12q .C 与B 球接触后,B 、C 所带电荷量为:q B =q C ′=q +12q 2=34q .故A 、B 所带电荷量大小之比为q A q B =12q 34q =23.(2)设q A =+q ,q B =-q .则C 与A 接触后,A 、C 所带电荷量为q A ′=q C =+12q .C 与B 接触后,B 、C 所带电荷量为q B ′=q C ′=12q -q 2=-14q ,故A 、B 所带电荷量大小之比为q A ′q B ′=12q14q =21.借题发挥 (1)相同的金属球带同种电荷时,接触时总电荷量平分.(2)相同的金属球带异种电荷时,接触时电荷中和后将剩余电荷平分. 三、静电的应用与防护1.静电的危害:雷鸣闪电造成人畜伤亡,静电火花引发的爆炸和火灾,静电放电导致电子设备的故障,以及工业中的一些静电危害等.2.防止静电危害的措施有:①尽快导走多余电荷,避免静电积累;②调节空气的湿度;③易燃易爆环境中保持良好的通风、消除静电火花的引爆条件. 例4 下列措施利用了静电的是( ) A.油罐车的油罐有条铁链搭到地上 B.农药喷洒飞机喷洒的农药雾滴带正电 C.家用电器如洗衣机接有地线 D.手机一般都装有天线 答案 B解析 油罐车的油罐有条铁链搭到地上,目的是把油罐车产生的静电导到地下,保证油罐车的安全,家用电器也一样,A 、C 错误.农药喷洒飞机喷洒的农药雾滴带正电,而叶子上都带有负电,农药不会被风吹走,B 正确.手机接有天线目的是为了更好的接收信号,D 错误. [课时作业]1.如图2所示,用起电机使金属球A 带上正电荷,并靠近验电器B ,则( )A.验电器金箔不张开,因为球A没有和验电器B接触B.验电器金箔张开,因为整个验电器都感应出了正电荷C.验电器金箔张开,因为整个验电器都感应出了负电荷D.验电器金箔张开,因为验电器的下部箔片感应出了正电荷图22.(多选)关于摩擦起电现象,下列说法正确的是()A.摩擦起电现象使本来没有电子和质子的物体中产生电子和质子B.两种不同材料的绝缘体互相摩擦后,同时带上等量异种电荷C.摩擦起电,可能是因为摩擦导致质子从一个物体转移到了另一个物体而形成的D.丝绸摩擦玻璃棒时,电子从玻璃棒上转移到丝绸上,玻璃棒因质子数多于电子数而显正电3. (多选)如图所示,将带电棒移近两个不带电的导体球,甲、乙两个导体球开始时互相接触且对地绝缘.下述几种方法中能使两球都带电的是()A.先把两球分开,再移走棒B.先移走棒,再把两球分开C.先将棒接触一下其中的一球,再把两球分开D.棒的电荷量不变,两导体球不能带电图34. (多选)A和B都是不带电的物体,它们互相摩擦后A带负电荷1.6×10-10 C,下列判断中正确的是()A.在摩擦前A和B的内部电荷量为零B.摩擦的过程中电子从A转移到了BC.A在摩擦过程中一定得到了1×109个电子D.A在摩擦过程中一定失去了1.6×10-19 C电子5. (多选)悬挂在绝缘细线下的两个轻质小球,表面镀有金属薄膜,由于电荷的相互作用而靠近或远离,分别如图4甲、乙所示,则()A.甲图中两球一定带异种电荷B.乙图中两球一定带同种电荷C.甲图中两球至少有一个带电D.乙图中两球只有一个带电图46. (多选)用金属箔做成一个不带电的圆环,放在干燥的绝缘桌面上.小明同学用绝缘材料做的笔套与头发摩擦后,将笔套自上向下慢慢靠近圆环,当距离约为0.5 cm时圆环被吸引到笔套上,如图5所示.对上述现象的判断与分析,下列说法正确的是()A.因为笔套绝缘,所以摩擦不能使笔套带电B.笔套靠近圆环时,圆环上、下部感应出异号电荷C.圆环被吸引到笔套的过程中,圆环所受静电力的合力大于圆环的重力图5D.笔套碰到圆环后,笔套所带的电荷立刻被全部中和7.把两个完全相同的小球接触后分开,两球相互排斥,则两球原来的电荷情况不可能是()A.一个小球原来带电,另一个小球原来不带电B.两个小球原来分别带等量异种电荷C.两个小球原来分别带同种电荷D.两个小球原来分别带不等量异种电荷8.如图6导体A带5q的正电荷,另一完全相同的导体B带q的负电荷,将两导体接触一会儿后再分开,则B导体的电荷量为()A.-qB.qC.2qD.4q9. (多选)在下列措施中,哪些能将产生的静电尽快导走() 图6A.飞机轮子上搭地线B.印染车间保持湿度C.复印图片D.电工钳柄装有绝缘套10.如图7所示,通过调节控制电子枪产生的电子束,使其每秒有104个电子到达收集电子的金属瓶,经过一段时间,金属瓶上带有-8×10-12 C的电荷量,求:(1)金属瓶上收集到多少个电子;(2)实验的时间为多长.图7第2讲 静电力 库仑定律[目标定位] 1.知道点电荷的概念,了解理想化模型.2.理解库仑定律的内容及适用条件,并会应用公式进行相关计算.3.通过静电力和万有引力的对比,体会自然规律的多样性和统一性. [自主预习]一、静电力与点电荷模型1. 电荷间作用力大小的影响因素:两带电体之间的相互作用力与其形状、大小、 、电荷分布、二者之间的距离等因素有关.2.点电荷:本身的大小比相互之间的距离小得多的带电体叫做点电荷. 想一想 体积很小的带电体一定可以看做点电荷吗?二、库仑定律 1.库仑定律(1)内容:真空中两个点电荷之间的相互作用力F 的大小,跟它们的电荷量Q 1、Q 2的乘积成正比,跟它们的距离r 的二次方成 ;方向沿着 ,同种电荷 ,异种电荷 . (2)公式:F =k Q 1Q 2r ,式中k = N·m 2/C 2,叫(3)适用条件:①真空中;② 2.静电力叠加原理对于两个以上的点电荷,其中每一个点电荷所受的总的静电力,等于其他电荷分别单独存在时对该点电荷的作用力的 .这个结论通常叫做静电力叠加原理. 想一想 对于F =k Q 1Q 2r 2,当r →0时,能否说F 趋向无穷大?三、静电力与万有引力的比较 共同点:1.都与距离的二次方成反比;2.都有与作用力有关的物理量(电荷量或质量)的乘积,且都与乘积成正比;3.都有一个常量;4.力的方向都在两个物体的连线上. 不同点:1.万有引力与两个物体质量有关,只能是引力,适用于质点;2.库仑定律与两个物体电荷量有关,可能是引力,也可能是斥力,适用于真空中的点电荷. 图1 想一想 如图1所示,有人说:“两个质量分别为m 1和m 2的均匀金属球体,它们之间的万有引力大小为F =G m 1m 2r 2,若两球带电量分别为q 1、q 2,它们之间的库仑力的大小F =k q 1q 2r 2,对吗?为什么?[重难点解析] 一、对点电荷的理解1.点电荷是理想化的物理模型,只有电荷量,没有大小、形状,类似于力学中的质点,实际并不存在.2.一个带电体能否看做点电荷,是相对于具体问题而言的,不能单凭其大小和形状确定.3.点电荷的电荷量可能较大也可能较小,但一定是元电荷的整数倍. 例1 关于点电荷,下列说法中正确的是( ) A.点电荷就是体积小的带电体 B.球形带电体一定可以视为点电荷 C.带电少的带电体一定可以视为点电荷D.大小和形状对作用力的影响可忽略的带电体可以视为点电荷 答案 D解析 点电荷不能理解为体积很小的带电体,也不能理解为电荷量很少的带电体.同一带电体,有时可以看做点电荷,有时则不能,如要研究它与离它较近的电荷间的作用力时,就不能看成点电荷,而研究它与离它很远的电荷间的作用力时,就可以看做点电荷.带电体能否看成点电荷,要依具体情况而定,A 、B 、C 均错.二、对库仑定律的理解和应用 1.静电力的确定(1)大小计算:利用库仑定律计算静电力时不必将表示电性的正、负号代入公式,只代入q 1和q 2的绝对值即可.(2)方向判断:利用同种电荷相互排斥、异种电荷相互吸引来判断.2.两个点电荷之间的库仑力遵守牛顿第三定律,即不论电荷量大小如何,两点电荷间的库仑力大小总是相等的.注意 (1)库仑定律只适用于点电荷的带电体之间的相互作用.(2)两个形状规则的均匀球体相距较远时可以看作点电荷;相距较近时不能看作点电荷,此时球体间的作用力会随着电荷的分布而变化.例2 有三个完全一样的金属球A 、B 、C ,A 球带的电荷量为7Q ,B 球带的电荷量为-Q ,C 球不带电,将A 、B 两球固定,然后让C 球先跟A 球接触,再跟B 球接触,最后移去C 球,则A 、B 球间的作用力变为原来的多少倍? 