初中数学知识点及例题共105页文档

合集下载

初中数学全册教材知识梳理(表格版)

初中数学全册教材知识梳理(表格版)

初中数学全册教材知识梳理(详细版)第一单元数与式第1讲实数知识点一:实数的概念及分类关键点拨及对应举例1.实数(1)按定义分(2)按正、负性分正有理数有理数 0 有限小数或正实数负有理数无限循环小数实数 0实数正无理数负实数无理数无限不循环小数负无理数(1)0既不属于正数,也不属于负数.(2)无理数的几种常见形式判断:①含π的式子;②构造型:如3.010010001…(每两个1之间多个0)就是一个无限不循环小数;③开方开不尽的数:如,;④三角函数型:如sin60°,tan25°.(3)失分点警示:开得尽方的含根号的数属于有理数,如=2,=-3,它们都属于有理数.知识点二:实数的相关概念2.数轴(1)三要素:原点、正方向、单位长度(2)特征:实数与数轴上的点一一对应;数轴右边的点表示的数总比左边的点表示的数大例:数轴上-2.5表示的点到原点的距离是2.5.3.相反数(1)概念:只有符号不同的两个数(2)代数意义:a、b互为相反数 a+b=0(3)几何意义:数轴上表示互为相反数的两个点到原点的距离相等a的相反数为-a,特别的0的绝对值是0.例:3的相反数是-3,-1的相反数是1.4.绝对值(1)几何意义:数轴上表示的点到原点的距离(2)运算性质:|a|= a (a≥0); |a-b|= a-b(a≥b)-a(a<0).b-a(a<b)(3)非负性:|a|≥0,若|a|+b2=0,则a=b=0.(1)若|x|=a(a≥0),则x=±a.(2)对绝对值等于它本身的数是非负数.例:5的绝对值是5;|-2|=2;绝对值等于3的是±3;|1-|=-1.5.倒数(1)概念:乘积为1的两个数互为倒数.a的倒数为1/a(a≠0)(2)代数意义:ab=1a,b互为倒数例:-2的倒数是-1/2;倒数等于它本身的数有±1.知识点三:科学记数法、近似数6.科学记数法(1)形式:a×10n,其中1≤|a|<10,n为整数(2)确定n的方法:对于数位较多的大数,n等于原数的整数为减去1;对于小数,写成a×10-n,1≤|a|<10,n等于原数中左起至第一个非零数字前所有零的个数(含小数点前面的一个)例:21000用科学记数法表示为2.1×104;19万用科学记数法表示为1.9×105;0.0007用科学记数法表示知识点一:代数式及相关概念关键点拨及对应举例1.代数式(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,单独的一个数或一个字母也是代数式.(2)求代数式的值:用具体数值代替代数式中的字母,计算得出的结果,叫做求代数式的值.求代数式的值常运用整体代入法计算.例:a-b=3,则3b-3a=-9.为7×10-4.7.近似数(1)定义:一个与实际数值很接近的数.(2)精确度:由四舍五入到哪一位,就说这个近似数精确到哪一位.例:3.14159精确到百分位是3.14;精确到0.001是3.142.知识点四:实数的大小比较8.实数的大小比较(1)数轴比较法:数轴上的两个数,右边的数总比左边的数大.(2)性质比较法:正数>0>负数;两个负数比较大小,绝对值大的反而小.(3)作差比较法:a-b>0a>b;a-b=0a=b;a-b<0a<b.(4)平方法:a>b≥0a2>b2.例:把1,-2,0,-2.3按从大到小的顺序排列结果为___1>0>-2>-2.3_.知识点五:实数的运算9. 常见运算乘方几个相同因数的积; 负数的偶(奇)次方为正(负)例:(1)计算:1-2-6=_-7__;(-2)2=___4__;3-1=_1/3_;π0=__1__;(2)64的平方根是_±8__,算术平方根是__8_,立方根是__4__.失分点警示:类似“的算术平方根”计算错误. 例:相互对比填一填:16的算术平方根是 4___,的算术平方根是___2__.零次幂a0=_1_(a≠0)负指数幂a-p=1/a p(a≠0,p为整数)平方根、算术平方根若x2=a(a≥0),则x=a.其中a是算术平方根.立方根若x3=a,则x=3a.10.混合运算先乘方、开方,再乘除,最后加减;同级运算,从左向右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号一次进行.计算时,可以结合运算律,使问题简单化2.整式(单项式、多项式)(1)单项式:表示数字与字母积的代数式,单独的一个数或一个字母也叫单项式.其中的数字因数叫做单项式的系数,所有字母的指数和叫做单项式的次数.(2)多项式:几个单项式的和.多项式中的每一项叫做多项式的项,次数最高的项的次数叫做多项式的次数.(3)整式:单项式和多项式统称为整式.(4)同类项:所含字母相同并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.例:(1)下列式子:①-2a2;②3a-5b;③x/2;④2/x;⑤7a2;⑥7x2+8x3y;⑦2017.其中属于单项式的是①③⑤⑦;多项式是②⑥;同类项是①和⑤.(2)多项式7m5n-11mn2+1是六次三项式,常数项是__1 .知识点二:整式的运算3.整式的加减运算(1)合并同类项法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.(2)去括号法则: 若括号外是“+”,则括号里的各项都不变号;若括号外是“-”,则括号里的各项都变号.(3)整式的加减运算法则:先去括号,再合并同类项.失分警示:去括号时,如果括号外面是符号,一定要变号,且与括号内每一项相乘,不要有漏项.例:-2(3a-2b-1)=-6a+4b+2.4.幂运算法则(1)同底数幂的乘法:a m·a n=a m+n;(2)幂的乘方:(a m)n=a mn;(3)积的乘方:(ab)n=a n·b n;(4)同底数幂的除法:a m÷a n=a m-n(a≠0).其中m,n都在整数(1)计算时,注意观察,善于运用它们的逆运算解决问题.例:已知2m+n=2,则3×2m×2n=6.(2)在解决幂的运算时,有时需要先化成同底数.例:2m·4m=23m.5.整式的乘除运算(1)单项式×单项式:①系数和同底数幂分别相乘;②只有一个字母的照抄.(2)单项式×多项式: m(a+b)=ma+mb.(3)多项式×多项式: (m+n)(a+b)=ma+mb+na+nb.(4)单项式÷单项式:将系数、同底数幂分别相除.(5)多项式÷单项式:①多项式的每一项除以单项式;②商相加.失分警示:计算多项式乘以多项式时,注意不能漏乘,不能丢项,不能出现变号错.例:(2a-1)(b+2)=2ab+4a-b-2.(6)乘法公式平方差公式:(a+b)(a-b)=a2-b2. 注意乘法公式的逆向运用及其变形公式的运用完全平方公式:(a±b)2=a2±2ab+b2. 变形公式:a2+b2=(a±b)2∓2ab,ab=【(a+b)2-(a2+b2)】 /26.混合运算注意计算顺序,应先算乘除,后算加减;若为化简求值,一般步骤为:化简、代入替换、计算.例:(a-1)2-(a+3)(a-3)-10=_-2a__.知识点五:因式分解7.因式分解(1)定义:把一个多项式化成几个整式的积的形式.(2)常用方法:①提公因式法:ma+mb+mc=m(a+b+c).②公式法:a2-b2=(a+b)(a-b);a2±2ab+b2=(a±b)2.(3)一般步骤:①若有公因式,必先提公因式;②提公因式后,看是否能用公式法分解;③检查各因式能否继续分解.(1) 因式分解要分解到最后结果不能再分解为止,相同因式写成幂的形式;(2) 因式分解与整式的乘法互为逆运算.知识点一:分式的相关概念关键点拨及对应举例1.分式的概念(1)分式:形如BA(A,B是整式,且B中含有字母,B≠0)的式子.(2)最简分式:分子和分母没有公因式的分式.在判断某个式子是否为分式时,应注意:(1)判断化简之间的式子;(2)π是常数,不是字母. 例:下列分式:①;②; ③;④2221xx+-,其中是分式是②③④;最简分式③.2.分式的意义(1)无意义的条件:当B=0时,分式BA无意义;(2)有意义的条件:当B≠0时,分式BA有意义;(3)值为零的条件:当A=0,B≠0时,分式BA=0.失分点警示:在解决分式的值为0,求值的问题时,一定要注意所求得的值满足分母不为0.例:当211xx--的值为0时,则x=-1.3.基本性质( 1 ) 基本性质:A A CB B C⋅=⋅A CB C÷=÷(C≠0).(2)由基本性质可推理出变号法则为:()AA AB B B---==-;A A AB B B--==-.由分式的基本性质可将分式进行化简:例:化简:22121xx x-++=11xx-+.知识点三:分式的运算4.分式的约分和通分(1)约分(可化简分式):把分式的分子和分母中的公因式约去,即babmam=;(2)通分(可化为同分母):根据分式的基本性质,把异分母的分式化为同分母的分式,即bcbdbcacdcba,,⇒分式通分的关键步骤是找出分式的最简公分母,然后根据分式的性质通分.例:分式21x x+和()11x x-的最简公分母为()21x x-.5.分式的加减法(1)同分母:分母不变,分子相加减.即ac±bc=a±bc;(2)异分母:先通分,变为同分母的分式,再加减.即ab±cd=ad±bcbd.例:111xx x+--=-1.2112.111aa a a+=+--6.分式的乘除法(1)乘法:ab·cd=acbd; (2)除法:a cb d÷=adbc;(3)乘方:nab⎛⎫⎪⎝⎭=nnab(n为正整数).例:2a bb a⋅=12;21x xy÷=2y;332x⎛⎫- ⎪⎝⎭=3278x-.7.分式的混合运算(1)仅含有乘除运算:首先观察分子、分母能否分解因式,若能,就要先分解后约分.