七年级数学直线、射线、线段同步试题1

合集下载

【数学】七年级上册直线、射线、线段、角(同步练习题三套含答案)

【数学】七年级上册直线、射线、线段、角(同步练习题三套含答案)

直线、射线、线段、角(同步练习题三套)直线、射线、线段同步练习题(一)一.选择题1.两根木条,一根长18cm,一根长22cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.2cm或20cm 2.延长线AB到C,使得BC=AB,若线段AC=8,点D为线段AC的中点,则线段BD 的长为()A.2B.3C.4D.53.如图,点C是线段BD之间的点,有下列结论①图中共有5条线段;②射线BD和射线DB是同一条射线;③直线BC和直线BD是同一条直线;④射线AB,AC,AD的端点相同,其中正确的结论是()A.②④B.③④C.②③D.①③4.下列说法中,正确的是()A.若线段AC=BC,则点C是线段AB的中点B.任何有理数的绝对值都不是负数C.角的大小与角两边的长度有关,边越长角越大D.两点之间,直线最短5.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,若在平面内的不同的n个点最多可确定36条直线,则n的值为()A.6B.7C.8D.96.如图,工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖.用数学知识解释其中道理,正确的是()A.两点之间,线段最短B.射线只有一个端点C.两直线相交只有一个交点D.两点确定一条直线7.下列说法中正确的个数为()(1)如果AC=CB,则点C是线段AB的中点;(2)连结两点的线段叫做这两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半;(5)平面内3条直线至少有一个交点.A.1个B.2个C.3个D.4个8.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.经过两点有一条直线,并且只有一条直线B.两条直线相交只有一个交点C.两点之间所有连线中,线段最短D.两点之间线段的长度,叫做这两点之间的距离9.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有()A.1个B.2个C.3个D.4个10.如图是北京地铁的路线图,小明家住复兴门,打算趁着放假去建国门游玩,看了路线图后,小明打算乘坐①号线地铁去,认为可以节省时间,他这样做的依据是()A.垂线段最短B.两点之间,直线最短C.两点确定一条直线D.两点之间,线段最短二.填空题11.若两条直线相交,有个交点,三条直线两两相交有个交点.12.在直线上任取一点A,截取AB=16cm,再截取AC=40cm,则AB的中点D与AC的中点E之间的距离为cm.13.已知线段AB,在AB的延长线上取一点C,使AC=2BC,若在AB的反向延长线上取一点D,使DA=2AB,那么线段AC是线段DB的倍.14.已知:如图,B,C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=6cm,则线段MC的长为.15.如图,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是.三.解答题16.已知线段AB,在AB的延长线上取一点C,使BC=3AB,在BA的延长线上取一点D,使DA=2AB,E为DB的中点,且EB=30cm,请画出示意图,并求DC的长.17.课间休息时小明拿着两根木棒玩,小华看到后要小明给他玩,小明说:“较短木棒AB 长40cm,较长木棒CD长60cm,将它们的一端重合,放在同一条直线上,此时两根木棒的中点分别是点E和点F,则点E和点F间的距离是多少?你说对了我就给你玩”聪明的你请帮小华求出此时两根木棒的中点E和F间的距离是多少?18.已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.19.已知点C,D在线段AB上(点C,D不与线段AB的端点重合),AC+DB=AB.(1)若AB=6,请画出示意图并求线段CD的长;(2)试问线段CD上是否存在点E,使得CE=AB,请说明理由.参考答案与试题解析一.选择题1.【解答】解:如图,设较长的木条为AB=22cm,较短的木条为BC=18cm,∵M、N分别为AB、BC的中点,∴BM=11cm,BN=9cm,∴①如图1,BC不在AB上时,MN=BM+BN=11+9=20cm,②如图2,BC在AB上时,MN=BM﹣BN=11﹣9=2cm,综上所述,两根木条的中点间的距离是2cm或20cm;故选:D.2.【解答】解:∵BC=AB,AC=8,∴BC=2,∵D为线段AC的中点,∴DC=4,∴BD=DC﹣BC=4﹣2=2;故选:A.3.【解答】解:①图中共有6条线段,错误;②射线BD和射线DB不是同一条射线,错误;③直线BC和直线BD是同一条直线,正确;④射线AB,AC,AD的端点相同,正确,故选:B.4.【解答】解:A、若线段AC=BC,则点C是线段AB的中点,错误,A、B、C三点不一定共线,故本选项错误;B、任何有理数的绝对值都不是负数,正确,故本选项正确;C、应为:角的大小与角两边的长度无关,故本选项错误;D、应为:两点之间,线段最短,故本选项错误.故选:B.5.【解答】解:∵平面内不同的两点确定1条直线,可表示为:=1;平面内不同的三点最多确定3条直线,可表示为:=3;平面内不同的四点确定6条直线,可表示为:=6;以此类推,可得:平面内不同的n点可确定(n≥2)条直线.由已知可得:=36,解得n=﹣8(舍去)或n=9.故选:D.6.【解答】解:工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖,则其中的道理是:两点确定一条直线.故选:D.7.【解答】解:(1)如果AC=CB,则点C是线段AB垂直平分线上的点,原来的说法错误;(2)连结两点的线段的长度叫做这两点间的距离,原来的说法错误;(3)两点之间所有连线中,线段最短是正确的;(4)射线与直线都是无限长的,原来的说法错误;(5)平面内互相平行的3条直线没有交点,原来的说法错误.故选:A.8.【解答】解:某同学用剪刀沿直线将一片平整的荷叶剪掉一部分(如图),发现剩下的荷叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是:两点之间所有连线中,线段最短,故选:C.9.【解答】解:①不带“﹣”号的数不一定是正数,错误;②如果a是正数,那么﹣a一定是负数,正确;③射线AB和射线BA不是同一条射线,错误;④直线MN和直线NM是同一条直线,正确;故选:B.10.【解答】解:由图可知,乘坐①号地铁走的是直线,所以节省时间的依据是两点之间线段最短.故选:D.二.填空题(共5小题)11.【解答】解:两条直线相交,有1个交点,三条直线两两相交有1或3个交点.故答案为:1,1或3.12.【解答】解:①如图1,当B在线段AC上时,∵AB=16cm,AC=40cm,D为AB中点,E为AC中点,∴AD=AB=8cm,AE=AC=20cm,∴DE=AE﹣AD=20cm﹣8cm=12cm;②如图2,当B不在线段AC上时,此时DE=AE+AD=28cm;故答案为:12或28.13.【解答】解:如下图所示:设AB=1,则DA=2,AC=2,∴可得:DB=3,AC=2,∴可得线段AC是线段DB的倍.故答案为:.14.【解答】解:∵B,C两点把线段AD分成2:4:3三部分,∴设AB=2x,BC=4x,CD=3x,∵CD=6cm,即3x=6cm,解得x=2cm,∴AD=2x+4x+3x=9x=9×2=18cm,∵M是AD的中点,∴MD=AD=×18=9cm,∴MC=MD﹣CD=9﹣6=3cm.故答案为:3cm.15.【解答】解:根据线段的性质:两点之间线段最短可得,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是两点之间线段最短.故答案为:两点之间线段最短.三.解答题(共4小题)16.【解答】解:如图:∵E为DB的中点,EB=30cm,∴BD=2EB=60cm,又∵DA=2AB,∴AB=BD=20cm,AD=BD=40cm,∴BC=3AB=60cm,∴DC=BD+BC=120cm.17.【解答】解:如图1,当AB在CD的左侧且点B和点C重合时,∵点E是AB的中点,∴BE=AB=×40=20cm,∵点F是CD的中点(或点F是BD的中点)∴CF=CD=×60=30cm(或BF=CD=×60=30cm),∴EF=BE+CF=20+30=50cm(或EF=BE+BF=20+30=50cm);如图2.当AB在CD上且点B和点C重合时,∵点E是AB的中点,∴BE=AB=×40=20cm,∵点F是CD的中点(或点F是BD的中点),∴CF=CD=×60=30cm(或BF=CD=×60=30cm),∴EF=CF﹣BE=30﹣20=10cm(或EF=BF﹣BE=30﹣20=10cm).∴此时两根木棒的中点E和F间的距离是50cm或10cm.18.【解答】解:(1)当m=4时,BC=4,又∵AB=6,∴AC=4+6=10,又M为AC中点,∴AM=MC=5,∴BM=AB﹣AM,=6﹣5=1;(2)∵AB=6,BC=m,∴AC=6+m,∵M为AC中点,∴,①当D在线段BC上,M在D的左边时,CD=n,MD=MC﹣CD==;②当D在线段BC上,M在D的右边边时,CD=n,MD=DC﹣MC=n﹣=;③当D在l上且在点C的右侧时,CD=n,MD=MC+CD=+n=.19.【解答】解:(1)如图所示:∵AC+DB=AB,AB=6,∴AC+DB=2,∴CD=AB﹣(AC+DB)=6﹣2=4;(2)线段CD上存在点E,使得CE=AB,理由是:∵AC+DB=AB角同步练习试题一、选择题(本大题共12小题,共36分)1.如图,下面四种表示角的方法,其中正确的是()。

2020年秋人教版七年级上册同步练习:4.2《直线、射线、线段》 含答案

2020年秋人教版七年级上册同步练习:4.2《直线、射线、线段》  含答案

2020年人教版七年级上册同步练习:4.2《直线、射线、线段》一.选择题1.“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短2.如图,从A到B有三条路径,最短的路径是③,理由是()A.两点确定一条直线B.两点之间,线段最短C.过一点有无数条直线D.因为直线比曲线和折线短3.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行4.如图,线段AB=DE,点C为线段AE的中点,下列式子不正确的是()A.BC=CD B.CD=AE﹣AB C.CD=AD﹣CE D.CD=DE5.如图,一根长为10厘米的木棒,棒上有两个刻度,若把它作为尺子,量一次要量出一个长度,能量的长度共有()A.7个B.6个C.5个D.4个6.平面上有不同的三个点,经过其中任意两点画直线,一共可以画()A.1条B.2条C.3条D.1条或3条7.观察图形,下列说法正确的个数是()(1)直线BA和直线AB是同一条直线(2)射线AC和射线AD是同一条射线(3)AB+BD>AD(4)三条直线两两相交时,一定有三个交点.A.1个B.2个C.3个D.4个8.直线a上有5个不同的点A、B、C、D、E,则该直线上共有()条线段.A.8B.9C.12D.109.如图,下列说法正确的是()A.点O在射线AB上B.点B是直线AB的一个端点C.射线OB和射线AB是同一条射线D.点A在线段OB上10.由唐山开往石家庄的G6738次列车,途中有5个停车站,这次列车的不同票价最多有()A.21种B.10种C.42种D.20种11.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC 的中点,则线段MN的长度为()A.5cm B.5cm或3cm C.7cm或3cm D.7cm12.两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.4cm或44cm 二.填空题13.把一段弯曲的河流改直,可以缩短航程,其理由是.14.如图,是从甲地到乙地的四条道路,其中最短的路线是,理由是.15.如图,已知AB=8cm,BD=3cm,C为AB的中点,则线段CD的长为cm.16.如图,A,B,C,D,E,P,Q,R,S,T是构成五角星的五条线段的交点,则图中共有线段条.17.直线AB,BC,CA的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC的交点,以上语句正确的有(只填写序号)18.已知线段AB和BC在同一条直线上,若AC=6cm,BC=2cm,则线段AC和BC中点间的距离为.19.如图,若CB=4cm,DB=7cm,且D是AC的中点,则AC=cm.三.解答题20.如图,平面上有四个点A,B,C,D,根据下列语句画图:(1)画线段AC、BD交于E点;(2)作射线BC;(3)取一点P,使点P既在直线AB上又在直线CD上.21.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.22.如图,已知B是线段AC的中点,D是线段CE的中点,若AB=4,CE=AC,求线段BD的长.23.在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.24.如图:A、B、C、D四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC BD(填“>”、“=”或“<”);②若BC=AC,且AC=12cm,则AD的长为cm;(2)若线段AD被点B、C分成了3:4:5三部分,且AB的中点M和CD的中点N之间的距离是16cm,求AD的长.25.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置;(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM ﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.参考答案一.选择题1.解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.2.解:如图,最短路径是③的理由是两点之间线段最短,故B正确,故选:B.3.解:某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:A.4.解:因为点C为线段AE的中点,且线段AB=DE,则BC=CD,故本选项正确;B中CD=AC﹣AB=BC=CD,故本选项正确;C中CD=AD﹣BC﹣AB=CD,故本选项正确;D中CD≠DE则在已知里所没有的,故本选项错误;故选:D.5.解:∵图中共有3+2+1=6条线段,∴能量出6个长度,分别是:2厘米、3厘米、5厘米、7厘米、8厘米、10厘米.故选:B.6.解:如图,经过其中任意两点画直线可以画3条直线或1条直线,故选:D.7.解:(1)直线BA和直线AB是同一条直线,直线没有端点,此说法正确;(2)射线AC和射线AD是同一条射线,都是以A为端点,同一方向的射线,正确;(3)AB+BD>AD,三角形两边之和大于第三边,所以此说法正确;(4)三条直线两两相交时,一定有三个交点,错误,可能有1个交点的情况.所以共有3个正确.故选:C.8.解:根据题意画图:由图可知有AB、AC、AD、AE、BC、BD、BE、CD、CE、DE,共10条.故选:D.9.解:A、点O不在射线AB上,点O在射线BA上,故此选项错误;B、点B是线段AB的一个端点,故此选项错误;C、射线OB和射线AB不是同一条射线,故此选项错误;D、点A在线段OB上,故此选项正确.故选:D.10.解:根据题意知这次列车的不同票价最多有6+5+4+3+2+1=21(种),故选:A.11.解:如图1,由M是AB的中点,N是BC的中点,得MB=AB=4cm,BN=BC=1cm,由线段的和差,得MN=MB+BN=4+1=5cm;如图2,由M是AB的中点,N是BC的中点,得MB=AB=4cm,BN=BC=1cm,由线段的和差,得MN=MB﹣BN=4﹣1=3cm;故选:B.12.解:如图,设较长的木条为AB=24cm,较短的木条为BC=20cm,∵M、N分别为AB、BC的中点,∴BM=12cm,BN=10cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22cm,②如图2,BC在AB上时,MN=BM﹣BN=12﹣10=2cm,综上所述,两根木条的中点间的距离是2cm或22cm;故选:C.二.填空题13.解:把一段弯曲的河流改直,可以缩短航程,其理由是两点之间,线段最短,故答案为:两点之间,线段最短.14.解:由图可得,最短的路线为从甲经A到乙,因为两点之间,线段最短.故答案为:从甲经A到乙,两点之间,线段最短.15.解:∵C为AB的中点,AB=8cm,∴BC=AB=×8=4(cm),∵BD=3cm,∴CD=BC﹣BD=4﹣3=1(cm),则CD的长为1cm;故答案为:1.16.解:线段AC,BE,CE,BD,AD上各有另两个点,每条上有6条线段;所以共有6×5=30条线段.17.解:由图可得,①点B在直线BC上,正确;②直线AB不经过点C,错误;③直线AB,BC,CA两两相交,正确;④点B是直线AB,BC的交点,正确;故答案为:①③④.18.解:设AC、BC的中点分别为E、F,∵AC=6cm,BC=2cm,∴CE=AC=3cm,CF=BC=1cm,如图1,点B不在线段AC上时,EF=CE+CF=3+1=4(cm),如图2,点B在线段AC上时,EF=CE﹣CF=3﹣1=2(cm),综上所述,AC和BC中点间的距离为4cm或2cm.故答案为:4cm或2cm.19.解:CD=DB﹣BC=7﹣4=3cm,AC=2CD=2×3=6cm.故答案为:6.三.解答题20.解:(1)如图所示:;(2)如图所示,(3)如图所示,.21.解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.22.解:∵点B、D分别是AC、CE的中点,∴BC=AB=AC,CD=DE=CE,∴BD=BC+CD=(AC+CE),∵AB=4,∴AC=8,∵CE=AC,∴CE=6,∴BD=BC+CD=(AC+CE)=(8+6)=7.23.解:(1)若以B为原点,则C表示1,A表示﹣2,∴p=1+0﹣2=﹣1;若以C为原点,则A表示﹣3,B表示﹣1,∴p=﹣3﹣1+0=﹣4;(2)若原点O在图中数轴上点C的右边,且CO=28,则C表示﹣28,B表示﹣29,A 表示﹣31,∴p=﹣31﹣29﹣28=﹣88.24.解:(1)①∵AB=CD,∴AB+BC=CD+BC,即,AC=BD,故答案为:=;②∵BC=AC,且AC=12cm,∴BC=×12=9(cm),∴AB=CD=AC﹣BC=12﹣9=3(cm),∴AD=AC+CD=12+3=15(cm),故答案为:15;(2)如图,设每份为x,则AB=3x,BC=4x,CD=5x,AD=12x,∵M是AB的中点,点N是CD的中点N,∴AM=BM=x,CN=DN=x,又∵MN=16,∴x+4x+x=16,解得,x=2,∴AD=12x=24(cm),答:AD的长为24cm.25.解:(1)根据C、D的运动速度知:BD=2PC ∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处;(2)如图:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又AQ=AP+PQ,∴AP=BQ,∴,∴.当点Q'在AB的延长线上时AQ'﹣AP=PQ'所以AQ'﹣BQ'=PQ=AB所以=1;(3)②.理由:当CD=AB时,点C停止运动,此时CP=5,AB=30①如图,当M,N在点P的同侧时MN=PN﹣PM=PD﹣(PD﹣MD)=MD﹣PD=CD﹣PD=(CD﹣PD)=CP =②如图,当M,N在点P的异侧时MN=PM+PN=MD﹣PD+PD=MD﹣PD=CD﹣PD=(CD﹣PD)=CP=∴==当点C停止运动,D点继续运动时,MN的值不变,所以,=.。