答案 58解析 设A 、B 两球间的距离为r ,由库仑定律知,开始时A 、B 两球之间的作用力为F =k 7Q ×Qr 2.当A 、C 两球接触时,据电荷均分原理可知,两球均带电荷量为72Q .当B 、C 两球接触时,两球均带电荷量为12×(72Q -Q ) =54Q .故现在A 、B 两球间的作用力F ′=k 72Q ×54Q r 2=58F .所以F ′F =58.借题发挥 若两个金属小球的电荷量分别为Q 1、Q 2,第三个完全相同的不带电的金属球与它们无限次接触后,三个金属球平分总电荷量,即Q 1′=Q 2′=Q 3′=Q 1+Q 23.三、静电力的叠加空间中有多个电荷时,某电荷所受的静电力是其他所有电荷单独对其静电力的矢量和.遵循平行四边形定则.例3 如图2所示,在A 、B 两点分别放置点电荷Q 1=+2×10-14C 和Q 2=-2×10-14C ,在AB 的垂直平分线上有一点C ,且AB =AC =BC =6×10-2 m.如果有一个电子在C 点,它所受的库仑力的大小和方向如何? 图2 答案 8.0×10-21N 方向平行于AB 向左解析 电子在C 点同时受A 、B 点电荷对其的作用力F A 、F B ,如图所示,由库仑定律得F A =F B =k Q 1q r 2=9.0×109×2×10-14×1.6×10-19(6×10-2)2N =8.0×10-21N.由平行四边形定则和几何知识得:静止在C 点的电子受到的库仑力F =F A =F B =8.0×10-21N ,方向平行于AB 向左.借题发挥 当多个带电体同时存在时,每两个带电体间的库仑力都遵守库仑定律.某一带电体同时受到多个库仑力作用时可利用力的平行四边形定则求出其合力.这就是库仑力的叠加原理. 四、静电力作用下的平衡问题1.静电力可以与其他的力平衡,可以使物体发生形变,也可以产生加速度.分析问题的思路与方法完全是力学问题的思路与方法.2. 静电力作用下的共点力的平衡分析静电力平衡的基本方法:(1)明确研究对象;(2)画出研究对象的受力分析图;(3)根据平衡条件列方程;(4)代入数据计算或讨论.例4 如图3所示,把质量为3 g 的带电小球B 用绝缘细绳悬起,若将电荷量为Q =-4.0×10-6 C 的带电球A 靠近B ,当两个带电小球在同一高度相距r =20 cm 时,绳与竖直方向成α=30°角,A 、B 两球均静止.求B 球的电荷量q (g 取10 m/s 2). 答案 -39×10-7 C 解析 对球B 受力分析,如图. 图3 根据共点力平衡条件,结合几何关系得到: T sin 30°=F T cos 30°=mg 解得:F =mg tan 30°根据库仑定律,有:F =k Qqr 2解得:q =39×10-7 C 即B 球的电荷量是q =39×10-7 C ,由于AB 是排斥作用,故B 带负电. [课时作业]1.(多选)下列说法中正确的是( )A.点电荷是一种理想模型,真正的点电荷是不存在的B.点电荷就是体积和电荷量都很小的带电体C.根据F =kQ 1Q 2r2可知,当r →0时,F →∞D.一个带电体能否看成点电荷,不是看它的尺寸大小,而是看它的形状和大小对所研究的问题的影响是否可以忽略不计2.关于库仑定律,下列说法中正确的是 ( )A.库仑定律适用于点电荷,点电荷其实就是体积很小的球体B.根据F =k q 1q 2r2,当两电荷的距离趋近于零时,静电力将趋向无穷大C.若点电荷q 1的电荷量大于q 2的电荷量,则q 1对q 2的静电力大于q 2对q 1的静电力D.库仑定律和万有引力定律的表达式相似,都是平方反比定律3两个相同的金属小球(可看作点电荷),带有同种电荷,且电荷量之比为1∶7,在真空中相距为r ,两者相互接触后再放回原来的位置上,则它们之间的库仑力是原来的( ) A.7B.37C.97D.1674.两根光滑绝缘棒在同一竖直平面内,两棒与水平面间均成45°角,棒上各穿有一个质量为m 、带电荷量为Q 的相同小球,如图4所示.现两小球均处于静止状态,求两球之间的距离L .图45.A 、B 两个大小相同的金属小球,A 带有6Q 正电荷,B 带有3Q 负电荷,当它们在远大于自身直径处固定时,两球之间静电力大小为F .另有一大小与A 、B 相同的不带电小球C ,若让C 先与A 接触,再与B 接触,拿走C 球后,A 、B 间静电力的大小变为( ) A.6FB.3FC.FD.零6.半径为R 、相距较近的两个较大金属球放在绝缘桌面上,若两球都带等量同号电荷Q 时它们之间的静电力为F 1,两球带等量异号电荷Q 与-Q 时静电力为F 2,则( ) A.F 1>F 2B.F 1<F 2C.F 1=F 2D.不能确定7.如图5所示,在绝缘的光滑水平面上,相隔一定距离有两个带同种电荷的小球,从静止同时释放,则两个小球的加速度和速度大小随时间变化的情况是( ) A.速度变大,加速度变大 B.速度变小,加速度变小 C.速度变大,加速度变小D.速度变小,加速度变大 图58.如图6所示,三个完全相同的金属小球a 、b 、c 位于等边三角形的三个顶点上.a 和c 带正电,b 带负电,a 所带的电荷量比b 所带的电荷量小.已知c 受到a 和b 的静电力的合力可用图中四条有向线段中的一条来表示,它应是( ) A.F 1 B.F 2C.F 3D.F 4 图6 9.下列选项中的各14圆环大小相同,所带电荷量已在图中标出,且电荷均匀分布,各14圆环间彼此绝缘.坐标原点O 处有一可看做点电荷的带电体,该点电荷受到的电场力最大的是( )10.如图7所示,在一条直线上的三点分别放置Q A =+3×10-9 C 、Q B =-4×10-9 C 、Q C =+3×10-9 C 的A 、B 、C 点电荷,则作用在点电荷A 上的作用力的大小为______ N.图711.如图8所示,等边三角形ABC ,边长为L ,在顶点A 、B 处有等量同种点电荷Q A 、Q B .即Q A =Q B =+Q ,求在顶点C 处的点电荷+Q C 所受的静电力大小为________,方向________.图8 12.如图9所示,两个点电荷,电荷量分别为q 1=4×10-9 C 和q 2=-9×10-9 C ,两者分别固定在相距20 cm 的a 、b 两点上,有一个点电荷q 放在a 、b 所在直线上,且静止不动,该点电荷所处的位置是何处( )图9A.a 的左侧40 cmB.a 、b 的中点C.b 的右侧40 cmD.无法确定13. (多选)A 、B 两个带电小球的质量分别为m 1、m 2,带电荷量分别为q 1、q 2.如图10所示,当A 、B 两小球静止时,两悬线与竖直方向的夹角分别为θ1、θ2,且两小球恰好处于同一水平面上.下列判断正确的是( ) A.若q 1=q 2,则θ1=θ2 B.若q 1<q 2,则θ1>θ2 C.若m 1=m 2,则θ1=θ2D.若m 1<m 2,则θ1>θ2 图1014.如图11所示,把一电荷量为Q =-5×10-8 C 的小球A 用绝缘细绳悬起,若将电荷量为q =+4×10-6 C的带电小球B靠近A,当两个带电小球在同一高度相距30 cm时,绳与竖直方向成45°角,取g=10 m/s2,k=9.0×109 N·m2/C2,且A、B两小球均可视为点电荷,求:(1)A、B两球间的库仑力;(2)A球的质量.图1115.如图9所示,A、B是两个带等量同种电荷的小球,A固定在竖直放置的10 cm长的绝缘支杆上,B静止于光滑绝缘的倾角为30°的斜面上且恰与A等高,若B的质量为303×10-3 kg,则B带电荷量是多少?(取g=10 m/s2)第3讲 电场及其描述[目标定位]1.理解电场强度的概念及其定义式,并会进行有关计算.2.会用电场线表示电场,并熟记几种常见电场的电场线分布特征.3.理解点电荷的电场强度及场强叠加原理. [自主预习] 一、电场及电场力1.电场:电荷周围存在场,电荷的相互作用不可能超越距离,是通过场传递的,这种场称为电场.2.电场力:电场对于处在其中的电荷有力的作用,这种力叫做电场力. 二、电场强度 1.试探电荷(1)电荷量 ,(2)大小 的电荷,放到电场中用来检验电场中各点的性质. 