(2)含有括号的运算:注意运算顺序和运算律的合理应用.一般先算乘方,再算乘除,最后算加减,若有括号,先算括号里面的.失分点警示:分式化简求值问题,要先将分式化简到最简分式或整式的形式,再代入求值.代入数值时注意要使原分式有意义.有时也需运用到整体代入.知识点一:二次根式关键点拨及对应举例1.有关概念(1)二次根式的概念:形如a(a≥0)的式子.(2)二次根式有意义的条件:被开方数大于或等于0.(3)最简二次根式:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中不含能开得尽方的因数或因式失分点警示:当判断分式、二次根式组成的复合代数式有意义的条件时,注意确保各部分都有意义,即分母不为0,被开方数大于等于0等.例:若代数式11x-有意义,则x的取值范围是x>1.2.二次根式的性质(1)双重非负性:①被开方数是非负数,即a≥0;②二次根式的值是非负数,即a≥0.注意:初中阶段学过的非负数有:绝对值、偶幂、算式平方根、二次根式.利用二次根式的双重非负性解题:(1)值非负:当多个非负数的和为0时,可得各个非负数均为0.如1a++1b-=0,则a=-1,b=1.(2)被开方数非负:当互为相反数的两个数同时出现在二次根式的被开方数下时,可得这一对相反数的数均为0.如已知b=1a-+1a-,则a=1,b=0.(2)两个重要性质:①(a)2=a(a≥0);②a2=|a|=()()a aa a⎧≥⎪⎨-<⎪⎩;(3)积的算术平方根:ab=a·b(a≥0,b≥0);(4)商的算术平方根:ab=ab(a≥0,b>0).例:计算:23.14=3.14;()22-=2;24=;=2 ;442939==知识点二:二次根式的运算3.二次根式的加减法先将各根式化为最简二次根式,再合并被开方数相同的二次根式.例:计算:2832-+=32.4.二次根式的乘除法(1)乘法:a·b=ab(a≥0,b≥0);注意:将运算结果化为最简二次根式.例:计算:3223⋅=1;323222==4.(2)除法:ab=ab(a≥0,b>0).5.二次根式的混合运算运算顺序与实数的运算顺序相同,先算乘方,再算乘除,最后算加减,有括号的先算括号里面的(或先去括号).运算时,注意观察,有时运用乘法公式会使运算简便.例:计算:(2+1)(2 -1)= 1 .知识点一:方程及其相关概念关键点拨及对应举例1.等式的基本性质(1)性质1:等式两边加或减同一个数或同一个整式,所得结果仍是等式.即若a=b,则a±c=b±c .(2)性质2:等式两边同乘(或除)同一个数(除数不能为0),所得结果仍是等式.即若a=b,则ac=bc,a bc c=(c≠0).(3)性质3:(对称性)若a=b,则b=a.(4)性质4:(传递性)若a=b,b=c,则a=c.失分点警示:在等式的两边同除以一个数时,这个数必须不为0.例:判断正误.(1)若a=b,则a/c=b/c.(×)(2)若a/c=b/c,则a=b.(√)2.关于方程的基本概念(1)一元一次方程:只含有一个未知数,并且未知数的次数是1,且等式两边都是整式的方程.(2)二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的整式方程.(3)二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程.(4)二元一次方程组的解:二元一次方程组的两个方程的公共解.在运用一元一次方程的定义解题时,注意一次项系数不等于0.例:若(a-2)|a1|0x a-+=是关于x的一元一次方程,则a的值为0.知识点二:解一元一次方程和二元一次方程组3.解一元一次方程的步骤(1)去分母:方程两边同乘分母的最小公倍数,不要漏乘常数项;(2)去括号:括号外若为负号,去括号后括号内各项均要变号;(3)移项:移项要变号;(4)合并同类项:把方程化成ax=-b(a≠0);(5)系数化为1:方程两边同除以系数a,得到方程的解x=-b/a.失分点警示:方程去分母时,应该将分子用括号括起来,然后再去括号,防止出现变号错误.4.二元一次方程组的解法思路:消元,将二元一次方程转化为一元一次方程. 已知方程组,求相关代数式的值时,需注意观察,有时不需解出方程组,利用整体思想解决解方程组. 例:已知2923x yx y-=⎧⎨-=⎩则x-y的值为x-y=4.方法:(1)代入消元法:从一个方程中求出某一个未知数的表达式,再把“它”代入另一个方程,进行求解;(2) 加减消元法:把两个方程的两边分别相加或相减消去一个未知数的方法.知识点三:一次方程(组)的实际应用5.列方程(组) 解应用题的一般步骤(1)审题:审清题意,分清题中的已知量、未知量;(2)设未知数;(3)列方程(组):找出等量关系,列方程(组);(4)解方程(组);(5)检验:检验所解答案是否正确或是否满足符合题意;(6)作答:规范作答,注意单位名称.(1)设未知数时,一般求什么设什么,但有时为了方便,也可间接设未知数.如题目中涉及到比值,可以设每一份为x.(2)列方程(组)时,注意抓住题目中的关键词语,如共是、等于、大(多)多少、小(少)多少、几倍、几分之几等.6.常见题型及关系式(1)利润问题:售价=标价×折扣,销售额=售价×销量,利润=售价-进价,利润率=利润/进价×100%.(2)利息问题:利息=本金×利率×期数,本息和=本金+利息.(3)工程问题:工作量=工作效率×工作时间.(4)行程问题:路程=速度×时间. ①相遇问题:全路程=甲走的路程+乙走的路程;②追及问题:a.同地不同时出发:前者走的路程=追者走的路程;b.同时不同地出发:前者走的路程+两地间距离=追者走的路程.知识点一:一元二次方程及其解法关键点拨及对应举例1.一元二次方程的相关概念(1)定义:只含有一个未知数,且未知数的最高次数是 2 的整式方程.(2)一般形式:ax2+bx+c=0(a≠0),其中ax2、bx、c分别叫做二次项、一次项、常数项,a、b、c分别称为二次项系数、一次项系数、常数项.例:方程20aax+=是关于x的一元二次方程,则方程的根为-1.2.一元二次方程的解法(1)直接开平方法:形如(x+m)2=n(n≥0)的方程,可直接开平方求解.( 2 )因式分解法:可化为(ax+m)(bx+n)=0的方程,用因式分解法求解.( 3 )公式法:一元二次方程 ax2+bx+c=0的求根公式为x=242b b aca-±-(b2-4ac≥0).(4)配方法:当一元二次方程的二次项系数为1,一次项系数为偶数时,也可以考虑用配方法.解一元二次方程时,注意观察,先特殊后一般,即先考虑能否用直接开平方法和因式分解法,不能用这两种方法解时,再用公式法.例:把方程x2+6x+3=0变形为(x+h)2=k的形式后,h=-3,k=6.知识点二:一元二次方程根的判别式及根与系数的关系3.根的判别式(1)当Δ=24b ac->0时,原方程有两个不相等的实数根.(2)当Δ=24b ac-=0时,原方程有两个相等的实数根.(3)当Δ=24b ac-<0时,原方程没有实数根.例:方程2210x x+-=的判别式等于8,故该方程有两个不相等的实数根;方程2230x x++=的判别式等于-8,故该方程没有实数根.*4.根与系数的关(1)基本关系:若关于x的一元二次方程ax2+bx+c=0(a≠0)与一元二次方程两根相关代数式的常见变形:系有两个根分别为x1、x2,则x1+x2=-b/a,x1x2=c/a.注意运用根与系数关系的前提条件是△≥0.(2)解题策略:已知一元二次方程,求关于方程两根的代数式的值时,先把所求代数式变形为含有x1+x2、x1x2的式子,再运用根与系数的关系求解. (x1+1)(x2+1)=x1x2+(x1+x2)+1,x12+x22=(x1+x2)2-2x1x2,12121211x xx x x x++=等.失分点警示在运用根与系数关系解题时,注意前提条件时△=b2-4ac≥0.知识点三:一元二次方程的应用4.列一元二次方程解应用题(1)解题步骤:①审题;②设未知数;③列一元二次方程;④解一元二次方程;⑤检验根是否有意义;⑥作答.运用一元二次方程解决实际问题时,方程一般有两个实数根,则必须要根据题意检验根是否有意义. (2)应用模型:一元二次方程经常在增长率问题、面积问题等方面应用.①平均增长率(降低率)问题:公式:b=a(1±x)n,a表示基数,x表示平均增长率(降低率),n表示变化的次数,b表示变化n次后的量;②利润问题:利润=售价-成本;利润率=利润/成本×100%;③传播、比赛问题:④面积问题:a.直接利用相应图形的面积公式列方程;b.将不规则图形通过割补或平移形成规则图形,运用面积之间的关系列方程.知识点一:分式方程及其解法关键点拨及对应举例1.定义分母中含有未知数的方程叫做分式方程.例:在下列方程中,①210x+=;②4x y+=-;③11xx=-,其中是分式方程的是③.2.解分式方程基本思路:分式方程整式方程例:将方程12211x x+=--转化为整式方程可得:1-2=2(x-1).解法步骤:(1)去分母,将分式方程化为整式方程;(2)解所得的整式方程;(3) 检验:把所求得的x的值代入最简公分母中,若最简公分母为0,则应舍去.3.增根使分式方程中的分母为0的根即为增根. 例:若分式方程101x=-有增根,则增根为1.知识点二:分式方程的应用方程两边同乘以最简公分母约去分母4.列分式方程解应用题的一般步骤 (1)审题;(2)设未知数;(3) 列分式方程;(4)解分式方程;(5)检验: (6)作答. 在检验这一步中,既要检验所求未知数的值是不是所列分式方程的解,又要检验所求未知数的值是不是符合题目的实际意义.知识点一:不等式及其基本性质 关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子. (2)不等式的解:使不等式成立的未知数的值. (3)不等式的解集:使不等式成立的未知数的取值范围. 