初中数学八年级上《整式的乘法及因式分解》知识点及题型

合集下载

八年级上册第十四章-整式的乘除与因式分解知识梳理

八年级上册第十四章-整式的乘除与因式分解知识梳理

八年级数学第十四章--整式的乘法与因式分解知识梳理知识点一、整式的乘法1、同底数幂相乘,底数不变,指数相加;即 (m,n 都是正整数)2、幂的乘方,底数不变,指数相乘;即 (m,n 都是正整数)3、积的乘方,等于把积的每一个因式分别乘方,再把所得幂相乘;即: (n 是正整数)4、整式的乘法:(1)单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;例如: (2)单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加; 例如: (3)多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加;例如:知识点二、整式的除法5、同底数幂相除,底数不变,指数相减;即 6、规定:任何不等于0的数的0次幂都等于1。

即 7、单项式相除,把系数与同底数幂分别相除作为商的因式,对于只有在被除式里含有的字母,则连同它的指数作为商的一个因式。

例如: 8、多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。

例如:知识点三、乘法公式9、平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差;即10、完全平方公式:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍;(记()n m mn a a =m n m n a a a ++=()n n n ab a b =7252525)()(abc abc c c b a bc ac ==⋅⋅⋅=⋅+pcpb pa c b a p ++=++)(bqbp aq ap q p b q p a q p b a +++=+++=++)()()()()0(10≠=a a ),,0(n m n m a a a a n m n m >≠=÷-都是正整数,并且32322323234))()(312(312c a c b b a a ab c b a =÷÷÷=÷ba m bm m am m bm am +=÷+÷=÷+)(()()22ab a b a b +-=-忆口诀“首平方,尾平方,收尾二倍中间放”)即: 11、添括号规则: (1)如果括号前面是正号,括到括号里的各项都不变符号; 即: a+b+c=a+(b+c)(2)如果括号前面是负号,括到括号里的各项都改变符号;即: a-b-c=a-(b+c)知识点四、因式分解12、把一个多项式化成几个整式的积的形式的变形叫做因式分解;(也叫做把这个多项式分解因式)。

初二数学八上整式的乘法与因式分解所有知识点总结和常考题型练习题

初二数学八上整式的乘法与因式分解所有知识点总结和常考题型练习题

整式乘法与因式分解知识点一、单项式:只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如c b a 235-是6次单项式。

二、同类项:所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

三、去括号法则①括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

②括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。

四、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

整式的乘法:),(都是正整数n m aa a n m n m +=∙ 整式的除法:)0,,(≠=÷-a n m a a a n m n m 都是正整数注意:(1)单项式乘单项式的结果仍然是单项式。

(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。

(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号, 同时还要注意单项式的符号。

(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。

(5)公式中的字母可以表示数,也可以表示单项式或多项式。

(6)),0(1);0(10为正整数p a aa a a p p ≠=≠=- (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。

五、因式分解1、因式分解:把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

2、因式分解的常用方法(1)提公因式法:)(c b a acab +=+ (2)运用公式法:))((22b a b a b a -+=-(3)分组分解法:))(()()(d c b a d c b d c a bd bc adac ++=+++=+++ (4)十字相乘法:))(()(2q a p a pq a q p a ++=+++3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提取公因式。

八年级上数学整式的乘除与因式分解基本知识点

八年级上数学整式的乘除与因式分解基本知识点

整式是一个或多个代数式的和、差或积。

整式的乘除与因式分解是数学中非常重要的概念,是解决各种代数问题的基础。

本文将详细介绍八年级上数学中整式的乘除与因式分解的基本知识点。

一、整式的乘法1.1 单项式的乘法:单项式的乘法是指单项式与单项式之间的乘法。

例如:2x ×3y = 6xy,-4a^2 × 5b^3 = -20a^2b^31.2多项式的乘法:多项式的乘法是指多项式与多项式之间的乘法。

例如:(3x+2)(x-1)=3x^2+x-2二、整式的除法2.1 单项式的除法:单项式的除法是指单项式除以单项式。

例如:4x^2 ÷ x = 4x,10a^3b^2 ÷ 2ab = 5a^2b。

2.2多项式的除法:多项式的除法是指多项式除以多项式。

例如:(12x^3+9x^2+3x)÷3x=4x^2+3x+1三、整式的因式分解整式的因式分解是将一个整式写成几个整式的乘积的形式,其中每个整式都是原来整式的因式。

例如:12x^2+8xy,将其因式分解为4x(3x+2y)。

3.1 提取公因式:如果一个整式的每一项都能被同一个整式整除,那么这个公因式就是整式的一个因子。

例如:12x^2+8xy,公因式是4x。

3.2分解差的平方:差的平方是指形如"一个数的平方减另一个数的平方"的表达式。

例如:x^2-9,可因式分解为(x-3)(x+3)。

3.3 分解二次三项式:二次三项式是指形如"一个平方项加两个相同系数的次项"的表达式。

例如:x^2+2xy+y^2,可因式分解为(x+y)^2四、习题例析例1:将多项式4x^2+16x因式分解。

解:这个多项式2x的平方加4x的倍数,所以可以因式分解为4x(x+4)。

例2:将多项式a^2-9因式分解。

解:由差的平方公式可得,a^2-9=(a-3)(a+3)。

例3:将多项式4x^2y^2-8xy^2因式分解。

八年级数学上册“第十四章整式的乘法与因式分解”必背知识点

八年级数学上册“第十四章整式的乘法与因式分解”必背知识点

八年级数学上册“第十四章整式的乘法与因式分解”必背知识点一、整式的乘法1. 单项式乘单项式:法则:把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

2. 单项式乘多项式:法则:用单项式去乘多项式的每一项,再把所得的积相加。

3. 多项式乘多项式:法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

二、乘法公式1. 平方差公式:公式:$(a+b)(a-b) = a^2 b^2$应用:两个数的和与这两个数的差的积,等于这两个数的平方差。

2. 完全平方公式:公式:$(a+b)^2 = a^2 + 2ab + b^2$$(a-b)^2 = a^2 2ab + b^2$应用:两个数的和 (或差)的平方,等于这两个数的平方和,加上(或减去)这两个数积的2倍。

三、因式分解1. 因式分解的定义:把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也叫作分解因式。

2. 提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。

3. 公式法:利用平方差公式和完全平方公式进行因式分解。

注意:分解因式必须分解到每一个因式都不能再分解为止。

四、十字相乘法十字相乘法主要用于二次项系数为1的二次多项式的因式分解。

方法:通过观察和尝试,将常数项分解为两个因数的乘积,并使得这两个因数与一次项系数的组合满足整式的乘法规则。

五、注意事项在进行整式乘法时,要注意系数的计算、字母的指数运算以及符号的处理。

在进行因式分解时,要注意分解的彻底性,即每一个因式都不能再进一步分解。

熟练掌握乘法公式和因式分解的方法,对于提高解题效率和准确率至关重要。

掌握这些知识点,将有助于学生更好地理解和应用整式的乘法与因式分解,提高代数运算能力和解题能力。

八年级上册第十四章整式的乘法与因式分解复习(知识点、典型例题)

八年级上册第十四章整式的乘法与因式分解复习(知识点、典型例题)

注意事项
• 1) 首选提公因式法,其次考虑公式法 • 2)两项考虑平方差法,三项考虑完全平方公式 • 3)因式分解要砌底 • 4)(可用整式的乘法检验)但不走回头路
找一找
找出下列各多项式中的公因式
(1)6a 3b 15c (2)25ab 5a (3)18a b 12a b
3 2 2
底数不变, 指数相减。
保留在商里 作为因式。
解: (1).(2x² y)³ · (– 4 6 3 7xy² )÷ (14x y³ ) =8x y · (– 4y³ 7xy² ) ÷ (14x ) 7 5 4 =-56x y ÷(14x y³ ) = 解:(2).(2a+b)4÷(2a+b)² = (2a+b)42 =(2a+b)² = 4a2+4ab+b2
)
定义
一般地,把一个多项式转化成几个整式
的积的形式,叫做因式分解,有时我们也把 这一过程叫做分解因式。
理解概念
判断哪些是因式分解? 因式分解 (1) x2-4y2=(x+2y)(x-2y) 整式乘法 (2) 2x(x-3y)=2x2-6xy (3) (5a-1)2=25a2-10a+1 整式乘法 (4) x2+4x+4=(x+2)2 因式分解 (5)(a-3)(a+3)=a2-9 整式乘法
2 2
6) 4a 3b(4a 3b)
2
易 错 分 析
7)25( x 1) ( x 2)
2
2
1.选择题:
3)下列各式能用平方差公式分解因式的是(
A. 4X² +y² B. 4 x- (-y)²
D)
C. -4 X² -y³ D. - X² + y²