2.电场强度(1)概念:放入电场中某点的电荷受到的 与它的 的比值,叫做该点的电场强度,简称场强. (2)物理意义:表示电场的强弱.(3)定义式及单位:E =Fq ,单位牛(顿)每库(仑),符号(4)方向:电场强度的方向与 所受电场力的方向相同.想一想 这里定义电场强度的方法叫比值定义法,你还学过哪些用比值定义的物理量?它们都有什么共同点?三、点电荷的电场与匀强电场 1.真空中点电荷周围的场强:E =k Qr2.2.匀强电场:大小和 都处处 的电场叫做匀强电场. 想一想 我们能根据E =k Qr 2说,r →0时,E →∞吗?四、电场线 1.电场线在电场中绘出的一些 , 上任一点的电场方向就在该点的 ,这样的曲线叫做电场线. 2.几种特殊的电场线熟记五种特殊电场的电场线分布,如图1所示.图13.电场线的特点(1)电场线从 (或无穷远)出发,终止于 (或负电荷). (2)在同一电场中,电场线 的地方场强越大. 想一想 有电场线的地方有电场,没有电场线的地方没有电场吗?[重难点解析]一、对电场及电场强度的理解 1.关于电场的几点说明(1)特殊物质性:电场是一种看不见摸不着但客观真实存在的特殊物质. (2)客观存在性:电荷周围一定存在电场,静止的电荷周围存在静电场.(3)桥梁纽带作用:电场是电荷间相互作用的桥梁,不直接接触就可以发生相互作用. 2.关于电场强度的几点说明(1)唯一性:电场中某点的电场强度E 是唯一的,由电场本身决定,与是否放入试探电荷以及放入试探电荷的正负、电荷量的大小无关.(2)矢量性:E 为矢量,其方向与放在该点的正电荷所受的电场力方向相同,与负电荷所受的电场力方向相反.例1 真空中O 点放一个点电荷Q =+1.0×10-9 C ,直线MN 通过O 点,OM 的距离r =30 cm ,M 点放一个点电荷q =-1.0×10-10C ,如图2所示.求:(1)q 在M 点受到的作用力; (2)M 点的场强;(3)拿走q 后M 点的场强; 图2 (4)M 、N 两点的场强哪点大.答案 (1)大小为1.0×10-8 N 方向沿MO 指向Q (2)大小为100 N/C 方向沿OM 连线背离Q (3)大小为100 N/C 方向沿OM 连线背离Q (4)M 点场强大解析 (1)电场是一种物质,电荷q 在电场中M 点所受的作用力是电荷Q 通过它的电场对q 的作用力,根据库仑定律,得F M =k Qqr 2=9.0×109×1.0×10-9×1.0×10-100.32N=1.0×10-8 N.因为Q 为正电,q 为负电,库仑力是吸引力,所以力的方向沿MO 指向Q .(2)M 点的场强E M =F M q =1.0×10-81.0×10-10 N /C =100 N/C ,其方向沿OM 连线背离Q ,因为它的方向跟正电荷所受电场力的方向相同.(3)场强是反映电场的力的性质的物理量,它是由形成电场的电荷Q 及场中位置决定的,与试探电荷q 是否存在无关.故拿走q 后,M 点的场强仍为100 N/C ,方向沿OM 连线背离Q .(4)由E ∝1r2得M 点场强大.借题发挥 公式E =F q 中的q 是试探电荷的电荷量,所以E =F q 不是场强的决定式;公式E =k Qr 2中的Q 是场源电荷的电荷量,所以E =k Qr 2仅适用于点电荷的电场求解,是点电荷场强的决定式.二、对公式E =F q 与E =kQr2的理解1.公式E =F q 是电场强度的定义式,适用于任何电场,E 可以用Fq 来度量,但与F 、q 无关.其中q 是试探电荷.2.公式E =k Qr2是点电荷场强的决定式,其中Q 是场源电荷.例2 真空中距点电荷(电荷量为Q )为r 的A 点处,放一个电荷量为q (q ≪Q )的点电荷,q 受到的电场力大小为F ,则A 点的场强为( ) A.F QB.F qC.k qr2D.k Q r2 答案 BD解析 E =F q 中q 指的是试探电荷,E =kQr 2中Q 指的是场源电荷,故B 、D 正确.三、电场线的理解和应用1.电场线的特点:(1)起始于无限远或正电荷,终止于负电荷或无限远.(2)任意两条电场线不相交.(3)在同一幅图中,电场线的疏密表示场强的大小.(4)电场线上某点的切线方向表示该点的场强方向.2.电场线与带电粒子运动轨迹重合必须同时满足以下三个条件 (1)电场线是直线.(2)带电粒子只受电场力作用,或受其他力,但其他力的方向沿电场线所在直线. (3)带电粒子初速度的方向为零或初速度的方向沿电场线所在的直线. 例3 以下关于电场和电场线的说法中正确的是 ( ) A.电场线就是电荷在电场中的运动轨迹B.在电场中,凡是有电场线通过的点,场强不为零,不画电场线的区域内的点场强为零C.同一试探电荷在电场线密集的地方所受静电力大D.电场线是人们假想的,用以形象表示电场的强弱和方向,客观上并不存在 答案 CD解析 电场线是为了描述电场的强弱及方向的方便而引进的假想线,它一般不与电荷的运动轨迹重合,A 错误,D 正确.在同一电场中,电场强度较大的地方电场线较密,电荷受到的电场力也较大,C 正确. 借题发挥 带电粒子在电场中的运动轨迹,决定于粒子运动速度和受力情况,与电场线不一定重合. 例4 如图3所示是某静电场的一部分电场线分布情况,下列说法中正确的是( ) A.这个电场可能是负点电荷的电场。

高三物理一轮二轮复习选修3-3课时作业(含答案)

高三物理一轮二轮复习选修3-3课时作业(含答案)

分子动理论作业1.(多选)墨滴入水,扩而散之,徐徐混匀.关于该现象的分析正确的是()A.混合均匀主要是由于碳粒受重力作用B.混合均匀的过程中,水分子和碳粒都做无规则运动C.使用碳粒更小的墨汁,混合均匀的过程进行得更迅速D.墨汁的扩散运动是由于碳粒和水分子发生化学反应引起的2.雾霾天气是对大气中各种悬浮颗粒物含量超标的笼统表述,是特定气候条件与人类活动相互作用的结果.雾霾中,各种悬浮颗粒物形状不规则,但可视为密度相同、直径不同的球体,并用PM10、PM2.5分别表示球体直径小于或等于10 μm、2.5 μm的颗粒物(PM是颗粒物的英文缩写).某科研机构对北京地区的检测结果表明,在静稳的雾霾天气中,近地面高度百米的范围内,PM10的浓度随高度的增加略有减小,大于PM10的大悬浮颗粒物的浓度随高度的增加明显减小,且两种浓度分布基本不随时间变化.据此材料,以下叙述正确的是() A.PM10表示直径小于或等于1.0×10-6m的悬浮颗粒物B.PM10受到的空气分子作用力的合力始终大于其受到的重力C.PM10和大悬浮颗粒物都在做布朗运动D.PM2.5的浓度随高度的增加逐渐增大3.下列关于温度及内能的说法中正确的是()A.温度是分子平均动能的标志,所以两个动能不同的分子相比,动能大的温度高B.两个不同的物体,只要温度和体积相同,内能就相同C.质量和温度相同的冰和水,内能是相同的D.一定质量的某种物质,即使温度不变,内能也可能发生变化4.由于两个分子间的距离发生变化而使得分子势能变小,则可以判定在这一过程中()A.分子间的相互作用力一定做了功B.两分子间的相互作用力一定增大C.两分子间的距离一定变大D.两分子间的相互作用力一定是引力5.某同学利用花粉颗粒观察布朗运动,并提出以下观点,正确的是()A.布朗运动指的是花粉微粒的无规则运动B.布朗运动指的是液体分子的无规则运动C.温度为0 ℃时,液体分子的平均动能为零D.花粉微粒越大,其无规则运动越剧烈6.(多选)下列说法正确的是()A.只要知道水的摩尔质量和水分子的质量,就可以计算出阿伏加德罗常数B.悬浮微粒越大,在某一瞬间撞击它的液体分子数就越多,布朗运动越明显C.在使两个分子间的距离由很远(r>10-9m)减小到很难再靠近的过程中,分子间作用力先减小后增大,分子势能不断增大D.温度升高,分子热运动的平均动能一定增大,但并非所有分子的速率都增大E.物体内热运动速率大的分子数占总分子数比例与温度有关7.(多选)关于分子动理论的规律,下列说法正确的是()A.扩散现象说明物质分子在做永不停息的无规则运动B.压缩气体时气体会表现出抗拒压缩的力是由于气体分子间存在斥力的缘故C.两个分子距离减小时,分子间引力和斥力都在增大D.