江苏省姜堰中学高一上学期竞赛选拔赛试题(数学)
2019-2020年高一上学期数学竞赛选拔测试含答案
![2019-2020年高一上学期数学竞赛选拔测试含答案](https://img.taocdn.com/s3/m/3cad873ab14e852459fb576b.png)
2019-2020年高一上学期数学竞赛选拔测试含答案一、填空题(本大题共12个小题,每小题4分,共48分)1.数列1,- 34 ,59 ,- 716,…的一个通项公式是 . 2.1+2+3+…+100= .3.{a n }是等比数列,a 1=1,a 3= 2 ,则a 5= .4.数列{a n }满足:a 1=1,a n +1= a n -1,则a xx = .5.△ABC 的三边长分别是7、4 3 、13 ,则最小内角大小为 .6.△ABC 中,A=60°,b +c sinB +sinC=2,则a = . 7.△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,下列条件中能确定a =b 的有 . (填序号)① sinA=sinB ② cosA=cosB ③ sin2A=sin2B ④ cos2A=cos2B8.已知 1x>1,则x 的取值范围是 . 9.不等式 (x -2)2 >4的解集是 .10.已知 12 +16 +112 +…+1n (n +1) = 99100,则n = . 11.等差数列{a n }中,若a 1、a 3、a 7是一个等比数列的前三项,则这个等比数列的公比是 .12.S n 是等差数列{a n }的前n 项和,S 1>0,S 10=0,则S n 最大时n 的值是 .二、解答题13.(本题满分12分)等比数列{a n }的前n 项和是S n ,已知S 3=72 ,S 6=632,求a n .14.(本题满分12分)一艘船以60 n mile/h的速度向正北航行. 在A处看灯塔S在船的北偏东30°,30 min后航行到B处,在B处看灯塔S在船的北偏东75°,求灯塔S与B之间的距离.15.(本题满分12分)△ABC中,已知角A、B、C所对的边分别是a、1、c,且A、B、C成等差数列,a、1、c成等比数列,求△ABC的面积.16.(本题满分16分)关于x的不等式x2+bx+c>0的解集是(-∞,1)∪(2,+∞),数列{a n}的前n项和S n=n2+bn+c.(1)写出b、c的值(不要证明);(2)判断{a n}是不是等差数列并说明理由;(3)求数列{2n-1a n}的前n项和T n.第二卷(60分)三、填空题(本大题共6个小题,每小题5分,共30分)17.已知,则 .18.右图是某种净水水箱结构的设计草图,其中净水器是一个宽10cm 、体积为3000cm 3的长方体,长和高未定.净水水箱的长、宽、高比净水器的长、宽、高分别长20cm 、20cm 、60cm .若不计净水器中的存水,则净水水箱中最少可以存水 cm 3.19.设点O 是△ABC 的外心,AB =13,AC =12,则→BC ·→AO = .20.取一个边长为的正方形及其内切圆,随机地向正方形内丢一粒豆子,则豆子落入圆内的概率为 .21.定义在R 上的函数f (x ),满足f (12 +x ) +f (12 -x ) =2,则f (18 )+f (28 )+…+f (78)= .22.定义一个对应法则.现有点与,点是线段上一动点,按定义的对应法则.当点在线段上从点开始运动到点结束时,点的对应点所经过的路线长度为 .四、解答题23.(本题满分15分)已知二次函数 ,满足,对于任意的,都有,并且当时总有.(1)求的值;(2)求的表达式;(3)当时,是单调函数,求m 的取值范围.24.(本题满分15分)已知数列和满足:*121,2,0,)n n a a a b n N ==>=∈,且是以为公比的等比数列.(1)证明:;(2)若,证明数列是等比数列;(3)求和:.1.a n =(-1)n2n-1n 22.50503.24.-xx5.30°6. 37.(1)(2)(4)8.(0,1)9.(-∞,0)∪(4,+ ∞)10.9911.1,212.513.P51,2n-2 14.15 2 n mile 15.a=b=c=1,S=3416.(1)-3,2 (2)a 1=0,n>1,a n =2n-4,(3)2n+1(n-3)+8 17.018.7800019.-12.5 20.π421.7 22. π323.(1)f(1)=1(2)f(x)= (x+12)2(3)m≤0,m≥1 24.(3)q=1,32 n. q ≠1, 32 q 2n -1q 2n-2(q 2-1).。
江苏省姜堰二中高一数学上学期第二次月考试题
![江苏省姜堰二中高一数学上学期第二次月考试题](https://img.taocdn.com/s3/m/24b35ff1bed5b9f3f80f1c9f.png)
江苏省姜堰二中2018—2019学年高一数学上学期第二次月考试题一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.已知集合{}=12A ,,{}=23B ,,则A B ⋂= . 2.已知幂函数αx x f =)(的图象过点()33,,则=)(x f 。
3.著名的Dirichlet 函数⎩⎨⎧=取无理数时取有理数时x x x D ,0,1)(,则)2(D = 。
4.函数1lg(3)y x x=++的定义域为 . 5.已知角α的终边经过),3,4(P 则ααcos sin += .6.设扇形的半径为3cm ,周长为8cm ,则扇形的面积为 2cm7.计算9log 121()lg 2lg 5+32---= .8.设向量a =(2,4)与向量b =(x ,6)共线,则实数x 为 。
9.设)(x f 是R 上的奇函数,)()2(x f x f -=+当10≤≤x 时,x x f =)(,则=)5.7(f . 10.若函数()lg(1)3f x x x =++-的零点为0x ,满足()0,1x k k ∈+且k Z ∈,则k = 。
11.已知函数()sin(2)f x x πϕ=+的部分图象如图所示,点B ,C 是该图象与x 轴的交点,过点C 的直线与该图象交于D ,E 两点,则(BD BE +)•BC 的值为 。
12.已知单位向量e 1与e 2的夹角为α,且cos α=错误!,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β, 则cos β= .13.已知向量错误!=(3,-4),错误!=(6,-3),错误!=(5-m ,-(3+m )),若△ABC 为直角三角形,则实数m 的取值集合为 .14.已知函数()2sin 2f x x =,将函数()y f x =的图像向左平移6π个单位,再向下平移1个单位,得到函数()y g x =,若函数()y g x =在区间[0,]b (其中 0b >)上含有4个零 点,则b 的取值范围是 .二.解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分14分)已知函数()2sin(),63f x x πα=+-其中(0,)απ∈。
江苏省高中数学竞赛预赛试题
![江苏省高中数学竞赛预赛试题](https://img.taocdn.com/s3/m/58116c2bf01dc281e43af046.png)
江苏省高中数学竞赛预赛试题本试卷分第一卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟。
第Ⅰ卷(选择题共36分)一.选择题:本大题共6小题,每小题6分,共36分。
在每小题给出的4个选项中,只有一项是符合题目要求的.1.函数y=f(x) 的图像按a→=(π4,2)平移后,得到的图像的解析式为y=sin(x+π4)+2,那么y=f(x)的解析式为 ( ) A.y=sin x B.y=cos x C.y=sin x+2 D.y=cos x+4解: y=sin[(x+π4)+π4], 即y=cos x.故选B.2.如果二次方程x2-px-q=0 (p,q∈N*)的正根小于3,那么这样的二次方程有( ) A.5个B.6个C.7个D.8个解:由∆=p2+4q>0,-q<0,知方程的根一正一负.设f(x)=x2-px-q,则f(3)= 32-3p-q>0,即3p+q<9.由p,q∈N*,所以p=1,q≤5或p=2,q≤2. 于是共有7组(p,q)符合题意.故选C.3.设a>b>0,那么a2+1b(a-b)的最小值是()A.2 B.3 C.4 D.5解:由a>b>0,可知0<b(a-b)≤14a2.所以,a2+1b(a-b)≥a2+4a2≥4.故选C.4.设四棱锥P-ABCD的底面不是平行四边形,用平面α去截此四棱锥,使得截面四边形是平行四边形,则这样的平面α( ) A.不存在B.只有1个C.恰有4个D.有无数多个解:设四棱锥的两组不相邻的侧面的交线为m,n,直线m、n确定了平面β,作与β平行的平面α与四棱锥侧棱相截,则截得的四边形是平行四边形.这样的平面α有无数多个.故选D.5.设数列{a n}:a0=2, a1=16,a n+2=16 a n+1-63 a n (n∈N),则a2005被64除的余数为( ) A.0 B.2 C.16 D.48解:数列{ a n}模64周期地为2,16,2,-16,又2005被4除余1,故选C.6.一条走廊宽2m、长8m,用6种颜色的1⨯1m2的整块地砖来铺设(每块地砖都是单色的,每种颜色的地砖都足够多),要求相邻的两块地砖颜色不同,那么所有的不同拼色方案种数有( ) A.308B.30⨯257 C.30⨯207 D.30⨯217解:铺第一列(两块地砖)有30种方法;其次铺第二列,设第一列的两格铺了A、B两色(如图),那么,第二列的上格不能铺A色,若铺B色,则有(6-1)种铺法;若不铺B色,则有(6-2)2种方法,于是第二列上共有21种铺法.同理,若前一列铺A B好,则其后一列都有21种铺法. 因此,共有30⨯217种铺法.故选D .二.填空题:本大题共6小题,每小题6分,共36分.7.设向量→OA 绕点O 逆时针旋转2π得→OB ,且2→OA +→OB=(7,9),则向量→OB= . 解:设→OA=(m ,n ),则→OB=(-n ,m ), 所以 2→OA +→OB=(2m -n ,2n +m )=(7,9),即 ⎩⎪⎨⎪⎧2m -n=7,m +2n=9. 得 ⎩⎨⎧m=235,n=115.因此, →OA=(235,115),→OB=(-115,235).故填(-115,235).8.设无穷数列{a n }的各项都是正数,S n 是它的前n 项之和,对于任意正整数n ,a n 与2的等差中项等于S n 与2的等比中项,则该数列的通项公式为 .解:由题意知a n +22=2S n , 即S n =(a n +2)28. ①由①式,a 1+22=2a 1,得a 1=2.又由①式得 S n -1=(a n -1+2)28(n ≥2) ② 则有 a n =S n -S n -1=(a n +2)28-(a n -1+2)28(n ≥2), 整理得 (a n +a n -1)(a n -a n -1-4)=0.又因为a n >0,a n -1>0,所以a n -a n -1=4(n ≥2),a 1=2.因此, 数列{a n }是以2为首项,4为公差的等差数列,其通项公式为a n =2+4(n -1), 故填a n =4n -2 (n ∈N*).9.函数y=|cos x |+|cos2x | (x ∈R ) 的最小值是 .解:令t=|cos x |∈[0,1],则y=t +|2t 2-1|. 当22≤t ≤1时,y=2t 2+t -1=2(t +14)2-98,得 22≤y ≤2.当0≤t <22时,y=-2t 2+t +1=-2(t -14)2+98,得22≤y ≤98.又y 可取到22.故填22.10.在长方体中ABCD -A 1B 1C 1D 1中,AB=2, AA 1=AD=1,点E 、F 、G 分别是棱AA 1、C 1D 1与BC 的中点,那么四面体B 1-EFG 的体积是 .解:在D 1A 1的延长线上取一点H ,使AH=14,易证,HE ∥B 1G ,HE ∥平面B 1FG .故 V B 1-EFG =V E -B 1FG =V H -B 1FG =V G -B 1FH .而S ∆B 1EF =98,G 到平面B 1FH 的距离为1.故填V B 1-EFG =38.11.由三个数字1,2,3组成的5位数中,1,2,3都至少出现1次,这样的5位数共有 个.解:在5位数中,若1只出现1次,有C 51(C 41+C 42+C 43)=70个;若1只出现2次,有C 52(C 31+C 32)=60个;若1只出现3次,有C 53C 21=20个.所以这样的五位数共有150个.故填150.12.已知平面上两个点集:M={(x ,y )| |x +y +1|≥2(x 2+y 2),x ,y ∈R },N={(x ,y )| |x -a |+|y -1|≤1,x ,y ∈R },若M ∩N ≠∅,则a 的取值范围为 .解:由题意知M 是以原点为焦点,直线x +y +1=0为准线的抛物线及其凹口内侧的点集,N 是以(a ,1)为中心的正方形及其内部的点集(如图).考察M ∩N=∅时a 的取值范围: 令y=1, 代入方程 |x +y +1|=2(x 2+y 2) 得x 2-4x -2=0,解得 x=2±6.所以,当a <2-6-1=1-6时M ∩N=∅.令y=2,代入方程|x +y +1|=2(x 2+y 2)得x 2-6x -1=0,解得 x=3±10.所以,当a >3+10时,M ∩M=∅.于是,当1-6≤a ≤3+10,即a ∈[1-6,3+10]时,M ∩N ≠∅.故填[1-6,3+10].三、解答题:13. 已知点M 是∆ABC 的中线AD 上的一点,直线BM 交边AC 于点N ,且AB 是∆NBC的外接圆的切线,设BC BN =λ,试求 BM MN (用λ表示).(15分)证明:在∆BCN 中,由Menelaus 定理得BM MN ·NA AC ·CD DB =1.因为 BD=DC ,所以BM MN =AC AN .………………………6分 由∠ABN=∠ACB ,知∆ABN ∽∆ACB ,则 AB AN =AC AB =CB BN .所以,AB AN ·AC AB =⎝ ⎛⎭⎪⎫CB BN 2,即AC AN =BC 2BN 2.…………………………………………………12分 因此,BM MN =BC 2BN 2.A B C D N M又 BC BN =λ,故 BM MN=λ2.………………………………………………………………15分14.求所有使得下列命题成立的正整数n (n ≥2):对于任意实数x 1,x 2,…,x n ,当i=1∑n x i =0时,总有i=1∑nx i x i +1≤0 (其中x n +1=x 1).(15分)解:当n=2时,由x 1+x 2=0,得x 1x 2+x 2x 1=-2x 12≤0.故n =2时命题成立;……3分当n=3时,由x 1+x 2+x 3=0,得x 1x 2+x 2x 3+x 3x 1=(x 1+x 2+x 3)2-(x 21 +x 22+x 23)2=-(x 21+x 22+x 23)2≤0.故n=3时命题成立. ……………………………………………………………………………………6分当n=4时,由x 1+x 2+x 3+x 4=0,得x 1x 2+x 2x 3+x 3x 4+x 4x 1=(x 1+x 3)(x 2+x 4)=-(x 2+x 4)2≤0.故n=4时,命题成立.………………………………………………………………9分 当n ≥5时,令x 1=x 2=1,x 4=-2,x 3=x 5=…=x n =0,则i=1∑n x i =0,但i=1∑nx i x i +1=1>0,故n ≥5时命题不成立.综上可知,使命题成立的n=2,3,4.……………………………………………15分15.设椭圆的方程x 2a 2+y 2b 2=1(a >b >0),线段PQ 是过左焦点F 且不与x 轴垂直的焦点弦,若在左准线上存在点R ,使△PQR为正三角形,求离心率e 的取值范围,并用e 表示直线PQ 的斜率.(24分)解:如图,设线段PQ 中点M ,过点P 、M 、Q 分别作准线的垂线,垂足分别为点P ',M ',Q ',则|MM '|=12(|PP '|+|QQ '|)=12(|PF |e+|QF |e )=|PQ |2e .…………………………6分假设存在点R ,则|RM |=32|PQ |,且|MM '|<|RM | ,即|PQ |2e <32|PQ |,所以, e >33.………………………………12分于是,cos ∠RMM '=|MM '||RM |=12e ⨯13e ,cot∠RMM'=13e2-1.在图中,|PF| < |QF|,且有k PQ= tan∠QFx= tan∠FMM'=cot∠RMM'=13e2-1.………………………………………………18分当e>33时,过点F作斜率为13e2-1的焦点弦PQ,它的中垂线交左准线于R,由上述过程知,|RM|=32|PQ|.故∆PQR为正三角形.……………………………………………21分根据对称性,当|FP| > |FQ|时,有k PQ=-13e2-1.所以,椭圆x2a2+y2b2=1(a>b>0)的离心率e的范围是(33,1),且直线PQ的斜率为±13e2-1.…………………………………………………………………………………………24分16.⑴若n(n∈N*) 个棱长为正整数的正方体的体积之和等于2005,求n的最小值,并说明理由;( 12分)⑵若n (n∈N*) 个棱长为正整数的正方体的体积之和等于20022005,求n的最小值,并说明理由.( 24分)解:⑴因为2005=1728+125+125+27=123+53+53+33,故n=4存在,n min≤4.………6分103=1000,113=1331,123=1728,133=2169,123<2005<133,则n≠1.若n=2,因103+103<2005,则最大立方体的棱长只能为11或12,2005-113=674,2005-123=277,674与277均不是完全立方数,故n=2不可能;若n=3,设此三个立方体中最大一个的棱长为x,由3x3≥2005>3×83,知最大立方体的棱长只能为9、10、11或12,而2005<3⨯93,2005-93-93=547,2005-93-83-83>0,故x≠9.2005-103-103=5,2005-103-93=276,2005-103-83=493,2005-103-73-73>0.故x≠10;2005-113-93<0,2005-113-83=162,2005-113-73=331,2005-113-63-63>0,故x ≠11;2005-123-73<0,2005-123-63=61,2005-123-53-53>0,故x≠12.所以n=3不可能.综上所述,n min=4.…………………………………………………………………………12分⑵设n个立方体的棱长分别是x1,x2,…,x n,则x31+x32+…+x3n=20022005.①由2002≡4(mod 9),43≡1(mod 9),得20022005≡42005≡4668⨯3+1≡(43)668⨯4≡4(mod 9).②又当x∈N*时,x3≡0,±1(mod 9),所以x31≡∕4(mod 9),x31+x32≡∕4(mod 9),x31+x32+x33≡∕4(mod 9).③①式模9,并由②、③式可知n≥4.…………………………………………………18分而2002=103+103+13+13,则20022005=20022004⨯(103+103+13+13)=(2002668)3⨯(103+103+13+13)=(2002668⨯10)3+(2002668⨯10)3+(2002668)3+(2002668)3.故n=4为所求的最小值.………………………………………………………………24分。
