初中七年级数学知识点总结

合集下载

最全初中数学知识点全总结

最全初中数学知识点全总结

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式de加减、一元一次方程、图形de认识初步四个章节de内容.第一章有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式de数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;(2)有理数de分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度de一条直线.3.相反数:(1)只有符号不同de两个数,我们说其中一个是另一个de相反数;0de相反数还是0;(2)相反数de和为0 a+b=0 a、b互为相反数.4.绝对值:(1)正数de绝对值是其本身,0de绝对值是0,负数de绝对值是它de相反数;注意:绝对值de意义是数轴上表示某数de点离开原点de距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值de问题经常分类讨论;5.有理数比大小:(1)正数de绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大de反而小;(5)数轴上de两个数,右边de数总比左边de数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1de 两个数互为倒数;注意:0没有倒数;若 a≠0,那么a de 倒数是a 1;若ab=1 a 、b 互为倒数;若ab=-1 a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同de 符号,并把绝对值相加;(2)异号两数相加,取绝对值较大de 符号,并用较大de 绝对值减去较小de 绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法de 运算律:(1)加法de 交换律:a+b=b+a ;(2)加法de 结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数de 相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积de 符号由负因式de 个数决定. 11 有理数乘法de 运算律:(1)乘法de 交换律:ab=ba ;(2)乘法de 结合律:(ab )c=a (bc );(3)乘法de 分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数de 倒数;注意:零不能做除数,无意义即0a .13.有理数乘方de 法则:(1)正数de 任何次幂都是正数;(2)负数de 奇次幂是负数;负数de 偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方de 定义:(1)求相同因式积de 运算,叫做乘方;(2)乘方中,相同de 因式叫做底数,相同因式de 个数叫做指数,乘方de 结果叫做幂;15.科学记数法:把一个大于10de 数记成a×10n de 形式,其中a 是整数数位只有一位de 数,这种记数法叫科学记数法.16.近似数de 精确位:一个近似数,四舍五入到那一位,就说这个近似数de 精确到那一位.17.有效数字:从左边第一个不为零de 数字起,到精确de 位数止,所有数字,都叫这个近似数de 有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数de 概念,在实际生活和学习数轴de 基础上,理解正负数、相反数、绝对值de 意义所在。

七年级数学的知识点归纳总结

七年级数学的知识点归纳总结

七年级数学的知识点归纳总结七年级数学是中学数学的一个重要阶段,也是打下数学基础的关键阶段。

在七年级数学学习中,有很多重要的知识点需要掌握。

下面将对七年级数学的知识点进行归纳总结。

一、代数基础1.整数的概念:正整数、负整数、自然数的概念及其表示;2.数轴与整数之间的关系:数轴上点的位置、两点之间的距离;3.相反数与绝对值:相反数的概念及其性质、绝对值的概念及其性质;4.数的比较:比较大小的方法、使用绝对值比较大小;5.加法与减法:整数的加法及其性质、减法的概念及其性质、与零的关系;6.乘法与除法:整数的乘法及其性质、零的乘除法性质、自然数和负整数的乘除法。

二、分数与小数1.分数的概念:分数的定义及其性质、分数线、分数的大小比较;2.分数的加减法:相同分母的分数的加减法、化简分数;3.分数的乘法与除法:分数的乘法及其性质、分数的除法及其性质、分数与整数的运算;4.小数的概念:小数的定义及表示、小数的大小比较;5.小数的加减法:小数的加减法及其性质;6.小数与分数的转化:小数转化为分数、分数转化为小数。

三、平方根与立方根1.平方根的概念:平方根的定义及表示、平方根的性质;2.开平方与平方:开平方的性质、平方的性质;3.立方根的概念:立方根的定义及表示、立方根的性质;4.开立方与立方:开立方的性质、立方的性质;5.运算和化简:带根式的加减法、乘法和除法、化简根式;6.实数的概念:有理数与无理数的关系。

四、比例与比例应用1.比例的概念:比例的定义及其性质;2.比例的计算:比例的相等、比例的化简;3.比例的应用:比例的延伸、比例的求解。

五、图形的认识与运算1.点、线、面的概念:点的特征、线的特征、面的特征;2.图形的分类:凸多边形、凹多边形、正多边形、一般多边形;3.直角与直角三角形:直角的判定、直角三角形的判定与正弦定理;4.四边形与其特征:平行四边形、矩形、正方形、菱形;5.三角形与其特征:三角形的分类、全等三角形、相似三角形。