八年级数学整式的乘法与因式分解常考必考知识点总结

八年级数学整式的乘法与因式分解常考必考知识点总结

一、整式的乘法1.几个常用公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²(a+b)(a-b)=a²-b²(a+b)³ = a³ + 3a²b + 3ab² + b³(a-b)³ = a³ - 3a²b + 3ab² - b³2.整式的乘法法则:(a+b)(c+d) = ac + ad + bc + bd加减混合运算:(a+b)(c-d) = ac - ad + bc - bd3.多项式的乘法:(a₁+a₂+...+aₙ)(b₁+b₂+...+bₙ)=a₁b₁+a₁b₂+...+a₁bₙ+a₂b₁+a₂b₂+...+a₂bₙ+...+aₙb₁+aₙb₂+...+aₙb ₙ4.整式的乘法性质:交换律:a·b=b·a结合律:(a·b)·c=a·(b·c)分配律:a·(b+c)=a·b+a·c5.整式的乘法应用:展开、计算、化简等二、因式分解1.因式分解的基本概念:将一个整式分解为两个或多个因式的乘积的过程。

2.因式分解的方法:a.公因式提取法:找出整个整式和各项中的公因式,并提取出来。

b.公式法:利用已知的一些公式对整式进行因式分解。

c.分组法:将整式中各项按一定的规则分组,然后在每组内部进行因式分解。

d.辗转相除法:若整式中存在因式公共因式,可以多次使用辗转相除法进行因式分解。

3.一些常见的因式分解公式:a.二次差平方公式:a²-b²=(a+b)(a-b)b. 平方差公式:a² + 2ab + b² = (a+b)²c. 平方和公式:a² - 2ab + b² = (a-b)²d. 三次和差公式:a³+b³ = (a+b)(a²-ab+b²)、a³-b³ = (a-b)(a²+ab+b²)e. 四次和差公式:a⁴+b⁴ = (a²+b²)(a²-ab+b²)、a⁴-b⁴ = (a+b)(a-b)(a²+b²)4.因式分解的应用:简化计算、寻找整式的根、列立方程等。

初中数学八年级上《整式的乘法及因式分解》知识点及经典题型

初中数学八年级上《整式的乘法及因式分解》知识点及经典题型

整式的乘法及因式分解知识点1 •幕的运算性质:a m a n= a m+n(m、n为正整数)同底数幕相乘,底数不变,指数相加. 例:(一2a)2(- 3a2)3mn2. a= a mn(m、n为正整数)幕的乘方,底数不变,指数相乘. 例:(-a5)53. ab “ a%" (n为正整数)积的乘方等于各因式乘方的积.4. a a= a"n(a^0, m、n都是正整数,且m>n) 同底数幕相除,底数不变,指数相减.5. 零指数幕的概念:a0= 1 (a z 0)任何一个不等于零的数的零指数幕都等于I.6. 负指数幕的概念:丄a p= a(a z0,p是正整数)任何一个不等于零的数的-p (p是正整数)指数幕,等于这个数的p指数幕的倒数.p pn m也可表示为:m n(m z0,n z0,p为正整数)7. 单项式的乘法法则:单项式相乘,把系数、同底数幕分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.8. 单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.9. 多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.10、因式分解中常用的公式,例如:(1) -----------------------------------------(a+b)(a-b) = a 2-b2 a 2-b 2=(a+b)(a-b);2 2 2 2 2 2(2) (a ± b) = a ± 2ab+b -------------- a ± 2ab+b =(a ± b);(3) (a+b)(a 1 2-ab+b2) =a 3+b3 ------ a 3+b3=(a+b)(a 2-ab+b 2);(4) (a-b)(a 2+ab+b2) = a 3-b3-------- a 3-b 3=(a-b)(a 2+ab+b2).下面再补充两个常用的公式:2 2 2 2(5) a +b +c +2ab+2bc+2ca=(a+b+c);(6) a 3+b3+c3-3abc=(a+b+c)(a 2+b2+c2-ab-bc-ca);11、凡是能用十字相乘法分解因式的二次三项式ax2+bx+c,都要求b2 4ac >0而且是一个完全平方数。

8年级上整式乘除与因式分解知识点汇总

8年级上整式乘除与因式分解知识点汇总

第十四章 整式乘法与因式分解(一)幂的运算:1.同底数幂的乘法①n 个相同因式(或因数)a 相乘,记作a n ,读作a 的n 次方(幂),其中a 为底数,n 为指数,a n 的结果叫做幂。

①底数相同的幂叫做同底数幂。

①同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。

即:a m ﹒a n =a m+n 。

注意:底数可以是多项式或单项式。

如:532)()()(b a b a b a +=+•+①此法则也可以逆用,即:a m+n = a m ﹒a n 。

①开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。

2.同底数幂的除法①同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:n m n m a a a -=÷(n m a ,,0≠都是正整数)。

①此法则也可以逆用,即:a m -n = a m ÷a n (a≠0)。

3.零指数与负指数公式:(1)零指数幂:任何不等于0的数的0次幂都等于1,即:a 0=1(a≠0)。

(2)负指数幂:任何不等于零的数的―p 次幂,等于这个数的p 次幂的倒数,即:p p aa 1=-(p a ,0≠是正整数) 注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。

注意:00,0-2无意义;(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5 .绝对值小于1的数可记成n -10a ⨯±的形式,其中10a 1<≤,n 是正整数,n 等于原数中第一个有效数字前面的零的个数(包括小数点前面的一个零)。