七年级上册数学同步练习题库:直线、射线、线段(较难)

七年级上册数学同步练习题库:直线、射线、线段(较难)

直线、射线、线段(较难)1、平面内两两相交的6条直线,其交点个数最少为m个,最多为n个,则m+n等于( )A.12 B.16 C.20 D.以上都不对2、已知:点A,B,C在同一条直线上,点M、N分别是AB、AC的中点,如果AB=10cm,AC=8cm,那么线段MN的长度为()A.6cm B.9cm C.3cm或6cm D.1cm或9cm3、如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm4、如图所示,某公司有三个住宅区可看作一点,A,B,C各区分别住有职工30人、15人、10人,且这三个住宅区在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( )A.点A B.点BC.A,B之间 D.B,C之间5、平面上有任意四点,经过其中两点画一条直线,共可画()A.1条直线B.6条直线C.6条或4条直线D.1条或4条或6条直线6、如图,AB是⊙O的直径,已知AB=2,C,D是⊙O的上的两点,且 ,M是AB上一点,则MC+MD的最小值是__________.7、已知A、B、C三点都在数轴上,点A在数轴上对应的数为2,且AB=5,BC=3,则点C在数轴上对应的数为__________________.8、如图,已知点C(1,0),直线y= -x+7与两坐标轴分别交于A、B两点,D、E分别是AB,OA上的动点,当△CDE周长最小时,点D坐标为___________.9、如图,P为∠AOB内一定点,∠AOB=45°,M、N分别是射线OA、OB上任意一点,当△PMN周长的最小值为10时,则O、P两点间的距离为_______.10、如图,E为等腰直角△ABC的边AB上的一点,要使AE=3,BE=1,P为AC上的动点,则PB+PE的最小值为____________.11、如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,∠AOB=30°则△PMN周长的最小值=________12、如图,长方体的底面边长分别为1cm和2cm,高为4cm,点P在边BC上,BP=BC.若一只蚂蚁从A点开始经过3个侧面爬行一圈到达P点,则蚂蚁爬行的最短路径长为_________.13、如图,在△ABC中,BC=AC=4,∠ACB =90°,点M是边AC的中点,点P是边AB上的动点,则PM+PC的最小值为_______.14、如图,已知点C(1,0),直线y= -x+7与两坐标轴分别交于A、B两点,D、E分别是AB,OA上的动点,当△CDE周长最小时,点D坐标为___________.15、一条直线上有A,B,C三点,AB=6cm,BC=2cm,点P,Q分别是线段AB,BC的中点,则PQ=______ cm.16、线段,是的中点,是的中点,是的中点,是的中点,依此类推……,线段的长为____.17、如图,在平面直角坐标系中,点P(3,4),⊙P半径为2,A(2.6,0),B(5.2,0),点M是⊙P上的动点,点C是MB的中点,则AC的最小值为_____________.18、已知线段 AB="30cm,点" P 沿线段 AB 自点 A 向点 B 以 2cm/s 的速度运动,同时点 Q 沿线段 BA 自点 B 向点 A 以 3cm/s 的速度运动,则______秒钟后,P、Q 两点相距 10cm.19、如图,点P是∠AOB内部的一点,∠AOB=30°,OP=8 cm,M,N是OA,OB上的两个动点,则△MPN周长的最小值_____cm.20、如图,菱形ABCD的边长为5,对角线,点E在边AB上,BE=2,点P是AC上的一个动点,则PB+PE的最小值为______.21、在Rt△ABC中,∠C=90°,AC=6,BC=8,点E是BC边上的动点,连接AE,过点E作AE的垂线交AB边于点F,则AF的最小值为_______22、如图,直线上有4个点,问:图中有几条线段?几条射线?几条直线?23、如图,点C在线段AB上,AC="8" cm,CB="6" cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=b cm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?24、如图,C为线段AB上一点,D为线段AC的中点,E为线段CB的中点.(1)如果AB=6 cm,BC=4 cm,试求线段DE的长;(2)如果AB=a cm,试求线段DE的长;(3)若C在线段AB的延长线上,且满足AC-BC=b cm,D,E分别为AC,BC的中点,你能猜想出线段DE的长度吗?写出你的结论,不用说明理由.25、如图,线段AB上有两点P,Q,点P将AB分成两部分,AP=PB,点Q将AB也分成两部分,AQ =4QB,PQ=3 cm,求AP26、如图所示,读句画图.(1)连接AC和BD,交于点O.(2)延长线段AD,BC,它们交于点E.(3)延长线段CD与AB的反向延长线交于点F.27、(1)如图,点C在线段AB上,点M,N分别是AC,BC的中点。

青岛版七年级数学上 1.3 线段、射线和直线 同步练习题(含答案)

青岛版七年级数学上 1.3 线段、射线和直线 同步练习题(含答案)

1.3线段、射线和直线同步练习题一.选择题(共10小题)1.(2015春•泰山区期中)如图,图中共有线段的条数是()A.4 B.5C.6D.7、2.(2015春•东平县校级月考)下列各直线的表示法中,正确的是()A.直线A B.直线AB C.直线ab D.直线Ab3.(2014•昆山市模拟)如图,点A、B、C在一直线上,则图中共有射线()A.1条B.2条C.4条D.6条4.(2015春•龙口市期中)延长线段AB到C,下列说法正确的是()A.点C在线段AB上B.点C在直线AB上C.点C不在直线AB上D.点C在直线BA的延长线上5.(2014•义乌市)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()(5题图)(7题图)(10题图)A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直6.(2014秋•嘉禾县校级期末)用两个钉子把直木条钉在墙上,木条就固定了,这说明()A.一条直线上只有两点B.两点确定一条直线C.过一点可画无数条直线D.直线可向两端无限延伸7.(2015•新疆)如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B8.(2015•石家庄校级模拟)把一条弯曲的公路改成直道,可以缩短路程,用几何知识解释其道理,正确的是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.三角形两边之和大于第三边9.(2014秋•浠水县期末)如下图,直线l、射线PQ、线段MN中能相交的是()A.B.C.D.10.(2014秋•建湖县期末)如图,平面内有公共端点的六条射线OA、OB、OC、OD、OE、OF,从射线OA 开始按逆时针依次在射线上写出数字1、2、3、4、5、6、7…,则数字“2008”在()A.射线OA上B.射线OB上C.射线OD上D.射线OF上二.填空题(共10小题)11.(2015春•泰山区期中)如图,小明到小颖家有四条路,小明想尽快到小颖家,他应该走第条路,其中的道理是.(11题图)(20题图)12.(2014秋•平南县期末)平面内三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=.13.(2014秋•温州期末)如图,A、B、C三点在同一直线上.(1)用上述字母表示的不同线段共有条;(2)用上述字母表示的不同射线共有条.14.(2014秋•兴化市期末)一条直线上有5个不同的点,则这条直线上有线段条.15.(2014秋•新泰市校级期末)将一根细木条固定在墙上,只需两个钉子,其依据是.16.(2014秋•娄底期末)小朋友在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为:.17.(2014秋•围场县校级期末)农民兴修水利,开挖水渠,先在两端立柱拉线,然后沿线开挖,其中的道理是.18.(2014秋•兴义市期中)人们喜欢把弯弯曲曲的公路改为直道,其中隐含着数学道理的是.19.(2014秋•裕安区期末)在看中央电视台“动物世界”节目时,我们可以看到这样的画面:非洲雄狮在广阔的草原上捕食鹿时,总是沿直线狂奔,其中蕴含的数学知识是.20.(2013秋•天柱县期末)如图,平面内有公共端点的六条射线:OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字:1,2,3,4,5,6,7,….根据规律将射线OD上的第n个数字(从O向D数)用含正整数n的式子表示为.三.解答题(共5小题)21.(2015春•泰山区期中)按要求画一画,再填空(1)延长AB到C,使BC=AB;(2)延长BA到D,使AD=2AB;(3)根据画图过程,推想下列线段之间具有的等量关系,并将倍数填在横线上:CD=BC,BD=BC=AC.22.(2014秋•商丘期末)如图,C是线段AB外一点,按要求画图:(1)画射线CB;(2)反向延长线段AB;(3)连接AC,并延长AC至点D,使CD=AC.23.(2014秋•江西期末)点A,B,C,D的位置如图,按下列要求画出图形.(1)画直线AB,直线CD,它们相交于点E;(2)连接AC,连接BD,它们相交于点O;(3)画射线AD,射线BC,它们交于点F.24.(2014秋•东城区期末)作图题:已知平面上点A,B,C,D.按下列要求画出图形:(1)作直线AB,射线CB;(2)取线段AB的中点E,连接DE并延长与射线CB交于点O;(3)连接AD并延长至点F,使得AD=DF.25.(2014秋•冠县校级期末)①如图1直线l上有2个点,则图中有2条可用图中字母表示的射线,有1条线段;②如图2直线l上有3个点,则图中有条可用图中字母表示的射线,有条线段;③如图3直线上有n个点,则图中有条可用图中字母表示的射线,有条线段;④应用③中发现的规律解决问题:某校七年级共有6个班进行足球比赛,准备进行循环赛(即每两队之间赛一场),预计全部赛完共需场比赛.参考答案一.选择题(共10小题)1.C 2.B 3.D 4.B 5.A 6.B 7.B 8.B 9.D 10.C二.填空题(共10小题)11.②两点之间线段最短12.4 13.34 14.10 15.两点确定一条直线16.两点确定一条直线17.两点确定一条直线18.两点间线段最短19.两点之间,线段最短20.6n-2三.解答题(共5小题)21.解:(1)(2)如图:;(3)∵BC=AB,AD=2AB,∴CD=4BC,BD=3BC=AC.故答案为:4;3;.22.解:23.解:(1)如图所示:(2)如图所示:(3)如图所示.24.解:如图所示:.25.解:②射线有:A1A2、A2A3、A2A1、A3A1共4条,线段有:A1A2、A1A3、A2A3共3条;③2n﹣2,;④=15.。

