人教A版文科数学课时试题及解析(62)合情推理与演绎推理
高中数学合情推理与演绎推理
合情推理是从已知的 结论推测未知的结论, 发现与猜想的结论都 要经过进一步严格证 明.
演绎推理是由一般到 特殊的推理,它常用 来证明和推理数学问 题,注意推理过程的 严密性,书写格式的 规范性.
归纳推理、类比推理、演绎推理等问题是 高考的热点,归纳、类比推理大多数出现 在填空题中,为中、低档题.演绎推理大 多数出现在解答题中,为中、高档题 目.在知识的交汇点处命题,背景新颖的 创新问题,常考常新,值得重视.
34.
新课标 ·文科数学(安徽专用)
自 主
(2)归纳三角恒等式sin2α+cos2(30°-α)-sin
落 实 ·
cos(30°-α)=34.
固
基
证明如下:
础
sin2α+cos2(30°-α)-sin αcos(30°-α)
高
α考 体 验
· 明 考 情
=
1-cos 2
2α +
1+cos(620°-2α) -sin
【思路点拨】
从特殊②计算结果为
3 4
,观察每个三角
函数式中三角函数名称与角的变化规律,归纳出一般性结
论;然后利根用据演(1绎)的推计理算进结行果证,将明该.同学的发现推
广为三角恒等式,并证明你的结论.
【尝试解答】 (1)选择②式,计算如下:
sin215°+cos215°+sin 15°cos 15°=1-12sin 30°=
01
归纳推理和类比推理的共同特点和区别是什么?
02
【提示】 共同点:两种推理的结论都有待于证明.
03
不同点:归纳推理是由特殊到一般的推理,类比推理是由特殊到特殊的推理.
二.演绎推理所获得的结论一定可靠吗?
【提示】 演绎推理是由一般性的命题推出特殊性命 题的一种推理模式,是一种必然性推理.演绎推理的 前提与结论之间有蕴含关系,因而,只要前提是真实 的,推理的形式是正确的,那么结论必定是真实的, 但是错误的前提可能导致错误的结论.
人教版数学高二 数学A版选修1-2 第二章《推理与证明》教辅资料
满足y=x 2,则log 2(22)x y +的最小值是78;④若a 、b ∈R ,则221a b ab a b +++>+。
其中正确的是( )。
(A) ①②③ (B) ①②④ (C) ②③④ (D) ①②③④解析 用综合法可得应选(B ) 例2 函数y =f (x )在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是 .解析∵函数y =f (x )在(0,2)上是增函数, ∴ 0<x+2<2即-2<x <0∴函数y=f(x+2) 在(-2,0)上是增函数, 又∵函数y=f(x+2)是偶函数,∴函数y=f(x+2) 在(0,2)上是减函数 由图象可得f(2.5)>f(1)>f(3.5)故应填f(2.5)>f(1)>f(3.5)例3 已知a ,b ,c 是全不相等的正实数,求证3>-++-++-+ccb a b bc a a a c b解析∵ a ,b ,c 全不相等∴ a b 与b a ,a c 与c a ,b c 与c b 全不相等。
∴ 2,2,2b a c a c ba b a c b c+>+>+>三式相加得6b c c a a ba ab bc c+++++>∴ (1)(1)(1)3b c c a a ba ab bc c+-++-++->即 3b c a a c b a b c a b c+-+-+-++>练习一、选择题1.如果数列{}n a 是等差数列,则( )。
(A )1845a a a a +<+ (B ) 1845a a a a +=+ (C )1845a a a a +>+ (D )1845a a a a =2.在△ABC 中若b=2asinB 则A 等于( )(A)06030或 (B)06045或 (C)0012060或 (D)0015030或 3.下面的四个不等式:①ca bc ab c b a ++≥++222;②()411≤-a a ;③2≥+abb a ;④()()()22222bd ac d c b a +≥+•+.其中不成立的有(A )1个 (B )2个 (C )3个 (D )4个二、填空题4. 已知 5,2==b a ,向量b a 与的 夹角为0120,则a b a .)2(-=5. 如图,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足n,n证明:如图,连接BD ,∵在△ABC 中,BE=CE DF=CF ∴E F ∥BD又BD ⊂平面ABD ∴BD ∥平面ABD7.解:∵f(x-4)=f(2-x),∴函数的图象关于x= -1对称 ∴12-=-ab即b =2a 由③知当x = 1时,y=0,即ab +c =0;由①得 f (1)≥1,由②得 f (1)≤1. ∴f (1)=1,即a +b +c =1,又ab +c =0 ∴a =41 b =21 c =41 ,∴f (x )=4121412++x x 假设存在t ∈R ,只要x ∈[1,m ],就有f (x +t )≤x 取x =1时,有f (t +1)≤1⇒41(t +1)2+21(t +1)+41≤1⇒-4≤t ≤0 对固定的t ∈[-4,0],取x =m ,有f (t +m )≤m ⇒41(t +m )2+21(t +m )+41≤m ⇒2m +2(t-1)m +(t 2+2t +1)≤0 ⇒t t 41---≤m ≤t t 41-+- ∴m ≤t t 41--≤)4(4)4(1-⋅-+--=9当t = -4时,对任意的x ∈[1,9],恒有f(x-4)≤x ⇒41(2x -10x +9)=41(x-1)(x-9)≤0∴m 的最大值为9.解法二:∵f (x -4)=f (2-x ),∴函数的图象关于x =-1对称 ∴ 12-=-abb =2a 由③知当x=1时,y=0,即a b +c =0;由①得 f (1)≥1,由②得 f (1)≤1∴f (1)=1,即a +b +c =1,a b +c =0∴a =41 b =21 c =41∴f (x )=4121412++x x =41(x +1)2由f (x +t )=41(x +t +1)2≤x 在x ∈[1,m ]上恒成立 ∴4[f (x +t )-x ]=x 2+2(t -1)x +(t +1)2≤0当x ∈[1,m ]时,恒成立 令 x =1有t 2+4t ≤0⇒-4≤t ≤0令x =m 有t 2+2(m +1)t +(m -1)2≤0当t ∈[-4,0]时,恒有解令t = -4得,2m - 10m +9≤0⇒1≤m ≤9 即当t = -4时,任取x ∈[1,9]恒有f (x -4)-x =41(2x -10x +9)=41(x-1)(x-9)≤0 ∴ m max =92.2直接证明2.2.1 综合法一、选择题(1)由等差数列的性质:若m+n=p+q 则q p n m a a a a +=+可知应填(B )。
人教A版(文科数学) 合情推理 单元测试(含答案)
2019届人教A 版(文科数学) 合情推理 单元测试1.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式S =底×高2,可推知扇形面积公式S 扇等于( ) A.r 22 B.l 22C.lr 2D .不可类比考点 类比推理的应用 题点 平面曲线的类比 答案 C解析 扇形的弧类比三角形的底边,扇形的半径类比三角形的高,则S 扇=lr2.2.如图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子的颜色为( )A .白色B .黑色C .白色可能性大D .黑色可能性大 考点 归纳推理的应用 题点 归纳推理在图形中的应用 答案 A解析 由题图知,三白二黑周而复始相继排列,根据36÷5=7余1, 可得第36颗应与第1颗珠子的颜色相同,即白色. 3.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10等于( ) A .28 B .76 C .123D .199 考点 归纳推理的应用题点 归纳推理在数对(组)中的应用 答案 C解析 利用归纳法:a +b =1,a 2+b 2=3,a 3+b 3=3+1=4,a 4+b 4=4+3=7,a 5+b 5=7+4=11,a 6+b 6=11+7=18,a 7+b 7=18+11=29,a 8+b 8=29+18=47,a 9+b 9=47+29=76,a 10+b 10=76+47=123,规律为从第三组开始,其结果为前两组结果的和.4.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间上,若两个正四面体的棱长的比为1∶2,则它们的体积比为________. 考点 类比推理的应用题点 平面几何与立体几何之间的类比 答案 1∶8解析 设两个正四面体的体积分别为V 1,V 2, 则V 1∶V 2=13S 1h 1∶13S 2h 2=S 1h 1∶S 2h 2=1∶8.5.按照图1、图2、图3的规律,第10个图中圆点的个数为________.考点 归纳推理的应用 题点 归纳推理在图形中的应用 答案 40解析 图1中的点数为4=1×4, 图2中的点数为8=2×4, 图3中的点数为12=3×4,…, 所以图10中的点数为10×4=40.1.合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向. 2.合情推理的过程概括为从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想一、选择题1.下面使用类比推理,得出的结论正确的是( )A .若“a ·3=b ·3,则a =b ”类比出“若a ·0=b ·0,则a =b ”B .“若(a +b )c =ac +bc ”类比出“(a ·b )c =ac ·bc ”C .“若(a +b )c =ac +bc ”类比出“a +b c =a c +b c (c ≠0)”D .“(ab )n =a n b n ”类比出“(a +b )n =a n +b n ” 考点 类比推理的应用题点 类比推理的方法、形式和结论 答案 C解析 显然A ,B ,D 不正确,只有C 正确.2.观察图形规律,在其右下角的空格内画上合适的图形为( )A. B .△ C.D .○考点 归纳推理的应用 题点 归纳推理在图形中的应用 答案 A解析 观察可发现规律:①每行、每列中,方、圆、三角三种形状均各出现一次,②每行、每列有两阴影一空白,即得结果.3.根据给出的数塔猜测123 456×9+7等于( )1×9+2=11 12×9+3=111 123×9+4=1 1111 234×9+5=11 111 12 345×9+6=111 111…A .1 111 110B .1 111 111C .1 111 112D .1 111 113考点 归纳推理的应用题点 归纳推理在数对(组)中的应用 答案 B解析 由数塔猜测应是各位都是1的七位数, 即1 111 111.4.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可推出下列空间结论: ①垂直于同一条直线的两条直线互相平行; ②垂直于同一个平面的两条直线互相平行; ③垂直于同一条直线的两个平面互相平行; ④垂直于同一平面的两个平面互相平行. 则其中正确的结论是( ) A .①② B .②③ C .③④D .①④ 考点 类比推理的应用题点 平面几何与立体几何之间的类比 答案 B解析 根据立体几何中线面之间的位置关系及有关定理知,②③是正确的结论.5.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )等于( ) A .f (x ) B .-f (x ) C .g (x )D .