函数的对称性与周期性

合集下载

函数的对称与周期

函数的对称与周期

函数的对称与周期在数学中,函数的对称和周期是重要的概念。

它们不仅在数学理论中有着广泛的应用,而且在实际问题中也有着重要的意义。

本文将探讨函数的对称性和周期性,并分别对两个概念进行详细说明。

一、函数的对称性函数的对称性是指函数图像关于某个轴、点或面具有对称的性质。

在这里,我将介绍函数的三种常见对称性:关于y轴对称、关于x轴对称和关于原点对称。

1. 关于y轴对称如果函数f(x)满足f(-x)=f(x),那么它具有关于y轴对称的性质。

这意味着函数图像在y轴上的任意一点关于y轴有对称的点。

例如,函数f(x)=x^2就是一个关于y轴对称的函数,因为f(-x)=(-x)^2=x^2。

2. 关于x轴对称如果函数f(x)满足f(x)=-f(x),那么它具有关于x轴对称的性质。

这意味着函数图像在x轴上的任意一点关于x轴有对称的点。

例如,函数f(x)=sin(x)就是一个关于x轴对称的函数,因为sin(-x)=-sin(x)。

3. 关于原点对称如果函数f(x)满足f(-x)=-f(x),那么它具有关于原点对称的性质。

这意味着函数图像在原点上的任意一点关于原点有对称的点。

例如,函数f(x)=x^3就是一个关于原点对称的函数,因为f(-x)=(-x)^3=-x^3。

二、函数的周期性函数的周期性是指函数在某个间隔内具有重复的性质。

在函数图像中,这个间隔被称为函数的周期。

常见的周期函数有正弦函数和余弦函数。

1. 正弦函数正弦函数f(x)=sin(x)是一个以2π为周期的函数。

也就是说,对于任意的实数k,f(x+k*2π)=f(x)。

正弦函数的图像是一个波浪状的曲线,它在每个2π的间隔内重复。

2. 余弦函数余弦函数f(x)=cos(x)也是一个以2π为周期的函数。

也就是说,对于任意的实数k,f(x+k*2π)=f(x)。

余弦函数的图像也是一个波浪状的曲线,它和正弦函数的图像非常相似,只是相位有所不同。

函数的对称性和周期性在数学中有着广泛的应用。

函数点对称线对称及周期总结

函数点对称线对称及周期总结

函数点对称线对称及周期总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII函数对称性、周期性全解析函数对称性、周期性是函数这一部分在历年高考中的一个重点,现在全部解析如下:一、同一函数的周期性、对称性问题(即函数自身)1、周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。

如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。

2、对称性定义(略),请用图形来理解。

3、对称性:我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =-奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的探讨:(1)函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。

得证。

若写成:)()(x b f x a f -=+,函数)(x f y =关于直线22)()(b a x b x a x +=-++= 对称 (2)函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。