人教版数学七年级上册4.2直线 射线 线段测试带答案解析

人教版数学七年级上册4.2直线 射线 线段测试带答案解析

4.2直线、射线、线段小测验007(满分60)姓名:分数:一、客观题(每题3分,共33分)1.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定3.乘特快列车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站,最后到达枣庄站,那么从济南西站到枣庄站这段线路的火车票价格最多有()A.8种B.9种C.10种D.11种4.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画直线.5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有个交点,最少有个交点.6.平面上有任意三点,过其中两点画直线,共可以画条直线.7.如图1,图中共有条线段,它们是.如图2,图中共有条射线,指出其中的两条.8.要在墙上固定一根木条,至少要个钉子,根据的原理是.9.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是.10.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是.11.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有个.二、解答题(共27分)12.(8分)点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.13.(9分)(1)如图1,在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N为线段AP的中点,若AB=n,且使关于x的方程(n﹣4)x=6﹣n无解.①求线段AB的长;②线段MN的长与点P在线段AB上的位置有关吗?请说明理由;(2)如图2,点C为线段AB的中点,点P在线段CB的延长线上,试说明的值不变.14.(10分)如图,B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动1次,C是线段BD的中点,AD=15cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,求线段AB和CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变.求出EC的长;若发生变化,请说明理由.参考答案与试题解析1.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个【分析】根据题意画出图形,根据中点的特点即可得出结论.【解答】解:如图所示:①∵AP=BP,∴点P是线段AB的中点,故本小题正确;②点P可能在AB的延长线上时不成立,故本小题错误;③P可能在BA的延长线上时不成立,故本小题错误;④∵AP+PB=AB,∴点P在线段AB上,不能说明点P是中点,故本小题错误.故选:A.【点评】本题考查的是两点间的距离,熟知中点的特点是解答此题的关键.2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定【分析】根据比较线段的长短进行解答即可.【解答】解:由图可知,A′B′<AB;故选:C.【点评】本题主要考查了比较线段的长短,解题的关键是正确比较线段的长短.3.乘特快列车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站,最后到达枣庄站,那么从济南西站到枣庄站这段线路的火车票价格最多有()A.8种B.9种C.10种D.11种【分析】根据题意确定出数学模型,五点确定出线段条数,计算即可得到结果.【解答】解:根据题意得:从济南西站到枣庄站这段线路的火车票价格最多有==10种,故选:C.【点评】此题考查了直线、射线、线段、从实际问题中抽象出数学模型是解本题的关键.4.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画1条或4条或6条直线.【分析】分四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可.【解答】解:分三种情况:①四点在同一直线上时,只可画1条;②当三点在同一直线上,另一点不在这条直线上,可画4条;③当没有三点共线时,可画6条;故答案为:1条或4条或6条.【点评】本题考查了直线、射线、线段,在没有明确平面上四点是否在同一直线上时,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有10个交点,最少有1个交点.【分析】直线交点最多时,根据公式,把直线条数代入公式求解即可,直线相交于同一个点时最少,是1个交点.【解答】解:最多时=10,相交于同一个点时最少,有1个交点.【点评】中学阶段记住公式在解题时会很方便,熟记公式是解题的关键.6.平面上有任意三点,过其中两点画直线,共可以画1或3条直线.【分析】先画图,由图可直接解答.【解答】解:如图所示:三点在一条直线上时可画一条,不在一条直线上时可画三条.【点评】本题考查了过平面上两点有且只有一条直线,体现了数形结合的思想.7.如图1,图中共有3条线段,它们是线段AC、线段AB、线段BC.如图2,图中共有4条射线,指出其中的两条射线AB、射线BA.【分析】直线上有三个点,过其中任意两个可以作为线段的端点作一条线段,即可以得出有三条;直线上有两点,过每一个点都可以得到两条射线,即过两个点可以找到4条射线.【解答】解:(1)根据线段的定义,可以找到3条,分别为:线段AC、线段AB、线段BC.(2)射线有一个端点,在直线上过每个点都可以得到2条射线,即如图所示,过两个点可以找到4条,其中包括:射线AB和射线BA.故图中共有4条射线,指出两条为:射线AB、射线BA.【点评】本题考查了线段和射线的性质,结合图形可以很明白的得出结论,注意数形结合的思想.8.要在墙上固定一根木条,至少要两个钉子,根据的原理是两点确定一条直线.【分析】根据两点确定一条直线解答.【解答】解:要在墙上固定一根木条,至少要两个钉子,根据的原理是两点确定一条直线.故答案为:两;两点确定一条直线.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.9.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是两点之间线段最短.【分析】根据两点之间线段最短解答.【解答】解:把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是:两点之间线段最短.故答案为:两点之间线段最短.【点评】本题考查了线段的性质,熟记两点之间线段最短是解题的关键.10.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是8cm或2cm.【分析】分点B在线段AC上和点C在线段AB上两种情况,计算即可.【解答】解:当点B在线段AC上时,AC=AB+BC=8cm,当点C在线段AB上时,AC=AB﹣BC=2cm,故答案为:8cm或2cm.【点评】本题考查的是两点间的距离的计算,灵活运用分情况讨论思想是解题的关键.11.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有5个.【分析】点P与A,B,C,D四点中的至少两个点距离相等时,也就是点P恰好是其中一条线段中点,而图中共有六条线段,所以出现报警的次数最多六次.【解答】解:根据题意可知:当点P经过任意一条线段中点时会发出报警,∵图中共有线段DC、DB、DA、CB、CA、BA,∵BC和AD中点是同一个∴发出警报的可能最多有5个.故答案为5.【点评】本题考查了两点间的距离,利用总体思想去思考线段的总条数是解决问题最巧妙的办法,可以减去不必要的讨论与分类.12.点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.【分析】①根据线段中点的性质,可得AB的长,根据比例分配,可得BP的长,根据线段的和差,可得答案;②分两种情况:M有P点左边和右边,分别根据线段和差进行计算便可.【解答】解:①∵点O是线段AB的中点,OB=14cm,∴AB=2OB=28cm,∵AP:PB=5:2.∴BP=cm,∴OP=OB﹣BP=14﹣8=6(cm);②如图1,当M点在P点的左边时,AM=AB﹣(PM+BP)=28﹣(4+8)=16(cm),如图2,当M点在P点的右边时,AM=AB﹣BM=AB﹣(BP﹣PM)=28﹣(8﹣4)=24(cm).综上,AM=16cm或24cm.【点评】本题考查了两点间的距离,利用了比例的性质,线段中点的性质,线段的和差.13.(1)如图1,在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N为线段AP的中点,若AB=n,且使关于x的方程(n﹣4)x=6﹣n无解.①求线段AB的长;②线段MN的长与点P在线段AB上的位置有关吗?请说明理由;(2)如图2,点C为线段AB的中点,点P在线段CB的延长线上,试说明的值不变.【分析】(1)①直接根据关于x的方程(n﹣4)x=6﹣n无解求出m的值即可;②根据题意画出图形,分别用BP,AP表示出PM与PN的值,进而可得出结论;(2)根据题意画出图形,由各线段之间的关系可得出结论.【解答】解:(1)①方程(n﹣4)x=6﹣n,∵关于x的方程(n﹣4)x=6﹣n无解,∴n﹣4=0,即n=4,∴线段AB的长为4;②如图1,∵点M为线段PB的中点,点N为线段AP的中点,AB=n,∴PM=BP,PN=AP,∴MN=MP+NP=AB=n;∴线段MN的长与点P在线段AB上的位置无关;(2)如图2,∵点C为线段AB的中点,∴AC=AB,∴P A+PB=PC﹣AC+PC+BC=2PC,∴=2,∴的值不变.【点评】本题考查的是两点间的距离,根据题意画出图形,利用数形结合求解是解答此题的关键.14.如图,B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动1次,C是线段BD的中点,AD=15cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,求线段AB和CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变.求出EC的长;若发生变化,请说明理由.【分析】(1)①根据AB=2t即可得出结论;②先求出BD的长,再根据C是线段BD的中点即可得出CD的长;(2)分类讨论;(3)直接根据中点公式即可得出结论.【解答】解:(1)①∵B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动,∴当t=2时,AB=2×3=6cm;②∵AD=15cm,AB=6cm,∴BD=15﹣6=9cm,∵C是线段BD的中点,∴CD=BD=×9=4.5cm;(2)∵B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动,∴当0≤t≤5时,AB=3t;当5<t≤10时,AB=15﹣(3t﹣15)=30﹣3t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=(AB+BD)=AD=×15=7.5cm.【点评】本题考查了两点间的距离,根据已知得出各线段之间的等量关系是解题关键.。

七年级数学上册《直线、射线、线段》练习题及答案

七年级数学上册《直线、射线、线段》练习题及答案

七年级数学上册《直线、射线、线段》练习题1.下列说法错误的是( )A.两点确定一条直线;B.直线上任意两点都可以表示直线;C.过平面上三点可以画一条直线;D.过一点可以作无数条直线.2.如图,下列几何语句不正确的是()A.直线 AB 与直线 BA 是同一条直线;B.射线 OA 与射线 OB 是同一条射线;C.射线 OA 与射线 AB 是同一条射线;D.线段 AB 与线段 BA 是同一条线段.3.直线 a、b、c 是平面上任意三条直线,交点可能有( )A.1 个或 2 个或 3 个B.0 个或 1 个或 3 个C.0 个或 1 个或 2 个D.0 个或 1 个或 2 个或 3 个4.下列说法:①线段 BA 和线段 AB 是同一条线段;②射线 AC 和射线 AD 是同一条射线;③把射线 AB 反向延长可得到直线 BA;④直线比射线长,射线比线段长.其中正确的结论个数是( )A.1B.2C.3D.45.如图,已知三点 A,B,C,(1)画直线 AB;(2)画射线 AC;(3)连接 BC;6.根据图填空:(1)点 B 在直线 AD ;点 C 在直线 AD ,直线 CD 过点;(2)点 E 是直线与直线的交点,点是直线 AD 与直线CD的交点;(3)过 A 点的直线有条,分别是。

7.如图,图中共有条线段,其中以 B 为端点的线段有条,它们是;以为 A 端点的射线有条,它们是;8.过平面内四个点中的任意两点,可以画几条直线?画图说明.9.已知线段 m,求作线段 EF,使得 EF=m.10.如图,已知线段a、b,画一条线段,使它等于(1)2a+b(2)2a-b11.如图,一只蚂蚁要从正方体的一个顶点A 沿表面爬行到顶点C,怎样爬行路线最短?(画出一种即可)12.如图,DB=3cm,BC=7cm,C 是AD 的中点,求AB 的长.13. 画线段AB=10mm,延长AB 至C,使BC=15mm,再反向延长线段AB 至D,使DA=15mm,先依题意画出图形,并求出DC 的长.14. 已知线段AB=8cm,在直线AB 上有一点C,且BC=4cm,M 是线段AC 的中点,求线段AM 的长.参考答案:1.C2.C3.D4.B5.6.(1)上,外,E;(2)CD,AF,D;(3)三,AD,AE,AC.7.11,3,线段 BA,线段 BD,线段 BC;2,射线 AM,射线 AN.8. (1)一条(2)四条(3)六条9.作法:(1)用直尺画射线EC;(2)用圆规在射线EC 上截取EF = m.线段EF 就是所求作的线段.10.AB 为所求线段.AB 为所求线段.11.提示:将正方体展开,再连接A、C 两点的线段.12.解:∵DB=3cm,BC=7cm∴CD=BC-DB=7-3=4cm,∵点C 是AD 的中点,∴AC=CD=4cm,∴AB=AC+CD+DB=4+4+3=11cm13. 解:DC=DA+AB+BC=15+10+15=40mm14.解:(1)如图所示,当点C 在线段AB 上时,∵AB=8cm,BC=4cm,∴AC=AB -BC=4cm.∵M 为AC 的中点,∴AM=1/2 AC=2cm.(2)如图所示,当点C 在线段AB 的延长线上时,∵AB=8cm,BC=4cm,∴AC=AB +BC=12cm.∵M 为AC 的中点,∴AM=1/2AC=6cm.所以,AM 的长度为2cm 或6cm.。