如果两个系统分别与第三个系统达到热平衡,那么这两个系统彼此之间也必定处于热平衡,用来表征它们所具有的“共同热学性质”的物理量是内能E.已知某种气体的密度为ρ,摩尔质量为M,阿伏加德罗常数为N A,则该气体分子之间的平均距离可以表示为3MρN A8.(多选)两个相距较远的分子仅在分子力作用下由静止开始运动,直至不再靠近.在此过程中,下列说法正确的是()A.分子力先增大,后一直减小B.分子力先做正功,后做负功C.分子动能先增大,后减小D.分子势能先增大,后减小E.分子势能和动能之和不变9.(多选)以下说法中正确的是()A.物体运动的速度越大,其内能越大B.分子的热运动是指物体内部分子的无规则运动C.微粒的布朗运动的无规则性,反映了液体内分子运动的无规则性D.若外界对物体做正功,同时物体从外界吸收热量,则物体的内能必增加E.温度低的物体,其内能一定比温度高的物体小10.下列四幅图中,能正确反映分子间作用力F和分子势能E p随分子间距离r变化关系的图线是()11.在“用油膜法估测油酸分子的大小”实验中,有下列实验步骤:①往边长约为40 cm的浅盘里倒入约2 cm深的水,待水面稳定后将适量的痱子粉均匀地撒在水面上.②用注射器将事先配好的油酸酒精溶液滴一滴在水面上,待薄膜形状稳定.③将画有油膜形状的玻璃板平放在坐标纸上,计算出油膜的面积,根据油酸的体积和面积计算出油酸分子直径的大小.④用注射器将事先配好的油酸酒精溶液一滴一滴地滴入量筒中,记下量筒内每增加一定体积时的滴数,由此计算出一滴油酸酒精溶液的体积.⑤将玻璃板放在浅盘上,然后将油膜的形状用彩笔描绘在玻璃板上.完成下列填空:(1)上述步骤中,正确的顺序是________.(选填步骤前面的数字)(2)将1 cm3的油酸溶于酒精,制成300 cm3的油酸酒精溶液;测得50滴油酸酒精溶液的体积为1 cm3.现取一滴该油酸酒精溶液滴在水面上,测得所形成的油膜的面积是0.13 m2.由此估算出油酸分子的直径为____________m.(结果保留1位有效数字)理想气体作业1.当大气压强为76cmHg时,如图中四种情况下(图3中h=10cm)被水银封闭气体的压强分别为:(1)p1= cmHg,(2)p2= cmHg,(3)p3= cmHg,(4)p4= cmHg.2.如图所示,左端开口、右端封闭的U形玻璃管内有A、B两段被水银柱封闭的空气柱.若大气压强为p0,空气柱A、B的压强分别为p A、p B,水银的密度为ρ,则B段空气柱的压强p B等于()A.p0+ρgh1+ρgh2+ρgh3﹣ρgh4B.p0+ρgh1+p A+ρgh3﹣ρgh4C.ρgh1+p A+ρgh3﹣ρgh4D.p A+ρgh3﹣ρgh43.如图所示,两端开口的弯折的玻璃管竖直放置,三段竖直管内各有一段水银柱,两段空气封闭在三段水银柱之间,若左、右两管内水银柱长度分别为h1、h2,且水银柱均静止,则中间管内水银柱的长度为()A.h1﹣h2 B.h1+h22 C.h1−h22D.h1+h24.如图所示,在水平地面上固定一个内壁光滑、内部横截面积为S,长度为L的汽缸,汽缸顶部开一很小的孔与外界大气相通,已知外界的大气压强恒为p0.缸内有一质量为m、厚度不计的光滑圆柱形活塞,当汽缸竖直放置,活塞下方气体的热力学温度为T0时,活塞位于汽缸的中央。

人教版高中物理选修3-1第一章第8节随堂基础巩固(含答案解析).docx

人教版高中物理选修3-1第一章第8节随堂基础巩固(含答案解析).docx

高中物理学习材料桑水制作[随堂基础巩固]1.下列关于电容的说法正确的是( )A.电容器简称电容B.电容器A 的电容比B 的大,说明A 的带电荷量比B 多C.电容在数值上等于使两极板间的电势差为1 V 时电容器需要带的电荷量D.由公式C =Q /U 知,电容器的电容与电容器两极板间的电压成反比,与电容器所带的电荷量成正比解析:电容器和电容是两个不同的概念,A 错;电容器A 的电容比B 的大,只能说明电容器A 容纳电荷的本领比B 强,与是否带电无关,B 错;电容器的电容大小和它的两极板所带的电荷量、两极板间的电压、电容器的体积等无关,D 错;由电容的定义知C 正确。

答案:C2.对于某个给定的电容器,图1-8-8中能够恰当地描述其所带电荷量Q 、两端的电压U 、电容C 之间相互关系的是( )图 1-8-8解析:因为电容器的电容C 与它所带的电荷量Q 、两板间的电压U 无关,只跟它本身的形状、两极板间距、正对面积、两极板间所充的电介质有关,所以凡表示C 随U 或Q 变化而变化的图线都是错误的。

对于给定的电容器,C =Q U是不变的,反映在Q -U 图像上是一条过原点的直线,为正比例函数图像。

正确选项为B 、C 、D 。

答案:BCD3.如图1-8-9所示,电容器的两极板分别与电源的正、负极相连,在电容器两极板间的距离由d 迅速增大为2d 的过程中, 下列说法中正确的是( )图 1-8-9A.电容器两极板间的电压始终不变B.电容器两极板间的电压瞬时升高后又恢复原值C.根据Q =CU 可知,电容器所带电荷量先增大后减小D.电路中电流由A 板经电源流向B 板解析:在将电容器两极板间距离迅速增大的过程中,电容器极板上的电荷量未来得及变化,即Q 不变,则C =Q U =Q Ed ,又C =εr S 4πkd ,所以Q Ed =εr S 4πkd ,所以E =4πkQ εr S也不变,而U =Ed ,故U 增大,但最终电压U 要与电源电压相等,故选项B 正确,A 错,因为C =εr S 4πkd ,所以d 增大时,C 减小,电路中有瞬时电流,方向由B 板经电源流向A 板,故C 、D 错。

高中物理选修3-1计算题-附答案

高中物理选修3-1计算题-附答案

选修3-1计算题一、计算题1.如图所示,BC是半径为R的1圆弧形的光滑且绝缘的轨道,位于竖直平面内,其下端与水平绝缘轨道平滑连接,4整个轨道处在水平向左的匀强电场中,电场强度为E,P为一质量为m,带正电q的小滑块(体积很小可视为质点),重力加速度为g.(1)若小滑块P能在圆弧轨道上某处静止,求其静止时所受轨道的支持力的大小.(2)若将小滑块P从C点由静止释放,滑到水平轨道上的A点时速度减为零,已知滑块与水平轨道间的动摩擦因数为μ求:①滑块通过圆弧轨道末端B点时的速度大小以及所受轨道的支持力大小②水平轨道上A、B两点之间的距离.2.在电场强度为E=104N/C,方向水平向右的匀强电场中,用一根长L=1m的绝缘轻细杆,固定一个带正电q=5×10−6C的小球,细杆可绕轴O在竖直平面内自由转动.如图所示,现将杆从水平位置A轻轻释放,在小球运动到最低点B的过程中,(取g=10m/s2)求:(1)A、B两位置的电势差多少?(2)电场力对小球做功多少?(3)小球的电势能变化了多少?3.4.5.如图所示为一真空示波管的示意图,电子从灯丝K发出(初速度可忽略不计),经灯丝与A板间的电压U1加速,从A板中心孔沿中心线KO射出,然后进入两块平行金属板M、N形成的偏转电场中(偏转电场可视为匀强电场),电子进入M、N间电场时的速度与电场方向垂直,电子经过偏转电场后打在荧光屏上的P点.已知M、N两板间的电压为U2,两板间的距离为d,板长为L,电子的质量为m,电荷量为e,不计电子受到的重力及它们之间的相互作用力.(1)求电子穿过A板时速度的大小v0;(2)求电子从偏转电场射出时的侧移量y;(3)若要使电子打在荧光屏上P点的上方,应使M、N两板间的电压U2增大还是减小?6.回旋加速器是用来加速带电粒子的装置,如图所示.它的核心部分是两个D形金属盒,两盒相距很近(缝隙的宽度远小于盒半径),分别和高频交流电源相连接,使带电粒子每通过缝隙时恰好在最大电压下被加速.两盒放在匀强磁场中,磁场方向垂直于盒面,带电粒子在磁场中做圆周运动,粒子通过两盒的缝隙时反复被加速,直到最大圆周半径时通过特殊装置被引出.若D形盒半径为R,所加磁场的磁感应强度为B.设两D形盒之间所加的交流电压的最大值为U,被加速的粒子为α粒子,其质量为m、电量为q.α粒子从D形盒中央开始被加速(初动能可以忽略),经若干次加速后,α粒子从D形盒边缘被引出.