-g (x ) 考点 归纳推理的应用题点 归纳推理在数对(组)中的应用 答案 D解析 由所给函数及其导数知,偶函数的导函数为奇函数.因此当f (x )是偶函数时,其导函数应为奇函数, 故g (-x )=-g (x ).6.观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,…,根据以上式子可以猜想:1+122+132+…+12 0172小于( ) A.4 0312 017 B.4 0322 017 C.4 0332 017D.4 0342 017考点 归纳推理的应用题点 归纳推理在数对(组)中的应用 答案 C解析 观察可以发现,第n (n ≥2)个不等式左端有n +1项,分子为1,分母依次为12,22,32,…,(n +1)2;右端分母为n +1,分子成等差数列,首项为3,公差为2,因此第n 个不等式为1+122+132+…+1(n +1)2<2n +1n +1,所以当n =2 016时不等式为1+122+132+…+12 0172<4 0332 017. 7.设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c,类比这个结论可知:四面体A -BCD 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为R ,四面体A -BCD 的体积为V ,则R 等于( ) A.V S 1+S 2+S 3+S 4 B.2VS 1+S 2+S 3+S 4 C.3VS 1+S 2+S 3+S 4 D.4VS 1+S 2+S 3+S 4考点 类比推理的应用题点 平面几何与立体几何之间的类比 答案 C解析 设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和. 则四面体的体积为V =13(S 1+S 2+S 3+S 4)R ,∴R =3VS 1+S 2+S 3+S 4.8.如图,第n 个图形是由正n +2边形“扩展”而来(n =1,2,3,…),则第n 个图形中顶点的个数为( )A .(n +1)(n +2)B .(n +2)(n +3)C .n 2D .n考点 归纳推理的应用题点 归纳推理在图形中的应用 答案 B解析 由已知中的图形我们可以得到: 当n =1时,顶点共有12=3×4(个), 当n =2时,顶点共有20=4×5(个), 当n =3时,顶点共有30=5×6(个), 当n =4时,顶点共有42=6×7(个), …,则第n 个图形共有顶点(n +2)(n +3)个, 故选B. 二、填空题 9.观察下列等式: 12=1; 12-22=-3; 12-22+32=6; 12-22+32-42=-10; …;照此规律,第n 个等式为________. 考点 归纳推理的应用题点 归纳推理在数对(组)中的应用 答案 12-22+32-42+…+(-1)n +1n 2=(-1)n+1n (n +1)2解析 12=1, 12-22=-(1+2), 12-22+32=1+2+3,12-22+32-42=-(1+2+3+4), …,12-22+32-42+…+(-1)n +1n 2=(-1)n +1(1+2+3+…+n )=(-1)n+1n (n +1)2. 10.我们知道:周长一定的所有矩形中,正方形的面积最大;周长一定的所有矩形与圆中,圆的面积最大,将这些结论类比到空间,可以得到的结论是________. 考点 类比推理的应用题点 平面几何与立体几何之间的类比答案 表面积一定的所有长方体中,正方体的体积最大;表面积一定的所有长方体和球中,球的体积最大解析 平面图形与立体图形的类比:周长→表面积,正方形→正方体,面积→体积,矩形→长方体,圆→球.11.二维空间中圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2;三维空间中球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3;四维空间中“超球”的三维测度V =8πr 3,则猜想其四维测度W =________. 考点 归纳推理的应用题点 归纳推理在数对(组)中的应用 答案 2πr 4解析 ∵二维空间中圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2,观察发现S ′=l .三维空间中球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3,观察发现V ′=S .∴四维空间中“超球”的三维测度V =8πr 3,猜想其四维测度W ,则W ′=V =8πr 3,∴W =2πr 4. 12.如图(甲)是第七届国际数学教育大会(简称ICME -7)的会徽图案,会徽的主体图案是由如图(乙)的一连串直角三角形演化而成的,其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,如果把图(乙)中的直角三角形依此规律继续作下去,记OA 1,OA 2,…,OA n ,…的长度构成数列{a n },则此数列{a n }的通项公式为a n =________.考点 归纳推理的应用题点 归纳推理在数对(组)中的应用 答案n解析 根据OA 1=A 1A 2=A 2A 3=…=A 7A 8=1和图(乙)中的各直角三角形,由勾股定理,可得a 1=OA 1=1,a 2=OA 2=OA 21+A 1A 22=12+12=2,a 3=OA 3=OA 22+A 2A 23=(2)2+12=3,…,故可归纳推测出a n =n .13.圆(x -a )2+(y -b )2=r 2(r >0)在点P (x 0,y 0)处切线的方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2,由此类比,椭圆x 2a 2+y 2b2=1(a >b >0)在点P (x 0,y 0)处的切线方程为______________.考点 类比推理的应用 题点 平面曲线之间的类比答案x 0x a 2+y 0y b 2=1 解析 类比过圆上一点的切线方程,可合情推理:椭圆x 2a 2+y 2b 2=1(a >b >0)在点P (x 0,y 0)处的切线方程为x 0x a 2+y 0y b 2=1.三、探究与拓展14.正整数按下表的规律排列,则上起第2 017行,左起第2 018列的数应为( )A .2 016×2 017B .2 017×2 018C .2 018×2 019D .2 019×2 020考点 归纳推理的应用题点 归纳推理在数阵(表)中的应用 答案 B解析 由给出的排列规律可知,第一列的每个数为所在行数的平方,而第一行的数则满足列数减1的平方再加1,根据题意,左起第2 018列的第一个数为2 0172+1,由连线规律可知,上起第2 017行,左起第2 018列的数应为2 0172+2 017=2 017×2 018. 15.已知在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,有1AD 2=1AB 2+1AC 2成立.那么在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想,说明猜想是否正确,并给出理由. 考点 类比推理的应用题点 平面几何与立体几何之间的类比解 类比AB ⊥AC ,AD ⊥BC ,可以猜想在四面体A -BCD 中,AB ,AC ,AD 两两垂直,AE ⊥平面BCD , 则1AE 2=1AB 2+1AC 2+1AD 2. 猜想正确.理由如下:如图所示,连接BE ,并延长交CD 于F ,连接AF . ∵AB ⊥AC ,AB ⊥AD ,AC ∩AD =A , ∴AB ⊥平面ACD .而AF ⊂平面ACD ,∴AB ⊥AF .在Rt △ABF 中,AE ⊥BF ,∴1AE 2=1AB 2+1AF 2.在Rt △ACD 中,AF ⊥CD ,∴1AF2=1AC2+1AD2.∴1AE2=1AB2+1AC2+1AD2,故猜想正确.。
高中数学人教a版选修2-2(课时训练):2.1 合情推理与演绎推理2.1.2 word版含答案
2.1.2演绎推理[学习目标]1.理解演绎推理的意义.2.掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的区别和联系.[知识链接]1.演绎推理的结论一定正确吗?答演绎推理的结论不会超出前提所界定的范围,所以在演绎推理中,只要前提和推理形式正确,其结论就一定正确.2.如何分清大前提、小前提和结论?答在演绎推理中,大前提描述的是一般原理,小前提描述的是大前提里的特殊情况,结论是根据一般原理对特殊情况作出的判断,这与平时我们解答问题中的思考是一样的,即先指出一般情况,从中取出一个特例,特例也具有一般意义.例如,平行四边形对角线互相平分,这是一般情况;矩形是平行四边形,这是特例;矩形对角线互相平分,这是特例具有一般意义.3.演绎推理一般是怎样的模式?答“三段论”是演绎推理的一般模式,它包括:(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况做出的判断.[预习导引]1.演绎推理要点一用三段论的形式表示演绎推理例1把下列演绎推理写成三段论的形式.(1)在一个标准大气压下,水的沸点是100 ℃,所以在一个标准大气压下把水加热到100 ℃时,水会沸腾;(2)一切奇数都不能被2整除,2100+1是奇数,所以2100+1不能被2整除;(3)三角函数都是周期函数,y=tan α是三角函数,因此y=tan α是周期函数.解(1)在一个标准大气压下,水的沸点是100 ℃,大前提在一个标准大气压下把水加热到100 ℃,小前提水会沸腾.结论(2)一切奇数都不能被2整除,大前提2100+1是奇数,小前提2100+1不能被2整除.结论(3)三角函数都是周期函数,大前提y=tan α是三角函数,小前提y=tan α是周期函数.结论规律方法用三段论写推理过程时,关键是明确大、小前提,三段论中的大前提提供了一个一般性的原理,小前提指出了一种特殊情况,两个命题结合起来,揭示了一般原理与特殊情况的内在联系.有时可省略小前提,有时甚至也可大前提与小前提都省略.在寻找大前提时,可找一个使结论成立的充分条件作为大前提.跟踪演练1试将下列演绎推理写成三段论的形式:(1)太阳系的大行星都以椭圆形轨道绕太阳运行,海王星是太阳系中的大行星,所以海王星以椭圆轨道绕太阳运行;(2)所有导体通电时发热,铁是导体,所以铁通电时发热;(3)一次函数是单调函数,函数y=2x-1是一次函数,所以y=2x-1是单调函数;(4)等差数列的通项公式具有形式a n=pn+q(p,q是常数),数列1,2,3,…,n是等差数列,所以数列1,2,3,…,n的通项具有a n=pn+q的形式.解(1)大前提:太阳系的大行星都以椭圆形轨道绕太阳运行;小前提:海王星是太阳系里的大行星;结论:海王星以椭圆形轨道绕太阳运行.(2)大前提:所有导体通电时发热;小前提:铁是导体;结论:铁通电时发热.(3)大前提:一次函数都是单调函数; 小前提:函数y =2x -1是一次函数; 结论:y =2x -1是单调函数.(4)大前提:等差数列的通项公式具有形式a n =pn +q ; 小前提:数列1,2,3,…,n 是等差数列;结论:数列1,2,3,…,n 的通项具有a n =pn +q 的形式. 要点二 演绎推理的应用例2 正三棱柱ABC -A 1B 1C 1的棱长均为a ,D 、E 分别为C 1C 与AB 的中点,A 1B 交AB 1于点G .(1)求证:A 1B ⊥AD ; (2)求证:CE ∥平面AB 1D . 证明(1)连接BD .∵三棱柱ABC -A 1B 1C 1是棱长均为a 的正三棱柱, ∴A 1ABB 1为正方形,∴A 1B ⊥AB 1. ∵D 是C 1C 的中点,∴△A 1C 1D ≌△BCD ,∴A 1D =BD ,∵G 为A 1B 的中点,∴A 1B ⊥DG , 又∵DG ∩AB 1=G ,∴A 1B ⊥平面AB 1D . 