江苏省姜堰中学高一数学第一学期期中考试试题
![江苏省姜堰中学高一数学第一学期期中考试试题](https://img.taocdn.com/s3/m/4013d6a584868762caaed59d.png)
江苏省姜堰中学2007-2008学年度高一数学第一学期期中考试试题一、填空题(每题6分,共计84分)1.已知全集U={0,1,2,3,4,5},集合A={0,3,5},B={1,4,5},则集合A ∪(C U B)=________________。
2.过点P(-1,23)且与直线x -4y +1=0平行的直线方程是______________。
(用一般式表示) 3.设函数f (x )=⎪⎩⎪⎨⎧>+≤--1||,111||,2|1|2x xx x ,则f [f (21)]=_______________。
4.当x ∈[0,2]时,函数y =3x -1-2的值域是_______________。
5.若三条直线2x -y +4=0,x -y +5=0,2mx -3y +12=0围成直角三角形,则m =__________。
6.函数y =132)21(++x x 的单调增区间是_______________。
7.函数y =)23(log 21+x 的定义域是_______________。
8.经过两直线l 1:2x -3y +10=0,l 2:3x +4y -2=0的交点,且与直线l 3:3x -2y +4=0垂直的直线l 的方程为_____________。
9.方程log 2(x +4)=3x 的实根的个数为______________。
10.一块电路板的AB 线路之间有32个串联的焊接点,如图 ,如果电路不能接通的原因是某一个焊接点脱落造成,用二分 法检测哪一处焊接点脱落,需要检测的次数为____________。
11.函数f (x )=log 2(1+2x +3x ·a )在区间(-∞,1)上有意义,则实数a 的范围是____________。
12.若函数f (x )是定义在R 上的偶函数,在]0,(-∞上是个单调减函数,且f (1)=0,则使得不等式f (x -1)<0成立的x 的取值范围是______________________。
2023-2024学年江苏省泰州市姜堰中学高一(上)期中数学试卷【答案版】
![2023-2024学年江苏省泰州市姜堰中学高一(上)期中数学试卷【答案版】](https://img.taocdn.com/s3/m/a38e019c09a1284ac850ad02de80d4d8d15a01e4.png)
2023-2024学年江苏省泰州市姜堰中学高一(上)期中数学试卷一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知集合A ={x |0<x <2},B ={x |1<x <4},则A ∪B =( ) A .{x |0<x <2}B .{x |2<x <4}C .{x |0<x <4}D .{x |x <2或x >4}2.命题“∀x ∈R ,x 2+2x +2>0”的否定是( ) A .∀x ∈R ,x 2+2x +2≤0 B .∃x ∈R ,x 2+2x +2≤0 C .∀x ∈R ,x 2+2x +2<0D .∃x ∈R ,x 2+2x +2>03.“﹣2<x <4”是“x 2﹣x ﹣6<0”的( ) A .必要而不充分条件 B .充分而不必要条件C .充要条件D .既不充分也不必要条件4.已知a =log 1.80.8,b =1.80.8,c =0.80.8,则a 、b 、c 的大小关系为( ) A .a >b >cB .c >a >bC .c >b >aD .b >c >a5.函数y =1−x +√1−2x 的值域为( ) A .(−∞,12]B .[0,+∞)C .[12,+∞)D .(12,+∞)6.设函数f(x)={2−x −1,x ≤0x 12,x >0,若f (x 0)<3,则x 0的取值范围是( )A .(﹣2,+∞)B .(﹣2,9)C .(﹣∞,﹣2)∪(9,+∞)D .(﹣2,0)∪(9,+∞)7.牛奶的保鲜时间因储藏温度的不同而不同,假定保鲜时长t (单位:h )与储藏温度x (单位:℃)之间的关系为t =192×(732)x 22,若要使牛奶保鲜时长超过96h ,则应储藏在温度低于( )℃的环境中.(附:lg 2≈0.301,lg 7≈0.845,答案采取四舍五入精确到0.1) A .10.0B .10.3C .10.5D .10.78.若函数f (x )是定义在(0,+∞)上的增函数,且对一切x >0,y >0,满足f(x)−f(y)=f(x y),则不等式f(x +3)−f(1x )<2f(2)的解集为( ) A .(﹣1,4)B .(﹣4,1)C .(0,1)D .(0,4)二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.若函数y =e x 的图象上存在不同的两点A ,B 到直线l 的距离均为e ,则l 的解析式可以是( )A .y =﹣eB .y =eC .x =eD .y =x10.下列说法正确的是( ) A .不等式2x+1≥1的解集是(﹣1,1]B .若函数f (x )的定义域为[1,4],则函数f (x +1)的定义域为[0,3]C .函数y =2x+1在单调递减区间为(﹣∞,﹣1)∪(﹣1,+∞)D .函数f(x)=√−x 2+2x 的单调递增区间为[0,1] 11.已知a >0,b >0,a +b =1,则( ) A .ab ≤14B .log 2a +log 2b ≥﹣2C .1a +1b ≥4D .(12)a−b <212.用C (A )表示非空集合A 中元素的个数,定义A ∗B ={C(A)−C(B),C(A)≥C(B)C(B)−C(A),C(A)<C(B),已知集合A ={x |x 2+x =0},B ={x ∈R |(x 2+ax )(x 2+ax +1)=0},则下面正确结论正确的是( ) A .∃a ∈R ,C (B )=3 B .∀a ∈R ,C (B )≥2C .“a =0”是“A *B =1”的必要不充分条件D .若S ={a ∈R |A *B =1},则C (S )=3三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.函数y =√2−x +log 2(x −1)的定义域为 .14.已知幂函数f (x )=(a 2﹣a ﹣1)x a 在区间(0,+∞)上单调递减,则函数g (x )=b x +a ﹣1(b >1)的图象过定点 .15.若函数f (x )的值域为(0,1],且满足f (x )=f (﹣x ),则f (x )的解析式可以是f (x )= . 16.已知函数f (x )=x 2,g (x )=a |x ﹣1|,a 为常数,若对于任意x 1,x 2∈[0,2],且x 1<x 2,都有f (x 1)﹣f (x 2)<g (x 1)﹣g (x 2),则实数a 的取值范围为 .四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(10分)计算求值:(1)(√23×√3)6−3235−√23×(4−13)﹣1+(5+2√6)0(2)e 2ln 3+ln (e √e )﹣log 49•log 278﹣log 2(log 216)+lg √2+lg √518.(12分)已知全集U =R ,集合M ={x |(x +4)(x ﹣6)<0},N ={x |x ﹣5<0}. (1)求M ∪N ,∁R N ;(2)设P={x||x|=t},若P⊆M,求t的取值范围.19.(12分)已知函数f(x)={x+4,x≤1x+kx,x>1,其中k>0(1)若k=1,f(m)=174,求实数m的值;(2)若函数f(x)的值域为R,求k的取值范围.20.(12分)已知定义域为R的函数f(x)=1−a⋅2x2x+1是奇函数.(1)求实数a的值.(2)试判断f(x)的单调性,并用定义证明.(3)解关于x的不等式f(4x)+f(8﹣9×2x)>0.21.(12分)函数y=f(x)的图象关于坐标原点成中心对称图形的充要条件是函数y=f(x)为奇函数,可以将其推广为:函数y=f(x)的图象关于点P(a,b)成中心对称图形的充要条件是函数y=f(x+a)﹣b为y关于x的奇函数,给定函数f(x)=13x+1.(1)求f(x)的对称中心;(2)已知函数g(x)=﹣x2+mx,若对任意的x1∈[﹣1,1],总存在x2∈[1,+∞),使得g(x1)≤f(x2),求实数m的取值范围.22.(12分)已知函数f(x)=x(m|x|﹣1),m∈R.(1)若m=1,写出函数f(x)在[﹣1,1]上的单调区间,并求f(x)在[﹣1,1]内的最小值;(2)设关于对x的不等式f(x+m)>f(x)的解集为A,且[﹣1,1]⊆A,求实数m的取值范围.2023-2024学年江苏省泰州市姜堰中学高一(上)期中数学试卷参考答案与试题解析一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知集合A={x|0<x<2},B={x|1<x<4},则A∪B=()A.{x|0<x<2}B.{x|2<x<4}C.{x|0<x<4}D.{x|x<2或x>4}解:集合A={x|0<x<2},B={x|1<x<4},则A∪B={x|0<x<4}.故选:C.2.命题“∀x∈R,x2+2x+2>0”的否定是()A.∀x∈R,x2+2x+2≤0B.∃x∈R,x2+2x+2≤0C.∀x∈R,x2+2x+2<0D.∃x∈R,x2+2x+2>0解:原命题为:∀x∈R,x2+2x+2>0,∵原命题为全称命题,∴其否定为存在性命题,且不等号须改变,∴原命题的否定为:∃x∈R,x2+2x+2≤0.故选:B.3.“﹣2<x<4”是“x2﹣x﹣6<0”的()A.必要而不充分条件B.充分而不必要条件C.充要条件D.既不充分也不必要条件解:不等式x2﹣x﹣6<0,即(x+2)(x﹣3)<0,可得﹣2<x<3,因为条件“﹣2<x<4”对应的集合包含“﹣2<x<3”对应的集合,所以“﹣2<x<4”是“x2﹣x﹣6<0”的必要而不充分条件.故选:A.4.已知a=log1.80.8,b=1.80.8,c=0.80.8,则a、b、c的大小关系为()A.a>b>c B.c>a>b C.c>b>a D.b>c>a解:∵a=log1.80.8<log1.81=0,b=1.80.8>1.80=1,0<c=0.80.6<0.80=1,故b>c>a.故选:D.5.函数y =1−x +√1−2x 的值域为( ) A .(−∞,12]B .[0,+∞)C .[12,+∞)D .(12,+∞)解:易知函数的定义域为(−∞,12],由于y =1﹣x 在(−∞,12]上单调递减,y =√1−2x 在(−∞,12]上单调递减, 则函数y =1−x +√1−2x 在(−∞,12]上单调递减, 故y ≥1−12+√1−2×12=12, 即函数的值域为[12,+∞). 故选:C .6.设函数f(x)={2−x −1,x ≤0x 12,x >0,若f (x 0)<3,则x 0的取值范围是( )A .(﹣2,+∞)B .(﹣2,9)C .(﹣∞,﹣2)∪(9,+∞)D .(﹣2,0)∪(9,+∞)解:函数f(x)={2−x −1,x ≤0x 12,x >0,由f (x 0)<3,可得①{x 0≤02−x 0−1<3,解得﹣2<x 0≤0,②{x 0>0x 012<3,解得0<x 0<9;则x 0的取值范围是:(﹣2,9). 故选:B .7.牛奶的保鲜时间因储藏温度的不同而不同,假定保鲜时长t (单位:h )与储藏温度x (单位:℃)之间的关系为t =192×(732)x22,若要使牛奶保鲜时长超过96h ,则应储藏在温度低于( )℃的环境中.(附:lg 2≈0.301,lg 7≈0.845,答案采取四舍五入精确到0.1) A .10.0B .10.3C .10.5D .10.7解:由题意得t =192×(732)x 22>96, ∴(732)x 22>12,∴x 22<log 73212=−log 7322,∴x 22<−log 7322=−lg2lg7−5lg2≈0.456,解得x <10.032,∴应储藏在温度低于10.0℃的环境中.故选:A .8.若函数f (x )是定义在(0,+∞)上的增函数,且对一切x >0,y >0,满足f(x)−f(y)=f(x y),则不等式f(x +3)−f(1x)<2f(2)的解集为( ) A .(﹣1,4)B .(﹣4,1)C .(0,1)D .(0,4)解:因为对一切x >0,y >0,满足f(x)−f(y)=f(xy ),所以令x =4,y =2,得f (4)﹣f (2)=f (2),即f (4)=2f (2), 则不等式f (x +3)﹣f (1x )<2f (2)可化为f ((x +3)x )<f (4),又因为函数f (x )是定义在(0,+∞)上的增函数,所以{x +3>0x >0(x +3)x <4,即{x >−3x >0x 2+3x −4<0,解得0<x <1.故选:C .二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.若函数y =e x 的图象上存在不同的两点A ,B 到直线l 的距离均为e ,则l 的解析式可以是( ) A .y =﹣e B .y =eC .x =eD .y =x解:如图所示:函数y =e x 的图象上的点到直线y =﹣e 的距离都大于e ,故A 错误; 当x <1时,函数y =e x 的图象上的点到直线y =e 的距离都小于e ,当x >1时,函数y =e x 的图象上存在一个点到直线y =e 的距离等于e ,故B 错误;当x<e时,函数y=e x的图象上存在一个点到直线x=e的距离等于e,当x>e时,函数y=e x的图象上存在一个点到直线x=e的距离等于e,故C正确;点A(0,1)到直线x﹣y=0的距离|AB|=√22<e,则点A(0,1)两边各存在一点到直线x﹣y=0的距离等于e,故D正确.故选:CD.10.下列说法正确的是()A.不等式2x+1≥1的解集是(﹣1,1]B.若函数f(x)的定义域为[1,4],则函数f(x+1)的定义域为[0,3]C.函数y=2x+1在单调递减区间为(﹣∞,﹣1)∪(﹣1,+∞)D.函数f(x)=√−x2+2x的单调递增区间为[0,1]解:根据题意,依次分析选项:对于A,不等式2x+1≥1,变形可得1−xx+1≥0,解可得﹣1<x≤1,即不等式的解集为(﹣1,1],A正确;对于B,若函数f(x)的定义域为[1,4],对于函数f(x+1),有1≤x+1≤4,解可得0≤x≤3,即函数f(x+1)的定义域为[0,3],B正确;对于C,函数y=2x+1由函数y=2x向左平移1个单位得到,则函数y=2x+1在单调递减区间为(﹣∞,﹣1)和(﹣1,+∞),C错误对于D,对于f(x)=√−x2+2x,有﹣x2+2x≥0,解可得0≤x≤2,即函数的定义域为[0,2],设t=﹣x2+2x,则y=√t,t=﹣x2+2x在区间[0,1]上为增函数,在区间[1,2]上为减函数,y=√t在[0,+∞)上为增函数,故函数f(x)=√−x2+2x的单调递增区间为[0,1],D正确.故选:ABD.11.已知a>0,b>0,a+b=1,则()A.ab≤14B.log2a+log2b≥﹣2C.1a +1b≥4D.(12)a−b<2解:对选项A,因为a>0,b>0,且a+b=1,所以ab≤(a+b)24=14,当且仅当a=b=12时,等号成立,故A正确.对选项B,log2a+log2b=log2ab≤log214=−2,当且仅当a =b =12时,等号成立,故B 错误. 对选项C ,因为a >0,b >0,a +b =1,1a+1b=(1a+1b )(a +b)=2+b a+a b≥2+2√b a ⋅ab=4,当且仅当ba=a b时,即a =b =12时等号成立,故C 正确.对选项D ,因为a >0,a +b =1,所以b =1﹣a ,2a ﹣1>﹣1, 所以(12)a−b =(12)2a−1<(12)−1=2,故D 正确. 故选:ACD .12.用C (A )表示非空集合A 中元素的个数,定义A ∗B ={C(A)−C(B),C(A)≥C(B)C(B)−C(A),C(A)<C(B),已知集合A ={x |x 2+x =0},B ={x ∈R |(x 2+ax )(x 2+ax +1)=0},则下面正确结论正确的是( ) A .∃a ∈R ,C (B )=3 B .∀a ∈R ,C (B )≥2C .“a =0”是“A *B =1”的必要不充分条件D .若S ={a ∈R |A *B =1},则C (S )=3解:对于A ,当a =2时,B ={0,﹣2,﹣1},此时C (B )=3,故A 正确; 对于B ,当a =0时,B ={0},此时C (B )=1,故B 错误;对于C ,当a =0时,B ={0},所以C (B )=1,A ={0,﹣1},所以C (A )=2,所以A *B =1; 当A *B =1时,因为C (A )=2,所以C (B )=1或3, 若C (B )=1,满足{a =0Δ=a 2−4=0,解得a =0;若C (B )=3,因为方程x 2+ax =0的两个根x 1=0,x 2=﹣a 都不是方程x 2+ax +1=0的根,所以需满足{a ≠0Δ=a 2−4=0,解得a =±2, 所以“a =0“是“A *B =1”的充分不必要条件,故C 错误;对于D ,因为C (A )=2,要得A *B =1,所以C (B )=1或3,由C 可知:a =0或a =±2, 所以S ={0,2,﹣2},所以C (S )=3,故D 正确; 故选:AD .三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.函数y =√2−x +log 2(x −1)的定义域为 . 解:要使函数有意义则{2−x ≥0x −1>0,∴{x ≤2x >1,即1<x ≤2, 即函数的定义域为{x |1<x ≤2}. 故答案为:{x |1<x ≤2}.14.已知幂函数f (x )=(a 2﹣a ﹣1)x a 在区间(0,+∞)上单调递减,则函数g (x )=b x +a ﹣1(b >1)的图象过定点 .解:∵幂函数f (x )=(a 2﹣a ﹣1)x a 在区间(0,+∞)上单调递减, ∴{a 2−a −1=1a <0,解得a =﹣1, ∴g (x )过定点(1,0). 故答案为:(1,0).15.