初一下期末考试数学试题
初中数学精品试题:2022-2023学年七年级(下)期末数学测试卷(一)及答案
2022-2023学年七年级(下)期末数学测试卷(一)班级姓名考生须知:1.本试卷分试题卷和答题卡两部分. 满分120分,考试时间100分钟.2.答题前,必须在答题卡填写校名、班级、姓名,正确涂写考试号.3.不允许使用计算器进行计算,凡题目中没有要求取精确值的,结果中应保留根号或π.一、选择题(共10小题,每小题3分,满分30分)1、要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是()A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七、八、九年级各50名学生2、下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21 B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21 D.a2+4a﹣21=(a+2)2﹣253、如图所示,在图形B到图形A的变化过程中,下列描述正确的是()A.向上平移2个单位,向左平移4个单位B.向上平移1个单位,向左平移4个单位C.向上平移2个单位,向左平移5个单位D.向上平移1个单位,向左平移5个单位(第3题) (第4题)4、从图1到图2的变化过程可以发现的代数结论是()A.(a+b)(a﹣b)=a2﹣b2B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2=a2+2ab+b2D.a2+2ab+b2=(a+b)2A.∠1=∠2 B.∠1=∠5 C.∠1+∠3=180°D.∠3=∠5(第5题) (第8题)6、某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场中共有中、小型汽车50辆,这些车共缴纳停车费230元.四名同学都设未知数x,y,并根据题意,分别列出以下四个方程组,其中不正确的是()A.B.C.D.7、已知﹣=4,则的值等于()A.6 B.﹣6 C.D.﹣8、如图,将△ABC沿AC方向平移1cm得到△DEF,若△ABC的周长为10cm.则四边形ABEF的周长为()A.10cm B.11cm C.12cm D.14cm9、若方程组的解x与y的和为3,则a的值为()A.7 B.4 C.0 D.﹣410、某公司员工分别在A、B、C三个住宅区,A区有30人,B区有30人,C区有10人,三个区在同一条直线上,如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间二、填空题(共6小题,每小题4分,满分24分)11、在,﹣π,0,3.14,,0.3,,中,是无理数的有.422413、给出以下调查方式:(1)调查某批次汽车的搞撞击能力用全面调查;(2)了解某班学生的身高情况用全面调查;(3)调查春节联欢晚会的收视率用抽样调查;(4)调查市场上某种食品的色素含量是否合乎国家标准用抽样调查.你认为以上调查比较科学的是.(填序号)14、如图,点E在AC的延长线上,对于给出的四个条件:(1)∠3=∠4;(2)∠1=∠2;(3)∠A=∠DCE;(4)∠D+∠ABD=180°.能判断AB∥CD的有个.(第14题) (第16题)15、已知方程组有无数多解,则a=,m=.16、一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则大正方形的边长为,小正方形边长为,(用a、b的代数式表示),图②的大正方形中未被小正方形覆盖部分的面积是(用a,b的代数式表示).三、解答题(本题有7个小题,共66分)解答应写出证明过程或推演步骤.17、(6分)先化简,再求值:(+)÷,其中x=4.18、(8分)我们把选取二次三项式ax2+bx+c(a≠0)中的两项,配成完全平方式的过程叫配方.例如x2﹣4x+2=x2﹣4x+4﹣2=(x﹣2)2﹣2,根据上述材料,解决下面问题:(1)写出x2﹣8x+4的配方过程;(2)求出x2+y2﹣4x+8y+25的最小值.19、(8分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=60°,求∠ACB的度数.20、(10分)为丰富学生的课余生活,陶冶学生的情趣和爱好,某校开展可学生社团活动,为了解学生各类活动的参加情况,该校对2014-2015学年七年级学生社团活动进行了抽样调查,制作出如下的统计图.根据上述统计图,完成以下问题:(1)这次共调查了名学生;子啊扇形统计图中,表示“书法类”部分子啊扇形的圆心角是度.(2)请把统计图1补充完整.(3)已知该校2014-2015学年七年级共有学生1000名参加社团活动,请根据样本估算该校2014-2015学年七年级学生参加文学类社团的人数.21、(10分)已知关于x、y的方程组,给出下列结论:①当a=1时,方程组的解也是方程x+y=2的解;②当x=y时,a=﹣;③不论a取什么实数,2x+y的值始终不变;④若z=﹣xy,则z的最小值为﹣1.请判断以上结论是否正确,并说明理由.22、(12分)某超市用300元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?解:小明找到可第二次购进干果数量是第一次的2倍好多300千克这个等量关系,设该种干果第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,根据题意(请你接着完成本题的解答).23、(12分)一张如图1的长方形铁皮,四个角都剪去边长为30厘米的正方形,再四周折起,做成一个有底无盖的铁盒如图2,铁盒底面长方形的长是4a(cm),宽是3a(cm),这个无盖铁盒各个面的面积之和称为铁盒的全面积.(1)请用a的代数式表示图1中原长方形铁皮的面积;(2)若要在铁盒的各个外表面漆上某种油漆,每元钱可漆的面积为(cm2),则油漆这个铁盒需要多少钱(用a的代数式表示)?(3)铁盒的底面积是全面积的几分之几(用a的代数式表示)?若铁盒的底面积是全面积的,求a的值;(4)是否存在一个正整数a,使得铁盒的全面积是底面积的正整数倍?若存在,请求出这个a,若不存在,请说明理由.参考答案一、选择题1.D;2.B3、如图所示,在图形B到图形A的变化过程中,下列描述正确的是()A.向上平移2个单位,向左平移4个单位B.向上平移1个单位,向左平移4个单位C.向上平移2个单位,向左平移5个单位D.向上平移1个单位,向左平移5个单位解:观察图形可得:将图形A向下平移1个单位,再向右平移4个单位或先向右平移4个单位,再向下平移1个单位得到图形B.只有B符合.故选B.4、从图1到图2的变化过程可以发现的代数结论是()A.(a+b)(a﹣b)=a2﹣b2B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2=a2+2ab+b2D.a2+2ab+b2=(a+b)2解:图1的面积为:(a+b)(a﹣b),图2的面积为:a2﹣(a﹣b+b)2=a2﹣b2,根据面积相等,可得:(a+b)(a﹣b)=a2﹣b2.故选:A.5、如图,下列条件中能判定直线l1∥l2的是()A.∠1=∠2 B.∠1=∠5 C.∠1+∠3=180°D.∠3=∠5解:A、根据∠1=∠2不能推出l1∥l2,故A选项错误;B、∵∠5=∠3,∠1=∠5,∴∠1=∠3,即根据∠1=∠5不能推出l1∥l2,故B选项错误;C、∵∠1+∠3=180°,∴l1∥l2,故C选项正确;D、根据∠3=∠5不能推出l1∥l2,故D选项错误;故选:C.6、某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场中共有中、小型汽车50辆,这些车共缴纳停车费230元.四名同学都设未知数x,y,并根据题意,分别列出以下四个方程组,其中不正确的是()A.B.C.D.解:设中型汽车缴纳停车费x元,小型汽车缴纳停车费y元,由题意得,;设有x辆中型汽车,y辆小型汽车,由题意得,;设有x辆小型汽车,y辆中型汽车,由题意得,.则错误的为B.7、已知﹣=4,则的值等于()A.6 B.﹣6 C.D.﹣解:∵﹣=4,∴a﹣b=﹣4ab,∴原式====6.故选A.8、如图,将△ABC沿AC方向平移1cm得到△DEF,若△ABC的周长为10cm.则四边形ABEF的周长为()A.10cm B.11cm C.12cm D.14cm解:根据题意,将周长为10cm的△ABC沿AC向右平移1cm得到△DEF,∴BE=1cm,AF=AC+CF=AC+1cm,EF=BC;又∵AB+AC+BC=10cm,∴四边形ABEF的周长=BE+AB+AF+EF=1+AB+AC+1+BC=12cm.故选C.9、若方程组的解x与y的和为3,则a的值为()A.7 B. 4 C.0 D.﹣4解:由题意得:x+y=3①,将方程2x+3y=a代入方程3x+5y=a+4得:x+2y=4②,将①,②联立方程组:,解得:,将,代入方程2x+3y=a得:a=4+3=7.故选:A.10、某公司员工分别在A、B、C三个住宅区,A区有30人,B区有30人,C区有10人,三个区在同一条直线上,如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间解:①设在A区、B区之间时,设距离A区x米,则所有员工步行路程之和=30x+30(100﹣x)+10(100+200﹣x),=30x+3000﹣30x+3000﹣10x,=﹣10x+6000,∴当x最大为100时,即在B区时,路程之和最小,为5000米;②设在B区、C区之间时,设距离B区x米,则所有员工步行路程之和=30(100+x)+30x+10=3000+30x+30x+2000﹣10x=50x+5000,∴当x最大为0时,即在B区时,路程之和最小,为5000米;综上所述,停靠点的位置应设在B区.故选B.二、填空题(共6小题,每小题4分,满分24分)11、在,﹣π,0,3.14,,0.3,,中,是无理数的有﹣π,﹣.解:是分数,故是有理数;﹣π是无限不循环小数,故是无理数;0是整数,故是有理数;3.14是小数,故是有理数;是开方开不尽的数,故是无理数;0.3是小数,故是有理数;=﹣7,﹣7是整数,故是有理数;是分数,故是有理数.故答案为:﹣π,﹣.12、因式分解:16m4﹣8m2n2+n4=(2m﹣n)2(2m+n)2.解:16m4﹣8m2n2+n4=(4m2﹣n2)2=(2m﹣n)2(2m+n)2.故答案为:(2m﹣n)2(2m+n)2.13、给出以下调查方式:(1)调查某批次汽车的搞撞击能力用全面调查;(2)了解某班学生的身高情况用全面调查;(3)调查春节联欢晚会的收视率用抽样调查;(4)调查市场上某种食品的色素含量是否合乎国家标准用抽样调查.你认为以上调查比较科学的是(2)(3)(4).(填序号)解:(1)调查具有破坏性,只能进行抽样调查,故(1)错误;(2)了解某班学生的身高情况用全面调查,调查对象容量小,进行全面调查较科学,故(2)正确;(3)调查春节联欢晚会的收视率用抽样调查,调查对象容量大,进行抽样调查较科学,故(3)正确;(4)调查市场上某种食品的色素含量是否合乎国家标准用抽样调查,具有破坏性,调查对象容量大,进行抽样调查较科学,故(4)正确.故答案为:(2)(3)(4).14、如图,点E在AC的延长线上,对于给出的四个条件:(1)∠3=∠4;(2)∠1=∠2;(3)∠A=∠DCE;(4)∠D+∠ABD=180°.能判断AB∥CD的有3个.解:(1)如果∠3=∠4,那么AC∥BD,故(1)错误;(2)∠1=∠2,那么AB∥CD;内错角相等,两直线平行,故(2)正确;(3)∠A=∠DCE,那么AB∥CD;同位角相等,两直线平行,故(3)正确;(4)∠D+∠ABD=180°,那么AB∥CD;同旁内角互补,两直线平行,故(4)正确.即正确的有(2)(3)(4).故答案为:3.15、已知方程组有无数多解,则a=3,m=﹣4.解:根据题意得:a=3,=3,解得:a=3,m=﹣4.故答案为:3;﹣416、一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则大正方形的边长为,小正方形边长为,(用a、b的代数式表示),图②的大正方形中未被小正方形覆盖部分的面积是ab(用a,b的代数式表示).解:根据图示可得:大正方形的边长为,小正方形边长为,大正方形中未被小正方形覆盖部分的面积是=()2﹣4×()2=a b.故答案为:;;a b.四、解答题(本题有7个小题,共66分)解答应写出证明过程或推演步骤.17、(6分)先化简,再求值:(+)÷,其中x=4.解:原式=[+]•=•=,当x=4时,原式==.18、(8分)我们把选取二次三项式ax2+bx+c(a≠0)中的两项,配成完全平方式的过程叫配方.例如x2﹣4x+2=x2﹣4x+4﹣2=(x﹣2)2﹣2,根据上述材料,解决下面问题:(1)写出x2﹣8x+4的配方过程;(2)求出x2+y2﹣4x+8y+25的最小值.解:(1)原式=x2﹣8x+16﹣12=(x﹣4)2﹣12;(2)原式=(x2﹣4x+4)+(y2+8y+16)+5=(x﹣2)2+(y+4)2+5,∵(x﹣2)2≥0,(y+4)2≥0,∴当x=2,y=﹣4时,原式最小值为5.19、(8分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=60°,求∠ACB的度数.解:(1)证明:∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°,∴CD∥EF;(2)解:∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠3=∠ACB=60°.20、(10分)为丰富学生的课余生活,陶冶学生的情趣和爱好,某校开展可学生社团活动,为了解学生各类活动的参加情况,该校对2014-2015学年七年级学生社团活动进行了抽样调查,制作出如下的统计图.根据上述统计图,完成以下问题:(1)这次共调查了100名学生;子啊扇形统计图中,表示“书法类”部分子啊扇形的圆心角是72度.(2)请把统计图1补充完整.(3)已知该校2014-2015学年七年级共有学生1000名参加社团活动,请根据样本估算该校2014-2015学年七年级学生参加文学类社团的人数.解:(1)根据题意得:40÷40%=100(名);×360°=72°,故答案为:100;72;(2)艺术的人数为100﹣(40+20+30)=10(名),补全统计图,如图所示:(3)1000×=300(人),该校2014-2015学年七年级学生参加文学类社团的人数为300人.21、(10分)已知关于x、y的方程组,给出下列结论:①当a=1时,方程组的解也是方程x+y=2的解;②当x=y时,a=﹣;③不论a取什么实数,2x+y的值始终不变;④若z=﹣xy,则z的最小值为﹣1.请判断以上结论是否正确,并说明理由.解:关于x、y的方程组,解得:.①将a=1代入,得:,将x=4,y=﹣4代入方程左边得:x+y=0,右边=2,左边≠右边,本选项错误;②将x=y代入,得:,即当x=y时,a=﹣,本选项正确;③将原方程组中第一个方程×3,加第二个方程得:4x+2y=8,即2x+y=4,不论a取什么实数,2x+y的值始终不变,本选项正确;④z=﹣xy=﹣(a+3)(﹣2a﹣2)=a2+4a+3=(a+2)2﹣1≥﹣1,即若z=﹣xy,则z的最小值为﹣1,此选项正确.故正确的选项有:②、③、④.22、(12分)某超市用300元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?解:小明找到可第二次购进干果数量是第一次的2倍好多300千克这个等量关系,设该种干果第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,根据题意(请你接着完成本题的解答).解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x 元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.23、(12分)一张如图1的长方形铁皮,四个角都剪去边长为30厘米的正方形,再四周折起,做成一个有底无盖的铁盒如图2,铁盒底面长方形的长是4a(cm),宽是3a(cm),这个无盖铁盒各个面的面积之和称为铁盒的全面积.(1)请用a的代数式表示图1中原长方形铁皮的面积;(2)若要在铁盒的各个外表面漆上某种油漆,每元钱可漆的面积为(cm2),则油漆这个铁盒需要多少钱(用a的代数式表示)?(3)铁盒的底面积是全面积的几分之几(用a的代数式表示)?若铁盒的底面积是全面积的,求a的值;(4)是否存在一个正整数a,使得铁盒的全面积是底面积的正整数倍?若存在,请求出这个a,若不存在,请说明理由.解:(1)原铁皮的面积是(4a+60)(3a+60)=12a2+420a+3600;(2)油漆这个铁盒的表面积是:12a2+2×30×4a+2×30×3a=12a2+420a,则油漆这个铁盒需要的钱数是:(12a2+420a)÷=(12a2+420a)×=600a+21000(元);(3)铁盒的底面积是全面积的=;根据题意得:=,解得a=105;(4)铁盒的全面积是4a×3a+4a×30×2+3a×30×2=12a2+420a,底面积是12a2,假设存在正整数n,使12a2+420a=n(12a2)则(n﹣1)a=35,由题意可知a>>10,则a只能为35,n=2.所以存在铁盒的全面积是底面积的正整数倍,这时a=35.。
初一数学下册期末考试试卷及答案
初一数学下册期末考试试卷及答案213年级下学期数学期末试卷一、选择题(每题3分,共18分)1.下列运算正确的是()。
A。
a+a=aB。
a×a=a^2C。
a÷a-1=aD。
a^4-a^4=a^22.给出下列图形名称:(1)线段(2)直角(3)等腰三角形(4)平行四边形(5)长方形,在这五种图形中是轴对称图形的有()A。
1个B。
2个C。
3个D。
4个3.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A。
4/112B。
1/4C。
1/35D。
15/354.1纳米相当于1根头发丝直径的六万分之一。
则利用科学记数法来表示,头发丝的半径是()A。
6万纳米B。
6×10^4纳米C。
3×10^6米D。
3×10^-6米5.下列条件中,能判定两个直角三角形全等的是()A。
一锐角对应相等B。
两锐角对应相等C。
一条边对应相等D。
两条直角边对应相等6.如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为()(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了。
A。
1个B。
2个C。
3个D。
4个二、填空题(每空3分,共27分)7.单项式-xy的次数是3.8.一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为60°,90°,120°的三角形。
9.在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到1.3万亿元,这个数据用科学记数法可表示为1.3×10^13元。
10.如图∠AOB=125°,AO⊥OC,BO⊥OD则∠COD=55°。