又∵AD ⊂平面AB 1D ,∴A 1B ⊥AD .(2)连接GE ,∵EG ∥A 1A ,∴GE ⊥平面ABC . ∵DC ⊥平面ABC ,∴GE ∥DC ,∵GE =DC =12a ,∴四边形GECD 为平行四边形,∴CE ∥GD .又∵CE ⊄平面AB 1D ,DG ⊂平面AB 1D , ∴CE ∥平面AB 1D .规律方法 (1)应用三段论解决问题时,应当首先明确什么是大前提和小前提,但为了叙述的简洁,如果前提是显然的,则可以省略.(2)数学问题的解决与证明都蕴含着演绎推理,即一连串的三段论,关键是找到每一步推理的依据——大前提、小前提,注意前一个推理的结论会作为下一个三段论的前提.跟踪演练2 求证:函数y =2x -12x +1是奇函数,且在定义域上是增函数.证明 y =(2x +1)-22x+1=1-22x +1, 所以f (x )的定义域为R .f (-x )+f (x )=⎝⎛⎭⎫1-22-x +1+⎝⎛⎭⎫1-22x +1=2-⎝⎛⎭⎫22x +1+22x +1=2-⎝⎛⎭⎫22x +1+2·2x2x +1=2-2(2x +1)2x +1=2-2=0.即f (-x )=-f (x ),所以f (x )是奇函数. 任取x 1,x 2∈R ,且x 1<x 2.则f (x 1)-f (x 2)=⎝⎛⎭⎫1-22x 1+1-⎝⎛⎭⎫1-22x 2+1=2⎝⎛⎭⎫12x 2+1-12x 1+1=2·2x 1-2x 2(2x 2+1)(2x 1+1). 由于x 1<x 2,从而2x 1<2x 2,2x 1-2x 2<0, 所以f (x 1)<f (x 2),故f (x )为增函数. 要点三 合情推理、演绎推理的综合应用例3 如图所示,三棱锥A -BCD 的三条侧棱AB ,AC ,AD 两两互相垂直,O 为点A 在底面BCD 上的射影.(1)求证:O 为△BCD 的垂心;(2)类比平面几何的勾股定理,猜想此三棱锥侧面与底面间的一个关系,并给出证明. (1)证明 ∵AB ⊥AD ,AC ⊥AD ,AB ∩AC =A , ∴AD ⊥平面ABC ,又BC ⊂平面ABC . ∴AD ⊥BC ,又∵AO ⊥平面BCD ,AO ⊥BC , ∵AD ∩AO =A ,∴BC ⊥平面AOD ,∴BC ⊥DO ,同理可证CD ⊥BO , ∴O 为△BCD 的垂心.(2)解 猜想:S 2△ABC +S 2△ACD +S 2△ABD=S 2△BCD .证明:连接DO 并延长交BC 于E ,连结AE , 由(1)知AD ⊥平面ABC , AE ⊂平面ABC ,∴AD ⊥AE ,又AO ⊥ED , ∴AE 2=EO ·ED ,∴⎝⎛⎭⎫12BC ·AE 2=⎝⎛⎭⎫12BC ·EO ·⎝⎛⎭⎫12BC ·ED , 即S 2△ABC =S △BOC ·S △BCD . 同理可证:S 2△ACD =S △COD ·S △BCD , S 2△ABD =S △BOD ·S △BCD . ∴S 2△ABC +S 2△ACD +S 2△ABD =S △BCD ·(S △BOC +S △COD +S △BOD )=S △BCD ·S △BCD =S 2△BCD .规律方法 合情推理仅是“合乎情理”的推理,它得到的结论不一定真.但合情推理常常帮助我们猜测和发现新的规律,为我们提供证明的思路和方法,而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下).跟踪演练3 已知命题:“若数列{a n }是等比数列,且a n >0,则数列b n =na 1a 2…a n (n ∈N *)也是等比数列”.类比这一性质,你能得到关于等差数列的一个什么性质?并证明你的结论. 解 类比等比数列的性质,可以得到等差数列的一个性质是:若数列{a n }是等差数列,则数列b n =a 1+a 2+…+a n n 也是等差数列.证明如下:设等差数列{a n }的公差为d ,则b n =a 1+a 2+…+a n n =na 1+n (n -1)d 2n =a 1+d2(n -1),所以数列{b n }是以a 1为首项,d2为公差的等差数列.1.下面几种推理过程是演绎推理的是( )A .两条直线平行,同旁内角互补,如果∠A 与∠B 是两条平行直线的同旁内角,则∠A +∠B =180°B .某校高三1班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人C .由平面三角形的性质,推测空间四面体的性质D .在数列{a n }中,a 1=1,a n =12⎝⎛⎭⎫a n -1+1a n -1(n ≥2),由此归纳出{a n }的通项公式答案 A解析 A 是演绎推理,B 、D 是归纳推理,C 是类比推理.2.“因为对数函数y =log a x 是增函数(大前提),又y =log 13 x 是对数函数(小前提),所以y=log 13x 是增函数(结论).”下列说法正确的是( )A .大前提错误导致结论错误B .小前提错误导致结论错误C .推理形式错误导致结论错误D .大前提和小前提都错误导致结论错误 答案 A解析 y =log a x 是增函数错误.故大前提错.3.把“函数y =x 2+x +1的图象是一条抛物线”恢复成三段论,则大前提:________;小前提:________;结论:________.答案 二次函数的图象是一条抛物线 函数y =x 2+x +1是二次函数 函数y =x 2+x +1的图象是一条抛物线4. “如图,在△ABC 中,AC >BC ,CD 是AB 边上的高,求证:∠ACD >∠BCD ”.证明:在△ABC 中 , 因为CD ⊥AB ,AC >BC , ① 所以AD >BD , ② 于是∠ACD >∠BCD .③则在上面证明的过程中错误的是________.(只填序号) 答案③ 解析 由AD >BD ,得到∠ACD >∠BCD 的推理的大前提应是“在同一三角形中,大边对大角”,小前提是“AD >BD ”,而AD 与BD 不在同一三角形中,故③错误.1.演绎推理是从一般性原理出发,推出某个特殊情况的推理方法;只要前提和推理形式正确,通过演绎推理得到的结论一定正确.2.在数学中,证明命题的正确性都要使用演绎推理,推理的一般模式是三段论,证题过程中常省略三段论的大前提.一、基础达标1.下列表述正确的是()①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.①②③B.②③④C.②④⑤D.①③⑤答案 D解析根据归纳推理,演绎推理,类比推理的概念特征可以知道①③⑤正确.2.《论语·学路》篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足.”上述推理用的是()A.类比推理B.归纳推理C.演绎推理D.一次三段论答案 C解析这是一个复合三段论,从“名不正”推出“民无所措手足”,连续运用五次三段论,属演绎推理形式.3.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin (x2+1)是奇函数.以上推理()A.结论正确B.大前提不正确C.小前提不正确D.全不正确答案 C解析由于函数f(x)=sin (x2+1)不是正弦函数.故小前提不正确.4.“∵四边形ABCD是矩形,∴四边形ABCD的对角线相等.”以上推理的大前提是() A.正方形都是对角线相等的四边形B.矩形都是对角线相等的四边形C.等腰梯形都是对角线相等的四边形D.矩形都是对边平行且相等的四边形答案 B解析利用三段论分析:大前提:矩形都是对角线相等的四边形;小前提:四边形ABCD是矩形;结论:四边形ABCD的对角线相等.5.三段论:“①小宏在2013年的高考中考入了重点本科院校;②小宏在2013年的高考中只要正常发挥就能考入重点本科院校;③小宏在2013年的高考中正常发挥”中,“小前提”是________(填序号).答案③解析在这个推理中,②是大前提,③是小前提,①是结论.6.在求函数y=log2x-2的定义域时,第一步推理中大前提是当a有意义时,a≥0;小前提是log2x-2有意义;结论是________.答案y=log2x-2的定义域是[4,+∞)解析由大前提知log2x-2≥0,解得x≥4.7.用三段论证明:直角三角形两锐角之和为90°.证明因为任意三角形内角之和为180°(大前提),而直角三角形是三角形(小前提),所以直角三角形内角之和为180°(结论).设直角三角形两个锐角分别为∠A、∠B,则有∠A+∠B+90°=180°,因为等量减等量差相等(大前提),(∠A+∠B+90°)-90°=180°-90°(小前提),所以∠A+∠B=90°(结论).二、能力提升8.“所有9的倍数(M)都是3的倍数(P),某奇数(S)是9的倍数(M),故某奇数(S)是3的倍数(P).”上述推理是()A.小前提错B.结论错C.正确的D.大前提错答案 C解析由三段论推理概念知推理正确.9.已知三条不重合的直线m、n、l,两个不重合的平面α、β,有下列命题:①若m∥n,n⊂α,则m∥α;②若l⊥α,m⊥β且l∥m,则α∥β;③若m⊂α,n⊂α,m∥β,n∥β,则α∥β;④若α⊥β,α∩β=m,n⊂β,n⊥m,则n⊥α.其中正确的命题个数是()A.1 B.2C .3D .4答案 B解析 ①中,m 还可能在平面α内,①错误;②正确;③中,m 与n 相交时才成立,③错误;④正确.故选B.10.已知函数f (x )满足:f (1)=14,4f (x )f (y )=f (x +y )+f (x -y )(x ,y ∈R ),则f (2 010)=________.答案 12解析 令y =1得4f (x )·f (1)=f (x +1)+f (x -1) 即f (x )=f (x +1)+f (x -1)① 令x 取x +1则f (x +1)=f (x +2)+f (x ) ②由①②得f (x )=f (x +2)+f (x )+f (x -1), 即f (x -1)=-f (x +2),∴f (x )=-f (x +3),∴f (x +3)=-f (x +6), ∴f (x )=f (x +6), 即f (x )周期为6,∴f (2 010)=f (6×335+0)=f (0)对4f (x )f (y )=f (x +y )+f (x -y ),令x =1,y =0,得 4f (1)f (0)=2f (1), ∴f (0)=12,即f (2 010)=12.11.用演绎推理证明函数f (x )=|sin x |是周期函数.证明 大前提:若函数y =f (x )对于定义域内的任意一个x 值满足f (x +T )=f (x )(T 为非零常数),则它为周期函数,T 为它的一个周期. 小前提:f (x +π)=|sin(x +π)|=|sin x |=f (x ). 结论:函数f (x )=|sin x |是周期函数.12.S 为△ABC 所在平面外一点,SA ⊥平面ABC ,平面SAB ⊥平面SBC .求证:AB ⊥BC . 证明如图,作AE ⊥SB 于E .∵平面SAB ⊥平面SBC ,平面SAB ∩平面SBC =SB .AE ⊂平面SAB . ∴AE ⊥平面SBC , 又BC ⊂平面SBC .∴AE ⊥BC .又∵SA ⊥平面ABC , ∴SA ⊥BC .∵SA ∩AE =A ,SA ⊂平面SAB ,AE ⊂平面SAB , ∴BC ⊥平面SAB .∵AB ⊂平面SAB .∴AB ⊥BC . 三、探究与创新13.设f (x )=a x +a -x 2,g (x )=a x -a -x2(其中a >0且a ≠1).(1)5=2+3请你推测g (5)能否用f (2),f (3),g (2),g (3)来表示; (2)如果(1)中获得了一个结论,请你推测能否将其推广.解 (1)由f (3)g (2)+g (3)f (2)=a 3+a -32a 2-a -22+a 3-a -32a 2+a -22=a 5-a -52,又g (5)=a 5-a -52因此,g (5)=f (3)g (2)+g (3)f (2).(2)由g (5)=f (3)g (2)+g (3)f (2),即g (2+3)= f (3)g (2)+g (3)f (2),于是推测g (x +y )=f (x )g (y )+g (x )f (y ).证明 因f (x )=a x +a -x 2,g (x )=a x -a -x2(大前提),所以g (x +y )=a x +y -a-(x +y )2,g (y )=a y -a -y 2,f (y )=a y +a -y2(小前提及结论),所以f (x )g (y )+g (x )f (y )=a x +a -x 2·a y -a -y 2+a x -a -x 2a y +a -y 2=a x +y -a-(x +y )2=g (x +y ).。