例:“a 与b 的差不大于1”用不等式表示为a -b ≤1.2.不等式的基本性质 性质1:若a >b,则 a ±c >b ±c ; 性质2:若a >b,c >0,则ac >bc ,a c >bc ;性质3:若a >b,c <0,则ac <bc ,a c <bc .牢记不等式性质3,注意变号. 如:在不等式-2x >4中,若将不等式两边同时除以-2,可得x <2.知识点二 :一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230m mx ++>是关于x的一元一次不等式,则m 的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x ≥a x >a x ≤a x <a知识点三 :一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x <1-a 的解集是x >-1,则a 的取值范围是a <1.6.解法 先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型 假设a <b 解集 数轴表示 口诀x a x b ≥⎧⎨≥⎩ x ≥b 大大取大 x a x b ≤⎧⎨≤⎩x ≤a 小小取小 x a x b ≥⎧⎨≤⎩ a ≤x ≤b大小,小大中间找 x ax b≤⎧⎨≥⎩ 无解 大大,小小取不了 知识点四 :列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;b.隐含不等关系:如“更省钱”、“更划算”等方案决策问题,一般还需根据整数解,得出最佳方案注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.知识点一:平面直角坐标系关键点拨及对应举例1.相关概念(1)定义:在平面内有公共原点且互相垂直的两条数轴构成平面直角坐标系.(2)几何意义:坐标平面内任意一点M与有序实数对(x,y)的关系是一一对应.点的坐标先读横坐标(x轴),再读纵坐标(y轴).2.点的坐标特征( 1 )各象限内点的坐标的符号特征(如图所示):点P(x,y)在第一象限⇔x>0,y>0;点P(x,y)在第二象限⇔x<0,y>0;点P(x,y)在第三象限⇔x<0,y<0;点P(x,y)在第四象限⇔x>0,y<0.(2)坐标轴上点的坐标特征:①在横轴上⇔y=0;②在纵轴上⇔x=0;③原点⇔x=0,y=0.(3)各象限角平分线上点的坐标①第一、三象限角平分线上的点的横、纵坐标相等;②第二、四象限角平分线上的点的横、纵坐标互为相反数(4)点P(a,b)的对称点的坐标特征:①关于x轴对称的点P1的坐标为(a,-b);②关于y轴对称的点P2的坐标为(-a,b);③关于原点对称的点P3的坐标为(-a,-b).(5)点M(x,y)平移的坐标特征:M(x,y) M1(x+a,y)M2(x+a,y+b)(1)坐标轴上的点不属于任何象限.(2)平面直角坐标系中图形的平移,图形上所有点的坐标变化情况相同.(3)平面直角坐标系中求图形面积时,先观察所求图形是否为规则图形,若是,再进一步寻找求这个图形面积的因素,若找不到,就要借助割补法,割补法的主要秘诀是过点向x轴、y轴作垂线,从而将其割补成可以直接计算面积的图形来解决.3.坐标点的距离问题(1)点M(a,b)到x轴,y轴的距离:到x轴的距离为|b|;)到y轴的距离为|a|.(2)平行于x轴,y轴直线上的两点间的距离:点M1(x1,0),M2(x2,0)之间的距离为|x1-x2|,点M1(x1,y),M2(x2,y)间的距离为|x1-x2|;点M1(0,y1),M2(0,y2)间的距离为|y1-y2|,点M1(x,y1),M2(x,平行于x轴的直线上的点纵坐标相等;平行于y轴的直线上的点的横坐标相等.xy第四象限(+,-)第三象限(-,-)第二象限(-,+)第一象限(+,+)–1–2–3123–1–2–3123Oy 2)间的距离为|y 1-y 2|.知识点二:函 数4.函数的相关概念 (1)常量、变量:在一个变化过程中,数值始终不变的量叫做常量,数值发生变化的量叫做变量.(2)函数:在一个变化过程中,有两个变量x 和y ,对于x 的每一个值,y 都有唯一确定的值与其对应,那么就称x 是自变量,y 是x 的函数.函数的表示方法有:列表法、图像法、解析法.(3)函数自变量的取值范围:一般原则为:整式为全体实数;分式的分母不为零;二次根式的被开方数为非负数;使实际问题有意义. 失分点警示函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分. 例:函数y=35x x +-中自变量的取值范围是x ≥-3且x ≠5.5.函数的图象 (1)分析实际问题判断函数图象的方法: ①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点;②找特殊点:即交点或转折点,说明图象在此点处将发生变化; ③判断图象趋势:判断出函数的增减性,图象的倾斜方向.(2)以几何图形(动点)为背景判断函数图象的方法: ①设时间为t (或线段长为x ),找因变量与t(或x)之间存在的函数关系,用含t(或x)的式子表示, 再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围.读取函数图象增减性的技巧:①当函数图象从左到右呈“上升”(“下降”)状态时,函数y 随x 的增大而增大(减小);②函数值变化越大,图象越陡峭;③当函数y 值始终是同一个常数,那么在这个区间上的函数图象是一条平行于x 轴的线段.知识点一:一次函数的概念及其图象、性质关键点拨与对应举例1.一次函数的相关概念(1)概念:一般来说,形如y =kx +b (k ≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数. (2)图象形状:一次函数y =kx +b 是一条经过点(0,b )和(-b/k ,0)的直线.特别地,正比例函数y =kx 的图象是一条恒经过点(0,0)的直线.例:当k =1时,函数y=kx +k -1是正比例函数,2.一次函数的性质 k ,b 符号 K >0, b >0 K >0, b <0 K >0,b=0 k <0, b >0 k <0, b <0 k <0, b =0 (1)一次函数y=kx+b 中,k 确定了倾斜方向和倾斜程度,b 确定了与y轴交点的位置.(2)比较两个一次函数函数值的大小:性质法,借助函数的图象,也可以运用数值代入法. 例:已知函数y =-2x +b ,大致 图象 经过象限 一、二、三 一、三、四 一、三 一、二、四 二、三、四二、四 图象性质y 随x 的增大而增大 y 随x 的增大而减小函数值y随x的增大而减小(填“增大”或“减小”).3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x轴的交点,只需令y=0,解出x即可;求与y轴的交点,只需令x=0,求出y即可.故一次函数y=kx+b(k≠0)的图象与x轴的交点是⎝⎛⎭⎪⎫-bk,0,与y轴的交点是(0,b);(2)正比例函数y=kx(k≠0)的图象恒过点(0,0).例:一次函数y=x+2与x轴交点的坐标是(-2,0),与y轴交点的坐标是(0,2).知识点二:确定一次函数的表达式4.确定一次函数表达式的条件(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y=kx+b(k≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k与b的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y=2x平移所得到的,且经过点(0,1),则可设要求函数的解析式为y=2x+b,再把点(0,1)的坐标代入即可.(1)确定一次函数的表达式需要两组条件,而确定正比例函数的表达式,只需一组条件即可.(2)只要给出一次函数与y轴交点坐标即可得出b的值,b值为其纵坐标,可快速解题. 如:已知一次函数经过点(0,2),则可知b=2.5.一次函数图象的平移规律:①一次函数图象平移前后k不变,或两条直线可以通过平移得到,则可知它们的k值相同.②若向上平移h单位,则b值增大h;若向下平移h单位,则b值减小h.例:将一次函数y=-2x+4的图象向下平移2个单位长度,所得图象的函数关系式为y=-2x+2.知识点三:一次函数与方程(组)、不等式的关系6.一次函数与方程一元一次方程kx+b=0的根就是一次函数y=kx+b(k、b是常数,k≠0)的图象与x轴交点的横坐标. 例:(1)已知关于x的方程ax+b=0的解为x=1,则函数y=ax+b与x轴的交点坐标为(1,0).(2)一次函数y=-3x+12中,当x >4时,y的值为负数.7.一次函数与方程组二元一次方程组的解⇔两个一次函数y=k1x+b 和y=k2x+b图象的交点坐标.8.一次函数与不等式(1)函数y=kx+b的函数值y>0时,自变量x的取值范围就是不等式kx+b>0的解集(2)函数y=kx+b的函数值y<0时,自变量x的取值范围就是不等式kx+b<0的解集知识点四:一次函数的实际应用9.一般步骤(1)设出实际问题中的变量;(2)建立一次函数关系式;(3)利用待定系数法求出一次函数关系式;(4)确定自变量的取值范围;(5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义;(6)做答.一次函数本身并没有最值,但在实际问题中,自变量的取值往往有一定的限制,其图象为射线或线段.涉及最值问题的一般思路:确定函数表达式→确定y=k2x+by=k1x+b。

