人教版七年级数学上册 第4章 几何图形初步 期末综合复习卷(含答案)
(期末复习)七年级上《第四章几何图形初步》单元试卷有答案(PDF版)
人教版七年级初中数学上册:第四章几何图形初步单元检测试卷一.选择题(共10小题)1.下列几何体中,面的个数最少的是()A.B.C.D.2.下列几何体中,其面既有平面又有曲面的有()A.1个B.2个C.3个D.4个3.如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A、B、C的三个数依次是()A.0,﹣3,4B.0,4,﹣3C.4,0,﹣3D.﹣3,0,4 4.下列图形中,不可以作为一个长方体的展开图的是()A.B.C.D.5.如图,从A地到B地有三条路可走,为了尽快到达,人们通常选择其中的直路.能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.在同一平面内,过一点有一条且只有一条直线垂直于已知直线6.兴隆通往半壁山的公路经过八品叶梁盘旋而上,现在要沿着山脚打山洞而过,这样通往两地的时间将大大缩短,在数学中也就是“把弯曲的公路改直,就能缩短路程”这其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间线段最短D.两点之间直线最短7.如图,∠AOB=130°,射线OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠BOC的角平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD=∠EOCC.∠AOD+∠BOE=65°D.∠BOE=2∠COD8.如图,点O在直线AB上,OD是∠AOC的平分线,OE是∠COB的平分线.若∠DOC=70°,则∠BOE的度数是()A.30°B.40°C.25°D.20°9.下列说法正确的个数是()①射线AB与射线BA是同一条射线;②两点确定一条直线;③两条射线组成的图形叫做角;④两点之间直线最短;⑤若AB=BC,则点B是AC的中点.A.1个B.2个C.3个D.4个10.如图,建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做的依据是()A.两点确定一条直线B.两点之间,线段最短C.垂线段最短D.两条直线相交只有一点二.填空题(共7小题)11.如图,已知∠AOD=150°,OB、OC、OM、ON是∠AOD内的射线,若∠BOC=20°,∠AOB=10°,OM平分∠AOC,ON平分∠BOD,当∠BOC在∠AOD内绕着点O以3°/秒的速度逆时针旋转t秒时,当∠AOM:∠DON=3:4时,则t=.12.用橡皮泥做一个棱长为4cm的正方体.如图(1),在顶面中心位置处从上到下打一个边长为1cm的正方体通孔,再在正面中心位置处(按图(2)中的虚线)从前到后打一个边长为1cm的正方体通孔,那么打孔后的橡皮泥的表面积为cm2;(注意:图形(3)不用)13.下面的几何体中,属于柱体的有个.14.如图,点B、O、D在同一直线上,且OB平分∠AOC,若∠COD=150°,则∠AOC的度数是.15.如图是一个正方体的展开图,它的六个面上分别写有“构建和谐社会”六个字,将其围成正方体后,与“社”在相对面上的字是.16.已知线段AC=10m,BC=6m,且它们在同一条直线上,点M、N分别为线段AC和BC的中点,则线段MN的长为17.大雁迁徙时常排成人字形,这个人字形的一边与其飞行方向夹角是54°44′8″,从空气动力学角度看,这个角度对于大雁队伍飞行最佳,所受阻力最小.则54°44′8″的补角是.三.解答题(共5小题)18.把棱长为1cm的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面)(1)该几何体中有小正方体?(2)其中两面被涂到的有个小正方体;没被涂到的有个小正方体;(3)求出涂上颜色部分的总面积.19.如图,已知线段AB=a,延长BA至点C,使AC=AB.点D为线段BC的中点.(1)画出线段AC;(2)求CD的长;(3)若AD=6cm,求a.20.如图,已知O为直线AD上一点,∠AOC与∠AOB互补,OM、ON分别是∠AOC、∠AOB的平分线,∠MON=56°.(1)∠COD与∠AOB相等吗?请说明理由;(2)求∠BOC的度数;(3)求∠AOB与∠AOC的度数.21.如图,点A,M,B,C,N,D在一条直线上,若AB:BC:CD=2:3:2,AB的中点M与CD的中点N的距离是11cm,求AD的长.22.如图,已知点O为直线AB上一点,将一直角三角板的直角顶点放在点O 处.(1)如图1,将三角板的一边ON与射线OB重合,过点O在三角板的内部,作射线OC,使∠NOC:∠MOC=2:1,求∠AOC的度数;(2)如图2,将三角板绕点O逆时针旋转一定角度到图2的位置,过点O在三角板MON的内部作射线OC,使得OC恰好是∠MOB对的角平分线,此时∠AOM与∠NOC满足怎样的数量关系?并说明理由.参考答案一.选择题(共10小题)1.下列几何体中,面的个数最少的是()A.B.C.D.【解答】解:三棱柱有5个面;长方体有6个面;圆锥有一个曲面和一个底面共2个面;圆柱有一个侧面和两个底面共3个面,面的个数最少的是圆锥,故选:C.2.下列几何体中,其面既有平面又有曲面的有()A.1个B.2个C.3个D.4个【解答】解:球只有1个曲面;圆锥既有曲面又有平面;正方体只有平面;圆柱既有平面又有曲面;故选:B.3.如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A、B、C的三个数依次是()A.0,﹣3,4B.0,4,﹣3C.4,0,﹣3D.﹣3,0,4【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“0”是相对面,“B”与“3”是相对面,“C”与“﹣4”是相对面,∵相对面上的两数互为相反数,∴A、B、C内的三个数依次是0、﹣3、4.故选:A.4.下列图形中,不可以作为一个长方体的展开图的是()A.B.C.D.【解答】解:根据长方体展开图的特征,图A和图C、图D是长方体展开图,而图B不能折叠成长方体,不是长方体展开图.