人教版高三文科数学课后习题(含答案)课时规范练33合情推理与演绎推理
课时规范练33合情推理与演绎推理基础巩固组1.下列三句话按“三段论”模式排列顺序正确的是()①y=cos x(x∈R)是三角函数;②三角函数是周期函数.③y=cos x(x∈R)是周期函数.A.①②③B.②①③C.②③①D.③②①2.(2019吉林延吉模拟)大衍数列,来源于中国古代著作《乾坤谱》中对易传“大衍之数五十”的推论.其前10项为0,2,4,8,12,18,24,32,40,50.通项公式:an=如果把这个数列{an}排成下侧形状,并记A(m,n)表示第m行中从左向右第n个数,则A(10,2)的值为( )248121824324050……A.3 444B.3 612C.3 528D.1 2803.古希腊人常用小石子在沙滩上摆成种种形状来研究数,例如:他们研究过图中的1,3,6,10,…,由于这些数可以表现成三角形,将其称为三角形数,由以上纪律,则这些三角形数从小到大形成一个数列{an},那么a10的值为( )A.45B.55C.65D.664.在一次体育兴趣小组的聚会中,要安排6人的座位,使他们在如图所示的6个椅子中就座,且相邻座位(如1与2,2与3)上的人要有配合的体育兴趣爱好,现已知这6人的体育兴趣爱好如下表所示,且小林坐在1号位置上,则4号位置上坐的是( )A.小方B.小张C.小周D.小马5.(2019广东深圳期末)英国数学家布鲁克·泰勒建立了如下正、余弦公式:sin x=x-x33!+x55!−x77!+…+(-1)n-1x2n-1(2n-1)!+…,cos x-1=-x22!+x44!−x66!+…+(-1)n x2n(2n)!+….其中x∈R,n∈N*,n!=1×2×3×4×…×n,例如,1!=1,2!=2,3!=6.试用上述公式估计cos 0.2的近似值为(精确到0.01) ()A.0.99B.0.98C.0.97D.0.966.若“*”表现一种运算,满足如下关系:(1)1*1=1;(2)(n+1)*1=3(n*1)(n∈N*),则n*1=( )A.3n-2B.3n+1C.3nD.3n-17.如图,在梯形ABCD中,AB∥CD,AB=a,CD=b(a>b).若EF∥AB,EF到CD与AB的距离之比为m∶n,则可推算出:EF=.用类比的要领,推想出下面题目的效果.在上面的梯形ABCD中,分别延长梯形的两腰AD和BC交于O点,设△OAB,△ODC的面积分别为S1,S2,则△OEF的面积S0与S1,S2的关系是( )A.S0=mS1+nS2m+n B.S0=nS1+mS2m+nC.√S0=m√S1+n√S2m+n D.√S0=n√S1+m√S2m+n8.(2019福建福州检测)中国古代用算筹来举行记数,算筹的摆放形式有纵横两种形式(如图所示),表现一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右分列,但各位数码的筹式必要纵横相间,其中个位、百位、万位……用纵式表现,十位、千位、十万位……用横式表现,则56846可用算筹表示为( )9.已知自主招生测验中,甲、乙、丙三人都恰好报考了清华大学、北京大学中的某一所大学,三人分别给出了以下说法:甲说:“我报考了清华大学,乙也报考了清华大学,丙报考了北京大学.”乙说:“我报考了清华大学,甲说得不完全对.”丙说:“我报考了北京大学,乙说得对.”已知甲、乙、丙三人中恰好有1人说得不合错误,则报考了北京大学的是.10.(2019江西南昌高安校级期末)如图所示的数阵中,用A(n,k)表示第n行的第k个数,则依此规律A(7,3)为.13 1 61 61 101121101 151221221151 21137144137121…11.在△ABC中,不等式1A +1B+1C≥9π成立;在凸四边形ABCD中,不等式1A +1B+1C+1D≥162π成立;在凸五边形ABCDE中,不等式1A+1B+1C+1 D +1E≥253π成立…依此类推,在凸n边形A1A2…A n中,不等式1A1+1 A2+…+1A n≥成立.12.(2019北京东城区模拟)某同学解答一道三角函数题:已知函数f(x)=cos2x-sin2x,求:(1)f(π2)的值;(2)函数f(x)在区间上的最大值和最小值.综合提升组13.(2019河北衡水联考)某校高一组织五个班的学生到场学农运动,每班从“农耕”“采摘”“酿酒”“野炊”“饲养”五项活动中选择一项举行实践,且各班的选择互不雷同.已知1班不选“农耕”“采摘”;2班不选“农耕”“酿酒”;如果1班不选“酿酒”,那么4班不选“农耕”;3班既不选“野炊”,也不选“农耕”;5班选择“采摘”或“酿酒”,则选择“饲养”的班级是( )A.2班B.3班C.4班D.5班14.将棱长相等的正方体按右图所示的形状摆放,从上往下依次为第1层,第2层,第3层,…,则第2 018层正方体的个数共有( )A.2 018B.4 028C.2 037 171D.2 009 01015.如图,我们知道,圆环也可以看作线段AB绕圆心O旋转一周所形成的平面图形,又圆环的面积S=π(R2-r2)=(R-r)×2π×.所以,圆环的面积等于以线段AB=R-r为宽,以AB中点绕圆心O旋转一周所形成的圆的周长2π×为长的矩形面积.请你将上述想法拓展到空间,并解决下列问题:若将平面区域M={(x,y)|(x-d)2+y2≤r2}(其中0<r<d)绕y轴旋转一周,则所形成的旋转体的体积是.创新应用组16.(2019江西宜春一模)我国南宋数学家杨辉所著的《详解九章算术》一书中,用图①的数表列出了一些正整数在三角形中的一种多少分列,俗称“杨辉三角形”,该数表的规律是每行首尾数字均为1,从第三行开始,其余的数字是它“上方”左右两个数字之和.现将杨辉三角形中的奇数换成1,偶数换成0,得到图②所示的由数字0和1构成的三角形数表,由上往下数,记第n行各数字的和为Sn,如S1=1,S2=2,S3=2,S4=4,S5=2,……,则S33= .17.(2019广东佛山期末)某同砚在解题中发明,以下三个式子的值都即是同一个常数.①2+i1-2i ,②-4+3i3+4i,③-1-i-1+i,(i是虚数单位)(1)从三个款式中选择一个,求出这个常数;(2)根据三个式子的结构特征及(1)的计算结果,将该同学的发现推广为一个复数恒等式,并证明你的结论.参考答案课时规范练33合情推理与演绎推理1.B根据“三段论”:“大前提”→“小前提”⇒“结论”可知:①y=cos x(x∈R)是三角函数是“小前提”;②三角函数是周期函数是“大前提”;③y=cos x(x∈R)是周期函数是“结论”.故“三段论”模式排列顺序为②①③.故选B.2.A由题意可知前9行共有1+3+5+…+17=18×92=81项.A(10,2)为数列的第83项,所以A(10,2)的值为832-12=3 444.故选A.3.B a1=1,a2=1+2,a3=1+2+3,a4=1+2+3+4,故a10=1+2+3+4+…+10=55,故选B.4.A5.B由题意,只需要精确到0.01即可,∴cos 0.2=1-0.222!=1-0.02=0.98.故选B.6.D由题设:①1*1=1,②(n+1)*1=3(n*1),则n*1=3((n-1)*1)=3×3((n-2)*1)=…=3n-1(1*1)=3n-1.故选D.7.C 在平面几何中类比多少性子时,一般是由平面几何中点的性质类比推理线的性子,由平面几何中线段的性质类比推理面积的性子.故由EF=类比到关于△OEF的面积S0与S1,S2的关系是.8.B 凭据题意可得,各个数码的筹式必要纵横相间,个位,百位,万位用纵式表示;十位,千位,十万位用横式表现,所以56846用算筹表示应为纵5横6纵8横4纵6,从题目中所给出的信息找出对应算筹表示为B.故选B.9.甲、丙若甲说得不合错误,则乙、丙说得对,即乙肯定报考了清华大学,丙肯定报考了北京大学,甲只大概报考了北京大学.若乙、丙说得不合错误,则得出与“甲、乙、丙三人中恰好有1人说得不对”矛盾,所以报考了北京大学的是甲、丙.所以填甲、丙.10. 从第三行起,除首尾两项外,每一行的第k个数字的分母都等于前一行的第k个数的分母和第k-1个数字的分母之和,分子均为1.所以a6=28.所以37+44=81,37+21=58,所以58+81=139.综上,A(7,3)=1 139.11.n 2(n∈N*,n≥3)∵1+1+1≥9=32,1 A +1B+1C+1D≥162π=422π,1A +1B +1C +1D +1E ≥253π=523π,…,∴1A 1+1A 2+…+1A n ≥n 2(n -2)π(n ∈N *,n ≥3). 12.解 (1)由题意得f (π2)=cos 2π2-sin 2π2=0-1=-1.(2)由题意得f (x )=cos 2x-sin 2x=cos 2x ,令t=2x ,因为-π6≤x ≤π4,所以-π3≤2x ≤π2,即-π3≤t ≤π2. 画出函数y=cos t 在区间[-π,π]上的图象.由图象可知,y=cos t 在区间上是增函数,在区间上是减函数,且cos>cos,所以当t=,即x=时,f(x)取得最小值0.当t=0,即x=0时,f (x )取得最大值1.13.B 由题意,1,2,3,5班都不选农耕,则只有4班选农耕, 再者,如果1班选酿酒,所以5班只有选采摘,只剩下“野炊”和“饲养”,因3班不选“野炊”,故选择“饲养”的班级是3班.故选B .14.C 设第n 层正方体的个数为a n ,则a 1=1,a n -a n-1=n ,所以a n -a 1=2+3+…+n ,即a n =1+2+3+…+n=n (n+1)2,n ≥2,故a 2 018=1 009×2 019=2 037 171,故选C .15.2π2r2d 平面区域M 的面积为πr2,由类比知识可知:平面区域M 绕y 轴旋转一周得到的旋转体为实心的车轮内胎,旋转体的体积等于以圆(面积为πr2)为底,圆的周长2πd为高的圆柱的体积,所以旋转体的体积V=πr2×2πd=2π2r2d.16.2 将杨辉三角形中的奇数换成1,偶数换成0,得到图②所示的由数字0和1构成的三角形数表.从上往下数,第1次全行的数为1的是第1行,有1个1;第2次全行的数都为1的是第2行,有2个1;第3次全行的数都为1的是第4行,有4个1.依此类推,第n次全行的数都为1的是第2n-1行,有2n-1个1.故n=6时,第26-1=25=32行有32个1,即S32=32.则下一行是2个1,即S33=2.17.解(1)-1-i=(-1-i)(-1-i)2=i.(2)根据三个式子的结构特征及(1)的计算结果,可以得到=i,证明如下,a+bib-ai=(a+bi)(b+ai)a2+b2=i,故得证.。
数学人教A版选修2-2教材习题点拨:2.1 合情推理与演绎推理含解析
教材习题点拨
教材习题解答
(探究)
类比圆的特征,填写表2-1中球的相关特征,并说说推理的过程.
