函数的对称性与周期性
函数的对称与周期
函数的对称与周期在数学中,函数的对称和周期是重要的概念。
它们不仅在数学理论中有着广泛的应用,而且在实际问题中也有着重要的意义。
本文将探讨函数的对称性和周期性,并分别对两个概念进行详细说明。
一、函数的对称性函数的对称性是指函数图像关于某个轴、点或面具有对称的性质。
在这里,我将介绍函数的三种常见对称性:关于y轴对称、关于x轴对称和关于原点对称。
1. 关于y轴对称如果函数f(x)满足f(-x)=f(x),那么它具有关于y轴对称的性质。
这意味着函数图像在y轴上的任意一点关于y轴有对称的点。
例如,函数f(x)=x^2就是一个关于y轴对称的函数,因为f(-x)=(-x)^2=x^2。
2. 关于x轴对称如果函数f(x)满足f(x)=-f(x),那么它具有关于x轴对称的性质。
这意味着函数图像在x轴上的任意一点关于x轴有对称的点。
例如,函数f(x)=sin(x)就是一个关于x轴对称的函数,因为sin(-x)=-sin(x)。
3. 关于原点对称如果函数f(x)满足f(-x)=-f(x),那么它具有关于原点对称的性质。
这意味着函数图像在原点上的任意一点关于原点有对称的点。
例如,函数f(x)=x^3就是一个关于原点对称的函数,因为f(-x)=(-x)^3=-x^3。
二、函数的周期性函数的周期性是指函数在某个间隔内具有重复的性质。
在函数图像中,这个间隔被称为函数的周期。
常见的周期函数有正弦函数和余弦函数。
1. 正弦函数正弦函数f(x)=sin(x)是一个以2π为周期的函数。
也就是说,对于任意的实数k,f(x+k*2π)=f(x)。
正弦函数的图像是一个波浪状的曲线,它在每个2π的间隔内重复。
2. 余弦函数余弦函数f(x)=cos(x)也是一个以2π为周期的函数。
也就是说,对于任意的实数k,f(x+k*2π)=f(x)。
余弦函数的图像也是一个波浪状的曲线,它和正弦函数的图像非常相似,只是相位有所不同。
函数的对称性和周期性在数学中有着广泛的应用。
函数点对称线对称及周期总结
函数点对称线对称及周期总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII函数对称性、周期性全解析函数对称性、周期性是函数这一部分在历年高考中的一个重点,现在全部解析如下:一、同一函数的周期性、对称性问题(即函数自身)1、周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。
如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。
2、对称性定义(略),请用图形来理解。
3、对称性:我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =-奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的探讨:(1)函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。
得证。
若写成:)()(x b f x a f -=+,函数)(x f y =关于直线22)()(b a x b x a x +=-++= 对称 (2)函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。
函数周期性与对称性
函数周期性与对称性一、函数周期:对任意的x D ∈,都有()()f x T f x +=,则T 叫做函数()f x 的周期 例如:求11()()(),(),()()1()f x f x a f x f x a f x a f x f x -+=-+=+=+的周期 二、对称性:函数关于原点对称即奇函数:()()f x f x -=- 函数关于y 对称即偶函数:()()f x f x -=函数关于直线 x a =对称:()()f x a f a x +=-或()(2)f x f a x =-或 者 (2)()f x a f x +=-函数关于点(a,b )对称:f(x+a)+f(a-x)=2b1.f(x)是定义在R 上的以3为周期的奇函数,且f(2)=0在区间(0,6)内解的个数的最小值是 A .2; B .3; C .4; D .5 ( )2.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .53.已知f(x)是R 上的偶函数,对R x ∈都有f(x +6)=f(x)+f(3)成立,若f(1)=2,则f(2011)=( )A 、2005B 、2C 、1D 、04. 设f (x )是定义在R 上以6为周期的函数,f (x )在(0,3)内单调递减,且y=f (x )的图象关于直线x=3对称,则下面正确的结论是 ( )(A)()()()1.5 3.5 6.5f f f <<; (B )()()()3.5 1.5 6.5f f f <<; (C)()()()6.5 3.5 1.5f f f <<; (D)()()()3.5 6.5 1.5f f f <<5.设函数()f x 与()g x 的定义域是{x R ∈}1x ≠±,函数()f x 是一个偶函数,()g x 是一个奇函数,且1()()1f xg x x -=-,则()f x 等于 A.112-x B.1222-x xC .122-x D.122-x x6.已知定义在R 上的函数f (x )的图象关于)0,43(-成中心对称,且满足f (x )=1)1(),23(=-+-f x f , f (0) = –2,则f (1) + f (2) +…+ f (2010)的值为( )A .–2B .–1C .0D .17.已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则5(())2f f 的值是 A .0 B.12 C.1 D.528.若()f x 是定义在R 上的奇函数,且当x <0时,1()1f x x =+,则1()2f = .9.()y f x =定义域为R ,且对任意x R ∈都有()()()111f x f x f x ++=-,若()21f =f(2009)=_ 10.设f(x)是定义在R 上的奇函数,且y=f(x)的图象关于直线21=x 对称,则f(1)+f(2)+f(3)+f(4)+f(5)= ____。