11.小明同学平时不用功研究,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是1/4.12.若a+2ka+9是一个完全平方式,则k等于2.13.(2m+3)/2=4m-9.14.已知:如图,矩形ABCD的长和宽分别为2和1,以D为圆心,AD为半径作AE弧,再以AB的中点F为圆心,FB长为半径作BE弧,则阴影部分的面积为3/4.15.观察下列运算并填空:1×2×3×4+1=25=5^2;2×3×4×5+1=121=11^2;3×4×5×6+1=361=19^2;……根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1=。
2021-2022学年七年级下学期期末考试数学试题(含答案解析)
2021-2022学年七年级下学期期末考试数学试卷一.选择题(共10小题,满分20分,每小题2分)1.(2分)在平面直角坐标系中,点P(﹣2020,2021)在()A.第一象限B.第二象限C.第三象限D.第四象限解:∵P(﹣2020,2021)的横坐标小于0,纵坐标大于0,∴点P(﹣2020,2021)在第二象限,故选:B.2.(2分)下列调查中,最适宜采用普查方式的是()A.对全国初中学生视力状况的调査B.对“十一国庆”期间全国居民旅游出行方式的调查C.旅客上飞机前的安全检查D.了解某种品牌手机电池的使用寿命解:A、对全国初中学生视力状况的调査,范围广,适合抽样调查,故A错误;B、对“十一国庆”期间全国居民旅游出行方式的调查范围广,适合抽样调查,故B错误;C、旅客上飞机前的安全检查,适合普查,故C正确;D、了解某种品牌手机电池的使用寿命,适合抽样调查,故D错误;故选:C.3.(2分)如图是某电商今年1﹣5月份销售额统计图,根据图中信息,可以判断相邻两个月销售额变化最大的是()A.1月至2月B.2月至3月C.3月至4月D.4月至5月解:1月至2月,30﹣23=7(万元),2月至3月,30﹣25=5(万元),3月至4月,25﹣15=10(万元),4月至5月,19﹣15=4(万元),则相邻两个月销售额变化最大的是3月至4月. 故选:C .4.(2分)下列说法正确的是( ) A .1的平方根是1 B .25的算术平方根是±5C .(﹣6)2没有平方根D .立方根等于本身的数是0和±1解:A .1的平方根是±1,故本选项不合题意; B .25的算术平方根是5,故本选项不合题意; C .(﹣6)2的平方根是±6,故本选项不合题意; D .立方根等于本身的数是0和±1,故本选项符合题意. 故选:D .5.(2分)如图,直线a ,b 被直线c 所截,a ∥b ,若∠2=45°,则∠1等于( )A .125°B .130°C .135°D .145°解:如图,∵a ∥b ,∠2=45°, ∴∠3=∠2=45°, ∴∠1=180°﹣∠3=135°, 故选:C .6.(2分)若a <b ,则下列不等式正确的是( ) A .3a >3bB .﹣2a >﹣2bC .a2>b2D .3﹣a <3﹣b解:A .不等式两边都乘以一个正数,不等号方向不改变,则A 错误; B .不等式两边都乘以一个负数,不等号方向改变,则B 正确;C.不等式两边都除以一个正数,不等号方向不改变,则C错误;D.因a<b,则﹣a>﹣b,于是3﹣a>3﹣b,则D错误.故选:B.7.(2分)√13的值在()A.1与2之间B.2与3之间C.3与4之间D.5与6之间解:∵√9<√13<√16,∴3<√13<4,故选:C.8.(2分)已知点A(2,2√2),B(5,√2),若线段CD是由线段AB沿y轴方向向下平移2√2个单位得到的,则线段CD两端点的坐标分别为()A.(2−2√2,2√2),(5−2√2,√2)B.(2,4√2),(5,3√2)C.(2,0),(5,−√2)D.(2,0),(5,﹣2)解:点A(2,2√2),B(5,√2),线段AB沿y轴方向向下平移2√2个单位,即把各点的纵坐标都减2√2,即可得到线段CD两端点的坐标.则C(2,0),D(5,−√2).故选:C.9.(2分)下列命题为假命题的是()A.对顶角相等B.如果AB⊥CD,垂足为O,那么∠AOC=90°C.经过一点,有且只有一条直线与这条直线平行D.两直线平行,同位角相等解:A、对顶角相等,是真命题;B、如果AB⊥CD,垂足为O,那么∠AOC=90°,是真命题;C、∵经过直线外一点,有且只有一条直线与这条直线平行,∴本选项说法是假命题;D、两直线平行,同位角相等,是真命题;故选:C.10.(2分)为了奖励学习进步的同学,某班准备购买甲、乙、丙三种不同的笔记本作为奖品,其单价分别为2元、3元、4元,购买这些笔记本需要花60元;经过协商,每种笔记本单价下降0.5元,只花了49元,那么以下哪个结论是正确的()A .乙种笔记本比甲种笔记本少4本B .甲种笔记本比丙种笔记本多6本C .乙种笔记本比丙种笔记本多8本D .甲种笔记本与乙种笔记本共12本解:设分别甲、乙、丙三种不同的笔记本x 、y 、z , 根据题意得:{2x +3y +4z =60①1.5x +2.5y +3.5z =49②,①﹣②得:x +y +z =22 ③, ③×3﹣①得,x ﹣z =6,故甲种笔记本比丙种笔记本多6本, 故选:B .二.填空题(共6小题,满分12分,每小题2分)11.(2分)某品牌电脑的成本为2200元,售价为2800元,该商店准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的电脑打x 折销售,请依据题意列出关于x 的不等式: 2800×x10−2200≥2200×5% . 解:由题意得:2800×x10−2200≥2200×5%, 故答案为:2800×x10−2200≥2200×5%. 12.(2分)不等式组{x >a x >2的解集为x >2,则a 的取值范围是 a ≤2 .解:由不等式组{x >a x >2的解集为x >2,可得a ≤2.故答案为:a ≤213.(2分)如图,直线AB ,CD 相交于点O ,EO ⊥AB ,垂足为O ,∠AOD =118°,则∠EOC 的度数为 28° .解:∵∠AOD =118°,∴∠BOC=∠AOD=118°,∵EO⊥AB,∴∠BOE=90°,∴∠EOC=∠BOC﹣∠BOE=28°,故答案为:28°.14.(2分)某校为了举办“迎国庆”的活动,调查了本校所有学生,调查的结果被整理成如图所示的扇形统计图.如果全校学生人数是1200人,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有300人.解:由统计图可得,这所学校赞成举办演讲比赛的学生有:1200×(1﹣40%﹣35%)=1200×25%=300(人),故答案为:300.15.(2分)如果|a﹣2|=2﹣a,那么(a﹣3,a﹣4)在第三象限.解:∵|a﹣2|=2﹣a,∴a﹣2≤0,解得a≤2,∴a﹣3<0,a﹣4<0,∴(a﹣3,a﹣4)在第三象限.故答案为:三.16.(2分)已知,a,b是正整数.若√7a+√10b是整数,则满足条件的有序数对(a,b)为(7,10)或(28,40).解:∵a,b是正整数.√7a+√10b是整数,∴a=7,b=10或a=4×7,b=4×10,即满足条件的有序数对(a,b)为(7,10)或(28,40).故答案为(7,10)或(28,40). 三.解答题(共8小题,满分68分) 17.(8分)计算:(1)√25+√−273+√214; (2)2√2−|√2−1|. 解:(1)√25+√−273+√214 =5+(﹣3)+32=2+32 =72.(2)2√2−|√2−1| =2√2−√2+1 =√2+1.18.(8分)解方程组:{5(x −9)=6(y −2)x 4−y+13=2.解:方程组整理得:{5x −6y =33①3x −4y =28②,①×2﹣②×3得:10x ﹣12y ﹣3(3x ﹣4y )=66﹣84, 解得:x =﹣18,把x =﹣18代入①得:y =﹣20.5, 则方程组的解为{x =−18y =−20.5.19.(8分)(1)解不等式4x ﹣3<2x +1,并把解集表示在数轴上. (2)解不等式组{3x +2>x2−4(x −4)≥2x,并写出它的整数解.解:(1)移项得,4x ﹣2x <1+3, 合并同类项得,2x <4, 系数化为1得,x <2. 在数轴上表示为:.(2){3x+2>x①2−4(x−4)≥2x②,解①得:x>﹣1,解②得:x≤3,故不等式的解集为:﹣1<x≤3,其的整数解为0,1,2,3.20.(8分)南开中学为了培养学生的地理实践能力,举办了“自制地球仪”比赛.我校地理老师在全校学生的参赛作品中随机抽取了部分作品进行质量评估,成绩如下:61,62,62,63,64,64,64,65,65,65,65,65,66,67,69,71,71,72,72,72,73,73,73,74,74,75,75,75,75,75,75,76,78,78,78,82,82,83,85,85,85,87,87,88,88,291,92,95,97,98,并将成绩统计后绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题:分数x频数(人)频率60≤x<70150.370≤x<80a80≤x<90b90≤x≤1005合计c1(1)频数分布表中,a=0.4,b=10,c=50;(2)补全频数分布直方图;(3)本次比赛学校共收到参赛作品900件,若80分以上(含80分)的作品将被展出,试估计全校将展出的作品数量.解:(1)分别统计各组的频数可得,70≤x<80的频数为20,80≤x<90的频数为10,因此a=20÷50=0.4,b=10,c=15+20+10+5=50,故答案为:0.4,10,50,(2)补全频数分布直方图如图所示:(3)900×10+550=270(人),答:全校将展出的作品数量为270件.21.(8分)完成下面的证明:如图,AB和CD相交于点O,AC∥BD,∠A=∠AOC.求证∠B=∠BOD.证明:∵AC∥BD(已知)∴∠A=∠B(两直线平行,内错角相等).∵∠A=∠AOC(已知)∴∠B=∠AOC(等量代换).∵∠AOC=∠∠BOD(对顶角相等).∴∠B=∠BOD(等量代换).证明:∵AC∥BD(已知)∴∠A=∠B(两直线平行,内错角相等).∵∠A=∠AOC(已知)∴∠B=∠AOC(等量代换).∵∠AOC=∠BOD(对顶角相等).∴∠B=∠BOD(等量代换).故答案为:两直线平行,内错角相等;等量代换;∠BOD,对顶角相等.22.(8分)如图为东明一中新校区分布图的一部分,方格纸中每个小方格都是边长为1个单位的正方形,若教学楼的坐标为A(1,2),图书馆的位置坐标为B(﹣2,﹣1),解答以下问题:(1)在图中找到坐标系中的原点,并建立直角坐标系;(2)若体育馆的坐标为C(1,﹣3),食堂坐标为D(2,0),请在图中标出体育馆和食堂的位置;(3)顺次连接教学楼、图书馆、体育馆、食堂得到四边形ABCD,求四边形ABCD的面积.解:(1)建立平面直角坐标系如图所示;(2)体育馆C (1,﹣3),食堂D (2,0)如图所示;(3)四边形ABCD 的面积=4×5−12×3×3−12×2×3−12×1×3−12×1×2, =20﹣4.5﹣3﹣1.5﹣1, =20﹣10, =10.23.(10分)某景点的门票价格如下表:购票人数(人) 1~50 51~99 100以上(含100)门票单价(元)484542(1)某校七年级1、2两个班共有102人去游览该景点,其中1班人数少于50人,2班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付4737元,两个班各有多少名学生?(2)该校八、九年级自愿报名浏览该景点,其中八年级的报名人数不超过50人,九年级的报名人数超过50人,但不超过80人.若两个年级分别购票,总计支付门票费4914元;若合在一起作为一个团体购票,总计支付门票费4452元,问八年级、九年级各报名多少人?解:(1)设七年级1有x 名学生,2班有y 名学生, 由题意得:{x +y =10248x +45y =4737,解得:{x =49y =53, 答:七年级1有49名学生,2班有53名学生;(2)设八年级报名x 人,九年级报名y 人,分两种情况:①若x +y <100,由题意得:{48x +45y =491445(x +y)=4452, 解得:{x =154y ≈−55,(不合题意舍去); ②若x +y ≥100,由题意得:,{48x +45y =491442(x +y)=4452, 解得:{x =48y =58,符合题意; 答:八年级报名48人,九年级报名58人.24.(10分)如图,A 、B 、C 和D 、E 、F 分别在同一条直线上,且∠1=∠2,∠C =∠D ,试完成下面证明∠A =∠F 的过程.证明:∵∠1=∠2(已知),∠2=∠3( 对顶角相等 ),∴ ∠1=∠3 (等量代换)∴BD ∥CE ( 同位角相等,两直线平行 )∴∠D +∠DEC =180°( 两直线平行,同旁内角互补 ),又∵∠C =∠D ( 已知 ),∴∠C +∠DEC =180°( 等量代换 ),∴ DF ∥AC ( 同旁内角互补,两直线平行 ),∴∠A =∠F ( 两直线平行,内错角相等 ).证明:∵∠1=∠2(已知),∠2=∠3(对顶角相等),∴∠1=∠3(等量代换),∴BD ∥CE (同位角相等,两直线平行),∴∠D +∠DEC =180°(两直线平行,同旁内角互补),又∵∠C=∠D(已知),∴∠C+∠DEC=180°(等量代换),∴DF∥AC(同旁内角互补,两直线平行),∴∠A=∠F(两直线平行,内错角相等).故答案为:对顶角相等;∠1=∠3;同位角相等,两直线平行;两直线平行,同旁内角互补;已知;等量代换;DF∥AC;同旁内角互补,两直线平行;两直线平行,内错角相等.。
北师大版七年级下册数学《期末考试试题》(带答案解析)
2020年北师大版数学七年级下册期末测试学校 _________ 班级 ____________一、选择题(每小题3分,共30分)1•下列世界博览会会徽图案中是轴对称图形的是(2•下列计算正确的是()551032A. a + a = aB. a • a = a4.下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()意翻开一张是汉字“信”的概率是 ()7•下列说法:①在同一平面内过一点有且只有一条直线和已知直线垂直;行于同一条直线的两条直线也互相平行;④同位角相等•其中正确的个数有(8.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是(1 = Z 2,那么下列结论正确的是()| ----- p3•如图所示,已知/A. AB //BC B. AB // CD C. / C=ZD D. / 3=Z4A. 5 1, 3B. 2, 4, 2C. 3, 3, 7D. 2, 3, 45如图①所示,有6张写有汉字的卡片,它们的背面都相同, 现将它们背面朝上洗匀后如图 2摆放,从中任1A.- 26.利用基本作图,作出唯一三角形的是(□ □ U□ □ □ 阳2B. 13C.A.已知三边B .C.已知两角及其夹边D. 已知两边及其夹角 已知两边及其中一边1D.-6对角B. 2个C. 3个D. 4个姓名 _________成绩 ________76C. a 十 a = 3、2八 6D. ( — a ) = —②垂线段最短;③在同一平面内平C. DBro二、填空题(每小题3分,共15分)11.0.000 000 087 用科学记数法可表示为 _____ . 12.如图,已知 AB// CD, / 1 = 120 °,则/ C =13.一棵树高h (m )与生长时间n (年)之间满足一定的关系,请你根据下表中的数写出h (m )与n (年)之间的关A. (a b)(a b) a 2b 2B. (a b)2 a 22ab b 2 2C. 2a(a b) 2a 2abD. (a b)22a 2abb 29•如图,等腰△ABC 中, AB=AC=8 , BC=5 , AB 的垂直平分线DE 交AB 于点 D ,交 AC 于点 E ,贝U ABECB. 14C. 15D. 1610.如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度 y 之的周长为()间的关系用图像描述大致是(系式:h= _____ .h(m)2.63.2 3.84.45.014.在一个不透明的箱子里装有红色、蓝色、黄色的球共 20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在 10%和15%,则箱子里蓝色球的个数很可能是15.如图,△ ABE^A ABC 分别沿着 AB, AC 边翻折 180 ° 形成的•若/ BAC = 145。
第二学期期末考试七年级数学试题及答案