北师版七上数学《1 线段、射线、直线》同步练习含答案解析

北师版七上数学《1 线段、射线、直线》同步练习含答案解析

北师版七上数学第四章1线段、射线、直线同步练习一、选择题1.延长线段AB到C,下列说法正确的是()A.点C在线段AB上B.点C在直线AB上C.点C不在直线AB上D.点C在直线BA的延长线上答案:B解析:解答:因为线段有两个端点,所以线段可以向两方延长,所以点C不在线段AB上,点C在直线AB上,故A、C错误,B正确,因为直线没有端点,可以向两方无限延伸,直线没有延长线的说法,故D错误.故选B.分析:本题根据直线、线段、以及射线的概念来解答即可.2.如图,图中共有线段的条数是()A.4B.5C.6D.7答案:C解析:解答:图中的线段有AB、AC、AD、BC、BD、CD;故选:C.分析:根据图示数出线段即可.3.下列各直线的表示法中,正确的是()A.直线AB.直线ABC.直线abD.直线Ab答案:B解析:解答:表示一条直线,可以用直线上的两个点表示,一般情况用两个大写字母表示;故选B.分析:此题考查直线的表示方法.4.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直答案:A解析:解答:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.分析:根据公理“两点确定一条直线”来解答即可.5.如图,点A、B、C在一直线上,则图中共有射线()A.1条B.2条C.4条D.6条答案:D解析:解答:根据射线的定义,这条直线上的每个点可以有两条射线,故图中共有射线6条.故选:D.分析:根据射线的定义,一条直线上的每个点可以有两条射线,分析图形可得答案.6.平面内的三个点A、B、C能确定的直线的条数是()A.1条B.2条C.3条D.1条或3条答案:D解析:解答:∵若平面内的三个点A、B、C不在同一直线上,则能确定的直线的条数是:3条;若平面内的三个点A、B、C在同一直线上,则能确定的直线的条数是:1条.∴平面内的三个点A、B、C能确定的直线的条数是:1条或3条.故选D.分析:分别从若平面内的三个点A、B、C不在同一直线上与若平面内的三个点A、B、C在同一直线上去分析,则可求得答案.7.观察图形,下列说法正确的个数是()(1)直线BA和直线AB是同一条直线(2)射线AC和射线AD是同一条射线(3)AB+BD>AD(4)三条直线两两相交时,一定有三个交点.A.1个B.2个C.3个D.4个答案:C解析:解答:(1)直线BA和直线AB是同一条直线,直线没有端点,此说法正确;(2)射线AC和射线AD是同一条射线,都是以A为端点,同一方向的射线,正确;(3)AB+BD>AD,三角形两边之和大于第三边,所以此说法正确;(4)三条直线两两相交时,一定有三个交点,错误,可能有1个交点的情况.所以共有3个正确.故选C.分析:结合图形,区别各概念之间的联系.8.如图,平面内有公共端点的六条射线OA、OB、OC、OD、OE、OF,从射线OA开始按逆时针依次在射线上写出数字1、2、3、4、5、6、7…,则数字“2008”在()A.射线OA上B.射线OB上C.射线OD上D.射线OF上答案:C解析:解答:2008÷6=334…4,所以在射线OD上.故选C.分析:根据规律,所写数字按6个一组循环,用2008除以6余数是几就在第几条线.9.如下图,直线l、射线PQ、线段MN中能相交的是()A.B.C.D.答案:D解析:解答:根据线段不延伸,而射线只向一个方向延伸即可得到:正确的只有D.故选D.分析:根据线段与射线的定义,以及延伸性即可作出判断.10.将线段AB延长至C,再将线段AB反向延长至D,则共有线段()条.A.8B.7C.6D.5答案:C解析:解答:线段上有4个点时,线段总条数是3+2+1条,即6条.故选C.分析:因为将线段AB延长至C,再将线段AB反向延长至D,线段上有4个点,则共有线段条数可求.11.下列说法中正确的是()A.画一条3厘米长的射线B.画一条3厘米长的直线C.画一条5厘米长的线段D.在线段、射线、直线中直线最长答案:C解析:解答:A.射线可无限延长,不可测量,所以画一条3厘米长的射线是错误的;B.直线是无限长的,直线是不可测量长度的,所以画一条3厘米长的直线是错误的;C.线段有两个端点,有限长度,可以测量,所以画一条5厘米长的线段是正确的;D.直线、射线都是无限延长,不可测量,不能比较长短,只有线段可以比较长短,所以在线段、射线、直线中直线最长是错误的.故选:C.分析:利用直线、射线、线段的意义和特点,逐项分析,找出正确答案即可.12.下列说法正确的是()A.过一点P只能作一条直线B.直线AB和直线BA表示同一条直线C.射线AB和射线BA表示同一条射线D.射线a比直线b短答案:B解析:解答:A.过一点P可以作无数条直线;故A错误.B.直线可以用两个大写字母来表示,且直线没有方向,所以AB和BA是表示同一条直线;故B正确.C.射线AB和射线BA,顶点不同,方向相反,故射线AB和射线BA表示不同的射线;故C 错误.D.射线和直线不能进行长短的比较;故D错误.故选B.分析:过一点可以做无数条直线,根据直线的表示方法,AB和BA是表示同一条直线.而射线AB和射线BA表示不同的射线,射线与直线不能进行长短的比较.13.下列说法正确的是()A.经过两点有且只有一条线段B.经过两点有且只有一条直线C.经过两点有且只有一条射线D.经过两点有无数条直线答案:B解析:解答:A.线段有长短,例如过A、B两点的线段不止一条,故本选项错误;B.经过两点有且只有一条直线,是直线公理,正确;C.射线有一个端点,例如过B、C两点的射线有射线AB、射线BC,故本选项错误;D.因为两点确定一条直线,所以本选项错误.故选B.分析:根据两点确定一条直线的公理和直线、射线、线段的性质对各选项分析判断后利用排除法求解.14.“两条直线相交,有且只有一个交点”的题设是()A.两条直线B.交点C.两条直线相交D.只有一个交点答案:C解析:解答:两条直线相交,有且只有一个交点这一命题题设是两条直线相交,结论是有且只有一个交点,故选C.分析:本题考查两直线相交,有且只有一个交点的命题,题设和结论要搞清楚.15.如图,给出的直线、射线、线段,根据各自的性质,能相交的是()A.B.C.D.答案:D解析:解答:A.射线延伸后两直线不能相交,故本选项错误;B.直线延伸后两直线不能相交,故本选项错误;C.射线和直线延伸后两直线不能相交,故本选项错误;D.射线延伸后两直线能相交,故本选项正确;故选D.分析:根据直线可以沿两个方向延伸,射线可以沿一个方向延伸,线段不能延伸即可得出答案.二、填空题16.直线上有n个点,我们进行如下操作:在每相邻两点间插入2个点.经过2次这样的操作后,直线上共有______个点.(用含n的代数式表示)答案:9n-8解析:解答:第一次操作,共有n+(n-1)×2=3n-2个点,第二次操作,共有(3n-2)+(3n-2-1)×2=9n-8个点,故答案为:9n-8.分析:根据n个点中间可以有(n-1)个空插入,从而找出规律并得解.17.平面内三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=______.答案:4解析:解答:∵平面内三条直线两两相交,最多有3个交点,最少有1个交点,∴a+b=4.故答案为:4.分析:分析可得:平面内三条直线两两相交,最多有3个交点,最少有1个交点,则即可求得a+b的值.18.乘火车从A站出发,沿途经过3个车站方可到达B站,那么在A、B两站之间需要安排不同的车票______种.(友情提示:A到B与B到A车票不同.)答案:20解析:解答:设点C、D、E是线段AB上的三个点,根据题意可得:图中共用()515102-⨯=条线段∵A到B与B到A车票不同.∴从A到B的车票共有10×2=20种故答案为;20.分析:本题需先求出A、B之间共有多少条线段,根据线段的条数即可求出车票的种数.19.一条直线上立有10根距离相等的标杆,一名学生匀速地从第1杆向第10杆行走,当他走到第6杆时用了6.5s,则当他走到第10杆时所用时间是______.答案:11.7s解析:解答:从第1根标杆到第6根标杆有5个间隔,所以,每个间隔行进6.5÷5=1.3s,从第1根标杆到第10根标杆共有9个间隔,所以,行进9个间隔共用1.3×9=11.7s.故答案为:11.7s.分析:根据到第6杆时有5个间隔求出走1个间隔的时间,再求出到第10杆有9个间隔,然后列式计算即可得解.20.平面上有五条直线相交(没有互相平行的),则这五条直线最多有______个交点,最少有______个交点.答案:10|1解析:解答:最多时54102⨯=,相交于同一个点时最少,有1个交点.分析:直线交点最多时,根据公式()12n n-,把直线条数代入公式求解即可,直线相交于同一个点时最少,是1个交点.故答案为:10;1.三、解答题20.按要求画一画,再填空(1)延长AB到C,使BC=AB;(2)延长BA到D,使AD=2AB;答案:(3)根据画图过程,推想下列线段之间具有的等量关系,并将倍数填在横线上:CD=______BC,BD=______B C=______AC.答案:4|3|32.解析:解答:(1)(2)如图:;(3)∵BC=AB,AD=2AB,∴CD=4BC,BD=3BC=32 AC.故答案为:4;3;32.分析:(1)(2)根据题意画出图形即可;(3)根据图形得出线段之间的数量关系即可.22.①如图1直线l上有2个点,则图中有2条可用图中字母表示的射线,有1条线段②如图2直线l上有3个点,则图中有______条可用图中字母表示的射线,有______条线段;答案:4|3③如图3直线上有n个点,则图中有______条可用图中字母表示的射线,有______条线段;答案:2n-2|()12n n-;④应用③中发现的规律解决问题:某校七年级共有6个班进行足球比赛,准备进行循环赛(即每两队之间赛一场),预计全部赛完共需______场比赛. 答案:65152⨯=. 解析:解答:②射线有:12A A 、23A A 、21A A 、31A A 共4条,线段有:12A A 、13A A 、23A A 共3条;③2n -2,()1 2n n -; ④65152⨯=. 分析:②写出射线和线段后再计算个数;③根据规律,射线是每个点用两次,但第一个和最后一个只用一次;线段是从所有点中,任取两个;④代入③中规律即可.23.如图,C 是线段AB 外一点,按要求画图:(1)画射线CB ;(2)反向延长线段AB ;(3)连接AC ,并延长AC 至点D ,使CD =AC .答案:解答:根据题意画图:解析:分析:根据作图的步骤即可画出图形.24.已知平面上四点A、B、C、D,如图:(1)画直线AB;(2)画射线AD;(3)直线AB、CD相交于E;(4)连接AC、BD相交于点F.(5)延长AC至M,使CM等于2AC.答案:解答:如图:解析:分析:利用直线,射线及线段的定义画图即可.25.如图,平面上有四个点A、B、C、D,根据下列语句画图.(1)画直线AB、CD交于E点;(2)画线段AC、BD交于点F;(3)连接E、F交BC于点G;(4)连接AD,并将其反向延长;(5)作射线BC;(6)取一点P,使P在直线AB上又在直线CD上.答案:解析:解答:如图所示.分析:分别根据直线、射线、线段的定义作出图形即可.。

人教版七年级上册数学 4.2直线、射线、线段 同步习题(含解析)

人教版七年级上册数学 4.2直线、射线、线段 同步习题(含解析)

4.2直线、射线、线段同步习题一.选择题1.平面上有不同的三个点,经过其中任意两点画直线,一共可以画()A.1条B.2条C.3条D.1条或3条2.下列四个生产生活现象,可以用公理“两点之间,线段最短”来解释的是()A.用两个钉子可以把木条钉在墙上B.植树时,只要定出两棵树的位置,就能使同一行树坑在一条直线上C.打靶的时候,眼睛要与枪上的准星、靶心在同一直线上D.为了缩短航程把弯曲的河道改直3.图中共有线段()A.4条B.6条C.8条D.10条4.已知线段AB=12cm,点C是直线AB上一点,BC=4cm,若点P是线段AB的中点,则线段PC的长度是()A.2cm B.2cm或10cm C.10cm D.2cm或8cm 5.已知点A,B,C在同一条直线上,若线段AB=5,BC=3,AC=2,则下列判断正确的是()A.点A在线段BC上B.点B在线段AC上C.点C在线段AB上D.点A在线段CB的延长线上6.如图,已知线段AB=12cm,M是AB中点,点N在AB上,NB=2cm,那么线段MN的长为()A.2cm B.3cm C.4cm D.5cm7.如图,C为AB的中点,D是BC的中点,则下列说法错误的是()A.CD=AC﹣BD B.CD=AB﹣BD C.CD=BC D.AD=BC+CD 8.在直线l上取三点A、B、C,使线段AB=8cm,AC=3cm,则线段BC的长为()A.5cm B.8cm C.5cm或8cm D.5cm或11cm 9.如图,将线段AB延长至点C,使BC=AB,D为线段AC的中点,若BD=2,则线段AB的长为()A.4B.6C.8D.1210.如图,线段CD在线段AB上,且CD=3,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28B.29C.30D.31二.填空题11.两地之间弯曲的道路改直,可以缩短路程,其根据的数学道理是.12.如图,已知线段AB=8cm,M是AB的中点,P是线段MB上一点,N为PB的中点,NB=1.5cm,则线段MP=cm.13.已知,如图,在直线l的两侧有两点A,B.在直线上画出点P,使P A+PB最短..14.如图,已知CD=AD=BC,E、F分别是AC、BC的中点,且BF=40cm,则EF 的长度为cm.15.如图,点B在线段AC上,AB=4,BC=2,点M为线段AB中点,点N为线段BC中点,则线段MN的长度为.三.解答题16.如图,线段AB=20,BC=15,点M是AC的中点.(1)求线段AM的长度;(2)在CB上取一点N,使得CN:NB=2:3.求MN的长.17.如图,点C在线段AB上,线段AB=15cm,点M,N分别是AC,BC的中点,CN=3cm,求线段MC的长度.18.如图,已知线段AB=10cm,CD=2cm,点E是AC的中点,点F是BD的中点.(1)若AC=3cm,求线段EF的长度.(2)当线段CD在线段AB上从左向右或从右向左运动时,试判断线段EF的长度是否发生变化,如果不变,请求出线段EF的长度;如果变化,请说明理由.参考答案1.解:如图,经过其中任意两点画直线可以画3条直线或1条直线,故选:D.2.解:A、根据两点确定一条直线,故本选项不符合题意;B、确定树之间的距离,即得到相互的坐标关系,故本选项不符合题意;C、根据两点确定一条直线,故本选项不符合题意;D、根据两点之间,线段最短,故本选项符合题意.故选:D.3.解:图中的线段有AC、AD、AE、AB;CD、CE、CB;DE、DB;EB;共10条,故选:D.4.解:∵线段AB=12cm,点P是线段AB的中点,∴BP=AB=6(cm),如图1,线段BC不在线段AB上时,PC=BP+BC=6+4=10(cm),如图2,线段BC在线段AB上时,PC=BP﹣BC=6﹣4=2(cm),综上所述,线段PC的长度是10或2cm.故选:B.5.解:如图,∵点A,B,C在同一条直线上,线段AB=5,BC=3,AC=2,∴点A在线段BC的延长线上,故A错误;点B在线段AC延长线上,故B错误;点C在线段AB上,故C正确;点A在线段CB的反向延长线上,故D错误;故选:C.6.解:∵AB=12cm,M是AB中点,∴BM=AB=6cm,又∵NB=2cm,∴MN=BM﹣BN=6﹣2=4(cm).故选:C.7.解:∵C是AB的中点,D是BC的中点,∴AC=BC=AB,CD=BD=BC,∵CD=BC﹣BD∴CD=AC﹣BD,故A正确;∵CD=BC﹣DB,∴CD=AB﹣DB,故B正确;∴AD=AC+CD=BC+CD,故D正确;∵CD=BD=BC;故C错误;故选:C.8.解:当点C在线段AB上时,BC=AB﹣AC=8﹣3=5(cm);当点C在线段AB的延长线上时,BC=AB+AC=8+3=11(cm),所以线段AC的长为5cm或11cm.故选:D.9.解:∵BC=AB,∴BC=AC;∵D为线段AC的中点,∴CD=AC,∴BD=AC,∵BD=2,∴AC=2×6=12,∴AB=AD+BD=AC+BD=×12+2=8.故选:C.10.解:所有线段之和=AC+AD+AB+CD+CB+BD,∵CD=3,∴所有线段之和=AC+AC+3+AC+3+BD+3+3+BD+BD=12+3(AC+BD)=12+3(AB﹣CD)=12+3(AB﹣3)=3AB+3=3(AB+1),∵AB是正整数,∴所有线段之和是3的倍数,故选:C.11.解:将弯曲的公路改直,可以缩短路程,这是根据两点之间,线段最短.故答案为:两点之间,线段最短.12.解:∵M是AB的中点,AB=8cm,∴AM=BM=4cm,∵N为PB的中点,NB=1.5cm,∴PB=2NB=3cm,∴MP=BM﹣PB=4﹣3=1cm.故答案为1.13.解:如图所示:连结AB交l于P点.故答案为:连结AB交l于P点.14.解:∵点F是BC的中点,且BF=40cm,∴BC=2BF=80cm,∵CD=AD=BC,∴CD=×80=16cm,AD=64cm,∴AC=AD﹣CD=48cm,∵E、F分别是AC、BC的中点,∴CE=AC=24cm,CF=BF=40cm,∴EF的长度为CE+CF=64cm,故答案为:64.15.解:∵点M为线段AB中点,∴BM=AB,∵点N为线段BC中点,∴BN=BC,∵AB=4,BC=2,∴MN=MB+BN=AB+BC=2+1=3,故答案为3.16.解:(1)线段AB=20,BC=15,∴AC=AB﹣BC=20﹣15=5.又∵点M是AC的中点.∴AM=AC=×5=,即线段AM的长度是.(2)∵BC=15,CN:NB=2:3,∴CN=BC=×15=6.又∵点M是AC的中点,AC=5,∴MC=AC=,∴MN=MC+NC=,即MN的长度是.17.解:∵CN=3cm,点N是BC的中点;∴BC=2CN=2×3=6(cm),∵AB=15cm,∴AC=AB﹣BC=15﹣6=9(cm),又∵点M是AC的中点,∴(cm).18.解:(1)∵AC=3cm,CD=2cm,∴BD=AB﹣AC﹣CD=10﹣3﹣2=5(cm).∵点E是AC的中点,点F是BD的中点,∴,.∴.(2)线段EF的长度不发生变化.∵点E是AC的中点,点F是BD的中点,∴,,∴EF=AB﹣AE﹣BF====6(cm).11/ 11。

人教版数学七年级上《4.2直线、射线、线段》同步练习(含答案)

人教版数学七年级上《4.2直线、射线、线段》同步练习(含答案)