若函数f (x )的值域为(0,1],且满足f (x )=f (﹣x ),则f (x )的解析式可以是f (x )= . 解:由题意可知,函数的值域为(0,1],且函数为偶函数,满足条件的其中一个函数为f(x)=(12)|x|. 故答案为:(12)|x|(答案不唯一).16.已知函数f (x )=x 2,g (x )=a |x ﹣1|,a 为常数,若对于任意x 1,x 2∈[0,2],且x 1<x 2,都有f (x 1)﹣f (x 2)<g (x 1)﹣g (x 2),则实数a 的取值范围为 .解:对于任意x 1,x 2∈[0,2],且x 1<x 2,都有f (x 1)﹣f (x 2)<g (x 1)﹣g (x 2),即f (x 1)﹣g (x 1)<f (x 2)﹣g (x 2),令F (x )=f (x )﹣g (x )=x 2﹣a |x ﹣1|,即F (x 1)<F (x 2),只需F (x )在[0,2]单调递增即可, 当x =1时,F (x )=0,图象恒过(1,0)点, 当x >1时,F (x )=x 2﹣ax +a , 当x <1时,F (x )=x 2+ax ﹣a , 要使F (x )在[0,2]递增,则当1<x ≤2时,F (x )=x 2﹣ax +a 的对称轴x =a2≤1,即a ≤2, 当0≤x <1时,F (x )=x 2+ax ﹣a 的对称轴x =−a2≤0,即a ≥0, 故a ∈[0,2], 故答案为:[0,2]四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(10分)计算求值: (1)(√23×√3)6−3235−√23×(4−13)﹣1+(5+2√6)0(2)e 2ln 3+ln (e √e )﹣log 49•log 278﹣log 2(log 216)+lg √2+lg √5 解:(1)(√23×√3)6−3235−√23×(4−13)−1+(5+2√6)0=108−8−2+1=99;(2)e 2ln 3+ln (e √e )﹣log 49•log 278﹣log 2(log 216)+lg √2+lg √5 =9+32−2lg32lg2•3lg23lg3−2+lg √10 =9+32−1﹣2+12 =8.18.(12分)已知全集U =R ,集合M ={x |(x +4)(x ﹣6)<0},N ={x |x ﹣5<0}. (1)求M ∪N ,∁R N ;(2)设P ={x ||x |=t },若P ⊆M ,求t 的取值范围.解:(1)因为M ={x |﹣4<x <6},N ={x |x <5},所以M ∪N ={x |x <6},∁R N ={x |x ≥5}. (2)当P =∅时,t <0;当P ≠∅时,{t ≥0−4<t <6−4<−t <6,解得0≤t <4.综上所述,t <4,即t 的取值范围为(﹣∞,4). 19.(12分)已知函数f (x )={x +4,x ≤1x +kx,x >1,其中k >0(1)若k =1,f(m)=174,求实数m 的值; (2)若函数f (x )的值域为R ,求k 的取值范围. 解:(1)当k =1时,f(x)={x +4,x ≤1x +1x ,x >1, 由f(m)=174,得{m +4=174m ≤1或{m +1m =174m >1, 解得m =14或m =4, 所以实数m 的值为14或4.(2)当x ≤1时,f (x )=x +4,值域为(﹣∞,5]. 分以下两种情形来讨论:若0<k ≤1,此时√k ≤1,则f(x)=x +kx 在区间(1,+∞)上单调递增,此时f (x )的值域为(k +1,+∞),所以函数f (x )的值域为(﹣∞,4]∪(k +1,+∞)=R ,满足题意. 所以0<k ≤1满足题意.若k>1,此时√k>1,则f(x)=x+kx在区间(1,√k]上单调递减,在区间(√k,+∞)上单调递增,此时f(x)的值域为[2√k,+∞),所以f(x)的值域为(−∞,5]∪[2√k,+∞),由题意可得2√k≤5,解得k≤254,所以1<k≤254.综上:k的取值范围是{k|0<k≤254 }.20.(12分)已知定义域为R的函数f(x)=1−a⋅2x2x+1是奇函数.(1)求实数a的值.(2)试判断f(x)的单调性,并用定义证明.(3)解关于x的不等式f(4x)+f(8﹣9×2x)>0.解:(1)∵函数f(x)是定义域为R的奇函数,∴f(﹣x)+f(x)=0,即f(x)+f(−x)=1−a⋅2x2x+1+1−a⋅2−x2−x+1=(a−1)(2x+1)2x+1=0恒成立,∴a=1.(2)f(x)在R上为减函数,证明如下:由于f(x)=1−2x2x+1=−1+22x+1,任取x1,x2∈R且x1<x2,则f(x1)−f(x2)=(−1+22x1+1)−(−1+22x2+1)=22x1+1−22x2+1=2(2x2−2x1)(2x1+1)(2x2+1).∵x1<x2,∴2x2−2x1>0,又(2x1+1)(2x2+1)>0,∴f(x1)>f(x2),∴函数f(x)在R上为减函数.(3)由(2)得,奇函数f(x)在R上为减函数,∴f(4x)>f(9×2x﹣8),即22x<9•2x﹣8,令2x=t(t>0),则t2﹣9t+8<0,可得1<t<8,即20=1<2x<23,可得不等式的解集为(0,3).21.(12分)函数y=f(x)的图象关于坐标原点成中心对称图形的充要条件是函数y=f(x)为奇函数,可以将其推广为:函数y=f(x)的图象关于点P(a,b)成中心对称图形的充要条件是函数y=f(x+a)﹣b为y关于x的奇函数,给定函数f(x)=13x+1.(1)求f(x)的对称中心;(2)已知函数g(x)=﹣x2+mx,若对任意的x1∈[﹣1,1],总存在x2∈[1,+∞),使得g(x1)≤f(x2),求实数m的取值范围.解:(1)假设f (x )的图像存在对称中心(a ,b ),则h (x )=f (x +a )﹣b 的图像关于原点成中心对称,因为h (x )的定义域为R ,所以ℎ(−x)+ℎ(x)=13a−x −b +13x+a −b =0恒成立, 即(1﹣2b )(3a ﹣x +3a +x )+2﹣2b ﹣2b •32a =0恒成立,所以{1−2b =02−2b −2b32a =0, 解得{a =0b =12, 所以 f (x )的图像存在对称中心(0,12);(2)因为 f (x )在区间[1,+∞)上递减,可得f (x )的最大值为f (1)=14,由题意可得﹣x 2+mx ≤14在x ∈[﹣1,1]上恒成立,当x =0时,不等式化为0≤14恒成立;当0<x ≤1时,可得m ≤(x +14x )min , 由y =x +14x ≥2√14=1(当且仅当x =12∈(0,1]时,取得等号), 则m ≤1;当﹣1≤x <0时,可得m ≥(x +14x )max, 由y =x +14x ≤−2√14=−1(当且仅当x =−12∈[﹣1,0)时,取得等号),则m ≥﹣1;所以m 的取值范围是[﹣1,1].22.(12分)已知函数f (x )=x (m |x |﹣1),m ∈R .(1)若m =1,写出函数f (x )在[﹣1,1]上的单调区间,并求f (x )在[﹣1,1]内的最小值;(2)设关于对x 的不等式f (x +m )>f (x )的解集为A ,且[﹣1,1]⊆A ,求实数m 的取值范围. 解:(1)若m =1,f (x )=x (|x |﹣1)={x 2−x ,x ≥0−x 2−x ,x <0, 所以f (x )的单调增区间为[﹣1,−12],[12,1],递减区间为[−12,12],又f (﹣1)=0,f (12)=−14, 所以f (x )在[﹣1,1]内的最小值为−14.(2)因为关于对x的不等式f(x+m)>f(x)的解集为A,且[﹣1,1]⊆A,所以f(x+m)>f(x)在[﹣1,1]上恒成立,当m=0时,不符合题意,当m<0时,f(x)在[﹣1,1]上单调递减,符合题意,当m>0时,令x=0得f(m)>f(0),所以m(m2﹣1)>0,解得m>1,当x∈[﹣1,0),x+m∈[m﹣1,m),则f(x+m)=(x+m)(mx+m2﹣1),f(x)=x(﹣mx﹣1),又f(x+m)>f(x),所以2x2+2mx+m2﹣1>0,令h(x)=2x2+2mx+m2﹣1,x∈[﹣1,0),当−m2<−1,即m>2时,h(x)在[﹣1,0)上单调递增,所以h(x)min=h(﹣1)=m2﹣2m+1>0,所以m>2;当−m2≥−1,即1<m≤2时,h(x)在[﹣1,−m2)上单调递减,(−m2,0)单调递增,所以h(x)min=h(−m2)>0,所以m>√2,所以√2<m≤2,所以m>√2时恒成立,当x∈(0,1],x+m∈(m,m+1],则f(x+m)=(x+m)(mx+m2﹣1),f(x)=x(mx﹣1),又f(x+m)>f(x),所以2mx+m2﹣1>0恒成立,令h(x)=2x2+2mx+m2﹣1,x∈[﹣1,0),综上:实数m的取值范围为(﹣∞,0)∪(√2,+∞).。
2020-2021学年江苏省泰州市姜堰中学高一数学理联考试题含解析
![2020-2021学年江苏省泰州市姜堰中学高一数学理联考试题含解析](https://img.taocdn.com/s3/m/845ef8c59fc3d5bbfd0a79563c1ec5da50e2d60f.png)
2020-2021学年江苏省泰州市姜堰中学高一数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程f i(x)(i=1,2,3,4),关于时间x(x≥0)的函数关系式分别为f1(x)=2x﹣1,f2(x)=x3,f3(x)=x,f4(x)=log2(x+1),有以下结论:①当x>1时,甲走在最前面;②当x>1时,乙走在最前面;③当0<x<1时,丁走在最前面,当x>1时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确的序号为()A.①②B.①②③④C.②③④⑤D.③④⑤参考答案:C【考点】函数的图象;函数与方程的综合运用.【分析】画出函数的图象,利用函数的图象与性质推出结果即可.【解答】解:甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程f i(x)(i=1,2,3,4),关于时间x(x≥0)的函数关系式分别为f1(x)=2x﹣1,f2(x)=x3,f3(x)=x,f4(x)=log2(x+1),画出三个函数的图象如图,由图象可知:当0<x<1时,丁走在最前面,当x>1时,丁走在最后面,丙不可能走在最前面,也不可能走在最后面;当x>1时,乙走在最前面;由指数函数的性质以及幂函数的性质可知,当x=10时,210﹣1=1023>103=1000,如果它们一直运动下去,最终走在最前面的是甲.正确的命题是:②③④⑤.故选:C.2. 定义域为R的函数恰有5个不同的实数解等于( )A.0 B. C. D.1参考答案:C3. 已知数列{}的通项公式为,那么是它的A.第4项 B.第5项 C.第6项 D.第7项参考答案:A略4. (5分)下列说法正确的是()A.三点确定一个平面B.四边形一定是平面图形C.梯形一定是平面图形D.平面α和平面β有不同在一条直线上的三个交点参考答案:C考点:平面的基本性质及推论.专题:常规题型.分析:不共线的三点确定一个平面,两条平行线确定一个平面,得到A,B,C三个选项的正误,根据两个平面如果相交一定有一条交线,确定D选项是错误的,得到结果.解答:A.不共线的三点确定一个平面,故A不正确,B.四边形有时是指空间四边形,故B不正确,C.梯形的上底和下底平行,可以确定一个平面,故C正确,D.两个平面如果相交一定有一条交线,所有的两个平面的公共点都在这条交线上,故D不正确.故选C.点评:本题考查平面的基本性质即推论,考查确定平面的条件,考查两个平面相交的性质,是一个基础题,越是简单的题目,越是不容易说明白,同学们要注意这个题目.5.A. B. C. D.参考答案:C6. 下列命题正确的是()A.如果一条直线平行一个平面内的一条直线,那么这条直线平行于这个平面B.如果一条直线平行一个平面,那么这条直线平行这个平面内的所有直线C.如果一条直线垂直一个平面内的无数条直线,那么这条直线垂直这个平面D.如果一条直线垂直一个平面,那么这条直线垂直这个平面内的所有直线参考答案:D【考点】空间中直线与平面之间的位置关系.[来源:学科网]【专题】计算题;转化思想;综合法;空间位置关系与距离.【分析】在A中,这条直线有可能包含于这个平面;在B中,这条直线和这个平面内的所有直线平行或异面;在C中,当这无数条直线没有交点时,那么这条直线不一定垂直这个平面;在D中,由直线与平面垂直的性质定理得这条直线垂直这个平面内的所有直线.【解答】解:在A中,如果一条直线平行一个平面内的一条直线,那么这条直线平行于这个平面或包含于这个平面,故A错误;在B中,如果一条直线平行一个平面,那么这条直线和这个平面内的所有直线平行或异面,故B错误;在C中,如果一条直线垂直一个平面内的无数条直线,当这无数条直线没有交点时,那么这条直线不一定垂直这个平面,故C错误;在D中,如果一条直线垂直一个平面,那么由直线与平面垂直的性质定理得这条直线垂直这个平面内的所有直线,故D正确.故选:D.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.7. 在中,若三个角成等差数列,且也成等差数列,则一定是()A.有一个角为的任意三角形B.有一个角为的直角三角形C.正三角形D.以上都不正确参考答案:C略8. 已知点,,则直线AB的斜率是()A. 1B. -1C. 5D. -5参考答案:A【分析】由,即可得出结果.【详解】直线的斜率.【点睛】本题主要考查直线的斜率,属于基础题型.9. 从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A.至少有1个白球,都是白球B.至少有1个白球,至少有1个红球C.恰有1个白球,恰有2个白球D.至少有1个白球,都是红球参考答案:C10. 已知直线,平面,且,给出下列四个命题:①若α//β,则;②若③若,则;④若其中正确命题的个数是()A.0 B.1 C.2D.3参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 计算:。
江苏省泰州市姜堰第三高级中学2020-2021学年高一数学理测试题含解析
![江苏省泰州市姜堰第三高级中学2020-2021学年高一数学理测试题含解析](https://img.taocdn.com/s3/m/df6230738f9951e79b89680203d8ce2f00666547.png)
江苏省泰州市姜堰第三高级中学2020-2021学年高一数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知f(x)=log(x2﹣2x)的单调递增区间是()A.(1,+∞)B.(2,+∞)C.(﹣∞,0)D.(﹣∞,1)参考答案:C【考点】复合函数的单调性.【分析】令t=x2﹣2x>0,求得函数的定义域,且f(x)=g(t)=log t,根据复合函数的单调性,本题即求函数t=x2﹣2x在定义域内的减区间,利用二次函数的性质可得函数t=x2﹣2x在定义域内的减区间.【解答】解:令t=x2﹣2x>0,求得x<0,或x>2,故函数的定义域为(﹣∞,0)∪(2,+∞),且f(x)=log(x2﹣2x)=g(t)=log t.根据复合函数的单调性,本题即求函数t=x2﹣2x在定义域内的减区间.再利用二次函数的性质可得函数t=x2﹣2x在定义域内的减区间为(﹣∞,0),故选:C.2. 设集合,则等于 ( )A.B.C. D.参考答案:D3. 函数的零点所在的区间是()A、B、C、D、参考答案:C略4. 函数(,-<<)的部分图象如图所示,则,的值分别是().A.2,-B.2,-C.4,-D.4,参考答案:A5. 定义在R上的偶函数满足:对任意的,有.则( )A. B.C. D .参考答案:B6. 在下列函数中,最小值为2的是( )A.B.C. D.参考答案:D7. 三个数,,之间的大小关系是()A. B. C. D.参考答案:C8. 设,,,则()A. B. C. D.参考答案:C9. 设x,y满足约束条件若z=mx+y取得最大值时的最优解有无穷多个,则实数m的值是()A.B.C.﹣2 D.1参考答案:A【考点】7C:简单线性规划.【分析】作出不等式组对应的平面区域,利用z=mx+y取得最大值的最优解有无穷多个,得到目标函数的对应的直线和不等式对应的边界的直线的斜率相同,解方程即可得到结论【解答】解:作出不等式组表示的平面区域如图中阴影部分所示,由于目标函数取最大值时的最优解有无穷多个,所以目标函数z=mx+y的几何意义是直线mx+y﹣z=0与直线x﹣2y+2=0平行,即两直线的斜率相等即﹣m=,解得m=﹣.故选:A.10. 《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A. 钱B. 钱C. 钱D. 钱参考答案:B设甲、乙、丙、丁、戊所得钱分别为,则,解得,又,则,故选B.二、填空题:本大题共7小题,每小题4分,共28分11. 若方程有两个不相等的实根,求出的求值范围为____________.参考答案:略12. 对于任意的实数表示中较小的那个数,若,,则的最大值是________.参考答案:1略13. 设、是平面外的两条直线,给出下列三个论断:①;②;③.以其中两个为条件,余下的一个为结论,构成三个命题,写出你认为正确的一个命题:.参考答案:①②③(或①③②)略14. 下列四个命题(1)有意义; (2)函数是其定义域到值域的映射;(3)函数的图象是一直线;(4)函数的图象是抛物线,其中正确的命题个数是____________。
江苏省淮阴中学、姜堰中学、徐州一中2023-2024学年高三上学期12月联考数学试题(含解析)
![江苏省淮阴中学、姜堰中学、徐州一中2023-2024学年高三上学期12月联考数学试题(含解析)](https://img.taocdn.com/s3/m/5aeb605ac4da50e2524de518964bcf84b8d52d50.png)