枣庄市 ~第二学期期末考试七年级数学试题说明:1.考试时间为100分钟,满分120分.2.迭择题答案用铅笔涂在答题卡上,如不用答题卡,请将答案填在题前的口琴格内.3.填空题、解答题不得用铅笔或红色笔填写.4.考试时,允许使用科学计算器.题号一二三总分19 20 21 22 23 24得分一、选择题:每小题3分,共36分.题号 1 2 3 4 5 6 7 8 9 10 11 12答案A.a5+a5=a10B.a6·a4=a24C.a0÷a-1=aD.a4-a4=a02.下列计算,错误的是A.(2x-y) (x+y) =2x2-y2B.(a-b)(2a-b)=2a2+2ab+b2C. (2x-3y) (2x+3y) =4x2-9y2D.(-a-b)2= a2+2ab+b23.某种奖券的中奖率是1 %,小花买了100张奖券,下列说法正确的是A.小花一定会中奖 B.小花一定不中奖C.小花中奖的可能性较大 D.小花中奖的可能性很小4.有两根木棒,它们的长分别为20cm、30cm,若不改变木棒的长度,要钉成一个三角形,则应在下列木棒中选取A. 10cm的木棒B. 20cm的木棒C. 50cm的木棒D. 60cm的木棒5.一束光线垂直照射水平地面,在地面上放一个平面镜,欲使这束光线经过平面镜反射后成水平光线,则平面镜与地面所成的锐角的度数为A . 450 B. 600 C. 750 D. 8006.下列命题:(1)相等的角是对顶角;(2)同位角相等;(3)直角三角形的两个锐角互余;(4)若两条线段不相交,则这两条线段平行.其中,正确命题的个数为A . 1个 B. 2个 C.3个 D.4个7.如图,AB=AD,AC=AE,∠BAD=∠CAE,那么△ACD≌△AEB的依据是A. ASAB. AASC. SASD. SSS8.如图,△ABC是直角三角形,且DE=BC,以D、E为顶点,作出位置不同的三角形,使所作的三角形与△ABC全等,则这样的三角形一共可以作出A.2个B.4个C.5个D.6个9.如图,L甲、L乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的关系,则它们的平均速度的关系是A.甲比乙快 B.乙比甲快C.甲、乙同速 D.不一定10.某人账户存款a元,每月支出b元,收入c元(b < c),则账户余额与月份的之间的关系是下列图中的A.① B.②和③ C.③和④ D.③11.如图,△ABC中,AB = AC=4cm,BC=3cm, AC的垂直平分线交AB于D,连接CD,则△BCD的周长为A.4cmB.7cmC.10cmD.11cm12.在△ABC和△ADC中,有下列三个论断:(1)AB=AD, (2)∠BAC=∠DAC, (3) BC=DC.将两个论断作为条件,另一个论断作为结论构成三个命题:(1)若AB=AD,∠BAC=∠DAC,则BC=DC;(2)若AB=AD,BC=DC,则∠BAC=∠DAC;(3)若∠BAC=∠DAC,BC=DC,则AB=AD;其中,正确命题的个数为A.1个B.2个C.3个D.0个二、填空题:每小题4分,共24分,把答案填在题中横线上.13.1纳米=0.000 000 001米,则250纳米等于米(用科学记数法表示).14.小明将写在纸条上的一串数字放在镜子前,从镜中看是,你认为小明写在纸条上的一串数字是 .15.一个三角形两边的长分别是质数2和5,若第三边的长也是个质数,那么第三边的长是 .16.如图,在Rt△ABC中,∠ABC=900,∠A = 300,若将B C边向BA方向折过去,使点C落在BA边上的C′点,折痕为BE,则∠AEC = .17.如图,要得到△ABC≌△ADE,除公共角∠A外,在下列横线上,写出还需要具备的两个条件,并在括号内写出由这些条件得到两个三角形全等的理由.(1)∠B=∠D, AB = AD (ASA )(2) , ( )18.如图,长方形ABCD的四个顶点在互相平行的两条直线上,A D=10cm,当B、C在平行线上运动时:(1)如果设AB的长为x (cm ),长方形ABCD面积为y ( cm2),则可以表示为 ;(2)当AB长15cm变到30cm时,长方形的面积从 cm2变到 cm 2.三、解答题:本大题共6小题,满分60分.19.(本题满分8分)利用你所学的知识判断:[(2x-y) 2- (2x+y) (2x-y)+4xy]÷(-2y)的值与字母x、y的取值是否有关?20.(本题满分8分)如图,C、D、E在同一直线上,∠1=1200,∠A=600,直线AB与CD平行吗?请补全所空内容.解:直线AB与CD平行.因为C、D、E在同一直线上,所以∠1+∠2 = .因为∠l =1200,所以∠2 = .因为∠A =600,所以∠2=∠A .所以,理由是 .21.(本题满分 10 分)育人中学初一(1)班学生到野外活动,为测量一池塘两端A、B的距离,设计了如下两种方案:(a)如图①,先在平地上取一个可直接到达A、B的点C,再连结AC、BC.并分别延长AC至D,BC至E,使DC = AC, EC=BC,最后测出DE的长即为A、B的距离;(b)如图②,先过B点作AB的垂线BF,再在BF上取C、D两点,使CD=BC,接着过点D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为A、B的距离.阅读后回答下列间题:(1)方案(a)是否可行?说明理由;(2)方案(b)是否可行?说明理由.22.(本题满分10分)小明某天上午9时骑自行车离开家,15时回家,他有意描绘离家的距离与时间的变化情况(如图所示).(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2) 10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4) 11时到12时他行驶了多少千米?(5)他由离家最远的地方返回的平均速度是多少?23.(本题满分12分)如图,在△ABC中,AD⊥BC, BE⊥AC,垂足分别为D、E,AD与BE相交于点F,若BF=AC,求∠ABC的大小.24.(本题满分12分)现有如图①的瓷砖若干块.(l)用两块这样的瓷砖拼成一个长方形,使拼成的图案呈轴对称图形,请在图②的两个长方形中各画出一种拼法(要求两种拼法不同,所画图案中的阴影部分用斜线表示);(2)用四块如图①的瓷砖拼成一个正方形,使拼成的图案成轴对称图形,请你在图③的三个正方形中各画出一种拼法,要求同(1) ,(3)在第(1)题中,请你计算用如图①的瓷砖拼成的所有长方形中,是轴对称图形的成功率是多少?枣庄市~第二学期期末考试七年级数学参考答案及评分标准。
2024北京昌平区初一(下)期末数学试题及答案
2024北京昌平初一(下)期末数 学2024.06本试卷共9页,共100分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后将答题卡交回.一、选择题(本题共8道小题,每小题2分,共16分)1. 2024北京月季文化节正式开启,11个展区共展示超3000个品种的月季.传统月季花粉为单粒花粉,呈长球形或超长球形,大小为~~⨯m μm 17.0225.33μ37.5951.95.其中=m 0.003759cm μ37.59,把0.003759用科学记数法表示为( )A. ⨯−0.3759102B. ⨯0.3759102C. ⨯−3.759103D. ⨯3.759103 2. 不等式x 3x 21的解集在数轴上可以表示为( ) A. B. C. D. 3. 在今年的“五一”假期中,昌平消费市场“花样翻新”,多景区客流“爆棚”,客流量与文旅消费均呈现上升趋势.为了解中学生的假期出游情况,从全校2000名学生记录的假期出游时间(单位:小时)中随机抽取了200名学生的假期出游时间(单位:小时)进行统计,以下说法正确的是( )A. 2000名学生是总体B. 样本容量是2000C. 200名学生的假期出游时间是样本D. 此调查为全面调查 4. 下列计算正确的是( )A. ⋅=a a a 236B. −=a a ()326C. +=a a a 224D. ÷=a a a 824 5. 如果>a b ,那么下列不等关系一定成立的是( )A. a b +<+11B. −>−a b 22C. >ac bcD. >a b 556. 如图,一条街道有两个拐角∠ABC 和∠BCD ,已知∥AB CD ,若∠=︒ABC 150,则∠BCD 的度数是( )A. ︒30B. ︒120C. ︒130D. ︒1507. 若⎩=⎨⎧=y x 12是关于x ,y 的二元一次方程−=ax y 3的一个解,则a 的值为( ) A. −1 B. 1 C. −2 D. 28. 已知a ,b 为有理数,则下列说法正确的是( )①+≥a b ()02;②+≥a b ab 222;③+=−+a b a b ab ()()222A. ①B. ①②C. ①③D. ①②③二、填空题(本题共8道小题,每小题2分,共16分)9. 因式分解:−+=x x 3632______.10. 如果一个角等于︒70,那么这个角的补角是_________°.11. 计算:(6x 2+4x )÷2x =_____.12. 已知命题“同位角相等”,这个命题是_________命题.(填“真”或“假”)13. 计算:(2x +1)(x ﹣2)=_____.14. 若=x 24,=y 216,则+=x y ___________.15. 4月23日为世界读书日,小萱从图书馆借来一本共266页的书,计划在10天内读完(包括第10天).如果前4天每天只读15页,若从第5天起平均每天读x 页才能按计划完成,则根据题意可列不等式为____.16. 如图1的长为a ,宽为b >a b )(的小长方形纸片,按图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足的数量关系为_________.三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17. 计算:−−+−−−π32(5)31201. 18. 解不等式:+<−x x 2113.19. 解方程组:⎩−=⎨⎧+=x y x y 34127 20. 解不等式组:⎩≤+⎨⎧+≤x x x 25623并把它的解集在数轴上表示出来.21. 已知−=x x 12,求代数式−+−+x x x (1)(3)(3)2的值.22. 补全解答过程:如图,∠1+∠2=180°,∠3=∠A .求证:∠B =∠C .证明:∵∠1+∠2=180°,∴(同旁内角互补,两直线平行).∴∠3=∠D().又∵∠3=∠A,∴.∴AB∥CD().∴∠B=∠C().23. 某校开展数学节活动,活动成果是学生形成对于数学探索的海报,活动以“集市”形式展览个人的作品,并面向同学和老师讲解自己的作品,“小创客”创意市集作品的评价涉及四个维度:创意的真实性、创意的新颖性、创意的科学性和表达的严谨性,并以四个维度总分记为最后得分,满分100分,小明经过抽样调查部分得分数据,具体得分分布在以下四组内:A B C D7580808585909095,并把得分情况绘制成如下统计图:C组得分:87,,,,86,88,86,86,89“小创客”创意市集作品得分条形统计图“小创客”创意市集作品得分扇形统计图(1)本次调查了______名学生,B组扇形统计图的圆心角度数为_______°(2)C组得分的平均数是_______,众数是_________,中位数是__________.(3)若某校有500人参加此次“小创客”创意市集作品展示,请你估计得分超过86分的有多少人?24. 端午节前夕,小明和小华相约一起去超市购买粽子.小明购买A品牌和B品牌的粽子各1袋,共花费55元;小华购买A品牌粽子3袋和B品牌粽子2袋,共花费135元.(1)求A、B两种品牌粽子每袋各是多少元;(2)端午假期,小明一家回老家探亲,小明妈妈想要再买一些粽子送给亲戚,于是拿出500元交给小明,让他去超市购买A、B两种品牌粽子共18袋,且想要尽量多购入B品牌粽子,请问小明最多购买B品牌粽子多少袋?25. 观察个位上的数字是5的两位数的平方(任意一个个位数字为5的两位数n 5可用代数式+n 105来表示,其中≤≤n 19,n 为正整数),会发现一些有趣的规律.请你仔细观察,探索其规律.第1个等式:=⨯⨯+1512100252)(; 第2个等式:=⨯⨯+2523100252)(; 第3个等式:=⨯⨯+3534100252)(; …(1)写出第4个等式:_______;(2)用含n 的等式表示你的猜想并证明;(3)计算:−⨯⨯+11589100252)( =_______. 26. 小明为了方便探究关于x ,y 的二元一次方程+=ax by 9(≠≠a b 0,0)解的规律,把x 和y 的部分值分别填入如下表,(x 的值从左到右依次增大).(1)p 的值为__________(填正确的序号).①17;②3;③−1(2)下列方程中,与+=ax by 9组成方程组,在−<<x 78范围内有解的是__________(填正确的序号).①+=−x y 25;②+=−x y 24;③−=x y 31,(3)已知关于x ,y 的二元一次方程+=cx dy 1(≠≠c d 0,0)的部分解如下表所示:则方程组⎩+=⎨⎧cx dy 1的解为__________(填正确的序号) ①⎩=⎨⎧=−y x 69;②⎩=⎨⎧=−y x 118;③⎩=⎨⎧=−y x 41;④⎩=−⎨⎧=y x 47 27. 已知∠=︒<<︒ααAOB 090)(,点C 是射线OB 上一点,过点C 作OA 的垂线交射线OA 于点P ,过点P 作∥MN OB ,点D 是射线OA 上一点,过点D 作CD 的垂线分别交直线MN ,OB 于点E ,F .(1)如图1,CD 平分∠OCP 时,①根据题意补全图形;②求∠ODF 的度数(用含α式子表示);(2)如图2,当CD 平分∠PCB 时,直接写出∠ODF 的度数(用含α式子表示).28. 已知,x x 12是不等式组解集中的解,若存在一个a ,使+=x x a 212,我们把这样的,x x 12称为该不等式组的“关联解”,a 叫做“关联系数”.(1)当=a 0时,下列不等式组存在“关联解”的是_________.A .⎩>+⎨⎧+>x x x 2412B .⎩⎪>−⎨⎪⎧−+<x x x 21112 C .⎩<−⎨⎧<+x x x x 22321 (2)不等式组⎩+≤++⎪⎨⎪−≥−⎧x a x a x x 22522231的解集上存在“关联解”,若=−x 21,“关联系数a ”的取值范围为_________.(3)不等式组⎩≤+⎨⎧≥−−x x a x a 3221的解集存在关联解,x a 81,若++=a b c 12,且++a b c 1621010是整数,直接写出“关联系数a ”的值_________.参考答案一、选择题(本题共8道小题,每小题2分,共16分)1. 【答案】C【分析】本题考查科学记数法,绝对值小于1的负数也可以利用科学记数法表示,一般形式为⨯−a n 10,其中≤<a 110,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,根据科学记数法的方法进行计算即可.【详解】解:=⨯−0.003759 3.759103,故选:C .2. 【答案】D【分析】本题考查了解一元一次不等式及不等式解集的表示,解题的关键是掌握解一元一次不等式的方法及不等式解集的表示方法.依次移项、合并同类项可得不等式的解集,从而得出答案.【详解】解:移项,得:−<−x x 321,合并同类项,得:<−x 1,把不等式的解集表示在数轴上:故选:D .3. 【答案】C【分析】本题考查了全面调查与抽样调查,总体、个体、样本、样本容量,熟练掌握这些数学概念是解题的关键.根据全面调查与抽样调查,总体、个体、样本、样本容量的意义,逐一判断即可解答.【详解】解:A .2000名学生的假期出游时间是总体,故选项A 不符合题意;B .样本容量是200,故选项B 不符合题意;C .200名学生的假期出游时间是样本,故选项C 符合题意;D .此调查为抽样调查,故选项D 不符合题意;故选:C .4. 【答案】B【分析】本题主要考查了合并同类项,同底数幂相除,幂的乘方,同底数幂相乘,根据合并同类项,同底数幂相除,幂的乘方,同底数幂相乘,逐项判断即可求解.【详解】解:A :⋅=a a a 235,故选项A 错误;B :−=a a ()326,故选项B 正确;C :+=a a a 2222,故选项C 错误;D :÷=a a a 826,故选项D 错误;故选:B .5. 【答案】D【分析】本题考查不等式的基本性质,解答关键是熟知不等式的基本性质①不等式基本性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;②不等式基本性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变; ③不等式基本性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变.利用不等式的基本性质逐项判断即可解答.【详解】解:∵>a b ,∴+>+a b 11,故选项A 不符合题意;∵>a b ,∴−<−a b 22,故选项B 不符合题意;∵>a b ,当>c 0,>ac bc ,当<c 0,<ac bc ,故选项C 不符合题意;∵>a b , ∴>a b 55, 故选项D 符合题意;故选:D .6. 【答案】D 【分析】本题考查了平行线的性质:两直线平行,内错角相等,由AB CD ,根据两直线平行,内错角相等,可得∠BCD 的度数,解题的关键是将实际问题转化为数学问题求解. 【详解】∵,∠=︒AB CD ABC 150∴∠=∠=︒BCD ABC 150(两直线平行,内错角相等).故选:D .7. 【答案】D【分析】将这组值代入二元一次方程即可得出答案.【详解】解:将⎩=⎨⎧=y x 12代入−=ax y 3得:a −=213, 解得:=a 2,故D 正确.故选:D .【点睛】本题考查二元一次方程的解,正确理解方程的解是解题的关键.8. 【答案】B【分析】本题考查整式的乘法-公式法,关键是熟练掌握完全平方公式,根据完全平分公式逐一进行检验即可.【详解】解:∵+≥a b ()02,故①正确;∵−=−+≥a b a ab b 20222)(,∴+≥a b ab 222,故②正确;∵+=++=−++=−+a b a ab b a ab b ab a b ab ()2244222222)(,故③不正确;故选:B 二、填空题(本题共8道小题,每小题2分,共16分)9. 【答案】−x 312)(##−x 312)(【分析】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键. 原式提取公因式3,再利用完全平方公式分解即可.【详解】解:−+=x x 3632−+=−x x x 3213122)()(, 故答案为:−x 312)(.10. 【答案】110【分析】本题主要考查了补角,解题的关键在于熟知如果两个角的度数之和为︒180,那么这两个角互补,根据补角的定义求解即可.【详解】解:∵一个角等于︒70,∴这个角的补角是︒−︒=︒18070110,故答案为:110.11.【答案】3x +2【分析】直接利用整式的除法运算法则计算得出答案.【详解】解:原式=6x 2÷2x +4x ÷2x=3x +2.故答案为:3x +2.【点睛】本题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.12. 【答案】假【分析】本题主要考查了平行线的性质及真假命题的判断.正确的命题叫真命题,错误的命题叫假命题.要说明一个命题是真命题,必须一步一步有根有据的证明;要说明一个命题是假命题,只需要举一个反例即可.掌握判断真假命题的方法是解题的关键,根据平行线的性质判断即可.【详解】解:两直线平行时,同位角相等;两直线不平行时,同位角不相等.因此命题“同位角相等”不一定成立,是假命题.故答案为:假.13. 【答案】2x 2﹣3x ﹣2.【分析】根据多项式乘多项式的运算法则进行解答即可得出答案.【详解】(2x +1)(x ﹣2)=2x 2﹣4x +x ﹣2=2x 2﹣3x ﹣2;故答案为:2x 2﹣3x ﹣2.【点睛】此题主要考查多项式乘多项式运算,熟练掌握,即可解题.14. 【答案】6【分析】本题主要考查了有理数的乘方运算,将原式变形求出x 和y 的值即可得到答案.【详解】解:∵=x 24,∴=x 222,∴=x 2,∵=y 224,∴=y 4,∴+=x y 6,故答案为:615. 【答案】+≥x 606266【分析】本题考查列不等式,先计算出前4天读的页数,再列出后6天读的页数的表达式,根据读的页数的总和必须大于或等于书的总页数建立不等式即可.【详解】解:根据题意得,前4天读的页数为⨯=41560页,后6天读的页数为:x 6,根据题意得读的页数的总和需要大于或等于266页,故+≥x 606266,故答案为:+≥x 606266.16. 【答案】=a b 3【分析】本题主要考查了整式的混合运算的应用,表示出左上角与右下角部分的面积,求出之差,根据差与BC 无关即可求出a 与b 的关系式,弄清题意是解本题的关键.【详解】如图,左上角阴影部分的长为AE ,宽为=AF b 3,右下角阴影部分的长为PC ,宽为a ,∵=AD BC ,即+=+AE ED AE a ,=+=+BC BP PC b PC 3,∴+=+AE a b PC 3,即−=−AE PC b a 3,∴阴影部分面积之差=⋅−⋅S AE AF PC PH=−b AE a PC ·3?=+−−b PC b a a PC 33?)(=−+−b a PC b ab 3932)(,∵S 始终保持不变,∴−=b a 30,即=a b 3,故答案为=a b 3.三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17. 【答案】3【分析】此题主要考查实数的混合运算,根据零次幂、负整数指数幂定义及实数的性质进行化简,即可求解. 【详解】解:−−+−−−π32(5)31201 =−+−334111 =3.18. 【答案】<x 4【分析】本题主要考查了解一元一次不等式,按照移项,合并同类项,系数化为1的步骤解不等式即可.【详解】解:+<−x x 2113移项得:+<−x x 2131,合并同类项得:<x 312,系数化为1得:<x 4.19. 【答案】⎩=⎨⎧=y x 23 【分析】本题考查了解二元一次方程组,利用加减消元法进行计算即可.