16.8.26函数的周期性和对称性补充练习题

合集下载

函数地周期性,奇偶性,对称性经典小题练(含问题详解)

函数地周期性,奇偶性,对称性经典小题练(含问题详解)

函数的周期性练习题一.选择题(共15小题)1.定义在R上的函数f(x)满足f(﹣x)=﹣f(x),f(x﹣2)=f(x+2)20)=()且x∈(﹣1,0)时,f(x)=2x+,则f(log2A.1 B.C.﹣1 D.﹣2.设偶函数f(x)对任意x∈R,都有f(x+3)=﹣,且当x∈[﹣3,﹣2]时,f(x)=4x,则f(107.5)=()A.10 B.C.﹣10 D.﹣3.设偶函数f(x)对任意x∈R都有f(x)=﹣且当x∈[﹣3,﹣2]时f(x)=4x,则f(119.5)=()A.10 B.﹣10 C.D.﹣4.若f(x)是R上周期为5的奇函数,且满足f(1)=1,f(2)=3,则f (8)﹣f(4)的值为()A.﹣1 B.1 C.﹣2 D.25.已知f(x)是定义在R上周期为4的奇函数,当x∈(0,2]时,f(x)x,则f(2015)=()A.﹣2 B.C.2 D.5=2x+log26.设f(x)是定义在R上的周期为3的周期函数,如图表示该函数在区间(﹣2,1]上的图象,则f(2014)+f(2015)=()A.3 B.2 C.1 D.07.已知f(x)是定义在R上的偶函数,并满足:,当2≤x≤3,f(x)=x,则f(5.5)=()A.5.5 B.﹣5.5 C.﹣2.5D.2.58.奇函数f(x)满足f(x+2)=﹣f(x),当x∈(0,1)时,f(x)=3x+,54)=() A.﹣2 B.﹣ C.D.2则f(log39.定义在R上的函数f(x)满足f(﹣x)+f(x)=0,且周期是4,若f (1)=5,则f(2015)()A.5 B.﹣5 C.0 D.310.f(x)对于任意实数x满足条件f(x+2)=,若f(1)=﹣5,则f(f(5))=() A.﹣5 B. C.D.511.已知定义在R上的函数f(x)满足f(x+5)=f(x﹣5),且0≤x≤5时,f(x)=4﹣x,则f(1003)=() A.﹣1 B.0 C.1 D.212.函数f(x)是R上最小正周期为2的周期函数,当0≤x<2时f(x)=x2﹣x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为()A.6 B.7 C.8 D.913.已知函数f(x)是定义在(﹣∞,+∞)上的奇函数,若对于任意的实数x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log(x+1),则f2(2014)+f(﹣2015)+f(2016)的值为()A.﹣1 B.﹣2 C.2 D.114.已知f(x)是定义在R上且周期为3的函数,当 x∈[0,3)时,f(x)=|2x2﹣4x+1|,则方程 f(x)=在[﹣3,4]解的个数()A.4B.8C.9 D.1015.已知最小正周期为2的函数f(x)在区间[﹣1,1]上的解析式是f(x)x|的图象的交点=x2,则函数f(x)在实数集R上的图象与函数y=g(x)=|log5的个数是()A.3 B.4 C.5 D.6二.填空题(共10小题)16.已知定义在R上的函数f(x),满足f(1)=,且对任意的x都有f(x+3)=,则f(2014)= .17.若y=f(x)是定义在R上周期为2的周期函数,且f(x)是偶函数,|x|的零点个数当x∈[0,1]时,f(x)=2x﹣1,则函数g(x)=f(x)﹣log5为.18.定义在R上的函数f(x)满足f(x)=,则f(2013)的值为.19.定义在R上的函数f (x)的图象关于点(﹣,0)对称,且满足f (x)=﹣f (x+),f (1)=1,f (0)=﹣2,则f (1)+f (2)+f (3)+…+f (2010)的值为= .20.定义在R上的函数f(x)满足:,当x∈(0,4)时,f(x)=x2﹣1,则f(2011)= .21.定义在R上的函数f(x)满足f(x+6)=f(x).当﹣3≤x<﹣1时,f(x)=﹣(x+2)2,当﹣1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2012)= .22.若函数f(x)是周期为5的奇函数,且满足f(1)=1,f(2)=2,则f(8)﹣f(14)= .23.设f(x)是定义在R上的以3为周期的奇函数,若f(2)>1,f(2014)=,则实数a的取值范围是.24.设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),则= .25.若f(x+2)=,则f(+2)•f(﹣14)= .一.选择题(共15小题)1.【解答】解:∵定义在R上的函数f(x)满足f(﹣x)=﹣f(x),∴函数f(x)为奇函数又∵f(x﹣2)=f(x+2)∴函数f(x)为周期为4是周期函数又∵log232>log220>log216∴4<log220<5∴f(log220)=f(log220﹣4)=f(log2)=﹣f(﹣log2)=﹣f(log2)又∵x∈(﹣1,0)时,f(x)=2x+,∴f(log2)=1 故f(log220)=﹣1 故选C2.【解答】解:因为f(x+3)=﹣,故有f(x+6)=﹣=﹣=f(x).函数f(x)是以6为周期的函数.f(107.5)=f(6×17+5.5)=f(5.5)=﹣=﹣=﹣=.故选B3.【解答】解:∵函数f(x)对任意x∈R都有f(x)=﹣,∴f(x+3)=﹣,则f(x+6)=f(x),即函数f(x)的周期为6,∴f(119.5)=f(20×6﹣0.5)=f(﹣0.5)=﹣=﹣,又∵偶函数f(x),当x∈[﹣3,﹣2]时,有f(x)=4x,∴f(119.5)=﹣=﹣=﹣=.故选:C.4.【解答】解:f(x)是R上周期为5的奇函数,f(﹣x)=﹣f(x),∵f(1)=﹣f(﹣1),可得f(﹣1)=﹣f(1)=﹣1,因为f(2)=﹣f(2),可得f(﹣2)=﹣f(2)=﹣3,∴f(8)=f(8﹣5)=f(3)=f(3﹣5)=f(﹣2)=﹣3,f(4)=f(4﹣5)=f(﹣1)=﹣1,∴f(8)﹣f(4)=﹣3﹣(﹣1)=﹣2,故选C;5.【解答】解:∵f(x)的周期为4,2015=4×504﹣1,∴f(2015)=f(﹣1),又f(x)是定义在R上的奇函数,1=﹣2,故选:A.所以f(2015)=﹣f(1)=﹣21﹣log26.【解答】解:由图象知f(1)=1,f(﹣1)=2,∵f(x)是定义在R上的周期为3的周期函数,∴f(2014)+f(2015)=f(1)+f(﹣1)=1+2=3,故选:A7.【解答】解:∵,∴==f(x)∴f(x+4)=f(x),即函数f(x)的一个周期为4∴f(5.5)=f(1.5+4)=f(1.5)∵f(x)是定义在R上的偶函数∴f(5.5)=f(1.5)=f(﹣1.5)=f(﹣1.5+4)=f(2.5)∵当2≤x≤3,f(x)=x∴f(2.5)=2.5∴f(5.5)=2.5 故选D8.【解答】解:∵f[(x+2)+2]=﹣f(x+2)=f(x),∴f(x)是以4为周期的奇函数,又∵,∵,∴,54)=﹣2,∴f(log3故选:A.9.【解答】解:在R上的函数f(x)满足f(﹣x)+f(x)=0 则:f(﹣x)=﹣f(x)所以函数是奇函数由于函数周期是4,所以f(2015)=f(504×4﹣1)=f(﹣1)=﹣f(1)=﹣5 故选:B 10.【解答】解:∵f(x+2)=∴f(x+2+2)==f(x)∴f(x)是以4为周期的函数∴f(5)=f(1+4)=f(1)=﹣5f(f(5))=f(﹣5)=f(﹣5+4)=f(﹣1)又∵f(﹣1)===﹣∴f(f(5))=﹣故选B11.【解答】解:∵f(x+5)=f(x﹣5),∴f(x+10)=f(x),则函数f(x)是周期为10的周期函数,则f(1003)=f(1000+3)=f(3)=4﹣3=1,故选:C.12.【解答】解:当0≤x<2时,f(x)=x2﹣x=0解得x=0或x=1,因为f(x)是R上最小正周期为2的周期函数,故f(x)=0在区间[0,6)上解的个数为6,又因为f(6)=f(0)=0,故f(x)=0在区间[0,6]上解的个数为7,即函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为7,故选:B.13.【解答】解:∵f(x+2)=f(x),∴f(2014)=f(2016)=f(0)=log1=0,2∵f(x)为R上的奇函数,∴f(﹣2015)=﹣f(2015)=﹣f(1)=﹣1.∴f(2014)+f(﹣2015)+f(2016)=0﹣1+0=﹣1.故选A.14.【解答】解:由题意知,f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|2x2﹣4x+1|,在同一坐标系中画出函数f(x)与y=的图象如下图:由图象可知:函数y=f(x)与y=在区间[﹣3,4]上有10个交点(互不相同),所以方程 f(x)=在[﹣3,4]解的个数是10个,故选:D.15.【解答】解:∵函数f(x)的最小正周期为2,∴f(x+2)=f(x),x|∵f(x)=x2,y=g(x)=|log5∴作图如下:x|的图象的交点的个∴函数f(x)在实数集R上的图象与函数y=g(x)=|log5数为5,故选:C二.填空题(共10小题)16.【解答】解:∵对任意的x都有f(x+3)=,∴f(x+6)==f(x),∴函数f(x)为周期函数,且周期T=6,∴f(2014)=f(335×6+4)=f(4)=f(1+3)==﹣5 故答案为:﹣517【解答】解:当x∈[0,1]时,f(x)=2x﹣1,函数y=f(x)的周期为2,x∈[﹣1,0]时,f(x)=2﹣x﹣1,可作出函数的图象;图象关于y轴对称的偶函数y=log|x|.函数y=g(x)的零点,即为函数图象交点横坐标,5|x|>1,此时函数图象无交点,当x>5时,y=log5如图:又两函数在x>0上有4个交点,由对称性知它们在x<0上也有4个交点,且它们关于直线y轴对称,|x|的零点个数为8;可得函数g(x)=f(x)﹣log5故答案为8;18.【解答】解:由分段函数可知,当x>0时,f(x)=f(x﹣1)﹣f(x﹣2),∴f(x+1)=f(x)﹣f(x﹣1)=f(x﹣1)﹣f(x﹣2)﹣f(x﹣1),∴f(x+1)=﹣f(x﹣2),即f(x+3)=﹣f(x),∴f(x+6)=f(x),即当x>0时,函数的周期是6.∴f(2013)=f(335×6+3)=f(3)=﹣f(0)=﹣log2(8﹣0)=﹣log28=﹣3,故答案为:﹣3.19.【解答】解:由f (x)=﹣f (x+)得f (x+3)=f[(x+)+]=﹣f (x+)=f (x).所以可得f (x)是最小正周期T=3的周期函数;由f (x)的图象关于点(,0)对称,知(x,y)的对称点是(﹣﹣x,﹣y).即若y=f (x),则必﹣y=f (﹣﹣x),或y=﹣f (﹣﹣x).而已知f (x)=﹣f (x+),故f (﹣﹣x)=f (x+),今以x代x+,得f (﹣x)=f (x),故知f (x)又是R上的偶函数.于是有:f (1)=f (﹣1)=1;f (2)=f (2﹣3)=f (﹣1)=1;f (3)=f (0+3)=f (0)=﹣2;∴f (1)+f (2)+f (3)=0,以下每连续3项之和为0.而2010=3×670,于是f (2010)=0;故答案为0.20.【解答】解:由题意知,定义在R上的函数f(x)有,则令x=x+2代入得,∴f(x+4)===f(x),∴函数f(x)是周期函数且T=4,∴f(2011)=f(4×502+3)=f(3),∵当x∈(0,4)时,f(x)=x2﹣1,∴f(3)=8.即f(2011)=8.故答案为:8.21.【解答】解:∵当﹣3≤x<﹣1时,f(x)=﹣(x+2)2,∴f(﹣3)=﹣1,f(﹣2)=0,∵当﹣1≤x<3时,f(x)=x,∴f(﹣1)=﹣1,f(0)=0,f(1)=1,f(2)=2,又∵f(x+6)=f(x).故f(3)=﹣1,f(4)=0,f(5)=﹣1,f(6)=0,又∵2012=335×6+2,故f(1)+f(2)+f(3)+…+f(2 012)=335×[f(1)+f(2)+f(3)+f(4)+f(5)+f(6)]+f(1)+f(2)=335+1+2=338,故答案为:33822.【解答】解:由题意可得,f(8)=f(8﹣10)=f(﹣2)=﹣f(2)=﹣2,f(14)=f(14﹣15)=f(﹣1)=﹣f(1)=﹣1,故有f(8)﹣f(14)=﹣2﹣(﹣1)=﹣1,故答案为﹣1.23.【解答】解:解:由f(x)是定义在R上的以3为周期的奇函数,则f(x+3)=f(x),f(﹣x)=﹣f(x),∴f(2014)=f(3×672﹣2)=f(﹣2)=﹣f(2),又f(2)>1,∴f(2014)<﹣1,即<﹣1,即为<0,即有(3a﹣2)(a+1)<0,解得,﹣1<a<,故答案为:.24.【解答】解:∵f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),∴=f(﹣)=﹣f()=﹣2×(1﹣)=﹣,故答案为:﹣.25.【解答】解:由题意可得f(+2)=sin=sin(6π﹣)=﹣sin=﹣,16=4,同理可得f(﹣14)=f(﹣16+2)=log2∴f(+2)•f(﹣14)=﹣×4=,故答案为:三.解答题(共5小题)26.【解答】(1)证明:∵f(x+2)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),∴f(x)是周期为4的周期函数;(2)解:当x∈[﹣2,0]时,﹣x∈[0,2],由已知得f(﹣x)=2(﹣x)﹣(﹣x)2=﹣2x﹣x2,又f(x)是奇函数,∴f(﹣x)=﹣f(x)=﹣2x﹣x2,∴f(x)=x2+2x,又当x∈[2,4]时,x﹣4∈[﹣2,0],∴f(x﹣4)=(x﹣4)2+2(x﹣4),又f(x)是周期为4的周期函数,∴f(x)=f(x﹣4)=(x﹣4)2+2(x﹣4)=x2﹣6x+8,从而求得x∈[2,4]时,f(x)=x2﹣6x+8;(3)解:f(0)=0,f(2)=0,f(1)=1,f(3)=﹣1,又f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2 000)+f(2 001)+f(2 002)+f(2 003)=0.∴f(0)+f(1)+f(2)+…+f(2 004)=0+f(2004)=0.27.【解答】解:(1)当x∈[﹣1,0]时,﹣x∈[0,1],又f(x)是偶函数则,x∈[﹣1,0].(2),2∈[0,1],∵1﹣log3∴,即.28.【解答】解:(1)令x∈[﹣1,0),则﹣x∈(0,1],∴f(﹣x)=2﹣x﹣1.又∵f(x)是奇函数,∴f(﹣x)=﹣f(x),∴﹣f(x)=f(﹣x)=2﹣x﹣1,∴.(2)∵f(x+4)=f(x),∴f(x)是以4为周期的周期函数,∴,∴,∴.29.【解答】解:∵函数f(x)的周期为3,∴f(﹣2014)=f(﹣671×3﹣1)=f(﹣1),∵函数f(x)是奇函数,∴f(﹣1)=﹣f(1)=﹣(12﹣1+2)=﹣2,∴f(﹣2014)=﹣2.30.【解答】解;(1)因为奇函数f(x)的定义域为R,周期为2,所以f(﹣1)=f(﹣1+2)=f(1),且f(﹣1)=﹣f(1),于是f(﹣1)=0.…(2分)当x∈(﹣1,0)时,﹣x∈(0,1),f(x)=﹣f(﹣x)=﹣(2﹣x+2x)=﹣2x﹣2﹣x.…(5分)所以f(x)在[﹣1,0)上的解析式为…(7分)(2)f(x)在(﹣2,﹣1)上是单调增函数.…(9分)先讨论f(x)在(0,1)上的单调性.设0<x1<x2<1,则因为0<x1<x2<1,所以,于是,从而f(x1)﹣f(x2)<0,所以f(x)在(0,1)上是单调增函数.…(12分)因为f(x)的周期为2,所以f(x)在(﹣2,﹣1)上亦为单调增函数.…(14分)。

函数的奇偶性、对称性、周期试题

函数的奇偶性、对称性、周期试题

精选2.定义在R 上的函数()f x 满足)()6(x f x f =+.当)1,3[--∈x 时,2)2()(+-=x x f ,当)3,1[-∈x 时,x x f =)(,则(1)(2)(3)(2015)f f f f ++++=L ( )(A )336 (B )355 (C )1676 (D )2015 【答案】A 【解析】试题分析:根据)()6(x f x f =+可知:()f x 是周期为6的周期函数,且()()()()()()()()1234561210101f f f f f f +++++=++-++-+=, ()()20156335513351336f f =⨯+=⨯+=,所以答案为A .考点:1.函数的周期性;2.利用函数的周期性求函数值.3.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,设)1()1()(-+-=x g x f x h ,则下列结论中正确的是A .)(x h 关于)0,1(对称B .)(x h 关于)0,1-(对称C .)(x h 关于1=x 对称D .)(x h 关于1-=x 对称 【答案】C 【解析】试题分析:因为函数()f x 是奇函数,所以()f x 是偶函数,即()f x 与()g x 均为偶函数,其图象均关于y 对称,所以(1)f x -与(1)g x -的图象都关于直线1x =对称,即()(1)(1)h x f x g x =-+-的图象关于直线1x =对称,故选C .考点:1.函数的奇偶性;2.图象平移.4.定义为R 上的函数()f x 满足()(2)7f x f x +=,(1)3f =,(2)f =2,则(2014)f =( )A .3B .72C .73 D .2【答案】D【解析】试题解析:∵7()(2)7(2)()f x f x f x f x +=⇒+=;∴7(4)()4(2)f x f x T f x +==⇒=+∴(2014)(45032)(2)2f f f =⨯+== 考点:本题考查函数的性质点评:解决本题的关键是求出函数的周期5.已知函数()f x 满足()(1)(2),f x f x f x x R =+-+∈.当()0,3x ∈时,2()f x x =,则(2014)f = ( )A .5B .5-C .1-D .1 【答案】C 【解析】试题分析:由⇒+-+=)2()1()(x f x f x f )3()2()1(+-+=+x f x f x f ,从而)3()(+-=x f x f ,故()f x 的周期为6,1)1()4()43356()2014(-=-==+⨯=f f f f考点:函数的性质6.设)(x f 是定义在实数集R 上的函数,且满足下列关系)10()10(x f x f -=+,)20()20(x f x f +-=-,则)(x f 是( ).A.偶函数,但不是周期函数B.偶函数,又是周期函数C.奇函数,但不是周期函数D.奇函数,又是周期函数 【答案】D 【解析】 试题分析:∵f (20-x )=f[10+(10-x )]=f[10-(10-x )]=f (x )=-f (20+x ).∴f (20+x )=-f (40+x ),结合f (20+x )=-f (x )得到f (40+x )=f (x )∴f (x )是以T=40为周期的周期函数;又∵f (-x )=f (40-x )=f (20+(20-x )=-f (20-(20-x ))=-f (x ).∴f (x )是奇函数.故选:D考点:本题考查函数的奇偶性,周期性点评:解决本题的关键是准确理解相关的定义及其变形,即满足f(x+T)=f(x),则f(x)是周期函数,函数的奇偶性,则考虑f(x)与f(-x)的关系7.设f (x )定义R 上奇函数,且y =f (x )图象关于直线x =13对称,则f (-23)=( )A .-1B .1C .0D .2 【答案】C 【解析】试题分析:由题意可得,2()(),()()3f x f x f x f x -=-=-,所以精选22()()(0)033f f f -=-=-=,选C.考点:函数的奇偶性及对称性.8.已知)(x f 在R 上是奇函数,且满足)()4(x f x f =+,当)2,0(∈x 时,22)(x x f =,则)7(f 的值为 ( )A .2-B .2C .98-D .98 【答案】A 【解析】试题分析:Q )()4(x f x f =+,根据周期函数定义可知()f x 是周期为4的周期函数,∴()()()7181f f f =-+=-,又根据函数()f x 是奇函数,可得()1f -=()1f -,因为()10,2∈,所以()211212f -=-⨯⨯=-.故正确答案为选项A.考点:周期函数的定义和性质;奇函数定义和性质.9.已知定义在R 上的函数()f x ,对任意x R ∈,都有()()()63f x f x f +=+成立,若函数()1y f x =+的图象关于直线1x =-对称,则()2013()f = A .0 B .2013 C .3 D .2013- 【答案】A . 【解析】试题分析:由题意得(2013)(20133356)335(3)336(3)f f f f =-⨯+⨯=,又有函数()1y f x =+的图象关于直线1x =-对称,则函数()f x 图像关于y 轴对称,即(3)(3)f f =-,还有(3+6)(3)(3)f f f -=-+,得(3)=0f -,则(2013)336(3)=336(3)0f f f =-=,故选A .考点:函数的性质.10.设偶函数()f x 对任意x R ∈都有()()13f x f x +=-,且当[]3,2x ∈--时,()4f x x =,则()107.5f =( )A .10B .110C .-10D .110- 【答案】B 【解析】试题分析:因为()()13f x f x +=-,所以()()6f x f x +=,所以函数()f x 是周期为6的周期函数,又()()111860.5(0.5)(0.5)(2.5)( 2.5107.5)f f f f f f ⨯-==-=-=--=,而( 2.5)10f -=-,故()107.5f =110,故选B . 考点:函数的性质.11.函数()f x 的定义域为R ,若函数()f x 的周期6.当31x -≤<-时,()()22f x x =-+,当13x -≤<时,()f x x=.则()()()122013f f f ++⋅⋅⋅⋅⋅⋅+()+2014f =( )A .337B .338C .1678D .2012 【答案】A 【解析】试题分析:由已知得(1)1f =,(2)2f =,(3)(3)1f f =-=-,(4)(2)0f f =-=,(5)(1)1f f =-=-,(6)(0)0f f ==,故()()()1261f f f ++⋅⋅⋅⋅⋅⋅+=,()()()122013f f f ++⋅⋅⋅⋅⋅⋅+()+2014f =335+()()()()1234f f f f +++=337.考点:函数周期性.考点:函数的图象、周期性、对称性.13.已知函数f(x)在定义域上的值不全为零,若函数f(x+1)的图象关于( 1, 0 )对称,函数f(x+3)的图象关于直线x=1对称,则下列式子中错误的是( ) A.()()f x f x -= B.(2)(6)f x f x -=+ C.(2)(2)0f x f x -++--= D.(3)(3)0f x f x ++-= 【答案】D 【解析】试题分析:∵函数(1)f x +的图象关于()1,0对称,∴函数()f x 的图象关于(2,0)对称,令()(1)F x f x =+,∴()()2F x F x =--,即()(3)1f x f x -=-+,∴()()4f x f x -=- …⑴ 令()(3)G x f x =+,∵其图象关于直线1=x 对称,∴()()2G x G x +=-, 即()()53f x f x +=-,∴()()44f x f x +=- …⑵ 由⑴⑵得,()()4f x f x +=-,∴()()8f x f x += …⑶∴()()()844f x f x f x -=-=+-,由⑵得()()()()()4444f x f x f x +-=--=精选∴()()f x f x -=;∴A 对;由⑶,得()()282f x f x -+=-,即()()26f x f x -=+,∴B 对; 由⑴得,()()220f x f x -++=,又()()f x f x -=, ∴()()(2)(2)220f x f x f x f x -++--=-++=,∴C 对;若()()330f x f x ++-=,则()()6f x f x +=-,∴()()12f x f x +=, 由⑶得()()124f x f x +=+,又()()4f x f x +=-,∴()()f x f x =-,即()0f x =,与题意矛盾,∴D 错.考点:函数的图象与图象变化.15.设()f x 是定义在R 上且以5为周期的奇函数,若23(2)1,(3),3a a f f a ++>=-则a的取值范围是( ).A 、(,2)-∞B 、()()3,02,Y -∞-C 、(0,3)D 、()()3,02,Y ∞- 【答案】B 【解析】试题分析:由题意,得:)()5(),()(x f x f x f x f =+-=-,所以1)2()2()3(-<-=-=f f f ,即1332-<-++a a a ,0322<-+∴a aa ,0)3)(2(<-+a a a ,302<<-<∴x a 或. 考点:函数的奇偶性、周期性.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)16.定义在R 上的偶函数f (x )满足对任意x ∈R ,都有f (x +8)=f (x )+f (4),且x ∈[0,4]时,f (x )=4-x ,则f (2 015)的值为________. 【答案】3 【解析】试题分析:因为定义在R 上的偶函数()f x 满足对任意x R ∈,都有(8)()(4)f x f x f +=+,令4x =-,则(4)(4)(4)f f f =-+,故(4)(4)0f f -==所以()f x 满足对任意x R ∈,都有(8)()f x f x +=,故函数()f x 的周期8T = 所以(2015)(25281)(1)(1)413f f f f =⨯-=-==-= 故答案为3.考点:函数的周期性和奇偶性.18.定义在实数集R 上的函数()f x 满足()()20f x f x ++=,且()()4f x f x -=,现有以下三种叙述:①8是函数()f x 的一个周期; ②()f x 的图象关于直线2x =对称; ③()f x 是偶函数。

高中数学《函数的对称性与周期性》基础知识及专项练习题(含答案)

高中数学《函数的对称性与周期性》基础知识及专项练习题(含答案)

高中数学《函数的对称性与周期性》基础知识及专项练习题(含答案)一、基础知识(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)()()f a x f a x −=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)(2)()()()f a x f b x f x −=+⇔关于2a b x +=轴对称 在已知对称轴的情况下,构造形如()()f a x f b x −=+的等式只需注意两点,一是等式两侧f 前面的符号相同,且括号内x 前面的符号相反;二是,a b 的取值保证2a b x +=为所给对称轴即可。

例如:()f x 关于1x =轴对称()()2f x f x ⇒=−,或得到()()31f x f x −=−+均可,只是在求函数值方面,一侧是()f x 更为方便(3)()f x a +是偶函数,则()()f x a f x a +=−+,进而可得到:()f x 关于x a =轴对称。

① 要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=−+,要与以下的命题区分:若()f x 是偶函数,则()()f x a f x a +=−+⎡⎤⎣⎦:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=−+⎡⎤⎣⎦② 本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称。

3、中心对称的等价描述:(1)()()f a x f a x −=−+⇔()f x 关于(),0a 轴对称(当0a =时,恰好就是奇函数)(2)()()()f a x f b x f x −=−+⇔关于,02a b +⎛⎫ ⎪⎝⎭轴对称 在已知对称中心的情况下,构造形如()()f a x f b x −=−+的等式同样需注意两点,一是等式两侧f 和x 前面的符号均相反;二是,a b 的取值保证2a b x +=为所给对称中心即可。

高一数学函数周期性和对称性复习练习题

高一数学函数周期性和对称性复习练习题

函数周期性和对称性高一数学一•定义:若T为非零常数,对于定义域内的任一x,使f(x T) f(x)恒成立则f(x)叫做周期函数,T叫做这个函数的一个周期。

二•重要结论1、f x f x a,则y f x是以T a为周期的周期函数;2、若函数y=f(x)满足f(x+a)=-f(x) (a>0),则f(x)为周期函数且2a是它的一个周期。

3、若函数f x a f x a,贝U f x是以T 2a为周期的周期函数14、y=f(x)满足f(x+a) = (a>0),则f(x)为周期函数且2a是它的一个周期。

f x15、若函数y=f(x)满足f(x+a) = (a>0),则f(x)为周期函数且2a是它的一个周期。

f x6、f (x a) 1一3,则fx是以T 2a为周期的周期函数.1 f(x)7、f(x a)1一L(x),则f x是以T 4a为周期的周期函数•1 f(x)8、若函数y=f(x)的图像关于直线x=a,x=b(b>a)都对称,则f(x)为周期函数且2 ( b-a)是它的一个周期。