表2-1
解:特征(如都具有完美的对称性,都是到定点的距离等于定长的点的集合),而已经知道圆的一些已知特征,由此可以推测球的类似特征.由于圆是平面内的基本图形,而球是空间中的基本图形,所以在将圆的基本特征推广为球的类似特征时,要将涉及的平面元素推广为相应的空间元素.
例如,平面内长度(周长)、面积、角等平面元素推广到空间一般为面积(表面积)、体积、二面角等空间元素.
解答如下(表2-1):
表2-1。
学年高中数学第二章推理与证明.合情推理与演绎推理..第课时归纳推理课后提升训练含解析新人教A版选修_
第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理第1课时归纳推理课后篇稳固提升1.观察以下各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,……可以得出的一般性结论是()A.n+(n+1)+(n+2)+…+(3n-2)=n2(n∈N*)B.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2(n∈N*)C.n+(n+1)+(n+2)+…+(3n-1)=n2(n∈N*)D.n+(n+1)+(n+2)+…+(3n-1)=(2n-1)2(n∈N*),各等式的左边是2n-1(n∈N*)项的和,其首项为n,右边是项数的平方,故第n个等式首项为n,共有2n-1项,右边是(2n-1)2,即n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.2.不等式1+122<32,1+122+132<53,1+122+132+142<74,……均成立,照此规律,第五个不等式应为1+122+1 32+142+152+162<()A.95B.115C.116D.136,第n(n∈N*)个不等式的左边=1+122+132+…+1(n+1)2,右边=2(n+1)-1n+1,所以第五个不等式为1+122+132+142+152+162<116.3.如图是元宵节灯展中一款五角星灯连续旋转闪烁所形成的三个图形,照此规律闪烁,下一个呈现出来的图形是(),该五角星对角上的两盏灯(相连亮的看成一盏)依次按顺时针方向隔一盏闪烁,那么下一个呈现出来的图形是A中的图形.应选A.4.数列{a n}中,a1=1,a n+1=2n n2+n n(n∈N*),那么可归纳猜测{a n}的通项公式为()A.a n=2n B.a n=2n+1C.a n=1n D.a n=1n+1a 1=1,a 2=2n 12+n 1=23,a 3=2n 22+n 2=432+23=24,a 4=2n 32+n 3=2×122+12=25,……由此可猜测a n =2n +1(n ∈N *).5.设f (x )=1+n1-n ,记f 1(x )=f (x ),假设f n+1(x )=f (f n (x )),那么f 2 016(2 016)等于( ) A .2 016 B .-12016 C .-10091008D .10081009f 1(x )=1+n 1-n,f 2(x )=-1n,f 3(x )=n -1n +1,f 4(x )=x ,f 5(x )=1+n1-n,f 6(x )=-1n,f 7(x )=n -1n +1,f 8(x )=x ,……可得f n (x )是以4为周期的函数,因此f 2022(x )=f 504×4(x )=f 4(x )=x ,故f 2022(2022)=2022.6.一个蜂巢里有1只蜜蜂,第一天,它飞出去带回了5只蜜蜂;第二天,6只蜜蜂飞出去各自又带回了5只蜜蜂,……如果这个过程继续下去,那么第6天所有蜜蜂归巢后,蜂巢中共有蜜蜂( ) A .6(66-1)6-1只 B .66只 C .63只D .62只,可知第一天共有蜜蜂1+5=6(只),第二天共有蜜蜂6+6×5=62(只),第三天共有蜜蜂62+62×5=63(只),……故第6天所有蜜蜂归巢后,蜂巢中共有蜜蜂65+65×5=66(只),应选B .7.分形理论是当今世界十分风行和活泼的新理论、新学科.其中,把局部与整体以某种方式相似的形体称为分形.分形是一种具有自相似特性的现象、图象或者物理过程.标准的自相似分形是数学上的抽象,迭代生成无限精细的结构.也就是说,在分形中,每一组成局部都在特征上和整体相似,只是变小了一些而已,谢尔宾斯基三角形就是一种典型的分形,是由波兰数学家谢尔宾斯基在1915年提出的,按照如下规律,依次在一个黑色三角形内去掉小三角形,那么当n=6时,该黑色三角形内共去掉小三角形的个数为( ) A.81B.121C.364D.1 093,每一个图形中小三角形的个数等于前一个图形中小三角形个数的3倍加1,设第n 个黑色三角形内去掉小三角形的个数为a n ,那么n=1时,a 1=1;n=2时,a 2=3×1+1=4;n=3时,a 3=3×4+1=13;n=4时,a 4=3×13+1=40;n=5时,a 5=3×40+1=121;n=6时,a 6=3×121+1=364.应选C .8.给出假设干个数:√2+23,√3+38,√4+415,√5+524,…… 由此可猜测第n (n ∈N *)个数为 .。
精品-新人教版高中数学第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理优化练习新人教A版选修2_2
2.1.1 合情推理[课时作业] [A 组 基础巩固]1.下列推理是归纳推理的是( )A .A ,B 为定点,动点P 满足|PA |+|PB |=2a >|AB |,得P 的轨迹为椭圆B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜出椭圆x2a2+y2b2=1的面积S =πabD .科学家利用鱼的沉浮原理制造潜艇解析:由归纳推理的定义知B 是归纳推理,故应选B.答案:B2.数列{a n }:2,5,11,20,x,47,…中的x 等于( )A .28B .32C .33D .27解析:因为5-2=3×1,11-5=6=3×2,20-11=9=3×3,猜测x -20=3×4,47-x =3×5,推知x =32.故应选B.答案:B3.某同学在电脑上打下了一串黑白圆,如图所示,○○○●●○○○●●○○○…,按这种规律往下排,那么第36个圆的颜色应是( )A .白色B .黑色C .白色可能性大D .黑色可能性大解析:由题干图知,图形是三白二黑的圆周而复始相继排列,是一个周期为5的三白二黑的圆列,因为36÷5=7余1,所以第36个圆应与第1个圆颜色相同,即白色.答案:A4.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )= ( )A .f (x )B .-f (x )C .g (x )D .-g (x )解析:本题考查了推理证明及函数的奇偶性内容,由例子可看出偶函数求导后都变成了奇函数,∴g (-x )=-g (x ),选D.答案:D5.n 个连续自然数按规律排列如下表:01234567891011…根据规律,从2 010到2 012箭头的方向依次为( )A .↓→B .→↑C .↑→D .→↓解析:观察题图的规律知:位置相同的数字都是以4为公差的等差数列,由2,3,4可知从2 010到2 012为↑→,故应选C.答案:C6.半径为r 的圆的面积S (r )=πr 2,周长C (r )=2πr ,若将r 看作(0,+∞)上的变量,则(πr 2)′=2πr ①,①式可以用语言叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R 的球,若将R 看作(0,+∞)上的变量②,请你写出类似于①的式子:___________________________________________, ②式可以用语言叙述为:_______________________________________________.解析:半径为R 的球的体积V (R )=43πR 3,表面积S (R )=4πR 2,则(43πR 3)′=4πR 2.答案:(43πR 3)′=4πR 2球的体积函数的导数等于球的表面积函数7.观察下列等式:12=1;12-22=-3; 12-22+32=6;12-22+32-42=-10;……照此规律,第n 个等式可为________.解析:观察等号左边的规律发现,左边的项数依次加1,故第n 个等式左边有n 项,每项所含的底数的绝对值也增加1,依次为1,2,3,…,n ,指数都是2,符号成正负交替出现,可以用(-1)n +1表示,等式的右边数的绝对值是左边项的底数的绝对值的和,故等式的右边可以表示为(-1)n +1·+2,∴第n 个式子可为12-22+32-42+…+(-1)n +1·n 2=(-1)n +1·+2(n ∈N *).答案:12-22+32-42+…+(-1)n +1n 2=(-1)n +1·+2(n ∈N *)8.设函数f (x )=xx +2(x >0),观察:f 1(x )=f (x )=xx +2,f 2(x )=f (f 1(x ))=x3x +4, f 3(x )=f (f 2(x ))=x7x +8, f 4(x )=f (f 3(x ))=x15x +16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=________. 解析:根据题意知,分子都是x ,分母中的常数项依次是2,4,8, 16,…可知f n (x )的分母中常数项为2n,分母中x 的系数为2n-1,故f n (x )=x -+2n. 答案:x -+2n9.证明下列等式,并从中归纳出一个一般性的结论, 2cos π4=2,2cos π8= 2+2,2cos π16=2+2+2,……证明:2cos π4=2·22=2,2cos π8=21+cosπ42=21+222= 2+2,2cos π16=21+cosπ82=21+122+22= 2+2+ 2 …观察上述等式可以发现,第n 个等式右端有n 个根号,n 个2,左端“角”的分母为22,23,24,…,故第n 个等式的左端应为2cos π2n +1,由此可归纳出一般性的结论为:2cosπ2n +1=10.点P ⎝⎛⎭⎪⎫22,22在圆C :x 2+y 2=1上,经过点P 的圆的切线方程为22x +22y =1,又点Q (2,1)在圆C 外部,容易证明直线2x +y =1与圆相交,点R ⎝ ⎛⎭⎪⎫12,12在圆C 的内部.直线12x +12y =1与圆相离.类比上述结论,你能给出关于一点P (a ,b )与圆x 2+y 2=r 2的位置关系与相应直线与圆的位置关系的结论吗?解析:点P (a ,b )在⊙C :x 2+y 2=r 2上时,直线ax +by =r 2与⊙C 相切;点P 在⊙C 内时,直线ax +by =r 2与⊙C 相离;点P 在⊙C 外部时,直线ax +by =r 2与⊙C 相交.容易证明此结论是正确的.[B 组 能力提升]1.把1,3,6,10,15,21,…这些数叫作三角形数,这是因为这些数的点可以排成一个正三角形(如下图),试求第七个三角形数是( )A .27B .28C .29D .30解析:观察归纳可知第n 个三角形数共有点数:1+2+3+4+…+n =+2个,∴第七个三角形数为+2=28.答案:B2.设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c ;类比这个结论可知:四面体P ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球的半径为r ,四面体P ABC 的体积为V ,则r =( )A.VS1+S2+S3+S4B.2VS1+S2+S3+S4 C.3VS1+S2+S3+S4D.4VS1+S2+S3+S4解析:将△ABC 的三条边长a 、b 、c 类比到四面体P ABC 的四个面面积S 1、S 2、S 3、S 4,将三角形面积公式中系数12,类比到三棱锥体积公式中系数13,从而可知选C.证明如下:以四面体各面为底,内切球心O 为顶点的各三棱锥体积的和为V .∴V =13S 1r +13S 2r +13S 3r +13S 4r ,∴r =3VS1+S2+S3+S4.