【详解】解:②①⎩−=⎨⎧+=x y x y 34127 解:将②①⨯+2得=x 515,解得=x 3,将=x 3代入①得+=y 327,解得=y 2,∴方程组的解为:⎩=⎨⎧=y x 23. 20. 【答案】−≤≤x 21,见解析【分析】本题主要考查了解一元一次不等式组,在数轴上表示不等式组的解集,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集,进而在数轴上表示出不等式组的解集即可.【详解】解:②①⎩≤+⎨⎧+≤x x x 25623 解不等式①得:≤x 1,解不等式②得:≥−x 2,∴不等式组的解集为−≤≤x 21,数轴表示如下:21. 【答案】−6【分析】本题考查了整式的混合运算-化简求值,首先通过完全平方公式和平方差公式进行整式的乘法运算,再把−=x x 12代入,即可求解.【详解】解:∵−=x x 12,∴−+−+x x x (1)(3)(3)2=−++−x x x 21922=−−x x 2282=−−x x 282)(=⨯−218=−6.22. 【答案】AD ∥EF ;两直线平行,同位角相等;∠A =∠D ;内错角相等,两直线平行;两直线平行,内错角相等.【分析】依据平行线的判定,即可得到AD ∥EF ,得出∠3=∠D ,进而得出∠A =∠D ,再根据平行线的判定,即可得到AB ∥CD ,最后根据平行线的性质得出结论.【详解】∵∠1+∠2=180°,∴AD ∥EF (同旁内角互补,两直线平行).∴∠3=∠D (两直线平行,同位角相等).又∵∠3=∠A ,∴∠A =∠D .∴AB ∥CD (内错角相等,两直线平行).∴∠B =∠C (两直线平行,内错角相等).故答案为:AD ∥EF ;两直线平行,同位角相等;∠A =∠D ;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】此题主要考查平行线的判定与性质,熟练掌握,即可解题.23. 【答案】(1)30,108(2)87分,86分,86.5分(3)估计得分超过86分的有100人【分析】此题考查的是条形统计图和扇形统计图、平均数、众数、中位数,用样本估计总体;(1)根据A 组的人数除以占比求出学生数,根据B 组的人数的占比乘以︒360即可求解;(2)根据平均数众数中位数定义计算即可求解;(3)用得分超过86分的学生人数的占比乘以500,即可求解.【小问1详解】 解:1240%30人,∴本次调查了30名学生,360140%10%20%108,∴B 组扇形统计图的圆心角度数为︒108;【小问2详解】因为C 组得分按从小到大排列为:86,86, 86,87,88, 89,∴C 组得分的平均数是6878688868689871分, 众数是86分, 中位数是=+286.58687分; 【小问3详解】3050010033人, 则估计得分超过86分的有100人.24. 【答案】(1)A 品牌粽子每袋是25元,B 品牌粽子每袋是30元(2)小明最多购买B 品牌粽子10袋【分析】此题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是理解题意,正确列出方程组和不等式.(1)设A 品牌粽子每袋是x 元,B 品牌粽子每袋是y 元,根据题意建立方程组,解方程组即可得到答案; (2)设购买B 品牌粽子m 袋,则购买A 品牌的粽子为−m 18袋,根据总费用小于等于500建立不等式,解不等式即可得到答案;【小问1详解】解:设A 品牌粽子每袋是x 元,B 品牌粽子每袋是y 元,根据题意得⎩+=⎨⎧+=x y x y 3213555,解方程组得⎩=⎨⎧=y x 3025, 答:A 品牌粽子每袋是25元,B 品牌粽子每袋是30元;【小问2详解】解:设购买B 品牌粽子m 袋,则购买A 品牌的粽子为−m 18袋,总费用为n 元,根据题意得=−+n m m 251830)(,整理得=+n m 5450,∵+≤m 5450500,∴≤m 10,∴小明最多购买B 品牌粽子10袋.25. 【答案】(1)=⨯⨯+4545100252)( (2)+=++n n n 1051001252)()(,证明见解析(3)6000【分析】(1)通过观察可得第4个式子;(2)通过观察可得第n 个式子,根据完全平分公式进行换算即可证明答案;(3)利用规律逆向计算,再利用平方差公式进行计算即可.【小问1详解】解:第4个等式为:=⨯⨯+4545100252)(, 故答案为:=⨯⨯+4545100252)(; 【小问2详解】解:猜想用含n 的等式表示为:+=++n n n 1051001252)()(,证明:+n 1052)( =++n n 100100252=++n n 100252)(=++n n 100125)(,故用含n 的等式表示为:+=++n n n 1051001252)()(;【小问3详解】解:−⨯⨯+11589100252)( =−1158522=+−1158511585)()(=⨯20030=6000,故答案为:6000.【点睛】本题考查数字的变化规律,通过观察所给的式子,找到式子规律是解题的关键.26. 【答案】(1)② (2)③(3)③【分析】本题考查二元一次方程的解和解二元一次方程组,解题的关键是掌握加减消元法和代入消元法. (1)先根据表格中的值,建立关于a 、b 的二元一次方程组,解方程组得到a 、b 的值,即可求出二元一次方程,再将=x 0代入方程即可求得答案;(2)依次将三个选项与原方程组件方程组,求出方程组的解进行判断即可;(3)根据表格的数据,建立关于c 、d 的二元一次方程组,解方程组得到c 、d 的值,即可得到原方程组,再解方程组即可得到答案.【小问1详解】解:当=−x 4,=y 7时,−+=a b 479,当=x 2,=y 1时,+=a b 29,∴⎩+=⎨⎧−+=a b a b 29479 解方程组得⎩=⎨⎧=b a 33, ∴二元一次方程为:+=x y 339,即+=x y 3,当=x 0时,=y 3,故=p 3,故答案为:②;【小问2详解】解:∵+=ax by 9方程为:+=x y 3,∴①当方程为+=−x y 25时,方程组为:⎩+=−⎨⎧+=x y x y 253, 解方程组得:⎩=⎨⎧=−y x 118, ∵=−x 8不在−<<x 78范围内,故①不符合题意;③当方程为−=x y 31时,方程组为:⎩−=⎨⎧+=x y x y 313,解方程组得:⎩=⎨⎧=y x 21, ∵=x 1在−<<x 78范围内,故③符合题意;故答案为:③;【小问3详解】解:二元一次方程+=cx dy 1中,当,=−=−x y 72时,方程为−−=c d 721;当,==x y 813,方程为+=c d 8131;∴⎩+=⎨⎧−−=c d c d 8131721, 解方程组得⎩⎪=⎪⎨⎪⎪=−⎧d c 5151, 则方程+=cx dy 1为−+=x y 55111,即−+=x y 5, ∴方程组⎩+=⎨⎧+=cx dy ax by 19为:⎩−+=⎨⎧+=x y x y 53, 解方程组得⎩=⎨⎧=−y x 41, 故答案为:③.27. 【答案】(1)①见详解;②︒−α290 (2)︒−α2135【分析】本题考查三角形角平分线的性质,三角形的外角等知识点,解题的关键是三角形外角的计算. (1)①根据题意作图;②根据题意可知∠=∠PCD OCD ,进而得到∠=∠=∠ODF EDP DCP ,从而求解;(2)根据题意可得∠=︒+αPCF 90,∠=︒−=︒−︒+ααPDC 22904590,即可得到∠ODF 的度数. 【小问1详解】①根据题意作图如下: ;②∠=αPOC ,∴∠=︒−αPCO 90,∵CD 平分∠OCP ,∴∠=∠=︒−αPCD OCD 290, ⊥EF CD ,⊥CP OP ,∴∠+∠=∠+∠=︒EDP PDC PCD PDC 90,∴∠=∠=∠ODF EDP DCP ,∴∠=∠=︒−αODF PCD 290; 【小问2详解】根据题意画图可得:∠=αAOB ,⊥CP OP ,∴∠=︒+αPCF 90,∵CD 平分∠PCB ,∴∠=∠=︒+αPCD FCD 290, ∴∠=︒−=︒−︒+ααPDC 22904590, ⎝⎭ ⎪∴∠=︒+︒−=︒−⎛⎫ααODF 229045135. 28. 【答案】(1)B (2)a 2.53 (3)3,5,7【分析】本题考查了解一元一次不等式组,理解不等式组的“关联解”定义以及熟练掌握一元一次不等式组的解法是解此题的关键.(1)先求出每个不等式组的解集, 再根据不等式组的“关联解”定义判断即可;(2)先求出不等式组的解集是x a 35,求出x a 222,根据题意得出不等式组并求出即可. (3)先求出不等式组的解集是a x a 12,根据“关联解”定义得出⎩−−≤−≤⎨⎧−−≤−≤a a a a a a 1382182解出a 的范围,结合++a b c 1621010是整数即可求出结论.解:A .②①⎩>+⎨⎧+>x x x 2412, 解不等式①得:>x 1, 解不等式②得:x >4, 当=a 0时,不存在x x a 2012,B .②①⎩⎪>−⎨⎪⎧−+<x x x 21112, 解不等式①得:>−x 1, 解不等式②得:<x 2, 当=a 0,,=-x x 221112时,存在x x a 2012,C .②①⎩<−⎨⎧<+x x x x 22321 解不等式①得:<x 1, 解不等式②得:−x <2, 当存在x x a 2012, 当=a 0时,不存在x x a 2012,故选:B ;【小问2详解】 ②①⎩+≤++⎪⎨⎪−≥−⎧x a x a x x 22522231, 解不等式①得:≥−x 3, 解不等式②得:x a ≤+5, ∴不等式组的解集是x a 35, 若=−x 21,且+=x x a 212, x a 222,x a 352,a a 3225 a a 523, a 2.53,故答案为:−≤≤a 2.53;②①⎩≤+⎨⎧≥−−x x a x a 3221, 解不等式①得:≥−−x a 1, 解不等式②得:≤x a 2, ∴不等式组的解集是a x a 12, 若x a 81,且+=x x a 212,x a 382, ⎩−−≤≤⎨∴⎧−−≤≤a x a a x a 121221, ⎩−−≤−≤⎨∴⎧−−≤−≤a a aa a a 1382182, 解得:a 388,++=a b c 12,b c a 12,∴==++−+−a b c a a a 16162210101521012)(, a b c 1621010是整数,a 388,a 3,5,7. 故答案为:3,5,7.。
初一数学下册期末考试试题及答案
-初一数学下册期末考试试题满分:120分 时间:120分钟一、选一选,比比谁细心(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.—的绝对值的倒数是( ).(A ) (B )— (C )—3 (D ) 32.方程5—3x=8的解是( ).(A )x=1 (B)x=—1 (C )x= (D )x=-3.如果收入15元记作+15元,那么支出20元记作( )元。
(A)+5 (B)+20 (C )-5 (D )—204.有理数,,, ,—(-1),中,其中等于1的个数是( )。
(A)3个 (B )4个 (C )5个 (D)6个5.已知p 与q 互为相反数,且p ≠0,那么下列关系式正确的是( ).(A ) (B ) (C) (D ) p=q6.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m,用科学记数法表示这个数为( )。
(A )1。
68×104m (B )16。
8×103 m (C )0。
168×104m (D )1。
68×103m7.下列变形中, 不正确的是( ).(A) a +b -(-c -d )=a +b +c +d (B ) a +(b +c -d )=a +b +c -d(C ) a -b -(c -d )=a -b -c -d (D )a -(b -c +d )=a -b +c -d8.如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( ).(A) b -a 〉0(B) a -b 〉0(C) ab >0(D ) a +9.按括号内的要求,用四舍五入法,对1022.0099取近似值, 其中错误的是( )。
(A )1022。
01(精确到0.01) (B)1.0×103(保留2个有效数字)(C)1020(精确到十位) (D)1022。
010(精确到千分位)10.“一个数比它的相反数大—14",若设这数是x ,则可列出关于x 的方程为( )。
最新七年级下学期期末考试数学试题及答案
最新七年级下学期期末考试数学试题及答案一、选择题(每小题3分,共30 分)1.某数的立方根是它本身,这样的数有()A.1个B.2个C.3个D.4个2.将某图形上各点的横坐标都减去2,纵坐标不变,则该图形( )A.向右平移2个单位B.向左平移2个单位C.向上平移2个单位D.向下平移2个单位3.下列调查中,适合用全面调查的是( )A.企业招聘,对应聘人员进行面试B.电视台对正在播出的某电视节目收视率的调查C.质检部门对各厂家生产的电池使用寿命的调查 D.要了解我市居民的环保意识4.下列命题是假命题的是( )A.直线a、b、c 在同一平面内,若a⊥b,b⊥c,则a∥cB.直线外一点与已知直线上各点连接的所有线段中,垂线段最短C.点P(—5,3)与点Q(—5,—3)关于x轴对称D.以3和5为边的等腰三角形的周长为115.若m>n,则下列不等式中一定成立的是( )A.m+a<n+aB.ma<naC.a-m<a-nD.ma2>na26.关于 x 、y 的二元一次方程组53132x y ax y +=⎧⎪⎨-+=⎪⎩的解也是二元一次方程 x -y =-1 的解,则 a 的值是 ( )A .12B .3C .20D .5 7.如图,已知 A B// CD , ∠DFE = 135︒ ,则 ∠ABE 的度数为( )A. 30︒B. 45︒ C . 60︒ D. 90︒8.到一个已知点 P 的距离等于 3 cm 的直线可以画( ) A .1 条 B . 2 条 C . 3 条 D .无数条 9.一个学员在广场上驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯 的角度可能是( ) A .第一次向右拐 50︒ ,第二次向左拐130︒ B .第一次向右拐 50︒ ,第二次向右拐130︒ C .第一次向左拐 50︒ ,第二次向左拐130︒ D .第一次向左拐 30︒ ,第二次向右拐 30︒ 10.= 4 - a 成立,则 a 的取值范围是( )A . a ≤ 4B . a ≤ -4C . a ≥ 4D .一切实数二、填空题(每小题 3 分,共 18 分) 11.如图,直线 a 、b 被第三条直线 c 所截,如果 a ∥b ,∠1=5°, 那么∠2= 度. 12.在平面直角坐标系中,点 P(6-2x ,x -5)在第二象限,则 x 的取 值范围是 . 13.不等式-12x + 1 ≥ 0 的非负整数解是 . 14.如图,已知 A B ∥CD ∥EF ,BC ∥AD ,AC 平分∠BAD ,那么图中与∠AGE 相等的角(不包括∠AGE)有 个.三、解答题(本大题 9 个小题,共 72 分)15.(8 分)解不等式2151132x x-+-≤,并把解集在数轴上表示出来.16.(8 分)已知二元一次方程:(1)3x+2y=8;(2)2x—y=3;(3)x—2y=1.请你从这三个方程中选择你喜欢的两个方程,组成一个二元一次方程组,并求出它的解.17.(8 分)已知点A(-5,0)、B(3,0).(1)若点C在y轴上,且使得△ABC 的面积等于16,求点C的坐标;(2)若点C 在坐标平面内,且使得△ABC 的面积等于16,这样的点C 有多少个?你发现了什么规律?18.(10 分)直线A B∥CD,直线a分别交A B、CD 于点E、F,点M在线段E F 上,点P是直线C D 上的一个动点(点P不与点F重合).(1)如图1,当点P在射线F C 上移动时,∠FMP+∠FPM 与∠AEF 有什么数量关系?请说明理由;(2)如图2,当点P在射线F D 上移动时,∠FMP+∠FPM 与∠AEF 有什么数量关系?请说明理由.(图1) (图2)19.(8 分)如图,在△ABC 中,BD⊥AC 于点D,∠1=∠2,∠3=∠C.试说明:EF⊥AC.20.(9 分)小强在学校组织的社会调查活动中负责了解他所居住的小区600 户居民的家庭收入情况.他从中随机调查了40 户居民家庭人均收入情况(收入取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图.根据以上提供的信息,解答下列问题:(1)补全频数分布表;(2)补全频数分布直方图;(3)请你估计该居民小区家庭属于中等收入(人均不低于1000 元但不足1600 元)的大约有多少户?21.(9 分)某公司要将100 吨货物运往某地销售,经与春光运输公司协商,计划同时租用甲、乙两种型号的汽车共6辆,且一次性将货物全部运走,其中每辆甲型汽车最多能装该种货物16 吨,每辆乙型汽车最多能装该种货物18 吨.已知租用1 辆甲型汽车和2 辆乙型汽车共需费用2500 元;租用2 辆甲型汽车和1辆乙型汽车共需费用2450 元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若公司计划此次租车费用不超过5000 元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.22.(12 分)已知△ABC,O 是△ABC 所在平面内的一点,连接OB、OC,将∠ABO、∠ACO分别记为∠1、∠2.(1)如图(1),当点O在图中所示的位置时,∠1+∠2+∠A+∠BOC=;(2)如图(2),当点O 在△ABC 的内部时,∠1、∠2、∠A、∠BOC 四个角之间满足怎样的数量关系?请写出你的结论并说明理由;(3)当点O在△ABC 所在平面内运动时(点O不在三边所在的直线上),由于所处的位置不同,∠1、∠2、∠A、∠BOC 四个角之间满足的数量关系还存在着与(1)、(2) 中不同的结论,请在图(3)中画出一种不同的示意图,并直接写出相应的结论.图(1) 图(2) 图(3)参考答案1.C.2.B.3.A.4.C.5.C.6.A.7.B.8.D.9.C.10.B.11.130;12.x>5;13.0,1,2;14.3;15.x≥-1;16.解:x=2.25,y=0.625;17.(1)C(0,4);(2)有9个,都在同一条直线上;18.(1)∠AEF=∠MPF+∠FPM;(2)∠FMP+∠FPM+∠AEF=180°; 19.证明:∵∠C=∠3 ∴DG//BC ∵∠1=∠2 ∴BD//EF ∴BD ⊥AC ∴EF ⊥AC.20.(1)16;5;12.5%;5%;(2)画图略;(3)480人; 21.解:(1)设甲型汽车x 元,乙型汽车y 元;⎩⎨⎧=+=+2450225002y x y x ,解得⎩⎨⎧==6501200y x ; (2)设甲型汽车m 辆,⎩⎨⎧≤-+≥-+5000650)6(120010018)6(16m m m m ,解得2≤m ≤4,所以m=2,3,4,共3种方案. 22.(1)360°;(2)∠BOC=∠1+∠2+∠A ;(3)∠BOC=∠1+∠A-∠2;最新七年级(下)期末考试数学试题【含答案】一、选择题(本大题共6小题,每小题3分,共18分) 1、下列实数是无理数的是( )A 、-1B 、0C 、3.14D 、 5 2、如图,能判断AB ∥CD 的条件是( )A 、∠1=∠2B 、∠3=∠4C 、∠1+∠3=180°D 、∠3+∠4=180° 3、下列结论正确的是( )A 、-(-6)2 =-6B 、(- 3 )2=9C 、(-16)2 =±16D 、-(-1625 )2=16254、已知二元一次方程3x +y =0的一个解是⎩⎨⎧x =ay =b,其中a ≠0,那么( )A 、b a >0B 、b a =0C 、ba <0 D 、以上都不对5、下列说法错误的是( )A 、不等式x -3>2的解是x >5B 、不等式x <3的整数解有无数个C 、x =0是不等式2x <3的一个解D 、不等式x +3<3的整数解是0 6、如图,矩形BCDE 的各边分别平等于x 轴或y 轴,物体甲 和物体乙分别由点A (2,0)同时出发,沿矩形BCDE 的边 作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动, 物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体 运动后第26次相遇地点的坐标是( )A 、(2,0)B 、(-1,-1)C 、(-2,1)D 、(-1,1) 二、填空题(本大题共8小题,每小题3分,共24分) 7、1的平方根是 。