七年级数学所有知识点

七年级数学所有知识点

七年级数学所有知识点七年级数学知识点汇总数学作为一门基础性强的学科,在中学阶段尤为重要。

让我们从七年级数学课程的所有知识点开始,逐一总结归纳。

一、有理数1.有理数的定义及表示方法。

2.有理数的四则运算:加法、减法、乘法、除法。

3.有理数的大小比较及其性质。

4.绝对值的概念及运算规律。

5.有理数的混合运算与应用。

二、代数与方程1.代数式的概念及其组成。

2.代数式的基本性质及运算法则。

3.一元一次方程的定义、解的概念及解法。

4.一元一次方程的应用。

5.解一元一次方程的问题的思路与方法。

三、图形的认识1.图形的基本概念和性质。

2.长方形、正方形、平行四边形、三角形、梯形、圆的定义、性质及应用。

3.各种图形的周长、面积计算公式。

4.图形的相似与全等性质及应用。

四、数据的处理1.统计量的概念及其计算。

2.频率分布表与直方图的绘制与分析。

3.样本调查的方法与误差处理。

4.折线图、散点图及其应用。

五、函数1.函数的概念及表示法。

2.函数的性质及图象。

3.函数的应用。

六、空间与几何1.三视图的绘制及其应用。

2.平面与空间中的几何体的认识和应用。

3.空间几何体的表面积和体积计算公式。

4.几何变换的概念及其性质。

七、计算题1.计算题的基本原则及策略。

2.计算题的应用。

以上即为七年级数学课程的所有知识点,同学们可以根据自己的学习情况有针对性地进行学习。

掌握这些基础知识,才能为以后的数学学习打好坚实的基础。

七年级数学总结知识点(集锦10篇)

七年级数学总结知识点(集锦10篇)

七年级数学总结知识点(集锦10篇)七年级数学总结知识点第1篇1、分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。

分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零2、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

3、分式的通分和约分:关键先是分解因式4、分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式乘方法则:分式乘方要把分子、分母分别乘方。

分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

异分母的分式相加减,先通分,变为同分母分式,然后再加减混合运算:运算顺序和以前一样。

能用运算率简算的可用运算率简算。

5、任何一个不等于零的数的零次幂等于1,即;当n为正整数时6、正整数指数幂运算性质也可以推广到整数指数幂、(m,n是整数)(1)同底数的幂的乘法:;(2)幂的乘方:;(3)积的乘方:;(4)同底数的幂的除法:(a≠0);(5)商的乘方:();(b≠0)7、分式方程:含分式,并且分母中含未知数的方程——分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

解分式方程的步骤:(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根、增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

列方程应用题的步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)答、应用题有几种类型;基本公式是什么?基本上有五种:(1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题、(2)数字问题在数字问题中要掌握十进制数的表示法、(3)工程问题基本公式:工作量=工时×工效、(4)顺水逆水问题v 顺水=v静水+v水、 v逆水=v静水—v水、8、科学记数法:把一个数表示成的形式(其中,n是整数)的记数方法叫做科学记数法、用科学记数法表示绝对值大于10的n位整数时,其中10的指数是用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)七年级数学总结知识点第2篇⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a 表示负数时,-a是正数;当a表示0时,-a仍是0。

初中数学知识点总结最全版

初中数学知识点总结最全版

初中数学知识点总结最全版一、数与代数1. 有理数- 整数和分数的概念- 正数、负数、零- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 绝对值的概念和性质2. 整数的性质- 素数和合数- 奇数和偶数- 整数的因数和倍数- 最大公约数和最小公倍数3. 代数表达式- 单项式和多项式- 同类项和合并同类项- 代数式的加减运算4. 一元一次方程- 方程的建立和解法- 方程的解的定义- 解一元一次方程的应用题5. 二元一次方程组- 代入法和消元法- 方程组的解的概念- 解二元一次方程组的应用题6. 不等式- 不等式的基本性质- 解一元一次不等式- 解一元一次不等式组7. 函数- 函数的概念- 函数的表示方法:表格、图像、解析式- 线性函数和二次函数的图像及性质- 函数的应用题二、几何1. 平面图形- 点、线、面的基本性质- 角的概念:邻角、对角、同位角- 三角形的分类和性质- 四边形的分类和性质- 圆的性质和圆周角2. 几何图形的计算- 面积的计算:长方形、正方形、三角形、梯形、圆 - 周长的计算:三角形、四边形、圆- 体积的计算:长方体、正方体、圆柱、圆锥3. 几何变换- 平移、旋转、对称(轴对称和中心对称)- 几何变换的性质和应用4. 解析几何- 坐标系的基本概念- 点的坐标和几何图形的坐标表示- 直线和曲线的解析表达式三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表的绘制:条形图、折线图、饼图 - 算术平均数、中位数和众数2. 概率- 概率的基本概念- 等可能事件的概率- 概率的加法和乘法法则- 简单事件和复合事件的概率计算四、综合应用题1. 数列- 等差数列的概念和性质- 等比数列的概念和性质- 数列的求和2. 应用题- 利用初中数学知识解决实际问题- 列方程解应用题- 统计与概率在实际问题中的应用3. 综合题- 结合数与代数、几何、统计与概率的知识点 - 解决综合性问题的能力培养以上总结了初中数学的主要知识点,学生在学习过程中应注重理解和应用,通过大量的练习来巩固所学知识,提高解题能力和数学思维。

初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)一、数的概念与运算1.自然数:正整数,包括0和正数。