答案:C3.(2014·高考陕西卷)观察分析下列中的数据:解析:三棱柱中5+6-9=2;五棱锥中6+6-10=2;立方体中6+8-12=2,由此归纳可得F +V -E =2.答案:F +V -E =24.已知经过计算和验证有下列正确的不等式:3+17<210,7.5+12.5<210,8+2+12-2<210,根据以上不等式的规律,请写出一个对正实数m ,n 都成立的条件不等式________.解析:观察所给不等式可以发现:不等式左边两个根式的被开方数的和等于20,不等式的右边都是210,因此对正实数m ,n 都成立的条件不等式是:若m ,n ∈R +,则当m +n =20时,有m +n <210.答案:若m ,n ∈R +,则当m +n =20时,有m +n <2105.在△ABC 中,不等式1A +1B +1C ≥9π成立,在四边形ABCD 中,不等式1A +1B +1C +1D ≥162π成立,在五边形ABCDE 中,不等式1A +1B +1C +1D +1E ≥253π成立,猜想在n 边形A 1A 2…A n 中,有怎样的不等式成立?解析:根据已知特殊的数值:9π、162π、253π,…,总结归纳出一般性的规律:n2-π(n ≥3).∴在n 边形A 1A 2…A n 中:1A1+1A2+…+1An≥n2-π(n ≥3).6.如图,设有双曲线x24-y29=1,F 1,F 2是其两个焦点,点M 在双曲线上.(1)若∠F 1MF 2=90°,求△F 1MF 2的面积.(2)若∠F 1MF 2=60°,△F 1MF 2的面积是多少?若∠F 1MF 2=120°,△F 1MF 2的面积又是多少?(3)观察以上计算结果,你能看出随∠F 1MF 2的变化,△F 1MF 2的面积将怎样变化吗?试证明你的结论.解析:(1)由双曲线方程知a =2,b =3,c =13, 设|MF 1|=r 1,|MF 2|=r 2(r 1>r 2).由双曲线定义,有r 1-r 2=2a =4,两边平方得r 21+r 2-2r 1·r 2=16, 即|F 1F 2|2-4S △F 1MF 2=16,也即52-16=4S △F 1MF 2,求得S △F 1MF 2=9.(2)若∠F 1MF 2=60°,在△MF 1F 2中,由余弦定理得|F 1F 2|2=r 21+r 2-2r 1r 2cos 60°, |F 1F 2|2=(r 1-r 2)2+r 1r 2,所以r 1r 2=36. 求得S △F 1MF 2=12r 1r 2sin 60°=9 3.同理可求得若∠F 1MF 2=120°,S △F 1MF 2=3 3.(3)由以上结果猜想,随着∠F 1MF 2的增大,△F 1MF 2的面积将减小. 证明如下:令∠F 1MF 2=θ,则S △F 1MF 2=12r 1·r 2sin θ.由双曲线定义及余弦定理,有⎩⎪⎨⎪⎧-=4a2①r21+r22-2r1·r2cos θ=4c2②②-①得r 1·r 2=4c2-4a2-cos θ,所以S △F 1MF 2=-θ1-cos θ=b2tanθ2,因为0<θ<π,0<θ2<π2,在(0,π2)内,tan θ2是增函数.因此当θ增大时,S △F 1MF 2=b2tanθ2将减小.。
人教A版选修2-2数学:2.1《合情推理与演绎证明》测试1(新人教A版选修2-2).docx
数学:2.1《合情推理与演绎证明》测试新人教A 版选修(2-2)一、选择题1.分析法是从要证明的结论出发,逐步寻求使结论成立的( ) A.充分条件 B.必要条件 C.充要条件 D.等价条件答案:A2.结论为:n n x y +能被x y +整除,令1234n =,,,验证结论是否正确,得到此结论成立的条件可以为( )A.n *∈N B.n *∈N 且3n ≥ C.n 为正奇数 D.n 为正偶数答案:C3.在ABC △中,sin sin cos cos A C A C >,则ABC △一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定答案:C4.在等差数列{}n a 中,若0n a >,公差0d >,则有4637a a a a >··,类经上述性质,在等比数列{}n b 中,若01n b q >>,,则4578b b b b ,,,的一个不等关系是( ) A.4857b b b b +>+ B.5748b b b b +>+ C.4758b b b b +>+D.4578b b b b +>+答案:B5.(1)已知332p q +=,求证2p q +≤,用反证法证明时,可假设2p q +≥, (2)已知a b ∈R ,,1a b +<,求证方程20x ax b ++=的两根的绝对值都小于1.用反证法证明时可假设方程有一根1x 的绝对值大于或等于1,即假设11x ≥,以下结论正确的是( )A.(1)与(2)的假设都错误 B.(1)与(2)的假设都正确C.(1)的假设正确;(2)的假设错误 D.(1)的假设错误;(2)的假设正确答案:D6.观察式子:213122+<,221151233++<,222111712344+++<,,则可归纳出式子为( ) A.22211111(2)2321n n n ++++<-≥ B.22211111(2)2321n n n ++++<+≥ C.222111211(2)23n n n n -++++<≥ D.22211121(2)2321n n n n ++++<+≥答案:C7.如图,在梯形ABCD 中,()AB DC AB a CD b a b ==>,,∥.若EF AB ∥,EF 到CD 与AB 的距离之比为:m n ,则可推算出:ma mbEF m m+=+.试用类比的方法,推想出下述问题的结果.在上面的梯形ABCD 中,延长梯形两腰AD BC ,相交于O 点,设OAB △,OCD △的面积分别为12S S ,,EF AB ∥且EF 到CD 与AB 的距离之比为:m n ,则OEF △的面积0S 与12S S ,的关系是( )A.120mS nS S m n+=+B.120nS mS S m n +=+C.120m S n S S m n+=+D.120n S m S S m n+=+答案:C8.已知a b ∈R ,,且2a b a b ≠+=,,则( )A.2212a b ab +<<B.2212a b ab +<<C.2212a b ab +<<D.2212a b ab +<<答案:B9.用反证法证明命题:若整系数一元二次方程20(0)ax bx c a ++=≠有有理根,那么a b c ,,中至少有一个是偶数时,下列假设中正确的是( ) A.假设a b c ,,都是偶数 B.假设a b c ,,都不是偶数C.假设a b c ,,至多有一个是偶数 D.假设a b c ,,至多有两个是偶数答案:B10.用数学归纳法证明(1)(2)()213(21)n n n n n n +++=-····,从k 到1k +,左边需要增乘的代数式为( ) A.21k + B.2(21)k + C.211k k ++ D.231k k ++答案:B11.类比“两角和与差的正余弦公式”的形式,对于给定的两个函数,()2x xa a S x --=,()2x xa a C x -+=,其中0a >,且1a ≠,下面正确的运算公式是( ) ①()()()()()S x y S x C y C x S y +=+; ②()()()()()S x y S x C y C x S y -=-; ③()()()()()C x y C x C y S x S y +=-; ④()()()()()C x y C x C y S x S y -=+;A.①③ B.②④ C.①④ D.①②③④答案:D12.正整数按下表的规律排列1 2 510 174 3 611 189 8 712 19 16 15 14 13 20则上起第2005行,左起第2006列的数应为( ) A.22005 B.22006C.20052006+D.20052006⨯答案:D二、填空题13.写出用三段论证明3()sin ()f x x x x =+∈R 为奇函数的步骤是 .答案:满足()()f x f x -=-的函数是奇函数, 大前提 333()()sin()sin (sin )()f x x x x x x x f x -=-+-=--=-+=-, 小前提所以3()sin f x x x =+是奇函数. 结论14.已知111()1()23f n n n *=++++∈N ,用数学归纳法证明(2)2n nf >时,1(2)(2)k k f f +-等于 . 答案:111121222k k k ++++++15.由三角形的性质通过类比推理,得到四面体的如下性质:四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心,那么原来三角形的性质为 .答案:三角形内角平分线交于一点,且这个点是三角形内切圆的圆心16.下面是按照一定规律画出的一列“树型”图:设第n 个图有n a 个树枝,则1n a +与(2)n a n ≥之间的关系是.答案:122n n a a +=+三、解答题17.如图(1),在三角形ABC 中,AB AC ⊥,若AD BC ⊥,则2AB BD BC =·;若类比该命题,如图(2),三棱锥A BCD -中,AD ⊥面ABC ,若A 点在三角形BCD 所在平面内的射影为M ,则有什么结论?命题是否是真命题.解:命题是:三棱锥A BCD -中,AD ⊥面ABC ,若A 点在三角形BCD 所在平面内的射影为M ,则有2ABC BCMBCD S S S =△△△·是一个真命题. 证明如下:在图(2)中,连结DM ,并延长交BC 于E ,连结AE ,则有DE BC ⊥. 因为AD ⊥面ABC ,,所以AD AE ⊥. 又AM DE ⊥,所以2AE EM ED =·. 于是22111222ABCBCM BCD SBC AE BC EM BC ED S S ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭△△△·····.18.如图,已知PA ⊥矩形ABCD 所在平面,M N ,分别是AB PC ,的中点. 求证:(1)MN ∥平面PAD ;(2)MN CD ⊥.证明:(1)取PD 的中点E ,连结AE NE ,. N E ,∵分别为PC PD ,的中点.EN ∴为PCD △的中位线,12EN CD ∥∴,12AM AB =,而ABCD 为矩形, CD AB ∴∥,且CD AB =.EN AM ∴∥,且EN AM =.AENM ∴为平行四边形,MN AE ∥,而MN ⊄平面PAC ,AE ⊂平面PAD , MN ∴∥平面PAD .(2)PA ⊥∵矩形ABCD 所在平面,CD PA ⊥∴,而CD AD ⊥,PA 与AD 是平面PAD 内的两条直交直线, CD ⊥∴平面PAD ,而AE ⊂平面PAD , AE CD ⊥∴.又MN AE ∵∥,MN CD ⊥∴.19.求证:当一个圆和一个正方形的周长相等时,圆的面积比正方形的面积大.证明:(分析法)设圆和正方形的周长为l ,依题意,圆的面积为2π2πl ⎛⎫ ⎪⎝⎭·, 正方形的面积为24l ⎛⎫⎪⎝⎭.因此本题只需证明22π2π4l l ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭.要证明上式,只需证明222π4π16l l >,两边同乘以正数24l ,得11π4>.因此,只需证明4π>. ∵上式是成立的,所以22π2π4l l ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭.这就证明了如果一个圆和一个正方形的周长相等,那么圆的面积比正方形的面积最大.20.已知实数a b c d ,,,满足1a b c d +=+=,1ac bd +>,求证a b c d ,,,中至少有一个是负数.证明:假设a b c d ,,,都是非负实数,因为1a b c d +=+=, 所以a b c d ,,,[01]∈,,所以2a c ac ac +≤≤,2b cbd bd +≤≤, 所以122a cb dac bd ++++=≤, 这与已知1ac bd +>相矛盾,所以原假设不成立,即证得a b c d ,,,中至少有一个是负数.21.