初一期末考试试卷数学
初一期末考试试卷数学一、选择题(每题2分,共20分)1. 下列哪个数是正整数?A. -3B. 0C. 1D. -12. 如果一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 都不是3. 以下哪个选项是2的倍数?A. 7B. 9C. 11D. 134. 一个数的平方根是4,这个数是:A. 16B. 8C. 4D. 25. 一个数的立方是-8,这个数是:A. -2B. 2C. -8D. 86. 以下哪个是偶数?A. 2B. 3C. 5D. 77. 一个数的倒数是1/3,这个数是:A. 3B. 1/3C. 3/1D. 18. 以下哪个是奇数?A. 2B. 4C. 6D. 39. 如果一个角是直角的一半,那么这个角是:A. 30°B. 45°C. 60°D. 90°10. 一个直角三角形的两个锐角的和是:A. 90°B. 180°C. 270°D. 360°二、填空题(每题1分,共10分)11. 一个数的相反数是-5,这个数是______。
12. 一个数的绝对值是3,这个数可以是______或______。
13. 一个数的平方是25,这个数可以是______或______。
14. 一个数的立方是-27,这个数是______。
15. 一个数的倒数是2,这个数是______。
16. 一个数的平方根是5,这个数是______。
17. 一个数的立方根是-3,这个数是______。
18. 一个数的平方是16,这个数可以是______或______。
19. 一个数的绝对值是0,这个数是______。
20. 一个数的相反数是它本身,这个数是______。
三、计算题(每题3分,共15分)21. 计算下列表达式的值:(3+2)×(5-3)22. 计算下列表达式的值:(-4)×(-3) - 623. 计算下列表达式的值:(-2)² + 4×(-3)24. 计算下列表达式的值:√16 - √925. 计算下列表达式的值:(-1)³ + 2²四、解答题(每题5分,共20分)26. 解释什么是有理数,并给出两个有理数的例子。
2021-2022学年七年级下学期期末考试数学试题及答案
2021-2022学年七年级下学期期末考试数学试卷一.选择题(共12小题,满分36分,每小题3分)1.(3分)下列方程中,是二元一次方程的有()A.6x﹣2z=5y+3B.1x +1y=5C.x2﹣3y=1D.x=2y解:A、只含有3个未知数,不符合二元一次方程的定义;B、该方程不是整式方程;C、未知数的项的最高次数是2,不符合二元一次方程的定义;D、符合二元一次方程的定义;故选:D.2.(3分)下列说法:①“从13张黑桃扑克牌中随机抽取一张,抽出的牌上点数小于5的概率是313”;②“从装有无差别的5个红球,3个绿球的不透明袋子中抽出4个球,一定抽出3个绿球”;③“射击运动员射击一次,命中靶心的概率是0.5”,其中不正确的个数是()A.0B.1C.2D.3解:从13张黑桃扑克牌中随机抽取一张,抽出的牌上点数小于5的有4张,因此抽出的牌上点数小于5的概率是413,故①不正确;从装有无差别的5个红球,3个绿球的不透明袋子中抽出4个球,可能都是红球,因此②不正确;射击运动员射击一次,命中靶心的概率不一定是0.5,因此③不正确;综上所述,不正确的个数是3个,故选:D.3.(3分)下列事件是随机事件的是()A.只买一张彩票,就中了大奖B.威海市某天的最低气温为﹣150℃C.口袋中装的全是黑球,从中摸出一个球是黑球D.抛掷8枚硬币,结果是3个正面朝上与6个反面朝上解:A、只买一张彩票,就中了大奖,是随机事件;B、威海市某天的最低气温为﹣150℃,是不可能事件;C 、口袋中装的全是黑球,从中摸出一个球是黑球,是必然事件;D 、抛掷8枚硬币,结果是3个正面朝上与6个反面朝上,是不可能事件;故选:A .4.(3分)已知方程组{x −12y =2x −2y =n中的x ,y 互为相反数,则n 的值为( ) A .2 B .﹣2 C .0 D .4 解:由题意得:x +y =0,即y =﹣x ,代入x −12y =2得:x +12x =2,解得:x =43,即y =−43,代入得:n =x ﹣2y =43+83=4,故选:D .5.(3分)如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6+∠4=180°;其中能判断直线l 1∥l 2的有( )A .②③④B .②③⑤C .②④⑤D .②④解:①由∠1=∠2不能得到l 1∥l 2,故本条件不合题意;②∵∠4=∠5,∴l 1∥l 2,故本条件符合题意;③由∠2+∠5=180°不能得到l 1∥l 2,故本条件不合题意;④∵∠1=∠3,∴l 1∥l 2,故本条件符合题意.⑤由∠6+∠4=180°不能得到l 1∥l 2,故本条件不合题意.故选:D .6.(3分)在一个不透明的袋子中装有质地相同的若干个黄球和8个白球,若从中摸出黄球的概率为15,则袋中共有球( ) A .15个 B .10个 C .12个D .8个 解:设袋子中装有黄球x 个,根据题意得:x x+8=15, 解得:x =2,经检验x =2是方程的解,则袋中共有球2+8=10(个);故选:B .7.(3分)已知x >y ,则下列不等式不成立的是( )A .x ﹣2>y ﹣2B .2y >2xC .﹣2x <﹣2yD .x +2>y +2解:A 、不等式的两边都减2,不等号的方向不变,故A 正确;B 、不等式的两边都乘以2,不等号的方向不变,故B 错误;C 、不等式的两边都乘以负数,不等号的方向改变,故D 正确;D 、不等式的两条边都加2,不等号的方向不变,故C 正确;故选:B .8.(3分)下列命题正确的是( )A .若分式x 2−4x−2的值为0,则x 的值为±2B .一个正数的算术平方根一定比这个数小C .若b >a >0,则a b >a+1b+1D .若c ≥2,则一元二次方程x 2+2x +3=c 有实数根解:A 、若分式x 2−4x−2的值为0,则x 值为﹣2,故错误;B 、一个正数的算术平方根不一定比这个数小,故错误;C 、若b >a >0,则a b <a+1b+1,故错误;D 、若c ≥2,则一元二次方程x 2+2x +3=c 有实数根,正确,故选:D .9.(3分)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托,如果一托为5尺,那么索长( )尺.A .25B .20C .15D .10解:设索长x 尺,竿子长y 尺,依题意,得:{x −y =5y −12x =5,解得:{x =20y =15. 故选:B .10.(3分)如图,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列结论中正确的个数是( )①AD 是∠BAC 的平分线②∠ADC =60°;③AD =BD ;④点D 在AB 的垂直平分线上⑤S △ABD =S △ACDA .2个B .3个C .4个D .5个解:利用基本作图得AD 平分∠BAC ,所以①正确;∵∠C =90°,∠B =30°,∴∠BAC =60°,而AD 平分∠BAC ,∴∠CAD =∠DAB =30°,∴∠ADC =90°﹣∠CAD =60°,所以②正确;∵∠DAB =∠B =30°,∴DA =DB ,所以③正确;∴点D 在AB 的垂直平分线上,所以④正确;∵AD =2CD ,∴BD =2CD ,∴S △ABD =2S △ACD ,所以⑤错误.故选:C .11.(3分)不等式组{2−x ≥03x +2>−1的解集是( )A .﹣1<x ≤2B .﹣2≤x <1C .x <﹣1或x ≥2D .2≤x <﹣1解:{2−x ≥0①3x +2>−1②, 由①得,x ≤2,由②得,x >﹣1,故此不等式组的解集为:﹣1<x ≤2.故选:A .12.(3分)已知弹簧的长度y (cm )与所挂物体的质量x (kg )之间的函数关系如图所示,则弹簧不挂物体时的长度为( )A .12cmB .11cmC .10cmD .9cm解:设弹簧的长度y (cm )与所挂物体的质量x (kg )之间的函数关系式为y =kx +b , ∵该函数经过点(6,15),(20,22),∴{6k +b =1520k +b =22, 解得{k =0.5b =12, 即弹簧的长度y (cm )与所挂物体的质量x (kg )之间的函数关系式为y =0.5x +12, 当x =0时,y =12,即弹簧不挂物体时的长度为12cm ,故选:A .二.填空题(共6小题,满分18分,每小题3分)13.(3分)在平面直角坐标系中,点P (6﹣2m ,4﹣m )在第三象限,则m 的取值范围是m >4 .解:根据题意,得:{6−2m <0①4−m <0②, 解不等式①,得:m >3,解不等式②,得:m >4,则不等式组的解集为m >4,故答案为:m >4.14.(3分)如图,在矩形纸片上作随机扎针试验,针头扎在阴影区域内的概率为 12 .解:观察发现:图中阴影部分面积=12S 矩形,∴针头扎在阴影区域内的概率为12; 故答案为:12. 15.(3分)欢欢观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB ∥CD ,∠BAE =92°,∠DCE =115°,则∠E 的度数是 23 °.解:如图,延长DC 交AE 于F ,∵AB ∥CD ,∠BAE =92°,∴∠CFE =92°,又∵∠DCE =115°,∴∠E =∠DCE ﹣∠CFE =115°﹣92°=23°.故答案为:23.16.(3分)某种型号汽车每行驶100km 耗油10L ,其油箱容量为40L .为了有效延长汽车使用寿命,厂家建议每次加油时油箱内剩余油量不低于油箱容量的18,按此建议,一辆加满油的该型号汽车最多行驶的路程是 350 km .解:设行驶xkm ,∵油箱内剩余油量不低于油箱容量的18, ∴40−10100x ≥40×18. ∴x ≤350故该辆汽车最多行驶的路程是350km ,故答案为:350.17.(3分)如图,已知∠B =30°,则∠A +∠D +∠C +∠G = 210 °.解:∵∠B =30°,∴∠BEF +∠BFE =180°﹣30°=150°,∴∠DEF +∠GFE =360°﹣150°=210°.∵∠DEF =∠A +∠D ,∠GFE =∠C +∠G ,∴∠A +∠D +∠C +∠G =∠DEF +∠GFE =210°,故答案为:210.18.(3分)如图,在Rt △ABC 中,AB =3,AC =4,∠BAC =90°,BC 的中垂线DE 与∠BAC 的角平分线AF 交于点E ,则四边形ABEC 的面积为 494 .解:如图,过点E 作EH ⊥AB ,EG ⊥AC ,∵∠BAC =90°,EH ⊥AB ,EG ⊥AC ,∴四边形ABEG 是矩形,∴AH =EG ,∵AE 平分∠BAC ,EH ⊥AB ,EG ⊥AC ,∴EH =EG ,∴AG =AH =HE =EG ,∵DE 垂直平分BC ,∴BE =EC ,且EH =EG ,∴Rt △BEH ≌Rt △CEG (HL ),∴BH =GC ,S △BEH =S △CEG ,∴四边形ABEC 的面积=S 四边形AHEG ,∵AB +AC =AB +AG +GC =AB +BH +AG =AH +AG =2AG =7,∴AH =AG =72,∴S 四边形AHEG =AG •AH =494,故答案为:494.三.解答题(共7小题,满分66分)19.(10分)(1)解不等式组{−3(x −2)≥4−x 1+2x 3>x −1,并把解集表示在数轴上. (2)已知关于x ,y 的二元一次方程组{2x +y =−3m +2x +2y =4的解满足x +y >−32,求出满足条件的m 的所有正整数值.解:(1){−3(x −2)≥4−x①1+2x 3>x −1②解不等式①得:x ≤1,解不等式②得:x <4,所以不等式组的解集为:x ≤1,在数轴上表示为:(2){2x +y =−3m +2①x +2y =4②, ①+②得:3(x +y )=﹣3m +6,即x +y =﹣m +2,代入不等式得:﹣m +2>−32,解得:m <72,则满足条件m 的正整数值为1,2,3.20.(7分)已知,△ABC 中,AB =AC ,点D 在BC 边上,E 在△ABC 的外部,连接AD 、AE 、CE ,且AD =AE ,∠BAC =∠DAE .(1)如图1,求证:BD =CE .(2)如图2,当∠B =45°,∠BAD =22.5°时,连接DE 交AC 于点F ,作DG ⊥DE 交AB 于点G ,在不添加任何辅助线的情况下,请直接写出图2中四个顶角为45°的等腰三角形.证明(1)∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,在△BAD 和△CAE 中,{AD =AE ∠BAD =∠CAE AB =AC,∴△BAD ≌△CAE (SAS ),∴BD =CE ;(2)∵∠B=45°,AB=AC,∴∠B=∠ACB=45°,∴∠BAC=90°=∠DAE,又∵AD=AE,∴∠ADE=∠AED=45°,∵DG⊥DE,∴∠GDE=90°,∴∠GDA=45°,∵∠BAD=22.5°,∴∠DAF=67.5°,∠BGD=∠BAD+∠ADG=67.5°,∴∠BDG=180°﹣∠B﹣∠BGD=67.5°=∠BGD,∠AFD=180°﹣∠ADF﹣∠DAF=67.5°=∠DAF,∠ADC=180°﹣∠ACB﹣∠DAC=67.5°=∠DAC,∴△BDG,△ADC,△ADF都是顶角为45°的等腰三角形,∵△BAD≌△CAE,∴∠B=∠ACE=45°,又∵∠AFD=∠CFE=67.5°,∴∠CFE=∠CEF=67.5°,∴△CEF是顶角为45°的等腰三角形.21.(8分)有3张正面分别写有数字﹣2,0,1的卡片,它们的背面完全相同,现将这3张卡片背面朝上洗匀,小明先从中任意抽出一张卡片记下数字为x;小亮再从剩下的卡片中任意取出一张记下数字为y,记作P(x,y).(1)用列表或画树状图的方法列出所有可能的点P的坐标;(2)若规定:点P(x,y)在第二象限小明获胜;点P(x,y)在第四象限小亮获胜,游戏规则公平吗?解:(1)根据题意,列表如下:﹣210﹣2(1,﹣2)(0,﹣2)1(﹣2,1)(0,1)0(﹣2,0)(1,0)一共有6种等可能情况;(2)由表知,点P 在第二象限有1种结果,在第四象限的有1种结果,∴小明获胜的概率为16,小亮获胜的概率为16, 因此此游戏规则公平.22.(8分)已知一次函数y =ax +2与y =kx +b 的图象如图所示,且方程组{ax −y =−2kx −y =−b的解为{x =2y =1点B 坐标为(0,﹣1).求这两个一次函数的表达式.解:由题意可得A (2,1).把A 的坐标代入y =ax +2,得1=2a +2,解得a =−12,所以y =−12x +2;把A 、B 的坐标代入y =kx +b ,{2k +b =1b =−1,解得 {k =1b =−1,所以y =x ﹣1. ∴两个一次函数的表达式为y =−12x +2,y =x ﹣1.23.(10分)将一批抗疫物资运往武汉,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:甲种货车(辆) 乙种货车(辆) 总量(吨) 第一次4 5 31 第二次 3 6 30 (1)甲、乙两种货车每辆分别能装货多少吨?(2)现有45吨物资需要再次运往武汉,准备同时租用这两种货车,每辆均全部装满货物,问有哪几种租车方案?请全部设计出来.解:(1)设每辆甲种货车能装货x 吨,每辆乙种货车能装货y 吨,依题意,得:{4x +5y =313x +6y =30, 解得:{x =4y =3. 答:每辆甲种货车能装货4吨,每辆乙种货车能装货3吨.(2)设租用m 辆甲种货车,n 辆乙种货车,依题意,得:4m +3n =45,∴n =15−43m ,又∵m ,n 均为正整数,∴{m =3n =11或{m =6n =7或{m =9n =3, ∴共有3种租车方案,方案1:租用3辆甲种货车,11辆乙种货车;方案2:租用6辆甲种货车,7辆乙种货车;方案3:租用9辆甲种货车,3辆乙种货车.24.(11分)如图,在四边形ABCD 中,AB ∥CD ,对角线AC 与BD 相交于点E ,且∠DAC=∠DCA .(1)求证:AC 平分∠BAD ;(2)若∠AEB =125°,且∠ABD =2∠CBD ,DF 平分∠ADB 交AB 边于点F ,求∠BDF ﹣∠CBD 的值.解:(1)证明:∵AB ∥CD ,∴∠BAC =∠DCA ,又∵∠DAC =∠DCA ,∴∠BAC =∠DAC ,∴AC 平分∠BAD ;(2)∵∠BAC =∠DAC ,∠DAC +∠ADB =∠AEB =125°,∴∠ADB =125°﹣∠BAC ,又∵DF 平分∠ADB 交AB 边于点F ,∴∠BDF =125°−∠BAC 2, 由∠AEB =125°可得∠BAC =55°﹣∠ABD ,∵∠ABD =2∠CBD ,∴∠BAC =55°﹣2∠CBD ,∴∠CBD =55°−∠BAC 2, ∴∠BDF ﹣∠CBD =125°−∠BAC 2−55°−∠BAC 2=35°. 25.(12分)如图,△ABD 和△BCE 都是等边三角形,AE 与CD 相交于F ,连接BF .(1)求证:AE =CD ;(2)求证:BF 平分∠DFE .证明:(1)∵△ABD 和△BCE 都是等边三角形,∴DB =AB ,BC =BE ,∠DBA =∠CBE =60°,∴∠DBC =∠ABE ,在△DBC 和△ABE 中,{DB =AB ∠DBC =∠ABE BC =BE,∴△DBC ≌△ABE (SAS ),∴AE =CD ;(2)如图,过点B 作BM ⊥CD 于M ,BN ⊥AE 于E ,∵△DBC ≌△ABE ,∴S △DBC =S △ABE ,∴12CD ×BM =12AE ×BN , ∴BM =BN ,又∵BM⊥CD,BN⊥AE,∴BF平分∠DFE.。
初一数学期末考试试题及答案
初一数学期末考试试题及答案一、选择题1. 下列哪个数是整数?A) √2 B) 3.14 C) 0.5 D) -1.5答案:D) -1.52. 计算:2 + 3 × 4 - 5 ÷ 1A) 5 B) 10 C) 13 D) 19答案:C) 133. 已知一个球体的半径为3cm,求其体积。