2.整数:正整数、负整数和0的集合。

3.分数:约分、通分、四则运算、化为整数、化为带分数。

4.小数:百分制数、百分数与小数的相互转换、小数的运算、小数的应用、有限小数和无限小数。

5.整式与分式:字母的代数运算,整式的加减乘除,约分、倒数、整式的应用。

6.乘方与开方:幂的概念与运算,方根的概念与运算。

7.实数:有理数与无理数的关系,实数集的完备性,视数的大小比较。

二、代数1.代数式与多项式:常数、变量、系数、次数、多项式的加减乘除。

2.等式与不等式:等式的性质,方程与解,不等式的性质与解集。

3.图示法与坐标方程:带有几何意义的代数式,平面直角坐标系,点、线、曲线、正比例关系及代数图象。

4.一次函数与方程:函数的概念,函数的图象,函数的增减性、奇偶性,线性函数与一次方程,一次不等式。

5.二次根式:二次根式的概念和性质,二次根式的加减乘除、化简,含有二次根式的一元二次方程。

三、几何1.平面图形:三角形、四边形、多边形、圆,它们的性质与判定,运用平面几何知识解决问题。

2.空间图形:正方体、长方体、棱柱、棱锥、球、圆柱、圆锥、解析几何的基本概念。

3.相似与全等:相似的概念与性质,全等的概念与性质,相似三角形的判定与性质,相似三角形的应用。

4.角与三角形:角的概念与性质,角的度量、角的平分线、角的比较大小,三角形的概念与性质,三角形的判定与性质。

5.圆与圆的运动:圆的性质与计算,正多边形与圆的内接外接,圆的切线与切圆,圆与直线的位置关系。

四、函数与方程1.线性方程组:二元一次方程组,三元一次方程组,多元一次方程组。

2.二次函数与方程:二次函数的概念、图象,二次方程的解法,解的判别式,根的性质。

3.不等式:一元一次不等式,一元二次不等式,含有绝对值的不等式。

4.平面向量:向量与点、向量的运算,向量的模、单位向量,向量的线性运算。

七年级数学知识点整理大全

七年级数学知识点整理大全

七年级数学知识点整理⼤全 ⼤家都知道,初中数学学习是对学⽣逻辑计算能⼒的培养,想要学好初中数学,就要多总结所学知识,多掌握解题思路,通过习题的练习对数学学习产⽣兴趣。

最终实现初中数学的融会贯通,学好这门课程。

接下来是⼩编为⼤家整理的七年级数学知识点整理⼤全,希望⼤家喜欢! 七年级数学知识点整理⼤全⼀ 第五章相交线与平⾏线 1、两条直线相交所成的四个⾓中,相邻的两个⾓叫做邻补⾓,特点是两个⾓共⽤⼀条边,另⼀条边互为反向延长线,性质是邻补⾓互补;相对的两个⾓叫做对顶⾓,特点是它们的两条边互为反向延长线。

性质是对顶⾓相等。

2、三线⼋⾓:对顶⾓(相等),邻补⾓(互补),同位⾓,内错⾓,同旁内⾓。

3、两条直线被第三条直线所截: 同位⾓F(在两条直线的同⼀旁,第三条直线的同⼀侧) 内错⾓Z(在两条直线内部,位于第三条直线两侧) 同旁内⾓U(在两条直线内部,位于第三条直线同侧) 4、两条直线相交所成的四个⾓中,如果有⼀个⾓为90度,则称这两条直线互相垂直。

其中⼀条直线叫做另外⼀条直线的垂线,他们的交点称为垂⾜。

5、垂直三要素:垂直关系,垂直记号,垂⾜ 6、垂直公理:过⼀点有且只有⼀条直线与已知直线垂直。

7、垂线段最短。

8、点到直线的距离:直线外⼀点到这条直线的垂线段的长度。

9、平⾏公理:经过直线外⼀点,有且只有⼀条直线与这条直线平⾏。

推论:如果两条直线都与第三条直线平⾏,那么这两条直线也互相平⾏。

如果b//a,c//a,那么b//c 10、平⾏线的判定: ①同位⾓相等,两直线平⾏。

②内错⾓相等,两直线平⾏。

③同旁内⾓互补,两直线平⾏。

11、推论:在同⼀平⾯内,如果两条直线都垂直于同⼀条直线,那么这两条直线平⾏。

12、平⾏线的性质: ①两直线平⾏,同位⾓相等;②两直线平⾏,内错⾓相等;③两直线平⾏,同旁内⾓互补。

13、平⾯上不相重合的两条直线之间的位置关系为_______或________ 14、平移:①平移前后的两个图形形状⼤⼩不变,位置改变。

七年级主要的知识点总结

七年级主要的知识点总结

七年级主要的知识点总结七年级是初中学生学习中非常重要的一年,需要掌握许多基础知识点,为将来的学习打下坚实的基础。

以下是七年级主要的知识点总结。

一、数学数学是一个抽象的学科,也是一个综合性极强的学科,七年级数学知识点涉及到了很多方面。

需要掌握的重点如下:1.1 整数的加减乘除整数是数学中的基础概念,掌握整数的加减乘除是学好初中数学的前提。

1.2 有理数的概念及其表示有理数是数学中的重要概念,也是对浮点数和实数等概念的铺垫。

1.3 方程与不等式方程和不等式是数学中的重要内容之一,是数学问题的核心。

1.4 几何中的图形几何中的图形是重要的数学概念之一,掌握图形的种类及其特点十分重要。

1.5 数据分析和统计数据分析和统计是数学中的一个重要分支,可以帮助学生更好地处理数据及其相关问题。

二、语文语文是许多学科中最基础的一门学科,也是学生提高综合素质最重要的一门学科之一。

以下是七年级语文需要掌握的主要知识点:2.1 语法和词汇语法和词汇是语文学习的基础,需要合理地运用这两个方面的知识。

2.2 文学常识七年级需要掌握中国文学的基本常识,了解大量古诗文,以及如何鉴赏文学作品。

2.3 写作技巧写作技巧是语文学习的重点,需要掌握写作方法、语言表达和文风等方面的知识。

三、英语英语是全球语言,也是一个重要的学科,以下是七年级英语需要掌握的主要知识点:3.1 语法和词汇英语语法和词汇是学习英语的基础,需要用正确的语法和词汇进行口语及书面表达。

