专题5 导数的应用-含参函数的单调性讨论(答案)讲解

合集下载

考研数学-专题5 导数的概念及应用

考研数学-专题5  导数的概念及应用

f (x), x 0;
F
(
x)
0, x 0;
f (x), x 0;
若 f (0) 1, 则
lim F(x) F(0) lim f (x) f (0) f (0) 1
x0
x
x0
x
lim F(x) F(0) lim f (x) f (0)
x0
x
x0
x
lim f (x) f (0) f (0) 1
x0
x0

lim ln[ f (x) ex ] ln 2
x0
x
从而 lim ln[ f (x) ex ] 0, lim f (x) f (0) 0,
x0
x0
当 x 0 时, ln[ f (x) ex ] ln[1 f (x) ex 1] ~ f (x) ex 1
则 lim ln[ f (x) ex ] lim f (x) ex 1 f (0) 1 ln 2
1
【例 2】已知 f (x) 在 x 0 处连续,且 lim[ f (x) ex ]x 2, 则 f (0) ( ) x0
(A)不存在
(B)等于 e2 ,
(C)等于 2,
(D)等于 1 ln 2
1
ln[ f ( x)e x ]
【解】 由于 lim[ f (x) ex ]x lim e x 2
3
f (x0 n ) f (x0 ) f (x0 )n n
(其中 lim 0 ) n
f
( x0
n ) f (x0 n n
n)
f
(
x0
)
n n
n n
n n n n
n n n n n n
0
则 lim n

用导数讨论含参函数的单调性

用导数讨论含参函数的单调性

单调性是描述函数的变化趋势的重要概念,其中,用导数讨论含参函数的单调性尤为重要。

首先,我们来解释“含参函数”一词的意思。

含参函数是指具有参数的函数,也叫带参数函数,它们可以用参数来控制函数的变化趋势。

其次,让我们来看看如何用导数讨论含参函数的单调性。

在微积分中,导数是用来表示函
数变化率的重要概念,它可以帮助我们确定函数的单调性。

通常情况下,当函数的导数大于0时,函数在此处是单调递增的;当函数的导数小于0时,函数在此处是单调递减的。

例如,考虑函数$y=ax^2+bx+c$,其中a,b,c均为常数。

该函数的导数为$y'=2ax+b$。

因此,当$2a>0$时,函数是单调递增的;当$2a<0$时,函数是单调递减的。

更一般地,如果函数$f(x)$的导数$f'(x)$满足$f'(x)>0$,则函数$f(x)$在$[a, b]$内是单调递
增的;如果$f'(x)<0$,则函数$f(x)$在$[a, b]$内是单调递减的。

再比如,考虑函数$y=sin(x)$,其导数为$y'=cos(x)$,当$cos(x)>0$时,函数$y=sin(x)$是单调递增的;当$cos(x)<0$时,函数$y=sin(x)$是单调递减的。

总之,用导数讨论含参函数的单调性是很有用的,我们可以用它来判断函数是单调递增还是单调递减。

正如著名数学家高斯所说:“数学是一种分析、综合和抽象的技术,它既是
一种艺术,也是一种科学。

”。

利用导数研究含参函数单调性

利用导数研究含参函数单调性

利用导数研究含参函数单调性函数的单调性是指函数随着自变量的变化,函数值的增减规律。

利用导数可以研究含参函数的单调性。

考虑含参函数$f(x;a)$,其中$a$是函数的参数。

我们希望研究函数$f$相对于自变量$x$和参数$a$的单调性。

首先,我们来研究函数相对于自变量$x$的单调性。

要研究函数$f(x;a)$的单调性,我们需要计算其导数。

记$f'(x;a)$为函数$f(x;a)$的导数。

根据导数的定义,我们有$$f'(x;a) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x;a) - f(x;a)}{\Delta x}$$这表示了函数$f(x;a)$在$x$处的切线的斜率。

我们可以通过计算导数来研究函数的单调性。

具体来说,当导数$f'(x;a)$在一些区间内始终大于零时,函数$f(x;a)$在该区间内是递增的;当导数$f'(x;a)$在一些区间内始终小于零时,函数$f(x;a)$在该区间内是递减的。

例如,考虑函数$f(x;a) = ax^2 + bx + c$,其中$a,b,c$是参数。

我们可以计算其导数$f'(x;a) = 2ax + b$。

当$a>0$时,$f'(x;a)$在整个实数域上大于零,这表示函数$f(x;a)$是递增的;当$a<0$时,$f'(x;a)$在整个实数域上小于零,这表示函数$f(x;a)$是递减的。

接下来,我们来研究函数相对于参数$a$的单调性。

要研究函数$f(x;a)$相对于参数$a$的单调性,我们需要计算其偏导数。

记$\frac{\partial f}{\partial a}(x;a)$为函数$f(x;a)$相对于参数$a$的偏导数。

根据偏导数的定义,我们有$$\frac{\partial f}{\partial a}(x;a) = \lim_{\Delta a \to 0} \frac{f(x;a+\Delta a) - f(x;a)}{\Delta a}$$类似地,我们可以通过计算偏导数来研究函数相对于参数的单调性。

专题05 含参函数的单调性讨论(解析版)

专题05 含参函数的单调性讨论(解析版)