函数的周期性与对称性
函数的周期性与对称性函数是数学中的重要概念之一,它描述了数值之间的对应关系。
在函数的研究中,周期性与对称性是两个重要的性质。
本文将从理论和实际应用的角度,探讨函数的周期性与对称性。
一、周期性函数的周期性是指在一定的范围内,函数的值以一定的规律重复出现。
如果存在一个正数T,对于函数f(x)的定义域内的任意x,有f(x+T) = f(x),则称函数f(x)具有周期T,T是函数的周期。
周期性在数学中广泛应用于波动现象的研究中,如正弦函数和余弦函数就是典型的周期性函数。
以正弦函数为例,函数f(x) = sin(x)的周期为2π,即在每一个2π的区间内,函数的值重复出现。
这种周期性的特征在物理学中非常重要,可以用于描述电磁波、声波等的传播规律。
在实际应用中,周期性函数经常用于天文学、物理学、电路分析等领域。
例如,利用函数的周期性可以预测天体运动的规律,分析电子元件的交流电路,优化信号处理等。
二、对称性函数的对称性是指在某种变换下,函数的值保持不变。
常见的对称性有奇偶对称性和轴对称性。
1. 奇偶对称性函数f(x)具有奇对称性,如果对于定义域内的任意x,有f(-x) = -f(x)。
奇对称函数在坐标系中以原点为对称中心,左右两侧关于y轴对称。
以奇对称函数f(x) = sin(x)为例,可以观察到f(x)关于原点对称。
当x取正值时,f(x)在正半轴上取正值;当x取负值时,f(x)在负半轴上取负值。
函数的奇对称性在数学和工程中都具有广泛应用。
例如在电力系统中,交流电流的正弦波形就是一种典型的奇对称函数。
2. 轴对称性函数f(x)具有轴对称性,如果对于定义域内的任意x,有f(-x) = f(x)。
轴对称函数关于y轴对称,即函数图像关于y轴对称。
以轴对称函数f(x) = x^2为例,可以观察到函数图像在y轴上是对称的。
当x取正值时,f(x)在正半轴上取正值;当x取负值时,f(x)在正半轴上同样取正值。
轴对称函数在几何学和图像处理中有广泛应用。
高一数学函数的对称性与周期性1
1.函数对称性与周期性知识归纳:一.函数自身的对称性结论结论1. 函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是f (x) + f (2a -x) = 2b推论:函数 y = f (x)的图像关于原点O 对称的充要条件是f (x) + f (-x) = 0结论2. 若函数 y = f (x)满足f (a +x) = f (b -x)那么函数本身的图像关于直线x = 2a b对称,反之亦然。
推论1:函数 y = f (x)的图像关于直线x = a 对称的充要条件是f (a +x) = f (a -x) 即f (x) = f (2a -x)推论2:函数 y = f (x)的图像关于y 轴对称的充要条件是f (x) = f (-x)结论3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(a≠b ),则y = f (x)是周期函数,且2| a -b|是其一个周期。
②若函数y = f (x) 图像同时关于直线x = a 和直线x = b 成轴对称 (a≠b ),则y = f (x)是周期函数,且2| a -b|是其一个周期。
③若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b 成轴对称(a≠b ),则y = f (x)是周期函数,且4| a -b|是其一个周期。
二. 不同函数的对称性结论结论4.函数y = f (x)与y = 2b-f (2a-x)的图像关于点A (a ,b)成中心对称。
结论5.①函数y = f (x)与y = f (2a-x)的图像关于直线x = a成轴对称。
②函数y = f (x)与a-x = f (a-y)的图像关于直线x +y = a成轴对称。
③函数y = f (x)与x-a = f (y + a)的图像关于直线x-y = a成轴对称。
推论:函数y = f (x)的图像与x = f (y)的图像关于直线x = y 成轴对称。
函数的对称性与周期性最新资料
函数的对称性与周期性一、基础知识(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)()()f a x f a x -=+⇔()f x 关于x a =轴对称(当0a =时,就是偶函数)(2)()()()f a x f b x f x -=+⇔关于2a b x +=轴对称 (3)()f x a +是偶函数,则()()f x a f x a +=-+,可得到:()f x 关于x a =轴对称。
① 要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=-+,要与以下的命题区分:若()f x 是偶函数,则()()f x a f x a +=-+⎡⎤⎣⎦:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=-+⎡⎤⎣⎦② 本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称。
2、中心对称的等价描述:(1)()()f a x f a x -=-+⇔()f x 关于(),0a 中心对称(2)()()()f a x f b x f x -=-+⇔关于,02a b +⎛⎫ ⎪⎝⎭中心对称 在已知对称中心的情况下,构造形如()()f a x f b x -=-+的等式同样需注意两点,一是等式两侧f 和x 前面的符号均相反;二是,a b 的取值保证2a b x +=为所给对称中心即可。
例如:()f x 关于()1,0-中心对称()()2f x f x ⇒=---,或得到()()35f x f x -=--+均可,同样在求函数值方面,一侧是()f x 更为方便(3)()f x a +是奇函数,则()()f x a f x a +=--+,进而可得到:()f x 关于(),0a 中心对称。
函数的对称性与周期性
函数的对称性与周期性函数是数学中的重要概念之一,也是实际问题建模时必不可少的工具。