4.幂的乘方①幂的乘方是指几个相同的幂相乘。

(a m )n 表示n 个a m 相乘。

①幂的乘方运算法则:幂的乘方,底数不变,指数相乘。

mn n m a a =)(。

(n m ,都是正整数)①此法则也可以逆用,即m n n m mn a a a )()(==。

人教版八年级数学上册第十四章《整式的乘法和因式分解》知识清单,易错点,典型考点和训练点剖析

人教版八年级数学上册第十四章《整式的乘法和因式分解》知识清单,易错点,典型考点和训练点剖析

人教版八年级数学上《整式的乘法与因式分解》知识清单,易错点,典型考点和训练点剖析一.知识快递拿到第一把山门的钥匙后,图图直奔二道山门而去.为了保证把二道山门的钥匙成功拿到手,图图决定走进易错点辩析厅,磨练自己的火眼金睛.二.易错点辨析2.1 忽视符号致错例1 分解因式:-a+3a错解:-a+3a =-a (1+2a )分析:这里公因式有两部分组成,一部分是系数,提出的是-1,一部分是字母,提出的是字母a ,但是在提取的过程中,因为忽视3a 的系数符号,导致解答的错误.正解:-a+3a =-a (1-2a )易错点2:对公示理解不准致错例2 下列计算正确的是( )A.222)(y x y x +=+ B .2222)(y xy x y x --=-C .(x+2y )(x-2y )=222y x -)D .2222)(y xy x y x +-=+- 错解:选A 或选B 或选C .分析:A 所反映的公式是和的完全平方公式,展开后应该有三项,而给出的A 项只有两项,所以A 是错误的;B 所反映的公式是差的完全平方公式,展开后应该有三项,项数合理,但是y 的平方项系数确定错误,应该是加上2y ,所以选项B 是错误的;选项C 所反映的公式是平方差公式,结果应该是两数的平方差,2)2(y 应该是42y ,而不是22y ,所以选项C 是错误的.正解:选D .易错点3:整体提出公因式时不能准确确定余数致错例3 分解因式:2a-4b+2错解:2a-4b+2=2(a-2b ).分析:因式分解的实质是一种恒等变形,所以不论在形式上发生何种变化,有一点是不会改变的,这就是变形前后多项式的项数必须相同.其次,你可以利用乘法将右边回乘看看能否得到左边的多项式,如果能就说明分解是正确的,如果不能,就说明这样的分解是错误的. 最后要说明的是,当这一项被整体提取后,这个位置上余数是1,而不是0,一定要谨记. 正解:2a-4b+2=2(a-2b+1).经过自己艰辛努力,图图顺利闯过了第二道山门.走出易错厅的图图,满怀信心,直奔考点直播室而去.三.考点直播室考点1 单项式乘单项式例1如果□×3ab=32a b ,则□内应填的代数式是( )A.abB.3abC.aD.3a分析:单项式乘单项式,要注意系数的变化,相同字母的指数的变化,单独出现的字母和指数的处理,这是解题的关键.解:选C .考点2 探求完全平方公式展开式中某项的系数例2计算2)2(+x 的结果为2x +□x+4,则“□”中的数为( )A .-2B .2C .-4D .4分析:熟记完全平方公式的展开式是解题的关键.其次就是要灵活运用对应项相同的法则. 解:因为2)2(+x =2x +4x+4,所以2x +□x+4=2x +4x+4,比较对应项,得“□”中的数为4. 所以选择D .考点3 先提取公因式后套用平方差公式分解因式例3分解因式:9a -a 2b = .分析:这里有公因式a ,所以先提出来,其次就是要将数字9写成23,从而在提后的多项式 中,生成用平方差公式的条件.解:9a -a 2b =a (9-2b )==a (23-2b )= a (3+b (3-b ).考点4 先提取公因式后套用完全平方公式分解因式例4.把代数式33x -62x y+3x 2y 分解因式,结果正确的是( )A .x (3x+y )(x-3yB .3x (2x -2xy+2y )C .x 2)3(y x - D .3x 2)(y x - 分析:先确定公因式:3x ;第二步提取公因式3x ,得到3x (2x -2xy+2y ),第三步将结果彻底化,就得到了3x 2)(y x -.解:选D .考点5 先化简后求值例5.先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5分析:解答时,同学们一定要按照题目的要求来作答,否则就很难得到高分的. 解:(a +2)(a -2)+a (1-a )=a 2-4+a -a 2=a -4,当a =5时,原式=5-4=1.成功闯过第三道山门的图图,心里非常的高兴,满怀胜利的喜悦直奔庄园的正殿而去,突然图图放慢了脚步,他担心自己一旦不成功,就会前功尽弃了,为了确保最终的胜利,于是图图悄悄钻进了训练大本营,让自己变得更坚强.四.训练大本营1. 分解因式2x 2 − 4x + 2的最终结果是( )A .2x(x − 2)B .2(x 2 − 2x + 1)C .2(x − 1)2D .(2x − 2)2 2. 当x=10,y=9时,代数式2x -2y 的值是 .3. 化简:2)3(+a +a (2-a )4. 先化简,再求值.()()212x x x ++-,其中12x =-.5.化简:22)()(y x y x --+参考答案:1. C2. 193.解:原式22692a a a a =+++-89a =+4. 解:原式=22212x x x x +++-=221x +, 当12x =-时,原式=21212⎛⎫⨯-+ ⎪⎝⎭=12+1=32. 5.解:原式=222222y xy x y xy x -+-++ =xy 4.图图凭借自己扎实的数学功底,将山庄仔仔细细探了清清楚楚,同学们要学习图图这种不怕困难的学习精神,努力学好数学.欲知图图意欲何往,请听赵老师下次安排.。

人教版数学八年级上册 第十四章 整式乘除与因式分解 知识点归纳

人教版数学八年级上册 第十四章 整式乘除与因式分解 知识点归纳

第十四章 整式乘除与因式分解知识点归纳:一、幂的运算:1、同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

如:532)()()(b a b a b a +=+•+2、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。

如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(== 如:23326)4()4(4==3、积的乘方法则:n n n b a ab =)((n 是正整数)。

积的乘方,等于各因数乘方的积。

如:(523)2z y x -=5101555253532)()()2(z y x z y x -=•••-4、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。

如:3334)()()(b a ab ab ab ==÷5、零指数;10=a ,即任何不等于零的数的零次方等于1。

二、单项式、多项式的乘法运算:6、单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

如:=•-xy z y x 3232 。

7、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加,即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式)。

如:)(3)32(2y x y y x x +--=。

8、多项式与多项式相乘,用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。

9、平方差公式:22))((b a b a b a -=-+注意平方差公式展开只有两项公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。