初中数学知识点 初中数学知识点总结归纳(完整版)

初中数学知识点 初中数学知识点总结归纳(完整版)

初中数学知识点初中数学知识点总结归纳(完整版)初中数学知识点1一、数与式易错点1:有理数、无理数以及实数的有关概念理解错误;相反数、倒数、绝对值的意义概念混淆,以及绝对值与数的分类。

每年选择必考。

易错点2:实数的运算,要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。

易错点3:平方根、算术平方根、立方根的区别。

填空题必考。

易错点4:求分式值为零时,易忽略分母不能为零。

易错点5:分式运算时要注意运算法则和符号的变化。

当分式的分子、分母是多项式时要先因式分解,因式分解要分解到不能再分解为止。

注意计算方法,不能去分母,把分式化为最简分式。

填空题必考。

易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。

易错点7:计算第一题必考。

五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。

易错点8:科学记数法。

精确度,有效数字。

易错点9:代入求值要使式子有意义。

各种数式的计算方法要掌握,一定要注意计算顺序。

二、方程(组)与不等式(组)易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。

易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况,还要关注解方程与方程组的基本思想。

(消元降次)主要陷阱是消除了一个带未知数的公因式要回头检验!易错点3:运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。

易错点4:关于一元二次方程的取值范围的题目,易忽视二次项系数不为0导致出错。

易错点5:关于一元一次不等式组有解无解的条件,易忽视相等的情况。

易错点6:解分式方程时首要步骤是去分母,易忘记根检验,导致运算结果出错。

易错点7:不等式(组)的解的问题要先确定解集,确定解集的方法运用数轴。

易错点8:利用函数图象求不等式的解集和方程的解。

三、函数易错点1:各个待定系数表示的意义。

初中数学知识点总结(含题)

初中数学知识点总结(含题)

.所示的网格纸,每个小格均为正方形,且小正方形的边长为1,请在小网格观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a、b、c的值分别为20、29、30 B.18、30、26表二表三表四.④(0.1)-2•10-1=10(A )①② (B )②④ (C )②③ (D )②③④5、若x 2+2(m -3)x +16 是一个完全平方式,则m 的值是( )6、代数式a 2-1,0,,x+,-,m ,,–3b 13a 1y xy24x +y22中单项式是 ,多项式是 ,分式是 。

三、例题剖析1、设a-b=-2,求-ab的值。

a2+b222、若的积中不含有和()()q x x px x +-++38222x 项,求p 、q 的植。

3x 3、从边长为a 的正方形内去掉一个边长为b 的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是( ) A .a 2-b 2=(a+b )(a-b ) B.(a-b )2=a 2-2ab+b 2C.(a+b )2=a 2+2ab+b 2 D .a 2+ab=a (a+b )四、综合应用1、将连续的自然数1至36按右图的方式排成一个正方形阵列,用一个小正方形任意圈出其中的9个数,设圈出的9个数的中心的数为a ,用含有a 的代数式表示这9 个数的和为__________.2、用火柴棒按下图中的方式搭图形.(1)按图示规律填空:第n 个图形123……火柴棒根数(2)按照这种方式搭下去,搭第n 个图形需要_________根火柴棒.3、右边是一个有规律排列的数表,请用含n 的代数式(n 为正整数),表示数表中第n 行第n 列的数:______________.专题三 分式一、考点扫描1.分式:整式A 除以整式B ,可以表示成的形式,AB 如果除式B 中含有字母,那么称为分式.A B 注:(1)若B≠0,则有意义;(2)若B=0,则无AB AB 意义;(2)若A=0且B≠0,则=0A B 2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.3.约分:把一个分式的分子和分母的公团式约去,这种变形称为分式的约分.4.通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.5.分式的加减法法则:(1)同分母的分式相加减,分母不变,把分子相加(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.6.分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.7.通分注意事项:(1)通分的关键是确定最简公分母,最简公分母应为各分母系救的最小公倍数与所有相同因式的最高次幂的积;(2)易把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.8.分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.9.对于化简求值的题型要注意解题格式,要先化简,再代人字母的值求值.二、考点训练....3、如果a+b+|-1|=4+2-4,那c-1a-2b+1么a+2b-3c的值第二篇 方程与不等式专题五 一次方程(组)及应用一、考点扫描1、方程的有关概念含有未知数的等式叫做方程.使方程左右两边的值相等的未知数的值叫做方程的解(只含有—个未知数的方程的解,也叫做根).2、一次方程(组)的解法和应用只含有一个未知数,并且未知数的次数是1,系数不为零的方程,叫做一元一次方程.解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化成1.3、方程组的有关概念含有两个未知数并且未知项的次数是1的方程叫做二元一次方程.两个二元—次方程合在一起就组成了一个—。