故选:B.5.如图,从A地到B地有三条路可走,为了尽快到达,人们通常选择其中的直路.能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.在同一平面内,过一点有一条且只有一条直线垂直于已知直线【解答】解:从A地到B地有三条路可走,为了尽快到达,人们通常选择其中的直路,理由是两点之间线段最短,故选:A.6.兴隆通往半壁山的公路经过八品叶梁盘旋而上,现在要沿着山脚打山洞而过,这样通往两地的时间将大大缩短,在数学中也就是“把弯曲的公路改直,就能缩短路程”这其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间线段最短D.两点之间直线最短【解答】解:由线段的性质可知,“把弯曲的公路改直,就能缩短路程”这其中蕴含的数学道理是:两点之间线段最短.故选:C.7.如图,∠AOB=130°,射线OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠BOC的角平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD=∠EOCC.∠AOD+∠BOE=65°D.∠BOE=2∠COD【解答】解:∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠AOD=∠COD,∠EOC=∠BOE,又∵∠AOD+∠BOE+∠EOC+∠COD=∠AOB=130°,∴∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°.故选:C.8.如图,点O在直线AB上,OD是∠AOC的平分线,OE是∠COB的平分线.若∠DOC=70°,则∠BOE的度数是()A.30°B.40°C.25°D.20°【解答】解:∵OD是∠AOC的平分线,∴∠AOC=2∠COD=140°,∴∠BOC=180°﹣∠AOC=40°,∵OE是∠COB的平分线,∴∠BOE=∠BOC=20°,故选:D.9.下列说法正确的个数是()①射线AB与射线BA是同一条射线;②两点确定一条直线;③两条射线组成的图形叫做角;④两点之间直线最短;⑤若AB=BC,则点B是AC的中点.A.1个B.2个C.3个D.4个【解答】解:①射线AB与射线BA不是同一条射线,故①错误;②两点确定一条直线,故②正确;③两条端点重合的射线组成的图形叫做角,故③错误;④两点之间线段最短,故④错误;⑤若AB=BC,则点B不一定是AC的中点,故⑤错误.故选:A.10.如图,建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做的依据是()A.两点确定一条直线B.两点之间,线段最短C.垂线段最短D.两条直线相交只有一点【解答】解:建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做的依据是:两点确定一条直线.故选:A.二.填空题(共7小题)11.如图,已知∠AOD=150°,OB、OC、OM、ON是∠AOD内的射线,若∠BOC=20°,∠AOB=10°,OM平分∠AOC,ON平分∠BOD,当∠BOC在∠AOD内绕着点O以3°/秒的速度逆时针旋转t秒时,当∠AOM:∠DON=3:4时,则t=.【解答】解:∵射线OB从OA逆时针以3°每秒的旋转t秒,∠BOC=20°,∴∠AOC=∠AOB+∠COB=3t°+10°+20°=3t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=150°,∴∠BOD=140°﹣3t.∵射线ON平分∠BOD,∴∠DON=∠BOD=70°﹣t°.又∵∠AOM:∠DON=3:4,∴(t+15):(70﹣t)=3:4,解得t=.故答案是:.12.用橡皮泥做一个棱长为4cm的正方体.如图(1),在顶面中心位置处从上到下打一个边长为1cm的正方体通孔,再在正面中心位置处(按图(2)中的虚线)从前到后打一个边长为1cm的正方体通孔,那么打孔后的橡皮泥的表面积为118cm2;(注意:图形(3)不用)【解答】解:表面积S1=96﹣2+4×4=110(cm2);表面积S2=S1﹣4+4×1.5×2=118(cm2);故答案为118.13.下面的几何体中,属于柱体的有4个.【解答】解:柱体分为圆柱和棱柱,所以柱体有圆柱、正方体、六棱柱,三棱柱共4个.故答案为:4.14.如图,点B、O、D在同一直线上,且OB平分∠AOC,若∠COD=150°,则∠AOC的度数是60°.【解答】解:∵点B、O、D在同一直线上,∠COD=150°,∴∠COB=180°﹣150°=30°,∵OB平分∠AOC,∴∠AOC=2×30°=60°,故答案为:60°.15.如图是一个正方体的展开图,它的六个面上分别写有“构建和谐社会”六个字,将其围成正方体后,与“社”在相对面上的字是和.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,与“社”在相对面上的字是和.故答案为:和.16.已知线段AC=10m,BC=6m,且它们在同一条直线上,点M、N分别为线段AC和BC的中点,则线段MN的长为2cm或8cm【解答】解:1、如图1,当点B在线段AC上时,由AC=10m,BC=6m,点M、N分别是AC、BC的中点,得MC=AC=×10=5m,NC=BC=×6=3m,由线段的和差,得MN=MC﹣NC=5﹣3=2m;2、如图2,点B在线段AC的延长线上,,当点B在线段AC的延长线上时,由AC=10m,BC=6m,点M、N分别是AC、BC的中点,得MC=AC=×10=5m,NC=BC=×6=3m,由线段的和差,得MN=MC+NC=5+3=8m.故答案为:2m或8m.17.大雁迁徙时常排成人字形,这个人字形的一边与其飞行方向夹角是54°44′8″,从空气动力学角度看,这个角度对于大雁队伍飞行最佳,所受阻力最小.则54°44′8″的补角是125°15′52″.【解答】解:180°﹣54°44′8″=179°59'60''﹣54°44'8''=125°15'52'',故答案为:125°15'52''.三.解答题(共6小题)18.