右边是相同项的平方减去相反项的平方。

八年级上数学整式的乘除与因式分解基本知识点

八年级上数学整式的乘除与因式分解基本知识点

整式的乘除与因式分解基本知识点一、整式的乘除:1、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项. 例如:_______3=-a a ;________22=+a a ;________8253=+-+b a b a __________________210242333222=-++-+-x xy x y x xy xy y x2、同底数幂的乘法法则:a m ·a n =a m+n (m ,n 是正整数). 同底数幂相乘,底数不变,指数相加.例如:________3=⋅a a ;________32=⋅⋅a a a3、幂的乘方法则:(a m )n =a mn (m ,n 是正整数).幂的乘方,底数不变,指数相乘. 例如:_________)(32=a ;_________)(25=x ;()334)()(a a =4、积的乘方的法则:(a b)m =a m b m (m 是正整数).积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 例如:________)(3=ab ;________)2(32=-b a ;________)5(223=-b a 5、同底数幂的除法法则:a m ÷a n =a m-n (a ≠0,m ,n 都是正整数,并且m >n). 同底数幂相除,底数不变,指数相减. 规定:10=a例如:________3=÷a a ;________210=÷a a ;________55=÷a a 6、单项式乘法法则y x 32⋅ )5)(2(22xy y x - )2()3(22xy xy -⋅ 2232)()(b a b a ⋅- 7、单项式除法法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.y x y x 2324÷ ()xy y x 6242-÷ ()()58103106⨯÷⨯8、单项式与多项式相乘的乘法法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.)(c b a m ++ )532(2+--y x x )25(32b ab a ab +--9、多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.)6)(2(-+x x )12)(32(+--y x y x ))((22b ab a b a +-+10、多项式除以单项式的除法法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.()x x xy ÷+56; ()()a ab a 4482-÷-()b a b a b a 232454520÷- c c b c a 2121222÷⎪⎭⎫ ⎝⎛-11、整式乘法的平方差公式:(a +b)(a -b)=a 2-b 2.两个数的和与这两个数的差的积,等于这两个数的平方差.例如:(4a -1)(4a+1)=___________; (3a -2b )(2b+3a )=___________;()()11-+mn mn = ; =--+-)3)(3(x x ;12、整式乘法的完全平方公式:(a +b)2=a 2+2a b+b 2,(a -b)2=a 2-2a b+b 2.两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍. 例如:()____________522=+b a ; ()_______________32=-y x()_____________22=+-ab ; ()______________122=--m二、因式分解: 1、提公因式法:4y xy - 32x x + x 2+12x 3+4x )1()1(-+-a n a m 2、公式法.:(1)、平方差公式:))((22b a b a b a -+=-12-x 2294b a - 22)(16z y x +- 22)2()2(b a b a --+(2)、完全平方公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+-442+-m m 2269y xy x ++ 924162++x x 36)(12)(2++-+b a b a3、分组分解法:1a b ab +++ ab -c +b -ac a 2-2ab +b 2-c 24、“十字相乘法”:即式子x 2+(p+q)x+pq 的因式分解. x 2+(p+q)x+pq=(x+p)(x+q).x 2+7x +6 (2)、x 2-5x -6 (3)、x 2-5x +6整式的乘法[同底数幂的乘法]a m ·a n =a m+n (m 、n 都是正整数) [幂的乘方](a m )n =a mn (m ,n 都是正整数) [积的乘方](ab)n =a n b n (n 是正整数) [单项式乘以单项式]单项式与单项式相乘,把它们的系数、相同的字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. [单项式乘以多项式]单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加. [多项式乘以多项式]多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.平方差公式[平方差公式] (a +b)(a -b)=a 2-b 21. 公式的结构特征:⑴左边是两个二项式相乘,这两个二项式中,有一项完全相同,另一项互为相反数.⑵右边是这两个数的平方差,即完全相同的项与互为相反数的项的平方差(同号项2-异号项2).2. 公式的应用:⑴公式中的字母a ,b 可以表示具体的数,也可以表示单项式或多项式,只要符合公式的结构特征,就可以用此公式进行计算.⑵公式中的a b22是不可颠倒的,注意是同号项的平方减去异号项的平方,还要注意字母的系数和指数.⑶为了避免错误,初学时,可将结果用“括号”的平方差表示,再往括号内填上这两个数.如:(a+b)( a - b)= a2 -b2↓↓↓↓↓↓计算:(1+2x)(1-2x)= ( 1 )2-( 2x )2 =1-4x2[完全平方公式]两数和(或差)的平方,等于它们的平方和加(或减)它们的积的2倍.公式特征:左边是一个二项式的平方,右边是一个三项式(首平方,尾平方,二倍乘积在中央).公式变形:(a+b)2=(a-b)2+4ab a2 + b2 = (a+b)2-2ab(a-b)2=(a+b)2-4ab a2 + b2 = (a-b)2+2ab(a+b)2- (a-b)2=4ab[公式的推广] (a+b+c)2=a2+b2+c2+2ab+2bc+2ac[同底数幂的除法]a m÷a n=a m-n(a≠0,m,n都是正整数,并且m>n).a0=1(a≠0)任何非零数的零次幂是1.[单项式除以单项式]单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.[多项式除以单项式]多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.[因式分解]把一个多项式分解成几个整式的积的形式,叫做把这个多项式因式分解(或分解因式). [提公因式法]ac +bc=(a +b )c[公式法][十字相乘法]一、训练平台1.下列各式中,计算正确的是( ) ×27=28×22=210+26=27+26=2122.当x=23时,3(x+5)(x-3)-5(x-2)(x+3)的值等于( )239 D.239 3.已知x-y=3,x-z=21,则(y-z)2+5(y-z)+425的值等于( )A.425 B.25 254.设n 为正整数,若a 2n =5,则2a 6n -4的值为( )D.不能确定5.(a +b)(a -2b)= .6.(2a +2= .7.(a +4b)(m+n)= . 8.计算.(1)(2a -b 2)(b 2+2a )= ;(2)(5a -b)(-5a +b)= .9.分解因式. (1)1-4m+4m 2;(2)7x 3-7x.10.先化简,再求值.[(x-y)2+(x+y)(x-y)]÷2x ,其中x=3,y=. 二、探究平台1.分解因式(a -b)(a 2-a b+b 2)-a b(b-a )为( ) A.(a -b)(a 2+b 2)B.(a -b)2(a +b)C.(a -b)3(a -b)32.下列计算正确的是( ) ÷a 2=a 4(a ≠0) ÷a 4=a (a ≠0) ÷a 6=a 3(a ≠0)D.(a 2b)3=a 6b3.下列各题是在有理数范围内分解因式,结果正确的是( )=(-x+4)(-x-4) +x 3n =x n (2+x 3)41=41(1+2x)(1-2x) 4.分解因式:-a 2+4a b-4b 2= .5.如果x 2+2(m-3)x+25能用公式法分解因式,那么m 的值是 .6.(3x 3+3x)÷(x 2+1)= . . 8.计算.(1)12345678921234567890123456789112345678902⨯-;(2)20032002200220002002220022323-+-⨯-.9.分解因式.(1)x(m-x)(m-y)-m(x-m)(y-m); (2)x 4-81x 2y 2.10.112--x x +x(1+x1),其中x=2-1.三、交流平台1.一条水渠其横断面为梯形,如图15-23所示,根据图中的长度求出横断面面积的代数式,并计算当a=2,b=时的面积.2.已知多项式x3+kx+6有一个因式x+3,当k为何值时,能分解成三个一次因式的积?并将它分解.3.如果x+y=0,试求x3+x2y+xy2+y3的值.4.试说明无论m,n为任何有理数,多项式4m2+12m+25+9n2-24n的值为非负数.第十六章分式知识点和典型例习题【知识网络】【思想方法】1.转化思想转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等.2.建模思想本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程.第一讲 分式的运算【知识要点】1.分式的概念以及基本性质;2.与分式运算有关的运算法则3.分式的化简求值(通分与约分)4.幂的运算法则【主要公式】1.同分母加减法则:()0b c b ca a a a±±=≠2.异分母加减法则:()0,0b d bc da bc daa c a c ac ac ac±±=±=≠≠;3.分式的乘法与除法:b d bd a c ac •=,b c b d bda d a c ac÷=•=4.同底数幂的加减运算法则:实际是合并同类项5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n6.积的乘方与幂的乘方:(ab)m = a m b n , (a m )n = a mn7.负指数幂: a -p =1p aa 0=1 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)= a 2-b 2 ;(a ±b)2= a 2±2ab+b 2(一)、分式定义及有关题型题型一:考查分式的定义【例1】下列代数式中:y x yx y x y x ba b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件【例2】当x 有何值时,下列分式有意义 (1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件【例3】当x 取何值时,下列分式的值为0. (1)31+-x x (2)42||2--x x (3)653222----x x x x题型四:考查分式的值为正、负的条件【例4】(1)当x 为何值时,分式x-84为正;(2)当x 为何值时,分式2)1(35-+-x x 为负;(3)当x 为何值时,分式32+-x x 为非负数.练习:1.当x 取何值时,下列分式有意义: (1)3||61-x(2)1)1(32++-x x (3)x111+2.当x 为何值时,下列分式的值为零:(1)4|1|5+--x x(2)562522+--x x x3.解下列不等式 (1)012||≤+-x x (2)03252>+++x x x(二)分式的基本性质及有关题型1.分式的基本性质:MB M A M B M A B A ÷÷=⨯⨯=2.分式的变号法则:bab a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)y x yx 41313221+- (2)ba ba +-04.003.02.0题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)yx yx --+- (2)ba a ---(3)ba ---题型三:化简求值题【例3】已知:511=+y x,求yxy x yxy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出yx11+. 【例4】已知:21=-xx ,求221xx +的值.【例5】若0)32(|1|2=-++-x y x ,求yx 241-的值. 练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数. (1)yx yx 5.008.02.003.0+-(2)b a ba 10141534.0-+ 2.已知:31=+x x ,求1242++x x x 的值.3.已知:311=-b a ,求aab b bab a ---+232的值.4.若0106222=+-++b b a a ,求ba ba 532+-的值. 5.如果21<<x ,试化简x x --2|2|xx x x |||1|1+---.(三)分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母因式取各分母所有字母的最高次幂.2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂.题型一:通分【例1】将下列各式分别通分. (1)cb ac a b ab c 225,3,2--; (2)a b b b a a 22,--; (3)22,21,1222--+--x x xx xx x ; (4)aa -+21,2题型二:约分【例2】约分: (1)322016xy y x -;(3)n m m n --22;(3)6222---+x x x x .题型三:分式的混合运算【例3】计算:(1)42232)()()(abc ab c c b a ÷-⋅-;(2)22233)()()3(xy x y y x y x a +-÷-⋅+; (3)mn mn m n m n n m ---+-+22;(4)112---a a a ;(5)874321814121111x x x x x x x x +-+-+-+--; (6))5)(3(1)3)(1(1)1)(1(1+++++++-x x x x x x ; (7))12()21444(222+-⋅--+--x x x x x x x 题型四:化简求值题【例4】先化简后求值(1)已知:1-=x ,求分子)]121()144[(48122x x x x -÷-+--的值;(2)已知:432z y x ==,求22232zy x xzyz xy ++-+的值;(3)已知:0132=+-a a ,试求)1)(1(22a a a a --的值.题型五:求待定字母的值【例5】若111312-++=--x Nx M x x ,试求N M ,的值. 练习:1.计算(1))1(232)1(21)1(252+-++--++a a a a a a ; (2)a b abb b a a ----222; (3)ba c cb ac b c b a c b a c b a ---++-+---++-232; (4)b a b b a ++-22;(5))4)(4(ba abb a b a ab b a +-+-+-;(6)2121111x x x ++++-; (7))2)(1(1)3)(1(2)3)(2(1--+-----x x x x x x . 2.先化简后求值(1)1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a . (2)已知3:2:=y x ,求2322])()[()(yxx y x y x xy y x ÷-⋅+÷-的值.3.已知:121)12)(1(45---=---x Bx A x x x ,试求A 、B 的值. 4.当a 为何整数时,代数式2805399++a a 的值是整数,并求出这个整数值. (四)、整数指数幂与科学记数法题型一:运用整数指数幂计算【例1】计算:(1)3132)()(---⋅bc a (2)2322123)5()3(z xy z y x ---⋅(3)24253])()()()([b a b a b a b a +--+-- (4)6223)(])()[(--+⋅-⋅+y x y x y x题型二:化简求值题【例2】已知51=+-x x ,求(1)22-+x x 的值;(2)求44-+x x 的值. 题型三:科学记数法的计算【例3】计算:(1)223)102.8()103(--⨯⨯⨯;(2)3223)102()104(--⨯÷⨯. 练习:1.计算:(1)20082007024)25.0()31(|31|)51()5131(⋅-+-+-÷⋅-- (2)322231)()3(-----⋅n m n m (3)23232222)()3()()2(--⋅⋅ab b a b a ab(4)21222)]()(2[])()(4[----++-y x y x y x y x2.已知0152=+-x x ,求(1)1-+x x ,(2)22-+x x 的值.第二讲 分式方程【知识要点】1.分式方程的概念以及解法;2.分式方程产生增根的原因3.分式方程的应用题【主要方法】1.分式方程主要是看分母是否有外未知数;2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母.3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数.(一)分式方程题型分析题型一:用常规方法解分式方程【例1】解下列分式方程 (1)xx 311=-;(2)0132=--x x ;(3)114112=---+x x x ;(4)x x x x -+=++4535 提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根. 题型二:特殊方法解分式方程【例2】解下列方程 (1)4441=+++x x x x ; (2)569108967+++++=+++++x x x x x x x x 提示:(1)换元法,设y x x =+1;(2)裂项法,61167++=++x x x .【例3】解下列方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+)3(4111)2(3111)1(2111x z z y y x 题型三:求待定字母的值【例4】若关于x 的分式方程3132--=-x mx 有增根,求m 的值. 【例5】若分式方程122-=-+x ax 的解是正数,求a 的取值范围. 提示:032>-=ax 且2≠x ,2<∴a 且4-≠a . 题型四:解含有字母系数的方程【例6】解关于x 的方程)0(≠+=--d c dcx b a x 提示:(1)d c b a ,,,是已知数;(2)0≠+d c . 题型五:列分式方程解应用题练习:1.解下列方程: (1)021211=-++-x xx x ; (2)3423-=--x x x ; (3)22322=--+x x x ; (4)171372222--+=--+x x x x xx (5)2123524245--+=--x x x x(6)41215111+++=+++x x x x(7)6811792--+-+=--+-x x x x x x x x2.解关于x 的方程:(1)b x a 211+=)2(a b ≠;(2))(11b a xbb x a a ≠+=+. 3.如果解关于x 的方程222-=+-x xx k 会产生增根,求k 的值.4.当k 为何值时,关于x 的方程1)2)(1(23++-=++x x kx x 的解为非负数. 5.已知关于x 的分式方程a x a =++112无解,试求a 的值. (二)分式方程的特殊解法解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法例1.解方程:231+=x x 二、化归法例2.解方程:012112=---x x 三、左边通分法例3:解方程:87178=----xx x 四、分子对等法例4.解方程:)(11b a xb b x a a ≠+=+五、观察比较法例5.解方程:417425254=-+-x x x x六、分离常数法例6.解方程:87329821+++++=+++++x x x x x x x x七、分组通分法例7.解方程:41315121+++=+++x x x x(三)分式方程求待定字母值的方法例1.若分式方程xmx x -=--221无解,求m 的值。