函数周期性与对称性

函数周期性与对称性

函数周期性与对称性一、函数周期:对任意的x D ∈,都有()()f x T f x +=,则T 叫做函数()f x 的周期 例如:求11()()(),(),()()1()f x f x a f x f x a f x a f x f x -+=-+=+=+的周期 二、对称性:函数关于原点对称即奇函数:()()f x f x -=- 函数关于y 对称即偶函数:()()f x f x -=函数关于直线 x a =对称:()()f x a f a x +=-或()(2)f x f a x =-或 者 (2)()f x a f x +=-函数关于点(a,b )对称:f(x+a)+f(a-x)=2b1.f(x)是定义在R 上的以3为周期的奇函数,且f(2)=0在区间(0,6)内解的个数的最小值是 A .2; B .3; C .4; D .5 ( )2.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .53.已知f(x)是R 上的偶函数,对R x ∈都有f(x +6)=f(x)+f(3)成立,若f(1)=2,则f(2011)=( )A 、2005B 、2C 、1D 、04. 设f (x )是定义在R 上以6为周期的函数,f (x )在(0,3)内单调递减,且y=f (x )的图象关于直线x=3对称,则下面正确的结论是 ( )(A)()()()1.5 3.5 6.5f f f <<; (B )()()()3.5 1.5 6.5f f f <<; (C)()()()6.5 3.5 1.5f f f <<; (D)()()()3.5 6.5 1.5f f f <<5.设函数()f x 与()g x 的定义域是{x R ∈}1x ≠±,函数()f x 是一个偶函数,()g x 是一个奇函数,且1()()1f xg x x -=-,则()f x 等于 A.112-x B.1222-x xC .122-x D.122-x x6.已知定义在R 上的函数f (x )的图象关于)0,43(-成中心对称,且满足f (x )=1)1(),23(=-+-f x f , f (0) = –2,则f (1) + f (2) +…+ f (2010)的值为( )A .–2B .–1C .0D .17.已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则5(())2f f 的值是 A .0 B.12 C.1 D.528.若()f x 是定义在R 上的奇函数,且当x <0时,1()1f x x =+,则1()2f = .9.()y f x =定义域为R ,且对任意x R ∈都有()()()111f x f x f x ++=-,若()21f =f(2009)=_ 10.设f(x)是定义在R 上的奇函数,且y=f(x)的图象关于直线21=x 对称,则f(1)+f(2)+f(3)+f(4)+f(5)= ____。

函数的周期性与对称性

函数的周期性与对称性

函数的周期性与对称性函数是数学中的重要概念之一,它描述了数值之间的对应关系。

在函数的研究中,周期性与对称性是两个重要的性质。

本文将从理论和实际应用的角度,探讨函数的周期性与对称性。

一、周期性函数的周期性是指在一定的范围内,函数的值以一定的规律重复出现。

如果存在一个正数T,对于函数f(x)的定义域内的任意x,有f(x+T) = f(x),则称函数f(x)具有周期T,T是函数的周期。

周期性在数学中广泛应用于波动现象的研究中,如正弦函数和余弦函数就是典型的周期性函数。

以正弦函数为例,函数f(x) = sin(x)的周期为2π,即在每一个2π的区间内,函数的值重复出现。

这种周期性的特征在物理学中非常重要,可以用于描述电磁波、声波等的传播规律。

在实际应用中,周期性函数经常用于天文学、物理学、电路分析等领域。

例如,利用函数的周期性可以预测天体运动的规律,分析电子元件的交流电路,优化信号处理等。

二、对称性函数的对称性是指在某种变换下,函数的值保持不变。

常见的对称性有奇偶对称性和轴对称性。

1. 奇偶对称性函数f(x)具有奇对称性,如果对于定义域内的任意x,有f(-x) = -f(x)。

奇对称函数在坐标系中以原点为对称中心,左右两侧关于y轴对称。

以奇对称函数f(x) = sin(x)为例,可以观察到f(x)关于原点对称。

当x取正值时,f(x)在正半轴上取正值;当x取负值时,f(x)在负半轴上取负值。

函数的奇对称性在数学和工程中都具有广泛应用。

例如在电力系统中,交流电流的正弦波形就是一种典型的奇对称函数。

2. 轴对称性函数f(x)具有轴对称性,如果对于定义域内的任意x,有f(-x) = f(x)。

轴对称函数关于y轴对称,即函数图像关于y轴对称。

以轴对称函数f(x) = x^2为例,可以观察到函数图像在y轴上是对称的。

当x取正值时,f(x)在正半轴上取正值;当x取负值时,f(x)在正半轴上同样取正值。

轴对称函数在几何学和图像处理中有广泛应用。

高一数学函数的对称性与周期性1

高一数学函数的对称性与周期性1

1.函数对称性与周期性知识归纳:一.函数自身的对称性结论结论1. 函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是f (x) + f (2a -x) = 2b推论:函数 y = f (x)的图像关于原点O 对称的充要条件是f (x) + f (-x) = 0结论2. 若函数 y = f (x)满足f (a +x) = f (b -x)那么函数本身的图像关于直线x = 2a b对称,反之亦然。