A) 9π cm³ B) 12πcm³ C) 18π cm³ D) 27π cm³答案:A) 9π cm³4. 下列哪个是负数?A) 8 B) -5 C) 0 D) 2/3答案:B) -55. 已知a = 3,b = 2,求 a² + b² = ?A) 5 B) 7 C) 10 D) 13答案:D) 13二、填空题1. 已知一个长方形的长为15 cm,宽为8 cm,求其面积为 ______ cm²。
答案:1202. 已知一个圆的直径为12 cm,求其半径为 ______ cm。
答案:63. 两个数相加得28,较大的数是20,则较小的数是 ______。
答案:84. 已知一个正方形的边长为5 cm,求其周长为 ______ cm。
答案:205. 用下划线填空,使得等式成立:13 × 7 = ______ ÷ 91答案:1001三、简答题1. 解方程:2x + 5 = 15解答:首先,我们将方程转化为2x = 15 - 5得到 2x = 10然后,我们将2x除以2,得到 x = 5所以方程的解为:x = 52. 用正方形面积的公式计算一个正方形的边长为6 cm的面积。
解答:正方形的面积公式为:面积 = 边长 ×边长将边长6 cm代入公式,得到:面积 = 6 cm × 6 cm = 36 cm²所以正方形的面积为36 cm²。
四、应用题1. 小明比小华身高多10 cm,小华的身高是130 cm,求小明的身高。
人教版七年级下学期期末考试数学试题及答案三
人教版七年级下学期期末考试数学试题及答案亲爱的同学们:本次考试将实行网上阅卷,所有试题答案一律填写在答题卡上相应区域,选择题用2B铅笔在相应小框框内涂黑,要求把小框框涂满,非选择题必须填写在相应的框框内横线上,不准填写在框框外,否则不得分。
每题留下的横线可能较长,但答案可能很短。
一.选择题(每题3分,共30分)1.平方根等于它自己的数是()A.0B.1C.﹣1D.42.下列方程中,为二元一次方程的是()A.2a+1=0B.3x+y=2z C.x=3y D.xy=93.如图,在梯形ABCD中,∠B=115°,则∠C的大小是()A.50°B.65°C.75°D.85°(3题图)(4题图)(6题图)4.如图,直线AB与CD相交于点O,若∠1+∠2=80°,则∠3等于()A.100°B.120°C.140°D.160°5.在﹣,﹣,0,﹣3四个数中,满足不等式x+2>0的有()A.1个B.2个C.3个D.4个6.光线在不同介质中的传播速度不同,因此当光线从水中射向空气时,要发生折射.由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,当∠1=45°,∠2=122°时,∠3和∠4的度数分别是()A.45°,68°B.45°,58°C.45°,45°D.58°,122°7.为了解某市2020年参加中考的34000名学生的视力情况,抽查了其中1800名学生的视力进行统计分析,下面叙述错误的是()A.34000名学生的视力情况是总体B.样本容量是34000C .1800名学生的视力情况是总体的一个样本D .本次调查是抽样调查 8.由方程组可得x 与y 的关系式是( ) A .3x =7+3mB .5x ﹣2y =10C .﹣3x +6y =2D .3x ﹣6y =29.已知a <b ,下列不等式成立的是( ) A .a +2<b +1B .﹣3a >﹣2bC .m ﹣a >m ﹣bD .am 2<bm 210.小明在拼图时,发现8个大小一样的小长方形恰好可以拼成一个大的长方形,如图1所示.小红看见了,说“我来试一试”,结果拼成如图2所示的正方形,中间还留有一个洞,恰好是边长为2cm 的小正方形.则每个小长方形的长和宽分别为( )A .8cm 和6cmB .12cm 和8cmC .10cm 和8cmD .10cm 和6cm二.填空题(每题3分,共15分) 11.已知x 2=64,则= .12.阅读下列材料:设=0.333…①,则10x =3.333…②,则由②﹣①得:9x =3,即.所以=0.333…=.根据上述提供的方法把下列这个数化成分数.= .13.以方程组的解为坐标的点(x ,y )在平面直角坐标系中的位置是在第 象限.14.如图,有一条直的等宽纸条按图折叠时,则图中∠α= . 15.已知02=+-n mm ,则当m ≥2时,m +n 的取值范围是 . 三.解答题(共75分) 16.(8分)解方程组时,两位同学的解法如下:解法一:由①﹣②,得3x=3解法二:由②得3x+(x﹣3y)=5③把①代入③得3x+8=5(1)上述两种消元过程是否正确?你的判定是.A.都正确B.解法一错C.解法二错D.两种都错(2)请选择一种你喜欢的方法解此方程组.17.(10分)解不等式组:,在数轴上画出它的解集并写出该不等式组的非负整数解.18.(8分)下面数据是20位同学的身高(单位:cm):159、157、164、161、167、153、166、163、162、158162、164、160、172、166、162、168、167、161、156(1)这组数据中,最大值与最小值的差是;(2)将这组数据分为4组:153≤x<158,158≤x<163,163≤x<168,168≤x<173,则组距是.(3)完成下面频数分布表,并将频数分布直方图补充完整.19.(8分)如图,这是一所学校的平面示意图.(1)若校门的坐标为(﹣2,0)、图书馆的坐标为(2,3),请在图中画出对应的坐标系,这时实验楼的坐标为;(2)以国旗杆的位置为坐标原点,校门的坐标可以不可以表示为(﹣1,0)?若可以请写出这时实验楼的坐标,若不可以请说明理由。
2023-2024学年北京市海淀区七年级下学期期末数学练习试题
2023-2024学年北京市海淀区七年级下学期期末数学练习试题1.下列所示的图案分别是奔驰、雪铁龙、大众、三菱汽车的车标,其中可以看作由“基本图案”经过平移得到的是()A.B.C.D.2.如图,若数轴上的点A,B,C,D表示数,1,2,3,则表示数的点应在()A.A,O之间B.B,C之间C.C,D之间D.O,B之间3.已知是方程的一个解,则a的值为()A.B.C.D.4.如果,那么下列不等式变形正确的是()A.B.C.D.5.一辆匀速行驶的汽车在11:20距离A地50km,要在12:00之前驶过A地,设车速为km/h,根据题意可列不等式为()A.B.C.D.6.如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O的光线相交于点P,若,,则的度数为()A.B.C.D.7.如果点P(x-4,x+3)在平面直角坐标系的第二象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.8.关于x,y的二元一次方程的正整数解的组数有()A.1组B.2组C.3组D.4组9.如图,小球起始时位于处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是,那么小球第2024次碰到球桌边时,小球的位置是()A.B.C.D.10.2023年国家统计局公布了《2022年国民经济和社会发展统计公报》.公报显示了全国2018年至2022年货物进出口额的变化情况,根据国家统计局2022年发布的相关信息,绘制了如下的统计图.根据统计图提供的信息,下列结论正确的是()①与2018年相比,2019年的进口额的年增长率虽然下降,但进口额仍然上升;②从2018年到2022年,进口额最多的是2022年;③2018—2022年进口额年增长率持续下降;④与2021年相比,2022年出口额增加了2.3万亿元A.①②④B.①②③C.①③④D.①②③④11.81的算术平方根是_____.12.一个正数的两个平方根是和,则的立方根为________.13.如图,利用直尺和三角尺过直线外一点画已知直线的平行线,这种画法依据的是______.14.已知平面直角坐标系中有两点、,且轴时,求点M的坐标为________.15.“幻方”最早记载于春秋时期的《大戴礼》中,现将1,2,3,4,5,7,8,9这八个数字填入如图1所示的“幻方”中,使得每个三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等.若按同样的要求重新填数如图2所示,则的值是__________.16.规定:在平面直角坐标系xOy中,任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为.如图①点M(-2,3)与点N(1,-1)之间的折线距离为______;如图②点P(3,-4),若点Q的坐标为(t,3),且,则t的值为__________.17.解方程组:(1)(2)18.解一元一次不等式组:.19.已知a,b均为实数,a的平方根分别是与,b是的整数部分,求的算术平方根.20.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.21.如图是一种躺椅及其简化结构示意图,扶手与底座都平行于地面,靠背与支架平行,前支架与后支架分别与交于点G和点D,与交于点N,当前支架与后支架正好垂直,时,人躺着最舒服,求此时扶手与支架的夹角及扶手与靠背的夹角的度数.22.如图,这是一架天平,天平左盘放有一个物体,质量为克,右盘放有一些砝码,每个砝码的质量为克,当右盘放有个相同的砝码时,天平处于平衡状态.(1)若,求天平处于平衡状态时的值.(2)若一个二元一次方程的解,都是正整数,我们把,称为该方程的正整数解,如:方程的正整数解为,求天平处于平衡状态下的,的正整数值.(3)期中考试后,老师计划购买笔记本和圆珠笔给表现优秀的同学作为奖品,笔记本和圆珠笔的单价均为正整数.若购买本笔记本,支圆珠笔,共需要元,求购买本笔记本和支圆珠笔的费用.23.雷锋精神是我们中华民族宝贵的精神财富,它激励着一代又一代的青少年健康成长,促进了社会文明的进步,为进一步弘扬“奉献、友爱、互助、进步”的雷锋精神,倡导志愿服务理念,树立“学雷锋”的意识,某校组织了“学习雷锋精神,爱心捐款活动”,活动结束后,学生会随机抽取了部分学生的捐款金额进行统计,并用得到的数据绘制了如下统计图(不完整).请根据相关信息,解答下列问题,(1)所抽取学生的人数为______;在扇形统计图中,捐款金额为40元所对的扇形的圆心角的度数为______,并补全条形统计图;(2)所抽取学生的捐款金额的中位数是_____元,并求出所抽取学生的平均捐款金额;(3)若该校共有1200名学生参与捐款,请你估计该校学生捐款金额不少于30元的人数.24.我们把符号“”称为二阶行列式,规定它的运算法则为,如.(1)求不等式的解集.(2)若关于的不等式的解集与(1)中的不等式解集相同,求的值.(3)若关于的不等式的解都是(1)中的不等式的解,求的取值范围.25.在四边形中,,和的角平分线或邻补角角平分线分别为和.如图1,当,都为角平分线时,小明发现,并给出下面的理由:解:∵,,,,∴,∴.又∵,,∴,∴,∴.根据小明的发现,解决下面的问题:(1)如图2,当,都为邻补角的角平分线时,与的位置关系是什么?并给出理由.(2)如图3,当是角平分线,是邻补角的角平分线时,请你探索与的位置关系,并给出理由.(提示:两直线平行,内错角相等)26.在平面直角坐标系中,对于P,Q两点给出如下定义:若点P的横纵坐标的绝对值之和等于点Q的横纵坐标的绝对值之和,则称P,Q两点为“等和点”.下图中的P,Q两点即为“等和点”.(1)已知点A的坐标为.①在点中,与点A为“等和点”的是(只填字母);②若点B在第一象限的角平分线上,且A,B两点为“等和点”,则点B的坐标为.(2)已知点C的坐标为,点D的坐标为,连接,点M为线段CD上一点,过点作x轴的垂线l,若垂线l上存在点M的“等和点”,求n的取值范围.。
新人教版七年级(下)期末数学常考试题(解析与答案)
新人教版七年级(下)期末数学常考试题参考答案与试题解析一、选择题(共30小题)1.(常考指数:106)如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠AED′=40°,则∠EFB等于()A.70°B.65°C.80°D.35°考点:翻折变换(折叠问题).专题:数形结合.分析:根据平角的知识可求出∠DED′的度数,再由折叠的性质可得出∠D′EF=∠DEF=∠DED′,从而根据平行线的性质可得出∠EFB的度数.解答:解:∵∠AED′=40°,∴∠DED′=180°﹣40°=140°,又由折叠的性质可得,∠D′EF=∠DEF=∠DED′,∴∠DEF=70°,又∵AD∥BC,∴∠EFB=70°.故选:A.点评:此题考查了翻折变换的知识,解答本题的关键是根据折叠的性质得出∠D′EF=∠DEF=∠DED′,难度一般.2.(常考指数:69)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°考点:平行线的性质.分析:本题主要利用两直线平行,同位角相等作答.解答:解:根据题意可知,两直线平行,同位角相等,∴∠1=∠3∵∠3+∠2=45°,∴∠1+∠2=45°∵∠1=20°,∴∠2=25°.故选:B.点评:本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.3.(常考指数:79)如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)考点:坐标确定位置.分析:根据已知两点的坐标确定符合条件的平面直角坐标系,然后确定其它点的坐标.解答:解:由棋子“车”的坐标为(﹣2,3)、棋子“马”的坐标为(1,3)可知,平面直角坐标系的原点为底边正中间的点,以底边为x轴,向右为正方向,以左右正中间的线为y轴,向上为正方向;根据得出的坐标系可知,棋子“炮”的坐标为(3,2).故选:A.点评:此题考查了点的坐标解决实际问题的能力和阅读理解能力,解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.4.(常考指数:94)不等式组的解集在数轴上表示为()A.B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:本题应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围.解答:解:不等式组由①得,x>1,由②得,x≥2,故不等式组的解集为:x≥2,在数轴上可表示为:故选:A.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x是否取得到,若取得到则x在该点是实心的.反之x在该点是空心的.5.(常考指数:71)在平面直角坐标系中,点P(﹣1,2)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:应先判断出所求点P的横坐标、纵坐标的符号,进而判断其所在的象限.解答:解:∵点P(﹣1,2)的横坐标﹣1<0,纵坐标2>0,∴点P在第二象限.故选:B.点评:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.(常考指数:72)下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.考点:平行线的判定与性质.分析:根据平行线的性质求解即可求得答案,注意掌握排除法在选择题中的应用.解答:解:A、∵AB∥CD,∴∠1+∠2=180°,故A选项错误;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B选项正确;C、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2;故C选项错误;D、若梯形ABCD是等腰梯形,可得∠1=∠2,故D选项错误.故选:B.点评:此题主要考查了平行线的判定,关键是掌握平行线的判定定理.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.此题难度不大,注意掌握数形结合思想的应用.7.(常考指数:88)4的算术平方根是()A.±2 B.±C.D.2考点:算术平方根.专题:计算题.分析:本题是求4的算术平方根,应看哪个正数的平方等于4,由此即可解决问题.解答:解:∵=2,∴4的算术平方根是2.故选:D.点评:此题主要考查了算术平方根的运算.一个数的算术平方根应该是非负数.8.(常考指数:90)如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A.B.C.D.考点:一元一次不等式的应用;在数轴上表示不等式的解集.分析:根据图形就可以得到重物A,与砝码的关系,得到重物A的范围.解答:解:由图中左边的天平可得m>1,由右边的天平可得m<2,即1<m<2,在数轴上表示为:故选:A.点评:此题考查了不等式的解集在数轴上的表示方法,在数轴上表示解集时,注意空心圆圈和失信圆点的区别.还要注意确定不等式组解集的规律:大小小大中间跑.9.(常考指数:73)如果a与﹣2互为倒数,那么a是()C.D.2A.﹣2 B.﹣考点:倒数.分析:根据乘积是1的两个数叫做互为倒数解答.解答:解:∵a与﹣2互为倒数,∴a 是﹣.故选:B.点评:本题考查了倒数的定义,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.是基础题,熟记概念是解题的关键.10.(常考指数:108)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A.32°B.58°C.68°D.60°考点:平行线的性质;余角和补角.专题:计算题.分析:本题主要利用两直线平行,同位角相等及余角的定义作答.解答:解:根据题意可知,∠2=∠3,∵∠1+∠2=90°,∴∠2=90°﹣∠1=58°.故选:B.点评:主要考查了平行线的性质和互余的两个角的性质.互为余角的两角的和为90°.解此题的关键是能准确的从图中找出这两个角之间的数量关系,从而计算出结果.11.(常考指数:72)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短考点:三角形的稳定性.分析:根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.解答:解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.点评:本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.12.(常考指数:89)如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°考点:平行线的判定.分析:在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.解答:解:A、∠1与∠3是l1与l2形成的内错角,由∠1=∠3由能判断直线l1∥l2,故A选项不符合题意;B、∠2与∠3不是l1与l2形成的角,由∠2=∠3不能判断直线l1∥l2,故B选项符合题意;C、∠4与∠5是l1与l2形成的同位角,由∠4=∠5能判断直线l1∥l2,故D选项不符合题意;D、∠2与∠4是l1与l2形成的同旁内角,由∠2+∠4=180°能判断直线l1∥l2,故C选项不符合题意.故选:B.点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两条被截直线平行.13.(常考指数:66)在平面直角坐标系中,若点P(x﹣2,x)在第二象限,则x的取值范围为()A.0<x<2 B.x<2 C.x>0 D.x>2考点:点的坐标.