专题05 含参函数的单调性讨论【方法总结】分类讨论思想研究函数的单调性讨论含参函数的单调性,其本质就是讨论导函数符号的变化情况,所以讨论的关键是抓住导函数解析式中的符号变化部分,即导数的主要部分,简称导主.讨论时要考虑参数所在的位置及参数取值对导函数符号的影响,一般来说需要进行四个层次的分类:(1)最高次幂的系数是否为0,即“是不是”; (2)导函数是否有变号零点,即“有没有”;(3)导函数的变号零点是否在函数定义域或指定区间内,即“在不在”; (4)导函数的变号零点之间的大小关系,即“大不大”. 牢记:十二字方针“是不是,有没有,在不在,大不大”. 考点一 导主一次型 【例题选讲】[例1] 已知函数f (x )=x -a ln x (a ∈R ),讨论函数f (x )的单调性.解析 f (x )的定义域为(0,+∞),f ′(x )=1-a x =x -a x ,令f ′(x )=0,得x =a ,①当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,∴f (x )在(0,+∞)上单调递增, ②当a >0时,x ∈(0,a )时,f ′(x )<0,x ∈(a ,+∞)时,f ′(x )>0,综上,当a ≤0时,f (x )在(0,+∞)上单调递增,当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.【对点训练】1.已知函数f (x )=a ln x -ax -3(a ∈R ).讨论函数f (x )的单调性.1.解析 函数f (x )的定义域为(0,+∞),且f ′(x )=a (1-x )x ,令f ′(x )=0,得x =1,当a >0时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当a <0时,f (x )在(1,+∞)上单调递增,在(0,1)上单调递减; 当a =0时,f (x )为常函数.2.已知函数f (x )=ln x -ax (a ∈R ),讨论函数f (x )的单调性. 2.解析 f (x )的定义域为(0,+∞),f ′(x )=1x -a =1-ax x (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )在(0,+∞)上单调递增.②当a >0时,令f ′(x )=1x -a =1-ax x =0,可得x =1a ,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x<0,故函数f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. 综上,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. 考点二 导主二次型 【方法总结】此类问题中,导数的解析式通过化简变形后,通常可以转化为一个二次函数的含参问题.对于二次三项式含参问题,有如下处理思路:(1)首先需要考虑二次项系数是否含有参数.如果二次项系数有参数,就按二次项系数为零、为正、为负进行讨论;(2)其次考虑二次三项式能否因式分解,如果二次三项式能因式分解,这表明存在零点,只需讨论零点是否在定义域内,如果x 1,x 2都在定义域内,则讨论个零点x 1,x 2的大小;如果二次三项式不能因式分解,这表明不一定存在零点,需讨论判别式Δ≤0和Δ>0分类讨论;【例题选讲】命题点1 是不是+有没有+在不在[例2] (2021·全国乙节选)已知函数f (x )=x 3-x 2+ax +1.讨论f (x )的单调性.解析 由题意知f (x )的定义域为R ,f ′(x )=3x 2-2x +a ,对于f ′(x )=0,Δ=(-2)2-4×3a =4(1-3a ). ①当a ≥13时,f ′(x )≥0,f (x )在R 上单调递增;②当a <13时,令f ′(x )=0,即3x 2-2x +a =0,解得x 1=1-1-3a 3,x 2=1+1-3a 3,令f ′(x )>0,则x <x 1或x >x 2;令f ′(x )<0,则x 1<x <x 2.所以f (x )在(-∞,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增.综上,当a ≥13时,f (x )在R 上单调递增;当a <13时,f (x )在⎝ ⎛⎭⎪⎫-∞,1-1-3a 3上单调递增,在⎝ ⎛⎭⎪⎫1-1-3a 3,1+1-3a 3上单调递减,在⎝ ⎛⎭⎪⎫1+1-3a 3,+∞上单调递增.[例3] (2018·全国Ⅰ节选)已知函数f (x )=1x -x +a ln x ,讨论f (x )的单调性.解析 f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+ax =-x 2-ax +1x 2.①当a ≤2时,则f ′(x )≤0,当且仅当a =2,x =1时,f ′(x )=0,所以f (x )在(0,+∞)上单调递减. ②当a >2时,令f ′(x )=0,得x =a -a 2-42或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0.所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增. 综合①②可知,当a ≤2时,f (x )在(0,+∞)上单调递减;当a >2时,f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增.[例4] 设函数f (x )=a ln x +x -1x +1,其中a 为常数.讨论函数f (x )的单调性. 解析 函数f (x )的定义域为(0,+∞).f ′(x )=a x +2(x +1)2=ax 2+(2a +2)x +a x (x +1)2.当a ≥0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增.当a <0时,令g (x )=ax 2+(2a +2)x +a ,由于Δ=(2a +2)2-4a 2=4(2a +1). (1)当a =-12时,Δ=0,f ′(x )=-12(x -1)2x (x +1)2≤0,函数f (x )在(0,+∞)上单调递减.(2)当a <-12时,Δ<0,g (x )<0,f ′(x )<0,函数f (x )在(0,+∞)上单调递减.(3)当-12<a <0时,Δ>0.设x 1,x 2(x 1<x 2)是函数g (x )的两个零点,则x 1=-(a +1)+2a +1a ,x 2=-(a +1)-2a +1a .由x 1=a +1-2a +1-a =a 2+2a +1-2a +1-a >0,所以x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减; x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减.综上可得:当a ≥0时,函数f (x )在(0,+∞)上单调递增;当a ≤-12时,函数f (x )在(0,+∞)上单调递减;当-12<a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-(a +1)+2a +1a ,⎝ ⎛⎭⎪⎫-(a +1)-2a +1a ,+∞上单调递减,在⎝ ⎛⎭⎪⎫-(a +1)+2a +1a ,-(a +1)-2a +1a 上单调递增.【对点训练】3.(2020·全国Ⅲ节选)已知函数f (x )=x 3-kx +k 2.讨论f (x )的单调性. 3.解析 由题意,得f ′(x )=3x 2-k ,当k ≤0时,f ′(x )≥0恒成立,所以f (x )在(-∞,+∞)上单调递增; 当k >0时,令f ′(x )=0,得x =±k3,令f ′(x )<0,得-k3<x <k3,令f ′(x )>0,得x <-k3或x >k 3, 所以f (x )在⎝⎛⎭⎫-k 3, k 3上单调递减,在⎝⎛⎭⎫-∞,-k 3,⎝⎛⎭⎫ k 3,+∞上单调递增.4.已知函数f (x )=x -2x+1-a ln x ,a >0.讨论f (x )的单调性.4.解析 由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8.①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0.此时f (x )是(0,+∞)上的单调递增函数. ②当Δ=0,即a =2 2 时,仅对x =2有f ′(x )=0,对其余的x >0都有f ′(x )>0. 此时f (x )是(0,+∞)上的单调递增函数.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2,x ∈(0,x 1)时,f ′(x )>0,函数f (x )单调递增; x ∈(x 1,x 2)时,f ′(x )<0,函数f (x )单调递减; x ∈(x 2,+∞)时,f ′(x )>0,函数f (x )单调递增.此时f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在(a -a 2-82,a +a 2-82)上单调递减,在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.5.已知函数f (x )=(1+ax 2)e x -1,当a ≥0时,讨论函数f (x )的单调性. 5.解析 由题易得f ′(x )=(ax 2+2ax +1)e x ,当a =0时,f ′(x )=e x >0,此时f (x )在R 上单调递增. 当a >0时,方程ax 2+2ax +1=0的判别式Δ=4a 2-4a .①当0<a ≤1时,Δ≤0,ax 2+2ax +1≥0恒成立,所以f ′(x )≥0,此时f (x )在R 上单调递增; ②当a >1时,令f ′(x )=0,解得x 1=-1-1-1a,x 2=-1+1-1a. x ∈(-∞,x 1)时,f ′(x )>0,函数f (x )单调递增; x ∈(x 1,x 2)时,f ′(x )<0,函数f (x )单调递减; x ∈(x 2,+∞)时,f ′(x )>0,函数f (x )单调递增. 所以f (x )在⎝⎛⎭⎫-∞,-1-1-1a 和⎝⎛⎭⎫-1+1-1a ,+∞上单调递增, 在⎝⎛⎭⎫-1-1-1a ,-1+1-1a 上单调递减. 综上,当0≤a ≤1时,f (x )在R 上单调递增;当a >1时,f (x )在⎝⎛⎭⎫-∞,-1-1-1a 和⎝⎛⎭⎫-1+1-1a ,+∞上单调递增,在⎝⎛⎭⎫-1-1-1a ,-1+1-1a 上单调递减. 命题点2 是不是+在不在+大不大[例5] 已知函数f (x )=ln x +ax 2-(2a +1)x .若a >0,试讨论函数f (x )的单调性. 解析 因为f (x )=ln x +ax 2-(2a +1)x ,所以f ′(x )=2ax 2-(2a +1)x +1x =(2ax -1)(x -1)x.由题意知函数f (x )的定义域为(0,+∞),令f ′(x )=0得x =1或x =12a ,若12a <1,即a >12,由f ′(x )>0得x >1或0<x <12a ,由f ′(x )<0得12a<x <1, 即函数f (x )在⎝⎛⎭⎫0,12a ,(1,+∞)上单调递增,在⎝⎛⎭⎫12a ,1上单调递减; 若12a >1,即0<a <12,由f ′(x )>0得x >12a 或0<x <1,由f ′(x )<0得1<x <12a, 即函数f (x )在(0,1),⎝⎛⎭⎫12a ,+∞上单调递增,在⎝⎛⎭⎫1,12a 上单调递减; 若12a =1,即a =12,则在(0,+∞)上恒有f ′(x )≥0,即函数f (x )在(0,+∞)上单调递增. 综上可得,当0<a <12时,函数f (x )在(0,1)上单调递增,在⎝⎛⎭⎫1,12a 上单调递减,在⎝⎛⎭⎫12a ,+∞上单调递增;当a =12时,函数f (x )在(0,+∞)上单调递增;当a >12时,函数f (x )在⎝⎛⎭⎫0,12a 上单调递增,在⎝⎛⎭⎫12a ,1上单调递减,在(1,+∞)上单调递增. [例6] 已知函数f (x )=x 2e-ax-1(a 是常数),求函数y =f (x )的单调区间.解析 根据题意可得,当a =0时,f (x )=x 2-1,函数在(0,+∞)上单调递增,在(-∞,0)上单调递减. 当a ≠0时,f ′(x )=2x e -ax+x 2(-a )e-ax=e-ax(-ax 2+2x ).因为e-ax>0,所以令g (x )=-ax 2+2x =0,解得x =0或x =2a.(1)当a >0时,函数g (x )=-ax 2+2x 在(-∞,0)和⎝⎛⎭⎫2a ,+∞上有g (x )<0,即f ′(x )<0,函数y =f (x )单调递减;函数g (x )=-ax 2+2x 在⎣⎡⎦⎤0,2a 上有g (x )≥0,即f ′(x )≥0,函数y =f (x )单调递增. (2)当a <0时,函数g (x )=-ax 2+2x 在⎝⎛⎭⎫-∞,2a 和(0,+∞)上有g (x )>0,即f ′(x )>0,函数y =f (x )单调递增;函数g (x )=-ax 2+2x 在⎣⎡⎦⎤2a ,0上有g (x )≤0,即f ′(x )≤0,函数y =f (x )单调递减.综上所述,当a =0时,函数y =f (x )的单调递增区间为(0,+∞),单调递减区间为(-∞,0); 当a >0时,函数y =f (x )的单调递减区间为(-∞,0),⎝⎛⎭⎫2a ,+∞,单调递增区间为⎣⎡⎦⎤0,2a ; 当a <0时,函数y =f (x )的单调递增区间为⎝⎛⎭⎫-∞,2a ,(0,+∞),单调递减区间为⎣⎡⎦⎤2a ,0.[例7] 已知函数f (x )=(a +1)ln x +1x-ax +2(a ∈R ).讨论f (x )的单调性.解析 f (x )的定义域为(0,+∞),且f ′(x )=-(x -1)(ax -1)x 2.令f ′(x )=0,得x =1或x =1a . 当a ≤0时,ax -1<0,f (x )在(0,1)上单调递减,在(1,+∞)上单调递增;当0<a <1时,f (x )在(0,1)上单调递减,在⎝⎛⎭⎫1,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减; 当a =1时,f (x )在(0,+∞)上单调递减;当a >1时,f (x )在⎝⎛⎭⎫0,1a 上单调递减,在⎝⎛⎭⎫1a ,1上单调递增,在(1,+∞)上单调递减. [例8] 已知函数f (x )=a ln(x +1)-ax -x 2,讨论f (x )在定义域上的单调性. 解析 f ′(x )=ax +1-a -2x =-2x ⎝⎛⎭⎫x +2+a 2x +1,令f ′(x )=0,得x =0或x =-a +22,又f (x )的定义域为(-1,+∞), ①当-a +22≤-1,即当a ≥0时,若x ∈(-1,0),f ′(x )>0,则f (x )单调递增;若x ∈(0,+∞),f ′(x )<0,则f (x )单调递减. ②当-1<-a +22<0,即-2<a <0时,若x ∈⎝⎛⎭⎫-1,-a +22,f ′(x )<0,则f (x )单调递减;若x ∈⎝⎛⎭⎫-a +22,0,f ′(x )>0,则f (x )单调递增;若x ∈(0,+∞),f ′(x )<0,则f (x )单调递减.③当-a +22=0,即a =-2时,f ′(x )≤0,f (x )在(-1,+∞)上单调递减.④当-a +22>0,即a <-2时,若x ∈(-1,0),f ′(x )<0,则f (x )单调递减;若x ∈⎝⎛⎭⎫0,-a +22,f ′(x )>0,则f (x )单调递增;若x ∈⎝⎛⎭⎫-a +22,+∞,f ′(x )<0,则f (x )单调递减.综上,当a ≥0时,f (x )在(-1,0)上单调递增,在(0,+∞)上单调递减;当-2<a <0时,f (x )在⎝⎛⎭⎫-1,-a +22上单调递减,在⎝⎛⎭⎫-a +22,0上单调递增,在(0,+∞)上单调递减;当a =-2时,f (x )在(-1,+∞)上单调递减;当a <-2时,f (x )在(-1,0)上单调递减,在⎝⎛⎭⎫0,-a +22上单调递增,在⎝⎛⎭⎫-a +22,+∞上单调递减.[例9] (2016·山东)已知f (x )=a (x -ln x )+2x -1x 2,a ∈R .讨论f (x )的单调性.解析 f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0,x ∈(0,1)时,f ′(x )>0,f (x )单调递增;x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减. 当a >0时,f ′(x )=a (x -1)x 3⎝⎛⎭⎫x -2a ⎝⎛⎭⎫x +2a . ①若0<a <2,则2a >1,当x ∈(0,1)或x ∈⎝⎛⎭⎫2a ,+∞时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫1,2a 时,f ′(x )<0,f (x )单调递减.