推论1:函数 y = f (x)的图像关于直线x = a 对称的充要条件是f (a +x) = f (a -x) 即f (x) = f (2a -x)推论2:函数 y = f (x)的图像关于y 轴对称的充要条件是f (x) = f (-x)结论3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(a≠b ),则y = f (x)是周期函数,且2| a -b|是其一个周期。

②若函数y = f (x) 图像同时关于直线x = a 和直线x = b 成轴对称 (a≠b ),则y = f (x)是周期函数,且2| a -b|是其一个周期。

③若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b 成轴对称(a≠b ),则y = f (x)是周期函数,且4| a -b|是其一个周期。

二. 不同函数的对称性结论结论4.函数y = f (x)与y = 2b-f (2a-x)的图像关于点A (a ,b)成中心对称。

结论5.①函数y = f (x)与y = f (2a-x)的图像关于直线x = a成轴对称。

②函数y = f (x)与a-x = f (a-y)的图像关于直线x +y = a成轴对称。

③函数y = f (x)与x-a = f (y + a)的图像关于直线x-y = a成轴对称。

推论:函数y = f (x)的图像与x = f (y)的图像关于直线x = y 成轴对称。

函数的对称性与周期性最新资料

函数的对称性与周期性最新资料

函数的对称性与周期性一、基础知识(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)()()f a x f a x -=+⇔()f x 关于x a =轴对称(当0a =时,就是偶函数)(2)()()()f a x f b x f x -=+⇔关于2a b x +=轴对称 (3)()f x a +是偶函数,则()()f x a f x a +=-+,可得到:()f x 关于x a =轴对称。

① 要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=-+,要与以下的命题区分:若()f x 是偶函数,则()()f x a f x a +=-+⎡⎤⎣⎦:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=-+⎡⎤⎣⎦② 本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称。

2、中心对称的等价描述:(1)()()f a x f a x -=-+⇔()f x 关于(),0a 中心对称(2)()()()f a x f b x f x -=-+⇔关于,02a b +⎛⎫ ⎪⎝⎭中心对称 在已知对称中心的情况下,构造形如()()f a x f b x -=-+的等式同样需注意两点,一是等式两侧f 和x 前面的符号均相反;二是,a b 的取值保证2a b x +=为所给对称中心即可。

例如:()f x 关于()1,0-中心对称()()2f x f x ⇒=---,或得到()()35f x f x -=--+均可,同样在求函数值方面,一侧是()f x 更为方便(3)()f x a +是奇函数,则()()f x a f x a +=--+,进而可得到:()f x 关于(),0a 中心对称。

函数的对称性与周期性

函数的对称性与周期性

函数的对称性与周期性函数是数学中的重要概念之一,也是实际问题建模时必不可少的工具。

在函数的研究中,对称性和周期性是两个重要的特性,它们在解决问题时具有重要的意义。

一、对称性对称性是指当函数中存在一些特定的点、直线或面对称时,函数会出现相应的特征变化。

在函数研究中,对称性分为奇偶对称性、轴对称性和中心对称性三种类型。

1.1 奇偶对称性在定义域上对函数进行某种变换,若此时函数值不变,则称函数具有对称性。

其中,奇偶对称是一种特殊的对称性。

若函数$f(x)$满足$f(-x)=f(x)$,即对于定义域上任意一个$x$,都有$f(-x)=f(x)$成立,则函数$f(x)$具有奇函数对称性。

若函数$f(x)$满足$f(-x)=f(x)$且$f(x)$具有偶函数性质,即对于定义域上任意$x$都有$f(-x)=f(x)$,且对于定义域上任意$x$都有$f(-x)=f(x)$成立,则$f(x)$具有偶函数对称性。

1.2 轴对称性对于定义域上的任意一个$x$,若函数$f(x)$等于一个定值减去该点处的函数值,则称函数$f(x)$具有轴对称性。

定义域上的这条轴称为对称轴。

轴对称性表明函数$f(x)$在对称轴两侧的函数值相等。

1.3 中心对称性对于定义域的任意一个$x$,若函数$f(x)$与以坐标系原点为中心的另一个点对称,则称函数$f(x)$具有中心对称性。

中心对称性表明函数$f(x)$在以原点为中心的圆形中的两侧具有对称性。

二、周期性周期性是指函数具有在某一定量级范围内重复的规律性。

对于函数$f(x)$,若存在正数$T$,使得对于定义域上的任何一个$x$,都有$f(x+T)=f(x)$成立,则函数$f(x)$是周期函数,其中最小正周期为$T$。