人教版八年级数学上册-整式的乘除与分解因式知识点总结及同步测试

人教版八年级数学上册-整式的乘除与分解因式知识点总结及同步测试

人教版八年级数学上册《第十四章 整式的乘除与分解因式》知识点总结1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯=⑵幂的乘方:()n m mn a a =⑶积的乘方:()nn n ab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式.⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式.⑶多项式÷单项式:用多项式每个项除以单项式后相加.⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:()()22a b a b a b -=+-②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+④立方差:3322()()a b a b a ab b -=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++⑷拆项法⑸添项法单元测试二一、选择题:1.下列多项式中能用平方差公式分解因式的是( )A .22)(b a -+B .mn m 2052-C .92+-xD .22y x --2.如果2592++kx x 是一个完全平方式,那么k 的值是( )A . 15B .±5C . 30D . ±303.△ABC 的三边满足2))((a b c b c -=-+,则△ABC 是( )A .等腰三角形B .直角三角形C .等边三角形D .锐角三角形4.下列因式分解错误的是 ( )A .)64(21282223+-=+-a a a a a aB .)3)(2(652--=+-x x x xC .))(()(22c b a c b a c b a --+-=--D .22)1(2242+=-+-a a a5.计算2()a b --等于 ( )A .22a b +B .22a b -C .222a ab b ++D .222a ab b -+6.若E p q p q q p ⋅-=---232)()()(,则E 是( )A .p q --1B .p q -C .q p -+1D .p q -+17.若0)5()3(22=+-+-+y x y x ,则)(22=-y xA .8B .8-C .15D .15-8.13+m a 可写成 ( )A . a a m ⋅3B .13)(+m aC .13)(+m aD . 12)(+m m a9.我们约定1010a b a b ⊗=⨯,如23523101010⊗=⨯=,那么48⊗为 ( )A .32B .3210C .1210D .101210.n 个底边长为a ,腰长为b 的等腰三角形ABC 拼成图1,则图1中的线段之和是()A .nb na 2+B .b nb na ++C .b na 2+D .b na 22+二、填空题:11.已知2(4)(9)x x x mx n -+=++,则m n +=________。

整式的乘法与因式分解知识点

整式的乘法与因式分解知识点

整式的乘法与因式分解知识点整式的乘法和因式分解是初中数学中的重要知识点,也是后续学习代数、方程和不等式的基础。

本文将详细介绍整式的乘法和因式分解的定义、性质和方法。

一、整式的乘法整式是由常数和单项式相加(减)得到的代数式,其中单项式是指只包含一个变量的项。

整式的乘法是指将两个或多个整式相乘的运算。

1.单项式的乘法:单项式的乘法遵循以下运算法则:-同底数幂相乘,底数不变,指数相加。

例如,a^m*a^n=a^(m+n)。

-不同底数幂相乘,指数相乘。

例如,a^m*b^n=a^m*b^n。

- 系数相乘。

例如,k * t = kt。

2.多项式的乘法:多项式的乘法通过将每一项都与另一个多项式的每一项相乘,并将结果相加得到。

例如,(a+b+c)(x+y+z) = ax+ay+az+bx+by+bz+cx+cy+cz。

这个过程通常称为“分配律”。

二、整式的因式分解整式的因式分解是指将一个整式表示成几个单项式的乘积的运算。

因式分解的基本思路是找到整式的公因式,然后使用“提公因式法”将整式表示为公因式与其余部分的乘积。

1.提公因式法:假设整式ax+bx有一个公因式x,则可以将其改写为x(a+b)。

这个过程是因式分解中最基本的方法。

根据此原理,我们可以使用提公因式法因式分解更复杂的整式。

2.完全平方公式的因式分解:完全平方公式是指一个二次三项式(即一元二次多项式)的平方可以被因式分解成两个平方的和或差。

例如,a^2+2ab+b^2可以因式分解为(a+b)^2,而a^2-2ab+b^2可以因式分解为(a-b)^23.完全立方公式的因式分解:完全立方公式是指一个三次三项式(即一元三次多项式)的立方可以被因式分解成两个立方的和或差。

例如,a^3+3a^2b+3ab^2+b^3可以因式分解为(a+b)^3,而a^3-3a^2b+3ab^2-b^3可以因式分解为(a-b)^34.分组分解法:分组分解法是指根据整式中各项之间的关系将整式进行分组,以便使用提公因式法进行因式分解。

