小升初口奥试题奥数试卷及答案(共十六份)
小升初经典奥数测试题及答案
小升初经典奥数测试题及答案课内知识:哥哥有12枚5分硬币,妹妹有10枚2分硬币,哥哥给妹妹几枚5分硬币,两人的钱数相等?课外趣题:阿香去吃午饭,发现附近的中餐厅有9个,西餐厅有3个,日式餐厅有2个,他准备找一家餐厅吃饭,一共有多少种不同的选择?【三年级】课内知识:用400个棋子摆放了5层空心方阵,最内层每边有几个棋子?课外趣题:用棋子摆方阵恰好摆成每边为20的实心方阵,若改为4层空心方阵,最外层每边应放几枚?【四年级】课内知识:一把钥匙只能开一把锁,现有10把钥匙和10把锁,最少要试验多少次就一定能使全部的钥匙和锁相匹配?课外趣题:将60个红球和8个白球排成一圈,相邻红球个数最多的那一组至少有几个球?【五年级】课内知识:在一个两位数的两个数字之间加一个0,所得三位数比原来大8,求这个两位数是多少?课外趣题:一个回文数是这样的整数,它的各位数字从左到右与从右到左念都一样,例如8338、1331、12321。
已知:A、B、C都是回文数,A、B是四位数,C是五位数,A+B=C,那么C是多少?【二年级】课内知识:哥哥有12枚5分硬币,妹妹有10枚2分硬币,哥哥给妹妹几枚5分硬币,两人的钱数相等?解答:512=60(分) 210=20(分) (60-20)2=20(分) 205=4(枚)课外趣题:阿香去吃午饭,发现附近的中餐厅有9个,西餐厅有3个,日式餐厅有2个,他准备找一家餐厅吃饭,一共有多少种不同的选择?解答:9+3+2=14(种)【三年级】课内知识:用400个棋子摆放了5层空心方阵,最内层每边有几个棋子?解答:4005=80(个) 80-8-8=64(个) 644+1=17(个)课外趣题:用棋子摆方阵恰好摆成每边为20的'实心方阵,若改为4层空心方阵,最外层每边应放几枚?解答:2021=400(个) 400+8(1+2+3)=448(个)4484=112(个) 1124+1=29(个)【四年级】课内知识:一把钥匙只能开一把锁,现有10把钥匙和10把锁,最少要试验多少次就一定能使全部的钥匙和锁相匹配?解答:从最不利的情形考虑。
小升初奥数经典试题附答案
小升初奥数经典试题附答案小升初奥数经典试题附答案国际数学奥林匹克(International Mathematical Olympiads)简称IMO,是一项以数学为内容,以中学生为对象的国际性竞赛活动,至今已有30余年的历史。
以下是小编为大家整理的小升初奥数经典试题附答案相关内容,仅供参考,希望能够帮助大家!1. 已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2. 2、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?3. 甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?4. 李明和张强付同样多的钱买了同一种铅笔,李明要了13支,张强要了7支,李明又给张强0.6元钱。
每支铅笔多少钱?5. 甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6. 学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时行3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?7. 有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8. 8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?9. 学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10. 一列火车和一列慢车,同时分别从甲乙两地相对开出。
小学奥数题小升初考试题及答案
小学奥数题(小升初考试题)及答案1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
2.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵答案是15棵算式:1÷(1/6-1/10)=15棵3.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来电了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟设停电X分钟,则:粗蜡烛长度减少:X÷60÷2=X÷120细蜡烛长度减少:X÷601-(X÷120)=2(1-X÷60)X=40分钟4.在一个直径是2分米的圆柱形容器里,放入一个底面半径3厘米的圆锥形铁块,全部浸没在水中,这时水面上升0.3厘米.圆锥形铁块的高是多少厘米分析:根据题干,这个圆锥形铁块的体积就是上升0.3厘米的水的体积,由此可以求出这个圆锥的体积,再利用圆锥的体积公式即可求出这个圆锥的高.解答:解:2分米=20厘米,3.14×(20÷2)2×0.3×3÷(3.14×32),=314×0.9÷28.26,=282.6÷28.26,=10(厘米);答:圆锥形铁块的高是10厘米.5,汽车上山每小时行20千米,3小时登顶,下山按原路返回,用了2小时,求汽车往返的平均速度.分析:根据速度×时间=路程,求出上山的路程,用上、下山的总路程除以总时间就是汽车往返的平均速度.解答:解:20×3×2÷(3+2),=120÷5,=24(千米),答:汽车往返的平均速度是24千米.6。