4.2 直线射线线段2一、单选题1.已知线段AB=5,C是直线AB上一点,BC=2,则线段AC长为( )A.3 B.7 C.3或7 D.以上都不对2.A,B,C三个车站在东西方向笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在( )A.在A的左侧B.在AB之间C.在BC之间D.B处3.如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是( )A.1cm B.9cmC.1cm或9cm D.以上答案都不正确4.如果一条直线上得到10条不同的线段,那么在这条直线上至少有点( )A.20个B.10个C.7个D.5个5.下列说法错误的是( )A.两点之间的所有连线中,线段最短B.经过一点有且只有一条直线与已知直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.经过一点有且只有一条直线与已知直线垂直6.在图中,线段的条数为( )A.9B.10 C.13D.157.如图,C是AB的中点,D是BC的中点,则下列等式不成立的是()A . CD =AD-ACB . CD =AB -BDC . CD =AB D . CD=AB 2141318.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A . 171B . 190C . 210D . 3809.如图,从A 地到B 地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其它的路,其理由是( )A . 两点确定一条直线B . 垂线段最短C . 两点之间,线段最短D . 两点之间,直线最短 10.如图所示的图形表示正确的有( )A . 3个B . 4个C . 5个D . 6个11.下列说法:①两点之间的所有连线中,线段最短;②在数轴上与表示﹣1的点距离是3的点表示的数是2;③连接两点的线段叫做两点间的距离;④射线AB 和射线BA 是同一条射线;⑤若AC=BC ,则点C 是线段AB 的中点;⑥一条射线把一个角分成两个相等的角,这条射线是这个角的平分线,其中错误的有( )A . 2个B . 3个C . 4个D . 5个二、填空题12.点C 在线段AB 上,下列条件中:①AC=BC②AC=2AB③AB=2BC④AC=0.5AB。

七年级数学上册直线、射线、线段练习题

七年级数学上册直线、射线、线段练习题

七年级数学上册直线、射线、线段练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.如图,M ,N 是线段AB 的三等分点,C 是NB 的中点,若AB =10cm ,则CM 的长度为___cm .2.如图,长度为12cm 的线段AB 的中点是点M ,点C 在线段MB 上,且:1:2MC CB =,则线段AC 的长为______.3.比较两条线段长短的方法有______和______.4.已知线段AB ,延长AB 到C ,使12BC AB =,再反向延长线段AB 至D ,使32AD AB =,则线段CD 的中点是_________.5.已知线段AB =5cm ,延长AB 到C 使得BC =2AB ,再反向延长AB 到D 使得AD =3AB ,则线段DB =_______cm ,点______是线段_______的中点. 6.如图,点C 是线段AB 上一点,AC <CB ,M 、N 分别是AB 和CB 的中点,8AC =,5NB =,则线段MN =__________.二、单选题7.如图,线段AB =12,点C 是它的中点.则AC 的长为( )A .2B .4C .6D .88.如图,点B 是线段AD 的中点,点C 在线段BD 上,且AB a ,CD b =,则下列结论中错误..的是( )A .2AD a =B .BC a b =- C .2AC a b =-D .13BC b = 9.下列语句:其中错误的个数是( )①直线AB 与直线BA 是同一条直线;①射线AB 与射线BA 是同一条射线;①两点确定一条直线;①经过一点有且只有一条直线与已知直线平行;①经过一点有且只有一条直线与已知直线垂直;①两点之间的线段叫做两点之间的距离.A .3B .4C .5D .610.已知直线AB 上有两点M ,N,且MN = 8cm,再找一点P,使MP + PN = 10cm,则P 点的位置( ) A .只能在直线AB 上B .只能在直线AB 外C .在直线上或在直线AB 外D .不存在11.如图,90ACB ∠=︒,AC=BC .AD CE ⊥,BE CE ⊥,垂足分别是点D 、E .若AD=6,BE=2,则DE 的长是( )A .2B .3C .4D .512.小亮在解方程37a x +=时,由于粗心,错把x +看成了x -,结果解得2x =,则a 的值为( )A .53a =B .3a =C .3a =-D .35a =三、解答题13.如图,在一条不完整的数轴上,从左到右的点A ,B ,C 把数轴分成①①①①四部分,点A ,B ,C 对应的数分别是a ,b ,c ,已知bc <0.(1)原点在第______部分;(2)若AC =5,BC =3,b =﹣1,求a 的值;(3)在(2)的条件下,数轴上一点D 表示的数为d ,若BD =2OC ,直接写出d 的值.14.如图,点B 在线段AC 上.按要求完成下列各小题.(1)尺规作图:在图中的线段AC 的延长线上找一点D ,使得CD AB =;(2)在(1)的基础上,图中共有______条线段,比较线段大小:AC ______BD (填“>”“<”或“=”);(3)在(1)的基础上,若2BC AB =,6BD =,求线段AD 的长度.15.已知线段15cm AB =,点C 在线段AB 上,且:3:2AC CB =.(1)求线段AC ,CB 的长;(2)点P 是线段AB 上的动点且不与点A ,B ,C 重合,线段AP 的中点为M ,设cm AP m =①请用含有m 的代数式表示线段PC ,MC 的长;①若三个点M ,P ,C 中恰有一点是其它两点所连线段的中点,则称M ,P ,C 三点为“共谐点”,请直接写出使得M ,P ,C 三点为“共谐点”的m 的值.参考答案:1.5【分析】根据已知得出AM=MN=BN,AB=3BN,BN=2CN,根据AB=10cm求出BN和CN,由CM=MN+CN 即可求出答案.【详解】解:①M、N是线段AB的三等分点,①AM=MN=BN,AB=3BN,①C是BN的中点,①BN=2CN,①AB=10cm,①BN=103cm,CN=53cm,①CM=MN+CN=103+53=5cm.故答案为:5.【点睛】本题考查了求两点之间的距离的应用,掌握中点与等分点的意义以及线段的和与差是解决问题的关键.2.8cm##8厘米【分析】先由中点的定义求出AM,BM的长,再根据MC:CB=1:2的关系,求MC的长,最后利用AC=AM+MC 得其长度.【详解】解:①线段AB的中点为M,①AM=BM=6cm,设MC=x,则CB=2x,①x+2x=6,解得x=2,即MC=2cm,①AC=AM+MC=6+2=8(cm).【点睛】利用中点性质转化线段之间的倍分关系是解题的关键,同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.3.叠合法度量法【分析】根据比较两条线段长短的方法,即可解答【详解】解:比较两条线段长短的方法有:叠合法和度量法,故答案为:叠合法,度量法.【点睛】本题考查了比较两条线段长短的方法,熟练掌握和运用比较两条线段长短的方法是解决本题的关键.4.点A【分析】利用线段的等量关系和中点的概念列式求解即可.【详解】解:如图,①12BC AB =,32AD AB =, ①AC AB BC =+=12AB AB +=32AB AD =,故线段CD 的中点是点A . 故答案为:点A【点睛】本题主要考查了线段之间的数量关系,作出图形解答是解题的关键.5. 20 A DC【分析】根据题意画出图形,由AB =5cm ,从而可求出AC 和DB 的长度,继而可得出答案.【详解】解:如图所示:①AB =5cm ,则BC =10cm ,DA =15cm ,①可得:DB =DA +AB =15+5=20(cm ),AC =AB +BC =5+10=15(cm ),①DA =AC =15(cm ),即点A 是线段DC 的中点.故答案为:20,A ,DC .【点睛】本题考查了线段的中点,线段的和差等相关知识点,重点掌握直线上两点间的距离求法. 6.4【分析】根据中点的性质可得BC 的长,根据线段的和差可得AB 的长,根据中点的性质可得BM 的长,再根据线段的和差可得MN 的长.【详解】由N 是CB 的中点,NB =5,得:BC =2NB =10.由线段的和差,得:AB =AC +BC =8+10=18.①M 是AB 的中点,①1118922MB AB==⨯=,由线段的和差,得:MN=MB-NB=9-5=4,故答案为:4.【点睛】本题主要考查了线段中点的性质和线段的和差,线段的中点分线段相等是解题的关键.7.C【分析】根据中点的性质,可知AC的长是线段AB的一半,直接求解即可.【详解】解:①线段AB=12,点C是它的中点.①1112622AC AB==⨯=,故选:C.【点睛】本题考查了线段的中点,解题关键是明确线段的中点把线段分成相等的两部分.8.D【分析】根据线段中点的定义与线段的和差逐项分析可得答案.【详解】解:①点B是线段AD的中点,AB=a,①AD=2AB=2a,故A正确,不符合题意;①BD=AB=a,①BC=BD﹣CD=a﹣b,故B正确,不符合题意;①AC=2AB=2a,CD=b,①AC=AD﹣CD=2a﹣b,故C正确,不符合题意;①点C不是CD的四等分点,①BC≠13b,故D错误,符合题意.故选:D.【点睛】本题考查线段中点的定义与线段的和与差,熟练掌握线段中点的定义与线段的和差是解题关键.9.B【分析】①根据直线的定义进行判断即可;①根据射线的定义进行判断即可;①根据两点确定一条直线进行判断即可;①点是否在该直线上进行判断即可;①根据是否在平面内这一条件进行判断即可;①根据两点间距离的定义进行判断即可.【详解】①直线AB与直线BA是同一条直线,故原题说法正确;①射线AB与射线BA不是同一条射线,因为射线有方向,故原题说法错误;①两点确定一条直线,故原题说法正确;①经过直线外一点有且只有一条直线与已知直线平行,故原题说法错误;①平面内,经过一点有且只有一条直线与已知直线垂直,故原题说法错误;①两点之间的线段长度叫做两点之间的距离,故原题说法错误.错误的说法有4个,答案:B .【点睛】本题考查了直线、射线的定义,本题错点一是在平面内才有经过一点有且只有一条直线与已知直线垂直;二是经过直线外一点有且只有一条直线与已知直线平行;三是两点间的距离不是线段而是线段的长度.10.C【详解】①MP+PN=10cm >MN=8cm ,①分两种情况(如图):在直线AB 上或在直线AB 外;故选C .11.C【分析】由一线三直角①ADC=①CEB=90º推得①ACD=①CBE ,再加上AC=BC ,易证①ACD①①CBE (AAS ) 便可求出ED=EC -CD 即可.【详解】①90ACB ∠=︒,①①ACD+①ECB=90º,①AD CE ⊥,BE CE ⊥,①①ADC=①CEB=90º,①①ECB+①CBE=90º,①①ACD=①CBE ,在①ACD 和①CBE 中,①①ADC=①CEB=90º,①ACD=①CBE ,AC=BC ,①①ACD①①CBE (AAS ),①AD=CE=6,CD=BE=2,①ED=EC -CD=6-2=4.故选择:C .【点睛】本题考查全等三角形中的线段差问题,关键掌握三角形全等的证明方法,会用差线段来解决问题. 12.B【分析】将2x =代入方程37a x -=即可得出a 的值.【详解】解:① 解方程37a x +=时把x +看成了x -,结果解得2x =,①2x =是方程37a x -=的解,将2x =代入37a x -=得:327a -=,解得:3a =.故选B .【点睛】本题考查一元一次方程的解及解一元一次方程,解题的关键是掌握方程的解的概念,即使方程左右两边相等的未知数的值,叫方程的解.13.(1)①(2)a 的值为﹣3(3)d 的值为3或﹣5【分析】(1)由bc <0可知b 、c 异号,进而问题可求解;(2)根据数轴上两点距离可进行求解;(3)根据数轴上两点距离及线段和差关系可进行求解.(1)解:①bc <0,①b ,c 异号,①原点在B ,C 之间,即第①部分,故答案为:①;(2)解:①BC =3,b =﹣1,点C 在点B 的右边,①C 表示的数为:﹣1+3=2,①AC =5,A 点在点C 的左边,①点A表示的数为:2﹣5=﹣3,①a的值为﹣3;(3)解:①C表示的数为2,①OC=2,①点B表示的数为﹣1,点D表示的数为d,BD=2OC,①|d﹣(﹣1)|=4,解得:d=3或﹣5,①d的值为3或﹣5.【点睛】本题主要考查数轴上两点距离及线段的和差关系,熟练掌握数轴上两点距离及线段的和差关系是解题的关键.14.(1)作图见解析(2)6;=AD=(3)8【分析】(1)根据要求画出图形即可;(2)根据线段的定义,判断即可;(3)利用线段和差定义解决问题即可.(1)解:如图,线段CD即为所求;(2)解:图中共有6条线段,∵AB=CD,∴AB+BC=CD+BC,即AC=BD,故答案为:6,=;(3)解:由(1)知AB=CD.因为BC=2AB,所以BC =2CD ,所以BD =BC +CD =3CD =6,所以CD =2=AB ,所以AD =2+6=8.【点睛】本题考查作图﹣复杂作图,直线,射线,线段的定义等知识,解题的关键是理解直线,射线,线段的定义.15.(1)AC =9cm ,CB =6cm(2)①(9)cm PC m =-或(9)cm m -,19cm 2MC m ⎛⎫=- ⎪⎝⎭;①6或12【分析】(1)由:3:2AC CB =可得35AC AB =,25CB AB =,从而可求得AC 、CB 的长; (2)①分点P 在线段AC 上和点P 在线段CB 上两种情况分别计算即可;①分点P 在线段AC 上和点P 在线段CB 上两种情况列方程,可求得m 的值.(1)①15cm AB =,点C 在线段AB 上,且:3:2AC CB = ①33159(cm)55AC AB ==⨯=,22156(cm)55CB AB ==⨯= (2)①M 为线段AP 的中点 ①11cm 22AM MP AP m === ①当点P 在线段AC 上时(9)cm PC AC AP m =-=-,19cm 2MC AC AM m ⎛⎫=-=- ⎪⎝⎭ 当点P 在线段CB 上时(9)cm PC AP AC m =-=-,19cm 2MC AC AM m ⎛⎫=-=- ⎪⎝⎭ ①当点P 在线段AC 上时,则MP =PC ①192m m =-解得:m =6当点P 在线段CB 上时,则MC =PC ①1992m m -=-解得:m=12综上所述,m=6或12【点睛】本题考查了求线段长度,线段中点的意义及线段的和差,掌握线段中点的意义、线段的和差是解题的关键.注意(2)小题要分类讨论.第8页共11页。

人教版数学七年级上册:4.2 直线、射线、线段 同步练习(附答案)

人教版数学七年级上册:4.2 直线、射线、线段  同步练习(附答案)