②若a =2,则2a=1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增. ③若a >2,则0<2a <1,当x ∈⎝⎛⎭⎫0,2a 或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫2a ,1时,f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,1)内单调递增,在(1,+∞)内单调递减;当0<a <2时,f (x )在(0,1)内单调递增,在⎝⎛⎭⎫1,2a 内单调递减,在⎝⎛⎭⎫2a ,+∞内单调递增;当a =2时,f (x )在(0,+∞)内单调递增;当a >2时,f (x )在⎝⎛⎭⎫0,2a 内单调递增,在⎝⎛⎭⎫2a ,1内单调递减,在(1,+∞)内单调递增. 【对点训练】6.已知函数f (x )=12ax 2-(a +1)x +ln x ,a >0,试讨论函数y =f (x )的单调性.6.解析 函数的定义域为(0,+∞),f ′(x )=ax -(a +1)+1x =ax 2-(a +1)x +1x =(ax -1)(x -1)x.①当0<a <1时,1a >1,∴x ∈(0,1)和⎝⎛⎭⎫1a ,+∞时,f ′(x )>0;x ∈⎝⎛⎭⎫1,1a 时,f ′(x )<0, ∴函数f (x )在(0,1)和⎝⎛⎭⎫1a ,+∞上单调递增,在⎝⎛⎭⎫1,1a 上单调递减; ②当a =1时,1a =1,∴f ′(x )≥0在(0,+∞)上恒成立,∴函数f (x )在(0,+∞)上单调递增;③当a >1时,0<1a <1,∴x ∈⎝⎛⎭⎫0,1a 和(1,+∞)时,f ′(x )>0;x ∈⎝⎛⎭⎫1a ,1时,f ′(x )<0, ∴函数f (x )在⎝⎛⎭⎫0,1a 和(1,+∞)上单调递增,在⎝⎛⎭⎫1a ,1上单调递减. 综上,当0<a <1时,函数f (x )在(0,1)和⎝⎛⎭⎫1a ,+∞上单调递增,在⎝⎛⎭⎫1,1a 上单调递减; 当a =1时,函数f (x )在(0,+∞)上单调递增;当a >1时,函数f (x )在⎝⎛⎭⎫0,1a 和(1,+∞)上单调递增,在⎝⎛⎭⎫1a ,1上单调递减. 7.已知函数f (x )=x 2e ax +1+1-a (a ∈R ),求函数f (x )的单调区间.7.解析 f (x )=x 2e ax +1+1-a (a ∈R )的定义域为(-∞,+∞),f ′(x )=x (ax +2)e ax +1 . ①当a =0时,x >0,f ′(x )>0;x <0,f ′(x )<0,所以函数f (x )的单调递增区间为(0,+∞),单调递减区间为(-∞,0).②当a >0时,x ∈⎝⎛⎭⎫-∞,-2a ,f ′(x )>0;x ∈⎝⎛⎭⎫-2a ,0,f ′(x )<0;x ∈(0,+∞),f ′(x )>0, 所以函数f (x )的单调递增区间为⎝⎛⎭⎫-∞,-2a ,(0,+∞),单调递减区间为⎝⎛⎭⎫-2a ,0. ③当a <0时,x ∈(-∞,0),f ′(x )<0;x ∈⎝⎛⎭⎫0,-2a ,f ′(x )>0;x ∈⎝⎛⎭⎫-2a ,+∞,f ′(x )<0, 所以函数f (x )的单调递减区间为(-∞,0),⎝⎛⎭⎫-2a ,+∞,单调递增区间为⎝⎛⎭⎫0,-2a . 8.已知函数f (x )=(a -1)ln x +ax 2+1,讨论函数f (x )的单调性. 8.解析 f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x .(1)当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; (2)当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; (3)当0<a <1时,令f ′(x )=0,解得x =1-a2a, 则当x ∈⎝ ⎛⎭⎪⎫0,1-a 2a 时,f ′(x )<0;当x ∈(1-a2a,+∞)时,f ′(x )>0, 故f (x )在⎝⎛⎭⎪⎫0,1-a 2a 上单调递减,在(1-a2a,+∞)上单调递增. 9.已知函数f (x )=⎝⎛⎭⎫k +4k ln x +4-x 2x ,其中常数k >0,讨论f (x )在(0,2)上的单调性. 9.解 因为f ′(x )=k +4k x -4x 2-1=⎝⎛⎭⎫k +4k x -4-x 2x 2=-(x -k )⎝⎛⎭⎫x -4k x 2(x >0,k >0).①当0<k <2时,4k >k >0,且4k >2,所以当x ∈(0,k )时,f ′(x )<0,当x ∈(k ,2)时,f ′(x )>0,所以函数f (x )在(0,k )上是减函数,在(k ,2)上是增函数;②当k =2时,4k =k =2,f ′(x )<0在(0,2)上恒成立,所以f (x )在(0,2)上是减函数;③当k >2时,0<4k <2,k >4k ,所以当x ∈⎝⎛⎭⎫0,4k 时,f ′(x )<0;当x ∈⎝⎛⎭⎫4k ,2时,f ′(x )>0, 所以函数f (x )在⎝⎛⎭⎫0,4k 上是减函数,在⎝⎛⎭⎫4k ,2上是增函数. 综上可知,当0<k <2时,f (x )在(0,k )上是减函数,在(k ,2)上是增函数;当k =2时,f (x )在(0,2)上是 减函数;当k >2时,f (x )在⎝⎛⎭⎫0,4k 上是减函数,在⎝⎛⎭⎫4k ,2上是增函数. 10.已知函数f (x )=ln(x +1)-ax 2+x(x +1)2,且1<a <2,试讨论函数f (x )的单调性.10.解析 函数f (x )的定义域为(-1,+∞),f ′(x )=x (x -2a +3)(x +1)3,x >-1.①当-1<2a -3<0,即1<a <32时,当-1<x <2a -3或x >0时,f ′(x )>0,f (x )单调递增,当2a -3<x <0时,f ′(x )<0,f (x )单调递减. ②当2a -3=0,即a =32时,f ′(x )≥0,则f (x )在(-1,+∞)上单调递增.③当2a -3>0,即32<a <2时,当-1<x <0或x >2a -3时,f ′(x )>0,则f (x )在(-1,0),(2a -3,+∞)上单调递增. 当0<x <2a -3时,f ′(x )<0,则f (x )在(0,2a -3)上单调递减.综上,当1<a <32时,f (x )在(-1,2a -3),(0,+∞)上单调递增,在(2a -3,0)上单调递减;当a =32时,f (x )在(-1,+∞)上单调递增;当32<a <2时,f (x )在(-1,0),(2a -3,+∞)上单调递增,在(0,2a -3)上单调递减. 考点三 导主指对型 【例题选讲】[例10] 已知函数f (x )=e x (e x -a )-a 2x ,讨论函数f (x )的单调性.解析 函数f (x )的定义域为(-∞,+∞),f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ). ①若a =0,则f (x )=e 2x 在(-∞,+∞)上单调递增.②若a >0,则由f ′(x )=0,得x =ln a .当x ∈(-∞,ln a )时,f ′(x )<0;当x ∈(ln a ,+∞)时,f ′(x )>0. 故f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增.③若a <0,则由f ′(x )=0,得x =ln ⎝⎛⎭⎫-a 2.当x ∈⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2时,f ′(x )<0;当x ∈⎝⎛⎭⎫ln ⎝⎛⎭⎫-a2,+∞时,f ′(x )>0;故f (x )在⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2上单调递减,在⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞上单调递增. [例11] 已知f (x )=(x 2-ax )ln x -32x 2+2ax ,求f (x )的单调递减区间.解析 易得f (x )的定义域为(0,+∞),f ′(x )=(2x -a )ln x +x -a -3x +2a =(2x -a )ln x -(2x -a )=(2x -a )(ln x -1), 令f ′(x )=0得x =a2或x =e .当a ≤0时,因为x >0,所以2x -a >0,令f ′(x )<0得x <e ,所以f (x )的单调递减区间为(0,e). 当a >0时,①若a2<e ,即0<a <2e ,当x ∈⎝⎛⎭⎫0,a 2时,f ′(x )>0,当x ∈⎝⎛⎭⎫a2,e 时,f ′(x )<0,当x ∈(e ,+∞)时,f ′(x )>0, 所以f (x )的单调递减区间为⎝⎛⎭⎫a 2,e ;②若a2=e ,即a =2e ,当x ∈(0,+∞)时,f ′(x )≥0恒成立,f (x )没有单调递减区间;③若a2>e ,即a >2e ,当x ∈(0,e)时,f ′(x )>0,当x ∈⎝⎛⎭⎫e ,a 2时,f ′(x )<0,当x ∈⎝⎛⎭⎫a2,+∞时,f ′(x )>0, 所以f (x )的单调递减区间为⎝⎛⎭⎫e ,a2. 综上所述,当a ≤0时,f (x )的单调递减区间为(0,e);当0<a <2e 时,f (x )的单调递减区间为⎝⎛⎭⎫a 2,e ;当a =2e 时,f (x )无单调递减区间;当a >2e 时,f (x )的单调递减区间为⎝⎛⎭⎫e ,a2. 【对点训练】11.已知函数f (x )=e x -ax -1的定义域为(0,+∞),讨论函数f (x )的单调性.11.解析 ∵f (x )=e x -ax -1,∴f ′(x )=e x -a .易知f ′(x )=e x -a 在(0,+∞)上单调递增. ∴当a ≤1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增;当a >1时,由f ′(x )=e x -a =0,得x =ln a ,∴当0<x <ln a 时,f ′(x )<0,当x >ln a 时,f ′(x )>0, ∴f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增.综上,当a ≤1时,f (x )在(0,+∞)上单调递增;当a >1时,f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增.12.已知函数f (x )=(x 2-2ax )ln x -12x 2+2ax (a ∈R ).(1)若a =0,求f (x )的最小值; (2)求函数f (x )的单调区间.12.解析 (1)若a =0,f (x )=x 2ln x -12x 2,定义域为(0,+∞),f ′(x )=2x ln x +x 2×1x-x =2x ln x ,由f ′(x )>0可得x >1,由f ′(x )<0可得0<x <1,所以f (x )在(0,1)单调递减,在(1,+∞)单调递增,所以f (x )的最小值为f (1)=-12.(2)f ′(x )=(2x -2a )ln x +(x 2-2ax )·1x-x +2a =(2x -2a )ln x ,①当a ≤0时,2x -2a >0,由f ′(x )>0可得x >1,由f ′(x )<0可得0<x <1, 此时f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞);②当0<a <1时,由f ′(x )>0可得0<x <a 或x >1,由f ′(x )<0可得a <x <1, 此时f (x )的单调递减区间为(a ,1),单调递增区间为(0,a )和(1,+∞); ③当a =1时,f ′(x )≥0恒成立,此时f (x )的单调递增区间为(0,+∞); ④当a >1时,由f ′(x )>0可得0<x <1或x >a ,由f ′(x )<0可得1<x <a , 此时f (x )的单调递减区间为(1,a ),单调递增区间为(0,1)和(a ,+∞).综上所述:当a≤0时,f(x)的单调递减区间为(0,1),单调递增区间为(1,+∞);当0<a<1时,f(x)的单调递减区间为(a,1),单调递增区间为(0,a)和(1,+∞);当a=1时,f(x)的单调递增区间为(0,+∞),无单调递减区间;当a>1时,f(x)的单调递减区间为(1,a),单调递增区间为(0,1)和(a,+∞).考点四导主正余型【例题选讲】[例12](2017山东理)已知函数f(x)=x2+2cos x,g(x)=e x·(cos x-sin x+2x-2),其中e是自然对数的底数.(1)求函数g(x)的单调区间;(2)讨论函数h(x)=g(x)-af (x)(a∈R)的单调性.解析(1)g′(x)=(e x)′·(cos x-sin x+2x-2)+e x(cos x-sin x+2x-2)′=e x(cos x-sin x+2x-2-sin x-cos x+2)=2e x(x-sin x).记p(x)=x-sin x,则p′(x)=1-cos x.因为cos x∈[-1,1],所以p′(x)=1-cos x≥0,所以函数p(x)在R上单调递增.而p(0)=0-sin 0=0,所以当x<0时,p(x)<0,g′(x)<0,函数g(x)单调递减;当x>0时,p(x)>0,g′(x)>0,函数g(x)单调递增.综上,函数g(x)的单调递减区间为(-∞,0),单调递增区间为(0,+∞).(2)因为h(x)=g(x)-af (x)=e x(cos x-sin x+2x-2)-a(x2+2cos x),所以h′(x)=2e x(x-sin x)-a(2x-2sin x)=2(x-sin x)(e x-a).由(1)知,当x>0时,p(x)=x-sin x>0;当x<0时,p(x)=x-sin x<0.当a≤0时,e x-a>0,所以x>0时,h′(x)>0,函数h(x)单调递增;x<0时,h′(x)<0,函数h(x)单调递减.当a>0时,令h′(x)=2(x-sin x)(e x-a)=0,解得x1=ln a,x2=0.①若0<a<1,则ln a<0,所以x∈(-∞,ln a)时,e x-a<0,h′(x)>0,函数h(x)单调递增;x∈(ln a,0)时,e x-a>0,h′(x)<0,函数h(x)单调递减;x∈(0,+∞)时,e x-a>0,h′(x)>0,函数h(x)单调递增.②若a=1,则ln a=0,所以x∈R时,h′(x)≥0,函数h(x)在R上单调递增.③若a>1,则ln a>0,所以x∈(-∞,0)时,e x-a<0,h′(x)>0,函数h(x)单调递增;x∈(0,ln a)时,e x-a<0,h′(x)<0,函数h(x)单调递减;x∈(ln a,+∞)时,e x-a>0,h′(x)>0,函数h(x)单调递增.综上所述,当a≤0时,函数h(x)在(0,+∞)上单调递增,在(-∞,0)上单调递减;当0<a<1时,函数h(x)在(-∞,ln a),(0,+∞)上单调递增,在(ln a,0)上单调递减;当a=1时,函数h(x)在R上单调递增;当a>1时,函数h(x)在(-∞,0),(ln a,+∞)上单调递增,在(0,ln a)上单调递减.【对点训练】13.(2017·山东)已知函数f(x)=13x3-12ax2,其中参数a∈R.(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x-a)cos x-sin x,讨论g(x)的单调性.13.解析(1)由题意得f′(x)=x2-ax,所以当a=2时,f(3)=0,f′(x)=x2-2x,所以f′(3)=3,因此曲线y=f(x)在点(3,f(3))处的切线方程是y=3(x-3),即3x-y-9=0.(2)因为g(x)=f(x)+(x-a)cos x-sin x,所以g′(x)=f′(x)+cos x-(x-a)sin x-cos x=x(x-a)-(x-a)sin x=(x-a)(x-sin x).令h(x)=x-sin x,则h′(x)=1-cos x≥0,所以h(x)在R上单调递增.因为h(0)=0,所以当x>0时,h(x)>0;当x<0时,h(x)<0.①当a<0时,g′(x)=(x-a)(x-sin x),当x∈(-∞,a)时,x-a<0,g′(x)>0,g(x)单调递增;当x∈(a,0)时,x-a>0,g′(x)<0,g(x)单调递减;当x∈(0,+∞)时,x-a>0,g′(x)>0,g(x)单调递增.②当a=0时,g′(x)=x(x-sin x),当x∈(-∞,+∞)时,g′(x)≥0,所以g(x)在(-∞,+∞)上单调递增.③当a>0时,g′(x)=(x-a)(x-sin x),当x∈(-∞,0)时,x-a<0,g′(x)>0,g(x)单调递增;当x∈(0,a)时,x-a<0,g′(x)<0,g(x)单调递减;当x∈(a,+∞)时,x-a>0,g′(x)>0,g(x)单调递增.综上所述,当a<0时,函数g(x)在(-∞,a)和(0,+∞)上单调递增,在(a,0)上单调递减;当a=0时,函数g(x)在(-∞,+∞)上单调递增;当a>0时,函数g(x)在(-∞,0)和(a,+∞)上单调递增,在(0,a)上单调递减.。