设()2x x a a f x -+=,()2x xa a g x --=(其中0a >,且1a ≠).(1)523=+请你推测(5)g 能否用(2)(3)(2)(3)f f g g ,,,来表示;(2)如果(1)中获得了一个结论,请你推测能否将其推广.解:(1)由3332332255(3)(2)(3)(2)22221a a a a a a a a a a f g g f -----+--+-+=+=··, 又55(5)2a a g --=,因此(5)(3)(2)(3)(2)g f g g f =+.(2)由(5)(3)(2)(3)(2)g f g g f =+,即(23)(3)(2)(3)(2)g f g g f +=+, 于是推测()()()()()g x y f x g y g x f y +=+.证明:因为()2x x a a f x -+=,()2x xa a g x --=(大前提).所以()()2x y x y a a g x y +-+-+=,()2y y a a g y --=,()2y ya a f y -+=,(小前提及结论)所以()()()()()()22222x x y y x x y y x y x y a a a a a a a a a a f x g y g x f y g x y ----+-++--+-+=+==+··.22.若不等式111123124an n n +++>+++对一切正整数n 都成立,求正整数a 的最大值,并证明结论.解:当1n =时,11111123124a ++>+++,即262424a>, 所以26a <.而a 是正整数,所以取25a =,下面用数学归纳法证明:11125123124n n n +++>+++. (1)当1n =时,已证;(2)假设当n k =时,不等式成立,即11125123124k k k +++>+++. 则当1n k =+时,有111(1)1(1)23(1)1k k k +++++++++111111112313233341k k k k k k k =++++++-+++++++ 251122432343(1)k k k ⎡⎤>++-⎢⎥+++⎣⎦. 因为2116(1)2323491883(1)k k k k k k ++=>+++++, 所以2116(1)2323491883(1)k k k k k k ++=>+++++, 所以112032343(1)k k k +->+++. 所以当1n k =+时不等式也成立. 由(1)(2)知,对一切正整数n ,都有11125123124n n n +++>+++, 所以a 的最大值等于25.。
高中数学 2.1 合情推理与演绎推理课时检测 新人教A版选修12
2.1 合情推理与演绎推理2.1.1 合情推理课时训练3 合情推理1.如图,观察图形规律,在其右下角的空格处画上合适的图形,应为( ).解析:观察图中每一行,每一列的规律,从形状和是否有阴影入手.每一行,每一列中三种图形都有,故填长方形.又每一行每一列中的图形的颜色应有二黑一白,故选A.答案:A2.观察下列各等式:=2,=2,=2,=2,依照以上各式成立的规律,得到一般性的等式为( ).A.=2B.=2C.=2D.=2解析:观察发现:每个等式的右边均为2,左边是两个分数相加,分子之和等于8,分母中被减数与分子相同,减数都是4,因此只有A正确.答案:A3.有两种花色的正六边形地面砖,按下图的规律拼成若干个图案,则第六个图案中有菱形纹的正六边形的个数是( ).A.26B.31C.32D.36解析:有菱形纹的正六边形个数如下表:图案 1 2 3 …个数 6 11 16 …由表可以看出有菱形纹的正六边形的个数依次组成一个以6为首项,以5为公差的等差数列,所以第六个图案中有菱形纹的正六边形的个数是6+5×(6-1)=31.答案:B4.已知扇形的弧长为l,半径为r,类比三角形的面积公式S=,可推知扇形面积公式S扇等于( ).A. B. C. D.不可类比解析:类比方法:扇形→三角形,弧长→底边长,半径→高,猜想S扇=.答案:C5.下面使用类比推理,得出正确结论的是( ).A.“若a·3=b·3,则a=b”类比推出“若a·0=b·0,则a=b”B.“(a+b)c=ac+bc”类比推出“(a·b)c=ac·bc”C.“(a+b)c=ac+bc”类比推出“(c≠0)”D.“a x·a y=a x+y”类比推出“log a x·log a y=log a(x+y)”答案:C6.图(1)所示的图形有面积关系:,则图(2)所示的图形有体积关系:=.解析:由三棱锥的体积公式V=Sh及相似比可知,.答案:7.我们知道:周长一定的所有矩形中,正方形的面积最大;周长一定的所有矩形与圆中,圆的面积最大,将这些结论类比到空间,可以得到的结论是.解析:平面图形与立体图形的类比:周长→表面积,正方形→正方体,面积→体积,矩形→长方体,圆→球.答案:表面积一定的所有长方体中,正方体的体积最大;表面积一定的所有长方体和球中,球的体积最大8.观察下列等式(1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5……照此规律,第n个等式可为.解析:观察规律,等号左侧为(n+1)(n+2)…(n+n),等号右侧分两部分,一部分是2n,另一部分是1×3×…×(2n-1).答案:(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1)9.圆周上2个点可连成1条弦,这条弦可将圆面划分成2部分;圆周上3个点可连成3条弦,这3条弦可将圆面划分成4部分;圆周上4个点可连成6条弦,这6条弦最多可将圆面划分成8部分.请你归纳出圆周上的点的个数与所连成弦条数的关系,这些弦最多可把圆面分成多少部分?解:由已知条件得:圆周上的点数连成的弦数把圆面分成的部分数2 1=2=21=22-13 3=4=22=23-14 6=8=23=24-1………由此可以归纳出,当点数为n时,连成的弦数为;弦把圆面分成的部分数为2n-1.10.类比等差数列的定义,给出等和数列的概念,并利用等和数列的性质解题:已知数列{a n}是等和数列,a1=2,公和为5,求a18和S21.解:等和数列的概念:一般地,如果一个数列从第2项起,每一项与它的前一项的和等于同一常数,那么这个数列叫做等和数列,这个常数叫做等和数列的公和.由题意可知a1+a2=5,又a1=2,∴a2=3,又a2+a3=5,∴a3=2.故数列{a n}的形式为:2,3,2,3,2,3,…,∴a18=3,∴S21=S20+a21=10(2+3)+2=52.。
人教A版选修12教案:2.1合情推理与演绎推理二含部分答案
§2.1 合情推理与演绎逻辑(二)【内容分析】:类比是重要的推理方法,在掌握一定的数学基础知识(如数列、立体几何、空间向量等等)后,对数学问题的探究方法加以总结,上升为思想方法。
【教学目标】:1、知识与技能:(1)结合数学实例,了解类比推理的含义(2)能利用类比方法进行简单的推理,2、过程与方法:通过课例,加深对类比这种思想方法的认识。
3、情感态度与价值观:体验并认识类比推理在数学发现中的作用。
【教学重点】:(1)体会并实践类比推理的探索过程(2)类比推理的局限【教学难点】:引导和训练学生从已知的线索中归纳出正确的结论【练习与测试】: (基础题)1)已知扇形的弧长为l ,半径为r ,类比三角形的面积公式S =ah 21,可知扇形的面积公式为_________ 2)类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列哪些性质,你认为比较恰当的是( )①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等 A .①;B .①②; C .①②③; D .③3)由“ 正三角形的两腰相等”可以类比推出正棱锥的类似属性是 4)定义运算a *b=⎩⎨⎧>≤)()(b a bb a a 则对x ∈R ,函数f(x)=1*x 的解析式为__________。
5)三角形的面积公式为S =ah 21(a,h 分别表示三角形的边和该边上的高),类比四面体的体积V =6)在三角形ABC 中,AB CD C ⊥=∠,900于D ,则有AB AD AC ⨯=2,类比此性质,给出空间四面体的一个猜想,并判断该猜想是否正确。
答案: 1)s=lr 21 2)C3)正棱锥的侧棱长相等 4)f(x)=1*x =⎩⎨⎧>≤)1()1(1x xx5) 四面体的体积V =Sh 31(S,h 分别表示四面体的底面积和该面上的高) 6)在棱锥S -ABC 中,O C SO ,SAB 于平面平面AB SC ⊥⊥,则CAB OAB 2SAB S S S ∆∆∆⋅=(中等题)1)a,b 为实数,则由00=⇒=⨯a b a 或0=b ,类比向量运算中0=∙可以得出什么结论? 2)若三角形的内切圆半径为r 三边的长分别为a,b,c,则三角形的面积)(21c b a r s ++=根据类比思想,若四面体的内切球半径为r ,四个面的面积分别为4321,,,s s s s ,则此四面体的体积V =_________3) 在ABC ∆中,若,,AB AC AC b BC a ⊥==,则ABC ∆的外接圆半径r =,将此结论拓展到空间,可得出的正确结论是:在四面体S ABC -中,若SA SB SC 、、两两垂直,,,SA a SB b SC c ===,则四面体S ABC -的外接球半径R =_______.4)六个面都是平行四边形的四棱柱称为平行六面体. 如图1在平行四边形ABC D 中,有AC 2+BD 2=2(AB 2+AD 2),那么在图2所示的平行六面体ABCD —A 1B 1C 1D 1中,有AC 12+BD 12+CA 12+DB 12=( ).A .2(AB 2+AD 2+AA 12) B .3(AB 2+AD 2+AA 12)C .4(AB 2+AD 2+AA 12) D .4(AB 2+AD 2)答案:1)0=∙b a 00==⇒b a 或或b a ⊥2)V =)(14321S S S S r +++3)24)C(难题)1)若数列{}n a 是等差数列,对于)(121n n a a a nb +++=,则数列{}n b 也是等差数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学课时作业(六十二) [第62讲 合情推理与演绎推理][时间:45分钟 分值:100分]基础热身1.设f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n (x )=f ′n -1(x ),n ∈N ,则f 2009(x )=( )A .sin xB .-sin xC .cos xD .-cos x2.下面几种推理过程是演绎推理的是( )A .两条直线平行,同旁内角互补,由此若∠A ,∠B 是两条平行直线被第三条直线所截得的同旁内角,则∠A +∠B =180°B .某校高三(1)班有55人,高三(2)班有54人,高三(3)班有52人,由此得出高三所有班人数超过50人C .由平面三角形的性质推测空间四面体的性质D .在数列{a n }中,a 1=1,a n =12⎝⎛⎭⎫a n -1+1a n -1(n ≥2),由此归纳出{a n }的通项公式 3.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A (-3,4),且法向量为n =(1,-2)的直线(点法式)方程为:1×(x +3)+(-2)×(y -4)=0,化简得x -2y +11=0.类比以上方法,在空间直角坐标系中,经过点A (1,2,3)且法向量为n =(-1,-2,1)的平面(点法式)方程为:________________________________________________________________________.4. 观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49照此规律,第五个等式应为________________________________.能力提升5.