4.2直线、射线、线段第1课时直线、射线、线段1.可近似看作直线的是()A.绷紧的琴弦B.探照灯射出的光线C.孙悟空的金箍棒D.太阳光线2.下列对于如图所示直线的表示,其中正确的是()①直线A;②直线b;③直线AB;④直线Ab;⑤直线Bb.A.①③B.②③C.③④D.②⑤3.下列说法中,正确的是()A.点A在直线M上B.直线AB,CD相交于点MC.直线ab,cd相交于点MD.延长直线AB4.用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明;用两个钉子把细木条钉在木板上,就能固定细木条,这说明 .5.如图,完成下列填空:(1)直线a经过点,但不经过点;(2)点B在直线上,在直线外;(3)点A既在直线上,又在直线上.6.生活中我们看到手电筒的光线类似于()A.点B.直线C.线段D.射线7.如图所示,A,B,C是同一直线上的三点,下面说法正确的是()A.射线AB与射线BA是同一条射线B.射线AB与射线BC是同一条射线C.射线AB与射线AC是同一条射线D.射线BA与射线BC是同一条射线8.如图,能用O,A,B,C中的两个字母表示的不同射线有条.9.如图,在直线l上有A,B,C三点,则图中线段共有()A.1条B.2条C.3条D.4条10.如图所示,下列表述正确的是()A.射线ABB.延长线段ABC.延长线段BAD.反向延长线段BA11.经过任意三点中的两点共可以画出()A.一条直线B.一条或三条直线C.两条直线D.三条直线12.如图,对于直线AB,线段CD,射线EF,其中能相交的是()13.下列关于作图的语句中,正确的是()A.画直线AB=10 cmB.画射线OB=10 cmC.已知A,B,C三点,过这三点画一条直线D.画线段OB=10 cm14.直线a上有5个不同的点A,B,C,D,E,则该直线上共有条线段.15.已知平面上四点A,B,C,D,如图:(1)画直线AB,射线CD;(2)直线AB与射线CD相交于点E;(3)画射线AD,连接BC;(4)连接AC,BD相交于点F.16.如图,已知数轴上的原点为O,点A表示3,点B表示-1,回答下列问题:(1)数轴在原点O左边的部分(包括原点)是一条什么线?怎样表示?(2)射线OB上的点表示什么数?(3)数轴上表示不大于3且不小于-1的部分的数是什么图形?怎样表示?17.往返于甲、乙两地的客车,中途有三个站.其中每两站的票价不同.问:(1)要有多少种不同的票价?(2)要准备多少种车票?18.如图:(1)试验观察:如果每过两点可以画一条直线,那么:第①组最多可以画条直线;第②组最多可以画条直线;第③组最多可以画条直线;(2)探索归纳:如果平面上有n(n≥3)个点,且任意3个点均不在一条直线上,那么最多可以画条直线;(用含n的代数式表示)(3)解决问题:某班45名同学在毕业后的一次聚会中,如果每两人握1次手问好,那么共握次手.第2课时比较线段的长短1.尺规作图的工具是()A.刻度尺和圆规B.三角板和量角器C.直尺和量角器D.没有刻度的直尺和圆规2.作图:已知线段a,b,画一条线段使它等于2a+b.(要求:不写作法,保留作图痕迹)3.为了比较线段AB,CD的大小,小明将点A与点C重合使两条线段在一条直线上,结果点B在CD的延长线上,则()A.AB<CDB.AB>CDC.AB=CDD.无法确定4.已知线段AB和点P,如果PA+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上5.如图,C是线段AB上的一点,M是线段AC的中点,若AB=8 cm,MC=3 cm,则BC的长是( )A.2 cmB.3 cmC.4 cmD.6 cm 6.如图所示,则:(1)AC =BC + ; (2)CD =AD - ; (3)CD = -BC ; (4)AB +BC = -CD.7.在直线上顺次取A ,B ,C 三点,使得AB =5 cm ,BC =3 cm.如果O 是线段AC 的中点,那么线段OC 的长度是 .8.如图,AB =2,AC =5,延长BC 到D ,使BD =3BC ,则AD 的长为 .9.如图,已知O 是线段AB 的中点,C 是AB 的三等分点,AB =12 cm ,则OC = cm.10.如图,已知线段AB ,反向延长AB 到点C ,使AC =12AB ,D 是AC 的中点,若CD =2,求AB的长.11.已知A,B,C是直线MN上的点,若AC=8 cm,BC=6 cm,点D是AC的中点,则BD的长等于 .12.已知线段AB=2 cm,延长AB到C,使BC=AB,再延长BA到D,使BD=2AB,则线段DC 的长为()A.4 cmB.5 cmC.6 cmD.2 cm13.点A,B,C在同一条数轴上,其中点A,B表示的数分别为-3,1,若BC=2,则AC等于()A.3B.2C.3或5D.2或614.已知线段AB=10 cm,点C是直线AB上一点,BC=4 cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7 cmB.3 cmC.7 cm或3 cmD.5 cm15.如图,点C,D,E都在线段AB上,已知AD=BC,E是线段AB的中点,则CE DE.(填“>”“<”或“=”)16.如图,已知线段a,b,c,用圆规和直尺画线段,使它等于2a+b-c.17.如图所示,点C,D为线段AB的三等分点,点E为线段AC的中点,若ED=9,求线段AB 的长度.18.线段AB上有两点P,Q,点P将AB分成两部分,AP∶PB=2∶3;点Q将AB也分成两部分,AQ∶QB=4∶1,且PQ=3 cm.求AP,QB的长.19.已知:如图,点C在线段AB上,且AC=6 cm,BC=14 cm,点M,N分别是AC,BC 的中点.(1)求线段MN的长度;(2)在(1)中,如果AC=a cm,BC=b cm,其他条件不变,你能猜测出MN的长度吗?请说出你发现的结论,并说明理由.第3课时关于线段的基本事实及两点的距离1.如图,为抄近路践踏草坪是一种不文明的现象.请你用数学知识解释出现这一现象的原因: .2.如图,我们可以把弯曲的河道改直,这样做的数学依据是 .改直后A,B两地间的河道长度会 .(填“变短”“变长”或“不变”),其原因是 .3.如图,A,B是公路l两旁的两个村庄,若两村要在公路上合修一个汽车站P,使它到A,B两村的距离之和最小,试在l上标注出点P的位置,并说明理由.4.下列说法正确的是()A.连接两点的直线的长度叫做这两点的距离B.画出A,B两点间的距离C.连接点A与点B的线段,叫A,B两点间的距离D.两点之间的距离是一个数,不是指线段本身5.若数轴上点A,B分别表示数2,-2,则A,B两点之间的距离可表示为()A.2+(-2)B.2-(-2)C.(-2)+2D.(-2)-26.如图,线段AB=8 cm,延长AB到C,若线段BC的长是AB长的一半,则A,C两点的距离为()A.4 cmB.6 cmC.8 cmD.12 cm7.若A,O,B三点在同一条直线上,OA=3,OB=5,则A,B两点的距离为()A.2B.8C.3D.8或28.如图所示,从A地到达B地,最短的路线是()A.A→C→E→BB.A→F→E→BC.A→D→E→BD.A→C→G→E→B9.如图,平面上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池,不考虑其他因素,请你画出蓄水池P的位置,使它与4个村庄的距离之和最小.10.如图,一只壁虎要从圆柱体A点沿着表面爬到B点,因为B点处有它想吃的一只蚊子,而它饿得快不行了,怎样爬行路线最短?参考答案:4.2直线、射线、线段第1课时直线、射线、线段1.D2.B3.B4. 经过一点可以画无数条直线;明两点确定一条直线.5.(1)直线a经过点A,C,但不经过点B,D;(2)点B在直线b上,在直线a外;(3)点A既在直线a上,又在直线b上.6.D7.C8. 有7条.9.C10.C11.B12.B13.D14. 10.15.解:如图所示.16.解:(1)是一条射线,表示为射线OB. (2)负数和零(非正数). (3)线段,线段AB.17.解:根据线段的定义:可知图中线段有AC ,AD ,AE ,AB ,CD ,CE ,CB ,DE ,DB ,EB ,共10条.(1)有10种不同的票价.(2)因车票需要考虑方向性,如“A→C”与“C→A”票价相同,但方向不同,故需要准备20种车票.18.(1)试验观察:如果每过两点可以画一条直线,那么: 第①组最多可以画3条直线; 第②组最多可以画6条直线; 第③组最多可以画10条直线; (2)探索归纳:如果平面上有n(n≥3)个点,且任意3个点均不在一条直线上,那么最多可以画n (n -1)2条直线;(用含n 的代数式表示) (3)解决问题:某班45名同学在毕业后的一次聚会中,如果每两人握1次手问好,那么共握990次手.第2课时比较线段的长短1.D2.解:如图,AC即为所求线段.3.B4.B5.A6.(1)AC=BC+AB;(2)CD=AD-AC;(3)CD=BD-BC;(4)AB+BC=AD-CD.7.4__cm.8.11.9.210.解:因为D是AC的中点,所以AC=2CD.因为CD=2,所以AC=4.因为AC =12AB ,所以AB =2AC. 所以AB =2×4=8. 11.10__cm 或2__cm. 12. C 13.D 14.D 15.=16.解:(1)作射线AF ;(2)在射线AF 上顺次截取AB =BC =a ,CD =b ; (3)在线段AD 上截取DE =c.线段AE 即为所求.17.解:因为C ,D 为线段AB 的三等分点, 所以AC =CD =DB. 又因为点E 为AC 的中点, 所以AE =EC =12AC.所以CD +EC =DB +AE. 因为ED =EC +CD =9, 所以DB +AE =EC +CD =ED =9. 所以AB =2ED =18.18.解:画出图形,如图:设AP =2x cm ,PB =3x cm ,则AB =5x cm. 因为AQ∶QB=4∶1, 所以AQ =4x cm ,QB =x cm. 所以PQ =PB -QB =2x cm. 因为PQ =3 cm , 所以2x =3. 所以x =1.5.所以AP =3 cm ,QB =1.5 cm.19.解:(1)因为AC =6 cm ,BC =14 cm ,点M ,N 分别是AC ,BC 的中点, 所以MC =3 cm ,CN =7 cm. 所以MN =MC +CN =10 cm. (2)MN =12(a +b)cm.理由:因为AC =a cm ,BC =b cm ,点M ,N 分别是AC ,BC 的中点, 所以MC =12a cm ,CN =12b cm.所以MN =MC +CN =12(a +b)cm.第3课时 关于线段的基本事实及两点的距离1.两点之间,线段最短.2.两点确定一条直线. 变短. 两点之间,线段最短.3.解:点P的位置如图所示.作法:连接AB交l于点P,则P点即为汽车站位置.理由:两点之间,线段最短.4.D5.B6.D7.D8.B9.解:连接AC,BD,AC与BD的交点即为P点的位置,图略.10.解:将圆柱体的侧面展开,如图所示,连接AB,则线段AB是壁虎爬行的最短路线.。

人教版七年级上册数学 直线、射线、线段 同步练习 1

人教版七年级上册数学   直线、射线、线段  同步练习 1

4.2直线、射线、线段同步练习
一.单选题
A.4条B.8条
2.对于如图,有两种语言描述:①射线
A.只有①正确B.只有②正确
A.4B.6
10.如图,点C、D在线段AB上,AB
12.如图,用剪刀沿直线将一片长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小,能解13.点A ,B ,C 在同一条直线上,线段4cm AB =,6cm BC =,若点D 为线段AB 的中点,点E 为线段BC 的中点,求线段DE 的长.
14.如图,已知A,B,C.D四点.
(1)画射线AB ;
(2)画直线BC ;
(3)画线段AC ;
(4)连接BD 并延长交线段AC 于点E.
15.点O是线段AB 的中点,=14cm OB ,点P将线段AB 分为两部分,52AP PB :=:

(1)求线段OP 的长.
(2)点M在线段AB 上,若点M距离点P的长度为4cm ,求线段AM 的长.
(1)当点M追上点N时,求t的值.。

人教版数学七年级上册 第4章 4.2直---4.3同步练习题含答案

人教版数学七年级上册 第4章 4.2直---4.3同步练习题含答案

4.2直线、射线、线段一.选择题1.如图,点C在线段AB上,点D是AC的中点,如果CD=3,AB=10,那么BC长度为()A.3B.3.5C.4.5D.42.已知线段AB,在AB的延长线上取一点C,使BC=2AB,若AC=9cm,则线段AB的长度为()A.4.5cm B.4cm C.3cm D.2cm3.如图,已知AB=10cm,M是AB中点,N在AB的延长线上,若NB=MB,则MN的长为()A.7.5cm B.10cm C.5cm D.6cm4.已知线段AB=6cm,点C在直线AB上,且线段AC=1cm,则线段BC的长为()A.5cm B.7cm C.5cm或7cm D.以上均不对5.如图,下列说法错误的是()A.直线AC与射线BD相交于点AB.BC是线段C.直线AC经过点AD.点D在直线AB上6.如图,小明同学用剪刀沿着虚线将一张圆形纸片剪掉一部分,发现剩下纸片的周长比原来的周长要小,能正确解释这一现象的数学知识是()A.两点之间,直线最短B.经过一点,有无数条直线C.两点确定一条直线D.两点之间,线段最短7.已知点C在线段AB上,下列各式中:①AC=AB;②AC=CB;③AB=2AC;④AC+CB=AB,能说明点C是线段AB中点的有()A.①B.①②C.①②③D.①②③④8.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间9.判断下列语句,①一根拉紧的细线就是直线;②点A一定在直线AB上;③过三点可以画三条直线;④两点之间,线段最短.正确的有几个()A.1B.2C.3D.410.如图,建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做的依据是()A.直线比曲线短B.两点之间,线段最短C.两点确定一条直线D.垂线段最短二.填空题11.点M是线段AB上一点,且AM:MB=2:3,MB比AM长2cm,则AB长为.12.把一根木条钉在墙上使其固定,至少需要个钉子,其理由是.13.如图已知线段AD=16cm,线段AC=BD=10cm,E,F分别是AB,CD的中点,则EF 长为cm.14.如图,射击运动员在瞄准时,总是用一只眼瞄准准星和目标,这种现象用数学知识解释为.15.已知A、B、C三站在一条东西走向的马路边,小马现在A站,小虎现在B站,两人分别从A、B两站同时出发,约定在C站会面商议事宜.若小马的行驶速度是小虎的行驶速度的,两人同时到达C站,且A、B两站之间的距离为8km,求C站与A、B两站之间的距离之和是.三.解答题16.如图,点C是线段AB上一点,点M、N、P分别是线段AC、BC、AB的中点,AC=3cm,CP=1cm,求:(1)线段AM的长;(2)线段PN的长.17.如图,点P是线段AB上的一点,点M、N分别是线段AP、PB的中点.(1)如图1,若点P是线段AB的中点,且MP=4cm,求线段AB的长;(2)如图2,若点P是线段AB上的任一点,且AB=12cm,求线段MN的长.18.已知:四点A、B、C、D的位置如图所示,根据下列语句,画出图形.(1)画直线AD、直线BC相交于点O;(2)画射线AB.19.如图,已知线段AB=60,点C、D分别是线段AB上的两点,且满足AC:CD:DB=3:4:5,点K是线段CD的中点,求线段KB的长.解:设AC=3x,则CD=4x,DB=,∵AB=AC+CD+DB=60∴AB=(用含x的代数式表示)=60.∴x=.∵点K是线段CD的中点.∴KD==.∴KB=KD+DB=.参考答案与试题解析一.选择题(共10小题)1.【解答】解:∵点D是AC的中点,∴AC=2CD=2×3=6,∴BC=AB﹣AC=10﹣6=4.故选:D.2.【解答】解:如图,∵BC=2AB、AC=9cm,∴AB=AC=3cm,故选:C.3.【解答】解:∵AB=10cm、M为AB的中点,∴AM=MB=AB=5cm,又∵NB=MB,∴NB=2.5cm,则MN=MB+BN=5+2.5=7.5(cm),故选:A.4.【解答】解:①点C在A、B中间时,BC=AB﹣AC=6﹣1=5(cm).②点C在点A的左边时,BC=AB+AC=6+1=7(cm).∴线段BC的长为5cm或7cm.故选:C.5.【解答】解:A、直线AC与射线BD相交于点A,说法正确,故本选项错误;B、B、C是两个端点,则BC是线段,说法正确,故本选项错误;C、直线AC经过点A,说法正确,故本选项错误;D、如图所示,点D在射线BD上,说法错误,故本选项正确.故选:D.6.【解答】解:能正确解释这一现象的数学知识是两点之间,线段最短.故选:D.7.【解答】解:∵点C在线段AB上,∴当①AC=AB或②AC=CB或③AB=2AC时,点C是线段AB中点;当④AC+CB=AB时,点C不一定是线段AB中点;故选:C.8.【解答】解:①以点A为停靠点,则所有人的路程的和=15×300+10×900=13500(米),②以点B为停靠点,则所有人的路程的和=30×300+10×600=15000(米),③以点C为停靠点,则所有人的路程的和=30×900+15×600=36000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<300),则所有人的路程的和是:30m+15(300﹣m)+10(900﹣m)=13500+5m>13500,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<600),则总路程为30(300+n)+15n+10(600﹣n)=15000+35n>13500.∴该停靠点的位置应设在点A;故选:A.9.【解答】解:①一根拉紧的细线就是直线,说法错误;②点A一定在直线AB上,说法正确;③过三点可以画三条直线,说法错误;④两点之间,线段最短,说法正确;正确的说法有2个,故选:B.10.【解答】解:建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做的依据是:两点确定一条直线.故选:C.二.填空题(共5小题)11.【解答】解:设AM=2xcm,MB=3xcm,则AB=5xcm,∵MB比AM长2cm,∴BM﹣AM=3x﹣2x=x=2(cm),∴AB长为5x=10(cm),故答案为:10cm.12.【解答】解:∵两点确定一条直线,∴将一根细木条固定在墙上时,我们至少需要两个钉子.13.【解答】解:由图可知BC=AC+BD﹣AD=10+10﹣16=4cm,∵E,F分别是AB,CD的中点,∴EB+CF=0.5(AB+CD)=0.5(AD﹣BC)=0.5(16﹣4)=6cm,∴EF=BE+CF+BC=6+4=10cm.14.【解答】解:∵准星与目标是两点,∴利用的数学知识是:两点确定一条直线.故答案是:两点确定一条直线.15.【解答】解:相同的时间内,小马行驶路程是小虎行驶路程的,设小马行驶路程为3x,即AC=3x,小虎行驶路程为5x,即BC=5x,(1)当C在线段AB反向延长线上时(如图1)AC+AB=BC,则3x+8=5x,解得x=4,∴AC=12,BC=20;∴C站与A、B两站之间的距离之和是32;(2)当C在线段AB上时(上图2),AC=3,BC=5;∴C站与A、B两站之间的距离之和是8;(3)当C在线段AB的延长线上时,可知不符合实际情况,不可能.故答案为:32或8.三.解答题(共4小题)16.【解答】解:(1)∵M为AC中点,∴AM=AC=cm;(2)∵AP=AC+CP,CP=1cm,∴AP=4cm,∵P为AB的中点,∴线段AB=2AP=8 cm,∵CB=AB﹣AC,AC=3cm,∴线段CB=5cm,∵N为CB的中点,∴CN=BC=cm,∴PN=CN﹣CP=cm,答:(1)线段AM的长为cm,(2)线段PN的长为cm.17.【解答】解:(1)∵M是线段AP的中点,MP=4cm,∴AP=2MP=2×4=8(cm),又∵点P是线段AB的中点,∴AB=2AP=2×8=16(cm).(2)∵点M是线段AP的中点,点N是线段PB的中点,∴MP=AP,PN=PB,∴MN=MP+PN=AP+PB=(AP+PB)=AB,∵AB=12cm,∴MN=12÷2=6(cm).18.【解答】解:如图所示:19.【解答】解:设AC=3x,则CD=4x,DB=5x,∵AB=AC+CD+DB=60∴AB=3x+4x+5x(用含x的代数式表示)=60.∴x=5.∵点K是线段CD的中点.∴KD=CD=10.∴KB=KD+DB=35.故答案为:5x;3x+4x+5x;5;CD,10;35.4.3 《角》一.选择题1.用度、分、秒表示21.24°为()A.21°14'24″B.21°20'24″C.21°34'D.21°2.已知∠A=30°45',∠B=30.45°,则∠A()∠B.(填“>”、“<”或“=”)A.>B.<C.=D.无法确定3.下列说法正确的是()A.一个角的补角必是钝角B.两个锐角一定互为余角C.直角没有补角D.钝角没有余角4.若∠A与∠B互为补角,则∠A+∠B=()A.60°B.90°C.120°D.180°5.25°的补角是()A.155°B.145°C.55°D.65°6.下列四个角中,有可能与70°角互补的角是()A.B.C.D.7.已知∠1和∠2互为余角,且∠2与∠3互补,∠1=60°,则∠3为()A.120°B.60°C.30°D.150°8.一个角的余角是44°,这个角的补角是()A.134°B.136°C.156°D.146°9.如果一个角的度数比它补角的2倍多30°,那么这个角的度数是()A.50°B.70°C.130°D.160°10.若α=27°25',则α的余角等于()A.62°25'B.62°35'C.152°25'D.152°35'二.填空题11.如图,点O在直线AB上,OC是∠AOD的平分线.若∠BOD=50°,则∠AOC的度数为.12.已知∠AOB=40°,OC是∠AOB的平分线,则∠AOC等于.13.钟表上显示的时间是12:30,此时时针与分针的夹角是.14.若此时时钟表上的时间是8:20分,则时针与分针的夹角为度.15.如图,∠BOC=90°,∠COD=45°,则图中互为补角的角共有对.三.解答题(共3小题)16.计算:(1)131°28′﹣51°32′15″(2)58°38′27″+47°42′40″(3)34°25′×3+35°42′17.一个锐角的补角比它的余角的4倍小30°,求这个锐角的度数.18.如图,点A,O,B在同一条直线上,射线OD和射线OE分别平分∠AOC和∠BOC,若∠BOE=21°,求∠AOE及∠COD的度数.参考答案一.选择题1.解:21.24°=21°+0.24×60′=21°+14′+0.4×60″=21°14′24″,故选:A.2.解:30.45°=30°+0.45×60′=30°27′,∵30°45′>30°27′,∴30°45'>30.45°,∴∠A>∠B,故选:A.3.解:A.一个钝角的补角为锐角,故原说法错误;B.两个锐角的和为90°时,这两个角一定互余,故原说法错误;C.直角的补角依然是直角,故原说法错误;D.和为90°的两个角互余,所以钝角没有余角,故原选项正确.故选:D.4.解:∵∠A与∠B互为补角,∴∠A+∠B=180°.故选:D.5.解:25°的补角是:180°﹣25°=155°.故选:A.6.解:根据互补的性质得,70°角的补角为:180°﹣70°=110°,是个钝角;∵答案A、B、C都是锐角,答案D是钝角;∴答案D正确.故选:D.7.解:∵∠1和∠2互为余角,∠1=60°,∴∠2=90°﹣∠1=90°﹣60°=30°,∵∠2与∠3互补,∴∠3=180°﹣∠2=180°﹣30°=150°.故选:D.8.解:∵一个角的余角是44°,∴这个角的度数是:90°﹣44°=46°,∴这个角的补角是:180°﹣46°=134°.故选:A.9.解:设这个角是x°,根据题意,得x=2(180﹣x)+30,解得:x=130.即这个角的度数为130°.故选:C.10.解:α的余角=90°﹣α=90°﹣27°25'=62°35'.故选:B.二.填空题11.解:∵点O在直线AB上,∴∠AOD+∠BOD=180°,∵∠BOD=50°,∴∠AOD=180°﹣∠BOD=180°﹣50°=130°,∵OC是∠AOD的平分线,∴∠AOC=∠AOD=×130°=65°,故答案为:65°.12.解:∵OC是∠AOB的平分线,∠AOB=40°,∴∠AOC=∠AOB=×40°=20°,故答案为:20°.13.解:12:30时,时针与分针相距5.5份,夹角为30°×5.5=165°,故选:165°.14.解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上8点20分,时针与分针的夹角可以看成30°×4+0.5°×20=130°.故答案为:130.15.解:∵∠BOC=90°,∴∠AOC=∠BOC=90°,∴∠AOC与∠BOC互为补角;∵∠BOD+∠AOD=180°,∴∠AOD与∠BOD互为补角;∵∠COD=45°,∴∠BOD=45°,∴∠AOD与∠COD互为补角;∴图中互为补角的角共有3对,故答案为:3.三.解答题(共3小题)16.解:(1)131°28′﹣51°32′15″=79°55′45″;(2)58°38′27″+47°42′40″=106°21′7″;(3)34°25′×3+35°42′=103°15′+35°42′=138°57′.17.解:设这个锐角为x度,得:180﹣x=4(90﹣x)﹣30,解得x=50.答:这个锐角的度数为50°.18.解:∵∠BOE=21°,∴∠AOE=180°﹣∠BOE=159°,∵射线OE平分∠BOC,∴∠BOC=2∠BOE=42°,∴∠AOC=180°﹣∠BOC=138°,∵OD平分∠AOC,∴∠COD=AOC=69°.。

人教版七年级数学上册4.2 直线、射线、线段同步测试(含试题答案和解析)

 人教版七年级数学上册4.2 直线、射线、线段同步测试(含试题答案和解析)