初中数学知识点汇总

初中数学知识点汇总

数学中考知识点系统总结专题一 数与式考点1.1、实数的概念及分类1、 实数的分类有理数:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无理数:无限不环循小数叫做无理数如:π,-,0.1010010001…(两个1之间依次多1个0).实数:有理数和无理数统称为实数.2、无理数在理解无理数时,要抓住“无限不循环”这一时之,它包含两层意思:一是无限小数;二是不循环.二者缺一不可.归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等注意:判断一个实数的属性(如有理数、无理数),应遵循:一化简,二辨析,三判断.要注意:“神似”或“形似”都不能作为判断的标准.3、非负数:正实数与零的统称。

(表为:x ≥0)常见的非负数有:实数负数整数 分数无理数 有理数 正数 整数 分数 无理数有理数 实数无理数(无限不循环小数)有理数 正分数 负分数正整数 0负整数 (有限或无限循环性数) 整数分数正无理数 负无理数│a │2a a (a ≥0)(a 为一切实数)性质:若干个非负数的和为0,则每个非负担数均为0。

4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴(“三要素”) ②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

初中数学知识点总结加例题

初中数学知识点总结加例题

初中数学知识点总结加例题一、数与代数。

(一)有理数。

1. 概念。

- 有理数包括整数和分数。

整数又分为正整数、0、负整数;分数分为正分数和负分数。

- 数轴:规定了原点、正方向和单位长度的直线。

- 相反数:绝对值相等,符号相反的两个数。

例如,3和 - 3互为相反数。

- 绝对值:一个数在数轴上所对应的点与原点的距离。

正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

2. 有理数的运算。

- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

- 减法:减去一个数等于加上这个数的相反数。

- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。

- 除法:除以一个不等于0的数,等于乘这个数的倒数。

例题1:计算:(-2)+3 - (-5)解析:- 根据有理数的减法法则,(-2)+3 - (-5)=(-2)+3 + 5。

- 然后,按照有理数的加法法则,先计算(-2)+3 = 1。

- 计算1 + 5=6。

(二)实数。

1. 无理数:无限不循环小数,如√(2)、π等。

2. 实数的运算:实数的运算顺序是先算乘方、开方,再算乘除,最后算加减,有括号的先算括号里面的。

例题2:计算:√(4)+3 - π(精确到0.1)解析:- 先计算√(4)=2。

- 然后计算2 + 3-π=5-π。

- 因为π≈3.14,所以5 - π≈5 - 3.14 = 1.86≈1.9。

(三)代数式。

1. 整式。

- 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。

- 多项式:几个单项式的和叫做多项式。

- 整式的加减:实质是合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。

2. 整式的乘除。

- 同底数幂相乘,底数不变,指数相加,即a^m· a^n=a^m + n。

初二数学知识点归纳及例题

初二数学知识点归纳及例题

初二数学知识点归纳及例题初二数学知识点归纳(人教版)一、三角形。

1. 三角形的三边关系。

- 三角形任意两边之和大于第三边,任意两边之差小于第三边。

- 例如:已知三角形的两边长分别为3和5,则第三边x的取值范围是2 < x <8。

- 解析:根据三边关系,5 - 3 < x < 5+3,即2 < x <8。

2. 三角形的内角和定理。

- 三角形内角和为180°。

- 例如:在△ABC中,∠A = 50°,∠B = 60°,则∠C=180° - 50°-60° = 70°。

- 解析:直接利用三角形内角和定理,用180°减去已知的两个角的度数。

3. 三角形的外角性质。

- 三角形的一个外角等于与它不相邻的两个内角之和。

- 例如:在△ABC中,∠ACD是∠ACB的外角,∠A = 50°,∠B = 60°,则∠ACD=50° + 60°=110°。

- 解析:根据外角性质,∠ACD等于∠A与∠B的和。

二、全等三角形。

1. 全等三角形的判定。

- SSS(边边边):三边对应相等的两个三角形全等。

- 例如:在△ABC和△DEF中,AB = DE,BC = EF,AC = DF,则△ABC≌△DEF。

- 解析:因为三边分别相等,满足SSS判定定理。

- SAS(边角边):两边和它们的夹角对应相等的两个三角形全等。

- 例如:在△ABC和△DEF中,AB = DE,∠A = ∠D,AC = DF,则△ABC≌△DEF。

- 解析:两边及夹角对应相等,符合SAS判定定理。

- ASA(角边角):两角和它们的夹边对应相等的两个三角形全等。

- 例如:在△ABC和△DEF中,∠A = ∠D,AB = DE,∠B = ∠E,则△ABC≌△DEF。

- 解析:两角及其夹边相等,满足ASA判定定理。

(完整版)初中数学各章节详细知识点

(完整版)初中数学各章节详细知识点

各章节知识点七年级上册第一章《有理数》1.正数与负数的概念2.正数与负数的实际意义3.有理数的概念4.数轴的概念5.相反数的概念6.绝对值的概念7.有理数的大小比较8.有理数的加法法则(6分)9.有理数的减法法则10.有理数的乘法法则11.有理数的运算律12.有理数的除法法则13.有理数的混合运算法则(6分)14.有理数的乘方相关概念(乘方、幂、底数、指数)15.有理数的乘方法则16.科学记数法(3分)17.近似数(有效数字)第二章《整式的加减》1.单项式及其相关概念(单项式、系数、次数)2.多项式及其相关概念(多项式、项、常数项、次数)3.整式4.同类项的概念5.合并同类项的法则6.去括号法则7.整式加减的运算法则(6分)第三章《一元一次方程》1.方程的概念2.一元一次方程的概念3.方程的解4.等式的性质5.一元一次方程的解法(步骤)(6分)6.一元一次方程的应用问题(和差倍分问题、数字问题、行程问题、工程问题、劳动力调配问题、增长率问题、商品利润问题)第四章《图形的初步认识》1.几何图形的概念2.立体图形的概念3.平面图形的概念4.立体图形的三视图(3分)5.立体图形的展开图6.点、线、面、体的概念7.直线的相关概念(直线、相交线、交点)8.两点确定一条直线9.点与直线的位置关系10.线段的中点11.两点之间线段最短12.两点之间的距离13.角及其相关概念14.角平分线(3分)15.余角的概念16.补角的概念17.余角(补角)的性质(3分)七年级下册第五章《相交线与平行线》1.相交线的相关概念(邻补角、对顶角)2.对顶角的性质3.垂线的相关概念(垂直、垂线、垂足)4.过一点画垂线5.垂线段最短6.点到直线的距离7.“三线八角”的相关概念8.平行的概念9.平行公理10.平行线的判定(3分)11.平行线的性质(3分)12.命题及其相关概念(命题、真命题、假命题)13.定理的概念14.平移的概念15.平移的性质(3分)第六章《平面直角坐标系》1.有序实数对的概念2.平面直角坐标系及其相关概念(平面直角坐标系、横轴、纵轴、原点、坐标、象限)3.特殊点坐标(象限符号、坐标轴上点的特征、坐标轴角平分线上点的特征、对称点坐标特征、平行于坐标轴的点的特征)4.直角坐标系的实际应用5.平移的坐标特征(3分)第七章《三角形》1.三角形的概念2.三角形的分类3.三角形的三边关系4.三角形的“三线”(高线、中线、角平分线)5.三角形的稳定性6.三角形的内角和定理7.三角形的外角8.三角形的外角性质定理(3分)9.等腰三角形的性质10.等边三角形的性质11.直角三角形的性质(6分)12.多边形及其相关概念(多边形、对角线、正多边形)13.多边形的内角和定理14.多边形的外角和定理第八章《二元一次方程组》1.二元一次方程的概念2.二元一次方程(组)的解3.解二元一次方程(代入消元法、加减消元法)(6分)4.二元一次方程的应用(6分)5.三元一次方程组的概念6.三元一次方程组的解法第九章《不等式与不等式组》1.不等式的概念2.不等式的解3.