下列推理是归纳推理的是( )A .A ,B 为定点,a >0且为常数,动点P 满足||P A |-|PB ||=2a <|AB |,则P 点的轨迹为双曲线B .由a 1=1,a n =3n +1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y 2b 2=1的面积S =πabD .三角形ABC 一条边的长度为4,该边上的高为1,那么这个三角形的面积为26.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为这些数目的点子可以排成一个正三角形(如图K62-1),则第七个三角形数是( )A .21B .28C .32D .36 7.设函数f (x )=12x +2,类比课本推导等差数列前n 项和公式的推导方法计算f (-4)+f (-3)+…+f (0)+f (1)+…+f (4)+f (5)的值为( )A.322B.522C.922D.228.把正整数按一定的规则排成了如下所示的三角形数表.设a ij (i ,j ∈N *)是位于这个三角形数表中从上往下数第i 行、从左往右数第j 个数,如a 42=8.若a ij =2009,则i 与j 的和为( ) 12 43 5 76 8 10 129 11 13 15 1714 16 18 20 22 24A .105B .106C .107D .1089. 在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n +k |n ∈Z },k =0,1,2,3,4.给出如下四个结论:①2011∈[1];②-3∈[3];③Z =[0]∪[1]∪[2]∪[3]∪[4];④“整数a ,b 属于同一‘类’”的充要条件是“a -b ∈[0]”.其中,正确结论的个数是( )A .1B .2C .3D .410.半径为r 的圆的面积S (r )=πr 2,周长C (r )=2πr ,若将r 看作(0,+∞)上的变量,则(πr 2)′=2πr①,①式可以用语言叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R 的球,若将R 看作(0,+∞)上的变量,请你写出类似于①的式子:②________,②式可以用语言叙述为:________________________________________________________________________.11.如图K62-2,将一个边长为1的正三角形的每条边三等分,以中间一段为边向形外作正三角形,并擦去中间一段,得图(2)(3)……试用n 表示出第n 个图形的边数a n =________.12.设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n ,则T 4,________,________,T 16T 12成等比数列.13.设f (x )________.14.(10分)观察①sin 210°+cos 240°+sin10°cos40°=34; ②sin 26°+cos 236°+sin6°cos36°=34. 由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.15.(13分)蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图K62-3为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f (n )表示第n 个图的蜂巢总数.(1)试给出f(4),f(5)的值,并求f(n)的表达式(不要求证明);(2)证明:1f(1)+1f(2)+1f(3)+…+1f(n)<43.图K62-3难点突破16.(12分) 某少数民族的刺绣有着悠久的历史,如图K62-4(1)、图(2)、图(3)、图(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成的,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.(1)求出f(5)的值;(2)利用合情推理的“归纳推理思想”,归纳出f(n+1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式;(3)求1f(1)+1f(2)-1+1f(3)-1+…+1f(n)-1的值.图 4课时作业(六十二)【基础热身】1.C [解析] f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x =f 1(x ),f 6(x )=(cos x )′=-sin x =f 2(x ),f n +4(x )=…=…=f n (x ),故可猜测f n (x )是以4为周期的函数,有f 4n +1(x )=f 1(x )=cos x ,f 4n +2(x )=f 2(x )=-sin x ,f 4n +3(x )=f 3(x )=-cos x ,f 4n +4(x )=f 4(x )=sin x .故f 2009(x )=f 1(x )=cos x ,故选C.2.A [解析] A 是演绎推理,B 、D 是归纳推理,C 是类比推理.故选A.3.x +2y -z -2=0 [解析] 设B (x ,y ,z )为平面内的任一点,由AB →·n =0得(-1)×(x-1)+(-2)×(y -2)+1×(z -3)=0,即x +2y -z -2=0.4.5+6+7+8+9+10+11+12+13=81 [解析] 因为1=1第一个式子左边1个数,右边1;2+3+4=9第二个式子左边3个数,从2开始加,加3个连续整数,右边3的平方;3+4+5+6+7=25第三个式子左边5个数,从3开始加,加5个连续整数,右边5的平方;4+5+6+7+8+9+10=49第四个式子左边7个数,从4开始加,加7个连续整数,右边7的平方,故第五个式子为5+6+7+8+9+10+11+12+13=81.【能力提升】5.B [解析] 从S 1,S 2,S 3猜想出数列的前n 项和S n ,是从特殊到一般的推理,所以B 是归纳推理.6.B [解析] 观察这一组数的特点:a 1=1,a n -a n -1=n ,∴a n =n (n +1)2,∴a 7=28. 7.B [解析] ∵f (x )=12x +2, ∴f (-x )=12-x +2=2x1+2·2x, f (x +1)=12x +1+2=12(1+2·2x ), 则f (-x )+f (x +1)=2x 1+2·2x +12(1+2·2x )=1+2·2x 2(1+2·2x )=22, ∴f (-4)+f (5)=f (-3)+f (4)=f (-2)+f (3)=f (-1)+f (2)=f (0)+f (1)=22, ∴原式的值为22×5=522.故选B. 8.C [解析] 由三角形数表可以看出其奇数行为奇数列,偶数行为偶数列,2009=2×1005-1,所以2009为第1005个奇数,又前31个奇数行内数的个数的和为961,前32个奇数行内数的个数的和为1024,故2009在第32个奇数行内,所以i =63,因为第63行的第一个数为2×962-1=1923,2009=1923+2(m -1),所以m =44,即j =44,所以i +j=107.9.C [解析] 因为2011=5×402+1,则2011∈[1],结论①正确;因为-3=5×(-1)+2,则-3∈[2],结论②不正确;因为所有的整数被5除的余数为0,1,2,3,4五类,则Z =[0]∪[1]∪[2]∪[3]∪[4],结论③正确;若整数a ,b 属于同一“类”[k ],可设a =5n 1+k ,b =5n 2+k (n 1,n 2∈Z ),则a -b =5(n 1-n 2)∈[0];反之,若a -b ∈[0],可设a =5n 1+k 1,b =5n 2+k 2(n 1,n 2∈Z ),则a -b =5(n 1-n 2)+(k 1-k 2)∈[0];∴k 1=k 2,则整数a ,b 属于同一“类”,结论④正确,故选C.10.⎝⎛⎭⎫43πR 3′=4πR 2 球的体积函数的导数等于球的表面积函数 11.3×4n -1 [解析] a 1=3,a 2=12,a 3=48,可知a n =3×4n -1.12.T 8T 4 T 12T 8 [解析] 通过类比,若等比数列{b n }的前n 项积为T n ,则T 4,T 8T 4,T 12T 8,T 16T 12成等比数列.此题是一个数列与类比推理结合的问题,既考查了数列中等差数列和等比数列的知识,也考查了通过已知条件进行类比推理的方法和能力.13.5 [解析] 由条件知x 1=5,x 2=f (x 1)=f (5)=6,x 3=f (x 2)=f (6)=3,x 4=f (x 3)=f (3)=1,x 5=f (x 4)=f (1)=4,x 6=f (x 5)=f (4)=2,x 7=f (x 6)=f (2)=5=x 1,可知{x n }是周期为6的周期数列,所以x 2011=x 1=5.14.[解答] 观察40°-10°=30°,36°-6°=30°,由此猜想:sin 2α+cos 2(30°+α)+sin α·cos(30°+α)=34. 证明:sin 2α+cos 2(30°+α)+sin α·cos(30°+α)=1-cos2α2+1+cos (60°+2α)2+12[sin(30°+2α)-sin30°] =1+12[cos(60°+2α)-cos2α]+ 12⎣⎡⎦⎤sin (30°+2α)-12 =1+12[-2sin(30°+2α)sin30°]+ 12⎣⎡⎦⎤sin (30°+2α)-12 =34-12sin(30°+2α)+12sin(30°+2α)=34. 15.[解答] (1)f (4)=37,f (5)=61.由于f (2)-f (1)=7-1=6,f (3)-f (2)=19-7=2×6,f (4)-f (3)=37-19=3×6,f (5)-f (4)=61-37=4×6,…因此,当n ≥2时,有f (n )-f (n -1)=6(n -1),所以f (n )=[f (n )-f (n -1)]+[f (n -1)-f (n -2)]+…+[f (2)-f (1)]+f (1)=6[(n -1)+(n -2)+…+2+1)]+1=3n 2-3n +1.又f (1)=1=3×12-3×1+1,所以f (n )=3n 2-3n +1.(2)证明:当k ≥2时,1f (k )=13k 2-3k +1<13k 2-3k =13⎝⎛⎭⎫1k -1-1k .所以1f (1)+1f (2)+1f (3)+…+1f (n )<1+13⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1-1n , =1+13⎝⎛⎭⎫1-1n <1+13=43. 【难点突破】16.[解答] (1)f (5)=41.(2)由题图可知f (2)-f (1)=4=4×1,f (3)-f (2)=8=4×2,f (4)-f (3)=12=4×3,f (5)-f (4)=16=4×4,由上式规律,可得f (n +1)-f (n )=4n ,因为f (n +1)-f (n )=4n ,所以f (n +1)=f (n )+4n ,所以f (n )=f (n -1)+4(n -1), =f (n -2)+4(n -1)+4(n -2)=f (n -3)+4(n -1)+4(n -2)+4(n -3)…=f (1)+4(n -1)+4(n -2)+4(n -3)+…+4=2n 2-2n +1.(3)当n ≥2时,1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1=11+12×22-2×2+1-1+12×32-2×3+1-1+…+12n 2-2n +1-1=11+12×2×(2-1)+12×3×(3-1)+…+12n (n -1)=11+12⎣⎡⎦⎤12×1+13×2+…+1n (n -1) =1+12⎝⎛⎭⎫1-12+12-13+…+1n -1-1n =1+12⎝⎛⎭⎫1-1n =32-12n.。