江苏省淮阴中学、姜堰中学等三校2024届高三上学期12月数学试题一、单项选择题(本大题共8小题,每小题5分,共40分.)1.设集合{}2log 1M x x =>,303x N x x +⎧⎫=<⎨⎬-⎩⎭,则M N ⋂=()A.[)2,3 B.()2,3 C.()2,+∞ D.()1,+∞2.设m ∈R ,则“2m =”是“直线1:210l mx y +-=与直线()2:3110l x m y +++=”平行的()条件A.充分不必要B.必要不充分C.充要D.既不充分又不必要3.(sin 40tan10=()A.2B.-2C.1D.-14.已知{}n a 为等比数列,n S 为数列{}n a 的前n 项和,122n n a S +=+,则5a 的值为()A.18B.54C.162D.4865.在ABC 中,点D 为BC 边中点,点E 在线段AC 上,且2AE EC =,若AD a = ,BE b = ,则AB为()A.1324a b - B.1223a b+C.1324a b+D.1223a b -6.设1F ,2F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,过2F 作x 轴的垂线与椭圆C 交于A ,B 两点,若1ABF 为钝角三角形,则离心率的取值范围为()A.01e <<-B.11e -<< C.112e << D.102e <<7.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海岛的高.如图1,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”,则海岛的高AB ⨯=+表高表距表高表目距的差,某同学受此法的启发设计了另一种测量此山高度的方案(如图2);他站在水平线AC 上,同时在水平线AC 上放一个小镜子(视为点P ),他在距离镜子a 米点Q 时,通过镜子看到了山顶,然后沿水平线AC 向靠近山的方向走了m 米,到达M 点,再将镜子放在距离自己b 米的前方点N 处,此时又看到了山顶,若此人的眼睛到水平线AC 的距离为h 米,则此山的高度约为()米A.mhh a b+- B.mhh a b-- C.hmh a b-- D.hmh a b+-8.设tan 0.21a =,ln1.21b =,21121c =,则下列大小关系正确的是()A.a b c<< B.a c b<< C.c b a<< D.c<a<b二、多项选择题(本大题共4小题,每小题5分,共20分.)9.已知0a >,0b >,且1a b +=,下列说法正确的是()A.114a b+≤ B.2212a b +≥C.122a b -<D.+≤10.已知复数1z ,2z ,则下列命题成立的有()A.若1212z z z z +=-,则120z z = B.11,Z nnz z n =∈C.若22120z z +=,则12=z z D.1212z z z z ⋅=⋅11.已知函数()()πsin 06f x x ωω⎛⎫=+> ⎪⎝⎭在[]0,2π有且仅有4个零点,则下列各选项正确的是()A.()f x 在区间π0,6⎛⎫⎪⎝⎭单调递增 B.ω的取值范围是2329,1212⎡⎫⎪⎢⎣⎭C.()f x 在区间()0,2π有2个极小值点D.()f x 在区间()0,2π有3个极大值点12.已知函数()f x ,()g x 的定义域均为R ,()g x '为()g x 的导函数,且()()1f x g x +'=,()()43f x g x -'-=,若()g x 为奇函数,则()A.()22f = B.()()042g g ''+=- C.()()13f f -=- D.()()44g g ''-=三、填空题(本大题共4小题,每小题5分,共20分)13.已知()1,a x = ,()1,b x =- ,若2a b - 与a 垂直,则实数x =____________.14.已知直线l 满足:原点到它的距离为2,点()3,0到它的距离为,请写出满足条件的直线l 的一个方程:______________.15.当实数0a ≠时,函数()()1e xf x x a x =--有且只有一个可导极值点,则实数a 的取值范围为________.16.已知[]x 为不超过x 的最大整数,例如[]0.20=,[]1.21=,[]0.51-=-,设等差数列{}n a 的前n 项和为()12n n nS a =+且515S =,记[]2log n n b a =,则数列{}n b 的前100项和为__________.四、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.已知π(sin(),1)4a x =+ ,2)b x = .(1)当π[0,]4x ∈,5a =时,求7πsin()12x +;(2)若()f x a b =⋅,求()f x 的值域.18.已知圆T 经过()4,0A ,()2,4B ,()5,3C .(1)求圆T 的方程;(2)过点71,3P ⎛⎫⎪⎝⎭的直线l 交圆T 于M 、N 两点,且2MP PN = ,求直线l 的方程.19.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,已知2c =,且12cos 2a Bb =+.(1)求ABC 周长的最大值;(2)若()sin sin 2sin 2C B A A +-=,且a b <,求角A.20.已知数列{}n a 满足13a =,当()*2N n n ≥∈时,()111nn na n a-=++.(1)求{}n a 的通项公式;(2)求数列πsin2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n T .21.已知函数()()e0xf x ax a =≠,()2g x x =-.(1)求()f x 的单调区间;(2)当0x >时,()f x 与()g x 有公切线,求实数a 的取值范围.22.已知椭圆()2222:10x y C a b a b+=>>的一条准线方程为4x =,长轴长为4,过点()2,1P -作直线l 交椭圆C 于点M 、N .(1)求椭圆C 的方程;(2)在x 轴上是否存在一定点Q ,使得直线QM ,QN 的斜率1k ,2k 满足1211k k +为常数?若存在,求出Q 点坐标;若不存在,说明理由.2023~2024学年度第一学期阶段性测试高三数学试题一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}2log 1M x x =>,303x N x x +⎧⎫=<⎨⎬-⎩⎭,则M N ⋂=()A.[)2,3 B.()2,3 C.()2,+∞ D.()1,+∞【答案】B 【解析】【分析】解不等式化简集合A ,B ,再利用交集的定义求解即得.【详解】依题意,22{|log log 2}{|2}Mx x x x =>=>,{|(3)(3)0}{|33}N x x x x x =+-<=-<<,解得(2,3)M N = .故选:B2.设m ∈R ,则“2m =”是“直线1:210l mx y +-=与直线()2:3110l x m y +++=”平行的()条件A.充分不必要B.必要不充分C.充要D.既不充分又不必要【答案】C 【解析】【分析】根据充分条件和必要条件的定义,结合两直线平行的条件分析判断.【详解】当2m=时,直线1:2210l x y +-=,直线2:3310l x y ++=,此时221331-=≠,所以直线1l ‖2l ,当1l ‖2l 时,21(10)311m m m -=≠+≠+,得(1)61210m m m m +=⎧⎪+≠-⎨⎪+≠⎩,解得2m =,所以“2m=”是“直线1:210l mx y +-=与直线()2:3110l x m y +++=”平行的充要条件,故选:C3.(sin 40tan10= ()A.2B.-2C.1D.-1【答案】D 【解析】【分析】利用切化弦,三角恒等变换,逆用两角差的正弦公式,二倍角公式,诱导公式化简求值.【详解】(sin 40tan10sin10=sin40(cos10sin 4012(sin10)22sin 40cos102(cos 60sin10sin 60cos10)sin 40cos102sin(1060)sin 40cos102sin 50sin 40cos102sin ︒︒⋅︒=︒︒=︒⋅︒︒⋅︒-︒⋅︒=︒⋅︒︒-︒=︒⋅︒-︒=︒⋅︒-=⋅ 40cos 40cos10sin 80cos101︒⋅︒︒-︒=︒=-故选:D4.已知{}n a 为等比数列,n S 为数列{}n a 的前n 项和,122n n a S +=+,则5a 的值为()A.18B.54C.162D.486【答案】C 【解析】【分析】由题意对所给的递推关系式进行赋值,得到关于1,a q 的方程组,从而利用等比数列的通项公式即可得解.【详解】因为122n n a S +=+,{}n a 为等比数列,设其公比为q ,当1n=时,2122a a =+,即1122a q a =+,当2n =时,()31222a a a =++,即()211122a q a a q =++,联立()1121112222a q a a q a a q =+⎧⎨=++⎩,解得12,3a q ==(0q =舍去),则445123162a a q ==⨯=.故选:C.5.在ABC 中,点D 为BC 边中点,点E 在线段AC 上,且2AE EC =,若AD a = ,BEb = ,则AB为()A.1324a b -B.1223a b +C.1324a b +D.1223a b -【答案】A 【解析】【分析】先以,AB AC 为基底表示出AD 和BE,然后消去AC 可得.【详解】因为点D 为BC 边中点,2AE EC =,所以()1213AD AB AC BE AE AB AC AB ⎧=+⎪⎪⎨⎪=-=-⎪⎩,消去AC 得234AD BE AB -= ,即13132424AB AD BE a b =-=-.故选:A.6.设1F ,2F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,过2F 作x 轴的垂线与椭圆C 交于A ,B 两点,若1ABF 为钝角三角形,则离心率e 的取值范围为()A.01e <<B.11e -<< C.112e << D.102e <<【答案】A 【解析】【分析】根据题意,得到212b F F a<,得到2220c ac a +-<,转化为2210e e +-<,进而求得椭圆C 的离心率的取值范围.【详解】由1F ,2F 分别是椭圆2222:1x y C a b+=的左、右焦点,过2F 作x 轴的垂线与椭圆C 交于,A B 两点,可得22b AB a=,即22b AF a=,因为1ABF 为钝角三角形,则1245AF F ∠>︒,可得212b F F a <,即22b c a<,即22b ac >,又因为222b a c =-,可得222a c ac ->,即2220c ac a +-<,即2210e e +-<,且01e <<,解得01e <<-,即椭圆C 的离心率的取值范围为1)-.故选:A.7.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海岛的高.如图1,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”,则海岛的高AB ⨯=+表高表距表高表目距的差,某同学受此法的启发设计了另一种测量此山高度的方案(如图2);他站在水平线AC 上,同时在水平线AC 上放一个小镜子(视为点P ),他在距离镜子a 米点Q 时,通过镜子看到了山顶,然后沿水平线AC 向靠近山的方向走了m 米,到达M 点,再将镜子放在距离自己b 米的前方点N 处,此时又看到了山顶,若此人的眼睛到水平线AC 的距离为h 米,则此山的高度约为()米A.mhh a b+- B.mhh a b-- C.hmh a b-- D.hmh a b+-【答案】B 【解析】【分析】利用三角形相似得到线段比,从而转化得解.【详解】记此人的眼睛在,M Q 处的位置分别为,D E ,如图,由题意可知ABN MDN ∽,ABP QEP ∽,所以AB ANMD MN=,AB APQE PQ=,又DM EQ h ==,MQ m =,,PQ a MN b ==,所以AB ANh b=,AB AP h a =,则b AB AN h ⋅=,a ABAP h⋅=,因为AP AN PN MP MN m a b -==+=-+,所以a AB b AB m a b h h ⋅⋅-=-+,解得mhAB ha b=--.故选:B.8.设tan 0.21a=,ln1.21b =,21121c =,则下列大小关系正确的是()A.a b c<< B.a c b<< C.c b a<< D.c<a<b 【答案】C 【解析】【分析】首先通过构造函数得到当π02x <<时,tan x x >,再通过构造函数()()πln 1,02f x x x x =-+<<进一步得到()ln 1x x >+,π0,2x ⎡⎤∈⎢⎥⎣⎦,由此即可比较,a b ,通过构造函数()()ln 1,01x g x x x x=+->+即可比较,c b ,由此即可得解.【详解】设()πtan ,02h x x x x =-<<,则()()22cos cos sin sin 1π110,0cos cos 2x x x x h x x x x ⋅--'=-=-><<,所以()tan hx x x =-在π0,2⎛⎫⎪⎝⎭上单调递增,所以()()tan 00hx x x g =->=,即πtan ,02x x x ><<,令()()πln 1,02f x x x x =-+<<,则()11011x f x x x'=-=>++,所以()()ln 1f x x x =-+在π0,2⎛⎫⎪⎝⎭上单调递增,从而()()()ln 100f x x x f =-+>=,即()ln 1x x >+,π0,2x ⎛⎫∈ ⎪⎝⎭,所以()tanln 1x x x >>+,π0,2x ⎛⎫∈ ⎪⎝⎭,从而当0.21x =时,tan 0.21ln1.21a b =>=,令()()ln 1,01x g x x x x =+->+,则()()()()22110111x x x g x x x x +-'=-=>+++,所以()()ln 11xg x x x =+-+在()0,∞+上单调递增,所以()()210.21ln1.2100121g g =->=,即21ln1.21121b c =>=,综上所述:21tan 0.21ln1.21121a b c =>=>=.故选:C.【点睛】关键点睛:本题的关键是在比较,a b 的大小关系时,可以通过先放缩再构造函数求导,而在比较,c b 大小关系时,关键是通过构造适当的函数,通过导数研究函数单调性,从而来比较大小.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分)9.已知0a >,0b >,且1a b +=,下列说法正确的是()A.114a b+≤ B.2212a b +≥C.122a b -< D.≤【答案】BD 【解析】【分析】根据题意结合基本不等式和三角函数的性质,逐项判定,即可求解.【详解】因为0a >,0b >,且1a b +=,对于A 中,由1111()()224b a a b a b a b a b +=++=++≥+=,当且仅当b a a b=时,即12ab ==时,等号成立,所以A 不正确;对于B 中,由22221()21212(22a b a b a b ab ab ++=+-=-≥-⋅=,当且仅当12ab ==时,等号成立,所以B 正确;对于C 中,因为0a >,0b >,且1a b +=,可得10b a -=-<,又因为函数2x y =为单调递增函数,可得22a a ->,所以122a b ->,所以C 不正确;对于D 中,因为0a >,0b >,且1a b +=,设22πsin ,cos ,(02a b θθθ==<<,sin 2cos )θθθϕ+=+=+≤,其中tan 2ϕ=,所以D 正确.故选;BD.10.已知复数1z ,2z ,则下列命题成立的有()A.若1212z z z z +=-,则12z z = B.11,Znn z z n =∈C.若22120z z +=,则12=z z D.1212z z z z ⋅=⋅【答案】BCD 【解析】【分析】举例说明判断A ;利用复数的三角形式计算判断B ;利用复数的代数形式,结合模及共轭复数的意义计算判断CD.【详解】对于A ,当121i,1i =+=-z z 时,12122z z z z +==-,而1220z z =≠,A 错误;对于B ,令1(cos isin ),0,R z r r θθθ=+≥∈,则1(cos isin )n n z r n n θθ=+,于是1|||cos isin |n n n z r n n r θθ=+=,而1||z r =,即有1||n n z r =,因此11nn z z =成立,B 正确;设复数1i(,R)z a b a b =+∈,2i(,)z c d c d =+∈R ,对于C ,由22120z z +=,得2222()(22)i 0a b c d ab cd -+-++=,则22220220a b c d ab cd ⎧-+-=⎨+=⎩,2222120z z -=-=,因此12=z z ,C 正确;对于D ,21(i)(i)()()i z a b c d ac bd c z ad b ⋅=++=-++,则21()()i z ac bd a b z d c ⋅=--+,12(i)(i)()()i z z a b c d ac bd ad bc ⋅=--=--+,因此1212z z z z ⋅=⋅,D 正确.故选:BCD11.已知函数()()πsin 06f x x ωω⎛⎫=+> ⎪⎝⎭在[]0,2π有且仅有4个零点,则下列各选项正确的是()A.()f x 在区间π0,6⎛⎫⎪⎝⎭单调递增B.ω的取值范围是2329,1212⎡⎫⎪⎢⎣⎭C.()f x 在区间()0,2π有2个极小值点D.()f x 在区间()0,2π有3个极大值点【答案】BC 【解析】【分析】由题意得到当且仅当ω满足π2π4π6π2π5π6ωω⎧+≥⎪⎪⎨⎪+<⎪⎩,即2329,1212ω⎡⎫∈⎪⎢⎣⎭由此判断B ;进一步结合复合函数单调性、三角函数单调性以及B 选项分析即可进一步判断ACD.【详解】对于B ,由题意当[]0,2πx ∈时,πππ,2π666x ωω⎡⎤+∈+⎢⎥⎣⎦,由题意函数()()πsin 06f x x ωω⎛⎫=+> ⎪⎝⎭在[]0,2π有且仅有4个零点,所以当且仅当π2π4π6π2π5π6ωω⎧+≥⎪⎪⎨⎪+<⎪⎩,解得23291212ω≤<,即ω的取值范围是2329,1212⎡⎫⎪⎢⎣⎭,故B 正确;对于C ,()0,2πx ∈时,πππ,2π666x ωω⎛⎫+∈+ ⎪⎝⎭,由B 选项分析可知π4π2π5π6t ω≤=+<,而sin y t =在ππ,2π66ω⎛⎫+ ⎪⎝⎭确定的极小值点有且仅有两个:3π7π,22,故C 选项正确;对于D ,()0,2πx ∈时,πππ,2π666x ωω⎛⎫+∈+ ⎪⎝⎭,由B 选项分析可知π4π2π5π6t ω≤=+<,而sin y t =在ππ,2π66ω⎛⎫+ ⎪⎝⎭确定的极大值点有两个:π5π,22,但当π9π4π2π62t ω≤=+≤时,()f x 在区间()0,2π有且仅有2个极大值点,故D 选项错误;对于A ,由B 选项分析可知2329,1212ω⎡⎫∈⎪⎢⎣⎭,不妨取2329,11252212ω∈=⎡⎫⎪⎢⎣⎭,此时ππ37π,6672t x ω⎛⎫=+∈ ⎪⎝⎭,而sin y t =在ππ,62⎛⎫ ⎪⎝⎭单调递增,在π37π,272⎛⎫⎪⎝⎭上单调递减,故A 选项错误.故选:BC.12.已知函数()f x ,()g x 的定义域均为R ,()g x '为()g x 的导函数,且()()1f x g x +'=,()()43f x g x -'-=,若()g x 为奇函数,则()A.()22f = B.()()042g g ''+=- C.()()13f f -=- D.