在函数的研究中,对称性和周期性是两个重要的特性,它们在解决问题时具有重要的意义。
一、对称性对称性是指当函数中存在一些特定的点、直线或面对称时,函数会出现相应的特征变化。
在函数研究中,对称性分为奇偶对称性、轴对称性和中心对称性三种类型。
1.1 奇偶对称性在定义域上对函数进行某种变换,若此时函数值不变,则称函数具有对称性。
其中,奇偶对称是一种特殊的对称性。
若函数$f(x)$满足$f(-x)=f(x)$,即对于定义域上任意一个$x$,都有$f(-x)=f(x)$成立,则函数$f(x)$具有奇函数对称性。
若函数$f(x)$满足$f(-x)=f(x)$且$f(x)$具有偶函数性质,即对于定义域上任意$x$都有$f(-x)=f(x)$,且对于定义域上任意$x$都有$f(-x)=f(x)$成立,则$f(x)$具有偶函数对称性。
1.2 轴对称性对于定义域上的任意一个$x$,若函数$f(x)$等于一个定值减去该点处的函数值,则称函数$f(x)$具有轴对称性。
定义域上的这条轴称为对称轴。
轴对称性表明函数$f(x)$在对称轴两侧的函数值相等。
1.3 中心对称性对于定义域的任意一个$x$,若函数$f(x)$与以坐标系原点为中心的另一个点对称,则称函数$f(x)$具有中心对称性。
中心对称性表明函数$f(x)$在以原点为中心的圆形中的两侧具有对称性。
二、周期性周期性是指函数具有在某一定量级范围内重复的规律性。
对于函数$f(x)$,若存在正数$T$,使得对于定义域上的任何一个$x$,都有$f(x+T)=f(x)$成立,则函数$f(x)$是周期函数,其中最小正周期为$T$。
具有周期性的函数,其解析式通常为三角函数式。
结论函数在解决实际问题时,对称性和周期性的特性具有重要的意义。
它们可以用来研究函数的性质、求函数的极值、判别函数的奇偶性、求证某些理论结论等。
函数周期性与对称性
函数周期性与对称性函数周期性和对称性是数学中重要的概念,它们在函数的图像以及数学建模中都起着关键的作用。
在本文中,我将详细介绍函数的周期性和对称性,并探讨它们在实际问题中的应用。
一、周期性周期性是指函数具有重复性质,在一定区间内的函数值是相同的或者是呈规律性变化的。
如果存在一个正数T,使得对于任意的x,有f(x+T)=f(x),则称函数f具有周期T。
例如,正弦函数sin(x)是一个周期为2π的函数。
无论x取何值,sin(x+2π)的值与sin(x)的值相同。
同样地,余弦函数cos(x)也是一个周期为2π的函数。
周期性在物理学和工程学等领域中有广泛的应用。
例如,声音波动、机械振动和电信号的周期性都可以用周期函数进行建模。
通过分析周期性可以得到这些现象的规律和特性。
二、对称性对称性是指函数图像在某种变换下具有不变性。
常见的对称性有轴对称和中心对称两种。
1. 轴对称:如果对于函数f(x),存在一个实数a,使得对于任意的x,有f(2a-x)=f(x),则称函数f具有轴对称。
例如,抛物线函数y=x^2是一个关于y轴对称的函数。
对于任意的x,有x^2=(-x)^2,即函数值关于y轴对称。
2. 中心对称:如果对于函数f(x),存在一个实数a,使得对于任意的x,有f(2a-x)=-f(x),则称函数f具有中心对称。
例如,奇函数f(x)=sin(x)是一个关于原点对称的函数。
对于任意的x,有sin(-x)=-sin(x),即函数值关于原点对称。
对称性在几何学、物理学和图像处理等领域中有重要的应用。
例如,通过分析图像的对称性,可以简化计算或者提取图像中的关键特征。
综上所述,函数周期性和对称性是数学中两个重要的概念。
周期性描述了函数重复规律的特性,对于模拟和分析周期性现象非常有用;而对称性则描述了函数图像在变换下不变的性质,对于建模和处理图像有重要应用。
通过理解和应用函数周期性和对称性,我们能更好地理解数学背后的规律,并将其用于实际问题的解决。
完整版)常见函数对称性和周期性
完整版)常见函数对称性和周期性二、函数对称性的重要结论一)函数y=f(x)的图像本身的对称性(自身对称)若f(x+a)=±f(x+b),则f(x)具有周期性;若f(a+x)=±f(b-x),则f(x)具有对称性。
即,“内同表示周期性,内反表示对称性”。
1、f(a+x)=f(b-x)⟺y=f(x)的图像关于直线x=(a+b)/2对称。
推论1:f(a+x)=f(a-x)⟺y=f(x)的图像关于直线x=a对称。
推论2、f(x)=f(2a-x)⟺y=f(x)的图像关于直线x=a对称。
推论3、f(-x)=f(2a+x)⟺y=f(x)的图像关于直线x=a对称。
2、f(a+x)+f(b-x)=2c⟺y=f(x)的图像关于点(a+b/2,c)对称。
推论1、f(a+x)+f(a-x)=2b⟺y=f(x)的图像关于点(a,b)对称。
推论2、f(x)+f(2a-x)=2b⟺y=f(x)的图像关于点(a,b)对称。
推论3、f(-x)+f(2a+x)=2b⟺y=f(x)的图像关于点(a,b)对称。
二)两个函数的图像对称性(相互对称)1、偶函数y=f(x)与y=f(-x)的图像关于Y轴对称。
2、奇函数y=f(x)与y=-f(-x)的图像关于原点对称。
3、函数y=f(x)与y=-f(x)的图像关于X轴对称。
4、互为反函数y=f(x)与函数y=f^-1(x)的图像关于直线y=x对称。
5、函数y=f(a+x)与y=f(b-x)的图像关于直线x=(b-a)/2对称。
推论1: 函数y=f(a+x)与y=f(a-x)的图像关于直线x=a对称。
推论2: 函数y=f(x)与y=f(2a-x)的图像关于直线x=a对称。
推论3: 函数y=f(-x)与y=f(2a+x)的图像关于直线x=-a对称。
三、函数周期性的重要结论1、f(x±T)=f(x)(T≠0)⟺y=f(x)的周期为T,kT(k∈Z)也是函数的周期。
2、f(x+a)=f(x+b)⟺y=f(x)的周期为T=b-a。
函数的对称性和周期性
函数的对称性和周期性一、单个函数的对称性性质1:函数()y f x =满足()()f a x f b x +=-时,函数()y f x =的图象关于直线2a bx +=对称。