求:(1)α粒子被加速后获得的最大动能E k;(2)α粒子在第n次加速后进入一个D形盒中的回旋半径与紧接着第n+1次加速后进入另一个D形盒后的回旋半径之比;(3)α粒子在回旋加速器中运动的时间;(4)若使用此回旋加速器加速氘核,要想使氘核获得与α粒子相同的动能,请你通过分析,提出一个简单可行的办法.7.有一种“双聚焦分析器”质谱仪,工作原理如图所示.其中加速电场的电压为U,静电分析器中有会聚电场,即与圆心O1等距的各点电场强度大小相同,方向沿径向指向圆心O1.磁分析器中以O2为圆心、圆心角为90∘的扇形区域内,分布着方向垂直于纸面的匀强磁场,其左边界与静电分析器的右边界平行.由离子源发出一个质量为m、电荷量为q的正离子(初速度为零,重力不计),经加速电场加速后,从M点沿垂直于该点的场强方向进入静电分析器,在静电分析器中,离子沿半径为R的四分之一圆弧轨道做匀速圆周运动,并从N点射出静电分析器.而后离子由P点垂直于磁分析器的左边界且垂直于磁场方向射入磁分析器中,最后离子垂直于磁分析器下边界从Q点射出,并进入收集器.测量出Q点与圆心O2的距离为d.位于Q点正下方的收集器入口离Q点的距离为0.5d.(题中的U、m、q、R、d都为已知量)(1)求静电分析器中离子运动轨迹处电场强度E的大小;(2)求磁分析器中磁场的磁感应强度B的大小和方向;(3)现将离子换成质量为4m,电荷量仍为q的另一种正离子,其它条件不变.磁分析器空间足够大,离子不会从圆弧边界射出,收集器的位置可以沿水平方向左右移动,要使此时射出磁分析器的离子仍能进入收集器,求收集器水平移动的距离.8.质谱仪是测量带电粒子的质量和分析同位素的重要工具.如图所示为质谱仪的原理示意图.现利用这种质谱议对某电荷进行测量.电荷的带电量为q,质量为m,电荷从容器A下方的小孔S,无初速度飘入电势差为U的加速电场.加速后垂直进入磁感强度为B的匀强磁场中,然后从D点穿出,从而被接收器接受.问:(1)电荷的电性;(2)SD的水平距离为多少.9.质谱仪是一种精密仪器,是测量带电粒子的质量和分析同位素的重要工具.图中所示的质谱仪是由加速电场和偏转磁场组成.带电粒子从容器A下方的小孔S1飘入电势差为U的加速电场,其初速度几乎为0,然后经过S3沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场中,最后打到照相底片D上.不计粒子重力.(1)若由容器A进入电场的是质量为m、电荷量为q的粒子,求:a.粒子进入磁场时的速度大小v;b.粒子在磁场中运动的轨道半径R.(2)若由容器A进入电场的是互为同位素的两种原子核P1、P2,由底片上获知P1、P2在磁场中运动轨迹的直径之比是√2:1.求P1、P2的质量之比m1:m2.10.质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图所示.离子源S产生的各种不同正离子束(速度可看作为零),经加速电场(加速电场极板间的距离为d、电势差为U)加速,然后垂直进入磁感应强度为B的有界匀强磁场中做匀速圆周运动,最后到达记录它的照相底片P上.设离子在P上的位置与入口处S1之间的距离为x.(1)求该离子的荷质比q;m(2)若离子源产生的是带电量为q、质量为m1和m2的同位素离子(m1>m2),它们分别到达照相底片上的P1、P2位置(图中末画出),求P1、P2间的距离△x.11.如图所示,两平行金属导轨所在的平面与水平面夹角θ=37∘,导轨的一端接有电动势E=3V、内阻r=0.5Ω的直流电源,导轨间的距离L=0.4m.在导轨所在空间内分布着磁感应强度B=0.5T、方向垂直于导轨所在平面向上的匀强磁场.现把一个质量m=0.04kg的导体棒ab放在金属导轨上,导体棒与金属导轨垂直、且接触良好,导体棒的电阻R=1.0Ω,导体棒恰好能静止.金属导轨电阻不计.(g取10m/s2,sin37∘=0.6,cos37∘=0.8)求:(1)ab受到的安培力大小;(2)ab受到的摩擦力大小.12.如图所示,PQ和MN为水平平行放置的金属导轨,相距1m,导体棒ab跨放在导轨上,棒的质量为m=0.2kg,棒的中点用细绳经滑轮与物体相连,物体的质量M=0.3kg,棒与导轨的动摩擦因数为μ=0.5,匀强磁场的磁感应强度B=2T,方向竖直向下,为了使物体以加速度a=3m/s2加速上升,应在棒中通入多大的电流?方向如何?(g=10m/s2)13.如图回旋加速器D形盒的半径为r,匀强磁场的磁感应强度为B.一个质量了m、电荷量为q的粒子在加速器的中央从速度为零开始加速.(1)求该回旋加速器所加交变电场的频率;(2)求粒子离开回旋加速器时获得的动能;(3)设两D形盒间的加速电压为U,质子每次经电场加速后能量增加,加速到上述能量所需时间(不计在电场中的加速时间).答案和解析【答案】1. 解:(1)受力如图,滑块在某点受重力、支持力、电场力平衡,有:F=√m2g2+q2E2,由牛顿第三定律得:F N=F=√m2g2+q2E2(2)①小滑块从C到B的过程中,设滑块通过B点时的速度为v B,由动能定理得:mgR−qER=12mv B2代入数据解得:v B=√2(mg−qE)Rm通过B前,滑块还是做圆周运动,由牛顿第二定律得:F支−mg=m m B2R,由牛顿第三定律得:F压=F支代入数据解得:F压=3mg−2qE(3)令A、B之间的距离为L AB,小滑块从C经B到A的过程中,由动能定理得:mgR−qE(R+L AB)−μmgL AB=0解得:L AB=mg−qEμmg+qER答:(1)滑块通过B点时的速度大小为√m2g2+q2E2;(2)滑块通过B点前瞬间对轨道的压力3mg−2qE;(3)水平轨道上A、B两点之间的距离mg−qEμmg+qER.2. 解:(1)AB之间沿电场方向的距离为L,则两点之间的电势差:U=EL=104×1=10000V(2)电场力做功:W=qU=5×10−6×104=0.05J(3)电场力做正功,小球的电势能减小,减小为0.05J答:(1)A、B两位置的电势差是10000 v(2)电场力对小球做功0.05J;(3)小球的电势能减小0.05J.3. (1)设电子经电压U1加速后的速度为v0,由动能定理有:eU1=12mv02−0解得:v0=√2eU1m.(2)电子以速度v0进入偏转电场后,垂直于电场方向做匀速直线运动,沿电场方向做初速度为零的匀加速直线运动.设偏转电场的电场强度为E,电子在偏转电场中运动的时间为t,加速度为a,电子离开偏转电场时的侧移量为y.由牛顿第二定律和运动学公式有:t=Lv0F=ma,F=eE,E=U2da=eU2md1解得:y=U2L24U1d.(3)由y=U2L24U1d知,增大偏转电压U2可增大y值,从而使电子打到屏上的位置在P点上方.答:(1)电子穿过A板时速度的大小为√2eU1m.(2)电子从偏转电场射出时的侧移量为U2L24U1d.(3)要使电子打在荧光屏上P点的上方,应使M、N两板间的电压U2增大.4. 解:(1)α粒子在D形盒内做圆周运动,轨道半径达到最大时被引出,具有最大动能.设此时的速度为v,有qvB=m v2R可得v=qBRmα粒子的最大动能E k=12mv2=q2B2R22m(2)α粒子被加速一次所获得的能量为qU,α粒子被第n次和n+1次加速后的动能分别为E Kn=12mv n2=q2B2R n22m=nqUE Kn+1=12mv n+12=q2B2R n+122m=(n+1)qU可得R nR n+1=√nn+1(3)设α粒子被电场加速的总次数为a,则E k=aqU=q2B2R22m可得a=qB2R22mUα粒子在加速器中运动的时间是α粒子在D形盒中旋转a个半圆周的总时间t.t=a T2T=2πmqB解得t=πBR22U(4)加速器加速带电粒子的能量为E k=12mv2=q2B2R22m,由α粒子换成氘核,有q2B2R2 2m =(q2)2B12R22(m2),则B1=√2B,即磁感应强度需增大为原来的√2倍;高频交流电源的周期T=2πmqB,由α粒子换为氘核时,交流电源的周期应为原来的√22倍.5. 