9、函数y f(x) x R的图象关于两点 A a, y0、B b, y0 a b都对称,则函数 f (x)是以2 b a为周期的周期函数;10、函数y f(x) x R的图象关于A a, y。

和直线x b a b都对称,则函数f(x)是以4 b a为周期的周期函数;11、若偶函数y=f(x)的图像关于直线x=a对称,贝U f(x)为周期函数且2 a是它的一个周期。

12、若奇函数y=f(x)的图像关于直线x=a对称,则f(x)为周期函数且4 a是它的一个周期。

13、若函数y=f(x)满足f(x)=f(x-a)+f(x+a)( a>0),则f(x)为周期函数,6a是它的一个周期。

14、若奇函数y=f(x)满足f(x+T)=f(x) (x € R, 0),则f(-)=0.2函数的轴对称:a b定理1 :如果函数y f x满足fax f b x,则函数y f x的图象关于直线x 对2 称•推论1:如果函数y f x满足fax fax,则函数y f x的图象关于直线x a对称•推论2:如果函数y f x满足f x f x ,则函数y f x的图象关于直线x 0 (y轴)对称. 特别地,推论2就是偶函数的定义和性质.它是上述定理1的简化.一、函数的点对称:定理2:如果函数y f x满足fax fax 2b,则函数y f x的图象关于点a,b对称. 推论3:如果函数y f x满足fax fax 0,则函数y f x的图象关于点a,0对称.推论4 :如果函数y f x满足f x f x 0,则函数y f x的图象关于原点0,0对称.特别地,推论4就是奇函数的定义和性质.它是上述定理2的简化.二、函数周期性的性质:定理若函数f x在R上满足f (a x)fax,且f(b x) f b x (其中a b),则函数3:y f x以2 a b为周期.定理4:若函数f x在R上满足f(a x) f a x,且f(b x) f b x (其中 a b),则函数y f x以2 a b为周期.定理5:若函数f x在R上满足f(a x)fax,且f(b x) f b x (其中a b),则函数y fx以4a b为周期.以上几类情形具有一定的迷惑性,但读者若能区分是考查单一函数还是两个函数,同时分析条件特征必能拨开迷雾,马到成功.下面以例题来分析.例1.已知定义为R的函数f x满足f x f x 4,且函数f x在区间2, 上单调递增.如果x-i 2 x2,且x-i x2 4,则f % f x2的值().A.恒小于0 B .恒大于0 C .可能为0 D .可正可负.分析:f x f x 4形似周期函数f x f x 4,但事实上不是,不过我们可以取特殊值代入,通过适当描点作出它的图象来了解其性质.或者,先用x 2代替x,使f x f x 4变形为f 2 x f x 2 .它的特征就是推论 3.因此图象关于点2,0对称.f x在区间2, 上单调递增,在区间,2上也单调递增.我们可以把该函数想象成是奇函数向右平移了两个单位.(如图)2 X2 4 x-,且函数在2, 上单调递增,所以f x2 f 4 X!,又由f x f x 4 ,有 f (4 x 1) f x 1 4 f x 1 4 4 f x 1 ,[3,4] 上是增函数f x 1 f x 2 f x 1 f 4 x 1 f x 1 f x 10.选 A.当然,如果已经作出大致图象后,用特殊值代人也可猜想出答案为A.练1:在R 上定义的函数f (x)是偶函数,且f(x) f (2 x).若f (x)在区间[1,2]上是减函数,则f(x)()A. 在区间[2, 1]上是增函数,在区间[3,4]上是减函数B. 在区间[2, 1]上是增函数,在区间[3,4]上是减函数上是减函数,在区间C.在区间[2, 1][3, 4]上是增函数分析:由f(x) f(2 x)可知f(x)图象关于x 1对称,即推论1的应用.又因为f(x)为偶函数图象关于 x 0对称,可得到f(x)为周期函数且最小正周期为 2,结合f (x)在区间[1,2]上是减函数,可得如右 f(x)草图.故选B例2 •已知函数y f x 的图象关于直线 x 2和x 4都对称,且当0x1时,f X x .在闭区间T,T 上的根的个数记为n ,贝U n 可能为(: )A.0B.1C.3D.5分析:f(T)f( T) 0 ,f( T )f (T ) f( ~T)f (T ),2 222•- f( 匸)f(T ) 0 ,则n 可能为5 ?练2.定义在R 上的函数f(x)既是奇函数,又是周期函数, 2 2D.在区间[2, 1]上是减函数,在区间T 是它的一个正周期•若将方程f(x)求f 19.5的值.分析:由推论1可知, y f x 的图象关于直线 2对称,即f 2 x同样, 满足f 4 x ,现由上述的定理 X 是以4为周期的函数.f 19.5 f 4 4 3.5 f 3.5 0.5 0.5, 同时还知f X 是偶函数,所以0.5 f 0.5 0.5. 例3. f f 398 x f 2158 x f 3214 x ,则f f 999 中最多有()个不同的值. A.165 B.177 C.183 D.199分析:由已知f x f 398 f 2158 x f 3214 x f x 1056f x 1760 f x 704352 . 又有 f x f 398 x2158 x f 3214 x 1056f 2158 1056 xf 1102 x f 1102 x1056f 46 x ,于是f (x)有周期352,于是f o ,f 1 , L ,f 999能在 ,f 351中找到. 又f (x)的图像关于直线x 23对称,故这些值可以在23 , f 24 丄,f 351中找到.又f(x)的图像关于直线x 199对称,故这些值可以在 f 23 , f 24 ,L , f 199 中找到.共有177个.选B. 练3 :已知 1 x1 3x ,x ,…, 则 f 2004 2 分析:由f ,可令 x=f (x )知 f , x 1 3x ,f 2 x3x 13x 1 f(x)为迭代周期函数,故 f 3n x 2004 f x, f 2004练4:函数f (x)在R 上有定义,且满足 f(x)是偶函数,且f 0 2005, g x x 1是奇函数,则f 2005的值为函数的定义域为[—1 , 0 ) U ( 0 , 1 ]故f ( x ) 是奇函数4、抽象函数奇偶性的判定与证明例4•已知函数f (x)对一切x, y R ,都有f (x y) f (x) f (y),(1)求证: f (x)是奇函数;(2)若f( 3) a ,用a 表示f(12)解:(1)显然f(x)的定义域是R ,它关于原点对称•在 f(x y) f (x) f (y)中,令 yx ,得 f(0) f(x) f( x),令 x y 0,得 f (0)f(0) f (0) ,「.f(0)0 ,••• f (x) f ( x) 0,即 f( x) f (x),••• f (x)是奇函数.f y fy 2,即有f :x f x 20,令 a nf x ,则 a n a n 2 0 ,其中 a 。

函数的对称性与周期性例题、习题(供参考)

函数的对称性与周期性例题、习题(供参考)

函数的对称性与周期性【知识梳理】1. 周期的概念:设函数(),y f x x D =∈,如果存在非零常数T ,使得对任意x D ∈都有 ,则函数()y f x =为周期函数,T 为()y f x =的一个周期;2. 周期函数的其它形式()()f x a f x b +=+⇒ ;()()f x a f x +=-⇒ ;()()1f x a f x +=⇒ ; ()()1f x a f x +=-⇒ ;)(1)(1)(x f x f a x f +-=+⇔ ,)(1)(1)(x f x f a x f -+=+⇔)()()2(x f a x f a x f -+=+⇔ 1)(1)(+-=+x f a x f ⇔ ,3. 函数图像的对称性1).若()()f x f x =-,则()y f x =的图像关于直线 对称; 2).若()()0f x f x +-=,则()y f x =的图像关于点 对称; 3)若()()f a x f a x +=-,则()y f x =的图像关于直线 对称; 4)若()()2f x f a x =-,则()y f x =的图像关于直线 对称; 5)若()()2f a x f a x b ++-=,则()y f x =的图像关于点 对称; 6)若()()22f x f a x b +-=,则()y f x =的图像关于点 对称; 4. 常见函数的对称性1)函数()()0ax bf x c cx d+=≠+的图像关于点 对称;2)函数()()0f x ax b a =-≠的图像关于直线 对称; 3)函数()()20f x ax bx c a =++≠的图像关于直线 对称; 【例题选讲】题型一 根据解析式判断函数图像的对称性 1. 函数()2331x f x x +=-的图像关于 对称; 2. 函数()f x 的定义域为R ,且()()1f x f x -=,则()f x 的图像关于 对称; 3. 函数()23f x x =-的图像关于 对称;4. 函数()3sin 23f x x π⎛⎫=- ⎪⎝⎭的图像关于直线 对称;关于点 对称;题型二 平移变换后,函数图像的对称性1.已知函数()y f x =是偶函数,()2f x -在[]0,2递减,则( )2.已知()2y f x =-是偶函数,则()y f x =的图像关于 对称;3.已知()y f x =是奇函数,则()12y f x =+-的图像关于 对称; 题型三 函数图像的对称性求函数解析式1.已知()f x 的图像关于直线2x =对称,且(]0,1x ∈时,()212f x x x=+,求[)3,4x ∈时,()f x 的解析式; 2.已知()f x 的图像关于点()2,0-对称,且(]0,1x ∈时,()212f x x x=+,求[)5,4x ∈--时,()f x 的解析式; 3.已知()f x 的图像关于点()1,2-对称,且(]0,1x ∈时,()212f x x x=+,求[)1,2x ∈时,()f x 的解析式; 题型四 函数周期性和图像对称的应用1.若函数()()2,22x x a bf x a b R ⋅+=∈+的图像关于点()1,0对称,求,a b 满足的关系;2.已知函数()f x 的定义域为R ,且对任意x R ∈,都有()()22f x f x +=-(1)若()0f x =有50个根,求所有这些根的和;(2)若()0f x =有51个根,求所有这些根的和;3.若()f x 有两条对称轴x a =和()x b a b =≠,求证:()f x 是以2T a b =-为周期的周期函数;4.设()f x 是定义在R 上的偶函数,它的图像关于直线2x =对称,当[]2,2x ∈-时,()21f x x =-+,求[]6,2x ∈--时,()f x 的解析式;5.已知定义域为R 的函数()f x 满足()()()121f x f x f x ++=-,求证函数()f x 是周期函数;题型五 综合应用1.设()f x 是定义在区间(),-∞+∞上以2为周期的函数,对于k Z ∈,用k I 表示区间(]21,21k k -+,已知当0x I ∈时,2()f x x =(1)求()f x 在k I 上的解析式;(2)对自然数k ,求集合{|k M a =使方程f x ax =()在k I 上有两个不等实根}。

函数的奇偶性、周期性与对称性专题训练

函数的奇偶性、周期性与对称性专题训练

函数的奇偶性、周期性与对称性专题训练A 组 基础达标 (建议用时:30分钟)一、选择题1.已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-2)=( )A .-3B .-54C .54 D .32.函数y =log 21+x1-x的图象( ) A .关于原点对称 B .关于直线y =-x 对称 C .关于y 轴对称 D .关于直线y =x 对称3.已知f (x )是定义在R 上的偶函数,且f (x +2)=f (x )对x ∈R 恒成立,当x ∈[0,1]时,f (x )=2x ,则f ⎝ ⎛⎭⎪⎫-92=( )A .12B . 2C .22 D .14.已知函数f (x )是奇函数,在(0,+∞)上是减函数,且在区间[a ,b ](a <b <0)上的值域为[-3,4],则在区间[-b ,-a ]上( )A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-35.已知f (x )是偶函数,且在[0,+∞)上是减函数,若f (lg x )>f (2),则x 的取值范围是( ) A .⎝ ⎛⎭⎪⎫1100,1 B .⎝ ⎛⎭⎪⎫0,1100∪(1,+∞) C .⎝ ⎛⎭⎪⎫1100,100 D .(0,1)∪(100,+∞)二、填空题6.已知函数f (x )=x 3+sin x +m -3是定义在[n ,n +6]上的奇函数,则m +n =________.7.已知函数f (x )是(-∞,+∞)上的奇函数,当x ∈[0,2)时,f (x )=x 2,若对于任8.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是________.三、解答题9.设函数f (x )是定义在R 上的奇函数,对任意实数x 有f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x 成立.(1)证明y =f (x )是周期函数,并指出其周期; (2)若f (1)=2,求f (2)+f (3)的值.10.设f (x )的定义域为(-∞,0)∪(0,+∞),且f (x )是奇函数,当x >0时,f (x )=x 1-3x.(1)求当x <0时,f (x )的解析式; (2)解不等式f (x )<-x8.B 组 能力提升 (建议用时:15分钟)11.已知f (x )=a sin x +b 3x +4,若f (lg 3)=3,则f ⎝⎛⎭⎪⎫lg 13=( ) A .13 B .-13 C .5 D .812.已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( )A .(-1,4)B .(-2,0)C .(-1,0)D .(-1,2)13.已知f (x ),g (x )分别是定义在R 上的奇函数和偶函数,且f (x )-g (x )=⎝ ⎛⎭⎪⎫12x,则f (1),g (0),g (-1)之间的大小关系是________.14.已知函数f (x )=⎩⎨⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数,(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.函数的奇偶性、周期性与对称性专题训练答案A 组 基础达标 (建议用时:30分钟)一、选择题1.已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-2)=( )A .-3B .-54C .54D .3A [因为f (x )为R 上的奇函数,所以f (0)=0,即f (0)=20+m =0,解得m =-1,则f (-2)=-f (2)=-(22-1)=-3.] 2.函数y =log 21+x1-x的图象( )A .关于原点对称B .关于直线y =-x 对称C .关于y 轴对称D .关于直线y =x 对称A [由1+x 1-x >0得-1<x <1,即函数定义域为(-1,1), 又f (-x )=log 21-x 1+x =-log 21+x1-x=-f (x ), 所以函数y =log 21+x1-x为奇函数,故选A.]3.已知f (x )是定义在R 上的偶函数,且f (x +2)=f (x )对x ∈R 恒成立,当x ∈[0,1]时,f (x )=2x,则f ⎝ ⎛⎭⎪⎫-92=( )A .12B . 2C .22 D .1B [由题意得f ⎝ ⎛⎭⎪⎫-92=f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫4+12=f ⎝ ⎛⎭⎪⎫12=212=2,故选B.]4.已知函数f (x )是奇函数,在(0,+∞)上是减函数,且在区间[a ,b ](a <b <0)上的值域为[-3,4],则在区间[-b ,-a ]上( )A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-3B [法一:根据题意作出y =f (x )的简图,由图知,选B. 法二:当x ∈[-b ,-a ]时,-x ∈[a ,b ],由题意得f (b )≤f (-x )≤f (a ),即-3≤-f (x )≤4, ∴-4≤f (x )≤3,即在区间[-b ,-a ]上f (x )min =-4,f (x )max =3,故选B.]5.已知f (x )是偶函数,且在[0,+∞)上是减函数,若f (lg x )>f (2),则x的取值范围是( ) A .⎝ ⎛⎭⎪⎫1100,1 B .⎝ ⎛⎭⎪⎫0,1100∪(1,+∞) C .⎝ ⎛⎭⎪⎫1100,100 D .(0,1)∪(100,+∞)C [法一:不等式可化为:⎩⎨⎧lg x ≥0,lg x <2或⎩⎨⎧lg x <0,-lg x <2,解得1≤x <100或1100<x <1,所以x 的取值范围为⎝ ⎛⎭⎪⎫1100,100. 法二:由偶函数的定义可知,f (x )=f (-x )=f (|x |),故不等式f (lg x )>f (2)可化为|lg x |<2,即-2<lg x <2,解得1100<x <100,故选C.] 二、填空题6.已知函数f (x )=x 3+sin x +m -3是定义在[n ,n +6]上的奇函数,则m +n =________.0 [因为奇函数的定义域关于原点对称,所以n +n +6=0,所以n =-3, 又f (0)=m -3=0.所以m =3,则m +n =0.]7.已知函数f (x )是(-∞,+∞)上的奇函数,当x ∈[0,2)时,f (x )=x 2,若对于任意x ∈R ,都有f (x +4)=f (x ),则f (2)-f (3)的值为________. 1 [由题意得f (2)=f (-2+4)=f (-2)=-f (2), ∴f (2)=0.∵f (3)=f (-1+4)=f (-1)=-f (1)=-1, ∴f (2)-f (3)=1.]8.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是________.⎝ ⎛⎭⎪⎫13,23 [∵f (x )是偶函数,∴f (x )=f (|x |), ∴f (|2x -1|)<f ⎝ ⎛⎭⎪⎫13,再根据f (x )的单调性,得|2x -1|<13,解得13<x <23.]三、解答题9.设函数f (x )是定义在R 上的奇函数,对任意实数x 有f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x 成立.(1)证明y =f (x )是周期函数,并指出其周期; (2)若f (1)=2,求f (2)+f (3)的值. [解] (1)由f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x ,且f (-x )=-f (x ),知f (3+x )=f ⎝ ⎛⎭⎪⎫32+⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-⎝ ⎛⎭⎪⎫32+x =-f (-x )=f (x ),所以y =f (x )是以3为周期的周期函数.(2)因为f (x )为定义在R 上的奇函数,所以f (0)=0,且f (-1)=-f (1)=-2,又3是y =f (x )的一个周期,所以f (2)+f (3)=f (-1)+f (0)=-2+0=-2.10.设f (x )的定义域为(-∞,0)∪(0,+∞),且f (x )是奇函数,当x >0时,f (x )=x 1-3x.(1)求当x <0时,f (x )的解析式; (2)解不等式f (x )<-x8.[解] (1)f (x )是奇函数,当x <0时,-x >0,此时f (x )=-f (-x )=--x1-3-x=x1-3-x. (2)f (x )<-x 8,当x >0时,x 1-3x <-x8,所以11-3x <-18,所以13x -1>18,所以3x -1<8,解得x <2,所以x ∈(0,2);当x <0时,x 1-3-x <-x 8,所以11-3-x>-18,所以3-x >32,所以x <-2,所以原不等式的解集是(-∞,-2)∪(0,2).B 组 能力提升 (建议用时:15分钟)11.已知f (x )=a sin x +b 3x +4,若f (lg 3)=3,则f ⎝ ⎛⎭⎪⎫lg 13=( )A .13B .-13C .5D .8C [因为f (x )+f (-x )=8,f ⎝ ⎛⎭⎪⎫lg 13=f (-lg 3),所以f ⎝ ⎛⎭⎪⎫lg 13=8-f (lg 3)=5,故选C.]12.已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( )A .(-1,4)B .(-2,0)C .(-1,0)D .(-1,2) A [∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1), ∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0, 解得-1<a <4.]13.已知f (x ),g (x )分别是定义在R 上的奇函数和偶函数,且f (x )-g (x )=⎝ ⎛⎭⎪⎫12x,则f (1),g (0),g (-1)之间的大小关系是________. f (1)>g (0)>g (-1) [在f (x )-g (x )=⎝ ⎛⎭⎪⎫12x中, 用-x 替换x ,得f (-x )-g (-x )=2x ,由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数, 所以f (-x )=-f (x ),g (-x )=g (x ), 因此得-f (x )-g (x )=2x . 联立方程组解得f (x )=2-x -2x2,g (x )=-2-x +2x2,于是f (1)=-34,g (0)=-1,g (-1)=-54,故f (1)>g (0)>g (-1).]14.已知函数f (x )=⎩⎨⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数,(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. [解] (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数, 所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2. (2)由(1)知f (x )在[-1,1]上是增函数, 要使f (x )在[-1,a -2]上单调递增. 结合f (x )的图象知⎩⎨⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].。

函数的周期性与对称性

函数的周期性与对称性

函数的周期性和对称性练习题【课堂练习】(周期性)1、已知定义在R 上的奇函数f(x)满足f(x+2)=-f(x),求f(x)的周期及f(6)的值2、偶函数()f x 是以2为周期的函数,且当()0,1x ∈时,()21x f x =-,则2(log 10)f 的值为( ).A 35 .B 85 .C 38-.D 53 3、 函数)x (f 对于任意实数x 满足条件)x (f 1)2x (f =+,若5)1(f -=,则))5(f (f 等于 ( ) A. 5 B. 5- C. 51 D. 51- 4、设函数)x (f 为R 上的奇函数,且0)3x (f )x (f =++-,若1)1(f -=-, a f 2l o g )2(<,则a 的取值范围是 .5、已知偶函数)x (f y =满足)1x (f )1x (f -=+,且当]0,1[x -∈时,943)x (f x +=, 则)5log (f 31的值等于 ( )A. 1-B. 5029C. 45101 D. 1(对称性和周期性)6. 定义在),(∞+∞-上的偶函数)x (f 满足)x (f )1x (f -=+,且在]0,1[-上是增函数,下面是关于)x (f 的判断:① )x (f 是周期函数; ② )x (f 的图象关于直线1x =对称;③ )x (f 在]1,0[上是增函数; ④ ).0(f )2(f =其中正确的判断是 (把你认为正确的判断都填上)。

7、 ()f x 是定义在R 上的函数,(10)(10)f x f x +=-且(20)(20)f x f x -=-+,则()f x 是( )A. 周期为20的奇函数B. 周期为20的偶函数C. 周期为40的奇函数D. 周期为40的偶函数8、已知定义在R 上的函数f (x )的图象关于)0,43(-成中心对称,且满足f (x ) =1)1(),23(=-+-f x f , f (0) = –2,则f (1) + f (2) +…+ f (2010)的值为 ( )A .–2B .–1C .0D .19、设f (x )是定义在R 上以6为周期的函数,f (x )在(0,3)内单调递减,且y=f (x )的图象关于直线x=3对称,则下面正确的结论是 ( )A .()()()1.5 3.5 6.5f f f <<B .()()()3.5 1.5 6.5f f f <<C .()()()6.5 3.5 1.5f f f <<D .()()()3.5 6.5 1.5f f f <<【家庭作业】1、在R 上定义的函数()f x 是偶函数,且()f x (2)f x =-.若()f x 在区间[1,2]上是减函数,则()f x ( )A.在区间[2,1]--上是增函数,在区间[3,4]上是增函数B.在区间[2,1]--上是增函数,在区间[3,4]上是减函数C.在区间[2,1]--上是减函数,在区间[3,4]上是增函数D.在区间[2,1]--上是减函数,在区间[3,4]上是减函数2、函数()f x 对于任意实数x 满足条件)()2(x f x f -=+,若()15,f =-则()()5f f = 。

高三一轮复习函数的性质周期性和对称性复习练习题

高三一轮复习函数的性质周期性和对称性复习练习题

函数周期性和对称性(知识点,练习题)f(x?T)?f(x)恒成立为非零常数,对于定义域内的任一x,使一.定义:若T则f(x)叫做周期函数,T叫做这个函数的一个周期。

二.重要结论??????xfy?T?aaxffx??为周期的周期函数;是以1、,则2、若函数y=f(x)满足f(x+a)=-f(x)(a>0),则f(x)为周期函数且2a是它的一个周期。

??????xfa?fa?xfx?T?2a为周期的周期函数是以若函数,则3、1 (a>0),则f(x)为周期函数且2a是它的一个周期。

4、y=f(x)满足f(x+a)=??xf1 是它的一个周期。

f(x)为周期函数且2a5、若函数y=f(x)满足f(x+a)= (a>0),则???xf1?f(x)??xf T?2a为周期的周期函数.6、是以,则??a)f(x1?f(x)1?f(x)??xf T?4a为周期的周期函数7、是以,则.??f(x?a)1?f(x)8、若函数y=f(x)的图像关于直线x=a,x=b(b>a)都对称,则f(x)为周期函数且2(b-a)是它的一个周期。

????????ba?yB,ba,?xRyA f(x))(xy?f是以、9、函数都对称,则函数的图象关于两点00??ab2?为周期的周期函数;??????b?ayaR,A?x f(x))(xy?f bx?的图象关于和直线是以都对称,则函数10、函数0??a4?b 为周期的周期函数;a是它的一个周期。

2的图像关于直线x=a对称,则f(x)为周期函数且11、若偶函数y=f(x)a 是它的一个周期。

x=a对称,则f(x)为周期函数且412、若奇函数y=f(x)的图像关于直线13、若函数y=f(x)满足f(x)=f(x-a)+f(x+a)(a>0),则f(x)为周期函数,6a是它的一个周期。