证明:在函数()y f x =上任取一点11(,)x y ,则11()y f x =,点11(,)x y 关于直线2a bx +=的对称点11(,)a b x y +-,当1x a b x =+-时 11111()[()][()]()f a b x f a b x f b b x f x y +-=+-=--==故点11(,)a b x y +-也在函数()y f x =图象上。
由于点11(,)x y 是图象上任意一点,因此,函数的图象关于直线2a bx +=对称。
(注:特别地,a =b =0时,该函数为偶函数。
)性质2:函数()y f x =满足()()f a x f b x c ++-=时,函数()y f x =的图象关于点(2a b +,2c)对称。
证明:在函数()y f x =上任取一点11(,)x y ,则11()y f x =,点11(,)x y 关于点(2a b +,2c )的对称点(1a b x +-,c -y 1),当1x a b x =+-时,1111()[()]()f a b x c f b b x c f x c y +-=---=-=-即点(1a b x +-,c -y 1)在函数()y f x =的图象上。
由于点11(,)x y 为函数()y f x =图象上的任意一点可知 函数()y f x =的图象关于点(2a b +,2c)对称。
(注:当a =b =c =0时,函数为奇函数。
)性质3:函数()y f a x =+的图象与()y f b x =-的图象关于直线2b ax -=对称。
证明:在函数()y f a x =+上任取一点11(,)x y ,则11()y f a x =+,点11(,)x y 关于直线2b ax -=对称点(1b a x --,y 1)。
函数与函数的对称性与周期性
函数与函数的对称性与周期性函数是数学中的重要概念,它描述了一种关系,将一个自变量映射到一个因变量。
而函数的对称性和周期性是函数研究中的两个重要性质。
它们不仅在数学中有广泛的应用,而且在日常生活中也有很多实际的例子。
一、函数的对称性函数的对称性是指函数在某个特定的变换下保持不变。
常见的对称性有奇偶性、轴对称性和中心对称性。
首先,奇偶性是指当自变量取相反数时,函数值不变。
如果函数f(x)满足f(-x) = f(x),则该函数是偶函数;如果函数f(x)满足f(-x) = -f(x),则该函数是奇函数。
例如,常见的二次函数y = x²就是一个典型的偶函数,而正弦函数sin(x)则是一个典型的奇函数。
奇偶函数通过其特定的对称性带来了许多在数学和物理领域中的应用。
其次,轴对称性是指函数相对于某一条直线对称。
这条直线称为对称轴。
如果函数f(x)满足f(-x) = f(x),则对称轴为y轴;而如果函数f(x)满足f(x) = f(-x),则对称轴为x轴。
例如,二次函数y = x²是以y轴为对称轴的轴对称函数。
最后,中心对称性是指函数相对于一个点对称。
这个点称为中心。
如果函数f(-x) = -f(x),则中心对称。
例如,正弦函数sin(x)就是以原点为中心的中心对称函数。
二、函数的周期性函数的周期性是指函数在特定距离上具有相同的性质或数值。
一个函数f(x)是周期函数,如果存在一个正数T使得对于任意自变量x,有f(x+T) = f(x)。
这个最小的正周期T被称为函数的周期。
常见的周期函数有三角函数(如正弦函数、余弦函数)和指数函数。
以正弦函数为例,它的周期是2π。
即对于任意自变量x,有sin(x+2π)= sin(x)。
而指数函数f(x) = eˣ的周期是无穷大,即对于任意自变量x,有f(x+T) = f(x),其中T可以是任意实数。
周期函数在自然科学和工程技术中有着广泛的应用。
例如,交流电的电流和电压可以被建模为周期函数,这是交流电工程中的一个重要应用。
函数的周期性与对称性
函数的周期性与对称性函数是数学中的重要概念,它描述了因变量与自变量之间的关系。
而函数的周期性与对称性是函数特性中的两个重要方面。
本文将通过介绍周期性和对称性的概念、性质和应用,探讨函数在周期性和对称性方面的重要性。
一、周期性在数学中,周期性是指函数在一定范围内具有重复的规律。
一个函数被称为周期函数,当且仅当对于某个正数T(常称为周期),对于所有的x,有f(x+T)=f(x)成立。
周期函数的图像在周期T内会重复出现。
周期性的性质有以下几点:1. 周期函数的图像在一个周期内具有相同的形状,只是位置不同。
例如,正弦函数sin(x)是一个周期函数,其周期为2π,在每个周期内,函数的图像呈现出相同的波形。
2. 周期函数的周期可以是任意正数T,且T可以大于函数定义域的长度。
例如,正弦函数的定义域为实数集R,但其周期为2π。
这意味着正弦函数在每个2π的间隔内都重复。
3. 余弦函数cos(x)也是一个周期函数,其周期也为2π。
不同的是,余弦函数与正弦函数的图像关于y轴对称。
周期函数的应用十分广泛,例如在物理学、工程学和信号处理等领域中都有重要的应用。
周期函数可以用来描述周期振动、交流电信号的变化以及周期性运动等现象。
二、对称性对称性是指函数在某种变换下具有不变性。
主要有以下几种对称性:1. 奇函数:如果对于函数的每一个定义域上的x,都满足f(-x)=-f(x)成立,则称该函数为奇函数。
奇函数的图像关于原点对称。
例如,正弦函数sin(x)是一个奇函数。
2. 偶函数:如果对于函数的每一个定义域上的x,都满足f(-x)=f(x)成立,则称该函数为偶函数。
偶函数的图像关于y轴对称。
例如,余弦函数cos(x)是一个偶函数。
3. 周期函数的对称性:周期函数的图像具有一定的对称性。
例如,正弦函数与余弦函数在每个周期内具有对称性。
对称函数具有一些重要的性质和应用。
在数学中,奇函数和偶函数具有一些特殊的性质,可以简化函数的运算和分析。
函数的周期性与对称性
【例2】 f(x)是定义在R上的以3 为周期的奇函数,且 f ( 2 )= 0 , 则方程 f ( x )= 0 在区间( 0 , 6 ) 内解的个数的最小值是 ( ) A.2
C.4
B.3
D. 5
【解析】
∵ f ( x )为奇函数, ∴ f ( 0 )= 0 ,又 函数f(x)以3为周期,且f(2)=0, ∴f(-2)=0,f(1)=0,f(4)= 0,f(3)=0,f(5)=0, ∴在区间(0,6)内的解有1,2,3, 4,5.故选D.