人教版七年级数学上册4.2 直线、射线、线段同步测试一.选择题(共8小题)1.下列数学语言,不正确的是()A.画直线MN,在直线MN上任取一点PB.以点M为端点画射线MAC.直线a,b相交于点mD.延长线段MN到点P,使NP=MN2.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.两点之间直线最短3.如图,C,D,E是线段AB的四等分点,下列等式不正确的是()A.AB=4AC B.CE=AB C.AE=AB D.AD=CB4.下列说法正确的有()①过两点只能画一条直线;②过两点只能画一条射线;③过两点只能画一条线段.A.1个B.2个C.3个D.0个5.经过平面上的三点中的任两点可以画直线()A.3条B.1条C.1条或3条D.以上都不对6.如图,点A,B,C,D在同一条直线上,如果AB=CD,那么比较AC与BD的大小关系为()A.AC>BD B.AC<BD C.AC=BD D.不能确定7.如图,下列关于图中线段之间的关系一定正确的是()A.x=2x+2b﹣c B.c﹣b=2a﹣2b C.x+b=2a+c﹣b D.x+2a=3c+2b8.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm二.填空题(共6小题)9.在同一个平面内任意的四个点,可以确定条直线.10.直线AB,BC,CA的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC的交点,以上语句正确的有(只填写序号)11.已知线段AB和BC在同一条直线上,若AC=6cm,BC=2cm,则线段AC和BC中点间的距离为.12.已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为.13.如图所示,在一条笔直公路l的两侧,分别有A、B两个小区,为了方便居民出行,现要在公路l上建一个公共自行车存放点,使存放点到A、B小区的距离之和最小,你认为存放点应该建在处(填“C”“E”或“D”),理由是.14.点A、B、C在直线l上,AB=4cm,BC=6cm,点E是AB中点,点F是BC的中点,EF=.三.解答题(共4小题)15.(1)如图1,已知三点A,B,C,按要求画图:画直线AB;画射线AC;画线段BC.(2)如图2,用适当的语句表述点A,P与直线l的关系.16.已知,点A、B、C在同一条直线上,点M为线段AC的中点、点N为线段BC的中点(1)如图,当点C在线段AB上时:①若线段AC=8,BC=6,求MN的长度②若AB=a,求MN的长度(2)若AC=m,BC=n,求M的长度(m>n用含mn的代数式表示)17.如图,延长AB至D,使B为AD的中点,点C在BD上,CD=2BC.(1)AB=AD,AB﹣CD=;(2)若BC=3,求AD的长.18.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.参考答案与试题解析一.选择题(共8小题)1.下列数学语言,不正确的是()A.画直线MN,在直线MN上任取一点PB.以点M为端点画射线MAC.直线a,b相交于点mD.延长线段MN到点P,使NP=MN解:A、画直线MN,在直线MN上任取一点P,正确;B、以点M为端点画射线MA,正确;C、直线a,b相交于点M,故错误;D、延长线段MN到点P,使NP=MN,正确;故选:C.2.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.两点之间直线最短解:把一根木条固定在墙面上,至少需要两枚钉子,是因为两点确定一条直线.故选:B.3.如图,C,D,E是线段AB的四等分点,下列等式不正确的是()A.AB=4AC B.CE=AB C.AE=AB D.AD=CB 解:由C,D,E是线段AB的四等分点,得AC=CD=DE=EB=AB,选项A,AC=AB⇒AB=4AC,选项正确选项B,CE=2CD⇒CE=AB,选项正确选项C,AE=3AC⇒AE=AB,选项正确选项D,因为AD=2AC,CB=3AC,所以AD=,选项错误故选:D.4.下列说法正确的有()①过两点只能画一条直线;②过两点只能画一条射线;③过两点只能画一条线段.A.1个B.2个C.3个D.0个解:①过两点只能画一条直线,故正确;②过两点可以画2条射线,故错误;③过两点只能画一条线段,故正确.综上所述,正确的结论有2个.故选:B.5.经过平面上的三点中的任两点可以画直线()A.3条B.1条C.1条或3条D.以上都不对解:当三点在同一直线上时经过此三点可以画一条直线,当三点不在同一直线上时经过此三点可以画三条直线,所以经过三点中的任两点可以画1或3条直线,故选:C.6.如图,点A,B,C,D在同一条直线上,如果AB=CD,那么比较AC与BD的大小关系为()A.AC>BD B.AC<BD C.AC=BD D.不能确定解:根据题意和图示可知AB=CD,而CB为AB和CD共有线段,故AC=BD.故选:C.7.如图,下列关于图中线段之间的关系一定正确的是()A.x=2x+2b﹣c B.c﹣b=2a﹣2b C.x+b=2a+c﹣b D.x+2a=3c+2b解:∵x﹣c+2b=2a,∴x+2a=2x+2b﹣c,故选项A错误;∵2a﹣2b=x﹣c,故选项B错误;∵x+b=2a+c﹣b,故选项C正确;∵2a﹣2b=x﹣c,∴﹣x+2a=﹣c+2b,故选项D错误,故选:C.8.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm解:(1)当点C在线段AB上时,则MN=AC+BC=AB=5cm;(2)当点C在线段AB的延长线上时,则MN=AC﹣BC=7﹣2=5cm.综合上述情况,线段MN的长度是5cm.故选:D.二.填空题(共6小题)9.在同一个平面内任意的四个点,可以确定1或4或6条直线.解:如图所示:(1)四点在一条直线上,1条,如图1;(2)三点在一条直线上,4条,如图2;(3)两点在一条直线上,6条,如图3;故答案为:1或4或6.10.直线AB,BC,CA的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC的交点,以上语句正确的有①③④(只填写序号)解:由图可得,①点B在直线BC上,正确;②直线AB不经过点C,错误;③直线AB,BC,CA两两相交,正确;④点B是直线AB,BC的交点,正确;故答案为:①③④.11.已知线段AB和BC在同一条直线上,若AC=6cm,BC=2cm,则线段AC和BC中点间的距离为4cm或1cm.解:设AC、BC的中点分别为E、F,∵AC=6cm,BC=2cm,∴CE=AC=3cm,CF=BC=1cm,如图1,点B不在线段AC上时,EF=CE+CF=3+1=4(cm),如图2,点B在线段AC上时,EF=CE﹣CF=3﹣1=1(cm),综上所述,AC和BC中点间的距离为4cm或1cm.故答案为:4cm或1cm.12.已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为6cm.解:∵BC=AB,AB=9cm,∴BC=3cm,AC=AB+BC=12cm,又因为D为AC的中点,所以DC=AC=6cm.故答案为:6cm.13.如图所示,在一条笔直公路l的两侧,分别有A、B两个小区,为了方便居民出行,现要在公路l上建一个公共自行车存放点,使存放点到A、B小区的距离之和最小,你认为存放点应该建在E 处(填“C”“E”或“D”),理由是两点之间线段最短.解:公共自行车存放点应该建在E处,理由是两点之间线段最短.故答案为:E,两点之间线段最短.14.点A、B、C在直线l上,AB=4cm,BC=6cm,点E是AB中点,点F是BC的中点,EF=5cm 或1cm.解:如图,∵AB=4cm,BC=6cm,点E是AB中点,点F是BC的中点,∴BE=AB=2cm,BF=BC=3cm,①点B在A、C之间时,EF=BE+BF=2+3=5cm;②点A在B、C之间时,EF=BF﹣BE=3﹣2=1cm.∴EF的长等于5cm或1cm.故答案为:5cm或1cm.三.解答题(共4小题)15.(1)如图1,已知三点A,B,C,按要求画图:画直线AB;画射线AC;画线段BC.(2)如图2,用适当的语句表述点A,P与直线l的关系.解:(1)如图所示:(2)点A在直线l上,点P在直线l外.16.已知,点A、B、C在同一条直线上,点M为线段AC的中点、点N为线段BC的中点(1)如图,当点C在线段AB上时:①若线段AC=8,BC=6,求MN的长度②若AB=a,求MN的长度(2)若AC=m,BC=n,求M的长度(m>n用含mn的代数式表示)解:(1)当C在线段AB上时①∵点M、N分别是AC、BC的中点,AC=8,BC=6∴CM=AC=4,CN=BC=3∴MN=CM+CN=4+3=7;②∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=(AC+BC)=AB=a;(2)当点C在线段AB上时,MN=m n,当点C在线段AB的延长线时,MN=m﹣n,当点C在线段BA的延长线时,MN=n﹣m.17.如图,延长AB至D,使B为AD的中点,点C在BD上,CD=2BC.(1)AB=AD,AB﹣CD=BC;(2)若BC=3,求AD的长.解:(1)因为B为AD的中点,所以AB=BD=AD,所以AB﹣CD=BD﹣CD=BC,故答案为:,BC.(2)因为BC=3,CD=2BC,所以CD=2BC=6,所以BD=BC+CD=3+6=9因为B是AD中点,∴AB=BD=9,∴AD=AB+BD=9+9=18,即AD的长是18.18.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.解:(1)∵AC=9cm,点M是AC的中点,∴CM=0.5AC=4.5cm,∵BC=6cm,点N是BC的中点,∴CN=0.5BC=3cm,∴MN=CM+CN=7.5cm,∴线段MN的长度为7.5cm,(2)MN=a,当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a,(3)当点C在线段AB的延长线时,如图:则AC>BC,∵M是AC的中点,∴CM=AC,∵点N是BC的中点,∴CN=BC,∴MN=CM﹣CN=(AC﹣BC)=b.。

【人教版数学(2024年)七年级上册同步练习题】 6.2.1直线线段射线(含答案)

【人教版数学(2024年)七年级上册同步练习题】 6.2.1直线线段射线(含答案)

【人教版数学(2024年)七年级上册同步练习】6.2.1直线线段射线一、单选题1.如图,下列说法正确的是()A.点B是直线的一个端点B.点O在射线上C.射线和射线是同一条射线D.点A在线段上2.如图所示,某同学的家在A处,书店在B处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→BC.A→C→E→F→B D.A→C→M→B3.如图,是一段高铁行驶路线图,图中字母表示的5个点表示5个车站,在这段路线上往返行车,需印制多少种车票?()A.10B.11C.18D.204.数学源于生活,用于生活,我们要会用数学的眼光观察现实世界,会用数学的思维思考现实世界,会用数学的语言表达现实世界,例如,生活中木匠弹墨线、打靶瞄准、拉绳插秧等场景,就反映了直线的一个基本事实是()A.经过两点,有且仅有一条直线B.经过一点,有无数条直线C.垂线段最短D.两点之间,线段最短5.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.两点之间直线最短二、填空题6.小王同学在面临“固定一根细而短的直木条用多少根钉子”问题时,选择的是准备用根钉子,若你是发货员,从节约和稳固兼顾的角度来讲,可以只发给小王根钉子.7.图中有条线段.8.同一直线上,个点可以连成条线段,个点可以连成条线段.9.要把一个横排挂钩在墙上钉牢,至少要钉两枚钉子,这样做的依据是:.10.把弯曲的河道改直,可以缩短航程,其依据是.11.期中考试布置教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,很容易就整整齐齐了.这其中蕴含的数学道理是.三、解答题12.图中的几何体有多少条棱?请写出这些表示棱的线段.答案解析部分1.【答案】D【知识点】直线、射线、线段2.【答案】B【知识点】两点之间线段最短3.【答案】D【知识点】线段的计数问题4.【答案】A【知识点】两点确定一条直线5.【答案】B【知识点】两点确定一条直线6.【答案】【知识点】两点确定一条直线7.【答案】6【知识点】线段的计数问题8.【答案】;28【知识点】线段的计数问题9.【答案】两点确定一条直线【知识点】两点确定一条直线10.【答案】两点之间,线段最短【知识点】两点之间线段最短11.【答案】两点确定一条直线【知识点】两点确定一条直线12.【答案】解:图中的几何体有6条棱,分别是线段AB、AC、AD、BC、BD、CD.【知识点】立体图形的初步认识;直线、射线、线段【人教版数学(2024年)七年级上册同步练习】6.2.1直线线段射线一、单选题1.如图,下列说法正确的是()A.点B是直线的一个端点B.点O在射线上C.射线和射线是同一条射线D.点A在线段上2.如图所示,某同学的家在A处,书店在B处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→BC.A→C→E→F→B D.A→C→M→B3.如图,是一段高铁行驶路线图,图中字母表示的5个点表示5个车站,在这段路线上往返行车,需印制多少种车票?()A.10B.11C.18D.204.数学源于生活,用于生活,我们要会用数学的眼光观察现实世界,会用数学的思维思考现实世界,会用数学的语言表达现实世界,例如,生活中木匠弹墨线、打靶瞄准、拉绳插秧等场景,就反映了直线的一个基本事实是()A.经过两点,有且仅有一条直线B.经过一点,有无数条直线C.垂线段最短D.两点之间,线段最短5.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.两点之间直线最短二、填空题6.小王同学在面临“固定一根细而短的直木条用多少根钉子”问题时,选择的是准备用根钉子,若你是发货员,从节约和稳固兼顾的角度来讲,可以只发给小王根钉子.7.图中有条线段.8.同一直线上,个点可以连成条线段,个点可以连成条线段.9.要把一个横排挂钩在墙上钉牢,至少要钉两枚钉子,这样做的依据是:.10.把弯曲的河道改直,可以缩短航程,其依据是.11.期中考试布置教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,很容易就整整齐齐了.这其中蕴含的数学道理是.三、解答题12.图中的几何体有多少条棱?请写出这些表示棱的线段.答案解析部分1.【答案】D【知识点】直线、射线、线段2.【答案】B【知识点】两点之间线段最短3.【答案】D【知识点】线段的计数问题4.【答案】A【知识点】两点确定一条直线5.【答案】B【知识点】两点确定一条直线6.【答案】【知识点】两点确定一条直线7.【答案】6【知识点】线段的计数问题8.【答案】;28【知识点】线段的计数问题9.【答案】两点确定一条直线【知识点】两点确定一条直线10.【答案】两点之间,线段最短【知识点】两点之间线段最短11.【答案】两点确定一条直线【知识点】两点确定一条直线12.【答案】解:图中的几何体有6条棱,分别是线段AB、AC、AD、BC、BD、CD.【知识点】立体图形的初步认识;直线、射线、线段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图1 图2
直线、射线、线段测试1
江苏 许开成
一、耐心填一填(每小题3分,共24分)
1.我们在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为__________________.
2.在直线AB 上取C 、D 、E 三个点,则图中共有射线__________条.
3.如图1,AC=DB ,写出图中另外两条相等的线段__________.
4.如图2所示,线段AB 的长为8cm ,点C 为线段AB 上任意一点,若M 为线段AC 的中点,N 为线段CB 的中点,则线段MN 的长是_______________.
5. 三条直线两两相交,则交点有_______________个.
6.图3中共有________条线段.
7.已知线段AB 及一点P ,若AP+PB>AB,则点P 在 .
8.已知线段AB=10,直线AB 上有一点C,且BC=4,M 是线段AC 的中点,则AM 的长为 .
二、精心选一选(每小题3分,计24分)
1.下列说法中错误的是( ).
A .A 、
B 两点之间的距离为3cm B .A 、B 两点之间的距离为线段AB 的长度
C .线段AB 的中点C 到A 、B 两点的距离相等
D .A 、B 两点之间的距离是线段AB
2.下列说法中,正确的个数有( ).
(1)射线AB 和射线BA 是同一条射线 (2)延长射线MN 到C
(3)延长线段MN 到A 使NA==2MN (4)连结两点的线段叫做两点间的距离
A .1
B .2
C .3
D .4
3.下列说法中,错误的是( ).
A .经过一点的直线可以有无数条
B .经过两点的直线只有一条
图3
C .一条直线只能用一个字母表示
D .线段CD 和线段DC 是同一条线段
4.如图4,C 是线段AB 的中点,D 是CB 上一点,下列说法中错误的是( ).
A .CD=AC-BD
B .CD=2
1BC C .CD=2
1AB-BD D .CD=AD-BC 5.如果线段AB=13cm,MA+MB=17 cm,那么下面说法中正确的是( ).
A .M 点在线段A
B 上
B .M 点在直线AB 上
C .M 点在直线AB 外
D .M 点可能在直线AB 上,也可能在直线AB 外
6.下列图形中,能够相交的是( ).
7.如图5,小华的家在A 处,书店在B 处,星期日小明到书店去买书,
他想尽快的赶到书店,请你帮助他选择一条最近的路线( ).
A .A →C →D →
B B .A →
C →F →B
C .A →C →E →F →B
D .A →C →M →B 8.已知点A 、B 、C 都是直线l 上的点,且AB=5cm ,BC=3cm ,那么点A 与点C 之间的距离是( ).
A .8cm
B .2cm
C .8cm 或2cm
D .4cm
三、用心想一想(本大题共52分)
1.(本题8分)如图6,四点A 、B 、C 、D ,按照下列语句画出
图形:
(1)作线段AD ,并以cm 为单位,度量其长度;
(2)线段AC 和线段DB 相交于点O ;
(3)反向延长线段BC 至E ,使BE=BC .
2.(本题10分)动手操作题:点和线段在生活中有着广泛的应用.
如图7,用7根火柴棒可以摆成图中的“8”.你能去掉其
图5
图7
图6
图4
中的若干根火柴棒,摆出其他的9个数字吗?
请画出其中的4个来.
3.(10分)如图8,C 为线段AB 的中点,N 为线段CB 的中点,CN=1cm.求图
中所有线段的长度的和. 4.(本题12分)在同一条公路旁,住着五个人,他们在同一家公司上班,如
图9,不妨设这五个人的家分别住在点ABDEF 位置,公司在C 点,若AB=4km ,BC=2km ,CD=3km ,DE=3km ,EF=1km ,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价3元(3km 以内,包括3km ),以后每千米1.5元(不足1km ,以1km 计算),每辆车能容纳3人.
(1)若他们分别乘出租车去上班,公司在支付车费多少元?
(2
)如果你是公司经理,你对他们有没有什么建议?
图9
5.(本题12分)图10为中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走,例如:图中“马”所在的位置可以直接走到点A .B 等处.
若“马”的位置在C 处,为了到达D 点,请按“马”走的规则,在图10的棋盘上用虚线画出一种你认为合理的行走路线.
参考答案
一、耐心填一填
1.两点确定一条直线 2.6 3.AD=CB 4.4cm 5.1或3
6.10 7.直线经过这一点,直线不经过这一点 8.7或3
二、精心选一选
1.D 2.A 3.C 4.B 5. D 6.D 7.B 8.C
三、用心想一想
1.略 2.略 3.AC+AN+AB+CN+CB+NB=13
4.(1)A :7.5,B :3,D :3,E :7.5,F :9,合计30元;
图10
图8
(2)AB同乘一辆车,从A开出,DEF同乘一辆车,从F开出,合计16.5元
5.。

相关文档
最新文档