T)f(=0. ,T≠0), 则(x14、若奇函数y=f(x)满足f(x+T)=f(x)∈R2函数的轴对称:三a?b????????xfa?x??fb?xfyy?fx?x对的图象关于直线定理1:如果函数满足,则函数2.称????????x?y?fxffa?x?fa?xy ax?. 的图象关于直线1推论:如果函数对称,则函数满足????????xffy?xfx??xfy?0?x轴)对称y(的图象关于直线,则函数满足:如果函数2推论四函数的点对称:??????????b,axf?a?xfy?f?x2fba?xy?对称. 如果函数的图象关于点满足,则函数定理2:??????????,0axf?a?xfy?f?x0fya?x?对称:如果函数的图象关于点. 满足,则函数推论3??????????0,0xf?fy?xy?f?xf?x0对称.的图象关于原点4:如果函数特满足,则函数推论别地,推论4就是奇函数的定义和性质.它是上述定理2的简化.五函数周期性的性质:??????xfxb)?f?x?f(b?f(a?x)?fxaa?b)(其中R在上满足,则函数定理3:若函数,且????bxa2y?f?为周期.以??????xfxb?f?f(b?xf(a?x)??f)a?x?a?b)(其中,在R上满足,定理4:若函数且则函????ba2y?f?x为周期数以.??????xfxf?bb?x)?x)?f?a?x?f(f(aa?b)(其中定理5:若函数上满足,则函,且在R????b4?f?xay为周期数.以以上几类情形具有一定的迷惑性,但读者若能区分是考查单一函数还是两个函数,同时分析条件特征必能拨开迷雾,马到成功.下面以例题来分析. ??????????xxff???x4??f2,xf?上单调递,且函数满足在区间例1.已知定义为R的函数????xfxf?4??x2?xx?x的值()如果,且.,则增.221121A.恒小于0 B.恒大于0 C.可能为0 D.可正可负. ????????44ff?xfx?x???fx?不过我们可以取特殊值代分析:,形似周期函数但事实上不是,????4f?fx?x??x2?x变形,使入,通过适当描点作出它的图象来了解其性质.或者,先用代替??????????xf02,??2,??f2xfx2??上单对称3.因此图象关于点.为在区间.它的特征就是推论??2,??上也单调递增.我们可以把该函数想象成是奇函数向右平移了两个单位调递增,在区间.(如图)?????x,2??2x?4上单调递增,所以,且函数在12????????4x?x?f?x??f4?xff,,又由12????????xf???f?x?444f(?)x?f??x402,有1111?????????????x0??????fxfxfxf4xfxf?A.选.111121.当然,如果已经作出大致图象后,用特殊值代人也可猜想出答案为A.[1,2])(x?x)fx)f(x)?f(2f(上是减函数,则若上定义的函数是偶函数,且在区间.练1:在R f(x)( ) [?2,?1][3,4]上是减函数上是增函数,在区间 A.在区间[?2,?1][3,4]上是减函数B. 在区间上是增函数,在区间4][3,1]2,??[上是增函数上是减函数,在区间 C. 在区间4][3,1]2,[??上是增函数D. 在区间上是减函数,在区间1?))f(xx)?f(2?xf(对称,即分析:由可知图象关于x)(xf0x?可得到为偶函数图象关于的应用.又因为对称,推论12][1,)f(xf(x)上是,结合在区间为周期函数且最小正周期为2)(xf B.减函数,可得如右故选草图)(xf0)?f(xT若将方程练2.定义在R上的函数是它的一个正周期既是奇函数,又是周期函数,.??nn T,?T)可能为(上的根的个数记为在闭区间,则D.5 C.3A.0B.1TTTT)(?f)f(??T)??f()?f(?0?T)?f(?)f(T,,分析:2222TT n0f(?)?)?f(?∴????xfy?xxf?1?x?2x?40?x.都对称,且当时,.已知函数例2和的可能为,则5 22图象关于直线??5.f19.的值求??????xy?f x?ff?2?x22x?分析:由推论1对称,即的图象关于直线,可知,????????xy?f xfx?ff?4?x4.为周期的函数43同样,知是以,现由上述的定理满足??????????????xf50?f.?5.0?f?4?43.5.?f3.55?f?4f??19是偶函数,所以,同时还知????50.5.?0.5??f0f.????????????????2fff01999f?x3214?ffx?f398?x?f?2158x中.例3,,…,,则,. )个不同的值最多有(D.199B.177C.183 A.165??????????1056?f??f?2158xf?x3214?xxffx?398?分析:由已知??????352704f??fx1760?x??fx?.??????????1056xf?2158?x??fffx3214?f?398?xx?又有????????x46?x??ff1102?x?1056?f?1102x1056?f2158????,??????????????????351,ff0,,ff11,0,ff999,)f(x. 有周期352于是,于是中找到能在????????,ff,f2335124,23?x)xf(对称,故这些值可以在又又的图像关于直线中找到.????????19924,f23,,ff199x?)xf(.故这些值可以在个.对称,共有的图像关于直线177中找到 B.选x?1???????????????fxxffxf?ffxxx?fffx?f??????,3:已知,,,…,练??????n111n2?x?31????f2.??????????xfx??f x?xff?xx?ff. )知,,,可令分析:由x=f(x??)则(20041?xx1?1?x??????????????xf?xxffx?f??2?ff??2)(xf,,2131x?31?3x3x1???1为迭代周期函数,故20042004n37带进原函数中即将x=-2??????1xf?0f?2005g?x)(xff(x)是奇函数,是偶函数,且练4:函数上有定义,且满足在R,??2005f .则的值为????????????11ff??x?x??f1?x?1??gxx???f?x?g1?y?x则,,令,解:????????????0a?ff?y2??ffxxy?fx?22005?0aa?a?,,即有,令,则,其中??????????2005n?f?2005a0a?i??i?i?a?i,,????0n?n2n200520052005n?????????????2005??ff2003??ffx???f?x22001f19990?,得. 或有1n200522??01?f?.21x?的奇偶性判断函数练习:1、 f ( x ) =2|?2|x?解:由题0)?1)(x?1(x??1x?1?2???01?x??????2???4?x?2x0?x且0||?2x?2????( 0 , 1 ] 函数的定义域为∴[∪1 , 0 ) -2222x1?)?x(1?x1?x1???又f(?x)??xx?f ( x )22?x(?)故是奇函数x六、抽象函数奇偶性的判定与证明f(x)x,y?Rf(x?y)?f(x)?f(y),,都有对一切例4.已知函数a)xf(f(12)?af(?3)表示)若,用是奇函数;(1)求证:(2f(x)f(x?y)?f(x)?f(y)R中,,它关于原点对称.在的定义域是解:(1)显然y??x f(0)?f(x)?f(?x)x?y?0f(0)?f(0)?f(0)f(0)?0,,得,令,得,∴令f(x))(x?f(?x)?ff(x)?f(?x)?0是奇函数.∴∴,即,f(x))(y?f(x)?ff(?3)?af(x?y)是奇函数,)由(2及,f(12)?2f(6)?4f(3)??4f(?3)??4a.得七、利用函数奇偶性求函数解析式或求值3x)x(1?f(x)?)(xf)??x?(0,R,时,练习:已知是上的奇函数,且当?30?x),xx(1???f(x))xf(则的解析式为?30?x),xx(1???1?x1111f(?)f(?)f()ff(x)??x?log()的值+已知函数例7+,求+21?x20052004200420051?x?0(?1,1)得函数的定义域是解:由1?x1?x1?xf(?x)?f(x)?log?log?log1?0又2221?x1?x?f(?x)??f(x)?函数是奇函数成立,1111)f()f(?)f()f(?=0 =0 ++20042005200520041111)()f(ff(?)(?)f=0∴+++2005200420052004设函数为奇函数,则-例81-∴f (-x∵解析:f(x)=)= ,又∵f(x)为奇函数,∴f (x)=-f (-x).22a?1(a?)x???)?(x?a1xax1.-.∴=∴=∴ a1??2bax)x??3?bxa?(fa1?a,2?a,练习:,则偶函数,定义域为是已知b=03.1?aa??1??2ab?0,?解:31??f(x?3)??2?3x?,?)f(x)(113.5(fx)?2xf Rx?都有,3、,则,且当设偶函数时,对任意)xf(的值为(D)1221?? D. C.A. B.575711?f(x?6)?f[(x?3)?3]???f(x)?f(x?3)??解:)(x3?f(x)f?f(x)是以T?6为周期的周期函数?f(113.5)?f(18?6?5.5)?f(5.5)?f(6?0.5)?f(?0.5)111?????f(3?0.5)f(?2.5)5??3?,2x)xf(f(x)?xf(6.5),f(?1.5)f(5.5)是周期为4、已知的偶函数,当,时,,求例13f(?x)?f(x)f(x?4)?f(x)f(6.5)?f(4?2.5)?f(2.5)?2.5解:,f(?1.5)?f(?1.5?4)?f(2.5)?2.5f(5.5)?f(5.5?4?f(1.5)?f(?1.5)?f(?1.5?4)?f(2.5)?2.5例14、是定义在R上的以3为周期的奇函数,且,则方程f(x)=0在区间(0,6)内解的个数的最小值是 DA.2 B.3 C.4 D.5解析:依题可知f(x)=f(x+3).f(2)=f(5)=0.又∵f(x)是定义在R上的奇函数,∴f(-x)=-f(x).∴f(-2)=-f(2)=0.∴f(-2)=f(1)=f(4)=0.又∵奇函数有f(0)=0,∴f(3)=f(6)=0.∴在(0,b)内f(x)=0解的个数最小值为5.练习:1、已知定义域为R的函数f(x)在(8,+∞)上为减函数,且函数y=f(x+8)为偶函数,则Df(10)>D.f(7)f(9) >C.f(7)f(9) >B.f(6)f(7) >A.f(6).解析:∵y=f(x+8)为偶函数,∴y=f(x)图象关于x=8对称.又∵y=f(x)在(8,+∞)上为减函数,∴y=f(x)在(-∞,8)上为增函数.∴f(7)=f(9),f(9)>f(10).∴f(7)>f(10).2、(2006山东)已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),则f(6)的值为B(A)-1 (B)0 (C)1 (D)2∵()()∴()()()()(). f46=-f=f=f解析:f4+2x+22=-f=-fx2.()()∴()=0.2 -f又=0 x6为R上的奇函数,∴ff,则使得的是定义在R上是减函数,且上的偶函数,在 3、x若函数的取值范围是(D).D.(-2,.B2.C) A解析:∵f(2)=0且f(x)为偶函数,∴f(-2)=0.又∵f(x)在(-∞,0]递减,∴f(x)在(-2,0]递减.∴对于x∈(-2,0)必有f(x)<0.由对称性得对于x∈[0,2)必有f(x)<0.∴使得f(x)<0的范围是(-2,2).=, f(x+2)=f(x)+f(2),则f(5x4、设函数f(x)(∈R)为奇函数,f(1))等于(C)C. D.5B.1 A.0=1)R)为奇函数,f()且f(x)(x∈)(解:fx+2)=f(x+f(2?f(1)?f(?1?2)?f(?1)?f(2)??f(1)?f(2) 1??11)?2??f(2)2f(25?f(5)?f(3?2)?f(3)?f(2)?f(1?2)?f(2)?2f(2)?f(1)?2。

函数的周期性、对称性(解析版)

函数的周期性、对称性(解析版)