()()44g g ''-=【答案】ABD 【解析】【分析】根据题意分析可知()g x '为偶函数,()()42'+-=-'g x g x ,且()g x '的周期为8,利用赋值法结合题意逐项分析判断.【详解】已知函数()f x ,()g x 的定义域均为R ,因为()()1f x g x +'=,()()43f x g x -'-=,可得()()42'+-=-'g x g x ,又因为()g x 为奇函数,则()()g x g x =--,可得()()g x g x ''=-,即()g x '为偶函数,则()()42+=''--g x g x ,即()()42''++=-g x g x ,可得()()842''+++=-g x g x ,所以()()8x g x g ''+=,可知()g x '的周期为8.对于选项A :因为()()42'+-=-'g x g x ,()()1f xg x +'=令2x =,则()()222''+=-g g ,()()221+='f g ,可得()21g '=-,()22f =,故A 正确;对于选项B :因为()()42'+-=-'g x g x ,令0x =,可得()()042g g ''+=-,故B 正确;对于选项C :因为()()42'+-=-'g x g x ,且()g x '为偶函数,则()()42''-++=-g x g x ,令=1x -,可得()()132''+=-g g ,又因为()()1f x g x +'=,令1,3x =-,则()()111'-+-=f g ,()()331+='f g ,可得()()()()13132'-++-+='f f g g ,可得()()134f f -+=,但由题设条件无法推出()()13f f -=-,故C 错误;对于选项D :因为()g x '的周期为8,故()()44g g ''-=,故D 正确;故选:ABD.【点睛】方法点睛:函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.三、填空题(本大题共4小题,每小题5分,共20分)13.已知()1,a x = ,()1,b x =- ,若2a b - 与a垂直,则实数x =____________.【答案】【解析】【分析】根据给定条件,利用垂直关系的向量表示及数量积的坐标表示,列出方程求解即得.【详解】由()1,a x =,()1,b x =- ,得2221,1a x a b x =+⋅=-+ ,由2a b - 与a 垂直,得2(2)20a b a a a b -⋅=-⋅= ,即有22(1)2(1)0x x +--+=,解得x =所以实数x =.故答案为:14.已知直线l满足:原点到它的距离为2,点()3,0到它的距离为,请写出满足条件的直线l 的一个方程:______________.【答案】10x y -+=(答案不唯一,10x y ++=)【解析】【分析】设出直线l 的方程,利用点到直线的距离公式,列式不解即得.【详解】当直线l 的斜率不存在时,设l 的方程为x a =,于是||2a =,且|3|a -=,显然无解,当直线l 的斜率存在时,设l 的方程为y kx b =+,即0kx y b -+=,于是2==,整理得22222168k b k kb b ⎧-=-⎨++=⎩,消去常数项得()(35)0k b k b -+=,即有0k b -=或350k b +=,由22210k b k b ⎧-=-⎨-=⎩解得1k b ==或1k b ==-,而方程组2221350k b k b ⎧-=-⎨+=⎩无解,因此1k b ==或1k b ==-,所以直线l 的方程为10x y -+=或10x y ++=.故答案为:10x y -+=15.当实数0a ≠时,函数()()1e xf x x a x=--有且只有一个可导极值点,则实数a 的取值范围为________.【答案】1[e,)-+∞【解析】【分析】根据题意,转化为()e x g x x =与y a =±的图象交点个数问题,分类讨论,利用导数求得函数()g x 的单调性与极小值,结合图象,即可求解.【详解】由函数()()()()1e ,01e 1e ,0xxxx ax x f x x a x x ax x ⎧--≥⎪=--=⎨-+<⎪⎩,当0x ≥时,可得()e xf x x a '=-;当0x <时,可得()e x f x x a '=+,令()e x g x x =,可得()(1)e x g x x '=+,当1x <-时,()0g x '<,()g x 单调递减;当1x >-时,()0g x '>,()g x 单调递增,所以,当=1x -时,函数取得极小值,极小值为()11eg --=-,且0x <时,()0g x <,()00g =,其函数()g x 的图象,如图所示,因为函数()f x 有且只有一个可导极值点,显然当0a <时,y a =与()e x g x x =在[)0,∞+上无交点,y a =-与()e xg x x =在(),0∞-上无交点,故不合题意,舍去,且由题目条件所知0a ≠,则0a >,①当函数()e x g x x =在[)0,∞+上与y a =,在(),0∞-上与y a =-上总共有一个交点时,当0a >时,设函数()f x 的唯一可导极值点为0x ,由图知00x >,若()e 0x f x x a ='-=在[0,)+∞有一个实数根,且()e 0x f x x a '=+=在(,0)-∞上没有实数根,则1ea a ->⎧⎨>⎩,可得1e a ->,此时0x 即为直线y a =与()()e 0x g x x x =≥的交点横坐标,符合题意;②若()e 0x f x x a ='-=在[0,)+∞有一个实数根,且在()e 0x f x x a '=+=在(,0)-∞上有且仅有一个实数根,且此零点的左右两侧导函数值不变号,则10ea a ->⎧⎨-=-⎩,可得1e a -=,此时满足题意,综上可得,实数a 的取值范围为1[e ,)-+∞.故答案为:1[e,)-+∞.16.已知[]x 为不超过x 的最大整数,例如[]0.20=,[]1.21=,[]0.51-=-,设等差数列{}n a 的前n 项和为()12n n n S a =+且515S =,记[]2log nn b a =,则数列{}n b 的前100项和为__________.【答案】480【解析】【分析】求出na n =,则得到[]2log nb n =,再利用[]x 的定义即可求出答案.【详解】由题意得()()1122nn n n nS a a a =+=+,所以11a =,()515355152S a a a =+==,所以33a =,所以公差3112d -==,所以n a n =,[][]22log log n n b a n ==,当1n=时,10b =,当23n ≤≤时,1n b =,当47n ≤≤时,2n b =,当815n ≤≤时,3n b =,当1631n ≤≤时,4n b =,当3263n ≤≤时,5n b =,当64100n ≤≤时,6n b =,所以数列{}n b 的前100项和为0122438416532637480+⨯+⨯+⨯+⨯+⨯+⨯=.故答案为:480.【点睛】关键点睛:本题的关键是求出na n =,再利用取整函数的定义对nb 分类讨论,最后计算出答案.四、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.已知π(sin(),1)4a x =+ ,2)b x = .(1)当π[0,4x ∈,5a = 时,求7πsin()12x +;(2)若()f x a b =⋅ ,求()f x 的值域.【答案】(1)410+;(2)5[,14-.【解析】【分析】(1)利用给定的模求出π4x +的正余弦,再利用和角的正弦公式求解即得.(2)利用数量积的坐标表示求出()f x ,再利用换元法,结合二次函数求出函数值域.【小问1详解】由π(sin(),1)4a x =+ ,5a = ,得2π41sin ()1425x ++=,即2π16sin (425x +=,由π[0,]4x ∈,得πππ[,442x +∈,解得π4π3sin(),cos()4545x x +=+=,所以7πππππππ4134sin()sin[()]sin()cos cos()sin 12434343525210x x x x ++=++=+++=⨯+⨯=.【小问2详解】依题意,π())sin 2sin cos 2sin cos 4f x a b x x x x x x=⋅=++=++2sin cos (sin cos )1x x x x =+++-,令πsin cos )[4t x x x +=∈=+,则22151()24y t t t =+-=+-,当12t =-时,min 54=-y ,当t =时,max 1y =+所以()f x 的值域是5[,14-+.18.已知圆T 经过()4,0A ,()2,4B ,()5,3C .(1)求圆T 的方程;(2)过点71,3P ⎛⎫⎪⎝⎭的直线l 交圆T 于M 、N 两点,且2MP PN =,求直线l 的方程.【答案】(1)226480x y x y +--+=(2)1x =,或351270--=x y 【解析】【分析】(1)设圆T 的方程为()2222040x y Dx Ey F D E F ++++=+->,代入A 、B 、C 三点坐标可得答案;(2)当直线l 的斜率不存在时,方程为1x =,求出M 、N 点坐标满足题意;当直线l 的斜率存在时,设方程为()713-=-y k x ,与圆T 的方程联立,设()()1122,,,Mx y N x y ,利用2MP PN =可得2123+=x x ,再由韦达定理求出1x 、2x ,再根据12x x 可得答案.【小问1详解】设圆T 的方程为()2222040x y Dx Ey F D E F ++++=+->,因为圆T 经过()4,0A ,()2,4B ,()5,3C ,所以16040416240259530D F D E F D E F +++=⎧⎪++++=⎨⎪++++=⎩,解得648D E F =-⎧⎪=-⎨⎪=⎩,满足224361632200+-=+-=>D E F ,所以圆T 的方程226480x y x y +--+=;【小问2详解】由(1)圆T 的方程为226480x y x y +--+=,因为2277816480339⎛⎫+--⨯+=-< ⎪⎝⎭,所以点P 在圆T 内,当直线l 的斜率不存在时,方程为1x =,与圆T 的方程联立即2216480x x y x y =⎧⎨+--+=⎩,解得11x y =⎧⎨=⎩或13x y =⎧⎨=⎩,当()1,1M 时,则()1,3N ,所以8220,0,33⎛⎫⎛⎫=≠= ⎪ ⎝⎭⎝⎭ MP PN ,不满足题意,当()1,1N 时,则()1,3M ,所以4420,,0,33⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ MP PN ,满足题意,当直线l 的斜率存在时,设方程为()713-=-y k x ,与圆T 的方程联立即()227136480y k x x y x y ⎧-=-⎪⎨⎪+--+=⎩,整理得()222222371260339⎛⎫++-+-+-+= ⎪⎝⎭k x k k x k k ,设()()1122,,,Mx y N x y ,可得212222631-+=++x x k k k ,2122237391-++=x k k kx ,1122771,,1,33⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭ MP x y PN x y ,由2MP PN =得12221x x -=-,可得2123+=x x ,221211122263231-++=++=+=+k k x x x x x x k ,可得2122331+-=+k k x k ,2224931-+=+k k x k ,所以2222221223724393933111-+++=+=-++⨯-x k k k k k k x k k k ,解得3512k =,所以直线l 的方程为()7351312-=-y x ,即351270--=x y ,综上所述,直线l 的方程为1x =,或351270--=x y.19.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,已知2c =,且12cos 2a Bb =+.(1)求ABC 周长的最大值;(2)若()sin sin 2sin 2C B A A +-=,且a b <,求角A .【答案】(1)6;(2)π6.【解析】【分析】(1)根据给定等式,借助正弦定理边化角,再利用和角的正弦公式化简并求出C ,然后利用余弦定理求解即得.(2)利用和差角的正弦公式、二倍角的正弦公式求解即得.【小问1详解】在ABC 中,由正弦定理及12cos 2a Bb =+,2c =,得1sin sin cos sin 2A C B B =+,则有1sin()sin cos sin 2B C C B B +=+,即1sin cos cos sin sin cos sin 2B C B C C B B +=+,即有1sincos sin 2B C B =,而0πB <<,即sin 0B >,因此1cos 2C =,又0πC <<,则π3C =,由余弦定理得2222222π142cos()3()3()()324a b c a b ab a b ab a b a b +==+-=+-≥+-⋅=+,当且仅当a b =时取等号,此时max ()4a b +=,所以当2ab c ===时,ABC 的周长取得最大值6.【小问2详解】在ABC 中,由sin sin()2sin 2C B A A +-=,得sin()sin()2sin 2B A B A A ++-=,化简得2sin cos 4sin cos B A A A =,由a b <,知A 是锐角,即cos 0A >,因此sin 2sin B A =,由(1)得,πsin()2sin 3A A +=,即1cos sin 2sin 22A A A +=,整理得tan 3A =,所以π6A =.20.已知数列{}n a 满足13a =,当()*2N n n ≥∈时,()111n n na n a -=++.(1)求{}n a 的通项公式;(2)求数列πsin 2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)21,N na n n *=+∈(2)2,431,42,N 1,41,4n n n k n n k T k n n k n n k*+=-⎧⎪+=-⎪=∈⎨--=-⎪⎪-=⎩【解析】【分析】(1)根据题意构造新数列1nna b n =+,利用累加法求得{}n b 的通项公式,进而求得{}n a 的通项公式.(2)根据(1)中所求知21,430,42πsin 21,4120,4n n n n k n k n c a n n k n k+=-⎧⎪=-⎪==⎨--=-⎪⎪=⎩,分四种情况依次求数列πsin 2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n T 即可.【小问1详解】由题13a =且当()*2N n n ≥∈时,()111nn na n a -=++,则11,21(1)n n a a n n n n n -=+≥++,令113,1112n n a a b b n ===++,即11111,2(1)1nn n n b b b b n n n n n --=+⇒-=-≥++,则211123bb -=-,323411b b -=-,L ,1111n n b b n n --=-+,累加得1111,22,2211n nb b n b n n n -=-≥⇒=-≥++,132b =也符合,所以12,N 1n b n n *=-∈+,1221,N 11n n n a b a n n n n *=-=⇒=+∈++.【小问2详解】由(1)得21na n =+,令πsin2n n n c a =,则21,430,42πsin 21,4120,4n n n n k n k n c a n n k n k+=-⎧⎪=-⎪==⎨--=-⎪⎪=⎩,其中N k *∈,即12343,0,7,0c c c c ===-=,L,434241485,0,81,0,N k k k k c k c c k c k *---=-==-+=∈,因为43424144,N k k k k cc c c k *---+++=-∈所以当4n k =时,1244n n nT c c c n =+++=-⨯=- ,当41n k =-时,1114014n n n n T T c n +++=-=-⨯-=--,当42n k =-时,()()2212421114n n n n n T T c c n n ++++=--=-⨯--+-=+,当43n k =-时,111102n n n T T c n n ++=-=++-=+,则数列πsin 2n n a ⎧⎫⎨⎬⎩⎭的前n 项和122,431,42,N 1,41,4n n n n k n n k T c c c k n n k n n k*+=-⎧⎪+=-⎪=+++=∈⎨--=-⎪⎪-=⎩ .21.已知函数()()e 0x f x ax a =≠,()2g x x =-.(1)求()f x 的单调区间;(2)当0x >时,()f x 与()g x 有公切线,求实数a 的取值范围.【答案】21.答案见解析22.1,0e ⎡⎫-⎪⎢⎣⎭【解析】【分析】(1)根据题意,求得()(1)e x f x a x '=+,分类讨论,即可求得函数的单调区间;(2)设公切线与()y f x =和()y g x =的切点分别为121(,))e ,(,x x b t b a -,根据导数的几何意义求得切线方程,转化为()1211214,(0)1ex x a x x -=>+,设()()2241exx h x x =+,利用导数求得函数()hx 的单调性与极值,得出函数()h x 的值域,即可求解.【小问1详解】解:由函数()()0x f x axe a =≠,可得()(1)e x f x a x '=+,当0a >时,可得(,1)x ∈-∞-时,()0f x '<,()f x 单调递减,(1,)∈-+∞x 时,()0f x ¢>,()f x 单调递增;当0a <时,可得(,1)x ∈-∞-时,()0f x ¢>,()f x 单调递增,(1,)∈-+∞x 时,()0f x '<,()f x 单调递减.【小问2详解】解:设公切线与()y f x =和()y g x =的切点分别为121(,))e ,(,x x b t b a -,可得()111(1)e x kf x a x '==+,可得切线方程为1111(1)e ()x x y ate a x x x -=+-,即112111(1)e ()e x x t y a x x ate a x t =++-+,即()112111e e x x y a x x ax =+-由()2g x x =-,可得()2g x x '=-,则2k b =,所以切线方程为22y bx b =-+所以1112212(1)e x x b a x b ax e⎧-=+⎨=-⎩,可得1211214,(0)(1)ex x a x x -=>+,设()2124,(0)(1)e xx h x x x =>+,可得()34(2)(1)(1)e x x x x h x x -+-'=+,当01x <<时,()0h x '>,()h x 单调递增;当1x >时,()0h x '<,()h x 单调递减,所以,当1x =时,函数()h x 取得极大值,极大值为()11eh =,又由当0x →时,()0h x →;当x →+∞时,()0h x →,所以()10e h x <≤,所以10e a <-≤时,即实数a 的取值范围为1,0e ⎡⎫-⎪⎢⎣⎭.