解集4.一元一次不等式的概念5.不等式的性质(3分)6.一元一次不等式的解法(3分)7.一元一次不等式的应用8.一元一次不等式组的概念9.一元一次不等式组的解法(6分)第十章《数据的收集、整理与描述》1.收集数据(问卷)2.整理数据(表格)3.描述数据(条形统计图、扇形统计图)(6分)4.抽样调查的概念5.总体、个体、样本、样本容量6.简单随机抽样的概念7.直方图及其相关概念(直方图、组距、频数)(6分)8.画直方图的步骤八年级上册第十一章《全等三角形》1.全等形的概念2.全等三角形的相关概念(全等三角形、对应顶点、对应边、对应角)3.全等三角形的性质4.全等三角形的判定(SSS,SAS,ASA,AAS)(6分)5.直角三角形的判定(HL)6.角平分线的性质7.角平分线的判定(6分)第十二章《轴对称》1.轴对称图形的概念2.关于直线对称的相关概念3.轴对称的性质4.线段垂直平分线的性质(6分)5.线段垂直平分线的判定(6分)6.作轴对称图形7.关于坐标轴对称点的特征8.等腰三角形的概念9.等腰三角形的性质10.等腰三角形的判定(6分)11.等边三角形的概念12.等边三角形的判定13.等边三角形的性质(6分)第十三章《实数》1.算术平方根的概念2.平方根的概念3.平方根的性质(3分)4.立方根的概念5.立方根的性质(3分)6.实数的概念7.实数的分类8.实数的相反数、绝对值(3分)9.实数与数轴的关系第十四章《一次函数》1.变量与常量2.函数与自变量3.函数的图像4.正比例函数的解析式5.正比例函数的图象及其性质(7分)6.一次函数的解析式7.一次函数的图象及其性质(7分)8.一次函数与一元一次方程的关系9.一次函数与一元一次不等式关系10.一次函数与二元一次方程组的关系第十五章《整式的乘除与因式分解》1.同底数的幂的乘法公式(3分)2.幂的乘方公式(3分)3.积的乘方公式整式的乘法法则4.单项式与多项式相乘的乘法法则5.多项式相乘的乘法法则(3分)6.平方差公式7.完全平方公式(3分)8.添括号法则9.同底数幂的除法法则10.单项式除单项式的法则11.多项式除以单项式法则12.因式分解的概念13.因式分解的方法(提取公因式法、公式法)(6分)八年级下册第十六章《分式》1.分式的概念2.分式的基本性质(3分)3.约分与通分4.最简分式5.分母有理化(3分)6.分式乘除的法则7.分式加减的法则8.整数指数幂的运算性质(3分)9.分式方程的概念10.分式方程的解法(6分)11.分式方程的应用(7分)第十七章《反比例函数》1.反比例函数的概念2.反比例函数的图象及其性质(7分)3.反比例函数的应用第十八章《勾股定理》1.勾股定理(6分)2.勾股定理的逆定理(3分)第十九章《四边形》1.平行四边形的概念2.平行四边形的性质(7分)3.平行四边形的判定(7分)4.两条平行直线之间的距离5.矩形的概念6.矩形的判定7.矩形的性质(7分)8.菱形的概念9.菱形的性质(7分)10.菱形的判定11.正方形的概念12.正方形的性质与判定(7分)13.梯形概念14.梯形的分类15.等腰梯形的性质16.等腰绞刑的判定(7分)第二十章《数据的分析》1.平均数与加权平均数2.中位数3.众数(3分)4.方差第二十一章《二次根式》1.二次根式的概念2.二次根式的两个重要公式(3分)3.代数式的概念4.二次根式的乘法法则5.二次根式的除法法则(6分)6.最简二次根式7.二次根式的加减法法则(3分)九年级上册第二十二章《一元二次方程》1.一元二次方程的概念2.一元二次方程的根3.一元二次方程的解法(直接开方法、配方法、求根公式法、因式分解法)(6分)4.根的判别式5.一元二次方程根与系数的关系6.一元二次方程的应用(面积问题、连续增长问题)(6分)第二十三章《二次函数》1. 一元二次方程的概念2. 二次函数的基本形式3. 二次函数图象的平移4. 二次函数图像的画法5. 二次函数图像的性质(7分)6. 二次函数图像的表示方法7. 二次函数图像的图像与各项系数之间的关系(7分)8. 二次函数图象的对称9. 二次函数与一元二次方程(7分)10. 函数的应用第二十四章《旋转》1.旋转的相关概念(旋转、旋转中心、旋转角)2.旋转的性质(6分)3.中心对称的相关概念(中心对称、对称中心、对称点)(6分)4.中心对称的性质5.中心对称图形的概念6.关于原点对称的点的坐标的特征(3分)第二十五章《圆》1.圆的相关概念(圆的两种定义、圆心、半径、弦、直径、圆弧、优弧、劣弧、半圆、等圆、等弧)2.垂径定理及其推论(6分)3.弧、弦、圆心角、弦心距之间的关系定理(6分)4.圆周角的概念5.圆周角定理及其推论6.圆内接多边形的概念7.圆内接四边形的性质(3分)8.点与圆的位置关系9.三点确定一个圆10.三角形的外接圆及外心11.直线与圆的位置关系及其相关概念(7分)12.切线的性质及判定定理(7分)13.切线长定理(7分)14.圆与圆的位置关系及其相关概念(7分)15.正多边形与圆的相关概念(正三角形与圆、正方形与圆、正六边形与圆)16.弧长公式及扇形面积公式(7分)17.圆锥及圆柱的侧面积及表面积(7分)第二十六章《概率》1.随机事件、不可能事件、必然事件的概念2.随机事件的性质3.概率的概念4.概率的计算公式(3分)5.用列表法、树形图计算概率(7分)6.频率与概率的关系第二十七章《相似》1. 有关相似形的概念2. 比例的性质3. 平行线分线段成比例定理(3分)4. 相似三角形(判定,性质,应用)(7分)5. 位似第二十八章《解直角三角形》1. 直角三角形的性质(3分)2. 直角三角形的判定(6分)3. 锐角三角函数的概念4. 解直角三角形(7分)第二十九章《投影与视图》1. 平行投影2. 中心投影3. 正投影。

(完整word版)初中数学知识点归纳总结(精华版)

(完整word版)初中数学知识点归纳总结(精华版)

第一章 有理数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数:32,7,3π+8,sin60o 。

第二章 整式的加减考点一、整式的有关概念 (3分)1、单项式只含有数字与字母的积的代数式叫做单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如c b a 235-是6次单项式。

考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式.其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数.2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

第三章一元一次方程考点一、一元一次方程的概念(6分)1、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程0≠=+bax叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项。

a)x为未知数,(0第四章图形的初步认识考点一、直线、射线和线段(3分)1、点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点.②点在直线外,或者说直线不经过这个点。

2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。

也可简单说成:两点之间线段最短。

(2)连接两点的线段的长度,叫做这两点的距离。

(3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。

3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。

线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。

逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

初中数学基础知识及经典题型完整版(实用的中考专题复习指导书)

初中数学基础知识及经典题型完整版(实用的中考专题复习指导书)

综合知识讲解目录第一章绪论11.1初中数学的特点11.2怎么学习初中数学21.3如何去听课51.4几点建议6第二章应知应会知识点72.1代数篇72.2几何篇11第三章例题讲解17第四章兴趣练习294.1代数部分294.2几何部分45第五章复习提纲50第一章绪论1.1初中数学的特点1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.1.2怎么学习初中数学1,培养良好的学习兴趣。