3、关于点(a,0)对称
练习:求函数y=f(x)关于点(a,0)对称的解析 式 答案:y=-f(2a-x) 结论:⑴-f(2a-x)与f(x)的图形关于点(a,0)对称
⑵一个函数y=f(x)本身关于点(a,0)对称,有 f(x)=-f(2a-x)即f(x)+f(2a-x)=0
函数周期性解题的一道经典试题
2、关于直线y=b对称 ⑴函数y=f(x)关于x轴(y=0)对称的函数是y=-f(x)
⑵求函数y=f(x)关于直线y=b对称的函数解析式
解:设(x,y)是所求曲线上任意一点,它关于直 线y=b的对称点为(x,y1),从而y1=f(x)而 y1-b=b-y故y1=2b-y,于是y=2b-f(x) 结论:f(x)与g(x)的图象关于直线y=b对称,则 f(x)+g(x)=2b反之也成立
区间上单调性相反
⑵求函数y=f(x)关于直线x=a对称的函数解析 式 解:用相关点法,设(x,y)是所求曲线上任意 一点,则它关于直线x=a的对称点为(x1,y) 在函数y=f(x)图象上,故y=f(x1),而 x1-a=a-x所以x1=2a-x,于是y=f(2a-x)即为 所求 结论:y=f(x)与y=f(2a-x)的图象关于直线x=a 对称
高中数学函数图像的对称与周期性
高中数学函数图像的对称与周期性在高中数学中,函数图像的对称性和周期性是一个非常重要的概念。
对称性是指函数图像关于某个轴或点对称,而周期性是指函数在一定区间内以某个固定的周期重复。
一、对称性1. 关于y轴对称当一个函数图像关于y轴对称时,意味着对于函数中的任意一点(x, y),点(-x, y)也在函数图像上。
这种对称性可以用来简化函数图像的绘制和分析。
例如,考虑函数y = x^2,它是一个二次函数,具有关于y轴对称的性质。
我们可以通过绘制函数图像的一部分,再利用对称性得到完整的图像。
2. 关于x轴对称当一个函数图像关于x轴对称时,意味着对于函数中的任意一点(x, y),点(x, -y)也在函数图像上。
这种对称性也可以用来简化函数图像的绘制和分析。
例如,考虑函数y = sin(x),它是一个正弦函数,具有关于x轴对称的性质。
我们可以通过绘制函数图像的一部分,再利用对称性得到完整的图像。
3. 关于原点对称当一个函数图像关于原点对称时,意味着对于函数中的任意一点(x, y),点(-x, -y)也在函数图像上。
这种对称性同样可以用来简化函数图像的绘制和分析。
例如,考虑函数y = x^3,它是一个三次函数,具有关于原点对称的性质。
我们可以通过绘制函数图像的一部分,再利用对称性得到完整的图像。
二、周期性1. 周期函数周期函数是指在一定区间内以某个固定的周期重复的函数。
周期函数的图像具有一定的规律性,可以通过观察周期来简化函数图像的绘制和分析。
例如,考虑函数y = sin(x),它是一个周期为2π的正弦函数。
我们可以通过绘制一个周期内的函数图像,再利用周期性得到完整的图像。
2. 非周期函数非周期函数是指在任意区间内不以固定周期重复的函数。
非周期函数的图像通常没有明显的规律性,需要通过其他方法进行分析和绘制。
例如,考虑函数y = x^2,它是一个非周期函数。
我们需要根据函数的性质和变化规律来绘制函数图像。
三、举一反三通过对函数图像的对称性和周期性的分析,我们可以得到一些解题技巧和方法。
函数的基本性质(对称性、周期性)
函数的基本性质(对称性、周期性)1、周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。
如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期.2、对称性:(1)轴对称()()f a x f a x +=-⇔函数)(x f y =关于a x =对称注意:)()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称.得证.若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2a b x +=对称. (2)点对称 ()()2f a x f a x b ++-=⇔函数)(x f y =关于点),(b a 对称 b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称.得证.若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2,2(c b a + 对称.3、周期性(1)如果()f x 满足()()()f x a f x b a b +=+≠,则()f x 是周期T a b =-的周期函数.(2)如果()f x 满足()()(0)f x a f x a +=-≠,则()f x 是周期2T a =的周期函数.(3)如果()f x 满足1()(0,()0)()f x a a f x f x +=≠≠且,或1()()f x a f x +=-,则()f x 是周期2T a =的周期函数.(4)若函数()x f 在R 上满足()x a f x a f -=+)(,且()x b f x b f -=+)((其中b a ≠),则函数()x f y =以()b a -2为周期.(5)若函数()x f 在R 上满足()x a f x a f --=+)(,且()x b f x b f --=+)((其中b a ≠),则函数()x f y =以()b a -2为周期.(6)若函数()x f 在R 上满足()x a f x a f -=+)(,且()x b f x b f --=+)((其中b a ≠),则函数()x f y =以()b a -4为周期.4、例题讲解例1、已知定义为R 的函数()x f满足()()4x f x f +-=-,且函数()x f 在区间()∞+,2上单调递增.如果21x 2x <<,且4x x 21<+,则()()21x f x f +的值( )A. 恒小于0B.恒大于0 C .可能为0 D .可正可负 例2、在R 上定义的函数()f x 是偶函数,且()f x (2)f x =-.若()f x 在区间[1,2]上是减函数,则()f x ( )A.在区间[2,1]--上是增函数,在区间[3,4]上是增函数B.在区间[2,1]--上是增函数,在区间[3,4]上是减函数C.在区间[2,1]--上是减函数,在区间[3,4]上是增函数D.在区间[2,1]--上是减函数,在区间[3,4]上是减函数例3、已知()113x f x x+=-,()()1f x f f x =⎡⎤⎣⎦,()()21f x f f x =⎡⎤⎣⎦,…,()()1n n f x f f x +=⎡⎤⎣⎦,则()20042f -=( ). A.17- B. 17C. 35-D.3 例4、已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则5(())2f f 的值是( )A.0B.12C.1D.52例5、()y f x =定义域为R ,且对任意x R ∈都有()()()111f x f x f x ++=-,若()21f =(2009)f =________例6、已知函数f(x)的定义域为N ,且对任意正整数x ,都有f(x)=f(x -1)+f(x +1)若f(0)=2004,求f(2004).例7、已知对于任意a ,b ∈R ,有f(a +b )+f(a -b )=2f(a )f(b ),且f(x )≠0 ⑴求证:f(x )是偶函数;⑵若存在正整数m 使得f(m)=0,求满足f(x +T)=f(x )的一个T 值(T≠0).例8、已知f (x )是R 上的奇函数,且11()()22f x f x +=-,则f (1)+f (2)+f (3)=_______.例9、设奇函数y=f(x)的定义域为R ,f(1)=2,且对任意R x x ∈21,,都有),f(x )f(x )x f(x 2121+=+当x >0时,f(x)是增函数,则函数)(f y 2x -=在区间[-3,-2]上的最大值是____.例10、设)(x f 是定义在区间),(+∞-∞上且以2为周期的函数,对Z k ∈,用k I 表示区间),12,12(+-k k 已知当0I x ∈时,2()f x x =,求)(x f 在k I 上的解析式.例11、设定义在R 上的偶函数()f x 满足(2)(2)f x f x -=+,且当[2,0]x ∈-时()f x 为增函数,若(2)0f -≥.求证:当[4,6]x ∈时,|()|f x 为减函数. 例12、设函数)(x f 定义于R 上,且函数)(x f 不恒为零,0)2(=πf ,若对于任意实数x 、y ,恒有:)2()2(2)()(y x f y x f y f x f -⋅+=+ 求证:①)()2(x f x f =+π ②)()(x f x f -= ③ 1)(2)2(2-=x f x f变式、设函数)(x f 定义于R 上,函数)(x f 不恒为零,且对于任意实数1x 、2x ,有)()()2()2(212121x x f x x f x f x f -⋅+=+求证:)()(x f x f -=.。