【点睛】方法策略:利用导数研究参数问题的求解策略:1、分离参数法:根据不等式的基本性质将参数分离出来,得到一端是参数,一端是变量的表达式的不等式,转化为求解含有变量的表达式对应的函数的最值问题,进而求得参数的范围;2、构造函数法:根据不等式的恒成立,构造新函数,利用导数求得新函数的单调性,求出函数的最值(值域),进而得出相应的含参数的不等式,从而求解参数的取值范围;3、图象法:画出不等式对应的函数的图象,结合函数图象的走势规律,确定函数的极值点或最值点的位置,进而求得参数的取值范围.22.已知椭圆()2222:10x y C a b a b+=>>的一条准线方程为4x =,长轴长为4,过点()2,1P -作直线l 交椭圆C 于点M 、N .(1)求椭圆C 的方程;(2)在x 轴上是否存在一定点Q ,使得直线QM,QN 的斜率1k ,2k 满足1211k k +为常数?若存在,求出Q 点坐标;若不存在,说明理由.【答案】(1)22143x y +=(2)()2,0【解析】【分析】(1)由题意根据准线方程、长轴长、平方关系列出方程组,即可得解.21(2)不妨设直线:(2)1l y k x =++,0(,0)Q x ,1122(,),(,)M x y N x y ,将直线方程与椭圆方程联立根据韦达定理,可将1211k k +表示成含0,x k 的代数式,根据1211k k +定值的条件判断0x 是否存在即可.【小问1详解】由题意椭圆()2222:10x y C a b a b +=>>的一条准线方程为4x =,长轴长为4,即24,24a a c==,又因为222a b c =+,所以2,1,a c b ===C 的方程为22143x y +=.【小问2详解】由题意可知,直线l 的斜率的存在,所以可设:(2)1l y k x =++,联立22143x y +=可得222(34)8(21)4(21)120k x k k x k +++++-=,设1122(,),(,)M x y N x y ,()()()()22221642144342112961202k k k k k k ⎡⎤∴∆=+-++-=->⇒<⎣⎦,21212228(21)4(21)12+=,=3+43+4k k k x x x x k k ++--,若存在满足条件的0(,0)Q x ,10201020121212112121x x x x x x x x k k y y kx k kx k ----∴+=+=+++++10220112()(21)()(21)(21)(21)x x kx k x x kx k kx k kx k -+++-++=++++1201202212122(21)()2(21)(21)()(21)kx x k kx x x x k k x x k k x x k ++-+-+=+++++00(2412)6123x k x k -+-=+当00(2412)6=123x x -+-时,0=2x ,这时12114k k +=-,即满足条件的(2,0)Q .。
江苏高一高中数学竞赛测试带答案解析
![江苏高一高中数学竞赛测试带答案解析](https://img.taocdn.com/s3/m/bfa8d57602d276a201292e97.png)
江苏高一高中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、填空题1.____________.2.已知,,映射满足.则这样的映射有____________个.3.设函数,(其中表示不超过的最大整数),则函数的值域为____________.4.已知,是实系数一元二次方程的两个虚根,且,则____________.5.已知数列满足,,则的最小值为____________.6.从椭圆外一点作椭圆的两条切线和,若,则点轨迹方程为____________.7.已知圆,抛物线,设直线与抛物线相交于、两点,与圆相切于线段的中点,如果这样的直线恰有4条,则的取值范围是____________.8.函数的定义域和值域为,的导函数为,且满足,则的范围是____________.9.已知函数,若存在非零实数使得,则的最小值为____________.10.集合中有____________对相邻的自然数,它们相加时将不出现进位的情形.二、解答题1.求的值.2.如图,圆和圆相交于点,半径、半径所在直线分别与圆、圆相交于点,过点作的平行线分别与圆、圆相交于点.证明:.3.设点,是正三角形,且点在曲线上.(1)证明:点关于直线对称;(2)求的周长.4.设是正数数列,,且.求证:.江苏高一高中数学竞赛测试答案及解析一、填空题1.____________.【答案】【解析】2.已知,,映射满足.则这样的映射有____________个.【答案】35【解析】对应同一个数:有5种;对应不同两个数:有种;对应不同三个数:有种,所以共35种3.设函数,(其中表示不超过的最大整数),则函数的值域为____________.【答案】【解析】当时,=当时,=所以值域为4.已知,是实系数一元二次方程的两个虚根,且,则____________.【答案】【解析】由题意可设,由得所以5.已知数列满足,,则的最小值为____________.【答案】【解析】点睛:在利用叠加法求项时,一定要注意使用转化思想.在求和时要分析清楚哪些项构成等差数列,哪些项构成等比数列,清晰正确地求解.在利用基本不等式求最值时注意数列定义域,明确等于号是否取到.6.从椭圆外一点作椭圆的两条切线和,若,则点轨迹方程为____________.【答案】【解析】设点为,则方程为,与联立方程组得,所以,由题意得的两根乘积为-1,所以,当的斜率不存在时也满足,因此点轨迹方程为7.已知圆,抛物线,设直线与抛物线相交于、两点,与圆相切于线段的中点,如果这样的直线恰有4条,则的取值范围是____________.【答案】【解析】设直线方程 ,与抛物线方程联立得中点当时,显然有两条直线满足题意,因此时,还有两条直线满足题意,即点睛:解析几何范围问题,一般解决方法为设参数,运用推理,将该问题涉及的几何式转化为代数式或三角问题,然后直接推理、计算,并在计算推理的过程中列不等关系,从而得到取值范围.8.函数的定义域和值域为,的导函数为,且满足,则的范围是____________.【答案】【解析】令,则即的范围是点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等9.已知函数,若存在非零实数使得,则的最小值为____________.【答案】【解析】由题意得即因此点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.10.集合中有____________对相邻的自然数,它们相加时将不出现进位的情形.【答案】167【解析】考虑从1000到1999,这些数中,个位为0、1、2、3、4且十位为0、1、2、3、4且百位为0、1、2、3、4时不发生进位,否则会发生进位.还有,末位为9、99、999时,也不发生进位.因此从1000到1999(实际是2000,即最后一对是【1999、2000】)中,共有:5×5×5 + 5×5 + 5 + 1= 156对考虑从2000到2017,这些数中,有5+6=11对,所以共有156+11=167对二、解答题1.求的值.【答案】【解析】解:2.如图,圆和圆相交于点,半径、半径所在直线分别与圆、圆相交于点,过点作的平行线分别与圆、圆相交于点.证明:.【答案】见解析【解析】试题分析:根据平角得三点共线,根据同弦所对角相等得四点共圆.根据四点共圆性质得,即得,同理可得,根据等量性质得.试题解析:解:延长、分别与圆、圆相交于点,连结.则,所以三点共线.又,于是四点共圆.故,从而,因此,同理.所以.3.设点,是正三角形,且点在曲线上.(1)证明:点关于直线对称;(2)求的周长.【答案】(1)见解析(2)的周长为.【解析】(1)即证,由,可化简得证(2)设,则.由化简得,其中,解得,反代即得,的周长为.试题解析:(1)证明:设上一点为,则其与点的距离满足.由,知,化简得,所以,,点关于直线对称.(2)解:设,则.则,而,令,由是正三角形有得,解得或(舍去),所以,的周长为.4.设是正数数列,,且.求证:.【答案】见解析【解析】放缩证明:先证,再证.前面用数学归纳法证明,后面用导数求证,再令,则有.由裂项相消法求和可得结论试题解析:下面用数学归纳法证明:当,时,,①当时,,上述结论成立;②设时,成立,则当时所以当时,结论也成立.综合①②得,对任意的,都有.当时,;当时,.下面证明:,即证明.设函数,则,所以在上是增函数,所以恒成立,即.令,则有.故所以.综上可得.。
首届姜堰市高中数学解题能力大赛试题
![首届姜堰市高中数学解题能力大赛试题](https://img.taocdn.com/s3/m/f0c038d358f5f61fb736663a.png)
首届姜堰市高中数学解题能力大赛试题参考答案(考试时间:150分钟 满分:200分) 2010.11.27姜堰市教育局教研室命制一、基础知识(50分)1.《普通高中数学课程标准》中指出数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的_______语言和有效工具。
(科学)2.《普通高中数学课程标准》实施建议要求“帮助学生打好基础,发展能力”,具体来说:(1)强调对基本概念和______________的理解和掌握;(2)重视基本技能的训练;(3)与时俱进地审视基础知识与基本技能。
(基本思想)3.《普通高中数学课程标准》总体目标是使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足____________与社会进步的需要。
(个人发展)4.《2010年江苏高考说明》中要求的数学基本能力主要包括空间想象、抽象概括、推理论证、运算求解、____________。
(数据处理)5.《2010年江苏高考说明》明确指出要注重数学的两种意识的考查,一是应用意识,另一个是____________意识。
(创新)6.《2010年江苏高考说明》要求数学必做题部分由容易题、中等题和难题组成,所占分值的比例大致为____________。
(4:4:2)7.《普通高中数学课程标准》提出了十大理念,请写出其中五个,并选其中一个理念,简述在平时教学中是如何体现该理念的?解:略8.《2010年江苏高考说明》对知识的考查要求依次为了解、理解、掌握三个层次,分别用A 、B 、C 表示,试写出所有C 级要求。
并选其中一个简述在教学中如何体现该知识的C 级要求的?解:略二、解题能力(150分,填空题必需有求解过程,否则该题判0分)1.设集合A={x| |x -a |<1},B={x| |x -b |>2},若B A ⊆,则a 、b 必满足:①|a +b |≤3 ②|a +b |≥3③|a -b |≤3 ④|a -b |≥3正确的序号为_______________解:(天津卷9) ④12-≤-a b 3-≥-b a 舍 12+≥-a b 3≥-a b ∴3||≥-a b2.若△ABC 三边长为a 、b 、c ,则},,min{},,max{c a b c a b a c c b b a ⋅=______________解:(湖北卷 10)不妨设c b a ≤≤,∴为13.对任一正整数a ,都存在正整数b ,c (b<c),使得a 2,b 2,c 2成等差数列,此时c b =___________(只需填一个答案)解:(江西卷 22)∵1,52,72成等差数列 则a 2,(5a )2,(7a )2也成等差数列,∴c b =754.已知函数10100621|lg |)(>≤<⎪⎩⎪⎨⎧+-=x x x x x f ,若a 、b 、c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围为______________解:(全国新课程卷 11)不妨设a<b<c则1210,101,1101<<<<<<c b a ∴f (a )=| lga |=-lga f (b )=| lgb |=-lgb-lga=lgb ∴ab =1∴abc =c ∈(10,12) 5.已知函数)62sin(3)(π-=x x f 和)0,0(1)cos(2)(><<++=ωπϕϕωx x g 的图象的对称轴完全相同,若]2,0[π∈x ,则g(x)的取值范围是______________解:(福建卷 14)由题意知2=ω∴1)]2(2sin[2)(+++=ϕπx x g 则62ππϕπ-=+k ∴)(32Z k k ∈-=ππϕ ∵πϕ<<0 ∴3πϕ= ∴1)32cos(2)(++=πx x g ∵]34,3[32πππ∈+x ∴]2,1[)(-∈x g 6.设f(x)=x+cosx ,给定x 1,x 2∈R ,x 1<x 2,α=mx 1+(1-m)x 2,β=(1-m) x 1+mx 2,若|)()(||)()(|21x f x f f f ->-βα,则m 的取值范围为___________________解:(江苏卷 20(Ⅱ))0sin 1)('≥-=x x f ∴f(x)为增函数∵|)()(||)()(|21x f x f f f ->-βα则由图知α,β应为x 1,x 2的外分点设λλα++=121x x ,∴λ<0,令λ+=11m ,)0,(),1(-∞⋃+∞∈∴m7.如果f(x)=x+1,(1)求f(f(x))的表达式(2)求f(f(f(…f(x)…)))(n ∈N )的表达式,并用数学归纳法加以证明n 个f解:(苏教版教材必修1 P94 22)8.如果三个平面两两相交于三条直线,试判断三条直线的位置关系,并加以证明 解:(苏教版教材必修2 P30 例3)9.如图,四棱锥P —ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=90°,试用两种..不同的方法,求点A 到平面PBC 的距离 解法一:解法二:解:(江苏卷16) M方法一:等体积法:313131=⋅==∆∆PD S h S V PBC PBC ,∴方法二:该四棱锥P —ABCD 源于正方体∴求A 到面PBC 的距离是AB 的中点M 到面PBC 的距离的2倍而面PBC 是正方体的对角面 ∴M 到对角面的距离即为正方形对角线的一半 方法三:可利用空间直角坐标系求解10.已知数列{}n a 满足)1(0),1(321,2112211≥<-=-=++n a a a a a n n n n ,数列}{n b 满足)1(221≥-=+n a a b nn n (1)求数列{}n a ,}{n b 的通项公式(2)证明:数列}{n b 中的任意三项不可能成等差数列解:(湖北卷20)由题意可知,)1(321221n a a n -=-+11.已知椭圆C :),(),0(12222b a P b a by a x ->>=+ (Ⅰ)设直线l 1: y=k 1x+p 交椭圆C 于C 、D 两点,交直线l 2: y=k 2x 于点E ,若E 为C 、D 中点,求k 1·k 2的值(Ⅱ)对于椭圆C 上的点Q )0)(sin ,cos (πθθθ<<b a ,如果椭圆C 上存在不同的两个交点P 1、P 2满足PQ PP PP =+21,写出求作点P 1、P 2的步骤,并求出使P 1、P 2存在的)4sin(πθ-的范围解:(上海卷23)(Ⅰ)设C(x 1,y 1),D(x 2,y 2)中点E(x 0,y 0)则 121210210212222222212212211k x x y y y y y x x x ②b y a x ①b y a x =--=+=+=+=+ ①-②得001202=+y k a x b③ 又p x k y +=010 ④ 由③④得⎪⎪⎩⎪⎪⎨⎧+=+-=212220212120k a b p b y k a b p k a x 代入y=k 2x 得2221ab k k -= (2)第一步,求出PQ 的中点M ,求k OM ,令k OM = k 2第二步:过点M 作斜率22211k a b k -=的直线交椭圆于两点P 1、P 2,使21P P l 与椭圆联立,可解得P 1、P 2由(2)知P 1、P 2满足条件,PQ 中点M )2)sin 1(,2)1(cos (θθ+-b a 其存在P 1、P 2,则M 必在椭圆内部 ∴42)4sin(22,14)sin 1(4)cos 1(22<-<-<++-πθθθ 12.设x e x f --=1)((Ⅰ)证明:当x>-1时,1)(+≥x x x f (Ⅱ)设当x ≥0时,1)(+≤ax x x f ,求a 的取值范围 解:(Ⅰ)x>-1 x+1>0 x e x x f x x x x f x +≥⇔≥+⇔+≥1)()1(1)( 令1)(--=x e x g x ,则1)('-=x e x g 1- 0g(x)最小值为g(0)=0∴g(x)≥g(0) ∴1)(+≥x x x f (Ⅱ)当x ≥0时,f (x)≥0(i)当a <0时①若a x+1<0此时当x>0时,01<+ax x 则1)(+>ax x x f ②若a x+1>0此时当a x 1->时,01<+ax x 则1)(+>ax x x f(ii)当a =0时不等式为x e x ≤--1设0,01)(',1)(≥≥+-=-+=--x e x h x e x h x x ∴h(x)为增函数 ∴h(x)≥h(0)=0∴不等式成立(iii)当a >0时,此时a x+1>0则1)(+≤ax x x f 当且仅当(a x+1)f (x)≤x 设1)(-+-+=--x ax e axe x g x x)1()1()('a a x e e a x g x x -+--=--x e a ax x g ---=)]12([)('' ①当21>a 时,0)('')12,0(<-∈x g a a x ∴)('x g 为减函数 此时0)0(')('=<g x g ∴)(x g 为减函数 此时0)0()(=<g x g 原不等式不成立 ②当21≤a 时, x ≥0,0)(''≥x g ∴)('x g 为增函数 此时0)0(')('=≥g x g ∴)(x g 为减函数此时0)0()(=≥g x g 不等式不成立综上]21,0[∈a。
江苏省姜堰中学2022-2023学年高一上数学期末综合测试试题含解析
![江苏省姜堰中学2022-2023学年高一上数学期末综合测试试题含解析](https://img.taocdn.com/s3/m/7ee1e797c67da26925c52cc58bd63186bceb921e.png)
14.函数 的单调递减区间为__
15.已知函数 ,其所有的零点依次记为 ,则 _________.