分析:根据第二象限内的点的坐标特征,列出不等式组,通过解不等式组解题.解答:解:∵点P(x﹣2,x)在第二象限,∴,解得0<x<2,∴x的取值范围为0<x<2,故选:A.点评:坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求x的取值范围.14.(常考指数:70)解集在数轴上表示为如图所示的不等式组是()A.B.C.D.考点:在数轴上表示不等式的解集.分析:由数轴可以看出不等式的解集在﹣3到2之间,且不能取到﹣3,能取到2,即﹣3<x≤2.解答:解:根据数轴得到不等式的解集是:﹣3<x≤2.A、不等式组的解集是x≥2,故A选项错误;B、不等式组的解集是x<﹣3,故B选项错误;C、不等式组无解,故C选项错误.D、不等式组的解集是﹣3<x≤2,故D选项正确.故选:D.点评:在数轴上表示不等式组解集时,实心圆点表示“≥”或“≤”,空心圆圈表示“>”或“<”.15.(常考指数:74)不等式2x﹣6>0的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集.专题:图表型.分析:不等式2x﹣6>0的解集是x>3,>应向右画,且不包括3时,应用圈表示,不能用实心的原点表示3这一点,据此可求得不等式的解以及解集再数轴上的表示.解答:解:将不等式2x﹣6>0移项,可得:2x>6,将其系数化1,可得:x>3;∵不包括3时,应用圈表示,不能用实心的原点表示3这一点答案.故选:A.二、填空题(共30小题)16.(常考指数:53)在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有40个.考点:坐标与图形性质;正方形的性质.专题:规律型.分析:可以发现第n个正方形的整数点有4n个点,故第10个有40个整数点.解答:解:第一个正方形有4×1=4个整数点;第2个正方形有4×2=8个整数点;第3个正方形有4×3=12个整数点;…∴第10个正方形有4×10=40个整数点.故答案为:40.点评:此题考查点的坐标规律、正方形各边相等的性质,解决本题的关键是观察分析,得到规律,这是中考的常见题型.17.(常考指数:81)点P(﹣2,3)关于x轴的对称点的坐标是(﹣2,﹣3).考点:关于x轴、y轴对称的点的坐标.分析:两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.解答:解:点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3).故答案为:(﹣2,﹣3).点评:本题考查关于x轴对称的点的坐标的特点,可记住要点或画图得到.18.(常考指数:70)把命题“等角的补角相等”改写成“如果…那么…”的形式是如果两个角是等角的补角,那么它们相等.考点:命题与定理.分析:命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.解答:解:题设为:两个角是等角的补角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么它们相等.故答案为:如果两个角是等角的补角,那么它们相等.点评:本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.19.(常考指数:87)如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由(3n+1)个基础图形组成.考点:规律型:图形的变化类.专题:规律型.分析:观察图形很容易看出每加一个图案就增加三个基础图形,以此类推,便可求出结果.解答:解:第一个图案基础图形的个数:3+1=4;第二个图案基础图形的个数:3×2+1=7;第三个图案基础图形的个数:3×3+1=10;…∴第n个图案基础图形的个数就应该为:(3n+1).故答案为:(3n+1).点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.20.(常考指数:62)线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标是(1,2).考点:坐标与图形变化-平移.分析:由于线段CD是由线段AB平移得到的,而点A(﹣1,4)的对应点为C(4,7),比较它们的坐标发现横坐标增加5,纵坐标增加3,利用此规律即可求出点B(﹣4,﹣1)的对应点D的坐标.解答:解:∵线段CD是由线段AB平移得到的,而点A(﹣1,4)的对应点为C(4,7),∴由A平移到C点的横坐标增加5,纵坐标增加3,则点B(﹣4,﹣1)的对应点D的坐标为(1,2).故答案为:(1,2).点评:本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.21.(常考指数:86)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.考点:平行线的性质;三角形的外角性质.专题:计算题.分析:本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.解答:解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.点评:本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.22.(常考指数:70)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=120°.考点:平行线的性质;角平分线的定义;对顶角、邻补角.专题:计算题.分析:本题主要利用邻补角互补,平行线性质及角平分线的性质进行做题.解答:解:∵∠CDE=150°,∴∠CDB=180﹣∠CDE=30°,又∵AB∥CD,∴∠ABD=∠CDB=30°;∵BE平分∠ABC,∴∠ABC=60°,∴∠C=180°﹣60°=120°.故答案为:120.点评:本题主要考查了平行线的性质,两直线平行,内错角相等,同旁内角互补.23.(常考指数:101)把命题“对顶角相等”写成“如果…,那么…”的形式为:如果两个角是对顶角,那么这两个角相等.考点:命题与定理.分析:先找到命题的题设和结论,再写成“如果…,那么…”的形式.解答:解:∵原命题的条件是:“两个角是对顶角”,结论是:“这两个角相等”,∴命题“对顶角相等”写成“如果…,那么…”的形式为:“如果两个角是对顶角,那么这两个角相等”.故答案为:两个角是对顶角;这两个角相等.点评:本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.24.(常考指数:107)的算术平方根是2.考点:算术平方根.分析:首先根据算术平方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.解答:解:∵=4,∴的算术平方根是=2.故答案为:2.点评:此题主要考查了算术平方根的定义,注意要首先计算=4.25.(常考指数:65)如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是连接直线外一点与直线上所有点的连线中,垂线段最短.考点:垂线段最短.专题:应用题.分析:过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.解答:解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.点评:本题是垂线段最短在实际生活中的应用,体现了数学的实际运用价值.26.(常考指数:91)4的算术平方根是2.考点:算术平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:∵22=4,∴4算术平方根为2.故答案为:2.点评:此题主要考查了算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.27.(常考指数:54)关于x的不等式3x﹣2a≤﹣2的解集如图所示,则a的值是﹣.考点:解一元一次不等式组.分析:解出不等式的解,用含有字母a的代数式表示,根据数轴可以看出x≤﹣1,所以可以求出a的值.解答:解:解不等式得:x≤.观察数轴知其解集为:x≤﹣1,∴=﹣1,∴a=﹣.故答案为:﹣.点评:解答此类题,要懂得等量转换,注意数轴中的解集部分的端点是实心还是空心.28.(常考指数:180)16的平方根是±4.考点:平方根.专题:计算题.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.29.(常考指数:77)4的平方根是±2.考点:平方根.专题:计算题.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.30.(常考指数:68)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第15个图形需要黑色棋子的个数是255.考点:规律型:图形的变化类.专题:压轴题;规律型.分析:观察发现,每一条边上的黑色棋子的个数是这个多边形的边数减去1,又顶点处的黑色棋子被两条边公用,根据此规律列式计算即可.解答:解:第1个图形棋子个数是:(3﹣1)×3﹣3=(3﹣2)×3=3,第2个图形棋子个数是:(4﹣1)×4﹣4=(4﹣2)×4=8,第3个图形棋子个数是:(5﹣1)×5﹣5=(5﹣2)×5=15,第4个图形棋子个数是:(6﹣1)×6﹣6=(6﹣2)×6=24,…按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2)=n2﹣2n.第15个图形棋子个数是:(17﹣1)×17﹣17=(17﹣2)×17=255.故答案为:255.点评:本题主要是对图形的变化规律的考查,观察出图形的边数与每一条边上的黑色棋子的个数是解题的关键.三、解答题(共40小题)31.(常考指数:56)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.考点:二元一次方程组的应用;一元一次不等式组的应用.专题:应用题.分析:(1)找出等量关系列出方程组再求解即可.本题的等量关系为“1辆甲型汽车和2辆乙型汽车共需费用2500元”和“租用2辆甲型汽车和1辆乙型汽车共需费用2450元”.(2)得等量关系是“将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨同一种型号汽车每辆且同一种型号汽车每辆租车费用相同”.解答:解:(1)设租用一辆甲型汽车的费用是x元,租用一辆乙型汽车的费用是y元.由题意得,;解得:,答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.(2)设租用甲型汽车z辆,租用乙型汽车(6﹣z)辆.由题意得,解得2≤z≤4,由题意知,z为整数,∴z=2或z=3或z=4,∴共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲型汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆.方案一的费用是800×2+850×4=5000(元);方案二的费用是800×3+850×3=4950(元);方案三的费用是800×4+850×2=4900(元);∵5000>4950>4900;∴最低运费是方案三的费用:4900元;答:共有三种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.点评:解题关键是要读懂题目的意思,找出(1)合适的等量关系:1辆甲型汽车和2辆乙型汽车共需费用2500元”和“租用2辆甲型汽车和1辆乙型汽车共需费用2450元”.(2)根据租车费用不超过5000元列出方程组,再求解.32.(常考指数:49)某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文件衫和5本相册.(1)求每件文化衫和每本相册的价格分别为多少元?(2)有几种购买文化衫和相册的方案?哪种方案用于购买老师纪念品的资金更充足?考点:二元一次方程组的应用;一元一次不等式组的应用.专题:方案型.分析:(1)通过理解题意可知本题存在两个等量关系,即每件文化衫比每本相册贵9元,用200元恰好可以买到2件文件衫和5本相册.根据这两个等量关系可列出方程组.(2)本题存在两个不等量关系,即设购买文化衫t件,购买相册(50﹣t)本,则1800﹣300≤35t+26(50﹣t)≤1800﹣270,根据t为正整数,解出不等式再进行比较即可.解答:解:(1)设每件文化衫和每本相册的价格分别为x元和y元,则,解得.答:每件文化衫和每本相册的价格分别为35元和26元.(2)设购买文化衫t件,购买相册(50﹣t)本,则:1800﹣300≤35t+26(50﹣t)≤1800﹣270,解得≤t≤,∵t为正整数,∴t=23,24,25,即有三种方案:第一种方案:购买文化衫23件,相册27本,此时余下资金293元;第二种方案:购买文化衫24件,相册26本,此时余下资金284元;第三种方案:购文化衫25件,相册25本,此时余下资金275元.∴第一种方案用于购买教师纪念品的资金更充足.答:有3种购买文化衫和相册的方案,当购买文化衫23件,相册27本时,用于购买老师纪念品的资金更充足.点评:此类问题属于综合性的题目,问题(1)在解决时只需认真分析题意,找出本题存在的两个等量关系,即每件文化衫比每本相册费9元,用200元恰好可以买到2件文件衫和5本相册.根据这两个等量关系可列出方程组.问题(2)需利用不等式解决,另外要注意,同实际相联系的题目,需考虑字母的实际意义,从而确定具体的取值.再进行比较即可知道哪个方案用于购买老师纪念品的资金更充足.33.(常考指数:45)某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)7 5每台日产量(个)100 60(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?考点:一元一次不等式的应用.专题:方案型.分析:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6﹣x)台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数≤34万元.就可以得到关于x的不等式,就可以求出x的范围.(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数≤380件.根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案.解答:解:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6﹣x)台.依题意,得7x+5×(6﹣x)≤34.解这个不等式,得x≤2,即x可取0,1,2三个值.∴该公司按要求可以有以下三种购买方案:方案一:不购买甲种机器,购买乙种机器6台.方案二:购买甲种机器1台,购买乙种机器5台.方案三:购买甲种机器2台,购买乙种机器4台.(2)根据题意,100x+60(6﹣x)≥380,解之,可得:x≥,由上题解得:x≤2,即≤x≤2,∴x可取1,2两个值,即有以下两种购买方案:方案二购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元;方案三购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元.∴为了节约资金应选择方案二.故应选择方案二.点评:解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案是解决本题的关键.34.(常考指数:42)某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?考点:一元一次不等式的应用;一次函数的应用.专题:压轴题.分析:(1)0.5×甲种鱼的尾数+0.8×乙种鱼的尾数=3600;(2)0.5×甲种鱼的尾数+0.8×乙种鱼的尾数≤4200;(3)关系式为:甲种鱼的尾数×0.9+乙种鱼的尾数×95%≥6000×93%.解答:解:(1)设购买甲种鱼苗x尾,则购买乙种鱼苗(6000﹣x)尾.由题意得:0.5x+0.8(6000﹣x)=3600,解方程,可得:x=4000,∴乙种鱼苗:6000﹣x=2000,答:甲种鱼苗买4000尾,乙种鱼苗买2000尾;(2)由题意得:0.5x+0.8(6000﹣x)≤4200,解不等式,得:x≥2000,即购买甲种鱼苗应不少于2000尾,∵甲、乙两种鱼苗共6000尾,∴乙不超过4000尾;答:购买甲种鱼苗应不少于2000尾,购买乙种鱼苗不超过4000尾;(3)设购买鱼苗的总费用为w,甲种鱼苗买了a尾,则购买乙种鱼苗(6000﹣a)尾.则w=0.5a+0.8(6000﹣a)=﹣0.3a+4800,由题意,有a+(6000﹣a)≥×6000,解得:a≤2400,在w=﹣0.3a+4800中,∵﹣0.3<0,∴w随a的增大而减少,∴当a取得最大值时,w便是最小,即当a=2400时,w最小=4080.答:购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.点评:根据费用和成活率找到相应的关系式是解决本题的关键,注意不低于是大于或等于;不超过是小于或等于.。
郑州初一七年级下期期末考试数学试卷及参考答案
郑州七年级下期期末考试数学试卷及参考答案考试时同90分,满分100分时光飞逝,转题间乐乐七年级学习生活即将结束,在这一年中,乐乐收获满满,我们一起来分享一下吧!一、选择题(每小题3分,共30分)1乐乐看到妈妈手机上有好多图标,在下列图标中可看作轴对称图形的是()2.乐乐所在的四人小组做了下列运算,其中正确的是()A.(-3)-2=-9 B.(-2a3)2=4a6 C.a6÷a2=a3 D.2a2·3a3=6a63.乐乐很喜欢清代诗人靠枚的诗《苔》:“白日不到处,青春恰自来,苔花如米小,也学牡丹开。