八年级上数学整式的乘除与因式分解基本知识点

八年级上数学整式的乘除与因式分解基本知识点

整式的乘除与因式分解基本知识点一、整式的乘除:1、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项. 例如:_______3=-a a ;________22=+a a ;________8253=+-+b a b a __________________210242333222=-++-+-x xy x y x xy xy y x2、同底数幂的乘法法则:a m ·a n =a m+n (m ,n 是正整数). 同底数幂相乘,底数不变,指数相加. 例如:________3=⋅a a ;________32=⋅⋅a a a3、幂的乘方法则:(a m )n =a mn (m ,n 是正整数).幂的乘方,底数不变,指数相乘. 例如:_________)(32=a ;_________)(25=x ;()334)()(a a =4、积的乘方的法则:(a b)m =a m b m (m 是正整数).积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 例如:________)(3=ab ;________)2(32=-b a ;________)5(223=-b a 5、同底数幂的除法法则:a m ÷a n =a m-n (a ≠0,m ,n 都是正整数,并且m >n). 同底数幂相除,底数不变,指数相减. 规定:10=a例如:________3=÷a a ;________210=÷a a ;________55=÷a a 6、单项式乘法法则y x 32⋅ )5)(2(22xy y x - )2()3(22xy xy -⋅ 2232)()(b a b a ⋅-7、单项式除法法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.y x y x 2324÷ ()xy y x 6242-÷ ()()58103106⨯÷⨯8、单项式与多项式相乘的乘法法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.)(c b a m ++ )532(2+--y x x )25(32b ab a ab +--9、多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.)6)(2(-+x x )12)(32(+--y x y x ))((22b ab a b a +-+10、多项式除以单项式的除法法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.()x x xy ÷+56; ()()a ab a 4482-÷-()b a b a b a 232454520÷-c c b c a 2121222÷⎪⎭⎫ ⎝⎛-11、整式乘法的平方差公式:(a +b)(a -b)=a 2-b 2.两个数的和与这两个数的差的积,等于这两个数的平方差. 例如:(4a -1)(4a+1)=___________; (3a -2b )(2b+3a )=___________;()()11-+mn mn = ; =--+-)3)(3(x x ;12、整式乘法的完全平方公式:(a +b)2=a 2+2a b+b 2,(a -b)2=a 2-2a b+b 2.两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.例如:()____________522=+b a ; ()_______________32=-y x()_____________22=+-ab ; ()______________122=--m二、因式分解: 1、提公因式法:4y xy - 32x x + x 2+12x 3+4x )1()1(-+-a n a m 2、公式法.:(1)、平方差公式:))((22b a b a b a -+=-12-x 2294b a - 22)(16z y x +- 22)2()2(b a b a --+(2)、完全平方公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+-442+-m m 2269y xy x ++ 924162++x x 36)(12)(2++-+b a b a3、分组分解法:1a b ab +++ ab -c +b -ac a 2-2ab +b 2-c 24、“十字相乘法”:即式子x 2+(p+q)x+pq 的因式分解. x 2+(p+q)x+pq=(x+p)(x+q).x 2+7x +6 (2)、x 2-5x -6 (3)、x 2-5x +6整式的乘法[同底数幂的乘法]a m ·a n =a m+n (m 、n 都是正整数) [幂的乘方](a m )n =a mn (m ,n 都是正整数) [积的乘方](ab)n =a n b n (n 是正整数) [单项式乘以单项式]单项式与单项式相乘,把它们的系数、相同的字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. [单项式乘以多项式]单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加. [多项式乘以多项式]多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.平方差公式[平方差公式] (a +b)(a -b)=a 2-b 21. 公式的结构特征:⑴左边是两个二项式相乘,这两个二项式中,有一项完全相同,另一项互为相反数.⑵右边是这两个数的平方差,即完全相同的项与互为相反数的项的平方差(同号项2-异号项2).2. 公式的应用:⑴公式中的字母a ,b 可以表示具体的数,也可以表示单项式或多项式,只要符合公式的结构特征,就可以用此公式进行计算.⑵公式中的a b 22 是不可颠倒的,注意是同号项的平方减去异号项的平方,还要注意字母的系数和指数.⑶为了避免错误,初学时,可将结果用“括号”的平方差表示,再往括号内填上这两个数. 如:(a+b )( a - b )= a 2 - b 2 ↓↓ ↓↓ ↓ ↓计算:(1+2x )(1-2x )= ( 1 )2-( 2x )2 =1-4x 2[完全平方公式]两数和(或差)的平方,等于它们的平方和加(或减)它们的积的2倍.公式特征:左边是一个二项式的平方,右边是一个三项式(首平方,尾平方,二倍乘积在中央). 公式变形:(a+b)2=(a-b)2+4ab a 2 + b 2 = (a+b)2-2ab (a-b)2=(a+b)2-4ab a 2 + b 2 = (a-b)2+2ab(a+b)2- (a-b)2=4ab[公式的推广] (a+b+c)2=a 2+b 2+c 2+2ab+2bc+2ac[同底数幂的除法]a m ÷a n =a m-n(a ≠0,m ,n 都是正整数,并且m>n). a 0=1(a ≠0)任何非零数的零次幂是1. [单项式除以单项式]单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式. [多项式除以单项式]多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.[因式分解]把一个多项式分解成几个整式的积的形式,叫做把这个多项式因式分解(或分解因式). [提公因式法]ac +bc=(a +b )c[公式法][十字相乘法一、训练平台1.下列各式中,计算正确的是( ) A.27×27=28 B.25×22=210 C.26+26=27 D.26+26=2122.当x=23时,3(x+5)(x-3)-5(x-2)(x+3)的值等于( )A.-239B.-18C.18D.239 3.已知x-y=3,x-z=21,则(y-z)2+5(y-z)+425的值等于( )A.425B.25C.-25D.0 4.设n 为正整数,若a 2n =5,则2a 6n-4的值为( )A.26B.246C.242D.不能确定 5.(a +b)(a -2b)= .6.(2a +0.5b)2= . 7.(a +4b)(m+n)= . 8.计算.(1)(2a -b 2)(b 2+2a )= ;(2)(5a -b)(-5a +b)= . 9.分解因式.(1)1-4m+4m 2; (2)7x 3-7x. 10.先化简,再求值.[(x-y)2+(x+y)(x-y)]÷2x ,其中x=3,y=-1.5. 二、探究平台1.分解因式(a -b)(a 2-a b+b 2)-a b(b-a )为( ) A.(a -b)(a 2+b 2) B.(a -b)2(a +b) C.(a -b)3 D.-(a -b)32.下列计算正确的是( )A.a 8÷a 2=a 4(a ≠0)B.a 3÷a 4=a (a ≠0)C.a 9÷a 6=a 3(a ≠0)D.(a 2b)3=a 6b3.下列各题是在有理数范围内分解因式,结果正确的是( ) A.x 4-0.1=(x 2+0.1)(x 2-0.1) B.-x 2-16=(-x+4)(-x-4)C.2x n +x 3n =x n (2+x 3)D.41-x 2=41(1+2x)(1-2x)4.分解因式:-a 2+4a b-4b 2= .5.如果x 2+2(m-3)x+25能用公式法分解因式,那么m 的值是 .6.(3x 3+3x)÷(x 2+1)= .7.1.22222×9-1.33332×4= . 8.计算.(1)12345678921234567890123456789112345678902⨯-;(2)20032002200220002002220022323-+-⨯-. 9.分解因式.(1)x(m-x)(m-y)-m(x-m)(y-m); (2)x 4-81x 2y 2.10.112--x x +x(1+x1),其中x=2-1.三、交流平台1.一条水渠其横断面为梯形,如图15-23所示,根据图中的长度求出横断面面积的代数式,并计算当a =2,b=0.8时的面积.2.已知多项式x 3+kx+6有一个因式x+3,当k 为何值时,能分解成三个一次因式的积?并将它分解. 3.如果x+y=0,试求x 3+x 2y+xy 2+y 3的值.4.试说明无论m ,n 为任何有理数,多项式4m 2+12m+25+9n 2-24n 的值为非负数.第十六章分式知识点和典型例习题【知识网络】【思想方法】 1.转化思想转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程.第一讲 分式的运算【知识要点】1.分式的概念以及基本性质;2.与分式运算有关的运算法则3.分式的化简求值(通分与约分)4.幂的运算法则【主要公式】1.同分母加减法则:()0b c b ca a a a±±=≠2.异分母加减法则:()0,0b d bc da bc daa c a c ac ac ac±±=±=≠≠;3.