16.定义:关于 的两个不等式 和 的解集分别为 和 ,则称这两个不等式为相连不等式.如果不等式 与不等式 为相连不等式,且 ,则 _________
2022-2023学年高一上数学期末模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
C.第60百分位数=众数<平均数D.平均数=第60百分位数=众数
5.已知 , 是不共线的向量, , , ,若 , , 三点共线,则实数 的值为()
A. B.10
C. D.5
6.函数 在区间 上的最大值为
A.1B.4
C.-1D.不存在
7.若函数 ,则 的单调递增区间为()
A. B.
C. D.
8.定义在 上的函数 满足 ,且当 时, .若关于 的方程 在 上至少有两个实数解,则实数 的取值范围为
【小问1详解】
解析:(1) ,
∴当 时 取得最小值
【小问2详解】
(2)由(1)得, ,
令 ,
得函数 的单调递增区间为
20、(1)4(2) 在区间 上单调递减,证明见解析
【解析】(1)直接根据 即可得出答案;
(2)对任意 ,且 ,利用作差法比较 的大小关系,即可得出结论.
【小问1详解】
江苏省姜堰二中高一数学上学期第一次月考试题
![江苏省姜堰二中高一数学上学期第一次月考试题](https://img.taocdn.com/s3/m/a310227552d380eb62946de4.png)
2018~2019学年度第一学期第一次月检测高 一 数 学 试 题(考试时间:120分钟 总分160分)注意事项:所有试题的答案均填写在答题纸上,答案写在试卷上的无效.一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸相应的答题线上) 1.已知集合{}1,3,5A =,{}2,3,5B =,A B ⋂= ▲ .2.已知函数()||f x x =,则下列与函数()y f x =是同一函数的是 ▲ .()2(1)g x =;()(2)h x =()(3)s x x =;,0(4),0x x y x x ≥⎧=⎨-<⎩.3.若函数()11f x x =-()f x 的定义域是 ▲ . 4.设函数()212,122,1x x f x x x x -≤⎧=⎨+->⎩,则()2f = ▲ .5.函数2()3f x x mx =-+是偶函数,则函数()f x 的递增区间是 ▲ . 6.已知()221f x x x -=-,则()f x = ▲ .7.函数35y x =-在区间(]7,8上的值域为 ▲ . 8.已知函数3()f x ax bx =+,且()3f m -=,则()f m = ▲ .9.已知函数()23,111,13x x f x x x -⎧≤⎪=⎨->⎪⎩,则满足方程()13f x =的x 的值为 ▲ .10.已知{}|26A x x =-≤≤,{}|11B x m x m =-≤≤+,B A ⊆,则实数m 的取值范围为 ▲ .11.已知函数()f x 是R 上的减函数,()()1,2,3,2A B --是其图像上的两点,那么()2f x <的解集是 ▲ .12.函数y =[)0,+∞,则实数m 的取值范围是 ▲ . 13.设()f x 为定义在R 上的奇函数,()g x 为定义在R 上的偶函数,若1()()()2x f x g x -=,则(2)(1)f g +-= ▲ .14.已知函数()||12x xf x +=+,则满足不等式()()2144f x f x ->的x 的取值范围是 ▲ .二、解答题:(本大题共6小题,共90分解答应写出文字说明,证明过程或演算步骤) 15.(本题满分14分)已知集合{}|32A x x =-≤≤,集合{}|131B x m x m =-≤≤-. (1)求当3m =时,,A B A B ⋂⋃; (2)若A B A ⋂=,求实数m 的取值范围.16.(本题满分14分)计算下列式子的值:(1))234125617-⎛⎫-++ ⎪⎝⎭;(2)9log 16lg 3lg 25⋅+;(3)3log 42221log log 12log 422--.17.(本题满分14分)已知定义域为R 的奇函数()f x ,当0x ≥时,()23f x x x =-.(1)当0<x 时,求函数)(x f 的解析式; (2)解方程()2f x x =.18.(本题满分16分)今有一长2米宽1米的矩形铁皮,如图,在四个角上分别截去一个边长为x 米的正方形后,沿虚线折起可做成一个无盖的长方体形水箱(接口连接问题不考虑). (1)求水箱容积的表达式()f x ,并指出函数()f x 的定义域;(2)若要使水箱容积不大于34x 立方米的同时,又使得底面积最大,求x 的值.19. (本题满分16分)已知函数5()151x x af x ⋅=-+,()3,2x b b ∈-是奇函数.(1)求,a b 的值;(2)证明:()f x 是区间(3,2)b b -上的减函数;(3)若()1(21)30f m f m m -++->,求实数m 的取值范围.20.(本题满分16分)已知a R ∈,函数()||f x x x a =-,(1)当2a =时,写出函数()y f x =的单调递增区间;(2)当2a =时,求)(x f 在区间112⎛⎫⎪⎝⎭上最值; (3)设0a ≠,函数()f x 在(),m n 上既有最大值又有最小值,请分别求出m 、n 的取值范围(用a 表示).2018~2019学年度第一学期第一次月检测参考答案高 一 数 学二、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸相应的答题线上)1. {}3,52.(2)(4)3.[)()0,11,⋃+∞4.65.()0,+∞6.214x -7.31,2⎡⎫⎪⎢⎣⎭8.-3 9.1或2 10.15m -≤≤ 11.()1,3- 12.1m ≥ 13.258-14.11,22⎛⎫- ⎪ ⎪⎝⎭ 二、解答题:(本大题共6小题,共90分解答应写出文字说明,证明过程或演算步骤) 15.(本题满分14分)解:(1)当3m =时,{}|28B x x =-≤≤,...........................2分 ∴[]2,2,A B ⋂=-.....................................................................4分[]3,8A B ⋃=-;......................................................................6分(2)由A B A ⋂=可得A B ⊆,...................................................8分 则13312m m -≤-⎧⎨-≥⎩,........................................................................10分 解得41m m ≥⎧⎨≥⎩,即4m ≥............................................................12分∴实数m 的取值范围为4m ≥.................................................14分16.(本题满分14分)(1)原式=49+64+1=114................................................................5分 (2)原式=lg 4lg 25lg1002+==.............................................9分(3)原式=215log 122222-=--=-.................14分17.(本题满分14分)解:(1)当0x <时,0x ->,函数()f x 是定义在R 上的奇函数, ∵当0x ≥时,()23f x x x =-,∴()()()2233f x f x x x x x =--=-+=--....................7分 (2)当0x ≥时,232x x x -=,解得0,5x x ==,满足题意;....................................10分0x <时,232x x x --=,解得5x =-,.........................13分所以方程()2f x x =的解为0,5或-5..............................14分 18.(本题满分16分)解:(1)由已知该长方体形水箱高为x 米,底面矩形长为22x -米,宽12x -米. ∴该水箱容积为()()()322212462f x x x x x x x =--=-+...........2分其中正数x 满足220120x x ->⎧⎨->⎩∴102x <<.............................4分∴所求函数()f x 的定义域为1|02x x ⎧⎫<<⎨⎬⎩⎭..........................6分(2)由()34f x x ≤,得0x ≤或13x ≥,...............................8分 ∵定义域为1|02x x ⎧⎫<<⎨⎬⎩⎭,∴1132x ≤<............................10分 此时的底面积为()()()2112212462,,32S x x x x x x ⎡⎫=--=-+∈⎪⎢⎣⎭由()231444S x x ⎛⎫=-- ⎪⎝⎭,可知()S x 在11,32⎡⎫⎪⎢⎣⎭上是单调减函数,................................12分 ∴13x =...........................................................14分 即要使水箱容积不大于34x 立方米的同时,又使得底面积最大的x 是13....16分19.(本题满分16分)解:(1)∵函数5()151x x af x ⋅=-+,()3,2x b b ∈-是奇函数,∴()0102af =-=,且320b b -+=, 即2,1a b ==.......................................................4分 (2) 证明:设任意的()12,2,2x x ∈-,且12x x <, 则()()()()()21221225505151x x x x f x f x --=>++,.................................6分∴()()12f x f x >.∴()f x 是区间()2,2-上的减函数...........................................8分 (3)构造函数()()g x f x x =-,则()y g x =是奇函数且在定义域内单调递减,.....10分 原不等式等价于()()121g m g m ->--,....................................12分∴1212122212m m m m -<--⎧⎪-<-<⎨⎪-<+<⎩,即有0133122m m m ⎧⎪<⎪-<<⎨⎪⎪-<<⎩,∴10m -<<,......................14分 则实数m 的取值范围是()1,0-..............................................16分 20. (本题满分16分)解;(1)当2a =时,()()()2,2|2|2,2x x x f x x x x x x -≥⎧⎪=-=⎨-<⎪⎩, 由二次函数的图像知,单调递增区间为()(),1,2,-∞+∞,.....................4分(2)由(1)知,函数在1,12⎛⎫⎪⎝⎭单调递增,在()1,2单调递减,在()1单调递增,)(1)11f f==,故最大值为1,..............6分()1202f f ⎛⎫>= ⎪⎝⎭,故最小值为0,..............8分 (3)()()(),||,x x a x af x x x a x a x x a-≥⎧⎪=-=⎨-<⎪⎩,0a >时,函数图像如下图由()24a y y x x a ⎧=⎪⎨⎪=-⎩,得)12a x =,∴10,22am a n a ≤≤<≤...........................12分 0a <时,函数图像如下图()24a y y x a x ⎧=-⎪⎨⎪=-⎩解得)12a x =,∴1,022aa m a n ≤≤<≤,..........................16分 综上所述,0a >时,10,22am a n a ≤≤<≤,0a <时,1,022aa m a n +≤≤<≤.。
江苏省高中数学竞赛试卷含答案
![江苏省高中数学竞赛试卷含答案](https://img.taocdn.com/s3/m/500446cdaeaad1f346933fff.png)
江苏省高中数学竞赛试卷一、选择题(本题满分30分,每小题6分)1.如果实数m ,n ,x ,y 满足a n m =+22,b y x =+22,其中a ,b 为常数,那么mx +ny 的最大值为 ( )A .2b a +B .abC .222b a +D .222b a +2.设)(x f y =为指数函数x a y =.在P (1,1),Q (1,2),M (2,3),⎪⎭⎫ ⎝⎛41,21N 四点中,函数)(x f y =与其反函数)(1x f y -=的图像的公共点只可能是 ( ) A .P B .Q C .M D .N3.在如图的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比 数列,那么z y x ++的值为 ( )A .1B .2C .3D .44.如果111C B A ∆的三个内角的余弦值分别是 222C B A ∆的三个内角的正弦值,那么 ( ) A .111C B A ∆与222C B A ∆都是锐角三角形B .111C B A ∆是锐角三角形,222C B A ∆是钝角三角形 C .111C B A ∆是钝角三角形,222C B A ∆是锐角三角形D .111C B A ∆与222C B A ∆都是钝角三角形5.设a ,b 是夹角为30°的异面直线,则满足条件“α⊆a ,β⊆b ,且βα⊥”的平面α,β( )A .不存在B .有且只有一对C .有且只有两对D .有无数对 二、填空题(本题满分50分,每小题10分)6.设集合[]{}{}222<==-=x x B x x x A 和,其中符号[]x 表示不大于x 的最大整数,则A B =___________________.7.同时投掷三颗骰子,于少有一颗骰子掷出6点的概率是P =____________(结果要求写成既约分数). 8.已知点O 在ABC ∆内部,022=++OC OB OA .OCB ABC ∆∆与的面积之比为_________________.9.与圆0422=-+x y x 外切,且与y 轴相切的动圆圆心的轨迹方程为________________________.10.在ABC ∆中,若tan A tan B =tan A tan C +tanctan B ,则 222c b a +=______________.三、解答题(本题满分70分,各小题分别为15分、15分、20分、20分)1 20.5 1 xyz11.已知函数c bx x x f ++-=22)(在1=x 时有最大值1,n m <<0,并且[]n m x ,∈时,)(x f 的取值范围为⎥⎦⎤⎢⎣⎡m n 1,1. 试求m ,n 的值.12.A 、B 为双曲线19422=-y x 上的两个动点,满足0=⋅OB OA 。
高一数学上学期竞赛数学试题
![高一数学上学期竞赛数学试题](https://img.taocdn.com/s3/m/4296cd5abf23482fb4daa58da0116c175f0e1e1f.png)
高一上学期数学竞赛试题(时间 90分钟 满分 120分)一.选择题:(每小题5分;共60分)1.集合{1;2;3}的真子集共有( )A 、5个B 、6个C 、7个D 、8个2.图中的阴影表示的集合中是( )A .BC A u ⋂ B .A C B u ⋂C .)(B A C u ⋂D .)(B A C u ⋃ 3. 以下五个写法中:①{0}∈{0;1;2};②⊆∅{1;2};③{0;1;2}={2;0;1};④∅∈0;⑤A A =∅⋂;正确的个数有( )A .1个B .2个C .3个D .4个4.函数5||4--=x x y 的定义域为( ) A .}5|{±≠x x B .}4|{≥x xC .}54|{<<x xD .}554|{><≤x x x 或5.若函数()1,(0)()(2),0x x f x f x x +≥⎧=⎨+<⎩;则)3(-f 的值为( )A .5B .-1C .-7D .26.已知函数()x f y =;[]b a x ,∈;那么集合()()[]{}(){}2,,,,=∈=x y x b a x x f y y x 中元素的个数为( )A . 1B .0C .1或0D . 1或27.满足条件M ∪{1}={1;2;3}的集合M 的个数是( )A .1B .2C .3D .48.若集合{}2(2)210A x k x kx =+++=有且仅有2个子集;则实数k 的值是( )A.-2B.-2或-1C.2或-1D.±2或-19.已知集合A={x|-2≤x ≤7};B={x|m+1<x<2m-1};且B ≠∅;若A ∪B=A ;则实数m 的取值范围是( )(A)-3≤m ≤4 (B)-3<m<4 (C)2<m<4 (D)2<m ≤410.已知函数()f x 是定义在区间[-2;2]上的偶函数;当[0,2]x ∈时;()f x 是减函数;如果不等式(1)()f m f m -<成立;则实数m 的取值范围( ) A B UA.1[1,)2-B. 1;2C. (,0)-∞D.(,1)-∞11.已知函数f(x)的定义域为(-1;0);则函数f(2x +1)的定义域为( )A. (-1; 1)B.C. (-1;0)D.12.定义在),0(+∞上的函数()f x 满足对任意的))(,0(,2121x x x x ≠+∞∈;有2121()(()())0x x f x f x -->.则满足(21)f x -<1()3f 的x 取值范围是( ) A.(12;23) B.[13;23) C. (13;23) D.[12;23)二.填空题(本大题共4个小题;每小题5分;共20分)(){}N y N x y x y x ∈∈=+,,3,:________ .{|},{|12},()R A x x a B x x A C B R =<=<<=且;则实数a 的取值范围是15.已知是奇函数;且;若;则= . 16.对于函数()y f x =;定义域为]2,2[-=D ;以下命题正确的是(只要求写出命题的序号)①若(1)(1),(2)(2)f f f f -=-=;则()y f x =是D 上的偶函数;②若对于]2,2[-∈x ;都有0)()(=+-x f x f ;则()y f x =是D 上的奇函数;③若函数)(x f y =在D 上具有单调性且)1()0(f f >则()y f x =是D 上的递减函数;④若(1)(0)(1)(2)f f f f -<<<;则()y f x =是D 上的递增函数。
高一数学联赛选拔赛(奥赛班入学)试卷(含参考答案)
![高一数学联赛选拔赛(奥赛班入学)试卷(含参考答案)](https://img.taocdn.com/s3/m/5347fdfa79563c1ec4da71e9.png)