把棱长为1cm的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面)(1)该几何体中有14个小正方体?(2)其中两面被涂到的有4个小正方体;没被涂到的有1个小正方体;(3)求出涂上颜色部分的总面积.【解答】解;(1)由图可得,该几何体中有:1+4+9=14(个)小正方体,故答案为:14个;(2)由图可得,中两面被涂到的有4个小正方体;没被涂到的有1个小正方体,故答案为:4,1;(3)涂上颜色部分的总面积为:1×1×(12+9+8+4)=33cm2,即涂上颜色部分的总面积为33cm2.19.如图,已知线段AB=a,延长BA至点C,使AC=AB.点D为线段BC的中点.(1)画出线段AC;(2)求CD的长;(3)若AD=6cm,求a.【解答】解:(1)如图,线段AC即为所求.;(2)∵AB=a,AC=AB,∴AC=a,∴BC=AC+AB=a,∵点D为线段BC的中点,∴CD=BC=a;(3)∵AD=6,AD=CD﹣AC,由(2)可知:AC=a,CD=a,∴a﹣a=6,解得:a=24.20.如图,已知O为直线AD上一点,∠AOC与∠AOB互补,OM、ON分别是∠AOC、∠AOB的平分线,∠MON=56°.(1)∠COD与∠AOB相等吗?请说明理由;(2)求∠BOC的度数;(3)求∠AOB与∠AOC的度数.【解答】解:(1)∠COD=∠AOB.理由如下:如图∵点O在直线AD上,∴∠AOC+∠COD=180°,又∵∠AOC与∠AOB互补,∴∠AOC+∠AOB=180°,∴∠COD=∠AOB;(2)∵OM、ON分别是∠AOC、∠AOB的平分线,∴∠AOM=∠COM,∠AON=∠BON,∴∠BOC=∠BOM+∠COM,=∠BOM+∠AOM,=(∠MON﹣∠BON)+(∠MON+∠AON),=2∠MON,=112°;(3)由(1)得:∠COD=∠AOB,∵∠AOB+∠BOC+∠COD=180°,∴∠AOB=(180°﹣∠BOC)=(180°﹣112°)=34°,∴∠AOC=180°﹣∠AOB=180°﹣34°=146°.21.如图,点A,M,B,C,N,D在一条直线上,若AB:BC:CD=2:3:2,AB的中点M与CD的中点N的距离是11cm,求AD的长.【解答】解:设AB=2xcm,BC=3x,CD=2x.∵M是AB的中点,∴MB=xcm.∵N是CD的中点,∴NC=xcm,∵MN=11cm,∴x+3x+x=11.解得:x=2.2.AD=2x+3x+2x=7x=15.4cm.22.如图,已知点O为直线AB上一点,将一直角三角板的直角顶点放在点O 处.(1)如图1,将三角板的一边ON与射线OB重合,过点O在三角板的内部,作射线OC,使∠NOC:∠MOC=2:1,求∠AOC的度数;(2)如图2,将三角板绕点O逆时针旋转一定角度到图2的位置,过点O在三角板MON的内部作射线OC,使得OC恰好是∠MOB对的角平分线,此时∠AOM与∠NOC满足怎样的数量关系?并说明理由.【解答】解:(1)∵∠NOC:∠MOC=2:1,∴∠MOC=90°×=30°,∴∠AOC=∠AOM+∠MOC=90°+30°=120°.(2)∠AOM=2∠NOC,令∠NOC为β,∠AOM为γ,∠MOC=90°﹣β,∵∠AOM+∠MOC+∠BOC=180°,∴γ+90°﹣β+90°﹣β=180°,∴γ﹣2β=0,即γ=2β,∴∠AOM=2∠NOC.。
七年级数学上册第四章《几何图形初步》测试卷-人教版(含答案)
七年级数学上册第四章《几何图形初步》测试卷-人教版(含答案)班级姓名(满分100分,限时60分钟)一、选择题(每小题3分,共30分)1.(2022独家原创)你见过一种折叠灯笼吗?它看起来是平面的,可是提起来后却变成了美丽的灯笼,这个过程可近似地用哪个数学原理来解释( )A.点动成线B.线动成面C.面动成体D.面与面相交的地方是线2.(2021江苏镇江中考)如图所示,该几何体从上面看到的图形是( )A.正方形B.长方形C.三角形D.圆3.(2022甘肃白银期末)如图,观察图形,下列结论中不正确的是( )A.直线BA和直线AB是同一条直线B.图中有5条线段C.AB+BD>ADD.射线AC和射线AD是同一条射线4.如图所示,小于平角的角有( )A.9个B.8个C.7个D.6个5.(2022山东临沂沂水期末)如图,OA表示北偏东25°方向,OB表示南偏西50°方向,则∠AOB的度数是( )A.165°B.155°C.135°D.115°6.建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做蕴含的数学原理是( )A.过一点有无数条直线B.两点确定一条直线C.两点之间线段最短D.线段是直线的一部分7.如图,下列各式中错误的是( )A.∠AOB<∠AODB.∠BOC<∠AOBC.∠COD>∠AODD.∠AOD>∠AOC8.(2022北京怀柔期末)如图是某个几何体的展开图,该几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.射线OA上有B、C两点,若OB=8,BC=2,线段OB、BC的中点分别为D、E,则线段DE的长为( )A.5B.3C.1D.5或310.时钟显示为8:20时,时针与分针所夹的角是( )A.130°B.120°C.110°D.100°二、填空题(每小题3分,共30分)11.(2022独家原创)篮球运动员将篮球抛出后在空中形成一道弧线,这说明的数学原理是.12.如图所示,延长线段AB到C,使BC=4,若AB=8,则线段AC的长是BC长的倍.13.(2022山东济南历下期末)计算:30°12'=°.14.如图,从A地到B地有①,②,③三条线路,其中最短的线路是(填“①”“②”或“③”),理由是.15.(2022北京通州期末)如图,棋盘上有黑、白两色棋子若干,若直线l经过3枚颜色相同的棋子,则这样的直线共有条.16.如图所示,O是直线AB上一点,OC是∠AOB的平分线.(1)图中互余的角是;(2)图中互补的角是.17.如图所示,图中有条直线, 条射线, 条线段.18.(2021湖北黄冈期末模拟)如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC= 度.19.如图,C,D是线段AB上两点,若BC=4cm,AD=7cm,且D是BC的中点,则AC的长等于cm.20.