3.2 阅读理解阅读理解是英语学习的重点,需要学会听力、口语和阅读理解能力。

3.3 写作技巧写作技巧在英语学习中也非常重要,需要掌握写作方法、语言表达和文风等方面的知识。

四、物理物理是自然科学中一个重要的学科,需要掌握的主要知识点如下:4.1 运动和力运动和力是物理学的基本概念,需要掌握它们的定义、性质以及相关问题的解决方法。

4.2 声、光、电声、光、电是物理学中的三大物理现象,需要了解它们的性质及其相关问题的解决方法。

七年级全册数学知识点总结

七年级全册数学知识点总结

七年级全册数学知识点总结在七年级全册数学学习中,我们学习了许多重要的知识点,这些知识点贯穿了整个学年,为我们打下了扎实的数学基础。

接下来,我将对这些知识点进行总结,希望对大家的复习和记忆有所帮助。

一、整数和分数1. 整数的概念及运算:正数、负数、绝对值、加法、减法、乘法、除法等。

2. 分数的概念及四则运算:分子、分母、真分数、假分数、约分、通分等。

3. 整数和分数的混合运算:根据题目要求进行合理的转化和运算。

二、代数表达式1. 代数表达式的基本概念:常数、变数、系数、次数等。

2. 代数表达式的合并与展开:同类项的合并、分配律的运用等。

3. 代数表达式的求值:根据给定的数值代入变数,进行计算得到结果。

三、方程和不等式1. 一元一次方程:解方程的基本步骤、方程的变形、检验等。

2. 一元一次不等式:解不等式的基本方法、不等式的性质等。

3. 一元一次方程和不等式的应用:通过实际问题分析,建立方程或不等式并解决问题。

四、几何1. 几何图形的性质:三角形、四边形、平行四边形、正方形、圆等图形的性质。

2. 几何图形的计算:周长、面积、体积等的计算方法。

3. 平面图形的相似和全等:相似三角形的性质、全等三角形的判定等。

五、数据的处理1. 统计与概率:样本调查、频数与频率、简单概率计算等。

2. 误差与估计:测量误差、误差的处理方法、数据估计等。

六、函数1. 函数及函数关系:自变量、因变量、函数的图象、函数的性质等。

2. 函数的运算:函数的加减乘除、复合函数等。

3. 解函数相关问题:解函数方程、函数不等式等。

通过对七年级全册数学知识点的总结,我们更深入地了解了各个知识点的要点和难点,为以后的学习和复习提供了良好的参考。

希望大家能够认真复习,巩固知识,取得更好的成绩!。

七年级数学知识点总结归纳

七年级数学知识点总结归纳

第七年级数学是中学生学习的重要数学课程,是中学生学习数学知识的基础。

其主要内容包括数的概念与运算、数列、函数、方程组等,以及几何、统计、概率、解析几何等。

下面总结整理一下第七年级数学的知识点:
一、数的概念与运算
1、正数、负数、零的概念;
2、整数与分数的相互转换;
3、百分数的计算;
4、三角函数的概念与基本运算;
5、数的因数和约分;
6、整除、余除与商数的概念;
7、将整数转换成不同进制的表示形式;
8、根式的概念与运算;
9、立方根、四次根、立方数的概念;
10、指数的概念与运算;
11、立方根式、四次根式的展开运算;
12、对数的定义与基本运算;
13、自然数与质数;
14、互质数和欧拉函数。

二、数列
1、等差数列、等比数列的定义及求和;
2、根据给定的先验条件求取数列的前几项;
3、数列的通项公式求解;
4、数列的前项构成公式及比率;
5、首项、公比、前n项和的关系;
6、等差数列和等比数列的构造;
7、构建栅栏;
8、数列的几何图形表示;
9、等比数列的发展;
10、等差数列的发展;
11、数列的数学归纳法;
12、数列的总和;
13、和与差值的关系;
14、数列的统计和推断。