第4题图班级: 姓名: 班级座位号: 考场号:密封线内不要答题**中学高一数学联赛选拔赛试卷命题人:吴铭一、选择题(本大题共8小题,每小题3分,共24分) 1.在下列实数中:-5、5、2、0,最大的数是( ).A .5-B .5C .2D .02.抛物线224y x x =--与x 轴分别交于A ,B 两点,则A ,B 两点间的距离等于( ) A .2 B .4 C .5 D .253.下图是由10把相同的折扇组成的“蝶恋花”(图l )和梅花图案(图2)(图中的折扇无重叠), 则梅花图案中的五角星的五个锐角均为( )A .36ºB .42ºC .45ºD .48º4.花园小径旁有一个圆柱状果皮垃圾筒,圆柱体的底面半径为18cm ,圆柱形的侧面由20块大小相同的小木条均匀围成一圈,垃圾入口处是一个切除了高为20cm 的5块小木条的柱面方孔,则这个垃圾筒切除的侧面面积是( ). A .2120cm π B .2144cm πC .2180cm π D .2240cm π5.已知+∈∈R y R x ,,集合},1,,1{2---++=x x x x A }1,2,{+--=y yy B .若B A =,则22y x +的值是( ) A.5 B.4 C.25 D.106.设⊕是R 上的一个运算,A 是V 的非空子集,若对任意a b A ∈,,有a b A ⊕∈,则称A 对运算⊕封闭.下列数集对加法减法、乘法和除法(除数不等于零)四则运算都封闭的是( ) A .自然数集 B .有理数集C .整数集D .无理数集7.设xx=x f -+11)(,记()()1f x f x =,若,x f f x f n n ))(()(1=+ 则=x f )(2006( ) A 、x B 、-x 1 C 、x x -+11 D 、11+-x x 8.设在xOy 平面上,20x y ≤<,10≤≤x 所围成图形的面积为31,则集合},1),{(≤-=x y y x M }1),{(2+≥=x y y x N 的交集N M 所表示的图形面积为( ) A .31B .32 C .1 D .34二、填空题(本大题共6小题,每小题4分,共24分)9.在矩形ABCD 中,6BC =,8CD =,以A 为圆心画圆,且点D 在A 内,点B 在A 外,则A 半径r 的取值范围是 .10.如图,已知弦AB ∥CD ,请用无刻度...的直尺,准确作出该圆的直径(保留作图痕迹). 11.定义M 与P 的差集为M-P={x | x ∈M 且x 不∈P} ,若A={y | y=x 2 },B={x | -3≤x≤3} ,再定义 M △N =(M-N )∪(N-M ),则A △B= . 12.若非空集合S 满足,且若,则,那么符合要求的集合S 有___________个.13.映射f : {a , b , c , d}→{1,2,3}满足1<f (a )·f (b )·f (c )·f (d)<5,这样的映射f 有_______个. 14. 设函数f :R →R 满足f (0)=1,且对任意x ,y ∈R ,都有f (xy +1)=f (x )f (y )-f (y )-x +2,则f (x )=________.三、计算题(17-19题每题8分,20-23题10分,共64分) 15.根据如图所示的程序计算.(1)选取一个你喜欢的x 的值,输入计算,试求输出的y 值是多少?(2)是否存在这样的x 的值,输入计算后始终在内循环计算而输不出y 的值?如果存在,第10题图DCBA第3题图第9题图请求出x 的值;如果不存在,请说明理由.16.已知集合A ={x |ax 2-3x -4=0,x ∈R }.(1)若A 中有两个元素,求实数a 的取值范围; (2)若A 中至多有一个元素,求实数a 的取值范围.17.抛物线2y x =在直角坐标系中向下平移4个单位得到抛物线1y ,1y 与x 轴的交点为1A 、1B ,与y 轴的交点为1O ,1A 、1B 、1O 对应2y x =上的点依次为A 、B 、O . (1)写出1y 的解析式及A 、B 两点的坐标;(2)求抛物线y 和1y 及线段1AA 和1BB 围成的图形的面积; (3)若平行于x 轴的一条直线y m =与抛物线y 交于P 、Q 两点,与抛物线1y 交于R 、S 两点,且P 、Q 两点三等分线段RS ,求m 的值;18.已知集合},,,{4321a a a a A =,},,,{24232221a a a a B =,其中4321a a a a <<<,并且都是正整数.若},{41a a B A = ,1041=+a a .且B A 中的所有元素之和为124,求集合A 、B .19.我们给定两个全等的正方形ABCD 、AEFG ,它们共顶点A (如图1),可以绕顶点A 旋转,CD ,EF 相交于点P . (1)连接BE 、DG (如图2),求证:BE DG =,BE ⊥DG ;图1输入x 输出y平方 乘以2 减去4若结果大于0否则图2(2)连接BG 、CF (如图3),有三个结论:①BG ∥CF ; ②ABG ∆∽PCF ∆; ③ABG ∆与PCF ∆相似. 请证明;图3(3)连接BE 、CF (如图4),求BECF的值.20. 已知2()2,f x x bx x =++∈R.(1)若函数()[()]()F x f f x f x x =∈R 与在时有相同的值域,求b 的取值范围;(2)若方程2()|1|2f x x +-=在(0,2)上有两个不同的根x 1、x 2,求b 的取值范围,并证明1211 4.x x +<**中学高一数学联赛选拔赛试卷参考答案及评分意见一、选择题(本大题共8小题,每小题3分,共24分)1.B 2.D 3.D 4.C 5.A 6.B 7.D 8.B 二、填空题(本大题共6小题,每小题4分,共24分)9.68r << 10.如图,线段MN 即为圆的直径. 11. {x|-3≤x <0或x >3} 12.7 13.14 14. x +1三、计算题(15-18题每题8分,19-20题10分,共52分)15.解:(1)略.………………………………………………………………………………2分(2)当y x =,且0y <时,输入x 计算后始终输不出y 的值.此时224x x =-,………………………………………………………………………5分2240x x --=,21,2(1)(1)42(4)133224x --±--⨯⨯-±==⨯ ∵13304+>,13304-< ∴1334x -=为所求的x 的值,输入计算后始终输不出y 的值.…………………8分 16. (1)∵A 中有两个元素,∴方程ax 2-3x -4=0有两个不等的实数根,∴ 09160a a ≠⎧⎨=+>⎩,即a >-916,∴a >-916,且a ≠0. …4分(2)当a =0时,A ={-43};…5分当a≠0时,若关于x 的方程ax 2-3x -4=0有两个相等的实数根, Δ=9+16a =0,即a =-916;…………………………………………………………………………6分若关于x 的方程无实数根,则Δ=9+16a <0,即a <-916;……………………………7分所求的a 的取值范围是a ≤-916或a =0. …………………………………………8分17..(1)214y x =-, A (-2,4)、B (2,4);………………………………2分(2)连接AB ,则抛物线1y 和11A B 围成的图形的面积等于抛物线y 和AB 围成的图形的面积,∴抛物线1y 和2y 及1AA 和1BB 围成的图形的面积等于正方形11AA B B 的面积=16;……5分(3)如图,∵RP PQ QS ==,∴3RS PQ = 246m m +=,解得 12m =…………8分 18.【解】4321a a a a <<<,且},{41a a B A = ,∴211a a =,又N a ∈1,所以.11=a …1分又1041=+a a ,可得94=a ,并且422a a =或.423a a =………………………3分 若922=a ,即32=a ,则有,12481931233=+++++a a 解得53=a 或63-=a (舍) 此时有}.81,25,9,1{},9,5,3,1{==B A ………………………………5分 若923=a ,即33=a ,此时应有22=a , 则B A 中的所有元素之和为100≠124.不合题意.………………………………7分综上可得, }.81,25,9,1{},9,5,3,1{==B A ……………………………………8分 19.解: (1)证明:∵AB AD =,90BAE EAD DAG ∠=︒-∠=∠,AE AG =∴△ABE ≌△ADG ,即BE DG =.……………………………1分 分别延长GD ,BE 交于点M 交EF 于点N ,∵MEN ENM MEN AGD BEA NEM ∠+∠=∠+∠=∠+∠=90° ∴BE GD ⊥(∵ABE ∆≌ADG ∆,AB ⊥AD ,AE ⊥AG , ∴ADG ∆可以看成由ABE ∆绕顶点A 旋转90°,即BE ⊥DG .)………………2分(2)证明:①∵AB AG =,∴∠ABG =∠AGB ,∠CBG =∠FGB同理:∠BCF =∠GFC又∵∠CBG +∠FGB+∠BCF+∠GFC=360°∴∠CBG +∠BCF=180°,即BG ∥CF ;…………………5分 ②续① 又∵AB ∥PC ,AG ∥PF∴∠ABG =∠PCF ,∠AGB =∠PFC 即ABG ∆∽PCF ∆……6分 ③续② 连接AP 交GF 的延长线于1Q ,交BC 的延长线于2Q , 则11Q P PF Q A AG =,22Q P PCQ A AB=,而AB=AG ,PC=PF ∴11Q P Q A =22Q PQ A,亦有12Q P Q P AP AP =,12Q P Q P = ∴1Q ,2Q 重合,即BC ,AP ,GF 相交于点Q ,ABG ∆与PCF ∆位似.……………………………8分(3)连接AC ,AF 可证得ABE ∆∽ACF ∆,1222BE AB CF AC ===.…………………………………10分 20.解:(1)当x ∈R 时,函数2()2f x x bx =++的图象是开口向上,且对称轴为2bx =-的抛物线,()f x 的值域为28,4b ⎡⎫-+∞⎪⎢⎣⎭,所以()[()]F x f f x =的值域也为28,4b ⎡⎫-+∞⎪⎢⎣⎭的条件是228,280,2,442b bb b b b ----∴-即或≤≥≤≥, 即b 的取值范围为(,2][4,).-∞-+∞(2)222()|1|2,|1|0f x x x bx x +-=++-=即,由分析知0b ≠,不妨设221221,||1,02,()|1|21,||1,bx x x x H x x bx x x bx x +⎧<<<=++-=⎨+->⎩令≤因为()(0,1]H x 在上是单调函数,所以()0H x =在(0,1]上至多有一个解.若12,(1,2)x x ∈,即x 1、x 2就是2210x bx +-=的解,12102x x =-<,与题设矛盾. 因此,12(0,1],(1,2).x x ∈∈由111()0H x b x ==-得,所以1b -≤;由2221()02,H x b x x ==-得所以71.2b -<<-故当712b -<<-时,方程2()|1|2(0,2)f x x +-=在上有两个解.由212112b b x x x =-=-和消去b ,得212112.x x x += 由21211(1,2), 4.x x x ∈+<得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姜堰中学高一数学竞赛选拔赛试题命题人:凌彬 审核人:高一数学备课组(满分150分 时间1)班级___________ 学号___________ 姓名______________ 得分___________一、填空题(每小题7分,共70分) 1.若抛物线2112y x mx m =-+-与x 轴交于整点,则抛物线的对称轴方程为__________ 答案:1x = 〖解〗:设抛物线与x 轴交于整点12(,0), (,0)x x 1212(, )x x Z x x ∈<、,则有下列恒等式成立:212111()()22x mx m x x x x -+-=--,取1x =代入消去m 得:12(1)(1)1x x --=-, 故由整数性质得121111x x -=⎧⎨-=-⎩,解之得1202x x =⎧⎨=⎩;代入得1m =,从而对称轴方程为1x =.2.某老师让四名学生每人各写一个实系数的一元二次方程,则所得的四个方程恰有两个无实数根的概率为__________答案:38〖解〗:列表可知,共有42即16种可能情况,其中有6种恰有两个无实数根,故概率为38. 3.π的前24位数字为3.141 592 653 589 793 238 462 64;记1224,,,a a a 为该24个数字的任意一个排列,则12342324()()()a a a a a a +++一定是__________的倍数.答案:2〖解〗:因为这24个数字中有13个奇数和11个偶数,而括号有12个,所以至少有一个括号中一定是两个奇数,因此和为偶数;这样12括号之积一定是偶数.4.使424m m -+为完全平方数是自然数m 有__________个.答案:3〖解〗:当0,1,2m =时,424m m -+都是完全平方数;当3m ≥时,224222(1)4()m m m m -<-+<,不可能是完全平方数;故只有3个.5.代数式x 的最小值是__________〖解〗:设 (0)y x y =>,则y x +=,整理得:223240x yx y --+=(*);方程(*)看成关于x 的方程,由于x 为实数,所以方程(*)一定有实根, 从而22443(4)0y y ∆=-⨯-+≥,解得23y ≥,而0y >,所以y ≥.6.在平面直角坐标系中,(0,3)(4,1)(,0)A B C m 、、,当ABC ∆的周长最小时,m 的值是________ 答案:3 〖解〗:点B 关于x 轴的对称点是'(4,1)B -,直线'AB 与x 轴的交点即为所求的点C ,而直线'AB 的解析式是3y x =-+,故C 为(3,0)即3m =.7.已知()f x 表示关于x 的一个四次函数,()f a 表示x a =时的函数值;若(1)(2)(3)0f f f ===,(4)6f =,(5)72f =,则(0)f 的值是__________答案:42 〖解〗:因为(1)(2)(3)0f f f ===,所以四次函数可设为()(1)(2)(3)()f x x x x ax b =---+;由(4)6f =和(5)72f =可得6(4)624(5)72a b a b +=⎧⎨+=⎩,解之可得27a b =⎧⎨=-⎩;故()(1)(2)(3)(27)f x x x x x =----,从而(0)(01)(02)(03)(07)42f =----=.8.下列四个命题中,错误的命题是__________① 过直线上一点有且只有一条直线垂直于这条直线;② 方程10=有两个不同的实数解;③ 若⊙1O 与⊙2O 交于点A B 、,⊙1O 的半径是5,124O O =8AB =,则⊙2O 的半径是④ 若二次函数2y x ax a =++与坐标轴只有一个交点,则0a =或4. 答案:①③④〖解〗:①错:因为在空间,可以有无数条垂线;②对:注意0x <,两根为1x =-和1x =-;③错:两个圆心可能在弦AB 同侧,也可能在异侧,故应有两解;④错:与y 轴一定有一个交点,当这个交点是原点时,0a =;不是原点时,0∆<;从而综合可得:04a ≤<.9.已知a 为整数,关于x 的方程:2231x a x =-+有实数根,则a 的可能值有_______个.答案:3〖解〗:由原方程变形得:221a ⎛⎫=+⎪⎪⎭;而01≤<,所以2124⎛⎫<≤⎪⎪⎭, 即11403a a <+≤⇒<≤,因此a 的可能取值为1,2,3;共有3个.10.一只盒子中有m 个红球,9个白球,n 个黑球,每个球除了颜色外都相同;若至少摸出17个球时其中一定有5个红球,至少摸出17个球时其中一定有8个相同颜色的球,则如下代数式:|||5||5|m n m n -+---的值为_________ 答案:2〖解〗:由题意知:白球和黑球全部摸出来,再加5个红球等于17;即5917n ++=,故3n =;若8m ≥,则要摸出8个相同颜色的球,至少要摸的球的个数是:(81)(81)11817n -+-++=>(式中意为:先让红白球多的各摸7个,黑的全摸出,再加1个红或白),这样至少要18个,不符题意,因而8m <;于是8176m n m ++=⇒=;故|||5||5|2m n m n -+---=.二、解答题(每题共80分)11.如图,P 是圆O 外一点,PA 切圆O 于点A ,割线PBC 交圆O 于B C 、,AD PO ⊥于D ,CD 交OB 于E ,若1DE =,4EC =,3BE =,试求圆O 的半径R . 〖解〗:连结AO CO BD 、、;由, PA AO AD PO ⊥⊥,得2PA PD PO =⋅; 又因为2PA PB PC =⋅;所以PD PO PB PC ⋅=⋅; 从而B C O D 、、、四点共圆;由相交弦定理可得:BE EO DE EC ⋅=⋅; 即有43143EO EO =⨯⇒=; 故圆O 的半径143R BO BE EO ==+=.12.某电视台为了了解其中三个特色栏目A B C 、、的收视情况,向28位观众进行调查后得知:每位观众至少收看了其中一个栏目;没有收看栏目A 的观众中,收看栏目B 的人数为收看栏目C 的两倍;在收看栏目A 的观众中,只收看栏目A 的观众人数比除了收看栏目A 之外同时还收看其他栏目的人数多1;只收看一个栏目的观众中,有一半没有收看栏目B 或C ,求栏目A的收视率. 〖解〗:设只收看栏目A B C 、、的观众人数分别为x y z 、、;没有收看栏目A 而收看栏目B 和C 人数为m ,不只收看栏目A 的有n 人,如图所示; 由题意可得:2() (1)1 (2) (3)28 (4)y m z m n x x y z x n y m z +=+⎧⎪=-⎪⎨=+⎪⎪++++=⎩ 由(1)式可得2 (5)m y z =-把(2)、(3)、(5)代入(4)式中可得:294 (6)z y =- 由(5)式知20y z m -=≥,即5849580699y y -≥⇒≥=; 由(6)式得2912940429744y z y y -=≥⇒≤⇒≤=;而y 为整数,故综合可知:7y =; 于是:1, 8, 7, 5z x n m ====; 故栏目A 的收视率为15%%53.6%2828x n +==13.设x y z w 、、、是满足不等式2222()2()4x y z x y z w ++≥+++的实数,试证3xy yz zx w ++≥. 〖证〗:由于所给不等式中x y z 、、是轮换对称的,所以先考虑以x 为主元的情形:不等式变形为:2222()(24)0x y z x y z yz w -+++-+≤;因此存在0r ≥,使得2222()(24)0x y z x y z yz w r -+++-++=;(*) 由于x 为实数,所以方程(*)必有解;所以2224()4(24)4(44)0y z y z yz w r yz w r ∆=+-+-++=--≥;从而14yz w r w ≥+≥;同理,以y 为主元可得:zx w ≥;以z 为主元可得:xy w ≥;三式相加得:3xy yz zx w ++≥,原题得证.14.已知a b 、是两个整数,关于x 的方程220 (0)ax bx a ++=≠有两个相异的且大于1-的负实根,求当b 的最小值时方程的两根.〖解〗:设方程220ax bx ++=的两个相异的负实根分别为1212 ()x x x x <、,则有:1212020b x x ax x a ⎧+=-<⎪⎪⎨⎪⋅=>⎪⎩;易知0, 0a b >>;而a b 、是两个整数,故a b 、是两个正整数; 又设2()2f x ax bx =++,则此抛物线开口向上,与x 轴有两个不同的交点, 并且当1x =-时,0y >;所以:2228088 1 (1)202 1 (2)b a a b a b a b a b a b ⎧⎧⎧∆=-><≤-⇒⇒⎨⎨⎨-+>>-≥-⎩⎩⎩2188(1)(7)0b b b b ⇒-≥-⇒--≥;因为10b -≥,所以70b -≥,从而7b ≥,故b 的最小值是7;当7b =时,代入上述(1)和(2)中可得6a =,从而原方程的两根分别为1223--、.。