解:(1)设离子进入静电分析器时的速度为v,离子在加速电场中加速的过程中,由动能定理得:qU=12mv2离子在静电分析器中做匀速圆周运动,由静电力提供向心力,根据牛顿第二定律有:2联立两式,解得:E=2UR(2)离子在磁分析器中做匀速圆周运动,由牛顿第二定律有:qvB=m v2 r由题意可知,圆周运动的轨道半径为:r=d故解得:B=1d √2mUq,由左手定则判断得知磁场方向垂直纸面向外.(3)设质量为4m的正离子经电场加速后的速度为v′.由动能定理有qU=12⋅4mv′2,v′=0.5v离子在静电分析器中做匀速圆周运动,由静电力提供向心力,根据牛顿第二定律有:得:R′=R质量为4m的正离子在磁分析器中做匀速圆周运动,由牛顿第二定律有:可得磁场中运动的半径:r′=2r=2d由几何关系可知,收集器水平向右移动的距离为:S=(7√36−)d答:(1)静电分析器中离子运动轨迹处电场强度E的大小为2UR;(2)磁分析器中磁感应强度B的大小为1d √2mUq;(3)收集器水平移动的距离为(7√36−)d.6. 解:(1)由题意知,粒子进入磁场时洛伦兹力方向水平向左,根据左手定则知,电荷带正电.(2)根据动能定理得,qU=12mv2解得粒子进入磁场的速度v=√2qUm.根据qvB=m v2R 得,R=mvqB=1B√2mUq.则SD的水平距离s=2R=2B √2mUq.答:(1)粒子带正电.(2)SD的水平距离为2B √2mUq.7. 解:(1)a、在加速电场中,由动能定理得:qU=12mv2−0,解得:v=√2qUm;b、碘粒子在磁场中做匀速圆运动,洛伦兹力提供向心力,由牛顿第二定律得:qvB=m v2r,(2)两种原子核P1、P2互为同位素,所以电荷量相等,由b的结论可知:R1 R2=√m1m2P1、P2在磁场中运动轨迹的直径之比是√2:1所以有:m1m2=21答:(1)a.粒子进入磁场时的速度大小是√2qUm ;b.粒子在磁场中运动的轨道半径R是1B√2mUq;(2)若由容器A进入电场的是互为同位素的两种原子核P1、P2,由底片上获知P1、P2在磁场中运动轨迹的直径之比是√2:1.P1、P2的质量之比是2:1.8. 解:(1)离子在电场中加速,由动能定理得:qU=12mv2;①离子在磁场中做匀速圆周运动,由牛顿第二定律得:qBv=m v2r②由①②式可得:qm =8UB2x2(2)由①②式可得粒子m1在磁场中的运动半径是r1,则:r1=√2qUm1qB对离子m2,同理得:r2=√2qUm2qB∴照相底片上P1、P2间的距离:△x=2(r1−r2)=2√2qUqB(√m1−√m2);答:(1)求该离子的荷质比qm;(2)P1、P2间的距离△x=2√2qUqB(√m1−√m2).9. 解:(1)导体棒、金属导轨和直流电源构成闭合电路,根据闭合电路欧姆定律有:I=ER0+r =31+0.5A=2A导体棒受到的安培力:F安=ILB=2×0.40×0.50N=0.40N(2)导体棒所受重力沿斜面向下的分力:F1=mgsin37∘=0.04×10×0.6N=0.24N由于F1小于安培力,故导体棒沿斜面向下的摩擦力f,根据共点力平衡条件得:mgsin37∘+f=F安解得:f=F安−mgsin37∘=(0.40−0.24)N=0.16N答:(1)导体棒受到的安培力大小是0.40N;(2)导体棒受到的摩擦力大小是0.16N.10. 解:导体棒的最大静摩擦力大小为f m=0.5mg=1N,M的重力为G=Mg=3N,则f m<G,要保持导体棒匀速上升,则安培力方向必须水平向左,则根据左手定则判断得知棒中电流的方向为由a到b.根据受力分析,由牛顿第二定律,则有F安−T−f=ma联立得:I=2.75A答:应在棒中通入2.75A的电流,方向a→b.11. 解:(1)由回旋加速器的工作原理知,交变电场的频率与粒子在磁场运动的频率相等,由T粒子=2πmqB得:f 电=f粒子=1T=qB2πm;(2)由洛伦兹力提供向心力得:Bqv m=m v m2r所以:v m=Bqrm联立解得:E km=(qBr)22m(3)加速次数:N=E kmqU粒子每转动一圈加速两次,故转动的圈数为:n=12N粒子运动的时间为:t=nT联立解得:t=πB r22U答:(1)该回旋加速器所加交变电场的频率为qB2πm;(2)粒子离开回旋加速器时获得的动能为(qBr)22m;(3)设两D形盒间的加速电压为U,质子每次经电场加速后能量增加,加速到上述能量所需时间为πBr22U.【解析】1. (1)滑块在某点受重力、支持力、电场力三个力处于平衡,根据共点力平衡求出支持力的大小(2)①小滑块从C到B的过程中,只有重力和电场力对它做功,根据动能定理求解.根据圆周运动向心力公式即可求解,②由动能定理即可求出AB的长.本题考查分析和处理物体在复合场运动的能力.对于电场力做功W=qEd,d为两点沿电场线方向的距离.2. (1)根据:U=Ed即可计算出电势差;(2)根据恒力做功的公式求电场力做的功;根据电场力做功情况判断电势能如何变化;(2)电场力做正功,小球的电势能减小与之相等.解决本题的关键知道电场力做功与电势能的关系,知道电场力做正功,电势能减小,电场力做负功,电势能增加.3. 根据动能定理求出电子穿过A板时的速度大小.电子在偏转电场中,在垂直电场方向上做匀速直线运动,在沿电场方向上做匀加速直线运动,根据牛顿第二定律,结合运动学公式求出电子从偏转电场射出时的侧移量解决本题的关键掌握处理类平抛运动的方法,结合牛顿第二定律和运动学公式综合求解,难度中等.4. (1)根据qvB=m v2R 知,当R最大时,速度最大,求出最大速度,根据E K=12mv2求出粒子的最大动能.(2)α粒子被加速一次所获得的能量为qU,求出第n次和n+1次加速后的动能E Kn=12mv n2=q2B2R n22m=nqU,222高中物理选修3-1计算题-附答案(4)回旋加速器加速粒子时,粒子在磁场中运动的周期和交流电变化的周期相同.已知氘核与α粒子的质量比和电荷比,根据最大动能相等,得出磁感应强度的关系,以及根据周期公式,得出交流电的周期变化.解决本题的关键知道回旋加速器利用磁场偏转和电场加速实现加速粒子,粒子在磁场中运动的周期和交流电的周期相等.5. (1)运用动能定理研究加速电场,求出进入静电分析器的速度为v,离子在电场力作用下做匀速圆周运动,由牛顿第二定律列出等式求解电场强度E的大小.(2)离子在洛伦兹力作用下做匀速圆周运动,由牛顿第二定律列出等式.再结合几何关系求出已知长度与半径的关系,从而算出磁感应强度大小并确定方向.(3)根据动能定理可知,当粒子电量不变,质量变为4m时的速度,从而求个粒子磁场中运动的半径,故可求得收集器水平移动的距离.明确研究对象的运动过程是解决问题的前提,根据题目已知条件和求解的物理量选择物理规律解决问题.对于圆周运动,关键找出圆周运动所需的向心力,列出等式解决问题.6. 根据左手定则,结合洛伦兹力的方向判断出电荷的电性;根据洛伦兹力提供向心力得出粒子的偏转半径,从而得出SD的水平距离.解决本题的关键掌握洛伦兹力判断磁场方向、粒子运动方向、洛伦兹力方向的关系,以及掌握粒子在磁场中运动的半径公式,并能灵活运用.7. (1)带电粒子在电场中被加速,应用动能定理可以求出粒子的速度.粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律可以求出粒子的轨道半径.(2)P1、P2互为同位素,所以电荷量相等,由b的结论得出半径与质量之间的关系,然后由题目的条件即可求出.本题考查了粒子在电场与磁场中的运动,分析清楚粒子运动过程是正确解题的关键,应用动能定理与牛顿第二定律可以解题.8. (1)根据粒子在磁场中的运动半径,通过半径公式求出粒子的速度,再根据动能定理得出粒子的比荷.(2)根据动能定理、半径公式求出粒子打到照相机底片上位置与入口处的距离,从而求出P1、P2间的距离△x.本题考查了带电粒子在电场中的加速和在磁场中的偏转,结合牛顿第二定律和运动学公式综合求解.9. (1)先根据闭合电路欧姆定律求出电路中的电流.由公式F安=ILB求解安培力大小;(2)导体棒处于静止状态,合力为零,根据平衡条件列式求解摩擦力的大小.本题是通电导体在磁场中平衡问题,关键是安培力的分析和计算,运用平衡条件研究.10. 