三、函数。

七年级数学知识点总结归纳

七年级数学知识点总结归纳

七年级数学知识点总结归纳七年级数学知识点总结(精华文字版)ps:文字版有部分公式符号不显示,请以图片版为准!第一章有理数1、有理数的分类:①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 Û a+b=0 .4、.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的几何意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或;绝对值的问题经常分类讨论;5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a ≠0,那么的倒数是;若ab=1Û a、b互为倒数6、有理数的四则运算:(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加为0;0与任何数相加都等于任何数(2)有理数减法法则::减去一个数等于加上这个数的相反数(3)有理数的乘法法则: 两个数相乘,同号得正,异号得负,并把绝对值相乘;0乘以任何一个数都等于0;多个不为0的数相乘,积的符号由负因数的个数决定:负因数有偶数个时,积为正数,负因数有奇数个时,积为负数,再把各个因数的绝对值相乘(4)有理数的除法法则 两数相除,同号得正,异号得负,再把绝对值相除;0除以任何一个不为0的数都得0;除以一个不为0的数,等于乘以这个数的倒数7、有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .8、比较两个数的大小:(1)负数< 0 < 正数,任何一个正数都大于一切负数(2)数轴上的点表示的有理数,左边的数总比右边的数小(3)两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小(4)两数相乘(或相除),同号得正> 0,异号得负< 09、有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n, 当n为正偶数时: (-a)n =an 或(a-b)n=(b-a)n.10、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.11、非负数的性质:若,则第二章整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

初中数学知识点总结归纳(完整版

初中数学知识点总结归纳(完整版

初中数学知识点总结归纳(完整版初中数学是建立在小学数学的基础上的,它是中学数学的起点。

初中数学包括了很多知识点,下面是初中数学知识点的完整总结。

1.数与代数1.1自然数:整数、形式化运算1.2有理数:绝对值、相反数、比较大小、加减乘除1.3分数:相等、约分、比较大小、加减乘除、分数在数轴上的表示1.4百分数:百分数的意义、百分数与分数、百分数的加减乘除1.5整数:加减乘除、整数在数轴上的表示1.6算式与方程:算式的意义、算式的运算、算式与方程的关系1.7代数式与代数方程:项、系数、次数、等式、解方程、解不等式1.8四则运算:整数四则运算、有理数四则运算、分数四则运算1.9编码与解码:字符的编码、解码的算法与应用2.图形与空间2.1图形的基本概念:点、线、面、多边形2.2平面图形:多边形的内角和、相似三角形的性质、平行四边形、正方形、直角三角形2.3立体几何:长方体、正方体、棱柱、棱锥、棱台、球的计算2.4向量与坐标:向量的定义、向量的加减法、向量的模、向量坐标、空间直角坐标系2.5坐标综合题:平面坐标系中的距离和中点、线段的垂直平分线、平行线和垂直线的性质3.数据与数理统计3.1数据的整理:调查和统计、频率分布表、频数和频率3.2数据的描述:离散型数据与连续型数据、极差、平均数、中位数、众数3.3概率:概率的意义、事件的概率、概率的加法、概率的乘法3.4抽样调查:简单随机抽样、比例估计、误差与精度3.5统计问题:问题的定量化、问题的分类、解决问题的步骤4.初等几何4.1相似与全等:相似的判定、相似的性质、相似的应用、全等的判定、全等的性质、全等的应用4.2几何证明:运用已知条件与证明结论、利用定义与性质证明、综合运用定理和公理证明4.3三角形:三角形的内外角、三角形的分类、三角形的性质、三角形的综合题4.4平行线与三角形:平行线的性质、平行线的判定、平行线与三角形的性质、平行线与平面图形的性质4.5连接与垂直:垂直线段的判定、垂直角的性质、垂直的判定定理、垂直线段的应用4.6圆的性质与计算:圆的中心与半径、弧长与扇形面积、圆与直角三角形5.函数与图像5.1一元一次方程与一元二次方程:解方程、解不等式、解方程的应用、解不等式的应用5.2一次函数与二次函数:函数的定义、函数的性质、函数的图象、函数关系、函数方程、函数的应用5.3幂函数与反比例函数:幂函数的图象、反比例函数的图象、幂函数与反比例函数的性质、幂函数与反比例函数的应用5.4函数的实际问题:函数模型、函数图象的应用、函数方程与不等式。

初一数学知识点归纳总结人教版(最全)

初一数学知识点归纳总结人教版(最全)

初一数学知识点归纳总结人教版(最全)七年级数学知识点总结1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b 的相反数是-a-b;4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:绝对值的问题经常分类讨论;(3)a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|,5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.初中数学的学习方法一、抓住课堂理科学习重在平日功夫,不适于突击复习。

平日学习最重要的是课堂45分钟,听讲要聚精会神,思维紧跟老师。

同时要说明一点,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于某道题目的解答。

二、高质量完成作业所谓高质量是指高正确率和高速度。

写作业时,有时同一类型的题重复练习,这时就要有意识的考查速度和准确率,并且在每做完一次时能够对此类题目有更深层的思考,诸如它考查的内容,运用的数学思想方法,解题的规律、技巧等。

初中七年级数学知识点总结

初中七年级数学知识点总结

初中七年级数学知识点总结5篇初一数学知识点1.不等式:用符号"<",">","≤","≥"表示大小关系的式子叫做不等式。

2.不等式分类:不等式分为严格不等式与非严格不等式。

一般地,用纯粹的大于号、小于号">","<"连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)"≥","≤"连接的不等式称为非严格不等式,或称广义不等式。

3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

5.不等式解集的表示方法:(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。

6.解不等式可遵循的一些同解原理(1)不等式F(x)< G(x)与不等式 G(x)>F(x)同解。

(2)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,那么不等式 F(x)< G(x)与不等式H(x)+F(x)(3)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)< G(x)与不等式H(x)F(x)0,那么不等式F(x)< G(x)与不等式H(x)F(x)>H(x)G(x)同解。