(完整版)对称性和周期性性质总结
函数の对称性和周期性一、几个重要の结论(一)函数图象本身の对称性(自身对称)1、函数 )(x f y =满足 )()(x T f x T f -=+(T 为常数)の充要条件是 )(x f y =の图象关于直线 T x =对称。
2、函数 )(x f y =满足 )2()(x T f x f -=(T 为常数)の充要条件是 )(x f y =の图象关于直线 T x =对称。
3、函数 )(x f y =满足 )()(x b f x a f -=+の充要条件是 )(x f y =图象关于直线 22)()(b a x b x a x +=-++=对称。
特殊地,如果a=0,b=0,则其关于x=0即关于y 轴对称,此时)()(x b f x a f -=+变为f(x)=f(-x),其实就是偶函数。
4、如果函数 )(x f y =满足 )()(11x T f x T f -=+且 )()(22x T f x T f -=+,( 1T 和 2T 是不相等の常数),则 )(x f y =是以为 )(212T T -为周期の周期函数。
5、如果偶函数 )(x f y =满足 )()(x T f x T f -=+( 0≠T ),则函数 )(x f y =是以2T 为周期の周期性函数。
6、如果奇函数 )(x f y =满足 )()(x T f x T f -=+( 0≠T ),则函数 )(x f y =是以4T 为周期の周期性函数。
我当初の总结是:函数对称包涵两种:一是点对称,而是线对称,比如偶函数属于线对称,奇函数属于点对称,奇偶函数对称都是关于0.即偶函数关于x=0对称,奇函数关于(0,0)对称。
那么如果一个函数是双重对称,那么该函数就是周期函数,那么什么叫多重对称呢?且看下面列子你就明白了:1, 若函数关于两条线x=a 和x=b 对称(这就叫双重对称),那么该函数一定是周期函数,且周期为2|b-a|。
2, 若函数关于两个点(a,0)和(b,0)(注都是x 轴上の点),那么该函数一定是周期函数,且周期为2|b-a|。
(完整版)函数的对称性与周期性
函数的对称性与周期性吴江市盛泽中学数学组 徐建东对称性:函数图象存在的一种对称关系,包括点对称和线对称。
周期性:设函数)(x f 的定义域是D ,若存在非零常数T ,使得对任何D x ∈,都有D T x ∈+且)()(x f T x f =+,则函数)(x f 为周期函数,T 为)(x f 的一个周期。
对称性和周期性是函数的两大重要性质,他们之间是否存在着内在的联系呢?本文就来研究一下它们之间的内在联系,有不足之处望大家批评指正。
一、一个函数关于两个点对称。
命题1:如果函数)(x f y =的图象关于点)0,(a 和点)0,(b )(a b ≠对称,那么函数)(x f y =是周期函数,)(2b a T -=为函数)(x f y =的一个周期。
证明:∵函数)(x f y =的图象关于点)0,(a 对称,∴)2()(x a f x f --=对定义域内的所有x 成立。
又∵函数)(x f y =的图象关于点)0,(b 对称,∴)2()(x b f x f --=对定义域内的所有x 成立。
从而)2()2(x b f x a f -=-∴)()]2(2[)]2(2[x f x b b f x b a f =--=-- 即:)()])22[(x f x b a f =+- ∴)(x f y =是周期函数,)(2b a T -=为函数)(x f y =的一个周期。
特例:当0=a 时,)(x f y =为奇函数,即奇函数)(x f y =如果又关于点)0,(b )0(≠b 对称,那么函数)(x f y =是周期函数,b T 2=为函数)(x f y =的一个周期。
命题1':如果函数)(x f y =的图象关于两点),(b a 和),(d c 对称,那么: 当d b =,c a ≠时,)(x f y =是周期函数,)(2c a T -=为函数)(x f y =的一个周期。
当d b ≠,c a ≠时,)(x f y =不是周期函数。
函数的对称性与周期性
函数的对称性与周期性补充高一数学知识点——函数的对称性与周期性一、对称性(轴对称、中心对称)函数的对称性是指函数自身具有的对称性,可以分为轴对称和中心对称两种类型。
命题1:若函数y=f(x)对定义域中任意x均有f(a+x)=f(b-x),则函数y=f(x)的图象关于直线x=(a+b)/2对称。
特别地,当f(x) = f(-x)时,函数y=f(x)的图象关于y轴对称;当f(a+x) = f(a-x)时,函数y=f(x)的图象关于直线x=a对称。
命题2:若函数y=f(x)对定义域中任意x均有f(x+a)+f(b-x)=c,则函数y=f(x)的图象关于点(a+b/c,0)成中心对称图形。
特别地,当f(x) + f(-x) = 0时,函数y=f(x)的图象关于原点对称;当f(x) + f(2a-x) = 2b时,函数y=f(x)的图象关于点(a,b)成中心对称图形。
二、周期性1.定义:对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),则称T为这个函数的一个周期。
2.如果函数f(x)是R上的奇函数,且最小正周期为T,那么f(x)=f(-x)。
关于函数的周期性的几个重要性质:1)如果y=f(x)是R上的周期函数,且一个周期为T,那么f(x±nT)=f(x)(n∈Z)。
2)如果f(x+a)=f(x-a),则f(x)的周期T=2a;如果f(x+a)=f(x-a),则f(x)的周期T=2a/T。
三、例题讲解例1]若f(x+a)=f(x)-f(x-a),则f(x)的周期T=6a,请推导。
例2]设f(x)是定义在R上的奇函数,且f(x+2)=-f(x),当-1≤x≤1时,f(x)=x,则f(7.5)=-5.5.例3]已知f(x)是定义在R上的偶函数,并且f(x+2)=-f(x),当2≤x≤3时,f(x)=x,则f(105.5)=103.5.例4]设函数y=f(x)的定义域为R,且满足f(x+1)=f(1-x),则y=f(x)图象关于直线x=1/2对称,y=f(x+1)的图象关于y轴对称。
函数对称性周期性和奇偶性规律总结
函数对称性周期性和奇偶性规律总结
一、函数的对称性
1、定义:
函数的对称性是指函数在满足一些特定条件时,其图像在其中一特定
轴对称的特性。
例如:函数y=f(x)当满足f(-x)=f(x)时,则说函数具有
x轴对称性;若满足f(x)=f(-x)时,则说函数具有y轴对称性。
2、简单的函数对称性推理:
(1)当函数只含有常数项时,看其系数即可判断它是否具有对称性,如果系数都为正,则函数具有x轴对称性,即f(-x)=f(x);如果系数都
为负,则函数具有y轴对称性,即f(x)=f(-x)。
(2)当函数含有一项x的乘方因子时,只要满足乘方因子的指数为
偶数,则说明函数具有x轴对称性;当乘方因子的指数为奇数时,则说明
函数具有y轴对称性。
(3)函数中有分母时,我们可以将分母的部分分开考虑,如果分母
部分满足前面所列出的三种情况,且分子与分母都具有同一种对称性,则
说明函数也具有相同的对称性。
3、函数具有的对称性类型:
(1)函数具有特殊的对称性,比如偶函数、奇函数和极坐标函数等,它们在特定的轴上有着特殊的对称性特点。
(2)除此之外,函数还可以具有一般性的对称性,在满足一定条件时,函数会具有一般的对称性。
二、函数的周期性
1、定义:。
函数的对称性与周期性
在区间[ , ] 上零点的个数为_________.