两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。

”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。

“好”和“乐”就是愿意学,喜欢学,这就是兴趣。

兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。

在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。

那么如何才能建立好的学习数学兴趣呢?(1)课前预习,对所学知识产生疑问,产生好奇心。

(2)听课中要配合老师讲课,满足感官的兴奋性。

听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。

(3)思考问题注意归纳,挖掘你学习的潜力。

(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?(5)把概念回归自然。

所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生都是从实际生活中抽象出来的。

只有回归现实才能对概念的理解切实可*,在应用概念判断、推理时会准确。

2,建立良好的学习数学习惯。

习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。

建立良好的学习数学习惯,会使自己学习感到有序而轻松。

高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。

初中数学知识点总结pdf

初中数学知识点总结pdf

初中数学知识点总结pdf一、数与代数1. 有理数- 整数与分数- 正数、负数和零- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 绝对值的概念及性质2. 整数的性质- 素数和合数- 奇数和偶数- 整数的因数和倍数- 最大公约数和最小公倍数3. 代数表达式- 单项式和多项式- 代数式的加减运算- 乘法公式,如平方差公式和完全平方公式- 分式的运算,包括约分和通分4. 一元一次方程与不等式- 方程与方程的解- 解一元一次方程- 用方程解决实际问题- 不等式的概念及基本性质- 解一元一次不等式5. 二元一次方程组- 方程组的解法,如代入法和消元法- 三元一次方程组的解法6. 函数的基本概念- 函数的定义- 函数的表示方法,如表格、图形和解析式- 线性函数和二次函数的图像及性质二、几何1. 平面图形- 点、线、面的基本性质- 角的概念,包括邻角、对角和同位角- 直线和射线,以及它们之间的关系- 角的度量,包括度、分、秒的换算2. 三角形- 三角形的基本性质- 等边三角形、等腰三角形和直角三角形的性质 - 三角形的内角和外角性质- 三角形的中线、高和角平分线3. 四边形- 平行四边形、矩形、菱形和正方形的性质- 四边形的内角和外角性质- 四边形的对角线性质4. 圆- 圆的基本性质- 圆的直径、半径、弦、弧、切线等概念- 圆周角和圆心角的关系- 切线的性质和圆的公切线5. 面积和体积- 平面图形的面积计算,如三角形、四边形和圆- 立体图形的体积计算,如长方体、正方体、圆柱和圆锥6. 相似与全等- 全等图形的判定条件- 相似图形的判定条件- 相似三角形的性质和应用三、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 统计图表的绘制,如条形图、折线图和饼图- 算术平均数、中位数和众数的计算2. 概率- 随机事件的概念- 可能性的判断- 概率的初步认识和简单计算四、综合应用题- 解决实际问题,如购物、旅行等场景中的数学应用- 应用所学知识解决综合性问题,培养逻辑思维和解题能力以上是初中数学的主要知识点总结,学生应熟练掌握这些概念和技能,为高中数学学习打下坚实的基础。

初三数学知识点总结加经典例题讲解

初三数学知识点总结加经典例题讲解

初三数学上册期末总复习(经典例题)目录第一章、图形与证明(二) (2)(一)、知识框架 (2)(二)知识详解 (2)(三)典型例题 (5)第二章、数据的离散程度 (7)(一)知识点复习 (7)(二)经典例题 (8)第三章、二次根式 (9)(一)、知识框架 (10)(二)、典型例题 (10)第四章、一元二次方程 (11)(一)知识框架 (11)(二)、知识详解 (12)(三)、典型例题 (13)第五章、中心对称图形二(圆的有关知识) (14)(一)、知识框架 (14)(二)知识点详解 (15)(三)、典型例题 (20)2.直角三角形全等的判定:HL4.等腰梯形的性质和判定5.中位线三角形的中位线 梯形的中位线注意:若等边三角形的边长为a ,则:其高为: ,面积为: 。

1.等腰三角形 等边三角形的性质和判定 等腰三角形的性质和判定 线段的垂直平分线的性质和判定 角的平分线的性质和判定3.平行四边形平行四边形的性质和判定:4个判定定理 矩形的性质和判定 菱形的性质和判定:3个判定定理 正方形的性质和判定:2个判定定理注注意:(1)中点四边形①顺次连接任意四边形各边中点,所得的新四边形是 ; ②顺次连接对角线相等的四边形各边中点,所得的新四边形是 ; ③顺次连接对角线互相垂直的四边形各边中点,所得的新四边形是 ;④顺次连接对角线互相垂直且相等的四边形各边中点,所得的新四边形是 。

(2)菱形的面积公式:ab S 21=(b a ,是两条对角线的长) 注意:(1)解决梯形问题的基本思路:通过分割和拼接转化成三角形和平行四边形进行解决。

即需要掌握常作的辅助线。

(2)梯形的面积公式:()lh h b a S =+=21(l -中位线长) 第一章、图形与证明(二)(一)、知识框架(二)知识详解2.1、等腰三角形的判定、性质及推论 性质:等腰三角形的两个底角相等(等边对等角) 判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)2.2、等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。

初三数学必考知识点汇总

初三数学必考知识点汇总

初三数学必考知识点汇总一、一元二次方程。

1. 定义。

- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程。

一般形式为ax^2+bx + c=0(a≠0),其中ax^2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

2. 解法。

- 直接开平方法:对于方程x^2=k(k≥0),解得x=±√(k)。

例如方程(x - 3)^2=4,则x - 3=±2,解得x = 1或x = 5。

- 配方法:将一元二次方程通过配方转化为(x + m)^2=n(n≥0)的形式再求解。

例如对于方程x^2+6x - 1 = 0,配方得(x + 3)^2=10,解得x=-3±√(10)。

- 公式法:对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}。

例如方程2x^2-3x - 1 = 0,其中a = 2,b=-3,c=-1,代入公式可得x=(3±√(9 + 8))/(4)=(3±√(17))/(4)。

- 因式分解法:将方程化为两个一次因式乘积等于0的形式,即(mx +n)(px+q)=0,则mx + n = 0或px + q = 0。

例如方程x^2-3x + 2 = 0,因式分解为(x - 1)(x - 2)=0,解得x = 1或x = 2。

3. 根的判别式。

- 对于一元二次方程ax^2+bx + c = 0(a≠0),其判别式Δ=b^2-4ac。

- 当Δ>0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根。

例如方程x^2-2x + 1 = 0,Δ=(-2)^2-4×1×1 = 0,方程有两个相等的实数根x = 1。

4. 根与系数的关系(韦达定理)- 对于一元二次方程ax^2+bx + c = 0(a≠0),设其两根为x_1,x_2,则x_1+x_2=-(b)/(a),x_1x_2=(c)/(a)。

初中数学知识点大全(完整版)

初中数学知识点大全(完整版)

展开立体图形 直线、射线、线段
几何图形
平面图形
平面图形
平面图形
等角的补角相等

角的度量
角的大小比较
余角和补角
角的平分线
等角的余角相等
第四章 数据的收集与整理 收集、整理、描述和分析数据是数据处理的基本过程。
4.1 喜爱哪种动物的同学最多——全面调查举例 用划记法记录数据,“正”字的每一划(笔画)代表一个数据。 考察全体对象的调查属于全面调查。
的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相 应各项的符号相反。 1.4.2 有理数的除法
有理数除法法则: 除以一个不等于 0 的数,等于乘这个数的倒数。 a÷b=a· 1 (b≠0)
b 两数相除,同号得正,异号得负,并把绝对值相除。0 除以任何一个不等于 0 的数,都得 0。 因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。 乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
二、实施调查 将调查问卷复制足够的份数,发给被调查对象。 实施调查时要注意: ⑴向被调查者讲明哪些人是被调查的对象,以及他为什么成为被调查者; ⑵告诉被调查者你收集数据的目的。 三、处理数据 根据收回的调查问卷,整理、描述和分析收集到的数据。 四、交流 根据调查结果,讨论你们小组有哪些发现和建议? 五、写一份简单的调查报告
任何数同 0 相乘,都得 0。 乘积是 1 的两个数互为倒数。 几个不是 0 的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是 奇数时,积是负数。 两个数相乘,交换因数的位置,积相等。 ab=ba 三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。 (ab)c=a(bc) 一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

初中数学全部知识点和经典练习题共105页文档

初中数学全部知识点和经典练习题共105页文档
初中数学全部知识点和经典练习题
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
Байду номын сангаас
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根

初中数学知识要点及典型例题

初中数学知识要点及典型例题

初中数学知识要点及典型例题第一章实数第一讲实数的有关概念【回顾与思考】知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值课标要求:1.使学生复习巩固有理数、实数的有关概念.2.了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。

3.会求一个数的相反数和绝对值,会比较实数的大小4.画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。

考查重点:1.有理数、无理数、实数、非负数概念;2.相反数、倒数、数的绝对值概念;3.在已知中,以非负数a2、|a|、 a (a≥0)之和为零作为条件,解决有关问题。

实数的有关概念(1)实数的组成{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数 (2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。

数轴上任一点对应的数总大于这个点左边的点对应的数,(3)相反数实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反数是零).从数轴上看,互为相反数的两个数所对应的点关于原点对称.(4)绝对值⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离(5)倒数实数a(a ≠0)的倒数是a1(乘积为1的两个数,叫做互为倒数);零没有倒数.【例题经典】理解实数的有关概念例1 ①a 的相反数是-15,则a 的倒数是_______.②实数a 、b 在数轴上对应点的位置如图所示:0a b则化简│b-a │=______.③去年市林业用地面积约为10200000亩,用科学记数法表示为约______________________.例2.(-2)3与-23( ).(A)相等 (B)互为相反数 (C)互为倒数 (D)它们的和为16 分析:考查相反数的概念,明确相反数的意义。