小升初常考奥数练习题及答案【三篇】
小升初常考奥数练习题及答案【三篇】1和差问题已知两数的和与差,求这两个数。
【口诀】和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
例:已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4 2差比问题【口诀】我的比你多,倍数是因果。
分子实际差,分母倍数差。
商是一倍的,乘以各自的倍数,两数便可求得。
例:甲数比乙数大12且甲:乙=7:4,求两数。
先求一倍的量,12/(7-4)=4,所以甲数为:4X7=28,乙数为:4X4=16。
3年龄问题【口诀】岁差不会变,同时相加减。
岁数一改变,倍数也改变。
抓住这三点,一切都简单。
例1:小军今年8 岁,爸爸今年34岁,几年后,爸爸的年龄是小军的3倍?分析:岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。
已知差及倍数,转化为差比问题。
26/(3-1)=13,几年后爸爸的年龄是13X3=39岁,小军的年龄是13X1=13岁,所以应该是5年后。
例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?分析:岁差不会变,今年的岁数差13-9=4几年后也不会改变。
几年后岁数和是40,岁数差是4,转化为和差问题。
则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4)/2=18,所以答案是9年后。
4和比问题已知整体,求部分。
【口诀】家要众人合,分家有原则。
分母比数和,分子自己的。
和乘以比例,就是该得的。
例:甲乙丙三数和为27,甲:乙:丙=2:3:4,求甲乙丙三数。
分母比数和,即分母为:2+3+4=9;分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。
和乘以比例,则甲为27X2/9=6,乙为27X3/9=9,丙为27X4/9=12 5鸡兔同笼问题【口诀】假设全是鸡,假设全是兔。
多了几只脚,少了几只足?除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
小升初经典奥数题50道题(附解答)
小升初经典奥数题50道题(附解答)
现在小学的数学题目思维深度以及难度比我们之前都有所加深,家长在辅导孩子写作业的时候,经常会发现有许多数学题我们都已经不会了。
有时候一些数学题,我们觉得列个方程或者其他解法会很简单,但是我们的孩子知识面并没有大人广泛,我们也应该学会站在孩子的角度看问题,解决问题。
小学的数学有时候并不难,但多数人都想不到、看不到题中的关键,所以才会找不到解题的正确思路和办法。
今天,为大家整理了50道小升初的经典奥数题以及详细解释,希望能够对孩子有所帮助,对家长辅导孩子也有所帮助!
辅导孩子重要的是方法和耐心,而不是怒火呦。
深呼吸,仔细思考一个更容易让孩子接受的思路和方法吧!。
小升初典型奥数题及详细答案
【答案解析】:设总路程为S,则去时用的时间为S/X,回来的时候用的时间为S/Y 那么平均速度为2S∕(S/X+S/Y)=2/(1∕X+1∕Y)=2XY∕(X+Y) 6、参加数学竞赛的男生比女生多28人,女生全部优胜,男生的3/4得优胜男女生各优胜的共42人,求男女生参 加竞赛的各多少人?
31、一对李生姐妹今年的年龄的和、差、积、商相加的和为100,她们今年多少岁? 【答案解析】:年龄为X,则: 2X+0+X×X+l=100 解得X=9 32、一列客车长200皿,一列货车长280πι,它们在平行的轨道上相向行驶,从相遇到车尾离开需18s. 【答案解析】:巳知客车与货车的速度为5:3,求两车每秒各行多少千米? 速度和=(200+280)+18=80/3米/秒 客车速度二80∕3÷(5+3)x5=50∕3米/秒 货车速度=80/3-50/3=10米/秒 33、圆锥形容器中装有2升水,水面高度正好是圆锥高度的一半,这个容 器还能装多少升水? (8-1)x2=14 注:在这种情况下体积的比永远是8:1 34、六年级(D班原来有学生54人,男生占全班人数的5/9,后来男生转走了几人,这时男生占全班的13
3×3×3×3×2=162o 26、一只布袋中装有大小相同,但颜色不同的手套若干只。已知手套的颜色有黑白灰三种。最少要取多少副手 套才有保证有3副手套是同色的? 【答案解析】:4+3+3=10只 最坏的取法是三种手套分别拿4只3只3只,取10只就能保证有两副相同 手套只有3种,题目要我们要相同,我们就不让他相同,抽屉原理就是这样的
小升初奥数题及答案五篇
小升初奥数题及答案五篇第一篇:数与代数1. 某数的三倍加上5等于20,求这个数。
解答:设这个数为x,则根据题意,可以列出方程3x + 5 = 20。
解这个一次方程可以得到x = 5。
2. 一个数增加20%后得到30,求这个数。
解答:设这个数为x,则根据题意,可以列出方程x + 0.2x = 30。
解这个一次方程可以得到x = 25。
第二篇:几何与图形1. 已知长方形的长是5cm,宽是3cm,求其面积和周长。
解答:长方形的面积可以通过长度乘以宽度来计算,即5cm × 3cm = 15cm²。
周长可以通过将长度和宽度相加再乘以2来计算,即(5cm + 3cm) × 2 = 16cm。
2. 在平面直角坐标系中,点A(2,3)和点B(5,1)连线,求线段AB的长度。