函数的周期性、对称性一、单选题1.(2023·全国·高三专题练习)已知函数f x =x -e 2+ln ex e -x ,若f e 2020 +f 2e2020+⋅⋅⋅+f 2018e 2020 +f 2019e 2020 =20192a +b ,其中b >0,则12a+a b 的最小值为()A.34B.54C.2D.22【答案】A【解析】因为f x =x -e 2+ln exe -x,所以f x +f e -x =x -e 2+ln ex e -x +(e -x )-e2+ln e (e -x )e -(e -x )=lnex e -x +ln e (e -x )x =ln exe -x ⋅e (e -x )x=ln e 2=2,令S =f e 2020 +f 2e 2020 +⋅⋅⋅+f 2018e 2020 +f 2019e2020 则2S =f e 2020 +f 2019e 2020 +f 2e 2020 +f 2018e 2020 +⋅⋅⋅+f 2019e 2020 +f e2020 =2×2019所以S =2019所以20192a +b =2019,所以a +b =2,其中b >0,则a =2-b .当a >0时12|a |+|a |b =12a +2-b b =12a +2b -1=12a +2b ⋅(a +b )2-1=1252+b 2a +2a b-1≥1252+2b 2a ⋅2a b -1=54当且仅当b 2a =2a b, 即 a =23,b =43 时等号成立;当a <0时 12|a |+|a |b =1-2a +-a b =1-2a +b -2b =1-2a +-2b +1=121-2a +-2b ⋅(a +b )+1=12-52+b -2a +-2ab +1≥12-52+2b -2a ⋅-2a b +1=34,当且仅当 b -2a =-2a b, 即 a =-2,b =4 时等号成立;因为34<54,所以12|a |+|a |b 的最小值为34.故选:A .2.(2023春·重庆·高三统考阶段练习)已知函数f (x )=ln x 2+1-x +1,正实数a ,b 满足f (2a )+f (b -4)=2,则4b a +a2ab +b 2的最小值为( )A.1B.2C.4D.658【答案】B【解析】f x +f -x =ln x 2+1-x +1+ln x 2+1+x +1=2,故函数f x 关于0,1 对称,又f x 在R 上严格递增;f (2a )+f (b -4)=2,∴2a +b -4=0即2a +b =4.4b a +a 2ab +b 2=4b a +a b 2a +b =4b a +a4b ≥24b a ⋅a 4b=2.当且仅当a =169,b =49时取得.故选:B .3.(2023·全国·高三专题练习)已知函数f x 的定义域为R ,f 2x +2 为偶函数,f x +1 为奇函数,且当x ∈0,1 时,f x =ax +b .若f 4 =1,则3i =1f i +12=( )A.12B.0C.-12D.-1【答案】C【解析】因为f 2x +2 为偶函数,所以f -2x +2 =f 2x +2 ,用12x +12代替x 得:f -x +1 =f x +3 ,因为f x +1 为奇函数,所以f -x +1 =-f x +1 ,故f x +3 =-f x +1 ①,用x +2代替x 得:f x +5 =-f x +3 ②,由①② 得:f x +5 =f x +1 ,所以函数f x 的周期T =4,所以f 4 =f 0 =1,即b =1,因为f -x +1 =-f x +1 ,令x =0得:f 1 =-f 1 ,故f 1 =0,f 1 =a +b =0,解得:a =-1,所以x ∈0,1 时,f x =-x +1,因为f -x +1 =-f x +1 ,令x =12,得f 12 =-f 32 ,其中f 12 =-12+1=12,所以f 32 =-12,因为f -2x +2 =f 2x +2 ,令x =14得:f -2×14+2 =f 2×14+2 ,即f 32 =f 52 =-12,因为T=4,所以f 72 =f72-4=f-12,因为f-x+1=-f x+1,令x=32得:f-12=-f52 =12,故f 72 =12,3 i=1fi+12=f32 +f52 +f72 =-12-12+12=-12.故选:C4.(2023·四川资阳·统考模拟预测)已知函数f x 的定义域为R,f x-2为偶函数,f x-2+f-x=0,当x∈-2,-1时,f x =1a x-ax-4(a>0且a≠1),且f-2=4.则13k=1f k=( )A.16B.20C.24D.28【答案】C【解析】因为f x-2是偶函数,所以f-x-2=f(x-2),所以f(x)=f(-x-4),所以函数f(x)关于直线x=-2对称,又因为f x-2+f-x=0,所以-f x-2=f-x,所以f(x)=-f(-x-2),所以f(x)关于点(-1,0)中心对称,由f(x)=f(-x-4)及f(x)=-f(-x-2)得f(-x-4)=-f(-x-2)所以f(-x-4)=-f(-x-2)=f(-x)所以函数f(x)的周期为4,因为当x∈-2,-1时,f x =1a x-ax-4(a>0且a≠1),且f-2=4,所以4=1a-2+2a-4,解得:a=2或a=-4,因为a>0且a≠1,所以a=2.所以当x∈-2,-1时,f x =12x-2x-4,所以f(-2)=4,f(-1)=0,f(-3)=f(-1)=0,f(0)=-f(-2)=-4,f(1)=f(1-4)=f(-3)=0,f(2)=f(-2)=4,f(3)=f(-1)=0,f(4)=f(0)=-4,所以f(1)+f(2)+f(3)+f(4)=8,所以13k=1f k=f(1)+3×8=24,故选:C.5.(2023·全国·高三专题练习)已知函数f(x),g(x)的定义域均为R,且f(x)+g(2-x)=5,g(x)-f(x-4)=7.若y=g(x)的图像关于直线x=2对称,g(2)=4,则22k=1f k =( )A.-21B.-22C.-23D.-24【答案】D【解析】因为y =g (x )的图像关于直线x =2对称,所以g 2-x =g x +2 ,因为g (x )-f (x -4)=7,所以g (x +2)-f (x -2)=7,即g (x +2)=7+f (x -2),因为f (x )+g (2-x )=5,所以f (x )+g (x +2)=5,代入得f (x )+7+f (x -2) =5,即f (x )+f (x -2)=-2,所以f 3 +f 5 +⋯+f 21 =-2 ×5=-10,f 4 +f 6 +⋯+f 22 =-2 ×5=-10.因为f (x )+g (2-x )=5,所以f (0)+g (2)=5,即f 0 =1,所以f (2)=-2-f 0 =-3.因为g (x )-f (x -4)=7,所以g (x +4)-f (x )=7,又因为f (x )+g (2-x )=5,联立得,g 2-x +g x +4 =12,所以y =g (x )的图像关于点3,6 中心对称,因为函数g (x )的定义域为R ,所以g 3 =6因为f (x )+g (x +2)=5,所以f 1 =5-g 3 =-1.所以∑22k =1f (k )=f 1 +f 2 +f 3 +f 5 +⋯+f 21 +f 4 +f 6 +⋯+f 22 =-1-3-10-10=-24.故选:D6.(2023·全国·高三专题练习)设函数f x =x 3+ax 2+bx +2a ,b ∈R ,若f 2+x +f 2-x =8,则下列不等式正确的是( )A.f e +f 32>8 B.f e +f 2-3 >8C.f ln7 +f 2+3 >8 D.f ln5 +f 3ln2 <8【答案】C【解析】由题(2+x )3+a (2+x )2+b (2+x )+2+(2-x )3+a (2-x )2+b (2-x )+2=8,化简整理得(6+a )x 2+2(2a +b +3)=0,于是6+a =0,2a +b +3=0⇒a =-6,b =9,所以f (x )=x 3-6x 2+9x +2,进而f (x )=3x 2-12x +9=3(x -1)(x -3),据此,f (x )在(-∞,1),(3,+∞)上单调递增,f (x )在(1,3)上单调递减,因为f (2+x )+f (2-x )=8,即f (x )+f (4-x )=8.对于A ,由f (e )+f (4-e )=8,又1<4-e <32<3,所以f (4-e )>f 32,即f (e )+f 32<8,故A 错误;对于B ,f (2-3)=(2-3)3-6(2-3)2+9(2-3)+2=4,因为1<2<e<3,所以f(2)>f(e),而f(2)=23-6×22+9×2+2=4,所以f(e)+f(2-3)<8,故B错误;对于C,f(2+3)=(2+3)3-6(2+3)2+9(2+3)+2=4,而1<ln7<2,所以f(ln7)>f(2)=4,所以f(ln7)+f(2+3)>8,故C正确;对于D,由f(ln5)+f(4-ln5)=8,因为1<3ln2<4-ln5<3,所以f(3ln2)>f(4-ln5),所以f(ln5)+f(3ln2)>8,故D错误.故选:C.7.(2023·全国·高三专题练习)定义在R上的奇函数f x 满足f2-x=f x ,且在0,1上单调递减,若方程f x =-1在0,1上所有实根之和是( )上有实数根,则方程f x =1在区间-1,11A.30B.14C.12D.6【答案】A【解析】由f2-x=f x 知函数f x 的图象关于直线x=1对称,∵f2-x=f x ,f x 是R上的奇函数,∴f-x=f x+2=-f x ,∴f x+4=f x ,∴f x 的周期为4,考虑f x 的一个周期,例如-1,3,由f x 在0,1上是增函数,上是减函数知f x 在1,2f x 在-1,0上是减函数,f x 在2,3上是增函数,对于奇函数f x 有f0 =0,f2 =f2-2=f0 =0,故当x∈0,1时,f x <f2 =0,时,f x <f0 =0,当x∈1,2当x∈-1,0时,f x >f0 =0,当x∈2,3时,f x >f2 =0,方程f x =-1在0,1上有实数根,则这实数根是唯一的,因为f x 在0,1上是单调函数,则由于f2-x上有唯一实数,=f x ,故方程f x =-1在1,2在-1,0上f x >0,和2,3则方程f x =-1在-1,0上没有实数根,和2,3从而方程f x =-1在一个周期内有且仅有两个实数根,当x∈-1,3,方程f x =-1的两实数根之和为x+2-x=2,当x∈-1,11,方程f x =-1的所有6个实数根之和为x+2-x+4+x+4+2-x+x+8+2-x+8=2+8+2+8+2+8=30.故选:A.8.(2023·全国·高三专题练习)对于三次函数f x =ax3+bx2+cx+d a≠0,给出定义:设f'x 是函数y=f x 的导数,f″x 是f'x 的导数,若方程f″x =0有实数解x0,则称点x0,f x0为函数y =f x 的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g x =13x3-12x2+3x-512,则g12019+g22019+⋯+g20182019=( )A.2016B.2017C.2018D.2019【答案】C【解析】函数g x =13x3-12x2+3x-512,函数的导数g'x =x2-x+3,g'x =2x-1,由g'x0=0得2x0-1=0,解得x0=12,而g12 =1,故函数g x 关于点12,1对称,∴g x +g1-x=2,故设g12019+g22019+...+g20182019=m,则g20182019+g20172019+...+g12019=m,两式相加得2×2018=2m,则m=2018,故选C.9.(2023春·云南曲靖·高三曲靖一中校考阶段练习)定义在R上的函数f x 满足f-x+f x =0 ,f x =f2-x,且当x∈0,1时,f x =x2.则函数y=7f x -x+2的所有零点之和为( ) A.7 B.14 C.21 D.28【答案】B【解析】依题意,f x 是奇函数.又由f x =f2-x知,f x 的图像关于x=1对称.f x+4=f1+x+3=f1-x+3=f-2-x=-f2+x=-f2--x=-f-x=f x ,所以f x 是周期为4的周期函数.f2+x=f1+1+x=f1-1+x=f-x=-f x =-f2-x,所以f x 关于点2,0对称.由于y=7f x -x+2=0⇔f x =x-2 7从而函数y=7f x -x+2的所有零点之和即为函数f x 与g x =x-27的图像的交点的横坐标之和.而函数g x =x-27的图像也关于点2,0对称.画出y=f x ,g x =x-27的图象如图所示.由图可知,共有7个交点,所以函数y=7f x -x+2所有零点和为7×2=14.故选:B10.(2023·全国·高三专题练习)已知定义在R上的可导函数f x 的导函数为f (x),满足f (x)<f(x)且f x+3为偶函数,f(x+1)为奇函数,若f(9)+f(8)=1,则不等式f x <e x的解集为( )A.-3,+∞B.1,+∞C.(0,+∞)D.6,+∞【答案】C【解析】因为f x+3为偶函数,f(x+1)为奇函数,所以f x+3=f-x+3,f(x+1)+f(-x+1)=0.所以f x =f-x+6,f(x)+f(-x+2)=0,所以f(-x+6)+f(-x+2)=0.令t=-x+2,则f(t+4)+f(t)=0.令上式中t取t-4,则f(t)+f(t-4)=0,所以f(t+4)=f(t-4).令t取t+4,则f(t)=f(t+8),所以f(x)=f(x+8).所以f x 为周期为8的周期函数.因为f(x+1)为奇函数,所以f(x+1)+f(-x+1)=0,令x=0,得:f(1)+f(1)=0,所以f(1)=0,所以f(9)+f(8)=1,即为f(1)+f(0)=1,所以f(0)=1.记g x =f xe x,所以gx =f x -f xe x.因为f (x)<f(x),所以g x <0,所以g x =f xe x在R上单调递减.不等式f x <e x可化为f xe x<1,即为g x <g0 .所以x>0.故选:C11.(2023·全国·高三专题练习)设函数f x 的定义域为R,f x+1为奇函数,f x+2为偶函数,当x∈1,2时,f(x)=ax2+b.若f0 +f3 =6,则f 92 =( )A.-94B.-32C.74D.52【答案】D【解析】[方法一]:因为f x +1 是奇函数,所以f -x +1 =-f x +1 ①;因为f x +2 是偶函数,所以f x +2 =f -x +2 ②.令x =1,由①得:f 0 =-f 2 =-4a +b ,由②得:f 3 =f 1 =a +b ,因为f 0 +f 3 =6,所以-4a +b +a +b =6⇒a =-2,令x =0,由①得:f 1 =-f 1 ⇒f 1 =0⇒b =2,所以f x =-2x 2+2.思路一:从定义入手.f 92 =f 52+2 =f -52+2 =f -12 f -12 =f -32+1 =-f 32+1 =-f 52-f 52 =-f 12+2 =-f -12+2 =-f 32所以f 92 =-f 32 =52.[方法二]:因为f x +1 是奇函数,所以f -x +1 =-f x +1 ①;因为f x +2 是偶函数,所以f x +2 =f -x +2 ②.令x =1,由①得:f 0 =-f 2 =-4a +b ,由②得:f 3 =f 1 =a +b ,因为f 0 +f 3 =6,所以-4a +b +a +b =6⇒a =-2,令x =0,由①得:f 1 =-f 1 ⇒f 1 =0⇒b =2,所以f x =-2x 2+2.思路二:从周期性入手由两个对称性可知,函数f x 的周期T =4.所以f 92=f 12 =-f 32 =52.故选:D .二、多选题12.(2023春·云南·高三云南师大附中校考阶段练习)已知定义域为R 的函数f x 在-1,0 上单调递增,f 2+x =f 2-x ,且图象关于3,0 对称,则f x ( )A.周期T =4B.在0,2 单调递减C.满足f 2021 <f 2022 <f 2023D.在0,2023 上可能有1012个零点【答案】ABD【解析】A 选项:由f (2+x )=f (2-x )知f (x )的对称轴为x =2,且f (4+x )=f (-x ),又图象关于3,0 对称,即f (3+x )=-f (3-x ),故f (6+x )=-f (-x ),所以-f (4+x )=f (6+x ),即-f (x )=f (2+x ),所以f (x )=f (x +4),f (x )的周期为4,正确;B 选项:因为f (x )在-1,0 上单调递增,T =4,所以f (x )在3,4 上单调递增,又图象关于3,0 对称,所以f (x )在2,3 上单调递增,因为关于x =2对称,所以f (x )在1,2 上单调递减,f (1)=f (3)=0,故f (x )在0,2 单调递减,B 正确;C 选项:根据周期性,f (2021)=f (1),f (2022)=f (2),f (2023)=f (3),因为f (x )关于x =2对称,所以f (1)=f (3)=0,f (2)<f (1),故f (2022)<f (2021)=f (2023),错误;D 选项:在0,4 上,f (1)=f (3)=0,f (x )有2个零点,所以f (x )在0,2020 上有1010个零点,在2020,2023 上有2个零点,故f (x )在0,2023 上可能有1012个零点,正确,故选:ABD .13.(2023春·广东广州·高三统考阶段练习)已知函数f x 、g x 的定义域均为R ,f x 为偶函数,且f x +g 2-x =1,g x -f x -4 =3,下列说法正确的有( )A.函数g x 的图象关于x =1对称 B.函数f x 的图象关于-1,-1 对称C.函数f x 是以4为周期的周期函数 D.函数g x 是以6为周期的周期函数【答案】BC【解析】对于A 选项,因为f x 为偶函数,所以f -x =f x .由f x +g 2-x =1,可得f -x +g 2+x =1,可得g 2+x =g 2-x ,所以,函数g x 的图象关于直线x =2对称,A 错;对于B 选项,因为g x -f x -4 =3,则g 2-x -f -2-x =3,又因为f x +g 2-x =1,可得f x +f -2-x =-2,所以,函数f x 的图象关于点-1,-1 对称,B 对;对于C 选项,因为函数f x 为偶函数,且f x +f -2-x =-2,则f x +f x +2 =-2,从而f x +2 +f x +4 =-2,则f x +4 =f x ,所以,函数f x 是以4为周期的周期函数,C 对;对于D 选项,因为g x -f x -4 =3,且f x =f x -4 ,∴g x -f x =3,又因为f x +g 2-x =1,所以,g x +g 2-x =4,又因为g 2-x =g 2+x ,则g x +g x +2 =4,所以,g x +2 +g x +4 =4,故g x +4 =g x ,因此,函数g x 是周期为4的周期函数,D 错.故选:BC .14.(2023春·湖南长沙·高三长郡中学校考阶段练习)设定义在R 上的函数f x 与g x 的导函数分别为f x 和g x ,若f x +2 -g 1-x =2,f x =g x +1 ,且g x +1 为奇函数,则下列说法中一定正确的是( )A.g 1 =0 B.函数g x 的图象关于x =2对称C.2021k =1f k g k =0D.2022k =1g k =0【答案】AC【解析】因为g x +1 为奇函数,所以g x +1 =-g -x +1 ,取x =0可得g 1 =0,A 对,因为f x +2 -g 1-x =2,所以f x +2 +g 1-x =0;所以f x +g 3-x =0,又f x =g x +1 ,g x +1 +g 3-x =0,故g 2+x +g 2-x =0,所以函数g x 的图象关于点(2,0)对称,B 错,因为f x =g x +1 ,所以f x -g x +1 =0,所以f x -g x +1 =c ,c 为常数,因为f x +2 -g 1-x =2,所以f x -g 3-x =2,所以g x +1 -g 3-x =2-c ,取x =1可得c =2,所以g x +1 =g 3-x ,又g x +1 =-g -x +1 ,所以g 3-x =-g -x +1 ,所以g x =-g x -2 ,所以g x +4 =-g x +2 =g (x ),故函数g (x )为周期为4的函数,因为g x +2 =-g x ,所以g 3 =-g 1 =0,g 4 =-g 2 ,所以g (1)+g (2)+g (3)+g (4)=0,所以2022k =1g k =g (1)+g (2)+g (3)+g (4) +g (5)+g (6)+g (7)+g (8) +⋅⋅⋅+g (2017)+g (2018)+g (2019)+g (2020) +g (2021)+g (2022),所以2022k =1g k =505×0+ g (2021)+g (2022)=g (1)+g (2)=g (2),由已知无法确定g (2)的值,故2022k =1g k 的值不一定为0,D 错;因为f x +2 -g 1-x =2,所以f x +2 =2-g x +1 ,f x +6 =2-g x +5 ,所以f x +2 =f (x +6),故函数f (x )为周期为4的函数,f (x +4)g (x +4)=f (x )g (x )所以函数f (x )g (x )为周期为4的函数,又f (1)=2-g (0),f (2)=2-g (1)=2,f (3)=2-g (2)=2+g (0),f (4)=2-g (3)=2,所以f (1)g (1)+f (2)g (2)+f (3)g (3)+f (4)g (4)=0+2g (2)+2g (4)=0,所以2021k =1f k g k =505f (1)g (1)+f (2)g (2)+f (3)g (3)+f (4)g (4) +f (2021)g (2021)2021k =1f kg k =f (1)g (1)=0 ,C 对,故选:AC .15.(2023·全国·高三专题练习)设函数y =f (x )的定义域为R ,且满足f (x )=f (2-x ),f (-x )=-f (x -2),当x ∈(-1,1]时,f (x )=-x 2+1,则下列说法正确的是( )A.f (2022)=1B.当x ∈4,6 时,f (x )的取值范围为-1,0C.y =f (x +3)为奇函数D.方程f (x )=lg (x +1)仅有5个不同实数解【答案】BCD【解析】依题意,当-1<x<0时,0<f x <1,当0≤x≤1时,0≤f x ≤1,函数y=f(x)的定义域为R,有f(x)=f(2-x),又f(-x)=-f(x-2),即f(x)=-f(-x-2),因此有f(2-x)=-f(-x-2),即f(x+4)=-f(x),于是有f(x+8)=-f(x+4)=f(x),从而得函数f(x)的周期T=8,对于A,f2022=-f0 =-1,A不正确;=f252×8+6=f6 =f-2对于B,当4≤x≤5时,0≤x-4≤1,有0≤f(x-4)≤1,则f(x)=-f(x-4)∈[-1,0],当5≤x≤6时,-4≤2-x≤-3,0≤(2-x)+4≤1,有0≤f[(2-x)+4]≤1,f(x)=f(2-x)=-f[(2-x)+4]∈[-1,0],当x∈4,6,B正确;时,f(x)的取值范围为-1,0对于C,f(x+3)=-f[(x+3)+4]=-f(x-1)=-f[2-(x-1)]=-f(-x+3),函数y=f(x+3)为奇函数,C正确;对于D,在同一坐标平面内作出函数y=f(x)、y=lg(x+1)的部分图象,如图:方程f(x)=lg(x+1)的实根,即是函数y=f(x)与y=lg(x+1)的图象交点的横坐标,观察图象知,函数y=f(x)与y=lg(x+1)的图象有5个交点,因此方程f(x)=lg(x+1)仅有5个不同实数解,D正确.故选:BCD16.(2023·全国·高三专题练习)已知定义在R上的单调递增的函数f x 满足:任意x∈R,有f1-x+f1+x=2,f2+x=4,则( )+f2-xA.当x∈Z时,f x =xB.任意x∈R,f-x=-f xC.存在非零实数T,使得任意x∈R,f x+T=f xD.存在非零实数c,使得任意x∈R,f x -cx≤1【答案】ABD【解析】对于A,令x=1-t,则f t +f2-t=2,=2,即f x +f2-x又f2+x=4-2-f x=f x +2;=4-f2-x+f2-x=4,∴f x+2令x=0得:f1 +f1 =2,f2 +f2 =4,∴f1 =1,f2 =2,则由f x+2=f x +2可知:当x∈Z时,f x =x,A正确;对于B ,令x =1+t ,则f -t +f 2+t =2,即f -x +f 2+x =2,∴f -x =2-f 2+x =2-4-f 2-x =f 2-x -2,由A 的推导过程知:f 2-x =2-f x ,∴f -x =2-f x -2=-f x ,B 正确;对于C ,∵f x 为R 上的增函数,∴当T >0时,x +T >x ,则f x +T >f x ;当T <0时,x +T <x ,则f x +T <f x ,∴不存在非零实数T ,使得任意x ∈R ,f x +T =f x ,C 错误;对于D ,当c =1时,f x -cx =f x -x ;由f 1-x +f 1+x =2,f 2+x +f 2-x =4知:f x 关于1,1 ,2,2 成中心对称,则当a ∈Z 时,a ,a 为f x 的对称中心;当x ∈0,1 时,∵f x 为R 上的增函数,f 0 =0,f 1 =1,∴f x ∈0,1 ,∴f x -x ≤1;由图象对称性可知:此时对任意x ∈R ,f x -cx ≤1,D 正确.故选:ABD .17.(2023·全国·高三专题练习)设函数f (x )定义域为R ,f (x -1)为奇函数,f (x +1)为偶函数,当x ∈(-1,1)时,f (x )=-x 2+1,则下列结论正确的是( )A.f 72 =-34B.f (x +7)为奇函数C.f (x )在(6,8)上为减函数D.方程f (x )+lg x =0仅有6个实数解【答案】ABD【解析】f (x +1)为偶函数,故f (x +1)=f (-x +1),令x =52得:f 72 =f -52+1 =f -32,f (x -1)为奇函数,故f (x -1)=-f (-x -1),令x =12得:f -32 =-f 12-1 =-f -12,其中f -12 =-14+1=34,所以f 72 =f -32 =-f -12 =-34,A 正确;因为f (x -1)为奇函数,所以f (x )关于-1,0 对称,又f (x +1)为偶函数,则f (x )关于x =1对称,所以f (x )周期为4×2=8,故f (x +7)=f (x -1),所以f (-x +7)=f (-x -1)=-f x -1 =-f x -1+8 =-f x +7 ,从而f (x +7)为奇函数,B 正确;f (x )=-x 2+1在x ∈(-1,0)上单调递增,又f (x )关于-1,0 对称,所以f (x )在-2,0 上单调递增,且f (x )周期为8,故f (x )在(6,8)上单调递增,C 错误;根据题目条件画出f (x )与y =-lg x 的函数图象,如图所示:其中y =-lg x 单调递减且-lg12<-1,所以两函数有6个交点,故方程f (x )+lg x =0仅有6个实数解,D 正确.故选:ABD18.(2023·全国·高三专题练习)已知f (x )是定义域为(-∞,+∞)的奇函数,f (x +1)是偶函数,且当x ∈0,1 时,f (x )=-x (x -2),则( )A.f x 是周期为2的函数B.f 2019 +f 2020 =-1C.f x 的值域为-1,1D.y =f x 在0,2π 上有4个零点【答案】BCD【解析】对于A ,f x +1 为偶函数,其图像关于x 轴对称,把f x +1 的图像向右平移1个单位得到f x 的图像,所以f (x )图象关于x =1对称,即f (1+x )=f (1-x ),所以f (2+x )=f (-x ),f x 为R 上的奇函数,所以f (-x )=-f x ,所以f (2+x )=-f (x ),用2+x 替换上式中的x 得, f (4+x )=-f (x +2),所以,f (4+x )=f (x ),则f x 是周期为4的周期函数.故A 错误.对于B ,f x 定义域为R 的奇函数,则f 0 =0,f x 是周期为4的周期函数,则f 2020 =f 0 =0;当x ∈0,1 时,f x =-x x -2 ,则f 1 =-1×1-2 =1,则f 2019 =f -1+2020 =f -1 =-f 1 =-1,则f 2019 +f 2020 =-1.故B 正确.对于C ,当x ∈0,1 时,f x =-x x -2 ,此时有0<f x ≤1,又由f x 为R 上的奇函数,则x ∈-1,0 时,-1≤f x <0,f (0)=0,函数关于x =1对称,所以函数f x 的值域-1,1 .故C 正确.对于D ,∵f (0)=0,且x ∈0,1 时,f x =-x x -2 ,∴x ∈[0,1],f (x )=-x (x -2),∴x ∈[1,2],2-x ∈[0,1],f (x )=f (2-x )=-x (x -2)①∴x ∈[0,2]时,f (x )=-x (x -2),此时函数的零点为0,2;∵f (x )是奇函数,∴x ∈[-2,0],f (x )=x (x +2),②∴x ∈2,4 时,∵f (x )的周期为4,∴x -4∈-2,0 ,f x =f x -4 =x -2 x -4 ,此时函数零点为4;③∴x ∈4,6 时,∴x -4∈0,2 ,f x =f x -4 =-(x -4)(x -6),此时函数零点为6;④∴x ∈6,2π 时,∴x -4∈2,4 ,f x =f x -4 =x -6 x -8 ,此时函数无零点;综合以上有,在(0,2π)上有4个零点.故D 正确;故选:BCD19.(2023春·广东广州·高三广州市禺山高级中学校考阶段练习)已知f x 是定义域为(-∞,+∞)的奇函数,f x +1 是偶函数,且当x ∈0,1 时,f x =-x x -2 ,则( )A.f x 是周期为2的函数B.f 2019 +f 2020 =-1C.f x 的值域为[-1,1]D.f x 的图象与曲线y =cos x 在0,2π 上有4个交点【答案】BCD【解析】根据题意,对于A ,f x 为R 上的奇函数,f x +1 为偶函数,所以f (x )图象关于x =1对称,f (2+x )=f (-x )=-f (x )即f (x +4)=-f (x +2)=f (x )则f x 是周期为4的周期函数,A 错误;对于B ,f x 定义域为R 的奇函数,则f 0 =0,f x 是周期为4的周期函数,则f 2020 =f 0 =0;当x ∈0,1 时,f x =-x x -2 ,则f 1 =-1×1-2 =1,则f 2019 =f -1+2020 =f -1 =-f 1 =-1,则f 2019 +f 2020 =-1;故B 正确.对于C ,当x ∈0,1 时,f x =-x x -2 ,此时有0<f x ≤1,又由f x 为R 上的奇函数,则x ∈-1,0 时,-1≤f x <0,f (0)=0,函数关于x =1对称,所以函数f x 的值域[-1,1].故C 正确.对于D ,∵f (0)=0,且x ∈0,1 时,f x =-x x -2 ,∴x ∈[0,1],f (x )=-x (x -2),∴x ∈[1,2],2-x ∈[0,1],f (x )=f (2-x )=-x (x -2),∴x ∈[0,2],f (x )=-x (x -2),∵f (x )是奇函数,∴x ∈[-2,0],f (x )=x (x +2),∵f (x )的周期为4,∴x ∈[2,4],f (x )=(x -2)(x -4),∴x ∈[4,6],f (x )=-(x -4)(x -6),∴x ∈[6,2π],f (x )=(x -6)(x -8),设g (x )=f (x )-cos x ,当x ∈[0,2],g (x )=-x 2+2x -cos x ,g ′(x )=-2x +2+sin x ,设h(x)=g′(x),h′(x)=-2+cos x<0在[0,2]恒成立,h(x)在[0,2]单调递减,即g′(x)在[0,2]单调递减,且g′(1)=sin1>0,g′(2)=-2+sin2<0,存在x0∈(1,2),g′(x0)=0,x∈(0,x0),g′(x)>0,g(x)单调递增,x∈(x0,2),g′(x)<0,g(x)单调递减,g(0)=-1,g(1)=1-cos1>0,g(x0)>g(1)>0,g(2)=-cos2>0,所以g(x)在(0,x0)有唯一零点,在(x0,2)没有零点,即x∈(0,2],f x 的图象与曲线y=cos x有1个交点,当x∈2,4时,,g x =f x -cos x=x2-6x+8-cos x,则g′x =2x-6+sin x,h x =g′x =2x-6+sin x,则h′x =2+cos x>0,所以g′x 在2,4上单调递增,且g′3 =sin3>0,g′2 =-2+sin2<0,所以存在唯一的x1∈2,3⊂2,4,使得g′x =0,所以x∈2,x1,g′x <0,g x 在2,x1单调递减,x∈x1,4,g′x >0,g x 在x1,4单调递增,又g3 =-1-cos3<0,所以g x1<g(3)<0,又g2 =-cos2>0,g4 =-cos4>0,所以g x 在2,x1上有一个唯一的零点,在x1,4上有唯一的零点,所以当x∈2,4时,f x 的图象与曲线y=cos x有2个交点,,当x∈4,6时,同x∈[0,2],f x 的图象与曲线y=cos x有1个交点,当x∈[6,2π],f(x)=(x-6)(x-8)<0,y=cos x>0,f x 的图象与曲线y=cos x没有交点,所以f x 的图象与曲线y=cos x在0,2π上有4个交点,故D正确;故选:BCD.20.(2023·全国·高三专题练习)已知函数f2x+1的图像关于直线x=1对称,函数y=f x+1关于点1,0对称,则下列说法正确的是( )A.f1-x=f1+xB.f x 的周期为4C.f1 =0D.f x =f32-x【答案】AB【解析】f2x的图像关于直线x=32对称,f x 的图像关于x=3对称,又关于点2,0中心对称,所以周期为4,所以B正确而D错误;又f 3-x =f 3+x ,其中x 换x +1得f 2-x =f 4+x =f x ,再将x 换x +1得f 1-x =f 1+x ,但无法得到f (1)=0 所以A 正确C 错误.故选:AB .21.(2023·全国·高三专题练习)已知函数f (x )及其导函数f (x )的定义域均为R ,记g (x )=f (x ),若f 32-2x ,g (2+x )均为偶函数,则( )A.f (0)=0B.g -12 =0C.f (-1)=f (4)D.g (-1)=g (2)【答案】BC【解析】[方法一]:对称性和周期性的关系研究对于f (x ),因为f 32-2x为偶函数,所以f 32-2x =f 32+2x 即f 32-x =f 32+x ①,所以f 3-x =f x ,所以f (x )关于x =32对称,则f (-1)=f (4),故C 正确;对于g (x ),因为g (2+x )为偶函数,g (2+x )=g (2-x ),g (4-x )=g (x ),所以g (x )关于x =2对称,由①求导,和g (x )=f (x ),得f 32-x=f 32+x ⇔-f 32-x =f 32+x ⇔-g 32-x =g 32+x ,所以g 3-x +g x =0,所以g (x )关于32,0 对称,因为其定义域为R ,所以g 32=0,结合g (x )关于x =2对称,从而周期T =4×2-32 =2,所以g -12 =g 32 =0,g -1 =g 1 =-g 2 ,故B 正确,D 错误;若函数f (x )满足题设条件,则函数f (x )+C (C 为常数)也满足题设条件,所以无法确定f (x )的函数值,故A 错误.故选:BC .[方法二]:【最优解】特殊值,构造函数法.由方法一知g (x )周期为2,关于x =2对称,故可设g x =cos πx ,则f x =1πsin πx +c ,显然A ,D 错误,选BC .故选:BC .[方法三]:因为f 32-2x,g (2+x )均为偶函数,所以f 32-2x =f 32+2x 即f 32-x =f 32+x ,g (2+x )=g (2-x ),所以f 3-x =f x ,g (4-x )=g (x ),则f (-1)=f (4),故C 正确;函数f (x ),g (x )的图象分别关于直线x =32,x =2对称,又g (x )=f (x ),且函数f (x )可导,所以g 32 =0,g 3-x =-g x ,所以g (4-x )=g (x )=-g 3-x ,所以g (x +2)=-g (x +1)=g x ,所以g -12=g 32 =0,g -1 =g 1 =-g 2 ,故B 正确,D 错误;若函数f (x )满足题设条件,则函数f (x )+C (C 为常数)也满足题设条件,所以无法确定f (x )的函数值,故A 错误.故选:BC .【整体点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.22.(2023·全国·高三专题练习)定义f x 是y =f x 的导函数y =f x 的导函数,若方程f x =0有实数解x 0,则称点x 0,f x 0 为函数y =f x 的“拐点”.可以证明,任意三次函数f x =ax 3+bx 2+cx +d a ≠0 都有“拐点”和对称中心,且“拐点”就是其对称中心,请你根据这一结论判断下列命题,其中正确命题是( )A.存在有两个及两个以上对称中心的三次函数B.函数f x =x 3-3x 2-3x +5的对称中心也是函数y =tan π2x 的一个对称中心C.存在三次函数h x ,方程h x =0有实数解x 0,且点x 0,h x 0 为函数y =h x 的对称中心D.若函数g x =13x 3-12x 2-512,则g 12021+g 22021 +g 32021 +⋅⋅⋅+g 20202021 =-1010【答案】BCD【解析】对于A .设三次函数f x =ax 3+bx 2+cx +d a ≠0 ,易知y =f x 是一次函数,∴任何三次函数只有一个对称中心,故A 不正确;对于B .由f x =x 3-3x 2-3x +5,得f x =3x 2-6x -3,f x =6x -6,由6x -6=0,得x =1,函数f x 的对称中心为1,0 ,又由π2x =k π2,k ∈Z ,得x =k ,k ∈Z ,∴f x 的对称中心是函数y =tan π2x 的一个对称中心,故B 正确;对于C .设三次函数h x =ax 3+bx 2+cx +d a ≠0 ,所以h x =3ax 2+2bx +c ,h x =6ax +2b联立3ax 02+2bx 0+c =0,6ax 0+2b =0,得3ac -b 2=0,即当3ac -b 2=0时,存在三次函数h x ,方程h x =0有实数解x 0,且点x 0,h x 0 为函数y =h x 的对称中心,故C 正确.对于D .∵g x =13x 3-12x 2-512,∴g x =x 2-x ,g x =2x -1,令g x =2x -1=0,得x =12,∵g 12 =13×12 3-12×12 2-512=-12,∴函数g x =13x 3-12x 2-512的对称中心是12,-12,∴g x +g 1-x =-1,设T =g 12021+g 22021 +g 32021 +⋯+g 20202021 ,所以2T =g 12021 +g 20202021 +g 22021 +g 20192021 +⋯+g 20202021 +g 12021 =-2020所以g 12021 +g 22021 +g 32021+⋯+g 20202021 =-1010,故D 正确.故选:BCD .三、填空题23.(2023·全国·高三专题练习)设f x 的定义域为R ,且满足f 1-x =f 1+x ,f x +f -x =2,若f 1 =3,则f 1 +f 2 +f 3 +⋯+f 2022 f 2023 +f 2028 +f 2030=___________.【答案】2024【解析】因为f x +f -x =2,f 1 =3,所以f -1 =-1,f 0 =1,f 2 =f 0 =1,由f 1-x =f 1+x ,得f -x =f x +2 ,f x =f 2-x ,有f x +2 +f 2-x =2,可得f x +f 2-x -2 =2,有f x +f 4-x =2,又由f x +f -x =2,可得f 4-x =f -x ,可知函数f x 的周期为4,可得f 2023 =f -1 =-1,f 2028 =f 0 =1,f 2030 =f 2 =1,有f 2023 +f 2028 +f 2030 =1,因为f x +f -x =2,f 1 =3,所以f -1 =-1,f 0 =1由f 1-x =f 1+x 得f -x =f x +2 ,所以f x +f x +2 =2,f x +1 +f x +3 =2,即f x +f x +1 +f x +2 +f x +3 =4,所以f -1 +f 0 +f 1 +f 2 + f 3 +f 4 +⋯+f 2021 +f 2022 =4×506=2024所以f 1 +f 2 +f 3 +⋯+f 2022 =2024-f 0 -f -1 =2024-1--1 =2024.故f 1 +f 2 +f 3 +⋯+f 2022 f 2023 +f 2028 +f 2030 =2024.故答案为:202424.(2023·全国·高三专题练习)对于定义在D 上的函数f x ,点A m ,n 是f x 图像的一个对称中心的充要条件是:对任意x ∈D 都有f x +f 2m -x =2n ,判断函数f x =x 3+2x 2+3x +4的对称中心______.【答案】-23,7027【解析】因为f x =x 3+2x 2+3x +4,由于f x +f -23×2-x =x 3+2x 2+3x +4+-23×2-x 3+2-23×2-x 2+3-23×2-x +4=7027×2=14027.即m =-23,n =7027.所以-23,7027是f x =x 3+2x 2+3x +4的一个对称中心.故答案为:-23,7027 .25.(2023·全国·高三专题练习)对于三次函数f x =ax 3+bx 2+cx +d a ≠0 ,现给出定义:设f x 是函数y =f x 的导数,f x 是f x 的导数,若方程f x =0有实数解x 0,则称点x 0,f x 0 为函数f x =ax 3+bx 2+cx +d a ≠0 的“拐点”.经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g x =2x 3-3x 2+1,则g 1100+g 2100+⋯+g 99100 =____.【答案】4912【解析】依题意得,g x =6x 2-6x ,g x =12x -6,令g x =0,得x =12, ∵g 12 =12,∴函数g x 的对称中心为12,12,则g 1-x +g x =1,∵1100+99100=2100+98100=⋯=49100+51100=1,∴g 1100 +g 99100 =g 2100 +g 98100 =⋯=g 49100 +g 51100 =1∴g 1100 +g 2100+⋯+g 99100 =g 1100 +g 99100 +g 2100 +g 98100 +⋯+g 49100 +g 51100 +g 12=49+12=4912,故答案为4912.26.(2023·四川成都·成都七中校考模拟预测)已知S n 为数列a n 的前n 项和,数列a n 满足a 1=-2,且S n =32a n+n ,f x 是定义在R 上的奇函数,且满足f 2-x =f x ,则f a 2021 =______.【答案】0【解析】∵S n =32a n +n ,∴S n -1=32a n -1+n -1n ≥2 ,两式相减得,a n =32a n -32a n -1+1,即a n -1=3a n -1-1 ,∴a n -1a n -1-1=3,即数列a n -1 是以-3为首项,3为公比的等比数列,∴a n -1=-3⋅3n -1=-3n ,∴a n =-3n +1.∵f x 是定义在R 上的奇函数,且满足f 2-x =f x ,∴令x =2,则f 2 =f 0 =0,又f2-x=f x =-f(-x),∴f(2+x)=-f(x),∴f(x+4)=f(x+2+2)=-f(x+2)=-[-f(-x)]=f(x),即f(x+4)=f(x),即f x 是以4为周期的周期函数.∵a2021=-32021+1=-4-12021+1=-C020*******⋅-10+C1202142020⋅-11+⋯+C2020202141⋅-12020+C2021202140⋅-12021+1=-C020*******⋅-10+C1202142020⋅-11+⋯+C2020202141⋅-12020+2其中C020*******⋅-10+C1202142020⋅-11+⋯+C2020202141⋅-12020能被4整除,∴f a2021=f-32021+1=f2 =0.故答案为:0.27.(2023·全国·高三专题练习)已知定义域为R的奇函数f x 满足f x+1=f3-x,当x∈0,2时,f x =-x2+4,则函数y=f x -a a∈R在区间-4,8上的零点个数最多时,所有零点之和为__________.【答案】14【解析】由于定义域为R的奇函数f x 满足f x+1=f3-x,∴f-x=-f x ,f x+4=f-x,∴f x+4=-f x ,∴f x+8=-f x+4=f x ,∴函数f x 为周期函数,且周期为8,当x∈0,2时,f x =-x2+4,函数y=f x -a a∈R在区间-4,8上的零点的个数,即为函数y=f x 与y=a 的交点的个数,作出函数 y=f x ,x∈-4,8上的函数的图象,显然,当a=0 时,交点最多,符合题意,此时,零点的和为-4+-2+0+2+4+6+8=14 .28.(2023·全国·高三专题练习)已知函数f(x)满足f(x+3)=f(1-x)+9f(2)对任意x∈R恒成立,又函数f x +9 的图象关于点(-9,0)对称,且f (1)=2022,则f (45)=_________.【答案】-2022【解析】因为函数f (x )满足f (x +3)=f (1-x )+9f (2)对任意x ∈R 恒成立,所以令x =-1,即f (2)=f (2)+9f (2),解得f (2)=0,所以f (x +3)=f (1-x )对任意x ∈R 恒成立,又函数f x +9 的图象关于点(-9,0)对称,将函数f x +9 向右平移9个单位得到f (x ),所以f (x )关于点(0,0),即f (x )为R 上的奇函数,所以f (x )=-f -x ,又f (x +3)=f (1-x )对任意x ∈R 恒成立,令x =-x -3,得f (-x )=f (x +4),即-f (x )=f (x +4),再令x =x +4,得-f (x +4)=f (x +8),分析得f (x )=f (x +8),所以函数f (x )的周期为8,因为f (1)=2022,所以在f (x +3)=f (1-x )中,令x =0,得f (3)=f (1)=2022,所以f (45)=f 6×8-3 =f -3 =-f 3 =-2022.故答案为:-2022.29.(2023·全国·高三专题练习)已知f x 是定义在R 上的函数,若对任意x ∈R ,都有f (x +8)=f (x )+f (4),且函数f (x -2)的图像关于直线x =2对称,f (2)=3,则f (2022)=_______.【答案】3【解析】因为函数f (x -2)的图像关于直线x =2对称,所以函数f (x )的图像关于直线x =0对称,即函数f x 是偶函数,则有f x =f -x ;因为对任意x ∈R ,都有f (x +8)=f (x )+f (4),令x =-4,得f -4+8 =f -4 +f 4 ⇒f -4 =f 4 =0,所以对任意x ∈R ,都有f (x +8)=f (x )+f (4)=f x ,即函数f x 的周期为8,则f 2022 =f 252×8+6 =f 6 =f 6-8 =f -2 =f 2 =3,故答案为:3.30.(2023·全国·高三专题练习)已知定义在R 上的函数f (x )和函数g (x )满足2f (x )=g (x )-g (-x ),且对于任意x 都满足f (x )+f (-x -4)+5=0,则f (2021)+f (2019)=________.【答案】5050【解析】由题意知:f (x )定义域为R ,2f (-x )=g (-x )-g (x ),可得:f (x )+f (-x )=0,f (x )为奇函数,又f (-x -4)=-f (x )-5=-f (x +4),则f (x +4)=f (x )+5,可得:f (2021)+f (2019)=f (1+4×505)+f (-1+4×505)=f (1)+5×505+f (-1)+5×505=5050.故答案为:5050.31.(2023·全国·高三专题练习)已知定义域为R 的奇函数f x ,当x >0时,有f x =-log 34-x ,0<x ≤54f x -3 ,x >54,则f 2 +f 4 +f 6 +⋅⋅⋅+f 2022 =______.【答案】0【解析】R上的奇函数f x ,则有f-x=-f(x),而当x>0时,有f x =-log34-x,0<x≤5 4f x-3,x>5 4,于是有f(2)=f(-1)=-f(1)=1,f(4)=f(1)=-1,f(6)=f(3)=f(0)=0,因∀x>54,f(x)=f(x-3),则有∀n∈N∗,f(6n-4)=f(2)=1,f(6n-2)=f(1)=-1,f(6n)=f(3)=0,所以f2 +f4 +f6 +⋅⋅⋅+f2022=337f2 +f4 +f6=0.故答案为:032.(2023·全国·高三专题练习)已知函数f x =x3-3x2+9x+4,若f a =7,f b =15,则a+b=___________.【答案】2【解析】因为f x =3x2-6x+9,对称轴为x=1,所以f x 的对称中心为1,f1,即1,11,因为f x =3x2-6x+9=3(x-1)2+6>0,所以f x 在R上单调递增,所以方程f a =7,f b =15的解a,b均有且只有一个,因为f a +f b =2f1 =22,所以a,7,b,15关于对称中心1,11对称,所以a+b=2,故答案为:233.(2023·全国·高三专题练习)已知函数f x 的定义域为R,且f x 为奇函数,其图象关于直线x=2对称.当x∈0,4时,f x =x2-4x,则f2022=____.【答案】4【解析】∵f x 的图象关于直线x=2对称,∴f(-x)=f(x+4),又f x 为奇函数,∴f(-x)=-f x ,故f(x+4)=-f x ,则f(x+8)=-f(x+4)=f x ,∴函数f x 的周期T=8,又∵2022=252×8+6,∴f2022= f6 =f(-2)=-f2 =-(4-8)=4.故答案为:4.34.(2023·全国·高三专题练习)若函数f(x)=1-x2x2+ax+b,a,b∈R的图象关于直线x=2对称,则a+b=_______.【答案】7【解析】由题意f(2+x)=f(2-x),即f(x)=f(4-x),所以f(0)=f(4)f(1)=f(3),即b=-15(16+4a+b)0=-8(9+3a+b),解得a=-8b=15,此时f(x)=(1-x2)(x2-8x+15)=-x4+8x3-14x2-8x+15,f(4-x)=-(4-x)4+8(4-x)3-14(4-x)2-8(4-x)+15=-(x4-16x3+96x2-256x+256)+8(64-48x+12x2-x3)-14(16-8x+x2)-32+8x+15= -x4+8x3-14x2-8x+15=f(x),满足题意.所以a=-8,b=15,a+b=7.故答案为:7.35.(2023·全国·高三专题练习)已知函数f x =3x-5x-2,g x =2x+22x-2+1,记f(x)与g(x)图像的交点横,纵坐标之和分别为m与n,则m-n的值为________.【答案】-2.【解析】f(x)=3x-5x-2=3+1x-2在(-∞,2)和(2,+∞)上都单调递减,且关于点(2,3)成中心对称,g(x)=2x+22x-2+1=4×2x-2+22x-2+1=4-22x-2+1在(-∞,+∞)上单调递增,g(4-x)+g(x)=4-222-x+1+4-22x-2+1=8-2(2x-2+1)+2(22-x+1)(22-x+1)(2x-2+1)=8-2(2x-2+22-x+2)2+2x-2+22-x=8-2=6,所以g(x)的图像也关于点(2,3)成中心对称,所以f(x)与g(x)图像有两个交点且关于点(2,3)对称,设这两个交点为(x1,y1)、(x2,y2),则x1+x2=2×2=4,y1+y2=2×3=6,所以m=4,n=6,所以m-n=4-6=-2.故答案为:-2.。