(2022安徽合肥蜀山期末)在同一平面内,∠AOC=∠BOD=50°,射线OB在∠AOC的内部,且∠AOB=20°,OE平分∠AOD,则∠COE的度数是.三、解答题(共40分)21.(5分)如图,已知不在同一直线上的四个点A、B、C、D.(1)画直线AD;(2)连接AB;(3)画射线CD;(4)延长线段BA至点E,使BE=2BA;(5)反向延长射线CD至点F,使DC=2CF.22.(2022北京东城期末)(5分)若一个角的补角是它的余角的6倍,求这个角的度数.23.(6分)如图,点O为直线AB上的一点,已知∠1=65°15',∠2=78°30',求∠1+∠2-∠3的大小.24.(2022广西玉林博白期末)(8分)如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是;(2)若射线OE平分∠COD,求∠AOE的度数.25.(8分)如图,已知线段AC=12cm,点B在线段AC上,满足BC=1AB.2(1)求AB的长;(2)若D是AB的中点,E是AC的中点,求DE的长.26.(8分)点O为直线AB上一点,将一直角三角板OMN的直角顶点放在点O处,射线OC平分∠MOB.(1)如图(a),若∠AOM=30°,求∠CON的度数;(2)在图(a)中,若∠AOM=α,直接写出∠CON的度数(用含α的式子表示);(3)将图(a)中的直角三角板OMN绕顶点O顺时针旋转至图(b)的位置,一边OM在直线AB上方,另一边ON在直线AB下方.①探究∠AOM和∠CON的度数之间的关系,写出你的结论,并说明理由;②当∠AOC=3∠BON时,求∠AOM的度数.图(a) 图(b)参考答案1.C 由平面图形变成立体图形的过程是面动成体.2.C 从上面看该几何体,所看到的图形是三角形.3.B 题图中有6条线段,故选B.4.C 符合条件的角中以A为顶点的角有1个,以B为顶点的角有2个,以C为顶点的角有1个,以D为顶点的角有1个,以E为顶点的角有2个,共有1+2+1+1+2=7个,故选C.5.B 由题意得∠AOB=25°+90°+40°=155°.6.B 用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,依据是两点确定一条直线.7.C 因为OC在∠AOD的内部,所以∠COD<∠AOD,故C错误,符合题意.8.B 从展开图可知,该几何体有五个面,两个三角形的面,三个长方形的面,因此该几何体是三棱柱.9.D 如图1,DE=3;如图2,DE=5.故选D.图1 图210.A 8:20时,时针与分针之间有4+2060=133个大格,故8:20时,时针与分针所夹的角是30°×133=130°,故选A.11.点动成线解析将篮球看成一个点,这种现象说明的数学原理是点动成线.12.3解析因为AC=AB+BC=8+4=12,所以AC=3BC.13.30.2解析因为1°=60',所以12'=0.2°,所以30°12'=30.2°. 14.①;两点之间,线段最短解析从A地到B地最短的线路是①,依据是两点之间,线段最短.15.3解析如图所示:所以满足条件的直线共有3条.16.(1)∠AOD与∠DOC(2)∠AOD与∠BOD,∠AOC与∠BOC解析(1)因为O是直线AB上一点,OC是∠AOB的平分线,∠AOB=90°,所以∠AOC=∠BOC=12所以∠AOD+∠DOC=90°,即∠AOD与∠DOC互余.(2)∠AOD+∠BOD=180°,∠AOC+∠BOC=180°,即∠AOD与∠BOD互补,∠AOC与∠BOC互补.17.1;6;6解析题图中有1条直线,为直线AD;6条射线,分别为以A为端点的3条,以B为端点的1条,以D为端点的2条;6条线段,分别是AB、AC、AD、BC、CD、BD.18.180解析∠AOB+∠DOC=∠AOD+∠DOC+∠BOC+∠DOC=∠AOC+∠DOB=90°+90°=180°.19.5解析因为D是线段BC的中点,BC=4cm,BC=2cm,所以CD=12因为AD=7cm,所以AC=7-2=5(cm).20.15°或65°解析①当OD与OC在OA的同侧时,如图,因为∠AOC=∠BOD=50°,∠AOB=20°,所以∠AOD=∠BOD+∠AOB=70°,因为OE平分∠AOD,∠AOD=35°,所以∠AOE=12所以∠COE=∠AOC-∠AOE=15°;②当OD与OC在OA的异侧时,如图,因为∠AOC=∠BOD=50°,∠AOB=20°,所以∠AOD=∠BOD-∠AOB=30°,因为OE平分∠AOD,所以∠AOE=1∠AOD=15°,2所以∠COE=∠AOC+∠AOE=65°.综上所述,∠COE的度数为15°或65°.21.解析如图所示.22.解析设这个角为x°,根据题意,得180-x=6(90-x),解得x=72.答:这个角是72°.23.解析∠1+∠2-∠3=65°15'+78°30'-(180°-65°15'-78°30')=143°45'-36°15'=107°30'.24.解析(1)北偏东70°.(2)因为∠AOB=40°+15°=55°,∠AOC=∠AOB,所以∠AOC=55°,∠BOC=110°.因为射线OD是OB的反向延长线,所以∠BOD=180°.所以∠COD=180°-110°=70°.因为OE 平分∠COD, 所以∠COE=35°. 又因为∠AOC=55°, 所以∠AOE=90°.25.解析 (1)因为BC=12AB,AC=AB+BC=12 cm, 所以AB+12AB=12 cm, 所以AB=8 cm.(2)因为D 是AB 的中点,AB=8 cm, 所以AD=12AB=4 cm,因为E 是AC 的中点,AC=12 cm, 所以AE=12AC=6 cm, 所以DE=AE-AD=6-4=2(cm).26.解析 (1)由已知得∠BOM=180°-∠AOM=150°, 因为∠MON 是直角,OC 平分∠BOM,所以∠CON=∠MON-12∠BOM=90°-12×150°=15°. (2)由已知得∠BOM=180°-∠AOM=180°-α, 因为∠MON 是直角,OC 平分∠BOM,所以∠CON=∠MON-12∠BOM=90°-12×(180°-α)=12α. (3)设∠AOM=β,则∠BOM=180°-β. ①∠AOM=2∠CON,理由如下: 因为OC 平分∠BOM,所以∠MOC=12∠BOM=12(180°-β)=90°-12β, 因为∠MON=90°,所以∠CON=∠MON-∠MOC=90°-(90°−12β)=12β,所以∠AOM=2∠CON.②由①可知∠BON=∠MON-∠BOM=90°-(180°-β)=β-90°,∠AOC=∠AOM+∠MOC=β+90°-12β=90°+12β,因为∠AOC=3∠BON,所以90°+12β=3(β-90°),解得β=144°, 所以∠AOM=144°.。