解答:根据坐标系中两点间的距离公式,线段AB的长度可以计算为√[(5-2)²+(1-3)²] = √[(3)²+(-2)²] = √(9+4) = √13。
第三篇:概率与统计1. 从1至15中随机抽取一个整数,求这个整数是偶数的概率。
解答:在1至15中,一共有8个偶数(2, 4, 6, 8, 10, 12, 14, 15)和7个奇数(1, 3, 5, 7, 9, 11, 13)。
因此,抽取的整数是偶数的概率为8/15。
2. 一个骰子中的每个面都标有1至6的数字,投掷骰子一次,求投掷结果是5或6的概率。
解答:骰子共有6个面,其中有2个面标有5和6。
因此,投掷结果是5或6的概率为2/6 = 1/3。
第四篇:逻辑与推理1. 小明说他有7本书,其中一半给了朋友,又借了5本回来,这时他还有多少本书?解答:小明有7本书,一半给了朋友,剩下的数量是7/2 = 3.5本。
因为书的数量不能为小数,所以小明实际上只剩下3本书。
2. 汤姆比杰克大三岁,而杰克比肯尼大两岁。
如果汤姆今年10岁,那么肯尼的年龄是多少?解答:根据题意,杰克比肯尼大两岁,汤姆比杰克大三岁,所以汤姆与肯尼之间的年龄差是5岁。
小升初面试口算奥数练习题及答案(练习7到练习9)
1.计算:161.8x6.18+2618x0.382=答案:20002.某班学生去植树。
如果每人挖5个树坑,还有3个树坑没有挖;如果其中2人各挖4个,其余的人各挖6个树坑,就怡好挖完所有的树坑。
问:有多少学生参加植树?这些学生一共挖多少个树坑?答案:7名学生,38个坑。
3.一根底面是正方形的长方体木料,表面积为114平方厘米。
锯去一个最大的正方体之后,余下的长方体的表面积为54平方厘米,那么锯下的正方体的表面积为多少平方厘米?答案:90平方厘米4.有3所学极共订300份中国少年报,每所学校订了至少98份,至多102份。
问:一共有多少种不同的订法?答案:一共19种不同的订法。
1.(下式中被乘数与乘数中各有500个“0”)0.00…0024×0.00…005=答案:0.00…0012(共999个0,小数点后998个0)2.一艘轮船顺水航行100千米,逆水航行64千米,共用9小时;顺水航行80千米,逆水航行128千米共用12小时。
问:轮船的顺水速度与逆水速度各是多少?答案:顺水20千米/小时,逆水16千米/小时。
3.梯形ABCD中,AB平行于CD,对角线AC、BD交于O点,OE平行于AB、CD,交腰BC于E点。
如果三角形ADE的面积是90平方厘米,那么三角形BOC的面积是多少平方厘米。
答案:45平方厘米。
4.在一根绳子12等分点、15等分点及18等分点都剪一刀,这根绳子被剪成了多少段?答案:36段口奥练习九1.下面的数的总和是。
012 (49)1 23 (50)……………484950 (97)495051 (98)答案:1225002.图中的数据分别表示两个长方形和一个直角三角形的面积,另一个三角形的面积是多少?答案:93.龟兔赛跑,全程5.2千米,兔子每小时跑20千米,乌龟每小时跑3千米,乌龟不停地跑,但兔子却边跑边玩,它先跑1分钟,然后玩15分钟,又跑2分种,玩15分钟,再跑3分钟,玩15分钟…,那么先到达终点的比后到达终点的快多少分钟?答案:快13.4分钟,兔子快。
小升初奥数题必考题及答案
小升初奥数题必考题及答案1.小升初奥数题必考题及答案1、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?想:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。
由此可求出乙队每天修的米数,进而再求两队每天共修的米数。
解:乙每天修的米数:(400-10×4)÷(4+5)=(400-40)÷9=360÷9=40(米)甲乙两队每天共修的米数:40×2+10=80+10=90(米)答:两队每天修90米。
2、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的`单价各是多少元?想:已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。
解:每把椅子的价钱:(455-30×6)÷(6+5)=(455-180)÷11=275÷11=25(元)每张桌子的价钱:25+30=55(元)答:每张桌子55元,每把椅子25元。
3、一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?想:根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。
解:(7+65)×[40÷(75-65)]=140×[40÷10]=140×4=560(千米)答:甲乙两地相距560千米。
2.小升初奥数题必考题及答案1、李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
(完整)小升初奥数题及答案(全面)
使用办法:题目后面有答案,但是要遮住答案完成,把题目完成在笔记本,自行核对,一天一题小学六年级奥数题及答案1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=3922.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)} 左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款答案取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。