高中数学《函数的周期性与对称性》针对练习及答案

高中数学《函数的周期性与对称性》针对练习及答案

第二章 函数2.3.2 函数的周期性与对称性(针对练习)针对练习针对练习一 周期性与对称性的判断1.下列函数中,既是奇函数又是周期函数的是 A .sin y x = B .cos y x =C .ln y x =D .3y x =2.已知函数()3lg x f x x =+,则下列选项正确的是( ) A .()f x 是奇函数 B .()f x 是偶函数 C .()f x 是周期函数 D .()f x 没有最大值3.函数221()f x x x =+的图像关于( ) A .y 轴对称 B .直线y x =-对称 C .坐标原点对称 D .直线y x =对称4.函数5x y =与5-=x y 的图象( ) A .关于y 轴对称 B .关于x 轴对称 C .关于原点对称 D .关于直线y x =轴对称5.函数cos y x =与函数cos y x =-的图象 A .关于直线1x =对称 B .关于原点对称 C .关于x 轴对称 D .关于y 轴对称针对练习二 由函数周期性求函数值6.已知()f x 在R 上是奇函数,且满足(4)()f x f x +=,当(2,0)x ∈-时,2()2f x x =,则(2019)f 等于( )A .-2B .2C .-98D .987.已知函数()f x 是定义在R 上周期为4的奇函数,当02x <<时,()2log f x x =,则()722f f ⎛⎫+= ⎪⎝⎭A .1B .-1C .0D .28.已知函数()f x 是R 上的奇函数,且3()()2f x f x -=-,且当30,4x ⎛⎤∈ ⎥⎝⎦时,()23f x x =-,则(2021)(2022)(2023)f f f -+--的值为( ) A .4 B .4- C .0 D .6-9.已知定义在R 上的函数()f x 满足()()2=-+f x f x ,当(]0,2x ∈时,()22log xf x x =+,则(2022)f =( ) A .5 B .12C .2D .-210.定义在R 上的函数()f x ,满足()()5f x f x +=,当(]3,0x ∈-时,()1f x x =--,当(]0,2x ∈时,()2log f x x =,则()()()122022f f f ++⋅⋅⋅+=( ).A .403B .405C .806D .809针对练习三 由函数对称性求函数值11.设定义在R 上的奇函数()y f x =,满足对任意的t R ∈都有()()1f t f t =-,且当10,2x ⎡⎤∈⎢⎥⎣⎦时,()2f x x =-,则()332f f ⎛⎫+- ⎪⎝⎭的值等于( ) A .12- B .13-C .14-D .15-12.已知函数()f x 是定义在R 上的奇函数,且()f x 的图象关于直线2x =对称,当02x <<时,()22x x f x +=-,则()5f =A .3B .3-C .7D .7-13.已知(1)y f x =+是定义在R 上的奇函数,且(4)(2)f x f x +=-,当[1,1)x 时,()2x f x =,则(2021)(2022)+=f f ( )A .1B .4C .8D .1014.函数()y f x =为偶函数,且图象关于直线32x =对称,()54f =,则()1f -=( ) A .3 B .4 C .3- D .4-15.已知函数()2f x x ax =+对定义域内任意的x 都有()()22f x f x -=+,则实数a 等于( ) A .4 B .-4C .14D .14-针对练习四 由周期性与对称性求函数解析式16.设奇函数()f x 的定义域为R ,且(4)()f x f x +=,当(]4,6x ∈时()21x f x =+,则()f x 在区间[)2,0-上的表达式为 A .()21x f x =+ B .4()21x f x -+=-- C .4()21x f x -+=+ D .()21x f x -=+17.函数y =f (x )是以2为周期的偶函数,且当x ∈(0,1)时,f (x )=x +1,则在x ∈(1,2)时f (x )=( ) A .﹣x ﹣3 B .3﹣x C .1﹣x D .x +118.设函数()()y f x x R =∈为偶函数,且x R ∀∈;满足3122f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,当[]2,3x ∈时,()f x x =,则当[]2,0x ∈-时,()f x = A .4x + B .2x - C .21x ++ D .31x -+19.函数()f x 的图象与曲线2log y x =关于x 轴对称,则()f x =( ) A .2x B .2x - C .2log ()x - D .21log x20.若函数()y g x =的图象与ln y x =的图象关于直线2x =对称,则()g x =( ) A .()ln 2x + B .()ln 2x -C .()ln 4x -D .()ln 4x +针对练习五 由周期性与对称性比较大小21.已知函数()f x 是奇函数,且(2)()f x f x +=-,若()f x 在[]1,0-上是增函数,313(1),(),()23f f f 的大小关系是( )A .313(1)()()23f f f << B .313()(1)()23f f f << C .133()(1)()32f f f << D .133()()(1)32f f f <<22.已知定义在R 上的函数()y f x =满足下列三个条件:①对任意的1212x x ≤<≤,都有()()12f x f x >;②()1y f x =+的图象关于y 轴对称; ②对任意的R x ∈,都有()()2f x f x =+,则13f ⎛⎫ ⎪⎝⎭,32f ⎛⎫ ⎪⎝⎭,83f ⎛⎫⎪⎝⎭的大小关系是( )A .831323f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ B .813332f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ C .138323f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .381233f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23.定义在R 上的函数()f x 满足:()()111f x f x -=-+成立且()f x 在[]2,0-上单调递增,设()6a f =,(b f =,()4c f =,则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >> C .b c a >> D .c b a >>24.已知函数()y f x =的定义域为R ,且满足下列三个条件:②任意[]12,4,8x x ∈,当12x x <时,都有()()12120f x f x x x ->-;②()()4f x f x +=-;②()4y f x =+是偶函数;若()()()6,11,2025a f b f c f ===,则a b c 、、的大小关系正确的是( )A .a b c <<B .a c b <<C .b a c <<D .c b a <<25.已知定义在R 上的函数()f x 满足:(1)(2)()f x f x -=;(2)(2)(2)f x f x +=-;(3)12,[1,3]x x ∈ 时,1212()[()()]0x x f x f x -->.则(2019),(2020),(2021)f f f 的大小关系是( )A .(2021)(2020)(2019)f f f >>B .(2019)(2020)(2021)f f f >>C .(2020)(2021)(2019)f f f >>D .(2020)(2019)(2021)f f f >>针对练习六 由抽象函数周期性与对称性求函数值26.已知()f x 是定义域为(),-∞+∞的偶函数,且满足()()2f x f x +=-,()01f =,则()()()()1232018f f f f ++++= ( )A .1-B .0C .1D .201827.已知函数()f x 是R 上的奇函数,且对任意x ∈R 有()1f x +是偶函数,且()11f -=,则()()20202021f f +=. A .1- B .0 C .1 D .228.已知()f x 是定义在R 上的奇函数,()1f x -为偶函数,且函数()f x 与直线y x =有一个交点()()1,1f ,则()()()()()12320182019f f f f f +++++=( )A .2-B .0C .1-D .129.设定义在R 上的函数()f x 满足()(2)13f x f x ⋅+=,若(1)2f =,则(99)f = A .132B .134C .2D .430.已知函数()f x 对任意的R x ∈都有()()()21f x f x f +-=.若函数()2y f x =+的图象关于2x =-对称,且()08f =,则()()99100f f +=( )A .0B .4C .5D .8第二章 函数2.3.2 函数的周期性与对称性(针对练习)针对练习针对练习一 周期性与对称性的判断1.下列函数中,既是奇函数又是周期函数的是 A .sin y x = B .cos y x =C .ln y x =D .3y x =【答案】A 【解析】 【详解】根据函数的奇偶性定义可知函数3sin ,y x y x ==为奇函数,sin y x =为周期函数,选A.2.已知函数()3lg x f x x =+,则下列选项正确的是( ) A .()f x 是奇函数 B .()f x 是偶函数 C .()f x 是周期函数 D .()f x 没有最大值【答案】D 【解析】 【分析】根据指数函数、对数函数的性质直接进行分析即可. 【详解】因为()3lg x f x x =+的定义域为()0,∞+,不关于原点对称,排除A 和B ; 又因为3,lg x y y x ==在()0,∞+上单调递增, 所以()f x 易知不是周期函数,排除C ,()f x 在()0,∞+上单调递增没有最大值,故D 正确,故选:D. 3.函数221()f x x x =+的图像关于( ) A .y 轴对称B .直线y x =-对称C .坐标原点对称D .直线y x =对称【答案】A 【解析】 【分析】函数221()f x x x =+,观察知该函数是一个偶函数,解答本题要先证明其是偶函数再由偶函数的性质得出其对称轴是y 轴. 【详解】函数的定义域为R , ()()()()222211f x x x f x x x -=-+=+=-, ()221f x x x ∴=+是一个偶函数, 由偶函数的性质知函数221()f x x x=+的图像关于y 轴对称. 故选:A . 【点睛】本题考点是奇偶函数图象的对称性,考查了偶函数的证明以及偶函数的性质,属于一道基本题.4.函数5x y =与5-=x y 的图象( ) A .关于y 轴对称 B .关于x 轴对称 C .关于原点对称 D .关于直线y x =轴对称【答案】A 【解析】 【分析】设()5x f x =,得()5xf x --=,根据函数()y f x =与函数()y f x =-之间的对称性可得出正确选项. 【详解】设()5x f x =,得()5x f x --=,由于函数()y f x =与函数()y f x =-的图象关于y 轴对称,因此,函数5x y =与5-=x y 的图象关于y 轴对称. 故选A. 【点睛】本题考查函数图象之间对称性的判断,熟悉两函数关于坐标轴、原点对称的两个函数解析式之间的关系是关键,考查推理能力,属于基础题. 5.函数cos y x =与函数cos y x =-的图象 A .关于直线1x =对称 B .关于原点对称 C .关于x 轴对称 D .关于y 轴对称【答案】C 【解析】 【分析】作出函数cos y x =与函数cos y x =-的简图,即可得到答案. 【详解】根据余弦函数的图像,作出函数cos y x =与函数cos y x =-的简图如下:由图可得函数cos y x =与函数cos y x =-的图象关于x 轴对称, 故答案选C 【点睛】本题考查余弦函数的图像问题,属于基础题.针对练习二 由函数周期性求函数值6.已知()f x 在R 上是奇函数,且满足(4)()f x f x +=,当(2,0)x ∈-时,2()2f x x =,则(2019)f 等于( )A .-2B .2C .-98D .98【答案】B 【解析】 【分析】根据已知条件判断出()f x 的周期,由此求得()2019f 的值. 【详解】由于(4)()f x f x +=,所以()f x 是周期为4的周期函数,所以()()()()22019505411212f f f =⨯-=-=⨯-=.故选:B 【点睛】本小题主要考查利用函数的周期性化简求值,属于基础题.7.已知函数()f x 是定义在R 上周期为4的奇函数,当02x <<时,()2log f x x =,则()722f f ⎛⎫+= ⎪⎝⎭A .1B .-1C .0D .2【答案】A 【解析】 【详解】函数()f x 是定义在R 上周期为4的奇函数, (2)(2)(2)(2)0f f f f ∴-==-⇒=,又122711()()()log 1222f f f =-=-=-=,所以()7212f f ⎛⎫+= ⎪⎝⎭,故选A. 8.已知函数()f x 是R 上的奇函数,且3()()2f x f x -=-,且当30,4x ⎛⎤∈ ⎥⎝⎦时,()23f x x =-,则(2021)(2022)(2023)f f f -+--的值为( ) A .4 B .4- C .0 D .6-【答案】B 【解析】 【分析】由已知可求得函数的周期为3,结合函数为奇函数可得1(2021)(2022)(2023)2()2f f f f -+--=即可求解.【详解】因为3()()2f x f x -=-,所以(3)()f x f x -=,因此函数的周期为3,所以(2021)(2022)(2023)f f f -+--(2)(0)(1)f f f =-+--, 又函数()f x 是R 上的奇函数,所以(3)()()f x f x f x -==--, 所以(1)(2)f f -=--,即(2)(1)f f =-,所以原式1(2)(0)(1)(2)(1)2(1)2()2f f f f f f f =-++=-+==,又当30,4x ⎛⎤∈ ⎥⎝⎦时,()23f x x =-,可得1()22f =-,因此原式1242f ⎛⎫==- ⎪⎝⎭.故选:B .9.已知定义在R 上的函数()f x 满足()()2=-+f x f x ,当(]0,2x ∈时,()22log xf x x =+,则(2022)f =( ) A .5 B .12C .2D .-2【答案】A 【解析】 【分析】根据题中条件,先确定函数以4为周期,利用函数周期性,再由给定区间的解析式,即可求出结果. 【详解】由()()2=-+f x f x 可得()()2f x f x +=-,所以()()()42f x f x f x +=-+=,因此函数()f x 以4为周期,又当(]0,2x ∈时,()22log xf x x =+, 所以()()222450522log 25(2022)f f f =+⨯==+=.故选:A.10.定义在R 上的函数()f x ,满足()()5f x f x +=,当(]3,0x ∈-时,()1f x x =--,当(]0,2x ∈时,()2log f x x =,则()()()122022f f f ++⋅⋅⋅+=( ).A .403B .405C .806D .809【答案】B 【解析】 【分析】由函数的周期性计算. 【详解】由()()5f x f x +=得()f x 是周期函数,周期是5,2(1)log 10f ==,2log (2)21f ==,(3)(2)(2)11f f =-=---=,(4)(1)0f f =-=,(5)011f =--=-,所以(1)(2)(3)(4)(5)1f f f f f ++++=,()()()1220224041(1)(2)405f f f f f ++⋅⋅⋅+=⨯++=.故选:B .针对练习三 由函数对称性求函数值11.设定义在R 上的奇函数()y f x =,满足对任意的t R ∈都有()()1f t f t =-,且当10,2x ⎡⎤∈⎢⎥⎣⎦时,()2f x x =-,则()332f f ⎛⎫+- ⎪⎝⎭的值等于( ) A .12- B .13-C .14-D .15-【答案】C 【解析】 【分析】利用函数()y f x =的奇偶性和对称性可分别求得()3f 和32f ⎛⎫- ⎪⎝⎭的值,相加即可求得结果. 【详解】由于函数()y f x =为R 上的奇函数,满足对任意的t R ∈都有()()1f t f t =-, 则()()()()()()()()31322121100f f f f f f f f =-=-=-=--=--===,2333111112222224f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=--==-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,因此,()31324f f ⎛⎫+-=- ⎪⎝⎭.故选:C. 【点睛】本题考查利用函数的奇偶性与对称性求函数值,考查计算能力,属于基础题. 12.已知函数()f x 是定义在R 上的奇函数,且()f x 的图象关于直线2x =对称,当02x <<时,()22x x f x +=-,则()5f =A .3B .3-C .7D .7-【答案】D 【解析】 【分析】由题意可得()()22f x f x +=-+,再将()5f 化成()1f -,即可得到答案; 【详解】由题意可得()()22f x f x +=-+,所以()()()()()()35323211217f f f f f =+=-+=-=-=--=-.故选:D. 【点睛】本题考查函数的性质,考查运算求解能力与推理论证能力.13.已知(1)y f x =+是定义在R 上的奇函数,且(4)(2)f x f x +=-,当[1,1)x 时,()2x f x =,则(2021)(2022)+=f f ( )A .1B .4C .8D .10【答案】A 【解析】根据函数的奇偶性,对称性判断函数的周期并求解. 【详解】因为(1)f x +是定义在R 上的奇函数,所以()y f x =图象的对称中心为(1,0),且(1)0f =. 因为(4)(2)f x f x +=-,所以()y f x =图象的对称轴方程为3x =, 故()f x 的周期8T =,(2021)(5)==f f (1)0f =,(2022)(6)(0)1===f f f ,从而(2021)(2022)1+=f f , 故选:A .14.函数()y f x =为偶函数,且图象关于直线32x =对称,()54f =,则()1f -=( ) A .3 B .4 C .3- D .4-【答案】B 【解析】 【分析】利用函数的对称性和偶函数的性质进行求解即可. 【详解】因为函数()y f x =的图象关于直线32x =对称,所以()(2)54f f -==, 又因为函数()y f x =为偶函数,所以()2(2)4f f -==,()1(1)f f -=, 而函数()y f x =的图象关于直线32x =对称,所以()1(1)(2)4f f f -===.故选:B15.已知函数()2f x x ax =+对定义域内任意的x 都有()()22f x f x -=+,则实数a 等于( ) A .4 B .-4 C .14D .14-【答案】B 【解析】 【分析】根据()()22f x f x -=+得到()f x 关于2x =对称,利用对称轴公式得到答案. 【详解】()()22f x f x -=+则()f x 关于2x =对称,故242aa -=∴=-故选:B 【点睛】本题考查了函数的对称问题,根据()()22f x f x -=+确定函数的对称轴是解题的关键.针对练习四 由周期性与对称性求函数解析式16.设奇函数()f x 的定义域为R ,且(4)()f x f x +=,当(]4,6x ∈时()21x f x =+,则()f x 在区间[)2,0-上的表达式为 A .()21x f x =+ B .4()21x f x -+=-- C .4()21x f x -+=+ D .()21x f x -=+【答案】B 【解析】 【分析】由()()4f x f x +=,可得原函数的周期,再结合奇偶性,把自变量的范围[)2,0-转化到(]4,6上,则f (x )在区间[)2,0-上的表达式可求. 【详解】当[2,0)x ∈-时,(]0,2x -∈,(]44,6x ∴-+∈又②当(]4,6x ∈时,()21x f x =+,4(4)21x f x -+∴-+=+又(4)()f x f x +=,∴函数()f x 的周期为4T =,(4)()f x f x ∴-+=-又②函数()f x 是R 上的奇函数,()()f x f x ∴-=-∴4()21x f x -+-=+,∴当[)2,0x ∈-时,4()21x f x -+=--.故选:B . 【点睛】本题综合考查函数的周期性、奇偶性,以及函数解析式的求法.要注意函数性质的灵活转化,是中档题.一般这类求函数解析式的题目是求谁设谁,再由周期性或者奇偶性将要求的区间化到所给的区间内.17.函数y =f (x )是以2为周期的偶函数,且当x ∈(0,1)时,f (x )=x +1,则在x ∈(1,2)时f (x )=( ) A .﹣x ﹣3 B .3﹣xC .1﹣xD .x +1【答案】B 【解析】 【分析】先设x ∈(1,2),根据周期性和奇偶性将x 转化到(0,1),代入函数解析式,然后根据性质化简求出解析式即可. 【详解】设x ∈(1,2),则﹣x ∈(﹣2,﹣1),2﹣x ∈(0,1), ∴f (2﹣x )=2﹣x +1=3﹣x ,函数y =f (x )是以2为周期的偶函数, ∴f (x +2)=f (x ),f (﹣x )=f (x ), 则f (2﹣x )=f (﹣x )=f (x )=3﹣x . 故选:B . 【点睛】本题主要考查了函数的奇偶性、周期性等有关性质,同时考查了函数解析式的求解方法,属于基础题.18.设函数()()y f x x R =∈为偶函数,且x R ∀∈;满足3122f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,当[]2,3x ∈时,()f x x =,则当[]2,0x ∈-时,()f x = A .4x + B .2x - C .21x ++ D .31x -+【答案】D 【解析】 【详解】试题分析:由3122f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭可得 (2)()f x f x +=,则当[2,1]x ∈--时,4[2,3],()(4)413x f x f x x x +∈=+=+=++;当 [1,0]x ∈-时,[0,1]x -∈, 2[2,3]x -∈,()()(2)231f x f x f x x x =-=-=-=--,应选D.考点:分段函数的解析式及分类整合思想.【易错点晴】函数的周期性、奇偶性及分类整合思想不仅是中学数学中的重要知识点也是解决许多数学问题的重要思想和方法.本题在求解时,先从题设中的已知条件3122f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭入手,探究出其周期为 2,再分类求出当[]2,0x ∈-时,和当[1,0]x ∈-时函数的解析表达式分别为4[2,3],()(4)x f x f x +∈=+413x x =+=++和 [0,1],2[2,3]x -∈-,()()(2)231f x f x f x x x =-=-=-=--,从而使得问题巧妙获解.19.函数()f x 的图象与曲线2log y x =关于x 轴对称,则()f x =( ) A .2x B .2x - C .2log ()x - D .21log x【答案】D 【解析】任取函数()f x 上的一点(),x y ,先求出点(),x y 关于x 轴对称的点坐标为(),x y -,又点(),x y -在曲线2log y x =上,整理即可得出结果.【详解】任取函数()f x 上的一点(),x y ,由函数()f x 的图象与曲线2log y x =关于x 轴对称, 则点(),x y 关于x 轴对称的点坐标为(),x y -, 又点(),x y -在曲线2log y x =上, 可得222log log log 1y y xx x -=⇒=-=, 则()21log f x x=. 故选:D. 【点睛】关键点睛:求出点(),x y 关于x 轴对称的点坐标是解题的关键.20.若函数()y g x =的图象与ln y x =的图象关于直线2x =对称,则()g x =( ) A .()ln 2x + B .()ln 2x -C .()ln 4x -D .()ln 4x +【答案】C 【解析】 【分析】在函数()y g x =的图象上任取一点(),x y ,由对称性的知识可知,点(),x y 关于直线2x =的对称点在函数ln y x =的图象上,然后计算即可得解. 【详解】在函数()y g x =的图象上任取一点(),x y , 则点(),x y 关于直线2x =对称的点为()4,x y -,且点()4,x y -在函数ln y x =的图象上,所以()ln 4y x =-. 故选:C . 【点睛】本题考查函数的对称性的应用,考查逻辑思维能力和分析能力,属于常考题.针对练习五 由周期性与对称性比较大小21.已知函数()f x 是奇函数,且(2)()f x f x +=-,若()f x 在[]1,0-上是增函数,313(1),(),()23f f f 的大小关系是( )A .313(1)()()23f f f <<B .313()(1)()23f f f <<C .133()(1)()32f f f << D .133()()(1)32f f f <<【答案】D 【解析】 【分析】由f (x+2)=﹣f (x ),得f (x+4)=f (x ),利用函数奇偶性单调性之间的关系,即可比较大小. 【详解】②f (x+2)=﹣f (x ),函数f (x )是奇函数, ②f (x+2)=﹣f (x )=f (﹣x ), ②函数f (x )关于x=1对称, 且f (x+4)=f (x ),②函数是周期为4的周期数列. ②f (x )在[﹣1,0]上是增函数,②f (x )在[﹣1,1]上是增函数,f (x )在[1,2]上是减函数, f (133)=f (4+13)=f (13)=f (53),②f (x )在[1,2]上是减函数,且1<32<53, ②f (1)>f (32)>f (53), 即f (133)<f (32)<f (1),故选D . 【点睛】本题主要考查函数值的大小比较,利用函数的奇偶性,对称性和单调性是解决本题的关键,综合考查函数的性质,考查学生的转化意识,属于中档题. 22.已知定义在R 上的函数()y f x =满足下列三个条件: ②对任意的1212x x ≤<≤,都有()()12f x f x >; ②()1y f x =+的图象关于y 轴对称; ②对任意的R x ∈,都有()()2f x f x =+ 则13f ⎛⎫⎪⎝⎭,32f ⎛⎫ ⎪⎝⎭,83f ⎛⎫⎪⎝⎭的大小关系是( )A .831323f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ B .813332f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .138323f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ D .381233f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】A 【解析】 【分析】根据②可得()y f x =在()1,2上单调递减,根据②可得()y f x =的图象关于1x =对称,根据②可得()y f x =周期为2,根据单调性、周期性、对称性即可比较大小. 【详解】因为②对任意的1212x x ≤<≤,都有()()12f x f x >; 可得()y f x =在()1,2上单调递减, 因为②()1y f x =+的图象关于y 轴对称; 可得()y f x =的图象关于1x =对称, 因为②对任意的R x ∈,都有()()2f x f x =+, 所以()y f x =周期为2,因为()y f x =的图象关于1x =对称,所以1533f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭, 因为()y f x =周期为2,所以824333f f f ⎫⎛⎫⎛⎫==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为()y f x =在()1,2上单调递减,435323<<, 所以435323f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即831323f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故选:A.23.定义在R 上的函数()f x 满足:()()111f x f x -=-+成立且()f x 在[]2,0-上单调递增,设()6a f =,(b f =,()4c f =,则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >>C .b c a >>D .c b a >>【答案】D 【解析】 【分析】由()()111f x f x -=-+,可得函数()f x 周期4T =,将自变量的值利用周期转化到[]2,0-,结合单调性,即得解 【详解】由题意,()()111f x f x -=-+,则()()113f x f x +=-+ ()1(3)f x f x ∴-=+()(4)f x f x ∴=+,可得函数()f x 周期4T =()6(2)a f f ∴==-,(()4b f f ==,()4(0)c f f ==由于()f x 在[]2,0-上单调递增(2)4)(0)f f f ∴-<<即a b c ∴<< 故选:D 【点睛】本题考查了函数的周期性与单调性综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题24.已知函数()y f x =的定义域为R ,且满足下列三个条件:②任意[]12,4,8x x ∈,当12x x <时,都有()()12120f x f x x x ->-;②()()4f x f x +=-;②()4y f x =+是偶函数;若()()()6,11,2025a f b f c f ===,则a b c 、、的大小关系正确的是( )A .a b c <<B .a c b <<C .b a c <<D .c b a <<【答案】C 【解析】 【分析】由条件②确实单调性,条件②确定周期性,条件②确定对称性,由对称性和周期性化自变量到区间[4,8]上,再由单调性得大小关系、 【详解】因为任意[]12,4,8x x ∈,当12x x <时,都有()()12120f x f x x x ->-,所以()f x 在[4,8]上是增函数,因为()()4f x f x +=-,所以(8)(4)()f x f x f x +=-+=,()f x 是周期函数,周期是8; 由()4y f x =+是偶函数,得()f x 的图象关于直线4x =对称,(11)(3)f f =(5)f =,(2025)(1)(7)f f f ==,又(5)(6)(7)f f f <<,所以b a c <<. 故选:C . 【点睛】思路点睛:本题考查函数的奇偶性、单调性、周期性.解题方法一般是利用周期性把自变量化小,再由周期性(或对称性)化自变量到同一个单调区间上,然后由单调性得函数值大小.25.已知定义在R 上的函数()f x 满足:(1)(2)()f x f x -=;(2)(2)(2)f x f x +=-;(3)12,[1,3]x x ∈ 时,1212()[()()]0x x f x f x -->.则(2019),(2020),(2021)f f f 的大小关系是( )A .(2021)(2020)(2019)f f f >>B .(2019)(2020)(2021)f f f >>C .(2020)(2021)(2019)f f f >>D .(2020)(2019)(2021)f f f >>【答案】B 【解析】根据已知可得函数()f x 的图象关于直线1x =对称,周期为4,且在[]1,3上为增函数,得出()()20193f f =,()()()202002f f f ==,()()20211f f =,根据单调性即可比较(2019),(2020),(2021)f f f 的大小.【详解】解:②函数()f x 满足:(2)()f x f x -=,故函数的图象关于直线1x =对称; (2)(2)f x f x +=-,则()()4f x f x +=,故函数的周期为4;12,[1,3]x x ∈ 时,1212()[()()]0x x f x f x -->,故函数在[]1,3上为增函数;故()()20193f f =,()()()202002f f f ==,()()20211f f =, 而()()()321f f f >>,所以(2019)(2020)(2021)f f f >>. 故选:B. 【点睛】本题考查函数的基本性质的应用,考查函数的对称性、周期性和利用函数的单调性比较大小,考查化简能力和转化思想.针对练习六 由抽象函数周期性与对称性求函数值26.已知()f x 是定义域为(),-∞+∞的偶函数,且满足()()2f x f x +=-,()01f =,则()()()()1232018f f f f ++++= ( )A .1-B .0C .1D .2018【答案】A【解析】【分析】 首先求得函数()f x 为周期函数,周期为4,故()()()()()()()()()()1232018504123412f f f f f f f f f f ⎡⎤++++=+++++⎣⎦,分别求得()()()()1,2,3,4f f f f ,问题得解.【详解】解:因为()()2f x f x +=-,()()()()()222,42,f x f x f x f x f x ++=-++=-+=则 所以函数()f x 为周期函数,且周期为4,所以()()()()1232018f f f f ++++()()()()()()504123412f f f f f f ⎡⎤=+++++⎣⎦.因为()f x 是定义域为(),-∞+∞的偶函数,且()01f =,所以()()401f f ==,当1x =-时,()()()111f f f =--=-,所以()10f =,当0x =时,()()201f f =-=-,当1x =时,()()310f f =-=,所以()()()()12340f f f f +++=,所以()()()()1232018f f f f ++++()()()()()()504123412f f f f f f ⎡⎤=+++++⎣⎦1=-. 故选A .【点睛】本题考查函数的周期性以及奇偶性,比较基础.27.已知函数()f x 是R 上的奇函数,且对任意x ∈R 有()1f x +是偶函数,且()11f -=,则()()20202021f f +=.A .1-B .0C .1D .2 【答案】A【解析】根据题意,由函数奇偶性的定义分析可得()()()2f x f x f x +=-=-,进而可得()()()42f x f x f x +=-+=,即可得()f x 是周期为4的周期函数,据此求出()()20202021f f +的值,相加即可得答案.【详解】解:根据题意,()1f x +是偶函数,则()()11f x f x -+=+,变形可得()()2f x f x +=-.又由()f x 是R 上的奇函数,则()()()2f x f x f x +=-=-,变形可得()()()42f x f x f x +=-+=,所以()f x 是周期为4得周期函数.因为()f x 是R 上的奇函数,所以()00f =,则()()()20200505400f f f =+⨯=;()()()()202115054111f f f f =+⨯==--=-.故()()202020211f f +=-.故选:A.【点睛】本题考查函数的奇偶性与周期性的应用,关键是分析函数的周期性,属于基础题. 28.已知()f x 是定义在R 上的奇函数,()1f x -为偶函数,且函数()f x 与直线y x =有一个交点()()1,1f ,则()()()()()12320182019f f f f f +++++=( ) A .2-B .0C .1-D .1【答案】B【解析】推导出函数()y f x =是以4为周期的周期函数,并求出()()()()1234f f f f +++以及()2020f 值,结合周期性可求得所求代数式的值.【详解】因为函数()y f x =为奇函数,()1f x -为偶函数,所以()()()111f x f x f x -+=--=-,则()()()311f x f x f x +=-+=-,所以函数()y f x =是周期为4的周期函数.因为奇函数()y f x =的定义域为R ,所以()00f =.因为函数()y f x =与直线y x =有一个交点()()1,1f ,所以()11f =.所以()()200f f =-=,()()311f f =-=-,()()400f f ==.所以()()()()()410120130f f f f =++++++-=.故()()()()()12320182019f f f f f +++++=()()()()()()()()123201820192020202002020000f f f f f f f f ++++++-=-=-=. 故选:B.【点睛】本题考查抽象函数值的计算,涉及函数对称性的应用,推导出函数的周期性是解答的关键,考查分析问题和解决问题的能力,属于中等题.29.设定义在R 上的函数()f x 满足()(2)13f x f x ⋅+=,若(1)2f =,则(99)f = A .132 B .134 C .2 D .4【答案】A【解析】先由题意推出函数()f x 为周期函数且周期为4,则有()(99)3f f =,然后由()(2)13f x f x ⋅+=和(1)2f =解得13(3)2f =,即可得出答案. 【详解】由题意定义在R 上的函数()f x 满足()(2)13f x f x ⋅+=,则有(2)(4)13f x f x +⋅+=,联立解得()(4)f x f x =+,则得函数()f x 为周期函数且周期为4,则有()()(99)42433f f f =⨯+=;又因(1)2f =,则由(1)(3)13f f ⋅=解得13(3)2f =,所以可得13(99)2f =. 故选:A.【点睛】本题考查了函数周期性的判断与求解,考查了函数周期性的应用,属于一般难度的题.30.已知函数()f x 对任意的R x ∈都有()()()21f x f x f +-=.若函数()2y f x =+的图象关于2x =-对称,且()08f =,则()()99100f f +=( )A .0B .4C .5D .8 【答案】D【解析】【分析】由函数()2y f x =+的图象关于2x =-对称,可得()f x 为偶函数,再对()()()21f x f x f +-=赋值1x =-可得()10f =,从而可得()()+2f x f x =,即()f x 的最小正周期为2,从而可得()()()()9910010f f f f +=+.【详解】因为()+2=y f x 的图象关于直线2x =-对称,所以()y f x =的图象关于直线0x =对称,即()f x 为偶函数.因为()()()+21-=f x f x f ,所以()()()1211f f f -+--=,又()()11f f -=,所以()10f =,可得()()+2f x f x =,所以()f x 的最小正周期为2,所以(99)(1)0f f ==,(100)(0)8f f ==,所以(99)(100)8f f +=.故选:D.【点睛】本题主要考查利用函数的奇偶性及周期性,求抽象函数的值,同时考查函数的图象的平移变换,属于中档题.。