具有周期性的函数,其解析式通常为三角函数式。

结论函数在解决实际问题时,对称性和周期性的特性具有重要的意义。

它们可以用来研究函数的性质、求函数的极值、判别函数的奇偶性、求证某些理论结论等。

函数周期性与对称性

函数周期性与对称性

函数周期性与对称性函数周期性和对称性是数学中重要的概念,它们在函数的图像以及数学建模中都起着关键的作用。

在本文中,我将详细介绍函数的周期性和对称性,并探讨它们在实际问题中的应用。

一、周期性周期性是指函数具有重复性质,在一定区间内的函数值是相同的或者是呈规律性变化的。

如果存在一个正数T,使得对于任意的x,有f(x+T)=f(x),则称函数f具有周期T。

例如,正弦函数sin(x)是一个周期为2π的函数。

无论x取何值,sin(x+2π)的值与sin(x)的值相同。

同样地,余弦函数cos(x)也是一个周期为2π的函数。

周期性在物理学和工程学等领域中有广泛的应用。

例如,声音波动、机械振动和电信号的周期性都可以用周期函数进行建模。

通过分析周期性可以得到这些现象的规律和特性。

二、对称性对称性是指函数图像在某种变换下具有不变性。

常见的对称性有轴对称和中心对称两种。

1. 轴对称:如果对于函数f(x),存在一个实数a,使得对于任意的x,有f(2a-x)=f(x),则称函数f具有轴对称。

例如,抛物线函数y=x^2是一个关于y轴对称的函数。

对于任意的x,有x^2=(-x)^2,即函数值关于y轴对称。

2. 中心对称:如果对于函数f(x),存在一个实数a,使得对于任意的x,有f(2a-x)=-f(x),则称函数f具有中心对称。

例如,奇函数f(x)=sin(x)是一个关于原点对称的函数。

对于任意的x,有sin(-x)=-sin(x),即函数值关于原点对称。

对称性在几何学、物理学和图像处理等领域中有重要的应用。

例如,通过分析图像的对称性,可以简化计算或者提取图像中的关键特征。

综上所述,函数周期性和对称性是数学中两个重要的概念。

周期性描述了函数重复规律的特性,对于模拟和分析周期性现象非常有用;而对称性则描述了函数图像在变换下不变的性质,对于建模和处理图像有重要应用。

通过理解和应用函数周期性和对称性,我们能更好地理解数学背后的规律,并将其用于实际问题的解决。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的对称性与周期性一、相关结论1.关于x 轴、y 轴、原点、x y =对称 2.周期性(内同)① 若)()(x f T x f =+(0≠T ),则)(x f 为周期函数,T 为一个周期。

② 若)()(b x f a x f +=+(b a ≠),则)(x f 为周期函数,||a b -为一个周期。

③ 若)()(x f a x f -=+(0≠a ),则)(x f 为周期函数,a 2为一个周期。

④ 若)(1)(x f a x f =+(0≠a ),则)(x f 为周期函数,a 2为一个周期。

3.自对称性(内反)①若)()(x b f x a f -=+,则)(x f 的图像关于直线2ba x +=对称;特别地,若)()(x a f x a f -=+,则)(x f 的图像关于直线a x =对称;0=a 为偶函数。

②若)()(x b f x a f --=+,则)(x f 的图像关于点)0,2(ba +对称;特别地,若)()(x a f x a f --=+,则)(x f 的图像关于点)0,(a 对称;0=a 为奇函数。