利用导数讨论含参函数的单调性

利用导数讨论含参函数的单调性
● 。
● 蒋
导 途禽参 鳓 诵J隆
◎冯联英 (武平县第一 中学 ,福 建 龙岩 364300)
含参数 的函数 的单调性的讨论 考查学 生的分类讨 论思
想 ,数形结合思想和转化与化 归等数学 思想方法 ,以及 学生 分析 问题 和解 决问题的能力 ,它是每年 高考 中必 考 的内容 , 而且所 占分值 比重较大.讨论 含参 函数 的单调性 过程 中 ,如 何确定 分类的标准 ,分 类时怎样做到不 重不漏 .是 学生学 习
由d(x)=0得 1=8一 Ⅱ 一4a, 2=Ⅱ+ ̄/。 一4a,
由厂( )>0得 < l或 > 2,由厂( )<0得 l< <
则 , f( )的单 调 增 区 间 是 (一。o,n一  ̄/。 一4a),(o+
口 一4a,+。。)单调减区间(n一 ̄/8 一4a,口+、//n 一4a).
总结解题 规律 :求导 后是 二 次 函数 ,但 不能 因式 分解 , 此 时用判 别式判断根 的情况 ,然后 ,同例 2进行 分类讨论.

变式 2 讨论函数,( )=÷ 一O,X +4似 +24a(n E
R)的 单 调 性 . 解 析 导函数 .,’( )= 一2ax+4。的符 号 不能 确定 ,
也不能 在有 理式范 围内实 现十 字相 乘分 解 ,故 我们 要 用 △ 来研究 其导函数的符号 问题.
由 题 意 i,’( )= 一2ax+4n,贝0△=4a 一16a. (1)当 A=4a 一16a≤0,即 0≤n≤4时 ( )I>0恒成 立 ,此时 )的单调增 区间是 (一。。,+ ); (2)当 △=4a 一16a>0,即 0<0或 口>4时 ,
(2)当 2a=2即 o=1时 ( )>10恒成立 ,此时 )的

导数专题:含参函数单调性讨论问题(原卷版)

导数专题:含参函数单调性讨论问题(原卷版)

导数专题:含参函数单调性讨论问题一、导数与函数的单调性1、用导数求函数的单调性的概念:在某个区间(,)a b 内,如果()0f x '≥,那么函数()y f x =在这个区间内单调递增;如果()0f x '≤,那么函数()y f x =在这个区间内单调递减.【注意】(1)在某区间内()0(()0)f x f x ''><是函数()f x 在此区间上为增(减)函数的充分不必要条件.(2)可导函数()f x 在(,)a b 上是增(减)函数的充要条件是对(,)x a b ∀∈,都有()0(()0)f x f x ''><且()f x '在(,)a b 上的任何子区间内都不恒为零.2、确定函数单调区间的求法(1)确定函数()f x 的定义域;(2)求()f x ';(3)解不等式()0f x '>,解集在定义域内的部分为单调递增区间;(4)解不等式()0f x '<,解集在定义域内的部分为单调递减区间.二、含参函数单调性讨论依据讨论含参函数的单调性,其本质是导函数符号的变化情况,所以讨论的关键是抓住导函数解析式中的符号变化部分,即导数的主要部分,简称导主。

讨论时要考虑参数所在的位置及参数取值对导函数符号的影响,一般需要分四个层次来分类:(1)最高次幂的系数是否为0,即“是不是”;(2)导函数是都有变号零点,即“有没有”;(3)导函数的变号零点是否在定义域或指定区间内,即“在不在”;(4)导函数有多个零点时大小关系,即“大不大”。

三、两大类含参导函数的具体方法1、含参一次函数单调性讨论(1)讨论最高次项是否为0,正负情况;(2)求解导函数的根;(3)定义域划分为若干个单调区间,分别讨论每个区间上导函数的正负值.2、含参二次函数单调性的讨论(1)确定函数的定义域;(2)讨论最高次项是否为0,正负情况;(3)可因式分解型,解得12,x x (注意讨论12x x =);不可因式分解型,讨论0∆≤及0∆>;(4)讨论1x 和2x 的大小,能因式分解的,注意讨论12x x =;(5)12,x x 将定义域划分为若干个单调区间,分别讨论每个区间上导函数的正负值,判断根和区间端点位置关系的方法有3种:端点函数值+对称轴;韦达定理;求根公式。

使用导数来解决含参函数单调性的讨论方法的总结

使用导数来解决含参函数单调性的讨论方法的总结

使用导数来解决含参函数单调性的讨论方法的总结
利用导数来解决含参函数单调性问题,是一个经典的数学问题,也是高数学习者常遇到的一大难题。

要想确定一个参数函数的单调性,就要考虑它的导数变化,这就引出了利用导数来解决含参函数单调性的讨论方法。

首先,我们必须了解如何计算函数的导数。

对于一元函数,可以从原函数中求得导数的定义,即求偏导;也可以使用分部法及牛顿法,直接求出导数;而多元函数的导数一般由偏导方程式求得,其中可利用梯度、相对极值等概念计算函数的偏导数及其导数大小。

之后,可以利用导数把单调性转化为数学上的一种判断,即若一函数的导数大小符合特定条件,则该函数的单调性也得到确定,不断更新函数的参数就可以实现单调性。

如果在更新函数参数的过程中,函数的导数量一直大于0,则函数具有上升的单调性,反之,如果函数的导数量一直小于0,则函数具有下降的单调性。

此外,利用导数来解决含参函数单调性的另一个方面就是,可以根据该函数的导数表达式,计算其函数值的变化与自变量的变化。

当自变量变化时,就可以求取函数的导数值,从而归结出函数某个确定点处的单调性。

总之,利用导数来解决含参函数单调性,总结起来就是这样:首先,计算函数导数,然后根据函数的导数表达式近似计算函数某一确定点处的单调性;最后,根据函数的导数大小,可以判断该函数的单调性,并利用不断更新函数参数的过程来最大程度地实现单调性。

利用导数研究含参函数单调性

利用导数研究含参函数单调性

利用导数研究含参函数单调性导数是研究函数的一个重要工具,可以用来研究函数的单调性。

含参函数即包含一个或多个参数的函数,我们可以通过对导数的研究来研究含参函数的单调性,下面我们就来详细介绍。

首先,我们先回顾一下导数的定义。

对于含有一个自变量的函数y=f(x),我们可以通过求导来得到函数在其中一点的斜率。

导数的定义为:f'(x) = lim(h->0) {f(x+h)-f(x)} / h其中,f'(x)表示函数f(x)在点x处的导数。

如果函数在其中一点的导数大于0,我们可以认为该点函数是递增的;如果导数小于0,则是递减的。

如果导数恒大于0,则函数是严格递增的;如果导数恒小于0,则函数是严格递减的。

对于含参函数y=f(x,a,b,c...),其中a,b,c...为参数,我们也可以研究其单调性。

我们可以首先将含参函数看作一个关于自变量x的函数,然后求导。

求导后的函数中不再含有参数,其导数的正负号和零点即可以用来研究函数在不同参数取值情况下的单调性。

接下来,我们通过一个具体的例子来说明。

考虑函数y=f(x,a)=ax^2,其中a为参数。

我们可以先固定a的值,然后研究函数关于x的变化情况,再通过参数a的取值来研究函数的单调性。

首先,我们分别求导得到函数关于自变量x的导数:f'(x,a) = 2ax现在我们可以根据导数的正负号来研究函数的单调性。

当a>0时,f'(x,a)恒大于0,即导数恒大于0,说明函数递增;当a<0时,f'(x,a)恒小于0,即导数恒小于0,说明函数递减。

接下来,我们可以通过研究参数a的取值来研究函数的单调性。

当a>0时,函数为开口向上的抛物线,随着a的增大,函数的正值部分会更接近x轴,说明函数递减的速度会更快,即单调性变强;当a<0时,函数为开口向下的抛物线,随着a的减小,函数的负值部分会更接近x轴,说明函数递减的速度会更快,即单调性变强。