分式的乘法与除法:b d bd a c ac •=,b c b d bda d a c ac÷=•=4.同底数幂的加减运算法则:实际是合并同类项5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n6.积的乘方与幂的乘方:(ab)m = a m b n , (a m )n = a mn7.负指数幂: a -p =1p aa 0=18.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)= a 2- b 2 ;(a ±b)2= a 2±2ab+b 2(一)、分式定义及有关题型题型一:考查分式的定义【例1】下列代数式中:yx yx y x y x b a b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件【例2】当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件【例3】当x 取何值时,下列分式的值为0.(1)31+-x x (2)42||2--x x (3)653222----x x x x题型四:考查分式的值为正、负的条件【例4】(1)当x 为何值时,分式x-84为正;(2)当x 为何值时,分式2)1(35-+-x x 为负;(3)当x 为何值时,分式32+-x x 为非负数.练习:1.当x 取何值时,下列分式有意义:(1)3||61-x(2)1)1(32++-x x (3)x111+2.当x 为何值时,下列分式的值为零:(1)4|1|5+--x x(2)562522+--x x x3.解下列不等式 (1)012||≤+-x x (2)03252>+++x x x(二)分式的基本性质及有关题型1.分式的基本性质:MB M A M B M A B A ÷÷=⨯⨯=2.分式的变号法则:bab a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)y x yx 41313221+- (2)ba ba +-04.003.02.0题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)yx yx --+- (2)ba a ---(3)ba ---题型三:化简求值题【例3】已知:511=+y x,求yxy x yxy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出yx11+. 【例4】已知:21=-xx ,求221xx +的值.【例5】若0)32(|1|2=-++-x y x ,求yx 241-的值. 练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数.(1)yx yx 5.008.02.003.0+-(2)b a ba 10141534.0-+ 2.已知:31=+x x ,求1242++x x x 的值.3.已知:311=-b a ,求aab b bab a ---+232的值.4.若0106222=+-++b b a a ,求ba ba 532+-的值. 5.如果21<<x ,试化简x x --2|2|xx x x |||1|1+---.(三)分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母因式取各分母所有字母的最高次幂.2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂.题型一:通分【例1】将下列各式分别通分.(1)cb ac a b ab c 225,3,2--; (2)a b b b a a 22,--; (3)22,21,1222--+--x x x x xx x ; (4)aa -+21,2题型二:约分【例2】约分:(1)322016xy y x -;(3)n m m n --22;(3)6222---+x x x x .题型三:分式的混合运算【例3】计算:(1)42232)()()(abc ab c c b a ÷-⋅-;(2)22233)()()3(xy x y y x y x a +-÷-⋅+; (3)mn mn m n m n n m ---+-+22;(4)112---a a a ;(5)874321814121111x x x x x x x x +-+-+-+--; (6))5)(3(1)3)(1(1)1)(1(1+++++++-x x x x x x ; (7))12()21444(222+-⋅--+--x xx x x x x题型四:化简求值题【例4】先化简后求值(1)已知:1-=x ,求分子)]121()144[(48122x x x x -÷-+--的值;(2)已知:432z y x ==,求22232zy x xzyz xy ++-+的值;(3)已知:0132=+-a a ,试求)1)(1(22a a a a --的值.题型五:求待定字母的值【例5】若111312-++=--x Nx M x x ,试求N M ,的值. 练习:1.计算(1))1(232)1(21)1(252+-++--++a a a a a a ;(2)a b abb b a a ----222; (3)ba c cb ac b c b a c b a c b a ---++-+---++-232;(4)b a b b a ++-22;(5))4)(4(ba abb a b a ab b a +-+-+-; (6)2121111x x x ++++-; (7))2)(1(1)3)(1(2)3)(2(1--+-----x x x x x x . 2.先化简后求值(1)1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a . (2)已知3:2:=y x ,求2322])()[()(yxx y x y x xy y x ÷-⋅+÷-的值.3.已知:121)12)(1(45---=---x Bx A x x x ,试求A 、B 的值. 4.当a 为何整数时,代数式2805399++a a 的值是整数,并求出这个整数值. (四)、整数指数幂与科学记数法题型一:运用整数指数幂计算【例1】计算:(1)3132)()(---⋅bc a (2)2322123)5()3(z xy z y x ---⋅(3)24253])()()()([b a b a b a b a +--+-- (4)6223)(])()[(--+⋅-⋅+y x y x y x题型二:化简求值题【例2】已知51=+-x x ,求(1)22-+x x 的值;(2)求44-+x x 的值. 题型三:科学记数法的计算【例3】计算:(1)223)102.8()103(--⨯⨯⨯;(2)3223)102()104(--⨯÷⨯. 练习:1.计算:(1)20082007024)25.0()31(|31|)51()5131(⋅-+-+-÷⋅-- (2)322231)()3(-----⋅n m n m (3)23232222)()3()()2(--⋅⋅ab b a b a ab(4)21222)]()(2[])()(4[----++-y x y x y x y x2.已知0152=+-x x ,求(1)1-+x x ,(2)22-+x x 的值.第二讲 分式方程【知识要点】1.分式方程的概念以及解法;2.分式方程产生增根的原因3.分式方程的应用题【主要方法】1.分式方程主要是看分母是否有外未知数;2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母.3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数.(一)分式方程题型分析题型一:用常规方法解分式方程【例1】解下列分式方程(1)xx 311=-;(2)0132=--x x ;(3)114112=---+x x x ;(4)x x x x -+=++4535 提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.题型二:特殊方法解分式方程【例2】解下列方程(1)4441=+++x x x x ; (2)569108967+++++=+++++x x x x x x x x提示:(1)换元法,设y x x =+1;(2)裂项法,61167++=++x x x . 【例3】解下列方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+)3(4111)2(3111)1(2111x z z y y x 题型三:求待定字母的值【例4】若关于x 的分式方程3132--=-x m x 有增根,求m 的值. 【例5】若分式方程122-=-+x a x 的解是正数,求a 的取值范围. 提示:032>-=a x 且2≠x ,2<∴a 且4-≠a . 题型四:解含有字母系数的方程【例6】解关于x 的方程)0(≠+=--d c dc x b a x 提示:(1)d c b a ,,,是已知数;(2)0≠+d c .题型五:列分式方程解应用题练习:1.解下列方程:(1)021211=-++-x x x x ; (2)3423-=--x x x ; (3)22322=--+x x x ; (4)171372222--+=--+x x x x x x (5)2123524245--+=--x x x x (6)41215111+++=+++x x x x (7)6811792--+-+=--+-x x x x x x x x 2.解关于x 的方程: (1)b x a 211+=)2(a b ≠;(2))(11b a xb b x a a ≠+=+. 3.如果解关于x 的方程222-=+-x x x k 会产生增根,求k 的值.4.当k 为何值时,关于x 的方程1)2)(1(23++-=++x x k x x 的解为非负数. 5.已知关于x 的分式方程a x a =++112无解,试求a 的值.(二)分式方程的特殊解法解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下:一、交叉相乘法例1.解方程:231+=x x 二、化归法例2.解方程:012112=---x x 三、左边通分法例3:解方程:87178=----x x x 四、分子对等法例4.解方程:)(11b a x b b x a a ≠+=+五、观察比较法例5.解方程:417425254=-+-x x x x 六、分离常数法例6.解方程:87329821+++++=+++++x x x x x x x x 七、分组通分法例7.解方程:41315121+++=+++x x x x(三)分式方程求待定字母值的方法例1.若分式方程x m x x -=--221无解,求m 的值。