③若c x b f x a f =-++)()(,则)(x f 的图像关于点)2,2(cb a +对称。

4.互对称性①函数)(x a f y +=与函数)(x b f y -=的图像关于直线2ab x -=对称; ②函数)(x a f y +=与函数)(x b f y --=的图像关于点)0,2(ab -对称;③函数)(x a f y +=与函数)(x a f y -=的图像关于直线0=x 对称。

5. 对称性与周期性的关系①若)(x f 的图像有两条对称轴a x =和b x =(b a ≠),则)(x f 为周期函数,||2a b -为一个周期。

②若)(x f 的图像有两个对称中心)0,(a 和)0,(b (b a ≠),则)(x f 为周期函数,||2a b -为一个周期。

若)(x f 的图像有一条对称轴a x =和一个对称中心)0,(b (b a ≠),则)(x f 为周期函数,||4a b -为一个周期。

二、基础练习1.已知定义在}0|{≠x x 上的奇函数)(x f ,在区间)0(∞+,上单调递增,且0)21(=f ,若ABC ∆的内角A 满足0)(cos <A f ,则角A 的取值范围是( ) A .),32(ππ B .),(23ππ C .),(323ππ D .),32()2,3(ππππ2.定义在R 上偶函数)(x f 满足)2()(+=x f x f ,当43≤≤x 时,2)(-=x x f ,则( )A )(cos )(sin 2121f f <B )(cos )(sin 33ππf f >C )1(cos )1(sin f f <D )(cos )(sin 2323f f >3.设)(x f 是以3为周期的奇函数,若1)1(>f ,a f =)2(,则下列结论正确的是( ) A .2>a B .2-<a C .1>a D .1-<a4.定义在R 上的函数)(x f y =满足:)()(x f x f -=-,)1()1(x f x f -=+,且当]1,1[-∈x 时,3)(x x f =,则=)2010(f ( )A .1-B .0C .1D .25.设)(x f y =是R 上的偶函数,0)0(=f ,)(x g y =是R 上的奇函数,且对于R x ∈恒有)1()(+=x f x g ,则=)2008(f ________6.对于定义在R 上的函数)(x f ,有下列三个命题:①若)(x f 是奇函数,则)1(-=x f y 的图像关于直线1=x 对称;②若对于任意R x ∈有)1()1(-=+x f x f ,则)(x f y =的图像关于点)0,1(对称;③)1(-=x f y 的图像关于直线1=x 对称,则)(x f y =为偶函数。

其中正确命题的序号为___________7.若存在常数0>p ,使得函数)(x f 满足)2()(ppx f px f -=(R x ∈),则)(x f 的一个周期为___________8.定义在]2,2[-上的偶函数)(x f ,在区间]2,0[上单调递减,若)()1(m f m f <-,则实数m 的取值范围是___________三、补充练习1.设对任意,满足且方程恰有6个不同的实根,则此六个实根之和为( )A .18B .12C .9D .0 2.若的图象关于直线对称,则( )A .B .C .D . 3.定义在R 上的非常数函数满足:f (10+x)为偶函数,且f (5-x) = f (5+x),则f (x)一定是( )(A)是偶函数,也是周期函数 (B)是偶函数,但不是周期函数 (C)是奇函数,也是周期函数 (D)是奇函数,但不是周期函数 4.设定义域为R 的函数y = f (x)、y = g(x)都有反函数,并且f(x -1)和g-1(x -2)函数的图像关于直线y = x 对称,若g(5) = 1999,那么f(4)=( )。

1999; (B )2000; (C )2001; (D )2002。

5. 设f(x)是定义在R 上的奇函数,且f(x+2)= -f(x),当0≤x ≤1时,f (x) = x ,则f (7.5 ) = ( )(A) 0.5(B) -0.5(C) 1.5(D) -1.56.函数 y = sin (2x + 25π)的图像的一条对称轴的方程是( ) (A) x = -2π (B) x = -4π (C) x = 8π(D) x =45π7.已知是定义在实数集R 上的偶函数,是R 上的奇函数,又知(1)(是常数);(2),则的值为8.函数的图象关于直线对称,且时,则当时,的解析式为 。