若要保持物体匀速上升,受力必须平衡.由于M所受的最大静摩擦力为0.5mg=1N,而M的重力为Mg=3N,要保持导体以加速度a=3m/s2加速上升,则安培力方向必须水平向左,则根据左手定则判断电流的方向.根据牛顿第二定律和安培力公式求出导体棒中电流的大小.此题是通电导体在磁场中加速问题,要抓住静摩擦力会外力的变化而变化,根据牛顿第二定律进行求解.11. (1)(2)回旋加速器运用电场加速磁场偏转来加速粒子,根据洛伦兹力提供向心力可以求出粒子的最大速度,从而求出最大动能.在加速粒子的过程中,电场的变化周期与粒子在磁场中运动的周期相等,故频率也相等;(3)考虑在磁场中运动的时间即可.解决本题的关键知道回旋加速器电场和磁场的作用,知道最大动能与什么因素有关,以及知道粒子在磁场中运动的周期与电场的变化的周期相等,会求解加速时间.11 / 11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(2019年高考广东理综)质量和电量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场,运行的半圆轨迹如图中虚线所示.下列表述正确的是( )A .M 带负电,N 带正电B .M 的速率小于N 的速率C .洛伦兹力对M 、N 做正功D .M 的运行时间大于N 的运行时间解析:由左手定则判断得M 带负电、N 带正电,A 正确;由题图可知M 、N 半径关系为R M >R N ,由半径R =mv qB 可知,v M >v N ,B 错误;因洛伦兹力与速度方向时刻垂直,故不做功,C 错误;由周期公式T =2πm qB 及t =12T 可知,t M =t N ,D 错误.答案:A2.(2019年高考江苏卷)如图所示,MN 是磁感应强度为B 的匀强磁场的边界.一质量为m 、电荷量为q 的粒子在纸面内从O 点射入磁场.若粒子速度为v 0,最远能落在边界上的A 点.下列说法正确的有( )A .若粒子落在A 点的左侧,其速度一定小于v 0B .若粒子落在A 点的右侧,其速度一定大于v 0C .若粒子落在A 点左右两侧d 的范围内,其速度不可能小于v 0-qBd2mD .若粒子落在A 点左右两侧d 的范围内,其速度不可能大于v 0+qBd2m解析:当粒子从O 点垂直于MN 进入磁场时,落在MN 上的点离O 点最远,设O 、A 间的距离为d +x ,则有: d +x 2=mv 0Bq①当v 0大小不变、方向改变时,粒子就落在A 点的左侧,故A 项错误.若粒子落在A 点的右侧,由r =mvBq 可知,v 一定大于v 0,故B 正确.若粒子落在A 点左侧d 处时,粒子的最小速度v min 一定满足:x 2=mv minBq②解①②两式可得:v min =v 0-qBd 2m ,故C 项正确.当v >v 0+qBd2m时,只要改变速度的方向,也可以使粒子落在A 点左右两侧d 的范围内,故D 项错误.答案:BC3.如图所示,两个横截面分别为圆和正方形、但磁感应强度均相同的匀强磁场,圆的直径D 等于正方形的边长,两个电子以相同的速度同时分别飞入两个磁场区域,速度方向均与磁场方向垂直.进入圆形区域的电子速度方向对准了圆心,进入正方形区域的电子是沿一边的中心且垂直于边界线进入的,则( )A .两个电子在磁场中运动的半径一定相同B .两电子在磁场中运动的时间有可能相同C .进入圆形区域的电子一定先飞离磁场D .进入圆形区域的电子一定不会后飞离磁场解析:将两域重合,正方形为圆的外切正方形,电子以相同的速度射入磁感应强度相同的匀强磁场中,半径一定相同,轨迹有相同的情况,在正方形区域中的轨迹长度一定大于或等于圆形区域的长度,即电子在圆形区域的运动时间小于或等于在正方形区域运动的时间.答案:ABD4.(2019年西宁检测)比荷为em 的电子以速度v 0沿AB 边射入边长为a 的等边三角形的匀强磁场区域中,如图所示,为使电子从BC 边穿出磁场,磁感应强度B 的取值范围为( )A .B>3mv 0ea B .B<3mv 0eaC .B>2mv 0eaD .B<2mv 0ea解析:电子进入磁场后向上偏,刚好从C 点沿切线方向穿出是临界条件,要使电子从BC 边穿出,其运动半径应比临界半径大,由R =mv qB 可知,磁感应强度应比临界值小,如图,由几何关系可得,半径R =a 2sin 60°,又ev 0B =m v 20R ,解得B =3mv 0ea,B 选项正确.答案:B[命题报告·教师用书独具]一、选择题(本题共10小题,每小题7分,共70分.每小题至少有一个选项正确,把正确选项前的字母填在题后的括号内)1.下列说法正确的是( )A.运动电荷在磁感应强度不为零的地方,一定受到洛伦兹力的作用B.运动电荷在某处不受洛伦兹力作用,则该处的磁感应强度一定为零C.洛伦兹力既不能改变带电粒子的动能,也不能改变带电粒子的速度D.洛伦兹力对带电粒子不做功解析:运动电荷在磁感应强度不为零的地方,若运动方向与磁场方向平行,就不受洛伦兹力,A错;运动电荷在某处不受洛伦兹力,该处磁感应强度不一定为零,B错;洛伦兹力不能改变带电粒子的动能,但能改变带电粒子的速度,C错;洛伦兹力永不做功,D对.答案:D2.(2019年高考北京理综)处于匀强磁场中的一个带电粒子,仅在磁场力作用下做匀速圆周运动.将该粒子的运动等效为环形电流,那么此电流值( )A .与粒子电荷量成正比B .与粒子速率成正比C .与粒子质量成正比D .与磁感应强度成正比解析:粒子仅在磁场力作用下做匀速圆周运动有qvB =m v 2R ,得R =mv qB ,周期T =2πR v =2πmqB ,其等效环形电流I =q T =q 2B2πm,故D 选项正确.答案:D3.如图所示,半径为R 的圆内有一磁感应强度大小为B 方向向外的匀强磁场,一质量为m 、电荷量为q 的粒子(不计重力),从A 点对着圆心垂直射入磁场,从C 点飞出,则( )A .粒子带负电B .粒子的轨道半径为RC .A 、C 两点相距3RD .粒子在磁场中运动时间为πm 3qB解析:如图,点Q 为粒子做圆周运动的圆心,粒子在A 点所受的洛伦兹力提供向心力,方向沿A 到Q ,根据左手定则可知粒子带正电,选项A 错误;粒子的轨道半径为图中的r =Rtan 60°,选项B 错误;根据几何关系得AC =2Rsin 60°=3R ,选项C 正确;粒子在磁场中运动时间为t =θT 2π=πm3Bq,选项D 正确. 答案:CD4.(2019年北京西城模拟)如图所示,在x 轴上方的空间存在着垂直于纸面向里的匀强磁场,磁感应强度的大小为B.许多相同的离子,以相同的速率v ,由O 点沿纸面向各个方向(y>0)射入磁场区域.不计离子所受重力,不计离子间的相互影响.图中曲线表示离子运动的区域边界,其中边界与y 轴交点为M ,边界与x 轴交点为N ,且OM =ON =L.由此可判断( )A .这些离子是带负电的B .这些离子运动的轨道半径为LC .这些离子的比荷为q m =vLBD .当离子沿y 轴正方向射入磁场时会经过N 点解析:根据左手定则,离子带正电,A 项错误;由题图可知,粒子轨道半径为12L ,B 项错误;再根据qvB =mv212L ,q m =2v LB ,C 项错误;由于ON =L ,粒子半径为12L ,ON 恰好为粒子做圆周运动的直径,故D 项正确. 答案:D5.如图所示,在x 轴上方存在垂直于纸面向里的匀强磁场,磁感应强度为B.在xOy 平面内,从原点O 处沿与x 轴正方向成θ(0<θ<π)角以速率v 发射一个带正电的粒子(重力不计).则下列说法正确的是( )A .若θ一定,v 越大,则粒子在磁场中运动的时间越短B .若θ一定,v 越大,则粒子在磁场中运动的角速度越大C .若v 一定,θ越大,则粒子在磁场中运动的时间越短D .若v 一定,θ越大,则粒子离开磁场的位置距O 点越远解析:粒子运动周期T =2πm Bq ,当θ一定时,粒子在磁场中运动时间t =2π-2θ2π T =π-θπT ,ω=2πT .