导数讨论含参单调性习题含详细讲解问题详解

导数讨论含参单调性习题含详细讲解问题详解

实用标准文案m(x + n)f(x) = lnx z g(x) = --- (m > 0)1.设函数X + 1 (D 当m = 1时,函数y = f(x)与y = g(x)在x = i 处的切线互相垂直,求n 的值:(2)若函数y = f(x)-g(x)在定义域不单调,求m-n 的取值国; 满足条件的实数a ;若不存在,请说明理由.2. 已知函数= (ax + l)lnx-ax + 3z a € R /g (x)^f(x)^导函数,e 为自然对数的底数. (1) 讨论g(x)的单调性; (2) 当a>e 时,证明:g(e _a)>0.(3) 当a>e 时,判断函数f(x)零点的个数,并说明理由. bf(x) = a(x + -)+ blnx3. 已知函数 x (其中,a,b 6 R).(1) 当b = -4时,若f(x)在其定义域为单调函数,求a 的取值围;(2) 当a = 7时,是否存在实数b,使得当xe [e,e 2]时,不等式f(x)>0恒成立,如果存在, 求b的取值围,如果不存在,说明理由(其中e 是自然对数的底数,e = 2.71828 -).4. 已知函数g(x) = x 2+ ln(x + a),其中a 为常数. (1) 讨论函数g(x)的单调性;g(xj + g(x 2) x x + x 2 > g( --------- )(2) 若g(x)存在两个极值点X/2,求证:无论实数a 取什么值都有2 2・5. 已知函数f(x) = ln(e x+ a) (a 为常数)是实数集R 上的奇函数,函数g(x) = Xf(x) + sinx 是 区间【-1, 1]上的减函数.(1)求a 的值;(2)若g(x)<t 2+ Xt + l 在xEHL, 1]及入所在的取值国上恒成立,求t 的取值国:Inx 2—=x -2ex + m(3)讨论关于x 的方程f(x)的根的个数.(3)是否存在正实数6使得 2a xf(;)・f 声屮(寿 <0对任意正实数X 恒成立?若存在,求出文档大全实用标准文案6. 已知函数 f (x) = ax-\nx,F (x) = e x + ax ,其中 x>O,a <0.(1) 若/(X)和F(x)在区间(0,ln3)上具有相同的单调性,数a 的取值围;(2) 若aw -oo,-—,且函数 g (x) = xe a ^1 - 2av+ f (x)的最小值为 M,求M 的X €-最小值.7. 已知函数 f(x) = e x+m -\nx.(1 )如X = 1是函数/(X)的极值点,数〃7的值并讨论的单调性/(X):(2)若X = A O 是函数/(X)的极值点,且f(x) > 0恒成立,数加的取值围(注:已知 常数a 满足<71116/= 1)・牙3(1) 当加=1 时,求证:-lvxS 0 时,f (x) < —:(2) 试讨论函数y = /(A )的零点个数.9. 已知£ 是自然对数的底数,F(x) = 2e'~1+x+liix,/(x) = d r(x-l) + 3.⑴设T(x) = F(x)-/(x),当0 = 1 + 2以时,求证:T(x)在(0,+oo)±单调递增;(2)若 Vx>l,F(x)>/(x),数a 的取值囤. 10. 已知函数 /(x) = e v+ax-2(1) 若a = -l 求函数/(%)在区间[-1,1]的最小值; (2) 若a G /?,讨论函数/(X)在(0,+co)的单调性; (3) 若对于任意的為,耳丘(°,+8),且兀 <耳,都有xJ/CG + a ] vxJ/Vj + a ]成立,求a 的取值囲。

导数应用之含参函数单调性的讨论(含答案)

导数应用之含参函数单调性的讨论(含答案)

1
导数应用之含参函数单调性的讨论
一.预备知识:
(一)二次方程根的分布:
1.已知方程4x 2+2(m-1)x+(2m+3)=0(m ∈R )有两个正根,求实数m 的取值范围。

2.已知方程2x 2-(m+1)x+m=0有一正根和一负根,求实数m 的取值范围。

(二)穿根法拓展:
1.
02
2
2>--+x x x 2.(e x -1)(x-1)>0 3.(e x -1)(x-1)2>0
4.(e -x -1)(x-1)>0 5.(1-lnx)(x-1)>0
二.导后“一次”型:
1.已知函数f(x)=ax-(a+1)·ln(x+1),a ≥-1,求函数f(x)的单调区间。

2.已知函数f(x)=e x -ax ,讨论函数f(x)的单调性。

三.导后“二次型”:
3.已知函数f(x)=lnx+x 2-ax(a ∈R),求函数f(x)的单调区间。

2
4.已知函数f(x)=m ·ln(x+2)+2
1x 2
+1,讨论函数f(x)的单调性。

5.求函数f(x)=(1-a)lnx-x+2
2
ax 的单调区间。

6.已知函数f(x)=(ax 2-x)·lnx-2
1ax 2
+x ,讨论f(x)的单调性。

四.导后求导型
7.已知函数f(x)=e x -x 2,求函数f(x)的单调区间。

8.已知函数f(x)=
x
e
x 1
ln ,求函数f(x)的单调区间。

9.已知函数f(x)=e mx +x 2-mx ,讨论函数f(x)的单调性。

3
4。

导数讨论含参单调性习题(含详细讲解答案解析)

导数讨论含参单调性习题(含详细讲解答案解析)

1.设函数.(1)当时,函数与在处的切线互相垂直,求的值;(2)若函数在定义域内不单调,求的取值范围;(3)是否存在正实数,使得对任意正实数恒成立?若存在,求出满足条件的实数;若不存在,请说明理由.2.已知函数是的导函数,为自然对数的底数.(1)讨论的单调性;(2)当时,证明:;(3)当时,判断函数零点的个数,并说明理由.3.已知函数(其中,).(1)当时,若在其定义域内为单调函数,求的取值范围;(2)当时,是否存在实数,使得当时,不等式恒成立,如果存在,求的取值范围,如果不存在,说明理由(其中是自然对数的底数,). 4.已知函数,其中为常数.(1)讨论函数的单调性;(2)若存在两个极值点,求证:无论实数取什么值都有. 5.已知函数(为常数)是实数集上的奇函数,函数是区间上的减函数.(1)求的值;(2)若在及所在的取值范围上恒成立,求的取值范围;(3)讨论关于的方程的根的个数.6.已知函数()()ln ,x f x ax x F x e ax =-=+,其中0,0x a ><.(1)若()f x 和()F x 在区间()0,ln3上具有相同的单调性,求实数a 的取值范围; (2)若21,a e ⎛⎤∈-∞- ⎥⎝⎦,且函数()()12ax g x xe ax f x -=-+的最小值为M ,求M 的最小值.7.已知函数()ln x mf x ex +=-. (1)如1x =是函数()f x 的极值点,求实数m 的值并讨论的单调性()f x ;(2)若0x x =是函数()f x 的极值点,且()0f x ≥恒成立,求实数m 的取值范围(注:已知常数a 满足ln 1a a =).8.已知函数()()2ln 12x f x mx mx =++-,其中01m <≤. (1)当1m =时,求证:10x -<≤时,()33x f x ≤;(2)试讨论函数()y f x =的零点个数. 9.已知e 是自然对数的底数,()()()12ln ,13x F x ex x f x a x -=++=-+.(1)设()()()T x F x f x =-,当112a e -=+时, 求证:()T x 在()0,+∞上单调递增; (2)若()()1,x F x f x ∀≥≥,求实数a 的取值范围. 10.已知函数()2xf x e ax =+-(1)若1a =-,求函数()f x 在区间[1,1]-的最小值; (2)若,a R ∈讨论函数()f x 在(0,)+∞的单调性; (3)若对于任意的1212,(0,),,x x x x ∈+∞<且[][]2112()()x f x a x f x a +<+都有成立,求a 的取值范围。

利用导数研究含参函数单调性

利用导数研究含参函数单调性

利用导数研究含参函数单调性在数学中,单调性是指函数随着自变量的变化而变化的趋势。

如果函数在区间上递增,那么我们称函数在该区间上是单调递增的;如果函数在区间上递减,那么我们称函数在该区间上是单调递减的。

利用导数研究含参函数的单调性,是一种非常常用且有效的方法。

对于含参函数,其导数是关于自变量的函数,通过研究导数的符号来判断函数的单调性。

具体来说,如果导数在区间上恒大于0,那么函数在该区间上是递增的;如果导数在区间上恒小于0,那么函数在该区间上是递减的。

这可以通过导数的定义和性质来证明。

下面以一个简单的例子来说明如何利用导数研究含参函数的单调性。

假设我们要研究含参函数 f(x;a) = ax^2 的单调性,其中 a 是参数。

首先,我们计算函数f的导数。

由于a是参数,我们将其视为常数。

根据导数的定义,有:f'(x;a) = lim[h->0] (f(x+h;a) - f(x;a)) / h= lim[h->0] (a(x+h)^2 - ax^2) / h= lim[h->0] (2axh + ah^2) / h= lim[h->0] (2ax + ah)= 2ax因此,函数 f 的导数是 f'(x;a) = 2ax。

接下来,我们通过研究导数的符号来判断函数f的单调性。

当 a > 0 时,当 x1 < x2 时,有 2ax1 < 2ax2,即 f'(x1;a) <f'(x2;a)。

因此,函数 f 在区间上是递增的。

当 a < 0 时,当 x1 < x2 时,有 2ax1 > 2ax2,即 f'(x1;a) >f'(x2;a)。

因此,函数 f 在区间上是递减的。

当a=0时,函数f(x;a)=0,因此函数f在任意区间上是常数,既不递增也不递减。

综上所述,当 a > 0 时,函数 f(x;a) = ax^2 在任意区间上都是递增的;当 a < 0 时,函数 f(x;a) = ax^2 在任意区间上都是递减的;当a = 0 时,函数 f(x;a) = ax^2 是常数。