人教版 七年级数学 第4章 几何图形初步 复习题(含答案)
人教版七年级数学第4章几何图形初步复习题一、选择题(本大题共10道小题)1. [2018·河南]某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我2. 如图,水平的讲台上放置的是圆柱形笔筒和正方体形粉笔盒,从上面看到的是()3. 粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,在这个过程中,你认为下列判断正确的是()A.点动成线B.线动成面C.面动成体D.面与面相交得到线4. 如图是一座房子的平面示意图,组成这幅图的平面图形是 ()图A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形5. 如图所示,下列对图形描述不正确的是()A.直线ABB.直线BCC.射线ACD.射线AB6. 下列几何体是由4个相同的小正方体搭成的,其中从左面看和从上面看得到的平面图形相同的是()7. 如图,图中小于平角的角有()A.10个B.9个C.8个D.4个8. 如果一个棱柱有12个顶点,那么它的面的个数是 ()A.10B.9C.8D.79. 图(1)(2)中所有的正方形完全相同,将图(1)的正方形放在图(2)中①②③④的某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④10. 已知∠AOB=60°,∠AOC=∠AOB,射线OD平分∠BOC,则∠COD的度数为()A.20°B.40°C.20°或30°D.20°或40°二、填空题(本大题共8道小题)11. (1)将度化为度、分、秒的形式:1.45°=;(2)2700″=°.12. 如图所示的图形中,是棱柱的有______.(填序号)13. 如图,∠1可以用三个大写字母表示为.14. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”说明的现象是.15. 建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上.这样做的依据是.16. 如图,点B,O,D在同一条直线上,若∠1=15°,∠2=105°,则∠AOC=°.17. 如图所示,AF=.(用含a,b,c的式子表示)18. 图中可用字母表示出的射线有条.三、解答题(本大题共4道小题)19. 请将图中的角用不同的方法表示出来,并填写下表:角的表示方法一∠ABE角的表示方法二∠1 ∠2用量角器量出∠2,∠A,∠ABE的度数,并写出它们之间的数量关系.20. 如图,下列各几何体的表面中包含哪些平面图形?21. 如图,有一个外观为圆柱形的物体,它的内部构造看不到,当分别用一组平面沿水平方向(自上而下)和竖直方向(自左而右)截这个物体时,得到了如图所示的(1)(2)两组形状不同的截面,请你试着说出这个物体的内部构造.22. 实践与应用:一个西瓜放在桌子上,从上往下切,一刀可以切成2块,两刀最多可以切成4块,3刀最多可以切成7块,4刀最多可以切成11块(如图).上述实际问题可转化为数学问题:n条直线最多可以把平面分成几部分.请先进行操作,然后回答下列问题.(1)填表:直线条数 1 2 3 4 5 6 …最多可以把平面分成的2 4 7 11 …部分数(2)直接写出n条直线最多可以把平面分成几部分(用含n的式子表示).人教版七年级数学第4章几何图形初步复习题-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】D[解析] 从上面看,左边是一个圆,右边是一个正方形,故选D.3. 【答案】B4. 【答案】C5. 【答案】B6. 【答案】B7. 【答案】B[解析] 小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠BOE,∠COD,∠COE,∠DOE,共9个.8. 【答案】C[解析] 一个棱柱有12个顶点,一定是六棱柱,所以它有6个侧面和2个底面,共8个面.9. 【答案】A10. 【答案】D[解析] 当OC在∠AOB内部时,如图①,则∠BOC=∠AOB-∠AOC=60°-×60°=40°,∴∠COD=∠BOC=20°;当OC在∠AOB外部时,如图②,则∠BOC=∠AOB+∠AOC=60°+×60°=80°,∴∠COD=∠BOC=40°.综上,∠COD的度数为20°或40°.故选D.二、填空题(本大题共8道小题)11. 【答案】(1)1°27'(2)0.7512. 【答案】②⑥13. 【答案】∠MCN或∠MCB14. 【答案】观察同一个物体,由于方向和角度不同,看到的图形往往不同15. 【答案】两点确定一条直线16. 【答案】90[解析] 因为∠2=105°,所以∠BOC=180°-∠2=75°,所以∠AOC=∠1+∠BOC=15°+75°=90°.17. 【答案】2a-2b-c18. 【答案】5[解析] 有OA,AB,BC,OP,PE,共5条射线.三、解答题(本大题共4道小题)19. 【答案】解:∠ABE还可以表示为∠3,∠1还可以表示为∠ABC或∠ABF,∠2还可以表示为∠ACB或∠ACE(填表略).∠2=40°,∠A=25°,∠ABE=65°,所以∠ABE=∠A+∠2.20. 【答案】(1)长方形(2)圆(3)三角形、平行四边形21. 【答案】解:这个物体的内部构造为:圆柱中间有一球形空洞.22. 【答案】解:(1)设n条直线最多可以把平面分成的部分数是S n.当n=5时,S5=1+1+2+3+4+5=16,当n=6时,S6=1+1+2+3+4+5+6=22.故表内从左到右依次填16,22.(2)S n=1+1+2+3+…+n=1+=.故n条直线最多可以把平面分成部分.。