高中数学《函数的周期性与对称性》题型战法试题及答案

高中数学《函数的周期性与对称性》题型战法试题及答案

第二章 函数2.3.1函数的周期性与对称性(题型战法)知识梳理一 函数的周期性函数()y f x =满足定义域内的任一实数x (其中,a b 为常数) (1)()()f x f x a =+,则()x f 是以T a =为周期的周期函数; (2)()()f x a f x b +=-, 则()x f 是以b a T +=为周期的周期函数; (3)()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数; (4)()()1f x a f x +=±,则()x f 是以2T a =为周期的周期函数; 二 函数的对称性轴对称:若()()f a x f b x +=- 则f(x)关于2ba x +=对称. 中心对称:若()()2f a x f b x m ++-= 则f(x)关于(2ba +,m) 对称.三 由对称性推周期性(1) 函数()y f x =满足()()f a x f a x +=-(0a >),①若()x f 为奇函数,则函数()f x 4T a =,②若()x f 为偶函数,则函数()f x 周期为2T a =.(2) 函数()y f x =()x R ∈的图象关于直线x a =和x b =()a b ≠都对称,则函数()f x 是以2a b -为最小正周期的周期函数;(3) 函数()y f x =()x R ∈的图象关于两点()0,A a y ,()0,B b y ()a b ≠都对称,则函数()f x 是以2a b -为最小正周期的周期函数;(4) 函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b ≠都对称,则函数()f x 是以4a b -为最小正周期的周期函数;题型战法题型战法一 周期性与对称性的判断典例1.下列函数是周期函数的有( ) ①sin y x = ①cos y x = ①2y xA .①①B .①①C .①①D .①①①变式1-1.下列函数中,既是周期函数又是偶函数的是( ) A .0.5log y x = B .sin y x =C .cos y x =D .tan y x =变式1-2.函数x y e =与x y e -=的图象( ) A .关于x 轴对称 B .关于y 轴对称 C .关于原点对称 D .关于直线y x =对称变式1-3.函数91()3x x f x +=的图像( )A .关于直线1x =对称B .关于y 轴对称C .关于原点对称D .关于x 轴对称变式1-4.函数1()f x x x=+的图象关于( )对称. A .直线y x = B .原点C .y 轴D .x 轴题型战法二 由函数周期性求函数值典例2.已知函数()y f x =为R 上的偶函数,若对于0x ≥时,都有()()4f x f x =+,且当[)0,2x ∈时,()()2log 1f x x =+,则()2021f -等于( ) A .1 B .-1 C .2log 6 D .23log 2变式2-1.定义在R 上的函数()f x 满足(2)()f x f x +=,当[1,1]x ∈-时,2()1f x x =+,则(2020.5)f =( ) A .1716B .54C .2D .1变式2-2.已知函数()f x 是R 上的偶函数,若对于0x ≥,都有()()2f x f x +=.且当[)0,2x ∈时,()()2log 1f x x =+,则()()20132014f f -+的值为( )A .2-B .1-C .1D .2变式2-3.已知定义在R 上的偶函数()f x ,对x ∀∈R ,有(6)()(3)f x f x f +=+成立,当03x ≤≤时,()26f x x =-,则()2021f =( ) A .0 B .2- C .4- D .2变式2-4.已知函数()f x 是定义在R 上的奇函数,f (1)5=,且(4)()f x f x +=-,则(2020)(2021)f f +的值为( )A .0B .5-C .2D .5题型战法三 由函数对称性求函数值典例3.如果函数()f x 对任意的实数x ,都有()1()f x f x +=-,且当12x ≥时,()()2log 31f x x =-,那么函数()f x 在[]2,0-上的最大值与最小值之和为( )A .2B .3C .4D .-1变式3-1.已知3()4f x ax bx =+-,若(2)6f =,则(2)f -=( ) A .-14B .14C .6D .10变式3-2.已知函数124xy a ⎛⎫= ⎪-⎝⎭的图象与指数函数x y a =的图象关于y 轴对称,则实数a 的值是 A .1 B .2 C .4D .8变式3-3.设函数()1f x x x a =++-的图象关于直线1x =对称,则a 的值为 A .1- B .1 C .2 D .3变式3-4.已知函数()sin cos f x a x x =+的图象关于直线3x π=对称,则4f π⎛⎫= ⎪⎝⎭( )AB C .D题型战法四 由周期性与对称性求函数解析式典例4.设()f x 是定义在R 上的周期为2的偶函数,已知[23]x ∈,时,()f x x =,则x ∈[-2,0]时,f (x )的解析式为f (x )=( ) A .4x + B .2x -C .31x -+D .21x -+变式4-1.已知函数()f x 满足(2)()f x f x +=,当(1,0)x ∈-时,有()2x f x =,则当x ①(-3,-2)时,()f x 等于( ) A .2x B .2x -C .22x +D .(2)2x -+-变式4-2.已知()f x 是定义在R 上周期为2的函数,当[]1,1x ∈-时,()||f x x =,那么当[]7,5x ∈--时()f x =( ) A .|3|x +B .|3|x -C .|6|x +D .|6|x -变式4-3.若函数()f x 与()3xg x =的图象关于直线3x =对称,则()f x =( )A .33x -B .33x -C .63x -D .63x -变式4-4.下列函数中,其图象与函数2x y =的图象关于直线1x =对称的是( ) A .12x y -= B .22x y -=C .12x y +=D .22x y +=题型战法五 由周期性与对称性比较大小典例5.定义在R 上的函数()f x 满足:()()4f x f x +=成立且()f x 在[]2,0-上单调递增,设()6a f =,(b f =,()4c f =,则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >> C .b c a >> D .c b a >>变式5-1.已知定义域为R 的函数()f x 是奇函数,且()()2f x f x +=-,若()f x 在区间[]0,1是减函数,则53f ⎛⎫ ⎪⎝⎭,()1f ,112f ⎛⎫⎪⎝⎭的大小关系是( )A .()115123f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()115123f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()511132f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭ D .()511132f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭变式5-2.已知函数()f x 的定义域为 R ,且满足下列三个条件: ①对任意的[]12,4,8x x ∈ ,且 12x x ≠,都有()1212()0f x f x x x ->- ;①(8)()f x f x +=;①(4)y f x =+ 是偶函数;若(7),(11)a f b f =-=,(2020)c f =,则,,a b c 的大小关系正确的是( ) A .a b c << B .b a c << C .b c a << D .c b a <<变式5-3.定义在R 上的函数()y f x =满足以下三个条件:①对于任意的实数x ∈R ,都有()()220f x f x ++-=成立;①函数()1y f x =+的图象关于y 轴对称;①对任意的1x ,[]20,1x ∈,12x x ≠,都有()()()()11221221x f x x f x x f x x f x +>+成立.则()2021f ,()2022f ,()2023f 的大小关系为( A .()()()202120232022f f f >> B .()()()202120222023f f f >> C .()()()202320222021f f f >>D .()()()202220212023f f f >>变式5-4.已知定义在R 上的函数()f x 满足,①()()2f x f x +=,① ()2f x -为奇函数,①当[)0,1x ∈时,()()12120f x f x x x ->-()12x x ≠恒成立.则152f ⎛⎫- ⎪⎝⎭、()4f 、112f ⎛⎫ ⎪⎝⎭的大小关系正确的是( ) A .()1115422f f f ⎛⎫⎛⎫>>- ⎪ ⎪⎝⎭⎝⎭B .()1115422f f f ⎛⎫⎛⎫>>- ⎪ ⎪⎝⎭⎝⎭C .()1511422f f f ⎛⎫⎛⎫->> ⎪ ⎪⎝⎭⎝⎭D .()1511422f f f ⎛⎫⎛⎫->> ⎪ ⎪⎝⎭⎝⎭题型战法六 由抽象函数周期性与对称性求函数值典例6.已知()f x 是定义域为R 的偶函数,()10f =,()5.52f =,()()()1g x x f x =-.若()1g x +是偶函数,则()0.5g -=( ) A .-3 B .-2 C .2 D .3变式6-1.已知函数()f x 满足(3)(1)9(2)f x f x f +=-+对任意x ∈R 恒成立,又函数(9)f x +的图象关于点(9,0)-对称,且(1)2022,f = 则(45)f =( )A .2021B .2021-C .2022D .2022-变式6-2.若定义在实数集R 上的偶函数()f x 满足()0f x >,1(2)()f x f x +=,对任意的x ∈R 恒成立,则()2021f =( ) A .4 B .3 C .2 D .1变式6-3.已知定义在R 上的函数()f x ,满足()()0f x f x ,(5)(5)f x f x -=+,且(1)2022f =,则(2020)(2021)f f -=( )A .2026B .4044C .2022-D .4044-变式6-4.函数()f x 定义域为R ,且,(4)()2(2)x R f x f x f ∀∈+=+,若函数(1)f x +的图象关于1x =-对称,且(1)3f =,则(2021)f =( ) A .3 B .-3C .6D .-6第二章 函数2.3.1函数的周期性与对称性(题型战法)知识梳理一 函数的周期性函数()y f x =满足定义域内的任一实数x (其中,a b 为常数) (1)()()f x f x a =+,则()x f 是以T a =为周期的周期函数; (2)()()f x a f x b +=-, 则()x f 是以b a T +=为周期的周期函数;(3)()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数; (4)()()1f x a f x +=±,则()x f 是以2T a =为周期的周期函数; 二 函数的对称性轴对称:若()()f a x f b x +=- 则f(x)关于2ba x +=对称. 中心对称:若()()2f a x f b x m ++-= 则f(x)关于(2ba +,m) 对称.三 由对称性推周期性(1) 函数()y f x =满足()()f a x f a x +=-(0a >),①若()x f 为奇函数,则函数()f x 周期为4T a =,②若()x f 为偶函数,则函数()f x 周期为2T a =.(2) 函数()y f x =()x R ∈的图象关于直线x a =和x b =()a b ≠都对称,则函数()f x 是以2a b -为最小正周期的周期函数;(3) 函数()y f x =()x R ∈的图象关于两点()0,A a y ,()0,B b y ()a b ≠都对称,则函数()f x 是以2a b -为最小正周期的周期函数;(4) 函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b ≠都对称,则函数()f x 是以4a b -为最小正周期的周期函数;题型战法题型战法一 周期性与对称性的判断典例1.下列函数是周期函数的有( ) ①sin y x = ①cos y x = ①2y xA .①①B .①①C .①①D .①①①【答案】C 【解析】 【分析】根据三角函数和二次函数的性质可得. 【详解】易得sin y x =和cos y x =是周期函数,2y x 不是周期函数.故选:C.变式1-1.下列函数中,既是周期函数又是偶函数的是( ) A .0.5log y x = B .sin y x =C .cos y x =D .tan y x =【答案】C 【解析】直接利用函数性质判断即可. 【详解】选项A 中0.5log y x =不是周期函数,故排除A; 选项B,D 中的函数均为奇函数,故排除B,D; 故选:C. 【点睛】本题考查基本初等函数的周期性和奇偶性,属于基础题. 变式1-2.函数x y e =与x y e -=的图象( ) A .关于x 轴对称 B .关于y 轴对称 C .关于原点对称 D .关于直线y x =对称【答案】B 【解析】 【分析】设点00(,)P x y 在函数x y e =图象上,证明00(,)P x y 关于y 轴对称的点00(,)x y -在函数x y e -=的图象上.【详解】解:设点00(,)P x y 在函数x y e =图象上,则00xy e =,则00(,)P x y 关于y 轴对称的点00(,)x y -满足0()0x x y ee --==, 所以点00(,)x y -在函数x y e -=的图象上. 故选:B变式1-3.函数91()3x x f x +=的图像( )A .关于直线1x =对称B .关于y 轴对称C .关于原点对称D .关于x 轴对称【答案】B 【解析】 【分析】利用分离常数法化简函数式,可知函数()f x 为偶函数,进而判断对称性. 【详解】 解:因为()()231911333333x xx x x xxxf x -++===+=+,()()33x x f x f x --=+= 易知()f x 为偶函数,所以函数()f x 的图象关于y 轴对称. 故选:B.变式1-4.函数1()f x x x=+的图象关于( )对称. A .直线y x = B .原点C .y 轴D .x 轴【答案】B 【解析】根据函数的奇偶性判断. 【详解】因为函数1()f x x x=+的定义域为{}|0x x ≠,关于原点对称, 又11()()f x x x f x x x⎛⎫-=--=-+=- ⎪⎝⎭,所以()f x 是奇函数,图象关于原点对称, 故选:B题型战法二 由函数周期性求函数值典例2.已知函数()y f x =为R 上的偶函数,若对于0x ≥时,都有()()4f x f x =+,且当[)0,2x ∈时,()()2log 1f x x =+,则()2021f -等于( ) A .1 B .-1C .2log 6D .23log 2【答案】A 【解析】 【分析】由已知确定函数的周期,利用周期性和奇偶性进行求解. 【详解】①()y f x =为R 上的偶函数,①(2021)(2021)f f -=, 又当0x ≥时,()(4)f x f x =+, ①(2021)(2017)(1)f f f ==⋅⋅⋅=, 当[)0,2x ∈时,2()log (1)=+f x x , ①2(2021)(1)log (11)1f f -==+=. 故选:A.变式2-1.定义在R 上的函数()f x 满足(2)()f x f x +=,当[1,1]x ∈-时,2()1f x x =+,则(2020.5)f =( ) A .1716B .54C .2D .1【答案】B 【解析】 【分析】由()()2f x f x +=可知,函数()f x 的周期为2,利用周期性把所给的自变量转化到区间[]1,1-上,代入求值即可. 【详解】由()()2f x f x +=可知,函数()f 的周期为2,当[1,1]x ∈-时,2()1f x x =+, ①1115(2020.5)202012244f f f ⎛⎫⎛⎫=+==+= ⎪ ⎪⎝⎭⎝⎭.故选:B变式2-2.已知函数()f x 是R 上的偶函数,若对于0x ≥,都有()()2f x f x +=.且当[)0,2x ∈时,()()2log 1f x x =+,则()()20132014f f -+的值为( )A .2-B .1-C .1D .2【答案】C 【解析】 【分析】由()()2f x f x +=可得函数的周期为2,再结合函数为偶函数可得()()()()2013201410f f f f -+=+,然后由已知的解析式可求得答案【详解】①函数()f x 是(),-∞+∞上的偶函数, ①()()f x f x -=,又①对于0x ≥都有()()2f x f x +=,①2T =,①当[)0,2x ∈时,()()2log 1f x x =+,①()()()()()()201320142013201421006121007f f f f f f -+=+=⨯++⨯()()2210log 2log 11f f =+=+=,故选:C.变式2-3.已知定义在R 上的偶函数()f x ,对x ∀∈R ,有(6)()(3)f x f x f +=+成立,当03x ≤≤时,()26f x x =-,则()2021f =( ) A .0 B .2- C .4- D .2【答案】C 【解析】 【分析】求得()f x 的周期,结合奇偶性求得()2021f 的值. 【详解】依题意对x ∀∈R ,有(6)()(3)f x f x f +=+成立, 令3x =-,则()()()()33323f f f f =-+, 所以()30f =,故()()6f x f x +=, 所以()f x 是周期为6的周期函数,故()()()()202163371112164f f f f =⨯-=-==⨯-=-. 故选:C变式2-4.已知函数()f x 是定义在R 上的奇函数,f (1)5=,且(4)()f x f x +=-,则(2020)(2021)f f +的值为( )A .0B .5-C .2D .5【答案】B 【解析】 【分析】根据题意,分析可得(8)(4)()f x f x f x +=-+=,即函数()f x 是周期为8的周期函数,则有(2020)(0)f f =,(2021)f f =(1),由奇函数的性质求出(0)f 与f (1)的值,相加即可得答案. 【详解】解:根据题意,函数()f x 满足(4)()f x f x +=-,则有(8)(4)()f x f x f x +=-+=, 即函数()f x 是周期为8的周期函数,函数()f x 是定义在R 上的奇函数,则(0)0f =,(2020)(48252)f f f =+⨯=(4)(0)0f ==, (2021)(58252)f f f =+⨯=(5)f =-(1)5=-,则(2020)(2021)(0)f f f f +=+(1)5=-, 故选:B. 【点睛】本题考查函数的奇偶性与周期性的性质以及应用,注意分析函数的周期性,属于基础题.题型战法三 由函数对称性求函数值典例3.如果函数()f x 对任意的实数x ,都有()1()f x f x +=-,且当12x ≥时,()()2log 31f x x =-,那么函数()f x 在[]2,0-上的最大值与最小值之和为( )A .2B .3C .4D .-1【答案】C 【解析】根据()1()f x f x +=-,可知:()f x 关于12x =对称,根据对称性,要求函数()f x 在[]2,0-上的最大值与最小值之和,即求函数()f x 在[]1,3上的最大值与最小值之和,代入即可得解. 【详解】根据()1()f x f x +=-,可知:()f x 关于12x =对称, 那么要求函数()f x 在[]2,0-上的最大值与最小值之和, 即求函数()f x 在[]1,3上的最大值与最小值之和,因为()()2log 31f x x =-递增,所以最小值与最大值分别为:(1)1f =,(3)3f =, (1)(3)4f f +=,故答案为:C. 【点睛】本题考查了函数的对称性,考查了转化思想,计算量较小,思路要求较高,属于中档题.变式3-1.已知3()4f x ax bx =+-,若(2)6f =,则(2)f -=( ) A .-14 B .14 C .6 D .10【答案】A 【解析】 【分析】先计算(2)+(2)f f -,再代入数值得结果. 【详解】(2)+(2)8248248f f a b a b -=+----=-,又(2)6f =,所以(2)14,f -=-故选A 【点睛】本题考查函数性质,考查基本分析求解能力,属基础题.变式3-2.已知函数124xy a ⎛⎫= ⎪-⎝⎭的图象与指数函数x y a =的图象关于y 轴对称,则实数a 的值是 A .1 B .2 C .4 D .8【答案】C 【解析】 【分析】指数函数xy a =关于y 轴对称的函数为1xy a ⎛⎫= ⎪⎝⎭,由此得到124a -与a 的关系,即可求解出a 的值. 【详解】因为两函数的图象关于y 轴对称,所以124a -与a 互为倒数,所以124aa =-,解得4a =. 故选C. 【点睛】本题考查指数函数图象对称与底数之间关系,难度较易.关于y 轴对称的指数函数的底数互为倒数.变式3-3.设函数()1f x x x a =++-的图象关于直线1x =对称,则a 的值为 A .1- B .1 C .2 D .3【答案】D 【解析】 【详解】试题分析:因为函数()1f x x x a =++-的图象关于直线1x =对称,所以点()()1,1f --与点()(),a f a ,关于直线1x =对称,11,32aa -+==,故选D.考点: 函数的图象与性质.变式3-4.已知函数()sin cos f x a x x =+的图象关于直线3x π=对称,则4f π⎛⎫= ⎪⎝⎭( )AB C .D 【答案】B 【解析】 【分析】先由对称性求得a ,再将4π代入函数解析式即可求得答案.【详解】因为()f x 的图象关于直线3x π=对称,所以()203f f π⎛⎫= ⎪⎝⎭,即112=-,解得a =422f π⎛⎫+= ⎪⎝⎭.题型战法四 由周期性与对称性求函数解析式典例4.设()f x 是定义在R 上的周期为2的偶函数,已知[23]x ∈,时,()f x x =,则x ∈[-2,0]时,f (x )的解析式为f (x )=( ) A .4x + B .2x - C .31x -+ D .21x -+【答案】C 【解析】 【分析】根据已知中函数的奇偶性和周期性,结合[]2,3x ∈时,()f x x =,可得答案. 【详解】解:∵()f x 是定义在R 上的周期为2的偶函数,[]2,3x ∈时,()f x x =,∴[]21x ∈--,时, []20,1x +∈,[]42,3x +∈,此时()()44f x f x x =+=+,[]1,0x ∈-时,[]0,1x -∈,[]22,3x -∈,此时()()()22f x f x f x x =-=-=-, 综上可得:[]2,0x ∈-时,()31f x x =-+ 故选:C . 【点睛】本题考查函数解析式的求法,函数的周期性,函数的奇偶性,难度中档. 变式4-1.已知函数()f x 满足(2)()f x f x +=,当(1,0)x ∈-时,有()2x f x =,则当x ①(-3,-2)时,()f x 等于( ) A .2x B .2x - C .22x + D .(2)2x -+-【答案】C 【解析】令(32)x ∈--,,则2(1,)x +∈-0,根据(1,0)x ∈-时,f (x )=2x ,可求得f (x +2)的解析式,再根据f (x +2)=f (x ),即可求得f (x )解析式.令(32)x ∈--,,则2(1,)x +∈-0, ①当(1,0)x ∈-时,有()2x f x =, ①f (x +2)=2x +2, ①f (x +2)=f (x ),①f (x +2)=f (x )=2x +2,(32)x ∈--,. 故选:C . 【点睛】本题考查函数解析式的求法,求函数解析式常见的方法有:待定系数法,换元法,凑配法,消元法等,考查学生的计算能力,属于基础题.变式4-2.已知()f x 是定义在R 上周期为2的函数,当[]1,1x ∈-时,()||f x x =,那么当[]7,5x ∈--时()f x =( ) A .|3|x + B .|3|x - C .|6|x + D .|6|x -【答案】C 【解析】利用周期函数的定义求解即可. 【详解】设[]7,5x ∈--,则[]61,1x +∈-, 由题意知,()66f x x +=+,因为函数()f x 是定义在R 上周期为2的函数, 所以()()6f x f x +=,即()6f x x =+. 故选: C 【点睛】本题考查周期函数的性质;熟练掌握周期函数的定义是求解本题的关键;属于常考题.变式4-3.若函数()f x 与()3xg x =的图象关于直线3x =对称,则()f x =( )A .33x -B .33x -C .63x -D .63x -【答案】D 【解析】 【分析】先设出函数()f x 图像上任意点的坐标,再求出关于直线3x =对称的点,代入函数()g x的解析式即可求解. 【详解】解:设函数()y f x =图像上的点为(,)M x y ,关于直线3x =对称的点为(6,)N x y -, 将点N 代入函数()y g x =的解析式可得:63x y -=, 故6()3x f x -=, 故选:D .变式4-4.下列函数中,其图象与函数2x y =的图象关于直线1x =对称的是( ) A .12x y -= B .22x y -= C .12x y += D .22x y +=【答案】B 【解析】 【分析】设所求函数图象上任意一点为(),x y ,由其关于直线1x =的对称点()2,x y -在函数2x y =的图象上可解得结果.【详解】设所求函数图象上任意一点为(),x y ,则其关于直线1x =的对称点()2,x y -在函数2x y =的图象上,所以22x y -=.故选:B.题型战法五 由周期性与对称性比较大小典例5.定义在R 上的函数()f x 满足:()()4f x f x +=成立且()f x 在[]2,0-上单调递增,设()6a f =,(b f =,()4c f =,则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >> C .b c a >> D .c b a >>【答案】D 【解析】 【分析】由()()4f x f x +=,得到()f x 是周期为4的周期函数,得到(6)(2),(4)(0)f f f f =-=,4)f f =,结合()f x 在[]2,0-上单调递增,得到(2)4)(0)f f f -<<,即可求解.【详解】由题意,函数()f x 满足()()4f x f x +=,即函数()f x 是周期为4的周期函数,则(6)(68)(2),4),(4)(0)f f f f f f f =-=-==,又由函数()f x 在区间[]2,0-上单调递增,可得(2)4)(0)f f f -<<,即(6)(4)f f f <<,所以c b a >>. 故选:D.变式5-1.已知定义域为R 的函数()f x 是奇函数,且()()2f x f x +=-,若()f x 在区间[]0,1是减函数,则53f ⎛⎫ ⎪⎝⎭,()1f ,112f ⎛⎫⎪⎝⎭的大小关系是( )A .()115123f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭ B .()115123f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()511132f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .()511132f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭【答案】B 【解析】根据已知等式判断出函数的周期性,再根据奇函数的性质和单调性进行判断即可. 【详解】()()()()()()22224f x f x f x f x f x f x +=-⇒++=-+⇒=+,由此可知函数()f x 的周期为4,函数()f x 是奇函数,()()2f x f x +=-,所以有:55771142333333f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=-=-=-+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 113311142222222f f f f ff ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+==-+=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 因为()f x 在区间[]0,1是减函数,11132<<, 所以()11132f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭,即()115123f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭, 故选:B变式5-2.已知函数()f x 的定义域为 R ,且满足下列三个条件: ①对任意的[]12,4,8x x ∈ ,且 12x x ≠,都有()1212()0f x f x x x ->- ;①(8)()f x f x +=;①(4)y f x =+ 是偶函数;若(7),(11)a f b f =-=,(2020)c f =,则,,a b c 的大小关系正确的是( ) A .a b c << B .b a c << C .b c a << D .c b a <<【答案】D 【解析】由已知条件可知()f x 在[]4,8上单调递增,周期为8,对称轴为4x =.则()7a f =,()5b f =,()4c f =,再结合函数的单调性即可判断大小.【详解】解:由①知,()f x 在[]4,8上单调递增;由①知,()f x 的周期为8; 由①知,()f x 的对称轴为4x =;则()()()717a f f f =-==,()()()()1183835b f f f f =-==-=,()()202025284c f f =-⨯=,因为457<<,由函数的单调性可知,c b a <<. 故选:D. 【点睛】本题考查了函数的对称性,考查了函数的周期,考查了函数的单调性.本题的关键是由已知条件分析出函数的性质.变式5-3.定义在R 上的函数()y f x =满足以下三个条件:①对于任意的实数x ∈R ,都有()()220f x f x ++-=成立;①函数()1y f x =+的图象关于y 轴对称;①对任意的1x ,[]20,1x ∈,12x x ≠,都有()()()()11221221x f x x x x f x x f x +>+成立.则()2021f ,()2022f ,()2023f 的大小关系为( )A .()()()202120232022f f f >>B .()()()202120222023f f f >>C .()()()202320222021f f f >>D .()()()202220212023f f f >>【答案】B 【解析】 【分析】由①①可得函数()f x 是周期为4的函数,且()f x 是奇函数,由①可得函数()f x 在[]0,1上单调递增,进而可得函数()f x 在[]1,1-上单调递增,从而利用周期性和单调性即可求解. 【详解】解:由题意,因为函数()1y f x =+的图象关于y 轴对称,所以()()11f x f x +=-+,所以()()2f x f x =-,所以函数()f x 的图象关于1x =对称,又()()220f x f x ++-=,所以()()20f x f x ++=,即()()2f x f x +=-, 因为()()()222f x f x f x ++=-+=⎡⎤⎣⎦,所以函数()f x 是周期为4的函数, 所以()()20211f f =,()()()202220f f f ==,()()20231f f =-, 因为()()2f x f x +=-,且()()2f x f x +=-,所以()()f x f x -=-, 所以函数()f x 为奇函数,又因为对任意的1x ,[]20,1x ∈,12x x ≠,都有()()()()11221221x f x x f x x f x x f x +>+成立,即()()()12120x x f x f x -->⎡⎤⎣⎦, 所以函数()f x 在[]0,1上单调递增, 所以函数()f x 在[]1,1-上单调递增,因为101>>-,所以()()()202120222023f f f >>, 故选:B.变式5-4.已知定义在R 上的函数()f x 满足,①()()2f x f x +=,① ()2f x -为奇函数,①当[)0,1x ∈时,()()12120f x f x x x ->-()12x x ≠恒成立.则152f ⎛⎫- ⎪⎝⎭、()4f 、112f ⎛⎫ ⎪⎝⎭的大小关系正确的是( ) A .()1115422f f f ⎛⎫⎛⎫>>- ⎪ ⎪⎝⎭⎝⎭B .()1115422f f f ⎛⎫⎛⎫>>- ⎪ ⎪⎝⎭⎝⎭C .()1511422f f f ⎛⎫⎛⎫->> ⎪ ⎪⎝⎭⎝⎭D .()1511422f f f ⎛⎫⎛⎫->> ⎪ ⎪⎝⎭⎝⎭【答案】C 【解析】 【分析】根据单调性的定义可得()f x 在0,1上单调递增,根据已知条件可得()f x 是周期为2的奇函数,根据周期性和单调性即可求解. 【详解】由()()2f x f x +=可得()f x 的周期为2, 因为()2f x -为奇函数,所以()f x 为奇函数, 因为[)0,1x ∈时,()()12120f x f x x x ->-,所以()f x 在0,1上单调递增,因为()f x 为奇函数,所以()f x 在1,0上单调递增,所以()f x 在()1,1-上单调递增, 因为1515124222f f f ⎛⎫⎛⎫⎛⎫-=-+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()()44220f f f =-⨯=,1111123222f f f ⎛⎫⎛⎫⎛⎫=-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以()11022f f f ⎛⎫⎛⎫>>- ⎪ ⎪⎝⎭⎝⎭,即()1511422f f f ⎛⎫⎛⎫->> ⎪ ⎪⎝⎭⎝⎭. 故选:C.题型战法六 由抽象函数周期性与对称性求函数值典例6.已知()f x 是定义域为R 的偶函数,()10f =,()5.52f =,()()()1g x x f x =-.若()1g x +是偶函数,则()0.5g -=( )A .-3B .-2C .2D .3【答案】D【解析】【分析】根据()1g x +得到()g x 关于1x =对称,得到()()2g x g x =-,结合()()()1g x x f x =-和()f x 为偶函数即可得()f x 周期为4,进而即得. 【详解】因为()1g x +为偶函数,则()g x 关于1x =对称,即()()2g x g x =-.即()()()()112x f x x f x -=--,即()()20f x f x +-=,()10f =也满足.又()f x 是定义域为R 偶函数,关于y 轴对称,①()()2f x f x =--,()()()()()2,42f x f x f x f x f x +=-+=-+=,①()f x 周期为4,①()()()()5.5 1.5 2.5 2.52f f f f ==-==,①()()()0.5 2.5 1.5 2.53g g f -===.故选:D.变式6-1.已知函数()f x 满足(3)(1)9(2)f x f x f +=-+对任意x ∈R 恒成立,又函数(9)f x +的图象关于点(9,0)-对称,且(1)2022,f = 则(45)f =( )A .2021B .2021-C .2022D .2022-【答案】D【解析】【分析】 首先利用赋值法求出()20f =,代入等式赋值得到(4)()f x f x +=-,即对称轴为2x =,再根据函数图象的平移规律判断函数为奇函数,进一步求得函数周期,进而得到(45)(3)(3)(1)f f f f =-=-=-,则可求出结果.【详解】因为对任意x ∈R ,都有(3)(1)9(2),f x f x f +=-+令1,x =- 得(2)(2)9(2),f f f =+ 解得(2)0,f =则(3)(1),f x f x +=- 即(4)(),f x f x +=-所以函数()f x 的图象关于直线2x =对称.又函数(9)f x +的图象关于点(9,0)-对称,则函数()f x 的图象关于点(0,0)对称, 即函数()f x 为奇函数,所以(4)()(),f x f x f x +=-=-所以(8)(4)(),f x f x f x +=-+= 所以8是函数()f x 的一个周期,所以(45)(683)(3)(3)(1)2022,f f f f f =⨯-=-=-=-=-故选:D.变式6-2.若定义在实数集R 上的偶函数()f x 满足()0f x >,1(2)()f x f x +=,对任意的x ∈R 恒成立,则()2021f =( )A .4B .3C .2D .1【答案】D【解析】【分析】根据题干条件得到()f x 为周期函数,最小正周期为4,进而得到()()20211f f =,利用()f x 是偶函数得到()()11f f -=,进而得到()211f =,结合()0f x >,得到()11f =. 【详解】1(2)()f x f x +=,则1()(2)f x f x =-,所以1(2)(2)()f x f x f x +==-,即()()4f x f x +=,()f x 为周期函数,最小正周期为4,则()()()2021505411f f f =⨯+=,令1x =-得:1(12)(1)f f -+=-,即()()111f f =-,又因为()f x 为偶函数,所以()()11f f -=,故()()111f f =,即()211f =,因为()0f x >,所以()11f =.故选:D变式6-3.已知定义在R 上的函数()f x ,满足()()0f x f x ,(5)(5)f x f x -=+,且(1)2022f =,则(2020)(2021)f f -=( ) A .2026B .4044C .2022-D .4044-【答案】C【解析】【分析】 根据题意可知函数是奇函数,进而推导()f x 的周期,然后求出函数值即可.【详解】()()0f x f x -+=,()()f x f x ∴-=-,()f x ∴是奇函数,x R ∈,(0)=0f ∴.(5)(5)f x f x -=+,()(10)f x f x ∴-=+, 由()()()(10)f x f x f x f x ,()(20)f x f x ∴=+,()f x ∴的周期为20T =.0(1)202()20=f f =,.(0)(1)020222022(2020)(2021)f f f f ∴-=-=--=. 故选:C变式6-4.函数()f x 定义域为R ,且,(4)()2(2)x R f x f x f ∀∈+=+,若函数(1)f x +的图象关于1x =-对称,且(1)3f =,则(2021)f =( ) A .3B .-3C .6D .-6【答案】A【解析】【分析】由题设可知()f x 为偶函数且(2)(2)2(2)f f f =-+,即可得(2)0f =,易知()f x 是周期为4的函数,利用周期性求(2021)f 即可.【详解】①(1)f x +的图象关于1x =-对称,①()f x 关于y 轴对称,即()f x 为偶函数,又(2)(2)2(2)f f f =-+,即(2)(2)0f f +-=,而(2)(2)f f =-,①(2)(2)0f f =-=,故,(4)()x R f x f x ∀∈+=, ①()f x 是周期为4的函数, 综上,(2021)(45051)(1)3f f f =⨯+==. 故选:A。