7.不等式的性质:(1)如果x>y,那么yy;(对称性)(2)如果x>y,y>z;那么x>z;(传递性)(3)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)(4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz(5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z(6)如果x>y,m>n,那么x+m>y+n(充分不必要条件)(7)如果x>y>0,m>n>0,那么xm>yn(8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数)初一下册数学知识点1.数据的整理:我们利用划记法整理数据,如下图所示,2.数据的描述:为了更直观地看出上表中的信息,我们还可以用条形统计图和扇形统计图来描述数据。

七年级数学知识点归纳总结

七年级数学知识点归纳总结

七年级数学知识点归纳总结一、数与代数1. 整数- 整数 classification- 偶数与奇数- 质数与合数- 整数的四则运算- 整数的性质2. 有理数- 有理数的概念- 有理数的加法与减法- 有理数的乘法与除法- 有理数的比较大小- 绝对值与有理数的性质3. 代数表达式- 单项式与多项式- 代数式的加减运算- 代数式的乘法运算- 代数式的除法运算- 因式分解4. 一元一次方程- 方程的概念- 解一元一次方程- 方程的应用问题5. 不等式- 不等式的概念- 不等式的解集- 一元一次不等式的解法- 一元一次不等式的应用二、几何1. 平面图形- 点、线、面的基本性质- 直线、射线、线段- 角的概念与分类- 平行线的性质- 三角形的基本概念与分类2. 图形的性质- 三角形的内角和外角- 等腰三角形与等边三角形- 三角形的中线、高线、角平分线- 四边形的基本概念与分类- 特殊四边形的性质(矩形、菱形、正方形、平行四边形)3. 图形的变换- 平移- 旋转- 轴对称(镜像对称)三、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表(条形图、折线图、饼图)- 平均数、中位数与众数2. 概率- 概率的基本概念- 随机事件的概率- 概率的计算方法- 简单事件与复合事件的概率四、解题技巧与策略1. 审题- 理解题目要求- 识别题目中的关键词2. 画图辅助- 利用图形帮助理解问题- 画出示意图或草图3. 分析与归纳- 分析问题的关键点- 归纳已知条件与求解目标4. 检查与验证- 计算过程中的检查- 答案的验证五、常见错误分析1. 计算错误- 四则运算的失误- 代数运算的法则错误2. 理解错误- 对题目要求的误解- 对数学概念的混淆3. 策略错误- 解题方法的选择不当- 忽略题目中的隐含条件通过上述归纳总结,学生可以更好地掌握七年级数学的核心知识点,为进一步的数学学习打下坚实的基础。

教师和家长也可根据这些点进行检查和辅导,帮助学生巩固和提高数学成绩。

七年级数学知识点全总结

七年级数学知识点全总结

一、整数1.整数的定义及性质2.整数的大小比较3.整数的加减法4.整数的乘法5.整数的除法6.整数的混合运算与运算顺序7.整数的绝对值与相反数二、分数1.分数的定义及性质2.分数的化简3.分数与整数的比较4.分数的加减法5.分数的乘法6.分数的除法7.分数的混合运算与运算顺序8.分数的倒数与负数三、小数1.小数的定义及性质2.小数的读写方法3.小数的大小比较4.小数的加减法5.小数的乘法6.小数的除法7.小数和分数的互相转化8.无限循环小数四、代数式与方程1.代数式的定义及性质2.代数式的合并与展开3.方程的定义及性质4.一元一次方程的解法5.一元一次方程的应用问题6.方程的应用问题五、比例与百分数1.比例的定义及性质2.比例的四种关系式3.比例的应用问题4.百分数的定义及性质5.百分数的转化与运算6.百分数的应用问题六、平面图形1.点、线、线段、射线的定义及性质2.角的定义及性质3.三角形的定义及性质4.三角形的周长与面积5.一般四边形的定义及性质6.一般四边形的周长与面积7.圆的定义及性质8.圆的周长与面积七、空间图形1.立体图形的定义及性质2.立体图形的三视图与展开图3.立体图形的体积与表面积4.平面的平行与垂直5.坐标系与坐标平面6.直角坐标系与直角坐标算法八、统计与概率1.数据的收集与整理2.数据的表示方法3.数据的中心与离散程度4.数据的可视化表示5.事件的定义及性质6.事件的概率计算7.事件的应用问题以上是七年级数学的主要知识点,每个知识点都有相应的定义、性质及相关的应用问题。