专题5导数的应用-含参函数的单调性讨论(答案)-13页文档资料

专题5导数的应用-含参函数的单调性讨论(答案)-13页文档资料

〖专题5〗 导数的应用—含参函数的单调性讨论“含参数函数的单调性讨论问题”是近年来高考考查的一个常考内容,也是我们高考复习的重点.从这几年来的高考试题来看,含参数函数的单调性讨论常常出现在研究函数的单调性、极值以及最值中,因此在高考复习中更应引起我们的重视. 一、思想方法:上为常函数在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('⇒=∈⇒<∈⇒>∈⇔∈⇔<⇔∈⇔>讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论. 二、典例讲解[典例1] 讨论xax x f +=)(的单调性,求其单调区间. 解:xax x f +=)(的定义域为),0()0,(+∞-∞ )0(1)('222≠-=-=x xa x x a x f (它与a x x g -=2)(同号) I )当0≤a 时,)0(0)('≠>x x f 恒成立,此时)(x f 在)0,(-∞和),0(+∞都是单调增函数, 即)(x f 的增区间是)0,(-∞和),0(+∞; II) 当0>a 时 a x a x x x f >-<⇔≠>或)0(0)('a x x a x x f <<<<-⇔≠<00)0(0)('或此时)(x f 在),(a --∞和),(+∞a 都是单调增函数,)(x f 在)0,(a -和),0(a 都是单调减函数,即)(x f 的增区间为),(a --∞和),(+∞a ;)(x f 的减区间为)0,(a -和),0(a .步骤小结:1、先求函数的定义域,2、求导函数(化为乘除分解式,便于讨论正负),3、先讨论只有一种单调区间的(导函数同号的)情况,4、再讨论有增有减的情况(导函数有正有负,以其零点分界),5、注意函数的断点,不连续的同类单调区间不要合并.[变式练习1] 讨论x a x x f ln )(+=的单调性,求其单调区间.解:x a x x f ln )(+=的定义域为),0(+∞)0(1)('>+=+=x xa x x a x f (它与a x x g +=)(同号) I )当0≥a 时,)0(0)('>>x x f 恒成立,此时)(x f 在),0(+∞为单调增函数, 即)(x f 的增区间为),0(+∞,不存在减区间; II) 当0<a 时 a x x x f ->⇔>>)0(0)('; a x x x f -<<⇔><0)0(0)('此时)(x f 在),(+∞-a 为单调增函数,)(x f 在),0(a -是单调减函数,即)(x f 的增区间为),(+∞-a ;)(x f 的减区间为),0(a -.[典例2] 讨论x ax x f ln )(+=的单调性. 解:x ax x f ln )(+=的定义域为),0(+∞)0(11)('>+=+=x xax x a x f (它与1)(+=ax x g 同号) I )当0=a 时,)0(0)('>>x x f 恒成立 (此时ax x f 10)('-=⇔=没有意义)此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞ II )当0>a 时,)0(0)('>>x x f 恒成立, (此时ax x f 10)('-=⇔=不在定义域内,没有意义) 此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞III)当0<a 时, 令ax x f 10)('-=⇔= 于是,当x 变化时,)(),('x f x f 的变化情况如下表:(结合g(x)图象定号)所以, 此时)(x f 在),0(a-为单调增函数,)(x f 在),1(+∞-a是单调减函数, 即)(x f 的增区间为)1,0(a -;)(x f 的减区间为),1(+∞-a.小结:导函数正负的相应区间也可以由导函数零点来分界,但要注意其定义域和连续性.即先求出)('x f 的零点,再其分区间然后定)('x f 在相应区间内的符号.一般先讨论0)('=x f 无解情况,再讨论解0)('=x f 过程产生增根的情况(即解方程变形中诸如平方、去分母、去对数符号等把自变量x 范围扩大而出现有根,但根实际上不在定义域内的),即根据)('x f 零点个数从少到多,相应原函数单调区间个数从少到多讨论,最后区间(最好结合导函数的图象)确定相应单调性. [变式练习2] 讨论x ax x f ln 21)(2+=的单调性. 解:x ax x f ln 21)(2+=的定义域为),0(+∞ )0(11)('2>+=+=x xax x ax x f , 它与1)(2+=ax x g 同号. 令)0(010)('2>=+⇔=x ax x f ,当0≥a 时,无解;当0<a 时,aaa x --=-=1(另一根不在定义域内舍去)i)当0=a 时,)0(0)('>>x x f 恒成立 (此时ax x f 10)('2-=⇔=没有意义) 此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞ii)当0>a 时,)0(0)('>>x x f 恒成立,(此时 方程012=+ax 判别式0<∆,方程无解)此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞iii)当0<a 时,当x 变化时,)(),('x f x f 的变化情况如下表:(结合g(x)图象定号))+∞是单调减函数,即)(x f 的增区间为)1,0(a-;)(x f 的减区间为),1(+∞-a .小结:一般最后要综合讨论情况,合并同类的,如i),ii)可合并为一类结果.对于二次型函数(如1)(2+=ax x g )讨论正负一般先根据二次项系数分三种类型讨论. [典例3] 求1)(232--+=x ax x a x f 的单调区间. 解:1)(232--+=x ax x a x f 的定义域为R ,)1)(13(123)('22+-=-+=ax ax ax x a x fI) 当0=a 时,⇒<-=01)('x f )(x f 在R 上单调递减,)(x f 减区间为R ,无增区间. II) 当0≠a 时032>a ,)('x f 是开口向上的二次函数,令)0(1,310)('21≠-===a ax a x x f 得, 因此可知(结合)('x f 的图象) i)当0>a 时,21x x >ax a x f a x a x x f 3110)(';3110)('<<-⇔<>-<⇔>或 所以此时,)(x f 的增区间为),31()1,(+∞--∞aa 和;)(x f 的减区间为)31,1(a a -ii) 当0<a 时,21x x <ax a x f ax a x x f 1310)(';1310)('-<<⇔<-><⇔>或所以此时,)(x f 的增区间为),1()31,(+∞--∞aa 和;)(x f 的减区间为)1,31(a a -.小结:求函数单调区间可化为导函数的正负讨论(即分讨论其相应不等式的解区间),常见的是化为二次型不等式讨论,当二次函数开口定且有两根时,一般要注意讨论两根大小(分大、小、等三种情况)。

导数专题:含参函数单调性讨论问题(解析版)

导数专题:含参函数单调性讨论问题(解析版)

导数专题:含参函数单调性讨论问题一、导数与函数的单调性1、用导数求函数的单调性的概念:在某个区间(,)a b 内,如果()0f x '≥,那么函数()y f x =在这个区间内单调递增;如果()0f x '≤,那么函数()y f x =在这个区间内单调递减.【注意】(1)在某区间内()0(()0)f x f x ''><是函数()f x 在此区间上为增(减)函数的充分不必要条件.(2)可导函数()f x 在(,)a b 上是增(减)函数的充要条件是对(,)x a b ∀∈,都有()0(()0)f x f x ''><且()f x '在(,)a b 上的任何子区间内都不恒为零.2、确定函数单调区间的求法(1)确定函数()f x 的定义域;(2)求()f x ';(3)解不等式()0f x '>,解集在定义域内的部分为单调递增区间;(4)解不等式()0f x '<,解集在定义域内的部分为单调递减区间.二、含参函数单调性讨论依据讨论含参函数的单调性,其本质是导函数符号的变化情况,所以讨论的关键是抓住导函数解析式中的符号变化部分,即导数的主要部分,简称导主。

讨论时要考虑参数所在的位置及参数取值对导函数符号的影响,一般需要分四个层次来分类:(1)最高次幂的系数是否为0,即“是不是”;(2)导函数是都有变号零点,即“有没有”;(3)导函数的变号零点是否在定义域或指定区间内,即“在不在”;(4)导函数有多个零点时大小关系,即“大不大”。

三、两大类含参导函数的具体方法1、含参一次函数单调性讨论(1)讨论最高次项是否为0,正负情况;(2)求解导函数的根;(3)定义域划分为若干个单调区间,分别讨论每个区间上导函数的正负值.2、含参二次函数单调性的讨论(1)确定函数的定义域;(2)讨论最高次项是否为0,正负情况;(3)可因式分解型,解得12,x x (注意讨论12x x =);不可因式分解型,讨论0∆≤及0∆>;(4)讨论1x 和2x 的大小,能因式分解的,注意讨论12x x =;(5)12,x x 将定义域划分为若干个单调区间,分别讨论每个区间上导函数的正负值,判断根和区间端点位置关系的方法有3种:端点函数值+对称轴;韦达定理;求根公式。

利用导数讨论含参函数的单调性

利用导数讨论含参函数的单调性

利用导数讨论含参函数的单调性讨论函数的单调性是研究函数问题的基础,对于函数的最值、极值、零点等性质的研究,都是以函数的单调性为基础展开的。

在此,主要讨论含参函数单调性的讨论方法。

函数的单调性由导函数的正负决定,讨论函数的单调性关键在于研究导函数的正负。

含参函数导函数正负的确定最大的困难在于参数的影响,如何对参数进行分类讨论是问题的关键。

在此,我们将提出三种方法。

一.分离参数、数形结合函数求导后,导函数中的参数可以分离,形如:m x g x f -=)()('的形式,若)(x g 有最小值,则分min )(x g m ≤,min )(x g m >两种情况进行分类讨论。

(1)当min )(x g m ≤时,0)()('≥-=m x g x f ;(2)当min )(x g m >时,若0)()('=-=m x g x f 有一个解,且)(x g 单调,设解为0x ,则0x 将定义域分为两个区间,讨论函数的单调性。

若)(x g 有最大值,则分max )(x g m ≥,max )(x g m <两种情况进行分类讨论。

1.(2012年全国卷文科21题) 设函数2)(--=ax e x f x . (1)求)(x f 的单调区间;解:函数)(x f 的定义域为()+∞∞-,,a e x f x -=)(',①若0≤a ,则0)('>x f ,)(x f 在()+∞∞-,单调递增; ②若0>a ,则由0)('=x f 得a x ln =,当()a x ln ,∞-∈时,0)('<x f ,当()+∞∈,ln a x 时,0)('>x f ; 所以)(x f 的单调减区间是()a ln ,∞-,单调增区间是()+∞,ln a ; 2.(2016年山东文科20题)设x a ax x x x f )12(ln )(2-+-=,R a ∈. (1)令)()('x f x g =,求)(x g 的单调区间. 解:函数)(x f 的定义域为()+∞,0,1221ln )()('-+-+==a ax x x f x g ,a xx g 21)('-=(1)若0≤a ,则0)('>x g ,)(x g 在()+∞,0单调递增;(2)若0>a ,则由0)('=x g 得ax 21=,当⎪⎭⎫ ⎝⎛∈a x 21,0时,0)('>x g ,当⎪⎭⎫ ⎝⎛+∞∈,21a x 时,0)('<x g ,所以)(x f 在⎪⎭⎫ ⎝⎛a 21,0单调递增,在⎪⎭⎫ ⎝⎛+∞,21a 单调递减.3.(2015年北京卷文科19题)设函数x k x x f ln 2)(2-=.(1)求)(x f 的单调区间和极值;解:函数)(x f 的定义域为()+∞,0,xkx x k x x f -=-=2')(,①若0≤k ,则0)('>x f ,)(x f 在()+∞,0单调递增; ②若0>k ,则由0)('=x f 得k x =,当()k x ,0∈时,0)('<x f ,当()+∞∈,k x 时,0)('>x f所以)(x f 的单调减区间是()k ,0,单调增区间是()+∞,k .4.(2015年全国二卷文科21题) 已知函数)1(ln )(x a x x f -+=. (1)讨论)(x f 的单调性;解:函数)(x f 的定义域为()+∞,0,xaxa x x f -=-=11)(', ①若0≤a ,则0)('>x f ,)(x f 在()+∞,0单调递增;②若0>a ,则由0)('=x f 得ax 1=,当⎪⎭⎫ ⎝⎛∈a x 1,0时,0)('>x f ,当⎪⎭⎫ ⎝⎛∈0,1a x 时,0)('<x f ;所以)(x f 在⎪⎭⎫ ⎝⎛a 1,0单调递增,在⎪⎭⎫ ⎝⎛0,1a单调递减; 5.(2016年四川卷文科21题) 设函数x a ax x f ln )(2--=. (1)讨论)(x f 的单调性; 解:函数)(x f 的定义域为()+∞,0,⎪⎭⎫⎝⎛-=-=-=22'121212)(x a x x ax x ax x f ,①若0≤a ,则0)('<x f ,)(x f 在()+∞,0单调递减;②若0>a ,则由0)('=x f 得ax 21=,当⎪⎪⎭⎫ ⎝⎛∈a x 21,0时,0)('<x f ,当⎪⎪⎭⎫ ⎝⎛+∞∈,21a x 时,0)('>x f ;所以)(x f 在⎪⎪⎭⎫ ⎝⎛a 21,0单调递减,在⎪⎪⎭⎫ ⎝⎛+∞,21a 单调递增; 若0)()('=-=m x g x f 有两个解,则可以将定义域分为三个区域进行讨论。