9.已知定义在实数集R 上的函数满足:(1);(2);(3)当时解析式为,当时,求函数的解析式。

参考答案:1D ,2C ,3D ,4C ;5.0;6.①③;7.2p;8. ]21,1[-提示:3.∵)()3(x f x f =-∴1)1()31()2()2(-<-=--=--=f f f f 4. ∵)1()]1([)1()1(--=--=-=+x f x f x f x f , ∴)(]1)1[()]1(1[)2(x f x f x f x f -=-+-=++=+,∴)()]([)2()]2(2[)4(x f x f f x f x f x f =--=+-=++=+,∴4=T5. )1()1()()(+-=+-⇒-=-x f x f x g x g ,)1()1()()(-=+-⇒=-x f x f x f x f ,∴)1()1(+-=-x f x f 即)2()(+-=x f x f ,∴)()4(x f x f =+即4=T7. 令2p px t -=,则)()2(t f p t f =+,2p T = 8. |)(||)1(|m f m f <-⇒]21,1[-补充练习答案: 1解:依条件知图象关于直线对称,方程六个根必分布在对称轴两侧,且两两对应以(3,0)点为对称中心,故,所以,选A 。

2解:由得)24sin()24cos(-x a x -+-=ππ)8(2sin )8(2cos ππ----=x a x即∴3解:∵f (10+x)为偶函数,∴f (10+x) = f (10-x).∴f (x)有两条对称轴 x = 5与x =10 ,因此f (x)是以10为其一个周期的周期函数, ∴x =0即y 轴也是f (x)的对称轴,因此f (x)还是一个偶函数。

故选(A)4解:∵y = f(x -1)和y = g-1(x -2)函数的图像关于直线y = x 对称,∴y = g-1(x -2) 反函数是y = f(x -1),而y = g-1(x -2)的反函数是:y = 2 + g(x),∴f(x -1) = 2 + g(x), ∴有f(5-1) = 2 + g(5)=2001,故f(4) = 2001,应选(C ) 5解::∵y = f (x)是定义在R 上的奇函数,∴点(0,0)是其对称中心; 又∵f (x+2 )= -f (x) = f (-x),即f (1+ x) = f (1-x), ∴直线x = 1是y = f (x) 对称轴,故y = f (x)是周期为4的周期函数。

∴f (7.5 ) = f (8-0.5 ) = f (-0.5 ) = -f (0.5 ) =-0.5 故选(B) 6解:函数 y = sin (2x +25π)的图像的所有对称轴的方程是2x + 25π = k π+2π∴x =2πk -π,显然取k = 1时的对称轴方程是x = -2π 故选(A) 7解:由条件(2)知,令,则,故,即为以4为周期的周期函数,又由,所以8解:依条件,设,则,故 9解当时,,当时,,1.函数对称性与周期性知识归纳:一.函数自身的对称性结论结论1. 函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是f (x) + f (2a -x) = 2b证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P ‘(2a -x ,2b -y )也在y = f (x)图像上,∴ 2b -y = f (2a -x) 即y + f (2a -x)=2b 故f (x) + f (2a -x) = 2b ,必要性得证。

(充分性)设点P(x 0,y 0)是y = f (x)图像上任一点,则y 0 = f (x 0) ∵ f (x) + f (2a -x) =2b ∴f (x 0) + f (2a -x 0) =2b ,即2b -y 0 = f (2a -x 0) 。

故点P ‘(2a -x 0,2b -y 0)也在y = f (x) 图像上,而点P 与点P ‘关于点A (a ,b)对称,充分性得征。

推论:函数 y = f (x)的图像关于原点O 对称的充要条件是f (x) + f (-x) = 0结论2. 若函数 y = f (x)满足f (a +x) = f (b -x)那么函数本身的图像关于直线x = 2a b +对称,反之亦然。

证明 :已知对于任意的00,x y 都有f(a+0x ) =f(b -0x )=0y 令a+0x ='x , b -0x ="x则A('x ,0y ),B("x ,0y )是函数y=f(x)上的点显然,两点是关于x= 2a b+对称的。

相关文档
最新文档