逐步掌握这些知识点,能够帮助学生建立扎实的数学基础,为进一步的学习打下坚实的基础。

七年级全册数学知识点总结归纳

七年级全册数学知识点总结归纳

七年级全册数学知识点总结归纳本文将对七年级全册数学知识点进行总结归纳,旨在帮助学生们更好地掌握和理解数学知识。

一、整数与小数在七年级数学中,我们首先学习了整数与小数的基本概念。

整数是正整数、负整数和零的集合,小数是有限或无限不循环小数的集合。

我们需要掌握整数的加减乘除法以及小数的加减乘除法。

此外,还需要能够将整数和小数相互转换。

二、分数与比例分数是数的一种表达形式,由分子和分母组成,分母表示分成的份数,分子表示其中的份额。

我们需要了解分数的基本性质和运算法则,并能进行分数的加减乘除运算。

比例是两个数或者多个数之间的等比关系,我们需要学会求解比例问题。

三、图形的性质和应用在七年级数学中,我们学习了各种常见的图形,如直线、射线、线段、角、三角形、四边形和圆等。

我们需要了解这些图形的基本性质,如线段的长短、角的大小和形状等,并能应用这些性质解决实际问题。

四、线性方程与一元一次方程线性方程是一个或几个未知数的一次方程,我们需要学会根据题意列方程,然后求解未知数。

一元一次方程是一种特殊的线性方程,它只有一个未知数。

我们需要熟练掌握解一元一次方程的方法,如等式两边加减乘除相同数值,以及移项等操作。

五、数据的处理与统计在数学中,我们经常遇到一些数据,如调查数据、统计数据等。

我们需要学会对数据进行整理、分类、分析和表示。

在统计学中,我们还需要学会计算平均数、中位数和众数等统计指标。

六、几何变换几何变换是指图形在平面上进行的位置、形状或大小的变化。

在七年级数学中,我们学习了平移、旋转、翻折和对称等几何变换。

我们需要了解这些变换的定义和性质,并能够应用这些变换进行解题。

七、概率概率是数学中用来描述某一事件发生可能性的数值。

在七年级数学中,我们学习了基本事件、随机事件和概率等概念。

我们需要学会计算概率,并能够应用概率解决问题。

综上所述,七年级全册数学知识点主要包括整数与小数、分数与比例、图形的性质和应用、线性方程与一元一次方程、数据的处理与统计、几何变换以及概率等。

七年级数学知识点大全总结

七年级数学知识点大全总结

七年级数学知识点大全总结为了帮助七年级的学生更好地掌握数学知识点,我们特别准备了这篇七年级数学知识点大全总结的文章。

以下将从不同的数学知识点进行介绍。

一、有理数1. 有理数的概念有理数是指能够表示为两个整数的比值的数,包括正、负整数和正、负分数。

有理数的运算包括加、减、乘、除、化简等。

2. 有理数的表示有理数可以用分数线表示,如 $\frac{1}{2}$,也可以用小数表示,如 $0.5$。

当然,小数也可以表示成分数的形式。

3. 有理数的加减乘除有理数的加减乘除运算,需要注意正负数的加减和分数的化简。

如何正确处理正负数间以及分数的运算,是掌握有理数运算的关键。

二、代数表达式1. 代数表达式的概念代数表达式是包含数、字母、符号和运算符的式子,例如$2x+3$。

其中,字母表示未知数,符号表示运算符,运算符包括加减乘除和括号等。

2. 代数式的化简代数式的化简是指将一个代数式约简到最简形式的过程。

化简代数式可以帮助我们更好地理解和运用代数知识,并且简化计算。

三、图形的认识1. 平面图形的分类平面图形的分类有三类,分别是点、线和面。

点是指没有大小和形状的位置;线是指有长度而没有宽度的物体;面是指有长宽和面积的物体。

2. 常见图形的性质常见的图形包括正方形、矩形、三角形、圆形等。

它们的性质也不同,例如正方形的四边相等,对角线相等;矩形的相邻边相等,对角线相等等。

四、几何运算1. 长度的计算长度是几何学研究的基本问题之一。

计算长度可以用尺规作图、勾股定理、三角函数等方式。

2. 面积的计算面积是平面图形所占的空间大小。

计算面积可以用几何图形的公式,如长方形面积公式 $S=ab$;三角形面积公式$S=\frac{1}{2}bh$。

五、比例1. 比例的概念比例是指两个或多个量之间的大小关系。

比例由两个部分组成,比例中第一个数叫做“比”,第二个数叫做“比值”。

2. 比例的运用比例有广泛的运用,例如数学、物理、化学等。

七年级单元数学知识点总结

七年级单元数学知识点总结

七年级单元数学知识点总结
一、有理数和整数
1. 正数、负数
2. 有理数的大小比较
3. 数轴和负数的加减法
4. 整数的加减法
二、分数
1. 分数的概念
2. 分数的加法和减法
3. 分数的乘法和除法
4. 分数的大小比较
5. 分数的化简
三、代数表达式、方程式和不等式
1. 代数表达式的概念和基本形式
2. 代数表达式的加减法和乘法
3. 一元一次方程的概念和解法
4. 一元一次不等式的概念和解法
四、比例和百分数
1. 比例的概念和性质
2. 比例中的四则运算
3. 百分数的概念和基本性质
4. 百分数的加减乘除运算
五、图形的认识和计算
1. 平行线和垂直线
2. 三角形和四边形的性质
3. 图形的周长和面积的计算
4. 直角坐标系
六、统计和概率
1. 数据的收集和整理
2. 数据的分析和描述
3. 概率的概念和计算
七、三角形和四边形的性质
1. 三角形的分类和性质
2. 四边形的分类和性质
3. 多边形的性质和计算
八、函数
1. 函数的概念和性质
2. 函数的图象和性质
3. 函数的四则运算
以上就是七年级数学知识点的总结。