“其实苔御植物属于孢子植物,不开花,袁枚看到的“苔花”,很可能是苔类的孢子体的苞某种苔藓的苞商的直径约为0.7毫米,则0.7毫米用科学记数法可表示为()A.0.7×10-4米B.7×10-3米C.7×10-4米D.7×10-5米4.如图,乐乐将△ABC沿DE,EF分别翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=139°,∠C 为()A.38°B.39°C.40°D.41°5.在一个不透明的布袋中,红色、那色,白色的小球共有50个,除颜色外其他完全相同乐乐通过多次摸球试验后发现,摸到红色球,黑色球的频率分别稳定在27%和43%,则口袋中白色球的个数很可能是()A.20B.15C.10D.56.乐乐和科学小组的同学们在网上获取了声音在空气中传播的速度与空气温度之间关系的一些数据(如下表)下列说法中错误的是()A.在这个变化过程中,当温度为10℃时,声速是336m/sB温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s7.乐乐观察“抖空竹“时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE=92°,∠DCE=115°,则∠E的度数是()A.32°B.28°C.26°D.23°8.如图,乐乐用边长为1的正方形做了一副七巧板,并将这副七巧板拼成一只小猫,则阴影都分的面积为()A. 14 B.12 C.25 D.239.乐乐发现等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形底角的度数为()A.50°B.65°C.65°或25°D.50°或40°10.如图是乐乐的五子棋棋盘的一部分(5×5的正方形网格) 以点D,E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出()A.2个B.4个C.6个D.8个二、填空题(每小题3分,共1511.乐乐在作业上写到(a+b)2=a2+b2,同学英树认为不对,并且他利用下面的图形做出了直观的解释,根据这个图形的总面积可以得到正确的完全平方公式(a+b)2=12.乐乐同学有两根长度为4cm,7cm的木棒,母亲节时他想自已动手给妈妈钉一个角形相框,桌上有五根木棒,从中任选一根,使三根木棒首尾顺次相连,则能钉成三角形相框的概率是13.如图,△ABC 的边BC 长12cm,乐乐观察到当顶点A 沿着BC 边上的高AD 所线向上运动时,三角形的面积发生变化.在这个变化过程中,如果三角形的高为x(cm),那么△ABC 的面积y(cm2)与x(cm)的关系式是14.乐乐发现三个大小相同的球可以恰好放在一个圆柱形盒子里(底和盖的厚度均忽略不计),如图所示,则三个球的体积之和占整个盒子容积的 (球的体积计算公式为V=43πr 2)15.在研究“数字黑洞”这节课中,乐乐任意写下了一个四位数(四数字完全相同的除外).重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差;重复这个过程,……,乐乐发现最后将变成一个固定的数,则这个固定的数是三、解答题(本大题共7个小题,共55分)16.(6分)乐乐对化简求值题掌握良好,请你也来试试吧!先化简,再求值:[(ab+4)(ab-4)-5a 2b 2+16]÷(ab),其中a=10,b=- 1517.(6分)乐乐觉得轴对称图形很有意思.如图是4个完全相同的小正方形组成的L 形图,请你用三种方法分别在图中添画一个小正方形,使添画后的图形成为轴对称图形18.(8分)乐乐家附近的商场为了吸引顾客,设立了一个可以自由转动的转盘,AB为转盘直径,如图所示,并规定:顾客消费50元(含50元)以上,就能获得一次转盘的机会,如果转盘停止后,指针正好对准9折、8折、7折区域,顾客就可以获得相应的优惠(1)某顾客消费40元,是否可以获得转盘的机会?(2)某顾客正好消费66元,他转一次转盘,获得三种打折优惠的概率分别是多少?19.(8分)尺规作图是理论上接近完美的作图方式,乐乐很喜欢用尺规画出要求的图形.在下面的△ABC中,请你也按要求用尺规作出下列图形(不写作法,但要保留作图痕迹)并填空(1)作出∠BAC的平分线交BC边于点D;(2)作出AC边上的垂直平分线l交AD于点G;(3)连接GC,若∠B=55°,∠BCA=60°,则∠AGC的度数为20.(8分)如图是乐乐设计的暂力拼图玩具的一部分,现在乐乐遇到了两个问题,请你帮助解决:已知:如图,AB∥CD,(1)若∠APC=60°,∠A=40°,求∠C的度数请填空解:(1)过点P作直线PE∥AB(如图所示)因为AB∥CD(已知)所以EP∥CD(平行于同一条直线的两条直线平行)因为∠A=∠APE=40∠C=∠CPE()又因为∠APC=∠APE+∠CPE=∠A+ =60°(等量代换)所以∠C= °(等式性质)2)直接写出∠B、∠D与∠BFD之间的数量关系21.(9分)人的大脑所能记忆的内容是有限的,随着时间的推移,记忆的东四会逐渐被遗忘,教乐乐数学的马老师调查了自己班学生的学习遗忘规律,并根据调查数据描绘了一条曲线(如图所示),其中纵轴表示学习中的记忆保持量,横轴表示时间,观察图象并回答下列(1)观察图象,1h后,记忆保持量约为;8h后,记忆保持量约为(2)图中的A点表示的意义是什么?A点表示的意义是在以下哪个时间段内遗忘的速度最快?填序号①0-2h ②2-4h;③4-6h ④6-8h(3)马老师每节课结束时都会对本节课进行总结回顾,并要求学生每天晚上临睡前对当课堂上所记的课盒笔记进行复习,据调查这样一天后记忆量能保持98%如果学生一天不复习,结果又会怎样?由此,你能根据上述曲线规律制定出两条今年暑假的学习计划吗?22.(10分)乐乐和数学小组的同学们研究了如下问题,请你也来试一下吧点C是直线l1上一点,在同一平面内,乐乐他们把一个等直角三角板ABC任意放,其中直角顶点C与点C重合,过点A 作直线l2⊥l1,垂足为点M,过点B作l3⊥l1, 垂足为点N(1)当直线l2,l3位于点C的异侧时,如图1,线段BN,AM与MN之间的数量关系(不必说明理由)2)当直线l2,l3位于点C的右侧时,如图2,判断线段BN,AM与MN之间的数量系,并说明理由3)当直线l2,l3位于点C的左侧时,如图3,请你补全图形,并直接写出线段BN,A MN之间的数量关系期末考试七年级 数学 参考答案(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1. A 2. B 3. C 4. D 5. B6. C 7. D 8. A 9. C 10. B二、填空题(每小题3分,共15分)11.a 2+2ab+b 2 12. 0.4(52或) 13. y =6x 14.32 15. 6174 三、解答题(本大题共7个小题,共55分)16.(6分) 解:)(]165)4)(4[(22ab b a ab ab ÷+--+=)(]16516[(2222ab b a b a ÷+--…………………………(2分)=)()4(22ab b a ÷-=ab 4-…………………………………………………(4分) 当51,10-==b a 时,原式=)51(104-⨯⨯-=8……………………(6分)17.(6分) 解: 如图.……………………(6分)18.(8分)解:(1)根据规定消费50元(含50元)以上才能获得一次转盘的机会,而40元小于50元,故不能获得转盘的机会; ………………(2分)(2)某顾客正好消费66元,超过50元,可以获得转盘的的机会.若获得9折优惠,则概率;………………………(4分) 若获得8折优惠,则概率;………………………(6分) 若获得7折优惠,则概率.………………………(8分)19.(8分)解:(1)图略(可以不下结论);……………………(3分)(2)图略(可以不下结论);……………………(6分)(3)115°. ……………………(8分)20.(8分)解:(1)两直线平行,内错角相等;……………………(2分)∠C ;…………………………………………………………(4分)20;…………………………………………………………(6分)(2)∠B +∠D +∠BFD =360°. ………………………………(8分)21.(9分)解:(1)50%(50%3±%均算正确);30%(30%3±%均算正确);……(4分)(2)点A 表示2h 大约记忆量保持了40%;…………………………(6分)①;…………………(7分)(3)如果一天不复习,记忆量只能保持不到30%(答案不唯一);暑假的学习计划两条略(合理即可)………(9分)22. 解:(1)MN = AM +BN ;………………(2分)(2)MN = BN -AM ;………………………………(4分)理由如下:如图 2.4136090)9(==折P 6136060)8(==折P 12136030)7(==折P因为l 2⊥l 1,l 3⊥l 1.所以∠BNC =∠CMA =90°.所以∠ACM +∠CAM =90°.因为∠ACB =90°,所以∠ACM +∠BCN =90°.所以∠CAM =∠BCN .在△CBN 和△ACM 中,{∠BNC =∠CMA∠CAM =∠BCN BC =AC所以△CBN ≌△ACM (AAS ).所以BN =CM ,NC =AM .所以MN =CM ﹣CN =BN ﹣AM .…………………………(8分)(3)补全图形,如图3.………(9分)结论:MN =AM ﹣BN .………(10分)l 1。
新七年级(下)数学期末考试题(含答案)
新七年级(下)数学期末考试题(含答案)一、填空题(本大题共6个小题,每小题3分,共18分) .1.2的相反数是_____________.2.6的算术平方根是_____________.3.不等式组1 1120xx+<⎧⎨->⎩的解集是_____________.4.如图1,将块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为______________.图15.已知直线AB//x轴,A点的坐标为(1,2),并且线段AB=3,则点B的坐标为_____________.6.如图,用黑白两色正方形瓷砖按一定的规律铺设地面,第n个图案中白色瓷砖有_____________.块(用含n的式子表示) .二、选择题(本大题共8个小题,每小题4分,共32分) .7. 2019年一季度,曲靖市经济保持了较快增长,全市生产总值437.74亿元,同比增长10.1%,实现“开门红”. 437.74亿元用科学记数法表示为( )A. 437.74×109元B. 4.3774×1010元C. 0. 43774×1011元D. 4. 3774×1011元8.下面的调查中,不适合抽样调查的是( )A. 一批炮弹的杀伤力的情况B.了解一批灯泡的使用寿命C.全面人口普查D.全市学生每天参加体育锻炼的时间9.下列图形中,不能通过其中一个四边形平移得到的是( )10.若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y= ( )A. ─1B.1C. 5D. ─511.不等式组31 2840x x ->⎧⎨-≤⎩的解集在数轴上表示正确的是( )A. B.C. D.12.如图2所示,点E 在AC 的延长线上,下列条件中能判断AB//CD 的是( )A.∠3=∠4B.∠1=∠2C.∠D=∠DCED. ∠D+∠ACD=180°图213.小颖家离学校1200米,其中有一段为上坡路, 另一段为下坡路,她去学校共用了16分钟,上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时,设小颖上坡用了x 分钟,下坡用了y 分钟,据题意可列方程组为( )A.351200 16 x y x y +=⎧⎨+=⎩B.35 1.2 606016 x y x y ⎧+=⎪⎨⎪+=⎩ C.35 1.2 16 x y x y +=⎧⎨+=⎩ D.351200 606016 x y x y ⎧+=⎪⎨⎪+=⎩ 14.如图3,△ABC 中,AH ⊥BC ,BF 平分∠ABC ,BE ⊥BF ,EF//BC ,以下四个结论①AH ⊥EF , ②∠ABF=∠EFB ,③AC // BE ,④∠E= ∠ABE.其中正确的有( ) A.①②③④ B.①② C.①③④ D.①②④图3三、解答题(本大题共9个小题,共70分) 15. (5分)2|1+-16. (6 分)解方程组29 32 1 x yx y+=⎧⎨-=-⎩①②17.(6分)解不等式组5(1)312151132x xx x-<+⎧⎪-+⎨-≤⎪⎩并将解集在数轴上表示出来.18.(7 分)完成推理填空:如图4,在△ABC中,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠C.解:∵∠1+ 6 EFD=180°(邻补角定义) ,∠1+∠2=180° (已知)∴_________________________(同角的补角相等) ①∴_________________________(内错角相等,两直线平行) ②∴∠ADE=∠3( ) ③∵∠3=∠B( ) ④∴______________=___________( 等量代换) ⑤∴DE//BC ( ) ⑥图4 ∴∠AED=∠C( ) ⑦19. (8分) 已知2m+3和4m+9是x的平方根,求x的值.20. (8 分)在读书月活动中,学校准备购买─批课外读物. 为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类) ,如图5是根据调查结果绘制的两幅不完整的统计图.条形统计图扇形统计图图5请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了____________名同学;(2)条形统计图中,m________,n=_______(3)扇形统计图中,艺术类读物所在扇形的圆心角是__________度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买“其他”类读物多少册比较合理?21. (8分)如图6,已知AB// DE,∠B=60°,AE⊥BC,垂足为点E.(1)求∠AED的度数:(2)当∠EDC满足什么条件时,AE// DC ?证明你的结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一下年数学试题
命题:欧忠莲
一、选择题(单项选择,每小题3分,共21分) 1.下列长度的各组线段能组成一个三角形的是 ( ) . A .7cm 、10cm 、15cm B. 4cm 、5cm 、10cm C. 3cm 、5cm 、 8cm D. 1cm 、5cm 、7cm
2. 不等式组240
10x x -<⎧⎨+≥⎩
的解集在数轴上表示,正确的是 ( )
3.已知下列四个图形:①一个角;②一条线段;③一个等腰三角形;④一个正方形。
在这四个图形中是轴对称图形的共有 ( )
A .1个 B.2个 C.3个 D.4个
4.在下列正多边形的地板瓷砖中,单独用其中一种能够铺满地面的是( ). A .正方形 B.正五边形 C.正八边形 D.正十边形
5.若⎩⎨⎧=-=11y x 是方程组⎩
⎨⎧=+=+10
y bx ay x 的解,则a 、b 的值为( ).
A .1,0==b a
B .0,1==b a
C .0,0==b a
D .1,0-==b a 6.下列事件中,必然发生的是( )
A.小张明天期末考试数学得满分
B. 今天已刮大风了,明天将会下雨
C. 如果b a =,那么b a =
D. 如果两个角是对顶角,那么这两个角会相等 7.如图所示,已知ABC ∆为直角三角形,90B ∠=o
,若按图中虚线剪去B ∠, 则∠1+∠2等于 ( )
A .90°
B .135°
C .270°
D .315° 二、填空题(每小题4分,共40分)
8.将方程65=+y x 写成用含x 的代数式表示y ,则y = . 9. “x 2与1的和小于零”用不等式表示:__ _________. 10.当=x ________时,代数式54-x 与63-x 的值相等.
11.如果等腰三角形的顶角为80°,那么它的一个底角为_______°. 12.十边形的外角和是_________°.
13.如图,︒
=
∠
=
∠90
B
A,如果M点在ANB
∠的角平分线上,且5
=
BM,那么AM=___________.
14.如图,已知∠1=40°,∠3=110°,那么∠2=°.
15.口袋中放有黄、白、红三种颜色的小球各1个,这3个球除颜色外没有任何区别,随机从口袋中任
取1个球,写出这个实验中一个可能发生的事件.
16.请写出方程5
2=
+y
x的所有正整数解.
17.已知关于y
x,的方程组
⎩
⎨
⎧
-
=
+
+
=
+
a
y
x
a
y
x
1
3
3
1
3
(1)由方程①-②,可方便地求得=
-y
x;
(2)若方程组的解满足0
>
+y
x,则a的取值范围是 .
三、解答题(共89分)
18.(9分)解方程:1
3
3
2
2
1
=
+
-
-x
x
19.(9分)解不等式组,并将解集在数轴上表示出来:
⎪⎩
⎪
⎨
⎧
≤
-
+
<
+
2
3
1
3
2
)1
(3
x
x
x
x
.
①
②
①
②
(第13题)
(第14题)
20.(9分)如图,在△ABC 中,︒=∠90ACB ,CD ⊥AB ,垂足为D ,︒=∠35BCD ,
求:(1)EBC ∠的度数;(2)A ∠的度数.
对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学式). 解:(1)∵AB CD ⊥(已知)
∴CDB ∠=
∵BCD CDB EBC ∠+∠=∠( ) ∴=∠EBC +35°= . (等量代换)
(2)∵ACB A EBC +∠=∠( )
∴ACB EBC A ∠-∠=∠.(等式的性质) ∵︒=∠90ACB (已知)
∴A ∠= -90°= . (等量代换)
21.(9分)在等式b kx y +=(b k ,为常数)中,当1=x 时,2-=y ;当1-=x 时,4=y .
(1)求k 、b 的值.
(2)问当1-=y 时, x 的值等于多少?
22.(9分)如图,BD 是等边△ABC 的高,E 是BC 延长线上一点,且BC CE 2
1
=
. (1)直接写出CE 与CD 的数量关系; (2)试说明△BDE 是等腰三角形.
23.(9分)某校初一年一班40个同学每10人一组,每人做10次抛掷两枚硬币的实验,累计每个学生的实验结果如下表.
抛掷次数 50 100 150 200 250 300 350 400 出现两个正面的频数 12 30 40
63
75 86
101
出现两个正面的频率
24%
26.7% 27.5% 25.2% 25%
24.6% 25.3%
(1)把统计表补充完整.从表中我们可以发现:随着实验次数的增加,“出现两个正面的频率”将稳定
在 (结果精确到1%);
(2)如果小明邀请你玩一个抛掷两枚硬币的游戏,游戏规则如下:抛出两个正面——你赢1分;
抛出其他结果——小明赢1分;谁先得到10分,谁就得胜.这个游戏规则对你和小明公平吗? 结合第(1)题的实验结果说说理由.
24.(9分)学校团委组织80名新团员为学校建地理、生物科学园搬砖.女同学每人每次搬6块,男同学每人每次搬8块。
每人搬了4次,共搬了2400块.
(1)设新团员中
有x 名男同学,请你把表格补充完整:
(2)问男同学比女同学共多搬了几块砖?
男同学 女同学 总数
参加人数(名) x
80 每人共搬砖数(块)
6×4 共搬砖数
2400
25.(13分)在ABC ∆中,︒=∠90C ,cm AC 6=,cm BC 8=.
(1)如图1,将ABC ∆沿某条直线折叠,使斜边的两个端点A 与B 重合,折痕为DE .
①试求ACD ∆的周长;
②若CAD ∠:BAD ∠ =4:7,求B ∠的度数.
(2)如图2,将直角边AC 沿直线AM 折叠,使点C 恰好落在斜边AB 上的点N ,cm BN 4=,
求CD 的长.
26.(13分)泉州市某校准备组织教师、学生、家长到福州进行参观学习活动,旅行社代办购买动车票,动车票价格如下表所示:
根据报名总人数,若所有人员都买一等座的动车票,则共需13650元,若都买二等座动车票(学生
..
全部按表中的“学生票二等座”购买)
.................,则共需8820元;已知家长的人数与教师的人数的2倍.(1)设参加活动的老师有m人,请直接用含m的代数式表示教师和家长购买动车票所需的总费用;(2)求参加活动的总人数;
(3)如果二等座动车票共买到x张,且学生全部按表中的“学生票二等座”购买
..................,其余的买一等座动车票,且买票的总费用不低于9000元,求x的最大值.。