人教版初中七年级数学上册第四章《几何图形初步》经典复习题(含答案解析)
人教版初中七年级数学上册第四章《几何图形初步》经典复习题(含答案解析)一、选择题1.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则在图2中,小虫从点A沿着正方体的棱长爬行到点B的长度为()A.0 B.1 C.2 D.3B解析:B【分析】将图1折成正方体,然后判断出A、B在正方体中的位置关系,从而可得到AB之间的距离.【详解】解:将图1折成正方体后点A和点B为同一条棱的两个端点,得出AB=1,则小虫从点A沿着正方体的棱长爬行到点B的长度为1.故选B.【点睛】本题主要考查的是展开图折成几何体,判断出点A和点B在几何体中的位置是解题的关键.2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D. B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°A 解析:A【分析】根据题意各种角的关系直接可求出题目要求的角度.【详解】因为∠AOD =40°,∠BOC =50°,所以∠COD =90°,又因为OM ,ON 分别平分∠BOC 和∠AOD ,所以∠N OD+∠M OC =45°,则∠MON=∠N OD+∠M OC+∠COD=135°.【点睛】本题考查了角平分线的知识,掌握角平分线的性质是解决此题的关键.4.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ).A .5B .9C .10D .16B 解析:B【分析】按图形将要求的线段ED 可转化成已知线段.ED=EC+CD=12BC+3AC ,而BC 、AC 都可根据题中比例求得,于是线段ED 可求.【详解】解:根据题意画图:因为:1:3AC CB =,且8AB =,所以2AC =,6BC =.由题意可知:113632922ED EC CD BC AC =+=+=⨯+⨯=, 故选:B .【点睛】本题考查的线段的相关运算,根据题意画好图形是关键,利用图形进行线段间的转化是解题突破口.5.某正方体的平面展开图如下图所示,这个正方体可能是下面四个选项中的( ).A.B.C.D. A解析:A【分析】根据正方体的展开与折叠.可以动手折叠看看,充分发挥空间想象能力解决也可以.【详解】根据题意及图示只有A经过折叠后符合.故选:A.【点睛】此题考查几何体的展开图,解题关键在于空间想象力.6.如图,在数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D两点表示的数分别为-5和6,点E为BD的中点,在数轴上的整数点中,离点E最近的点表示的数是()A.2 B.1C.0 D.-1A解析:A【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4, ∴|6-E|=4, ∴点E 所表示的数是:6-4=2.∴离线段BD 的中点最近的整数是2.故选:A .【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.7.已知α∠和β∠互补,且αβ∠>∠,则有下列式子:①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有( ) A .4个 B .3个 C .2个D .1个B解析:B【分析】根据余角和补角的概念进行角度的计算即可得解.【详解】∵9090ββ︒-∠+∠=︒,∴①正确;∵α∠和β∠互补,∴180αβ∠+∠=︒,∴901809090αβ∠-︒+∠=︒-︒=︒,∴②正确,⑤错误; ∵()11180909022αββββ∠+∠+∠=⨯︒+∠=︒+∠≠︒, ∴③错误; ∵()()11118090222αββαβ∠-∠+∠=∠+∠=⨯︒=︒, ∴④正确;∴①②④正确,故选:B.【点睛】 本题主要考查了余角和补角的含义,熟练掌握相关角度的计算是解决本题的关键. 8.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A.8B.7C.6D.4C解析:C【分析】确定原正方体相对两个面上的数字,即可求出和的最小值.【详解】解:由题意,2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6.故选:C.【点睛】本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.9.由A站到G站的某次列车,运行途中停靠的车站依次是A站——B站—C站——D站——E站——F站——G站,那么要为这次列车制作的火车票有()A.6种B.12种C.21种D.42种C解析:C【解析】【分析】从A出发要经过6个车站,所以要制作6种车票,从B出发要经过5个车站,所以要制作5种车票,从C出发要经过4个车站,所以要制作4种车票,从D出发要经过3个车站,所以要制作3种车票,从E出发要经过2个车站,所以要制作2种车票,从F出发要经过1个车站,所以要制作1种车票,把车票数相加即可得解.【详解】共需制作的车票数为:6+5+4+3+2+1=21(种).故选C.【点睛】本题从A站出发,逐站求解即可得到所有可能的情况,不要遗漏.10.如下图,直线的表示方法正确的是()①②③④A.都正确B.只有②正确C.只有③正确D.都不正确C解析:C【分析】用直线的表示方法解答,通常直线用两个大写字母或一个小写字母表示.【详解】∵通常直线用两个大写字母或一个小写字母表示,例直线AB ,直线a .故选C .【点睛】本题考查了几何中直线的表示方法,是最基本的知识.二、填空题11.线段AB =12cm ,点C 在线段AB 上,且AC =13BC ,M 为BC 的中点,则AM 的长为_______cm.5【分析】可先作出简单的图形进而依据图形分析求解【详解】解:如图∵点C 在AB 上且AC=BC ∴AC=AB=3cm ∴BC=9cm 又M 为BC 的中点∴CM=BC=45cm ∴AM=AC+CM=75cm 故答案为解析:5【分析】可先作出简单的图形,进而依据图形分析求解.