(2).已知函数 y f (x) 满足 f (x 2) f (x) ,且 x [0,2] 时, f (x) (x 1)2 ,若令函数
g(x) f (x) log5 | x 1| ,则函数 y g(x) 的左右零点之和为(
)
i 1
A. 0
B. m
C. 2m
D. 4m
例
5. 已 知 函 数
f
(x)
| |
x 2 |, x 0 log2 x |, x 0
,
若
关
于
x
的方程
f (x) a
有四个不同的解
x1, x2 , x3, x4 且 x1 x2 x3 x4 ,求 x1x2 x3x4 的取值范围.
(减),则 y f (x) 在 (a kT , b kT ), (k Z ) 上单调增(减).
例 10.(1). 函 数 y f (x) 满 足 f (x) f (4 x) , 当 x [0,4)时,f (x) x2 1 , 求
f (2014) _______.
g(x)
f
(x) ,当
x a 时,g(x) g(2a x) ,若关于 x 的方程 g(x) x a 0 有且仅有一个实数根,则 a
的取值范围为( )
A. (,0] (2,) C. (,1] (2,)
B. (,0] (9 ,) 4
D. (,1] (9 ,) 4
一 般 地 , 若 函 数 y f (x) 满 足 f (a x) f (b x) c , 则 函 数 的 图 象 关 于 点 ( a b , c ) 对称.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的对称性与周期性一、相关结论1.关于x 轴、y 轴、原点、x y =对称 2.周期性(内同)① 若)()(x f T x f =+(0≠T ),则)(x f 为周期函数,T 为一个周期。
② 若)()(b x f a x f +=+(b a ≠),则)(x f 为周期函数,||a b -为一个周期。
③ 若)()(x f a x f -=+(0≠a ),则)(x f 为周期函数,a 2为一个周期。
④ 若)(1)(x f a x f =+(0≠a ),则)(x f 为周期函数,a 2为一个周期。
3.自对称性(内反)①若)()(x b f x a f -=+,则)(x f 的图像关于直线2ba x +=对称;特别地,若)()(x a f x a f -=+,则)(x f 的图像关于直线a x =对称;0=a 为偶函数。
②若)()(x b f x a f --=+,则)(x f 的图像关于点)0,2(ba +对称;特别地,若)()(x a f x a f --=+,则)(x f 的图像关于点)0,(a 对称;0=a 为奇函数。
③若c x b f x a f =-++)()(,则)(x f 的图像关于点)2,2(cb a +对称。
4.互对称性①函数)(x a f y +=与函数)(x b f y -=的图像关于直线2ab x -=对称; ②函数)(x a f y +=与函数)(x b f y --=的图像关于点)0,2(ab -对称;③函数)(x a f y +=与函数)(x a f y -=的图像关于直线0=x 对称。
5. 对称性与周期性的关系①若)(x f 的图像有两条对称轴a x =和b x =(b a ≠),则)(x f 为周期函数,||2a b -为一个周期。
②若)(x f 的图像有两个对称中心)0,(a 和)0,(b (b a ≠),则)(x f 为周期函数,||2a b -为一个周期。
若)(x f 的图像有一条对称轴a x =和一个对称中心)0,(b (b a ≠),则)(x f 为周期函数,||4a b -为一个周期。
二、基础练习1.已知定义在}0|{≠x x 上的奇函数)(x f ,在区间)0(∞+,上单调递增,且0)21(=f ,若ABC ∆的内角A 满足0)(cos <A f ,则角A 的取值范围是( ) A .),32(ππ B .),(23ππ C .),(323ππ D .),32()2,3(ππππ2.定义在R 上偶函数)(x f 满足)2()(+=x f x f ,当43≤≤x 时,2)(-=x x f ,则( )A )(cos )(sin 2121f f <B )(cos )(sin 33ππf f >C )1(cos )1(sin f f <D )(cos )(sin 2323f f >3.设)(x f 是以3为周期的奇函数,若1)1(>f ,a f =)2(,则下列结论正确的是( ) A .2>a B .2-<a C .1>a D .1-<a4.定义在R 上的函数)(x f y =满足:)()(x f x f -=-,)1()1(x f x f -=+,且当]1,1[-∈x 时,3)(x x f =,则=)2010(f ( )A .1-B .0C .1D .25.设)(x f y =是R 上的偶函数,0)0(=f ,)(x g y =是R 上的奇函数,且对于R x ∈恒有)1()(+=x f x g ,则=)2008(f ________6.对于定义在R 上的函数)(x f ,有下列三个命题:①若)(x f 是奇函数,则)1(-=x f y 的图像关于直线1=x 对称;②若对于任意R x ∈有)1()1(-=+x f x f ,则)(x f y =的图像关于点)0,1(对称;③)1(-=x f y 的图像关于直线1=x 对称,则)(x f y =为偶函数。