函数的对称性与周期性例题习题(供参考)

函数的对称性与周期性例题习题(供参考)

函数的对称性与周期性【知识梳理】1. 周期的概念:设函数(),y f x x D =∈,如果存在非零常数T ,使得对任意x D ∈都有 ,则函数()y f x =为周期函数,T 为()y f x =的一个周期;2. 周期函数的其它形式()()f x a f x b +=+⇒ ;()()f x a f x +=-⇒ ;()()1f x a f x +=⇒ ; ()()1f x a f x +=-⇒ ;)(1)(1)(x f x f a x f +-=+⇔ ,)(1)(1)(x f x f a x f -+=+⇔)()()2(x f a x f a x f -+=+⇔ 1)(1)(+-=+x f a x f ⇔ ,3. 函数图像的对称性1).若()()f x f x =-,则()y f x =的图像关于直线 对称; 2).若()()0f x f x +-=,则()y f x =的图像关于点 对称; 3)若()()f a x f a x +=-,则()y f x =的图像关于直线 对称; 4)若()()2f x f a x =-,则()y f x =的图像关于直线 对称; 5)若()()2f a x f a x b ++-=,则()y f x =的图像关于点 对称; 6)若()()22f x f a x b +-=,则()y f x =的图像关于点 对称; 4. 常见函数的对称性1)函数()()0ax bf x c cx d+=≠+的图像关于点 对称;2)函数()()0f x ax b a =-≠的图像关于直线 对称; 3)函数()()20f x ax bx c a =++≠的图像关于直线 对称; 【例题选讲】题型一 根据解析式判断函数图像的对称性 1. 函数()2331x f x x +=-的图像关于 对称; 2. 函数()f x 的定义域为R ,且()()1f x f x -=,则()f x 的图像关于 对称; 3. 函数()23f x x =-的图像关于 对称;4. 函数()3sin 23f x x π⎛⎫=- ⎪⎝⎭的图像关于直线 对称;关于点 对称;题型二 平移变换后,函数图像的对称性1.已知函数()y f x =是偶函数,()2f x -在[]0,2递减,则( )()()(). 012A f f f <-< ()()(). 102B f f f -<< ()()(). 120C f f f -<< ()()(). 210D f f f <-<2.已知()2y f x =-是偶函数,则()y f x =的图像关于 对称;3.已知()y f x =是奇函数,则()12y f x =+-的图像关于 对称;题型三 函数图像的对称性求函数解析式1.已知()f x 的图像关于直线2x =对称,且(]0,1x ∈时,()212f x x x=+,求[)3,4x ∈时,()f x 的解析式; 2.已知()f x 的图像关于点()2,0-对称,且(]0,1x ∈时,()212f x x x=+,求[)5,4x ∈--时,()f x 的解析式; 3.已知()f x 的图像关于点()1,2-对称,且(]0,1x ∈时,()212f x x x=+,求[)1,2x ∈时,()f x 的解析式; 题型四 函数周期性和图像对称的应用1.若函数()()2,22x x a bf x a b R ⋅+=∈+的图像关于点()1,0对称,求,a b 满足的关系;2.已知函数()f x 的定义域为R ,且对任意x R ∈,都有()()22f x f x +=-(1)若()0f x =有50个根,求所有这些根的和;(2)若()0f x =有51个根,求所有这些根的和;3.若()f x 有两条对称轴x a =和()x b a b =≠,求证:()f x 是以2T a b =-为周期的周期函数;4.设()f x 是定义在R 上的偶函数,它的图像关于直线2x =对称,当[]2,2x ∈-时,()21f x x =-+,求[]6,2x ∈--时,()f x 的解析式;5.已知定义域为R 的函数()f x 满足()()()121f x f x f x ++=-,求证函数()f x 是周期函数;题型五 综合应用1.设()f x 是定义在区间(),-∞+∞上以2为周期的函数,对于k Z ∈,用k I 表示区间(]21,21k k -+,已知当0x I ∈时,2()f x x =(1)求()f x 在k I 上的解析式;(2)对自然数k ,求集合{|k M a =使方程f x ax =()在k I 上有两个不等实根}。

高三一轮复习函数的性质周期性和对称性复习练习题

高三一轮复习函数的性质周期性和对称性复习练习题

函数周期性和对称性(知识点,练习题)f(x T)f(x)恒成立为非零常数,对于定义域内的任一x,使一.定义:若T则f(x)叫做周期函数,T叫做这个函数的一个周期。

二.重要结论xfy T aaxffx为周期的周期函数;是以1、,则2、若函数y=f(x)满足f(x+a)=-f(x)(a>0),则f(x)为周期函数且2a是它的一个周期。

xfa fa xfx T2a为周期的周期函数是以若函数,则3、1 (a>0),则f(x)为周期函数且2a是它的一个周期。

4、y=f(x)满足f(x+a)=xf1 是它的一个周期。

f(x)为周期函数且2a5、若函数y=f(x)满足f(x+a)= (a>0),则xf1f(x)xf T2a为周期的周期函数.6、是以,则a)f(x1f(x)1f(x)xf T4a为周期的周期函数7、是以,则.f(x a)1f(x)8、若函数y=f(x)的图像关于直线x=a,x=b(b>a)都对称,则f(x)为周期函数且2(b-a)是它的一个周期。

ba yB,ba,xRyA f(x))(xy f是以、9、函数都对称,则函数的图象关于两点00ab2为周期的周期函数;b ayaR,A x f(x))(xy f bx的图象关于和直线是以都对称,则函数10、函数0a4b 为周期的周期函数;a是它的一个周期。

2的图像关于直线x=a对称,则f(x)为周期函数且11、若偶函数y=f(x)a 是它的一个周期。

x=a对称,则f(x)为周期函数且412、若奇函数y=f(x)的图像关于直线13、若函数y=f(x)满足f(x)=f(x-a)+f(x+a)(a>0),则f(x)为周期函数,6a是它的一个周期。

T)f(=0. ,T≠0), 则(x14、若奇函数y=f(x)满足f(x+T)=f(x)∈R2函数的轴对称:三a b xfa x fb xfyy fx x对的图象关于直线定理1:如果函数满足,则函数2.称x y fxffa x fa xy ax. 的图象关于直线1推论:如果函数对称,则函数满足xffy xfx xfy0x轴)对称y(的图象关于直线,则函数满足:如果函数2推论四函数的点对称:b,axf a xfy f x2fba xy对称. 如果函数的图象关于点满足,则函数定理2:,0axf a xfy f x0fya x对称:如果函数的图象关于点. 满足,则函数推论30,0xf fy xy f xf x0对称.的图象关于原点4:如果函数特满足,则函数推论别地,推论4就是奇函数的定义和性质.它是上述定理2的简化.五函数周期性的性质:xfxb)f x f(b f(a x)fxaa b)(其中R在上满足,则函数定理3:若函数,且bxa2y f为周期.以xfxb f f(b xf(a x)f)a x a b)(其中,在R上满足,定理4:若函数且则函ba2y f x为周期数以.xfxf bb x)x)f a x f(f(aa b)(其中定理5:若函数上满足,则函,且在R b4f xay为周期数.以以上几类情形具有一定的迷惑性,但读者若能区分是考查单一函数还是两个函数,同时分析条件特征必能拨开迷雾,马到成功.下面以例题来分析.xxff x4f2,xf上单调递,且函数满足在区间例1.已知定义为R的函数xfxf4x2xx x的值()如果,且.,则增.221121A.恒小于0 B.恒大于0 C.可能为0 D.可正可负.44ff xfx x fx不过我们可以取特殊值代分析:,形似周期函数但事实上不是,4f fx x x2x变形,使入,通过适当描点作出它的图象来了解其性质.或者,先用代替xf02,2,f2xfx2上单对称 3.因此图象关于点.为在区间.它的特征就是推论2,上也单调递增.我们可以把该函数想象成是奇函数向右平移了两个单位调递增,在区间.(如图)x,2?2x4上单调递增,所以,且函数在124x x f x f4xff,,又由12xf f x444f()x f x402,有1111x0fxfxfxf4xfxf A.选.111121.当然,如果已经作出大致图象后,用特殊值代人也可猜想出答案为 A.[1,2])(x x)fx)f(x)f(2f(上是减函数,则若上定义的函数是偶函数,且在区间.练1:在R f(x)( ) [2,1][3,4]上是减函数上是增函数,在区间 A.在区间[2,1][3,4]上是减函数 B. 在区间上是增函数,在区间4][3,1]2,[上是增函数上是减函数,在区间 C. 在区间4][3,1]2,[上是增函数 D. 在区间上是减函数,在区间1))f(xx)f(2xf(对称,即分析:由可知图象关于x)(xf0x可得到为偶函数图象关于的应用.又因为对称,推论12][1,)f(xf(x)上是,结合在区间为周期函数且最小正周期为2)(xf B.减函数,可得如右故选草图)(xf0)f(xT若将方程练 2.定义在R上的函数是它的一个正周期既是奇函数,又是周期函数,.nn T,T)可能为(上的根的个数记为在闭区间,则 D.5 C.3A.0B.1TTTT)(f)f(T)f()f(0T)f()f(T,,分析:2222TT n0f())f(?∴可能为,则 5 22xfy xxf1x2x40x.都对称,且当时,.已知函数例2和的图象关于直线 5.f19.的值求xy f x ff2x22x分析:由推论1对称,即的图象关于直线,可知,xy f xfx ff4x4.为周期的函数43同样,知是以,现由上述的定理满足xf50 f. 5.0f443.5.f3.55f4f19是偶函数,所以,同时还知50.5.0.5f0f.2fff01999f x3214ffx f398x f2158x中.例3,,…,,则,. )个不同的值最多有(D.199B.177C.183 A.1651056f f2158xf x3214xxffx398分析:由已知352704f fx1760x fx.1056xf2158x fffx3214f398xx又有x46x ff1102x1056f1102x1056f2158,351,ff0,,ff11,0,ff999,)f(x. 有周期352于是,于是中找到能在,ff,f2335124,23x)xf(对称,故这些值可以在又又的图像关于直线中找到.19924,f23,,ff199x)xf(.故这些值可以在个.对称,共有的图像关于直线177中找到 B.选x1fxxffxf ffxxx fffx f,3:已知,,,…,练n111n2x31f2.)则(20041xx11x xfx f x xff xx ff. )知,,,可令分析:由x=f(x2131x313x3x11xf xxffx f2ff2)(xf,,为迭代周期函数,故20042004n37带进原函数中即将x=-21xf0f2005g x)(xff(x)是奇函数,是偶函数,且练4:函数上有定义,且满足在R,2005f .则的值为11ff x x f1x1gxx f x g1y x则,,令,解:0a ff y2ffxxy fx220050aa a,,即有,令,则,其中0n n2n200520052005n2005n f2005a0a i i i a i,,1n2005222005ff2003ffx f x22001f19990,得. 或有01f.21x的奇偶性判断函数练习:1、 f ( x ) =2|2|x解:由题0)1)(x1(x1x1201x24x2x0x且0||2x2( 0 , 1 ] 函数的定义域为∴[∪1 , 0 ) -2222x1)x(1x1x1又f(x)xx f ( x )22x()故是奇函数x六、抽象函数奇偶性的判定与证明f(x)x,y Rf(x y)f(x)f(y),,都有对一切例 4.已知函数a)xf(f(12)af(3)表示)若,用是奇函数;(1)求证:(2f(x)f(x y)f(x)f(y)R中,,它关于原点对称.在的定义域是解:(1)显然y x f(0)f(x)f(x)x y0f(0)f(0)f(0)f(0)0,,得,令,得,∴令f(x))(x f(x)ff(x)f(x)0是奇函数.∴∴,即,f(x))(y f(x)ff(3)af(x y)是奇函数,)由(2及,f(12)2f(6)4f(3)4f(3)4a.得七、利用函数奇偶性求函数解析式或求值3x)x(1f(x))(xf)x(0,R,时,练习:已知是上的奇函数,且当30x),xx(1f(x))xf(则的解析式为30x),xx(11x1111f()f()f()ff(x)x log()的值+已知函数例7+,求+21x20052004200420051x0(1,1)得函数的定义域是解:由1x1x1xf(x)f(x)log log log10又2221x1x f(x)f(x)函数是奇函数成立,1111)f()f()f()f(=0 =0 ++20042005200520041111)()f(ff()()f=0∴+++2005200420052004设函数为奇函数,则-例81-∴f (-x∵解析:f(x)=)= ,又∵f(x)为奇函数,∴f (x)=-f (-x).22a1(a)x)(x a1xax1.-.∴=∴=∴ a12bax)x3bxa(fa1a,2a,练习:,则偶函数,定义域为是已知b=03.1aa12ab0,?解:31f(x3)23x,)f(x)(113.5(fx)2xf Rx都有,3、,则,且当设偶函数时,对任意)xf(的值为(D)1221 D. C.A. B.575711f(x6)f[(x3)3]f(x)?f(x3)解:)(x3f(x)f f(x)是以T6为周期的周期函数f(113.5)f(1865.5)f(5.5)f(60.5)f(0.5)111f(30.5)f( 2.5)53,2x)xf(f(x)xf(6.5),f( 1.5)f(5.5)是周期为4、已知的偶函数,当,时,,求例13f(x)f(x)f(x4)f(x)f(6.5)f(4 2.5)f(2.5) 2.5解:,f( 1.5)f( 1.54)f(2.5) 2.5f(5.5)f(5.54f(1.5)f( 1.5)f( 1.54)f(2.5) 2.5例14、是定义在R上的以3为周期的奇函数,且,则方程f(x)=0在区间(0,6)内解的个数的最小值是 DA.2 B.3 C.4 D.5解析:依题可知f(x)=f(x+3).f(2)=f(5)=0.又∵f(x)是定义在R上的奇函数,∴f(-x)=-f(x).∴f(-2)=-f(2)=0.∴f(-2)=f(1)=f(4)=0.又∵奇函数有f(0)=0,∴f(3)=f(6)=0.∴在(0,b)内f(x)=0解的个数最小值为 5.练习:1、已知定义域为R的函数f(x)在(8,+∞)上为减函数,且函数y=f(x+8)为偶函数,则Df(10)>D.f(7)f(9) >C.f(7)f(9) >B.f(6)f(7) >A.f(6).解析:∵y=f(x+8)为偶函数,∴y=f(x)图象关于x=8对称.又∵y=f(x)在(8,+∞)上为减函数,∴y=f(x)在(-∞,8)上为增函数.∴f(7)=f(9),f(9)>f(10).∴f(7)>f(10).2、(2006山东)已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),则f(6)的值为 B(A)-1 (B)0 (C)1 (D)2∵()()∴()()()()(). f46=-f=f=f解析:f4+2x+22=-f=-fx2.()()∴()=0.2 -f又=0 x6为R上的奇函数,∴ff,则使得的是定义在R上是减函数,且上的偶函数,在 3、x若函数的取值范围是(D).D.(-2,.B2.C) A解析:∵f(2)=0且f(x)为偶函数,∴f(-2)=0.又∵f(x)在(-∞,0]递减,∴f(x)在(-2,0]递减.∴对于x∈(-2,0)必有f(x)<0.由对称性得对于x∈[0,2)必有f(x)<0.∴使得f(x)<0的范围是(-2,2).=, f(x+2)=f(x)+f(2),则f(5x4、设函数f(x)(∈R)为奇函数,f(1))等于(C)C. D.5B.1 A.0=1)R)为奇函数,f()且f(x)(x∈)(解:fx+2)=f(x+f(2f(1)f(12)f(1)f(2)f(1)f(2) 111)2f(2)2f(25f(5)f(32)f(3)f(2)f(12)f(2)2f(2)f(1)2。

函数的周期性,奇偶性,对称性经典小题练(含答案)

函数的周期性,奇偶性,对称性经典小题练(含答案)