【详解】解:如图,∵点C 在AB 上,且AC=13BC , ∴AC=14AB=3cm ,∴BC=9cm ,又M 为BC 的中点, ∴CM=12BC=4.5cm ,∴AM=AC+CM=7.5cm . 故答案为7.5.【点睛】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.12.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC AB+BC=4cm,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.13.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于________.142°【解析】【分析】根据对顶角相等求出∠AOC的度数再根据角平分线的定义求出∠AOM的度数然后根据平角等于180°列式计算即可得解【详解】解:∵∠BOD=76°∴∠AOC=∠BOD=76°∵射线解析:142°【解析】【分析】根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.【详解】解:∵∠BOD =76°,∴∠AOC=∠BOD =76°,∵射线OM平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°,∴∠BOM=180°-∠AOM=180°-38°=142°.故答案为142°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.14.同一条直线上有三点A,B,C,且线段BC=3AB,点D是BC的中点,CD=3,则线段AC的长为______.4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况画出图形分别利用线段中点的定义和已知条件求出BC和AB再利用线段的和差计算即可【详解】解:(1)当点C在AB的延长线上时如图1∵点D解析:4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况,画出图形,分别利用线段中点的定义和已知条件求出BC和AB,再利用线段的和差计算即可.【详解】解:(1)当点C在AB的延长线上时,如图1,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=AB+BC=2+6=8;(2)当点C在BA的延长线时,如图2,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=BC-AB=6-2=4.故答案为:4或8.【点睛】本题考查了线段中点的定义、两点间的距离和线段的和差等知识,正确分类、画出图形、熟练掌握线段中点的概念和线段的和差计算是解题的关键.15.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性解析:一【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.16.某产品的形状是长方体,长为8cm,它的展开图如图所示,则长方体的体积为_____cm3.192【分析】根据已知图形得出长方体的高进而得出答案【详解】解:设长方体的高为xcm 则长方形的宽为(14-2x )cm 根据题意可得:14-2x+8+x+8=26解得:x=4所以长方体的高为4cm 宽为6解析:192【分析】根据已知图形得出长方体的高进而得出答案.【详解】解:设长方体的高为xcm ,则长方形的宽为(14-2x )cm ,根据题意可得:14-2x+8+x+8=26,解得:x=4,所以长方体的高为4cm ,宽为6cm ,长为8cm ,长方形的体积为:8×6×4=192(cm 3);故答案为:192【点睛】本题考查几何体的展开图、一元一次方程的应用及几何体的体积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.17.如图,折一张长方形纸的一角,使角的顶点落在A′处,且使得∠ABA′=90°,BC 为折痕,若BD 为∠A′BE 的平分线,则∠CBD =________°.90【分析】根据折叠的性质及平角的定义求出根据BD 为∠A′BE 的平分线得到根据角的和差计算求出答案【详解】∵∠ABA′=90°∴∵BD 为∠A′BE 的平分线∴∴故答案为:90【点睛】此题考查折叠的性质解析:90【分析】根据折叠的性质及平角的定义求出45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,根据BD 为∠A′BE 的平分线,得到45A BD '∠=︒,根据角的和差计算求出答案.【详解】∵∠ABA′=90°,∴45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,∵BD 为∠A′BE 的平分线,∴45A BD '∠=︒,∴90CBD A BC A BD ∠∠∠=+=''︒故答案为:90.【点睛】此题考查折叠的性质:折叠前后的对应角角相等,利用平角求角的度数,角平分线的性质,掌握图形中各角的位置关系是解题的关键.18.如图,上午6:30时,时针和分针所夹锐角的度数是_____.15°【分析】计算钟面上时针与分针所成角的度数一般先从钟面上找出某一时刻分针与时针所处的位置确定其夹角再根据表面上每一格30°的规律计算出分针与时针的夹角的度数【详解】∵时针12小时转一圈每分钟转动 解析:15°【分析】计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针与时针的夹角的度数.【详解】∵时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°,∴时针1小时转动30°,∴6:30时,分针指向刻度6,时针和分针所夹锐角的度数是30°×12=15°. 故答案是:15°.【点睛】考查了钟面角,解题时注意,分针60分钟转一圈,每分钟转动的角度为:360°÷60=6°;时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°.19.