导数单调性含参讨论问题

导数单调性含参讨论问题

导数单调性含参讨论问题
讨论导数单调性含参问题,需要找到临界点。

临界点的确定可以从以下四个方面入手:极值点、二次项系数、定义域和绝对值。

一、极值点大小比较的分类讨论是最主流的,如江苏高考和四川高考的例题。

在这种情况下,需要比较极值点的大小,然后讨论单调性。

二、二次项系数含有参数时也需要分类讨论,如北京高考的例题。

这时需要根据参数的取值讨论二次项系数的正负和单调性。

三、定义域的限制也会产生分类讨论,如山东高考的例题。

在这种情况下,需要考虑定义域的限制对单调性的影响。

四、绝对值也会产生分类讨论,如浙江高考的例题。

在这种情况下,需要分别讨论绝对值内外的函数单调性,然后综合得出结论。

回家作业:练以上四种分类讨论的方法,掌握如何确定临界点,进一步提高导数单调性问题的解题能力。

导数的复习——含参单调性的讨论问题

导数的复习——含参单调性的讨论问题

JIETI JIQIAO YU FANGFA解题技巧与方法133数学学习与研究2019.9导数的复习———含参单调性的讨论问题◎靖晶陈艳宝(大庆市第四中学,黑龙江大庆163711)高考中导数问题可谓是学生拉开区分度的分水岭.而含参的单调性的讨论问题是重中之重.单调性的问题讨论清楚了,那么极值最值等问题就可迎刃而解.利用导数求函数单调区间的依据:在定义域范围内,由导数大于0解得的x 的区间为函数的增区间;由导数小于0解得的x 的区间为函数的减区间.常见的分类标准有哪些呢?一般的含参的函数单调性的讨论常见的分类标准有:1.函数类型;2.开口方向;3.判别式;4.导数等于0有根无根;5.两根大小;6.极值点是否在定义域内.通过以下两个例题进行说明.例1讨论函数f (x )=x -1x -a ln x (a ∈R)的单调性.分析根据导数的符号得函数在相应区间上的单调性,先进行求导.函数的定义域为(0,+ɕ),f'(x )=x 2-ax +1x 2分母是恒正的,只需看分子的符号.由f'(x )=0得x 2-ax +1=0.一元二次方程有根无根需看判别式.故而确定了第一个分类讨论的原因:二次函数的判别式.当Δ>0时,a >2或a <-2,方程有两个不等实根.是否需要进一步讨论呢?可以发现此时分子为零的两根记为x 1,x 2,x 1+x 2=a ,x 1x 2=1>0,而定义域为(0,+ɕ),方程的两根符号与a 相同,故而确定第二个分类讨论的标准:方程的根是否在定义域内.解函数的定义域为(0,+ɕ),f'(x )=x 2-ax +1x 2.令f'(x )=0得x 2-ax +1=0.(1)当Δ≤0时,-2≤a ≤2时,f'(x )≥0,f (x )在(0,+ɕ)上单调递增.(2)当Δ>0时,方程有两个不等的实根,x 1=a -a 2槡-42,x 2=a +a 2槡-42.①a >2时,x 1+x 2=a >0,x 1x 2=1>0,ʑx 1>0,x 2>0,ʑf (x )在(0,x 1)和(x 2,+ɕ)单调递增,在(x 1,x 2)单调递减.(根据图1)图1②a <-2时,x 1+x 2=a <0,x 1x 2=1>0ʑx 1<0,x 2<0,ʑf (x )在(0,+ɕ)上单调递增.(根据图2)图2综上,当时,f (x )在(0,+ɕ)上单调递增.当a >2时f (x )在(0,x 1)和(x 2,+ɕ)单调递增,在(x 1,x 2)单调递减.例2讨论函数f (x )=e-kxx 2+x -1()k(k ∈R)的单调性.分析函数的定义域为R,f (x )=e -kx [-kx 2+(2-k )x +2]=e -kx (x +1)(-kx +2).ȵe -kx >0,ʑf'(x )的符号只需看-kx 2+(2-k )x +2的符号,而x 2的系数含字母,影响函数的类型,故第一类讨论的原因即高次项的系数是否为0.由题意k ≠0.当k ≠0时,其正负影响开口的方向,故第二类分类讨论的原因即开口方向.当k <0时,导数等于0的两根大小不确定,故而第三类分类讨论的原因为两根大小,确定分界点-2.解函数的定义域为R,f (x )=e -kx [-kx 2+(2-k )x +2]=e -kx (x +1)(-kx +2).(1)当k >0时,f (x )在(-ɕ,-1)和2k ,+()ɕ单调递减,在-1,2()k单调递增.(2)当k <0时,2k -(-1)=2+kk.①当k <-2时,2k >-1,f (x )在(-ɕ,-1)和2k ,+()ɕ单调递增,在-1,2()k单调递减.②当k =-2时,2k =-1,f (x )在(-ɕ,+ɕ)单调递增.③当k >-2时,2k <-1,f (x )在-ɕ,2()k 和(-1,+ɕ)单调递增,在2k ,()-1单调递减.综上,当k >0时,f (x )在(-ɕ,-1)和2k ,+()ɕ单调递减,在-1,2()k单调递增.当k <-2时,f (x )在(-ɕ,-1)和2k ,+()ɕ单调递增,在-1,2()k单调递减.解题技巧与方法JIETI JIQIAO YU FANGFA134数学学习与研究2019.9当k =-2时,f (x )在(-ɕ,+ɕ)单调递增.当k >-2时,f (x )在-ɕ,2()k 和(-1,+ɕ)单调递增,在2k,()-1单调递减.一般涉及含参单调性的讨论问题,我们可按以下步骤进行:1.先求出函数的定义域,再求出导函数,有分母要通分,能因式分解要分解彻底;2.若导函数带分母,通分因式分解彻底后,判断导数分子最高次项系数是否含有参数,有可以讨论该参数得0和不得0,最高次项系数是否为0影响的是函数的类型;3.判断导数等于0是否有根,导数等于0得到的方程若为一元二次方程,可判断其判别式的符号:当判别式小于等于0时,若二次项系数为正,则导数恒大于等于0,函数在定义域内为增函数,若二次项系数为负,则导数恒小于等于0,函数在定义域内为减函数;当判别式大于0时,可以结合韦达定理分析导数等于0的两根与定义域的关系,确定单调区间;4.导数等于0得到的方程不是二次函数时,根据方程的特点判断有根无根,若有根,再判断其与定义域的关系,若根在定义域内,则根为极值点,再判断定义域内极值点分成的各段区间导数的正负从而得到函数的单调性;5.若导数等于0,方程有两个根且均在定义域内,当两根大小不确定时,可通过比较两根大小确定讨论的分界点.(上接132页)度”、有“智慧挑战”,要遵循由易及难,由简到繁,由基本到拓展的发展顺序去安排,让不同水平的学生都练有所得.如“平行四边形面积”一课,学生探讨出计算方法之后,我设计了以下的练习:1.基本性练习:计算下面平行四边形的面积,需要什么条件?这个平行四边形已知高的长度,要求它的面积还需要已知什么条件?学生回答完后教师再补充“底是18分米”,让学生独立完成.2.提高练习:(1)计算右图平行四边形的面积,算式是().(单位:厘米)A.7.5ˑ4B.7.5ˑ6C.6ˑ4(2)下面第()个平行四边形的面积算式是12ˑ8.ABC3.实践性练习:(1)选择条件,求出右边图形的面积.(单位:米)本组练习设计由浅入深,分层训练,逐步形成技能.基本练习在于检查学生是否会运用公式计算平行四边形的面积,加深对公式的巩固.提高练习是让学生明确计算平行四边形面积要选择正确的“底”和“高”.实践练习在于让学生能运用所学的知识解决生活当中的实际问题,培养学生的实践能力.发展性练习目的在于帮助学生深化知识、扩展知识,沟通知识间的内在联系,发展学生思维的广度和深度,培养学生创新的精神.四、总结反思要提炼数学思想方法数学思想方法是处理数学问题的指导思想和基本策略,是数学学习的灵魂,是学生数学素养的核心.刘云章教授认为:“重视对数学思想方法的领悟将能唤起数学学习者潜在的数学天赋,提高其数学素养,从而提高学习效益和质量”.数学思想方法的获得,一方面,需要教师进行有意识的渗透和培养,另一方面,也要靠学生的“悟”———在自身总结反思中提炼.例如,在“平面图形的面积复习”教学中,教师可引导学生思考:平行四边形、三角形、梯形的面积公式是怎样推导的?有什么共同点?学生在总结反思中理解了“转化”的数学思想方法.如学生学习完“三角形内角和”时,我让学生回顾学习过程:先计算直角三角形、等边三角形的内角和度数,再用猜测、操作、验证等方法推导一般三角形的内角和,最后归纳得出所有三角形的内角和为180度.学生回顾思维过程中总结出“归纳”的思想方法.因此,当数学学习结束后,教师要引导学生回顾自己的思维活动,总结反思自己是怎样发现和解决问题的,运用了哪些基本的思想方法等,及时对所应用的数学思想方法进行概括与提炼,从数学思想方法的高度把握知识的本质,提升课堂教学的价值.“本真数学”课堂教学,主张以“本”为核心,以“真”为重点,遵循“问题情境—探索活动—实践应用—反思提升”的教学程序,经历提出问题、分析问题、解决问题、应用问题的过程,探索数学本质,建构数学模型,提升数学素养.【参考文献】[1]刘加霞.小学数学课堂的有效教学[M ].北京:北京师范大学出版,2008.[2]陈桂香.小学数学课堂教学中应体现“数学味”[J ].教师博览(科研版),2011(11):61.。

含参单调性讨论 解析版

含参单调性讨论 解析版

x 1 x)2 ,
令 g(x) ln x x 1,所以 g(x) 1 1 1 x ,
x
x

x
0,
1 2
时,
g ( x)
0,
g(x)
单调递增,
g( x)max
g(1 2
)
ln
2
1 2
0,
即 h(x)
0
,所以 h(x)
x 1 x ln x

0,
1 2
单调递减,所以
h(
x)
min
h( 1) 2
【分析】(1)求出函数的导数,讨论 a 的取值情况,结合解不等式即可求得答案;
(2)根据所给范围,讨论 a 的取值范围,确定导数正负,判断函数的单调性,即可求
得函数最小值.
【详解】(1)由题意得 f (x) 2x (2a 1) a (2x 1)(x a) ,
x
x
f (x) 定义域是{x | x 0} ,
当 0 a 1 时,由 f (x) 0 得 0 x a 或 x 1 ,
含参单调性讨论解析
一、解答题 1.讨论函数 f (x) ax 1 (a 1) ln x 的单调性
x
【答案】答案见解析
【分析】求导
f
x
ax
1 x
x2
1
,再分
a
0

a
0,1

a
1,
a
1,
讨论求
解.
【详解】解: f x 的定义域为 0, ,
f x a
1 x2
a 1 x
ax 2
a 1x 1
时,
f
x
0,
f
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