(完整word版)初中数学知识点全总结(完美打印版),推荐文档

(完整word版)初中数学知识点全总结(完美打印版),推荐文档

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

初中数学知识点总结大全txt

初中数学知识点总结大全txt

初中数学知识点总结大全txt一、数与代数1. 有理数- 整数:正整数、零、负整数- 有理数的定义:整数和分数统称为有理数- 有理数的加法、减法、乘法、除法运算规则2. 整式与分式- 单项式与多项式:定义、加减、乘法- 分式的定义:分子和分母都是多项式的有理式- 分式的约分、通分、加减运算3. 一元一次方程与不等式- 一元一次方程的定义、解法- 不等式的概念、性质、解集表示- 一元一次不等式与方程的解法区别4. 二元一次方程组- 代入法、消元法解二元一次方程组- 三元一次方程组的解法5. 函数- 函数的概念:定义、函数关系式- 线性函数、二次函数的图像和性质- 函数的基本运算:函数的和、差、积、商二、几何1. 平面几何- 点、线、面的基本性质- 角的概念:邻角、对角、平行线与对顶角- 三角形的分类与性质:等边、等腰、直角三角形- 四边形的分类与性质:正方形、长方形、菱形、梯形2. 圆的基本性质- 圆的定义、圆心、半径、直径- 弦、直径、切线、割线的概念及其性质- 圆周角、圆心角、弧的关系3. 面积与体积- 平行四边形、三角形、梯形、正方形和长方形的面积公式 - 圆的面积公式- 长方体、正方体、圆柱、圆锥的体积公式4. 相似与全等- 全等三角形的判定条件:SSS、SAS、ASA、AAS- 相似三角形的判定条件:SAS、SSS、ASA- 相似多边形的性质5. 解析几何- 坐标系的概念:直角坐标系、坐标点- 点的位置关系:距离公式、中点公式- 直线方程:点斜式、斜截式、两点式三、统计与概率1. 统计- 数据的收集、整理和描述- 频数、频率、频数分布表- 平均数、中位数、众数的计算2. 概率- 随机事件的概念- 概率的定义和计算方法- 等可能事件的概率计算四、解题技巧与策略1. 列方程解应用题- 根据问题描述列出方程或方程组- 解方程或方程组得到答案2. 利用图形解几何题- 利用已知条件画出图形- 通过图形的性质求解问题3. 分类讨论- 根据问题的不同情况分别讨论求解4. 归纳法与反证法- 通过归纳法证明数学命题- 利用反证法证明数学命题以上是初中数学的主要知识点总结,学生在学习过程中应注重理解和掌握每个知识点的概念、性质和计算方法,通过大量的练习题来巩固和深化理解。

初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)1. 数与式整数与有理数•整数与负数的概念•整数与有理数的关系•整数的加减乘除•有理数的加减乘除•有理数的绝对值与相反数分数与小数•分数的概念与性质•分数的化简与约分•分数的加减乘除•分数的比较大小•小数的概念与性质•小数与分数的相互转化•小数的加减乘除百分数与比例•百分数的概念与表示方法•百分数的转化与运算•比例的概念与性质•比例的表示与比例的简化•比例的四则运算•比例的应用:比例尺、利润、利率等平方根与立方根•平方根的概念与性质•平方根的计算与应用•立方根的概念与计算代数式与方程式•代数式的概念与性质•代数式的加减乘除与化简•方程式的概念与性质•方程式的解与解的唯一性•一元一次方程与解法•一元一次方程的应用2. 几何直线与角•直线与线段的概念与性质•直线与角的关系•角的分类与度量•角的加减运算•角的余角与补角•垂直角与同位角三角形•三角形的分类与性质•直角三角形的性质•等腰三角形的性质•等边三角形的性质•三角形的角平分线与垂直平分线•三角形的面积与周长的计算平行线与比例•平行线的性质与判定•平行线的应用:平行线的等与不等关系•比例线段与比例的概念•线段的延长、分割及等分•相似三角形与相似比例圆•圆的概念与性质•圆周角与弧长的关系•相切线与切线的性质•弦长与弧度制长方体与正方体•长方体与正方体的概念与性质•长方体与正方体的表面积与体积的计算•长方体与正方体的应用3. 数据分析与统计统计图表•统计图表的分类与绘制•条形图的绘制与应用•折线图的绘制与应用•饼图的绘制与应用•散点图的绘制与应用平均数与中位数•平均数的概念与计算•中位数的概念与计算•平均数与中位数的应用概率与事件•概率的概念与计算•事件的概念与运算•概率与事件的应用抽样调查•抽样调查的目的与方法•抽样调查的误差与样本容量•调查报告的撰写与分析4. 代数与函数一元一次方程•一元一次方程的解法•一元一次方程的应用二元一次方程组•二元一次方程组的解法•二元一次方程组的应用函数与图像•函数的概念与性质•函数的表示与计算•函数的图像与性质•平移、伸缩与翻折变换•函数的最大值与最小值幂与指数函数•幂函数与指数函数的概念与性质•幂函数与指数函数的应用图形与变化•图形的对称与性质•图形的平移、伸缩与翻折•图形的旋转与变化规律结语初中数学知识点的总结归纳,涵盖了数与式、几何、数据分析与统计以及代数与函数方面的内容。

最全面初中数学知识点归纳总结(全)(精华版)

最全面初中数学知识点归纳总结(全)(精华版)

知识点归纳初中数学知识点1、一元一次方程根的情况2△ =b -4ac当厶〉。

时,一元二次方程有2个不相等的实数根;当△=()时,一元二次方程有2个相同的实数根;当AvO时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。

②平行四边形不相邻的两个顶点连成的线段叫他的对角线。

③平行四边形的对边/对角相等。

④平行四边形的对角线互相平分。

菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。

③判定条件:定义/对角线互相垂直的平行四边形 /四条边都相等的四边形。

矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。

②矩形的对角线相等,四个角都是直角。

③对角线相等的平行四边形是矩形。

④正方形具有平行四边形,矩形,菱形的一切性质。

⑤一组邻边相等的矩形是正方形。

多边形:①N边形的内角和等于(N・2) 180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平均数:对于N个数Xi, X2X N,我们把(X 1+X2+ +X N)/N叫做这个N个数的算术平均数,记为X 加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权, 这就是加权平均数。

二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、 同角或等角的补角相等4、 同角或等角的余角相等5、 过一点有且只有一条直线和已知直线垂直6、 直线外一点与直线上各点连接的所有线段屮,垂线段最短7、 平行公理经过直线外一点,有且只有一条直线与这条直线平行8、 如果两条直线都和第三条直线平行,这两条直线也互相平行9、 同位角相等,两直线平行10、 内错角相等,两直线平行11、 同旁内角互补,两直线平行12、 两直线平行,同位角相等13、 两直线平行,内错角相等14、 两直线平行,同旁内角互补15、 定理三角形两边的和大于第三边16、 推论三角形两边的差小于第三边17、 三角形内角和定理 三角形三个内角的和等于 180°18、 推论1直角三角形的两个锐角互余19、 推论2三角形的一个外角等于和它不相邻的两个内角的和20、 推论3三角形的一个外角大于任何一个和它不相邻的内角21、 全等三角形的对应边、对应角相等(SAS )有两边和它们的夹角对应相等的两个三角形全等23、 角边角公理(ASA )有两角和它们的夹边对应相等的 两个三角形全等24、 推论(AAS )有两角和其中一角的对边对应相等的两个三角形全等26、 斜边、直角边公理(HL )有斜边和一条直角边对应相等的两个直角三角形全等27、 定理1在角的平分线上的点到这个角的两边的距离相等28、 定理2到一个角的两边的距离相同的点,在这个角的平分线上29、 角的平分线是到角的两边距离相等的所有点的集合30、 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)22、边角边公理 25、边边边公理 (SSS )有三边对应相等的两个三角形全等31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的屮线和底边上的高互相重合33、推论3等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1三个角都相等的三角形是等边三角形36、推论2有一个角等于60。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档