在日常学习中,我们应该重点掌握这些知识点,并通过练习和实际应用来巩固这些知识。

希望大家都能在数学学习中取得优异的成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学知识点总结(初一上学期)一、代数初步知识1、代数式:用运算符号“+-×÷”连接数及表示数的字母的式子称为代数式。

注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。

2、列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“²”乘,或省略不写。

(2)数与数相乘,仍应使用“×”乘,不用“²”乘,也不能省略乘号。

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a。

(4)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如(5)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a。

3、几个重要的代数式:(1)a与b的平方差是:a2 -b2;a与b差的平方是:(a-b)2。

(2)若a、b、c是正整数,则两位整数是:10a+b;则三位整数是:100a+10b+c。

(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1。

(4)若b>0,则正数是:a2 +b ,负数是:-a2 -b,非负数是:b2,非正数是:-b2。

二、有理数(自然数→整数→分数)1、有理数:0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

(注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p 不是有理数)(2)有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。

(3)自然数是指0和正整数;a >0,则a 是正数;a <0,则a 是负数;a ≥0 ,则a 是正数或0(即a 是非负数);a ≤0,则a 是负数或0(即a 是非正数)。

2、数轴:数轴是规定了原点、正方向、单位长度的一条直线.3、相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0。

(2)注意:a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0时,则a+b=0;即a 、b 互为相反数。

4、绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数。

(注意:绝对值的意义是数轴上表示某数的点离开原点的距离)。

(2)绝对值可表示为|a|。

(3)|a|是重要的非负数,即|a|≥0。

(注意:|a|²|b|=|a ²b|)。

5、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数< 0。

6、互为倒数: 乘积为1的两个数互为倒数。

(注意:0没有倒数;若 a 、b ≠0,那么a b 的倒数是ba ;倒数是本身的数是±1;若ab=1,则a 、b 互为倒数;若ab=-1,则a 、b 互为负倒数。

7、有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

(3)一个数与0相加,仍得这个数。

8、有理数加法的运算律:(1)加法的交换律:a+b=b+a 。

(2)加法的结合律:(a+b)+c=a+(b+c)。

9、有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。

10、有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘。

(2)任何数同零相乘都得零。

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。

11、有理数乘法的运算律:(1)乘法的交换律:ab=ba。

(2)乘法的结合律:(ab)c=a(bc)。

(3)乘法的分配律:a(b+c)=ab+ac。

12、有理数除法法则:除以一个数等于乘以这个数的倒数。

(注意:零不能做除数)13、有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数。

注意:当n为正奇数时: (-a)n= -a n或(a -b)n= -(b-a)n , 当n为正偶数时: (-a)n = a n或 (a-b)n=(b-a)n。

14、乘方的定义:(1)求相同因式积的运算,叫做乘方。

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂。

(3)a2是重要的非负数,即a2≥0;若a2+|b|=0 ,则a=0,b=0。

(4)底数的小数点移动一位,平方数的小数点移动二位。

15、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。

16、近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。

3.1415四舍五入变成3.142,那么说3.142这个近似数精确到千分之一位;31415四舍五入变成31420,那么说31420精确到十位。

17、有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。

3.1415四舍五入变成3.142时,3.14是有效数字。

18、混合运算法则:先乘方,后乘除,最后加减。

注意:怎样算简单,怎样算准确,是数学计算的最重要的原则。

19、特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明。

三、整式的加减1、单项式:在代数式中,若只含有乘法(包括乘方)运算。

或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。

2、单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。

3、多项式:几个单项式的和叫多项式。

4、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。

5、整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式。

6、同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。

7、合并同类项法则:系数相加,字母与字母的指数不变。

8、去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。

9、整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并。

10、多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。

注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。

四、一元一次方程1、等式与等量:用“=”号连接而成的式子叫等式。

注意:“等量就能代入”。

2、等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。

等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。

3、方程:含未知数的等式,叫方程。

4、方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”。

5、移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1。

6、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

7、一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a ≠0)。

8、一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a≠0)。

9、一元一次方程解法的一般步骤:整理方程—去分母—去括号—移项—合并同类项—系数化为1 —(检验方程的解)。

10.列一元一次方程解应用题:(1)读题分析法:多用于“和,差,倍,分问题”。

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套等”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。

(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。

11、列方程解应用题的常用公式:(1)行程问题:距离=速度×时间(2)工程问题:工作量=工效×工时(3)比率问题:部分=全体×比率(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价×折;利润=售价-成本;(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,1πR2h。

V圆柱=πR2h ,V圆锥=3初一下学期一、二元一次方程组1、二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程。

(注意:一般说二元一次方程有无数个解)2、二元一次方程组:两个二元一次方程联立在一起是二元一次方程组。

3、二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解。

注意:一般说二元一次方程组只有唯一解(即公共解)。

4、二元一次方程组的解法:(1)代入消元法(2)加减消元法(3)注意:判断如何解简单是关键。

5、二元一次方程组的应用:(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则“难列易解”。

(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值。

(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系。

二、一元一次不等式(组)1、不等式:用不等号“>”“<”“≤”“≥”“≠”,把两个代数式连接起来的式子叫不等式。

2、不等式的基本性质:基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

相关文档
最新文档