〖专题5〗 导数的应用—含参函数的单调性讨论“含参数函数的单调性讨论问题”是近年来高考考查的一个常考内容,也是我们高考复习的重点.从这几年来的高考试题来看,含参数函数的单调性讨论常常出现在研究函数的单调性、极值以及最值中,因此在高考复习中更应引起我们的重视. 一、思想方法:上为常函数在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('⇒=∈⇒<∈⇒>∈⇔∈⇔<⇔∈⇔>讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论. 二、典例讲解[典例1] 讨论xax x f +=)(的单调性,求其单调区间. 解:xax x f +=)(的定义域为),0()0,(+∞-∞ )0(1)('222≠-=-=x xa x x a x f (它与a x x g -=2)(同号) I )当0≤a 时,)0(0)('≠>x x f 恒成立,此时)(x f 在)0,(-∞和),0(+∞都是单调增函数, 即)(x f 的增区间是)0,(-∞和),0(+∞; II) 当0>a 时 a x a x x x f >-<⇔≠>或)0(0)('a x x a x x f <<<<-⇔≠<00)0(0)('或此时)(x f 在),(a --∞和),(+∞a 都是单调增函数,)(x f 在)0,(a -和),0(a 都是单调减函数,即)(x f 的增区间为),(a --∞和),(+∞a ;)(x f 的减区间为)0,(a -和),0(a .步骤小结:1、先求函数的定义域,2、求导函数(化为乘除分解式,便于讨论正负),3、先讨论只有一种单调区间的(导函数同号的)情况,4、再讨论有增有减的情况(导函数有正有负,以其零点分界),5、注意函数的断点,不连续的同类单调区间不要合并.[变式练习1] 讨论x a x x f ln )(+=的单调性,求其单调区间.解:x a x x f ln )(+=的定义域为),0(+∞)0(1)('>+=+=x xa x x a x f (它与a x x g +=)(同号) I )当0≥a 时,)0(0)('>>x x f 恒成立,此时)(x f 在),0(+∞为单调增函数, 即)(x f 的增区间为),0(+∞,不存在减区间; II) 当0<a 时 a x x x f ->⇔>>)0(0)('; a x x x f -<<⇔><0)0(0)('此时)(x f 在),(+∞-a 为单调增函数,)(x f 在),0(a -是单调减函数,即)(x f 的增区间为),(+∞-a ;)(x f 的减区间为),0(a -.[典例2] 讨论x ax x f ln )(+=的单调性. 解:x ax x f ln )(+=的定义域为),0(+∞)0(11)('>+=+=x xax x a x f (它与1)(+=ax x g 同号) I )当0=a 时,)0(0)('>>x x f 恒成立 (此时ax x f 10)('-=⇔=没有意义)此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞ II )当0>a 时,)0(0)('>>x x f 恒成立, (此时ax x f 10)('-=⇔=不在定义域内,没有意义) 此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞III)当0<a 时, 令ax x f 10)('-=⇔= 于是,当x 变化时,)(),('x f x f 的变化情况如下表:(结合g(x)图象定号)所以, 此时)(x f 在),0(a -为单调增函数,)(x f 在),1(+∞-a是单调减函数,即)(x f 的增区间为)1,0(a -;)(x f 的减区间为),1(+∞-a. 小结:导函数正负的相应区间也可以由导函数零点来分界,但要注意其定义域和连续性.即先求出)('x f 的零点,再其分区间然后定)('x f 在相应区间内的符号.一般先讨论0)('=x f 无解情况,再讨论解0)('=x f 过程产生增根的情况(即解方程变形中诸如平方、去分母、去对数符号等把自变量x 范围扩大而出现有根,但根实际上不在定义域内的),即根据)('x f 零点个数从少到多,相应原函数单调区间个数从少到多讨论,最后区间(最好结合导函数的图象)确定相应单调性. [变式练习2] 讨论x ax x f ln 21)(2+=的单调性. 解:x ax x f ln 21)(2+=的定义域为),0(+∞ )0(11)('2>+=+=x xax x ax x f , 它与1)(2+=ax x g 同号. 令)0(010)('2>=+⇔=x ax x f ,当0≥a 时,无解;当0<a 时,aaa x --=-=1(另一根不在定义域内舍去)i)当0=a 时,)0(0)('>>x x f 恒成立 (此时ax x f 10)('2-=⇔=没有意义) 此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞ii)当0>a 时,)0(0)('>>x x f 恒成立,(此时 方程012=+ax 判别式0<∆,方程无解)此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞iii)当0<a 时,当x 变化时,)(),('x f x f 的变化情况如下表:(结合g(x)图象定号))+∞是单调减函数, 即)(x f 的增区间为)1,0(a -;)(x f 的减区间为),1(+∞-a.小结:一般最后要综合讨论情况,合并同类的,如i),ii)可合并为一类结果.对于二次型函数(如1)(2+=ax x g )讨论正负一般先根据二次项系数分三种类型讨论. [典例3] 求1)(232--+=x ax x a x f 的单调区间. 解:1)(232--+=x ax x a x f 的定义域为R ,)1)(13(123)('22+-=-+=ax ax ax x a x fI) 当0=a 时,⇒<-=01)('x f )(x f 在R 上单调递减,)(x f 减区间为R ,无增区间.II) 当0≠a 时032>a ,)('x f 是开口向上的二次函数,令)0(1,310)('21≠-===a ax a x x f 得, 因此可知(结合)('x f 的图象) i)当0>a 时,21x x >ax a x f a x a x x f 3110)(';3110)('<<-⇔<>-<⇔>或 所以此时,)(x f 的增区间为),31()1,(+∞--∞a a 和;)(x f 的减区间为)31,1(aa -ii) 当0<a 时,21x x <ax a x f ax a x x f 1310)(';1310)('-<<⇔<-><⇔>或所以此时,)(x f 的增区间为),1()31,(+∞--∞a a 和;)(x f 的减区间为)1,31(aa -.小结:求函数单调区间可化为导函数的正负讨论(即分讨论其相应不等式的解区间),常见的是化为二次型不等式讨论,当二次函数开口定且有两根时,一般要注意讨论两根大小(分大、小、等三种情况)。

含参二次不等式解时要先看能否因式分解,若能则是计算简单的问题,需看开口及两根大小,注意结合图象确定相应区间正负. [变式练习3] 求12131)(23+++=x ax x x f 的单调区间. 解:)(x f 的定义域为R ,1)('2++=ax x x f)('x f 是开口向上的二次函数,42-=∆a I) 当220≤≤-⇔≤∆a 时,0)('≥x f 恒成立所以此时)(x f 在R 上单调递增,)(x f 增区间为R ,无减区间.II) 当220>-<⇔>∆a a 或时令212221,24,240)('x x a a x a a x x f <-+-=---==得因此可知(结合)('x f 的图象))(x f 与)('x f 随x 变化情况如下表2(2)(x f 的减区间为)24,24(22-+----a a a a小结:三次函数的导函数是常见二次函数,当二次函数开口定时对其正负进行讨论的,要根据判别式讨论:无根的或两根相等的导函数只有一种符号,相应原函数是单调的较简单应先讨论;然后再讨论有两不等根的,结合导函数图象列变化表,注意用根的符号21,x x 代替复杂的式,最后结论才写回.个别点处导数为0不影响单调性.只有在某区间内导数恒为0时,相应区间内原函数为常数,一般中学所见函数除分段函数和常函数外不会出现此种情况.总结:求单调区间要确定定义域,确定导函数符号的关键是看分子相应函数,因此讨论点有:第一是类型(一次与二次的根个数显然不同);第二有没有根(二次的看判别式),第三是有根是否为增根(在不在定义根内;第四有根的确定谁大;第五看区间内导函数的正负号(二次函数要看开口).确记要数形结合,多数考题不会全部讨论点都要讨论的,题中往往有特别条件,不少讨论点会同时确定(即知一个就同时确定另一个).判别式与开口的讨论点先谁都可以,但从简单优先原则下可先根据判别式讨论,因为当导函数无根时它只有一种符号,相应原函数在定义域内(每个连续的区间)为单调函数较简单.导数的应用—含参函数的单调性讨论班级 姓名1.已知函数()ln af x x x=-,求()f x 的单调区间. 解:()221+,a x af x x x x+'∞=+=函数的定义域为(0,), ()'0f x x a ==-令得:()()()()()()000,(0,)000,0(,)a a f fxa a f f fx a '-≤≥>∴+∞''-><><∴-+∞若即,则x 在上单调递增;若即,则由x 得x>-a 由x 得x<-a在上单调递增,在0,-a 上单调递减.()()() 0(0,)0(,)a f x a f x a ≥+∞<-+∞总之,当时,在上单调递增; 当时,在上单调递增,在0,-a 上单调递减.2.已知函数f(x)=21x 2-a x+(a -1)ln x ,讨论函数()f x 的单调性,求出其单调区间. 解: ()f x 的定义域为(0,)+∞.2'11(1)(1)()a x ax a x x a f x x a x x x --+--+-=-+==()()11=x x a x---⎡⎤⎣⎦()'1201,1f x x x a ===-令得:(1)100)(';10)('101<<⇔<>⇔>≤≤-x x f x x f a a 时,即若单调递减在单调递增在此时)1,0(,),1()(+∞∴x f (2)时,即若101>>-a a①若11a -=即2a =时,2'(1)()x f x x-=>0, 故()f x 在(0,)+∞单调递增.②若0<11a -<,即12a <<时,由'()0f x <得,11a x -<<;由'()0f x >得,011x a x <<->或故()f x 在(1,1)a -单调递减,在(0,1),(1,)a -+∞单调递增. ③若11a ->,即2a >时,由'()0f x <得,11x a <<-;由'()0f x >得,011x x a <<>-或故()f x 在(1,1)a -单调递减,在(0,1),(1,)a -+∞单调递增. 综上所述,当1a ≤,()f x 单调增区为 ),1(+∞,减区间是)1,0(;当12a <<时,()f x 的减区间是(1,1)a -,增区间是(0,1),(1,)a -+∞; 当2a =时,()f x 在定义域上递增,单调增区为(0,)+∞ (不存在减区间); 当2a >时,()f x 的减区间是(1,1)a -,在增区间是(0,1),(1,)a -+∞.3.已知函数32()331,f x ax x x a R =+++∈,讨论函数)(x f 的单调性. 解: 因为32()331,f x ax x x a R =+++∈, 所以/2()3(21)f x ax x =++(1) 当0a =时,/()3(21)f x x =+,当1,2x ≤-时,/()0f x ≤;当1,2x ≥-时,/()0f x ≥; 所以函数()f x 在1(,]2-∞-上单调递增,在1[,)2-+∞上单调递减; (2) 当0a >时,/2()3(21)f x ax x =++的图像开口向上,36(1)a ∆=-I) 当136(1)0,a a ≥∆=-≤时,时,/()0f x ≥,所以函数()f x 在R 上递增;II) 当0136(1)0,a a <<∆=->时,时,方程/()0f x =的两个根分别为12x x ==且12,x x <所以函数()f x 在1(,a --∞,1()a-+∞上单调递增,在11(a a--上单调递减; (3) 当0a <时,/2()3(21)f x ax x =++的图像开口向下,且36(1)0a ∆=->方程/()0f x =的两个根分别为12x x ==且12,x x >所以函数()f x 在1(,)a -+-∞,1()a-+∞上单调递减,在上单调递增。

相关文档
最新文档