函数的周期性练习题一.选择题(共15小题)1.定义在R上的函数f(x)满足f(﹣x)=﹣f(x),f(x﹣2)=f(x+2)且x∈(﹣1,0)时,f(x)=2x+,则f(log220)=()A.1 B.C.﹣1 D.﹣2.设偶函数f(x)对任意x∈R,都有f(x+3)=﹣,且当x∈[﹣3,﹣2]时,f(x)=4x,则f(107.5)=()A.10 B.C.﹣10 D.﹣3.设偶函数f(x)对任意x∈R都有f(x)=﹣且当x∈[﹣3,﹣2]时f(x)=4x,则f(119.5)=()A.10 B.﹣10 C.D.﹣4.若f(x)是R上周期为5的奇函数,且满足f(1)=1,f(2)=3,则f(8)﹣f(4)的值为()A.﹣1 B.1 C.﹣2 D.25.已知f(x)是定义在R上周期为4的奇函数,当x∈(0,2]时,f(x)=2x+log2x,则f(2015)=()A.﹣2 B.C.2 D.56.设f(x)是定义在R上的周期为3的周期函数,如图表示该函数在区间(﹣2,1]上的图象,则f(2014)+f(2015)=()A.3 B.2 C.1 D.07.已知f(x)是定义在R上的偶函数,并满足:,当2≤x≤3,f(x)=x,则f(5.5)=()A.5.5 B.﹣5.5 C.﹣2.5 D.2.58.奇函数f(x)满足f(x+2)=﹣f(x),当x∈(0,1)时,f(x)=3x+,则f(log354)=()A.﹣2 B.﹣ C.D.29.定义在R上的函数f(x)满足f(﹣x)+f(x)=0,且周期是4,若f(1)=5,则f(2015)()A.5 B.﹣5 C.0 D.310.f(x)对于任意实数x满足条件f(x+2)=,若f(1)=﹣5,则f(f(5))=()A.﹣5 B.C.D.5 11.已知定义在R上的函数f(x)满足f(x+5)=f(x﹣5),且0≤x≤5时,f(x)=4﹣x,则f(1003)=()A.﹣1 B.0 C.1 D.2 12.函数f(x)是R上最小正周期为2的周期函数,当0≤x<2时f(x)=x2﹣x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为()A.6 B.7 C.8 D.913.已知函数f(x)是定义在(﹣∞,+∞)上的奇函数,若对于任意的实数x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(2014)+f(﹣2015)+f(2016)的值为()A.﹣1 B.﹣2 C.2 D.1 14.已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|2x2﹣4x+1|,则方程f(x)=在[﹣3,4]解的个数()A.4B.8C.9D.1015.已知最小正周期为2的函数f(x)在区间[﹣1,1]上的解析式是f(x)=x2,则函数f(x)在实数集R上的图象与函数y=g(x)=|log5x|的图象的交点的个数是()A.3 B.4 C.5 D.6二.填空题(共10小题)16.已知定义在R上的函数f(x),满足f(1)=,且对任意的x都有f(x+3)=,则f(2014)=.17.若y=f(x)是定义在R上周期为2的周期函数,且f(x)是偶函数,当x∈[0,1]时,f(x)=2x﹣1,则函数g(x)=f(x)﹣log5|x|的零点个数为.18.定义在R上的函数f(x)满足f(x)=,则f(2013)的值为.19.定义在R上的函数f (x)的图象关于点(﹣,0)对称,且满足f (x)=﹣f (x+),f (1)=1,f (0)=﹣2,则f (1)+f (2)+f (3)+…+f (2010)的值为=.20.定义在R上的函数f(x)满足:,当x∈(0,4)时,f(x)=x2﹣1,则f(2011)=.21.定义在R上的函数f(x)满足f(x+6)=f(x).当﹣3≤x<﹣1时,f(x)=﹣(x+2)2,当﹣1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2012)=.22.若函数f(x)是周期为5的奇函数,且满足f(1)=1,f(2)=2,则f (8)﹣f(14)=.23.设f(x)是定义在R上的以3为周期的奇函数,若f(2)>1,f(2014)=,则实数a的取值范围是.24.设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),则=.25.若f(x+2)=,则f(+2)•f(﹣14)=.一.选择题(共15小题)1.【解答】解:∵定义在R上的函数f(x)满足f(﹣x)=﹣f(x),∴函数f(x)为奇函数又∵f(x﹣2)=f(x+2)∴函数f(x)为周期为4是周期函数又∵log232>log220>log216∴4<log220<5∴f(log220)=f(log220﹣4)=f(log2)=﹣f(﹣log2)=﹣f(log2)又∵x∈(﹣1,0)时,f(x)=2x+,∴f(log2)=1 故f(log220)=﹣1 故选C2.【解答】解:因为f(x+3)=﹣,故有f(x+6)=﹣=﹣=f(x).函数f(x)是以6为周期的函数.f(107.5)=f(6×17+5.5)=f(5.5)=﹣=﹣=﹣=.故选B3.【解答】解:∵函数f(x)对任意x∈R都有f(x)=﹣,∴f(x+3)=﹣,则f(x+6)=f(x),即函数f(x)的周期为6,∴f(119.5)=f(20×6﹣0.5)=f(﹣0.5)=﹣=﹣,又∵偶函数f(x),当x∈[﹣3,﹣2]时,有f(x)=4x,∴f(119.5)=﹣=﹣=﹣=.故选:C.4.【解答】解:f(x)是R上周期为5的奇函数,f(﹣x)=﹣f(x),∵f(1)=﹣f(﹣1),可得f(﹣1)=﹣f(1)=﹣1,因为f(2)=﹣f(2),可得f(﹣2)=﹣f(2)=﹣3,∴f(8)=f(8﹣5)=f(3)=f(3﹣5)=f(﹣2)=﹣3,f(4)=f(4﹣5)=f(﹣1)=﹣1,∴f(8)﹣f(4)=﹣3﹣(﹣1)=﹣2,故选C;5.【解答】解:∵f(x)的周期为4,2015=4×504﹣1,∴f(2015)=f(﹣1),又f(x)是定义在R上的奇函数,所以f(2015)=﹣f(1)=﹣21﹣log21=﹣2,故选:A.6.【解答】解:由图象知f(1)=1,f(﹣1)=2,∵f(x)是定义在R上的周期为3的周期函数,∴f(2014)+f(2015)=f(1)+f(﹣1)=1+2=3,故选:A7.【解答】解:∵,∴==f(x)∴f(x+4)=f(x),即函数f(x)的一个周期为4∴f(5.5)=f(1.5+4)=f(1.5)∵f(x)是定义在R上的偶函数∴f(5.5)=f(1.5)=f(﹣1.5)=f(﹣1.5+4)=f(2.5)∵当2≤x≤3,f(x)=x∴f(2.5)=2.5∴f(5.5)=2.5 故选D8.【解答】解:∵f[(x+2)+2]=﹣f(x+2)=f(x),∴f(x)是以4为周期的奇函数,又∵,∵,∴,∴f(log354)=﹣2,故选:A.9.【解答】解:在R上的函数f(x)满足f(﹣x)+f(x)=0则:f(﹣x)=﹣f(x)所以函数是奇函数由于函数周期是4,所以f(2015)=f(504×4﹣1)=f(﹣1)=﹣f(1)=﹣5 故选:B 10.【解答】解:∵f(x+2)=∴f(x+2+2)==f(x)∴f(x)是以4为周期的函数∴f(5)=f(1+4)=f(1)=﹣5f(f(5))=f(﹣5)=f(﹣5+4)=f(﹣1)又∵f(﹣1)===﹣∴f(f(5))=﹣故选B11.【解答】解:∵f(x+5)=f(x﹣5),∴f(x+10)=f(x),则函数f(x)是周期为10的周期函数,则f(1003)=f(1000+3)=f(3)=4﹣3=1,故选:C.12.【解答】解:当0≤x<2时,f(x)=x2﹣x=0解得x=0或x=1,因为f(x)是R上最小正周期为2的周期函数,故f(x)=0在区间[0,6)上解的个数为6,又因为f(6)=f(0)=0,故f(x)=0在区间[0,6]上解的个数为7,即函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为7,故选:B.13.【解答】解:∵f(x+2)=f(x),∴f(2014)=f(2016)=f(0)=log21=0,∵f(x)为R上的奇函数,∴f(﹣2015)=﹣f(2015)=﹣f(1)=﹣1.∴f(2014)+f(﹣2015)+f(2016)=0﹣1+0=﹣1.故选A.14.【解答】解:由题意知,f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|2x2﹣4x+1|,在同一坐标系中画出函数f(x)与y=的图象如下图:由图象可知:函数y=f(x)与y=在区间[﹣3,4]上有10个交点(互不相同),所以方程f(x)=在[﹣3,4]解的个数是10个,故选:D.15.【解答】解:∵函数f(x)的最小正周期为2,∴f(x+2)=f(x),∵f(x)=x2,y=g(x)=|log5x|∴作图如下:∴函数f(x)在实数集R上的图象与函数y=g(x)=|log5x|的图象的交点的个数为5,故选:C二.填空题(共10小题)16.【解答】解:∵对任意的x都有f(x+3)=,∴f(x+6)==f(x),∴函数f(x)为周期函数,且周期T=6,∴f(2014)=f(335×6+4)=f(4)=f(1+3)==﹣5 故答案为:﹣517【解答】解:当x∈[0,1]时,f(x)=2x﹣1,函数y=f(x)的周期为2,x∈[﹣1,0]时,f(x)=2﹣x﹣1,可作出函数的图象;图象关于y轴对称的偶函数y=log5|x|.函数y=g(x)的零点,即为函数图象交点横坐标,当x>5时,y=log5|x|>1,此时函数图象无交点,如图:又两函数在x>0上有4个交点,由对称性知它们在x<0上也有4个交点,且它们关于直线y轴对称,可得函数g(x)=f(x)﹣log5|x|的零点个数为8;故答案为8;18.【解答】解:由分段函数可知,当x>0时,f(x)=f(x﹣1)﹣f(x﹣2),∴f(x+1)=f(x)﹣f(x﹣1)=f(x﹣1)﹣f(x﹣2)﹣f(x﹣1),∴f(x+1)=﹣f(x﹣2),即f(x+3)=﹣f(x),∴f(x+6)=f(x),即当x>0时,函数的周期是6.∴f(2013)=f(335×6+3)=f(3)=﹣f(0)=﹣log2(8﹣0)=﹣log28=﹣3,故答案为:﹣3.19.【解答】解:由f (x)=﹣f (x+)得f (x+3)=f[(x+)+]=﹣f (x+)=f (x).所以可得f (x)是最小正周期T=3的周期函数;由f (x)的图象关于点(,0)对称,知(x,y)的对称点是(﹣﹣x,﹣y).即若y=f (x),则必﹣y=f (﹣﹣x),或y=﹣f (﹣﹣x).而已知f (x)=﹣f (x+),故f (﹣﹣x)=f (x+),今以x代x+,得f (﹣x)=f (x),故知f (x)又是R上的偶函数.于是有:f (1)=f (﹣1)=1;f (2)=f (2﹣3)=f (﹣1)=1;f (3)=f (0+3)=f (0)=﹣2;∴f (1)+f (2)+f (3)=0,以下每连续3项之和为0.而2010=3×670,于是f (2010)=0;故答案为0.20.【解答】解:由题意知,定义在R上的函数f(x)有,则令x=x+2代入得,∴f(x+4)===f(x),∴函数f(x)是周期函数且T=4,∴f(2011)=f(4×502+3)=f(3),∵当x∈(0,4)时,f(x)=x2﹣1,∴f(3)=8.即f(2011)=8.故答案为:8.21.【解答】解:∵当﹣3≤x<﹣1时,f(x)=﹣(x+2)2,∴f(﹣3)=﹣1,f(﹣2)=0,∵当﹣1≤x<3时,f(x)=x,∴f(﹣1)=﹣1,f(0)=0,f(1)=1,f(2)=2,又∵f(x+6)=f(x).故f(3)=﹣1,f(4)=0,f(5)=﹣1,f(6)=0,又∵2012=335×6+2,故f(1)+f(2)+f(3)+…+f(2 012)=335×[f(1)+f(2)+f(3)+f(4)+f (5)+f(6)]+f(1)+f(2)=335+1+2=338,故答案为:33822.【解答】解:由题意可得,f(8)=f(8﹣10)=f(﹣2)=﹣f(2)=﹣2,f(14)=f(14﹣15)=f(﹣1)=﹣f(1)=﹣1,故有f(8)﹣f(14)=﹣2﹣(﹣1)=﹣1,故答案为﹣1.23.【解答】解:解:由f(x)是定义在R上的以3为周期的奇函数,则f(x+3)=f(x),f(﹣x)=﹣f(x),∴f(2014)=f(3×672﹣2)=f(﹣2)=﹣f(2),又f(2)>1,∴f(2014)<﹣1,即<﹣1,即为<0,即有(3a﹣2)(a+1)<0,解得,﹣1<a<,故答案为:.24.【解答】解:∵f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),∴=f(﹣)=﹣f()=﹣2×(1﹣)=﹣,故答案为:﹣.25.【解答】解:由题意可得f(+2)=sin=sin(6π﹣)=﹣sin=﹣,同理可得f(﹣14)=f(﹣16+2)=log216=4,∴f(+2)•f(﹣14)=﹣×4=,故答案为:三.解答题(共5小题)26.【解答】(1)证明:∵f(x+2)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),∴f(x)是周期为4的周期函数;(2)解:当x∈[﹣2,0]时,﹣x∈[0,2],由已知得f(﹣x)=2(﹣x)﹣(﹣x)2=﹣2x﹣x2,又f(x)是奇函数,∴f(﹣x)=﹣f(x)=﹣2x﹣x2,∴f(x)=x2+2x,又当x∈[2,4]时,x﹣4∈[﹣2,0],∴f(x﹣4)=(x﹣4)2+2(x﹣4),又f(x)是周期为4的周期函数,∴f(x)=f(x﹣4)=(x﹣4)2+2(x﹣4)=x2﹣6x+8,从而求得x∈[2,4]时,f(x)=x2﹣6x+8;(3)解:f(0)=0,f(2)=0,f(1)=1,f(3)=﹣1,又f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2 000)+f(2 001)+f(2 002)+f(2 003)=0.∴f(0)+f(1)+f(2)+…+f(2 004)=0+f(2004)=0.27.【解答】解:(1)当x∈[﹣1,0]时,﹣x∈[0,1],又f(x)是偶函数则,x∈[﹣1,0].(2),∵1﹣log32∈[0,1],∴,即.28.【解答】解:(1)令x∈[﹣1,0),则﹣x∈(0,1],∴f(﹣x)=2﹣x﹣1.又∵f(x)是奇函数,∴f(﹣x)=﹣f(x),∴﹣f(x)=f(﹣x)=2﹣x﹣1,∴.(2)∵f(x+4)=f(x),∴f(x)是以4为周期的周期函数,∴,∴,∴.29.【解答】解:∵函数f(x)的周期为3,∴f(﹣2014)=f(﹣671×3﹣1)=f(﹣1),∵函数f(x)是奇函数,∴f(﹣1)=﹣f(1)=﹣(12﹣1+2)=﹣2,∴f(﹣2014)=﹣2.30.【解答】解;(1)因为奇函数f(x)的定义域为R,周期为2,所以f(﹣1)=f(﹣1+2)=f(1),且f(﹣1)=﹣f(1),于是f(﹣1)=0.…(2分)当x∈(﹣1,0)时,﹣x∈(0,1),f(x)=﹣f(﹣x)=﹣(2﹣x+2x)=﹣2x﹣2﹣x.…(5分)所以f(x)在[﹣1,0)上的解析式为…(7分)(2)f(x)在(﹣2,﹣1)上是单调增函数.…(9分)先讨论f(x)在(0,1)上的单调性.设0<x1<x2<1,则因为0<x1<x2<1,所以,于是,从而f(x1)﹣f(x2)<0,所以f(x)在(0,1)上是单调增函数.…(12分)因为f(x)的周期为2,所以f(x)在(﹣2,﹣1)上亦为单调增函数.…(14分)。

函数的对称性和周期性练习题 本部

函数的对称性和周期性练习题 本部

函数的对称性和周期性练习题本部函数的对称性和周期性练题本部本练题本旨在帮助读者深入理解函数的对称性和周期性概念,并进行相关练题的探索。

以下是一些练题供读者参考:1. 对称性练题1.1 奇函数和偶函数的判断判断以下函数是奇函数还是偶函数:a) $f(x) = x^3 + x$b) $g(x) = \sin(x)$c) $h(x) = x^2 - 2$1.2 其他对称性的探索探索以下函数的其他对称性:a) $f(x) = 2\cos(x)$b) $g(x) = \tan(x)$c) $h(x) = \sqrt{x}$2. 周期性练题2.1 正弦函数和余弦函数的周期求解以下函数的周期:a) $f(x) = \sin(3x)$b) $g(x) = \cos\left(\frac{x}{2}\right)$c) $h(x) = 2\cos\left(\frac{2\pi}{5}x\right)$2.2 其他周期函数的探索探索以下函数的周期性:a) $f(x) = \sin(2x)$b) $g(x) = \cos(x^2)$c) $h(x) = \sin\left(\frac{1}{x}\right)$3. 综合练题请计算以下函数的对称轴和周期:a) $f(x) = \sin\left(\frac{x}{2}\right)$b) $g(x) = \cos\left(\frac{2\pi}{3}\right)$c) $h(x) = \sin(x) + \sin(2x)$以上练习题可以帮助读者巩固对函数的对称性和周期性的理解,希望对您的学习有所帮助!若需要更多练习题,敬请参考相关教材或课程。

祝您学习进步!。

函数的周期性与对称性题目

函数的周期性与对称性题目

函数的周期性与对称性1.对于函数f(x),若存在非0实数T ,有f(T+x)= f(x),则f(x)是以T 为周期。

如果f(x)对于定义域内的任意实数x ,都有f(x-a)= f(x+a)(或f(x-a)-= f(x+a))成立,则f(x)为周期函数,且T=( )或( )2.若f(x)对于定义域内任一x ,都有f(a-x)= f(a+x),则f(x)是以直线x=a 对称即若f(x)= f(2a-x)则f(x) 以直线x=a 对称。

例1:若f(x-3) =f(x+5),求T=( )2已知定义在R 上的奇函数f(x) 满足f(x+2) = -f(x) ,且当01x ≤≤时,f(x)=x,求f(152)。

3.奇函数f(x)是以3为最小周期,已知f(1)=3,则f(47)=( )4.设f(x)是定义在R 上的偶函数。

它的图象关于x=2对称,已知]2,2x ⎡∈-⎣时,2f(x) =-1x +则]6,2x ⎡∈--⎣时f(x)=5.设f(x)是定义在R 上的偶函数,且对任意的x,都有f(x+1) =f(x-1)成立,若当[]1,2x ∈时,log a y x = (a>1),求]1,1x ⎡∈-⎣时,f(x)的表达练:1.(07天津)在R 上定义的函数()x f 是偶函数,且()()x f x f -=2,若()x f 在区间[]2,1是减函数,则函数()x f( )A .在区间[]1,2--上是增函数,区间[]4,3上是增函数B .在区间[]1,2--上是增函数,区间[]4,3上是减函数C .在区间[]1,2--上是减函数,区间[]4,3上是增函数D .在区间[]1,2--上是减函数,区间[]4,3上是减函数2.(09山东文)已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数( ). A.(25)(11)(80)f f f -<< B. (80)(11)(25)f f f <<-C. (11)(80)(25)f f f <<-D. (25)(80)(11)f f f -<<3.(2009山东卷理)定义在R 上的函数f(x)满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2009)的值为( )A.-1B. 0C.1D. 2 4.(7重庆)已知定义域为R 的函数()x f 在区间()+∞,8上为减函数,且函数()8+=x f y 为偶函数,则( )A .()()76f f >B . ()()96f f >C . ()()97f f >D . ()()107f f >5.(2006年安徽卷)函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =- 则()()5f f =_______________6.(2009湘潭一中12月考)已知定义在R 上的函数()f x 满足3()()2f x f x =-+且(2)(1)1f f -=-=-,(0)2f =,(1)(2)(2008)(2009)f f f f ++++=… () A .2-B .1-C .0D .17.(2009广东三校一模)定义在R上的函数()x f 是奇函数又是以2为周期的周期函数,则()()()741f f f ++等于( )A .-1B .0C .1D .48.(陕西长安二中2008届高三第一学期第二次月考)定义在R 上的偶函数)(x f 满足)()1(x f x f -=+,且在[-1,0]上单调递增,设)3(f a =, )2(f b =,)2(f c =,则c b a ,,大小关系是( )A .c b a>> B .b c a >> C .ac b >>D .a b c>>9.已知函数f(x)的定义域为R ,且满足f(x+2)=-f(x) . (1)求证:f(x)是周期函数;(2)若f(x)为奇函数,且当0≤x ≤1时,f(x)=21x,求使f(x)=-21在[0,2 009]上的所有x 的个数.。

函数的对称性和周期性练习题 本部

函数的对称性和周期性练习题 本部

函数旳对称性与周期性练习题1.已知函数)(x f 是R 上旳偶函数,且满足3)()1(=++x f x f ,当[]1,0x ∈-时,()2f x x =+,则)5.2007(-f 旳值为( )A .0.5B .1.5 C. 1.5-D.12.定义在R 上旳函数()f x 对任意x R ∈,均有()()()()112,214f x f x f f x -+==+,则()2016f 等于( ) A. 14B. 12 C . 13D. 35 3.已知()f x 是定义在R 上旳函数,满足()()()()0,11f x f x f x f x +-=-=+,当()0,1x ∈时,()2f x x x =-+,则函数()f x 旳最小值为( )A. 14B . 14-C . 12- D. 12 4.已知定义域为R 旳函数()f x 满足()()4f x f x -=-+,且函数()f x 在区间()2,+∞上单调递增,如果122x x <<,且124x x +<,则()()12f x f x +旳值( )A. 可正可负 B . 恒不小于0 C . 也许为0D. 恒不不小于05.函数()f x 旳定义域为R ,若()1f x +与()1f x -都是奇函数,则( )A . ()f x 是偶函数 B. ()f x 是奇函数C. ()()2f x f x =+D. ()3f x +是奇函数6.函数31()1f x x x=++有关点__________对称7.设()f x 为定义在R 上旳奇函数,(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(7.5)f =__________8.设()f x 是定义在R 上旳周期为2旳函数,当[)1,1x ∈-时,()242,10,01x x f x x x ⎧-+-≤<=⎨≤<⎩,则32f ⎛⎫= ⎪⎝⎭_________ 9.已知()()()()11,2f x f x f x f x +=-=-+,方程()0f x =在[]0,1内有且只有一种12,则()f x 在区间[]0,2016内根旳个数为_________ 10.设()f x 是定义在R 上旳周期为2旳函数,在区间[]1,1-上,1,10()2,011ax x f x bx x x +-≤<⎧⎪=+⎨≤≤⎪+⎩(其中,a b R ∈),且1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭(1)求,a b 旳值;(2)求函数()()()g x f x f x =+-,[]1,2x ∈旳值域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的周期性和对称性补充练习题姓名 1、已知是偶函数,定义域为,则的值为1/3.
2、在R 上定义的函数()x f 是偶函数,且()()x f x f -=2,若()x f 在区间[]2,1是减函数,则函数()x f
( B ).
A.在[]1,2--上是增函数,[]4,3上是增函数
B.在[]1,2--上是增函数,[]4,3上是减函数
C.在[]1,2--上是减函数,[]4,3上是增函数
D.在[]1,2--上是减函数,[]4,3上是减函数
3、已知函数f (x )=⎩⎪⎨⎪⎧
1-2-x ,x ≥0,2x -1,x <0,则该函数是 ( C ). A .偶函数,且单调递增 B .偶函数,且单调递减
C .奇函数,且单调递增
D .奇函数,且单调递减
解析 当x >0时,f (-x )=2-x -1=-f (x );当x <0时,f (-x )=1-2-(-x )=1-2x =-f (x ).当x =0时,f (0)
=0,故f (x )为奇函数,且f (x )=1-2-x 在[0,+∞)上为增函数,f (x )=2x -1在(-∞,0)上为增函数,
又x ≥0时1-2-x ≥0,x <0时2x -1<0,故f (x )为R 上的增函数.
答案 C
4、是偶函数,且不恒等于零,则为( A ) A 、是奇函数 B 、是偶函数 C 、可能是奇函数也可能是偶函数 D 、非奇非偶函数.
易错题
5、已知f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数,且g (x )=f (x -1),则f (2009)+f (2011)的值为( C )
A .-1
B .1
C .0
D .无法计算
解析由题意得g (-x )=f (-x -1),又因为f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数,所以g (-x )=-g (x ),f (-x )=f (x ),∴f (x -1)=-f (x +1),∴f (x )=-f (x +2),∴f (x )=f (x +
4),∴f (x )的周期为4,
∴f (2009)=f (1),f (2011)=f (3)=f (-1),
又∵f (1)=f (-1)=g (0)=0,∴f (2009)+f (2011)=0.
答案 C
易错题
6、已知函数是偶函数,并且对于定义域内任意的,满足, 若当时,,则=_______-2/5______. 易错题
7、函数为奇函数的充要条件是B A 、 B 、 C 、 D 、
易错题——用定义域控制对称性
8、函数的值域是A
A 、
B 、
C 、
D 、
易错题——导数分析单调性
另法——三角代换
9、设函数D (x )=⎩
⎪⎨⎪⎧
1,x 为有理数,0,x 为无理数,则下列结论错误的是 ( C ). A .D (x )的值域为{0,1} B .D (x )是偶函数
C .
D (x )不是周期函数 D .D (x )不是单调函数
易错题——分析函数的性质——奇偶性、周期性、定义域、值域、单调性
解析 显然D (x )不单调,且D (x )的值域为{0,1},因此选项A 、D 正确.若x 是无理数,-x ,x +1是无理数;若x 是有理数,-x ,x +1也是有理数.∴D (-x )=D (x ),D (x +1)=D (x ).则D (x )是偶函数,b a bx ax x f +++=3)(2[]a a 2,1-b a +()()0,1221≠⋅⎪⎭
⎫ ⎝⎛
-+=x x f x F x ()x f ()x f ()f x x ()()
12f x f x +=-23x <<()f x x =)5.2007
(f 1
1)(2-+-=x x a x f 10<<a 10≤<a 1>a 1≥a x x y 3154-+-=[]2,1[]2,0(]3,0[]3,1
D (x )为周期函数,B 正确,C 错误.
答案 C
10、已知函数f (x )的定义域为R ,且满足f (x +2)=-f (x ),则f (x )的周期为,若f (x )为奇函数,且当0≤x ≤1
时,f (x )=12x ,则f (x )=-12
在[0,2 014]上的根有个. (1)证明 ∵f (x +2)=-f (x ),
∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ),
∴f (x )是以4为周期的周期函数.
(2)解 当0≤x ≤1时,f (x )=12
x , 设-1≤x ≤0,则0≤-x ≤1,
∴f (-x )=12(-x )=-12
x . ∵f (x )是奇函数,∴f (-x )=-f (x ),
∴-f (x )=-12x ,即f (x )=12
x . 故f (x )=12
x (-1≤x ≤1). 又设1<x <3,则-1<x -2<1,
∴f (x -2)=12
(x -2). 又∵f (x )是以4为周期的周期函数
∴f (x -2)=f (x +2)=-f (x ),∴-f (x )=12
(x -2), ∴f (x )=-12
(x -2)(1<x <3). ∴f (x )=⎩⎨⎧ 12x ,-1≤x ≤1,-12
(x -2),1<x <3. 由f (x )=-12
,解得x =-1. ∵f (x )是以4为周期的周期函数,
∴f (x )=-12
的所有x =4n -1(n ∈Z ). 令0≤4n -1≤2 014,则14≤n ≤2 0154
. 又∵n ∈Z ,∴1≤n ≤503(n ∈Z ),
∴在[0,2 014]上共有503个x 使f (x )=-12
. 11、已知命题p :关于x 的不等式的解集为;命题q :是减函数。

若“”为真命题,“”为假命题,求实数m 的取值范围.
[1,2)
易错题 4221x x m x
-+>{}|0,x x x R ≠∈()(52)x f x m =--p q ∨p q ∧。

相关文档
最新文档