其中正确命题的序号为___________7.若存在常数0>p ,使得函数)(x f 满足)2()(ppx f px f -=(R x ∈),则)(x f 的一个周期为___________8.定义在]2,2[-上的偶函数)(x f ,在区间]2,0[上单调递减,若)()1(m f m f <-,则实数m 的取值范围是___________三、补充练习1.设对任意,满足且方程恰有6个不同的实根,则此六个实根之和为( )A .18B .12C .9D .0 2.若的图象关于直线对称,则( )A .B .C .D . 3.定义在R 上的非常数函数满足:f (10+x)为偶函数,且f (5-x) = f (5+x),则f (x)一定是( )(A)是偶函数,也是周期函数 (B)是偶函数,但不是周期函数 (C)是奇函数,也是周期函数 (D)是奇函数,但不是周期函数 4.设定义域为R 的函数y = f (x)、y = g(x)都有反函数,并且f(x -1)和g-1(x -2)函数的图像关于直线y = x 对称,若g(5) = 1999,那么f(4)=( )。
1999; (B )2000; (C )2001; (D )2002。
5. 设f(x)是定义在R 上的奇函数,且f(x+2)= -f(x),当0≤x ≤1时,f (x) = x ,则f (7.5 ) = ( )(A) 0.5(B) -0.5(C) 1.5(D) -1.56.函数 y = sin (2x + 25π)的图像的一条对称轴的方程是( ) (A) x = -2π (B) x = -4π (C) x = 8π(D) x =45π7.已知是定义在实数集R 上的偶函数,是R 上的奇函数,又知(1)(是常数);(2),则的值为8.函数的图象关于直线对称,且时,则当时,的解析式为 。
9.已知定义在实数集R 上的函数满足:(1);(2);(3)当时解析式为,当时,求函数的解析式。
参考答案:1D ,2C ,3D ,4C ;5.0;6.①③;7.2p;8. ]21,1[-提示:3.∵)()3(x f x f =-∴1)1()31()2()2(-<-=--=--=f f f f 4. ∵)1()]1([)1()1(--=--=-=+x f x f x f x f , ∴)(]1)1[()]1(1[)2(x f x f x f x f -=-+-=++=+,∴)()]([)2()]2(2[)4(x f x f f x f x f x f =--=+-=++=+,∴4=T5. )1()1()()(+-=+-⇒-=-x f x f x g x g ,)1()1()()(-=+-⇒=-x f x f x f x f ,∴)1()1(+-=-x f x f 即)2()(+-=x f x f ,∴)()4(x f x f =+即4=T7. 令2p px t -=,则)()2(t f p t f =+,2p T = 8. |)(||)1(|m f m f <-⇒]21,1[-补充练习答案: 1解:依条件知图象关于直线对称,方程六个根必分布在对称轴两侧,且两两对应以(3,0)点为对称中心,故,所以,选A 。
2解:由得)24sin()24cos(-x a x -+-=ππ)8(2sin )8(2cos ππ----=x a x即∴3解:∵f (10+x)为偶函数,∴f (10+x) = f (10-x).∴f (x)有两条对称轴 x = 5与x =10 ,因此f (x)是以10为其一个周期的周期函数, ∴x =0即y 轴也是f (x)的对称轴,因此f (x)还是一个偶函数。
故选(A)4解:∵y = f(x -1)和y = g-1(x -2)函数的图像关于直线y = x 对称,∴y = g-1(x -2) 反函数是y = f(x -1),而y = g-1(x -2)的反函数是:y = 2 + g(x),∴f(x -1) = 2 + g(x), ∴有f(5-1) = 2 + g(5)=2001,故f(4) = 2001,应选(C ) 5解::∵y = f (x)是定义在R 上的奇函数,∴点(0,0)是其对称中心; 又∵f (x+2 )= -f (x) = f (-x),即f (1+ x) = f (1-x), ∴直线x = 1是y = f (x) 对称轴,故y = f (x)是周期为4的周期函数。
∴f (7.5 ) = f (8-0.5 ) = f (-0.5 ) = -f (0.5 ) =-0.5 故选(B) 6解:函数 y = sin (2x +25π)的图像的所有对称轴的方程是2x + 25π = k π+2π∴x =2πk -π,显然取k = 1时的对称轴方程是x = -2π 故选(A) 7解:由条件(2)知,令,则,故,即为以4为周期的周期函数,又由,所以8解:依条件,设,则,故 9解当时,,当时,,1.函数对称性与周期性知识归纳:一.函数自身的对称性结论结论1. 函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是f (x) + f (2a -x) = 2b证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P ‘(2a -x ,2b -y )也在y = f (x)图像上,∴ 2b -y = f (2a -x) 即y + f (2a -x)=2b 故f (x) + f (2a -x) = 2b ,必要性得证。
(充分性)设点P(x 0,y 0)是y = f (x)图像上任一点,则y 0 = f (x 0) ∵ f (x) + f (2a -x) =2b ∴f (x 0) + f (2a -x 0) =2b ,即2b -y 0 = f (2a -x 0) 。
故点P ‘(2a -x 0,2b -y 0)也在y = f (x) 图像上,而点P 与点P ‘关于点A (a ,b)对称,充分性得征。
推论:函数 y = f (x)的图像关于原点O 对称的充要条件是f (x) + f (-x) = 0结论2. 若函数 y = f (x)满足f (a +x) = f (b -x)那么函数本身的图像关于直线x = 2a b +对称,反之亦然。
证明 :已知对于任意的00,x y 都有f(a+0x ) =f(b -0x )=0y 令a+0x ='x , b -0x ="x则A('x ,0y ),B("x ,0y )是函数y=f(x)上的点显然,两点是关于x= 2a b+对称的。