由于t 、ω均与v 无关,故A 、B 项错,C 项正确;当v 一定时,由r =mv Bq 知,r 一定;当θ从0变至π2的过程中,θ越大,粒子离开磁场的位置距O 点越远;当θ大于π2时,θ越大,粒子离开磁场的位置距O 点越近,故D 项错.答案:C6.(2019年唐山模拟)如图是某离子速度选择器的原理示意图,在一半径为R 的绝缘圆柱形筒内有磁感应强度为B 的匀强磁场,方向平行于轴线.在圆柱形筒上某一直径两端开有小孔M 、N ,现有一束速率不同、比荷均为k 的正、负离子,从M 孔以α角入射,一些具有特定速度的离子未与筒壁碰撞而直接从N 孔射出(不考虑离子间的作用力和重力).则从N 孔射出的离子( )A .是正离子,速率为kBR/cos αB .是正离子,速率为kBR/sin αC .是负离子,速率为kBR/sin αD .是负离子,速率为kBR/cos α解析:因为离子向下偏,根据左手定则,离子带正电,运动轨迹如图,由几何关系可知r =Rsin α,由qvB=m v 2r 可得v =kBR sin α,故B 正确.答案:B7.(2019年江南十校联考)如图所示,边界OA 与OC 之间分布有垂直纸面向里的匀强磁场,边界OA 上有一粒子源S.某一时刻,从S 平行于纸面向各个方向发射出大量带正电的同种粒子(不计粒子的重力及粒子间的相互作用),所有粒子的初速度大小相同,经过一段时间有大量粒子从边界OC 射出磁场.已知∠AOC =60°,从边界OC 射出的粒子在磁场中运动的最短时间等于T6(T 为粒子在磁场中运动的周期),则从边界OC 射出的粒子在磁场中运动的最长时间为( )A.T 3B.T 2C.2T 3D.5T 6解析:由左手定则可知,粒子在磁场中做逆时针方向的圆周运动.由于粒子速度大小都相同,故轨迹弧长越小,粒子在磁场中运动时间就越短;而弧长越小,所对弦长也越短,所以从S 点作OC 的垂线SD ,则SD 为最短弦,可知粒子从D 点射出时运行时间最短,如图,根据最短时间为T6,可知△O′SD 为等边三角形,粒子圆周运动半径R =SD ,过S 点作OA 垂线交OC 于E 点,由几何关系可知SE =2SD ,SE 为圆弧轨迹的直径,所以从E 点射出,对应弦最长,运行时间最长,且t =T2,故B 项正确.答案:B8.如图所示,一个质量为m 、电荷量为+q 的带电粒子,不计重力,在a 点以某一初速度水平向左射入磁场区域Ⅰ,沿曲线abcd 运动,ab 、bc 、cd 都是半径为R 的圆弧.粒子在每段圆弧上运动的时间都为t.规定垂直纸面向外的磁感应强度方向为正,则磁场区域Ⅰ、Ⅱ、Ⅲ三部分的磁感应强度B 随x 变化的关系可能是下图中的( )解析:由左手定则可判断出磁感应强度B 在磁场区域Ⅰ、Ⅱ、Ⅲ内磁场方向分别为向外、向里、向外,在三个区域中均运动14圆周,故t =T 4,由于T =2πm qB ,求得B =πm2qt.只有C 选项正确.答案:C9.(2019年江门模拟)如图所示,在垂直纸面向里的匀强磁场的边界上,有两个质量和电荷量均相同的正负离子(不计重力),从点O 以相同的速率先后射入磁场中,入射方向与边界成θ角,则正负离子在磁场中( )A .运动时间相同B .运动轨道的半径相同C .重新回到边界时速度的大小和方向相同D .重新回到边界的位置与O 点距离相等解析:如图所示,正离子的轨迹为磁场边界上方的OB ,负离子的轨迹为磁场边界上方的OA ,轨道半径OO 1=OO 2=mvqB,二者相同,B 正确;运动时间和轨道对应的圆心角(回旋角α)成正比,所以正离子运动时间较长,A 错误;由几何知识可知△OO 1B ≌△OO 2A ,所以OA =OB ,D 正确;由于O 1B ∥O 2A ,且v A ⊥O 2A ,v B ⊥O 1B ,所以v A ∥v B ,C 正确.答案:BCD10.(2019年高考浙江理综)利用如图所示装置可以选择一定速度范围内的带电粒子.图中板MN 上方是磁感应强度大小为B 、方向垂直纸面向里的匀强磁场,板上有两条宽度分别为2d 和d 的缝,两缝近端相距为L.一群质量为m 、电荷量为q ,具有不同速度的粒子从宽度为2d 的缝垂直于板MN 进入磁场,对于能够从宽度为d 的缝射出的粒子,下列说法正确的是( )A .粒子带正电B .射出粒子的最大速度为+2mC .保持d 和L 不变,增大B ,射出粒子的最大速度与最小速度之差增大D .保持d 和B 不变,增大L ,射出粒子的最大速度与最小速度之差增大解析:利用左手定则可判定只有负电荷进入磁场时才向右偏,故选项A 错误.利用qvB =mv 2r 知r =mvqB ,能射出的粒子满足L 2≤r≤L +3d 2,因此对应射出粒子的最大速度v max =qBr maxm =+2m ,选项B 正确.v min =qBr minm=qBL 2m ,Δv =v max -v min =3qBd2m ,由此式可判定选项C 正确,选项D 错误. 答案:BC二、非选择题(本题共2小题,共30分,解答时应写出必要的文字说明、方程式和演算步骤,有数值计算的要注明单位)11.(15分)(2019年皖南八校联考)带电粒子的质量m =1.7×10-27kg ,电荷量q =1.6×10-19C ,以速度v=3.2×106m/s 沿垂直于磁场同时又垂直于磁场边界的方向进入匀强磁场中,磁场的磁感应强度为B =0.17 T ,磁场的宽度l =10 cm ,如图所示.(1)求带电粒子离开磁场时的速度大小和偏转角.(2)求带电粒子在磁场中运动的时间以及出磁场时偏离入射方向的距离. 解析:粒子所受的洛伦兹力F =qvB≈8.7×10-14N ,远大于粒子所受的重力G =1.7×10-26N ,因此重力可忽略不计.(1)由于洛伦兹力不做功,所以带电粒子离开磁场时速度仍为3.2×106m/s. 由qvB =m v2r得轨道半径r =mv qB =1.7×10-27×3.2×1061.6×10-19×0.17m =0.2 m 由图可知偏转角θ满足sin θ=l r =0.10.2=0.5,故θ=30°.(2)带电粒子在磁场中运动的周期T =2πm qB ,可见带电粒子在磁场中运动的时间t =(30°360°)T =112Tt =πm 6qB = 3.14×1.7×10-276×1.6×10×0.17 s≈3.3×10-8s 离开磁场时偏离入射方向的距离 d =r(1-cos θ)=0.2×(1-32) m≈2.7×10-2m. 答案:(1)3.2×106m/s 30° (2)3.3×10-8s 2.7×10-2m12.(15分)(2019年高考海南卷改编)图(a)所示的xOy 平面处于匀强磁场中,磁场方向与xOy 平面(纸面)垂直,磁感应强度B 随时间t 变化的周期为T ,变化图线如图(b)所示.当B 为+B 0时,磁感应强度方向指向纸外.在坐标原点O 有一带正电的粒子P ,其电荷量与质量之比恰好等于2πTB 0.不计重力.设P 在某时刻t 0以某一初速度沿y 轴正向自O 点开始运动,将它经过时间T 到达的点记为A.(1)若t 0=0,则直线OA 与x 轴的夹角是多少? (2)若t 0=T4,则直线OA 与x 轴的夹角是多少?解析:(1)设粒子P 的质量、电荷量与初速度分别为m 、q 与v ,粒子P 在洛伦兹力作用下,在xOy 平面内做圆周运动,分别用R 与T′表示圆周的半径和运动周期,则有qvB 0=m(2πT′)2R ①v =2πRT′② 由①②式与已知条件得T′=T粒子P 在t 0=0到t 1=T2时间内,沿顺时针方向运动半个圆周,到达x 轴上的B 点,此时磁场方向反转;继而,在t 1=T2到t 2=T 时间内,沿逆时针方向运动半个圆周,到达x 轴上的A 点,如图甲所示.OA 与x 轴的夹角θ=0.(2)粒子P 在t 0=T 4时刻开始运动,在t 0=T 4到t 1′=T 2时间内,沿顺时针方向运动14个圆周,到达C 点,此时磁场方向反转;继而,在t 1′=T2到t 2′=T 时间内,沿逆时针方向运动半个圆周,到达B 点,此时磁场方向再次反转;在t 2′=T 到t 3′=5T 4时间内,沿顺时针方向运动14个圆周,到达A 点,如图乙所示.由几何关系可知,A 点在y轴上,即OA 与x 轴的夹角θ=π2. 答案:(1)0 (2)π2。

相关文档
最新文档