八年级数学上册《整式的乘法与因式分解》知识归纳

八年级数学上册《整式的乘法与因式分解》知识归纳

作品编号:51897654258769315745896
学校:五朱角市鸟砟镇四灵小学*
教师:猴挪黑*
班级:占卜参班*
第十四章整式的乘法与因式分解
14.1 整式的乘法
同底数幂的乘法:a m ·a n = a m + n(m、n都是正整数)
幂的乘方:(a m)n = a m n(m、n都是正整数)
积的乘方:(ab)n = a n b n(n为正整数)
同底数幂的除法:a m÷a n = a m - n(a ≠ 0 ,m、n都是正整数,并且m>n)
零指数幂:a0 = 1(a ≠ 0 )
单项式与单项式相乘,单项式与多项式相乘,多项式与多项式相乘。

(利用运算律和上面的运算性质解答)
14.2 乘法公式
平方差公式:(a+b)(a-b)= a2 - b2
完全平方公式:(a+b)2 = a2 + 2ab + b2
(a-b)2 = a2 - 2ab + b2
添括号法则:a+b+c = a+(b+c) a-b-c = a - (b+c) 举例:a-b+c = a - (b-c)
14.3 因式分解(几个整式乘积的形式)
式子的变形:这个多项式的因式分解= 把这个多项式因式分解。

1、提公因式法(多项式各项有公因式)
2、公式法(3个乘法公式左右互换)
3、十字相乘法(补充)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘法及因式分解知识点1.幂的运算性质:a m ·a n =a m +n (m 、n 为正整数)同底数幂相乘,底数不变,指数相加. 例:(-2a )2(-3a 2)3 2.()nm a = a mn (m 、n 为正整数)幂的乘方,底数不变,指数相乘.例: (-a 5)53.()nn n b a ab = (n 为正整数)积的乘方等于各因式乘方的积. 4.nm a a ÷= a m -n (a ≠0,m 、n 都是正整数,且m >n )同底数幂相除,底数不变,指数相减.5.零指数幂的概念:a 0=1 (a ≠0)任何一个不等于零的数的零指数幂都等于l . 6.负指数幂的概念:a -p =pa 1 (a ≠0,p 是正整数)任何一个不等于零的数的-p (p 是正整数)指数幂,等于这个数的p 指数幂的倒数.也可表示为:ppn m m n ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-(m ≠0,n ≠0,p 为正整数)7.单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.8.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加. 9.多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.10、因式分解中常用的公式,例如:(1)(a+b)(a-b) = a 2-b 2 ---------a 2-b 2=(a+b)(a-b);(2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a-b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a-b)(a 2+ab+b 2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);11、凡是能用十字相乘法分解因式的二次三项式ax 2+bx+c ,都要求24b ac ∆=- >0而且是一个完全平方数。

(a 、b 、c 是常数)整式的乘法及因式分解相关题型:一、有关幂的典型题型:公式的直接应用:(1)22253)(631ac c b a b a -⋅⋅ (2)4233)2()21(n m n m -⋅-1、若n 为正整数,且x 2n =3,则(3x 3n ) 2的值为2、如果(a n b ·ab m ) 3=a 9b 15,那么mn 的值是3、已知102m =,103n =,则3210m n +=____________.练习题:若._____34,992213=-=⋅⋅++-m m y x y x y x n n m m 则如果2x a =,3y a =,则23x ya+=______________. 4、已知,01200520042=+++++x x x x Λ则.________2006=x 5、若142-=y x ,1327+=x y ,则y x -等于( )(A )-5 (B )-3 (C )-1 (D )16、计算:20032)(-·200221)(等于( ). (A)-2 (B)2 (C)-21 (D)21 7、计算:10031002)161()16(-⨯-= . 8、已知,2,21==mn a 求n m a a )(2⋅的值 练习题:(2)若的求n n n x x x 22232)(4)3(,2---=值(3)若0352=-+y x ,求y x 324⋅的值.9、若142-=y x ,1327+=x y ,则y x -等于( )(A )-5 (B )-3 (C )-1 (D )1 10.如果552=a ,443=b ,334=c ,那么( )(A )a >b >c (B )b >c >a (C )c >a >b (D )c >b >a练习题:如果a=223,b=412,c=87,比较a 、b 、c 的大小 乘法法则相关题目:法则应用:)311(3)()2(2x xy y x -⋅+-⋅-; (2))12(4)392(32--+-a a a a a(3)))(2(y x y x -+ (4)(-4x 2+6x -8)·(-12x 2)(5)(2x 2y )3·(-7xy 2)÷14x 4y 3 (6)32232512152⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛xy y x y x(7)22221524125⎪⎭⎫⎝⎛-⋅⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛-+n n n n b a b a b a (8)()()[]()()[]234564y x x y y x y x +⋅-÷+-;(9)()()[]()()[]235616b a b a b a b a -+÷-+1、 (-3x 2)+(2x -3y)(2x -5y)-3y(4x -5y)=2、在(ax 2+bx -3)(x 2-12x +8)的结果中不含x 3和x 项,则a = ,b =3、一个长方形的长是10cm ,宽比长少6cm ,则它的面积是 ,若将长方形的长和都扩大了2cm ,则面积增大了 。

4、若 (ax 3m y 12)÷(3x 3y 2n )=4x 6y 8 , 则 a = , m = ,= ; 5.先化简,再求值:(每小题5分,共10分) (1)x (x -1)+2x (x +1)-(3x -1)(2x -5),其中x =2. (2)342)()(m m m -⋅-⋅-,其中m =2-(3)22()()()2a b a b a b a +-++-,其中133a b ==-,.6、已知:32a b +=,1ab =,化简(2)(2)a b --的结果是 7、在实数范围内定义运算“⊕”,其法则为:22a b a b ⊕=-,求方程(4⊕3)⊕24x =的解.乘法公式相关题目:3、222____9(_____)x y x ++=+;2235(7)x x x +-=+(______________)4、已知15x x +=,那么331x x +=_______;21x x ⎛⎫- ⎪⎝⎭=_______。

5、若22916x mxy y ++是一个完全平方式,那么m 的值是__________。

A y x y x y x ⋅-=+--)(22,则A =_____________________6、证明x 2+4x+3的值是一个非负数练习题:a 2-6a+10的值是一个非负数。

7、当代数式x 2+4x+8的值为7时,求代数式3x 2+12x-5的值.因式分解:基础题:(1)2220.25a b c -(2)29()6()1a b b a -+-+(3)42222244a x a x y x y -+ (4)22()12()36x y x y z z +-++2、分解因式:2168()()x y x y --+-= . 3. (2011广东广州市,19,10分)分解因式8(x 2-2y 2)-x(7x +y)+xy .4. (2011 浙江湖州,18,6)8因式分解:39a a -5、分解因式:2222c b ab a -+-6、分解因式:652++x x 练习题:分解因式:(1)672+-x x 、(2)101132+-x x (3)221288b ab a --7、分解因式(1)262234+---x x x x解:原式=)1162(222x x x x x +---=[]6)1()1(2222-+-+x x xx x设t x x =+1,则21222-=+t x x∴原式=[]6)2222---t t x (=()10222--t t x =()()2522+-t t x =⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-+215222x x x x x=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-+21··522·x x x x x x =()()1225222+++-x x x x =)2)(12()1(2--+x x x (2)144234+++-x x x x解:原式=22241(41)x x x x x -+++=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+1141222x x x x x设y x x =-1,则21222+=+y xx∴原式=22(43)x y y -+=2(1)(3)x y y --=)31)(11(2----xx x x x =()()13122----x x x x例15、分解因式(1)4323+-x x解法1——拆项。

解法2——添项。

原式=33123+-+x x 原式=444323++--x x x x=)1)(1(3)1)(1(2-+-+-+x x x x x =)44()43(2++--x x x x =)331)(1(2+-+-+x x x x =)1(4)4)(1(++-+x x x x =)44)(1(2+-+x x x =)44)(1(2+-+x x x=2)2)(1(-+x x =2)2)(1(-+x x (2)3369-++x x x解:原式=)1()1()1(369-+-+-x x x=)1()1)(1()1)(1(333363-++-+++-x x x x x x=)111)(1(3363+++++-x x x x =)32)(1)(1(362++++-x x x x x。

相关文档
最新文档