如图,将一副三角板叠放一起,使直角的顶点重合于点O ,则∠AOD +∠COB 的度数为___________度. 180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB据此即可求解【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB=∠COD+∠AOB=90°+90°=180°故答案是:180【解析:180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB,据此即可求解.【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB =∠COD+∠AOB=90°+90°=180°.故答案是:180.【点睛】本题考查了三角板中角度的计算,正确把∠AOD+∠COB转化成∠COD+∠AOB是解决本题的关键.20.如图,::2:3:4AB BC CD=,AB的中点M与CD的中点N的距离是3cm,则BC=______.5cm【分析】运用方程的思想设AB=2xcmBC=3xcmCD=4xcm求出MB=xcmCN=2xcm得出方程x+3x+2x=3求出即可【详解】解:设AB=2xcmBC=3xcmCD=4xcm∵M是解析:5cm【分析】运用方程的思想,设AB=2xcm,BC=3xcm,CD=4xcm,求出MB=xcm,CN=2xcm,得出方程x+3x+2x=3,求出即可.【详解】解:设AB=2xcm,BC=3xcm,CD=4xcm,∵M是AB的中点,N是CD的中点,∴MB=xcm,CN=2xcm,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm.故答案为:1.5cm.【点睛】本题考查了求两点之间的距离的应用,关键是能根据题意得出关于x的方程.三、解答题21.如图,已知线段AB和CD的公共部分1134BD AB CD==,线段AB、CD的中点E、F之间的间距是10cm,求AB、CD的长.解析:AB=12cm,CD=16cm【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE=1.5xcm和CF=2xcm,再根据EF=AC-AE-CF=2.5xcm,且E、F之间距离是EF=10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.【详解】设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=12AB=1.5xcm,CF=12CD=2xcm.∴EF=AC-AE-CF=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.【点睛】本题考查了线段中点的性质,设好未知数,用含x的式子表示出各线段的长度是解题关键.22.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.23.如图,是一个几何体的表面展开图.(1)该几何体是________;A .正方体B .长方体C .三棱柱D .四棱锥(2)求该几何体的体积.解析:(1)C ;(2)4【分析】(1)本题根据展开图可直接得出答案.(2)本题根据体积等于底面积乘高求解即可.【详解】(1)本题可根据展开图中两个全等的等腰直角三角形,以此判定该几何体为三棱柱,故选C .(2)由图已知:该几何体底面积为等腰三角形面积12222=⨯⨯=;该几何体的高为2; 故该几何体体积=底面积⨯高=22=4⨯.【点睛】本题考查几何体展开图以及体积求法,根据展开图推测几何体时需要以展开图的特征位置作为推测依据,求解体积或者面积时按照公式求解即可.24.已知线段10cm AB =,在直线AB 上取一点C ,使16cm AC =,求线段AB 的中点与AC 的中点的距离.解析:13cm 或3cm .【分析】结合题意画出简单的图形,再结合图形进行分类讨论:当C 在BA 延长线上时,当C 在AB 延长线上时,分别依据线段的和差关系求解.【详解】解:①如图,当C 在BA 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以81513(cm)DE AE AD =+=+=. ②如图,当C 在AB 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以853(cm)DE AE AD =-=-=. 综上,线段AB 的中点与AC 的中点的距离为13cm 或3cm .【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论.25.如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.解析:(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用直线以及射线的定义画出图形即可;(2)利用角的定义作射线DC,DB即可;(3)连接AC,与BD的交点即为所求.【详解】解:(1)如图所示:直线AB、射线AD即为所求;(2)如图所示:∠CDB即为所求;(3)如图所示:点P即为所求.【点睛】此题主要考查了直线、射线以及角的定义,正确把握相关定义是解题关键.26.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点.(1)用1个单位长度表示1cm,请你在数轴上表示出A,B, C三点的位置;(2)把点C到点A的距离记为CA,则CA=______cm.(3)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,试探索:CA−AB的值是否会随着t的变化而改变?请说明理由.解析:(1)数轴见解析;(2)6;(3)CA−AB的值不会随着t的变化而改变,理由见解析;【分析】(1)在数轴上表示出A,B,C的位置即可;(2)求出CA的长即可;(3)不变,理由如下:当移动时间为t秒时,表示出A,B,C表示的数,求出CA-AB的值即可做出判断.【详解】(1)如图:(2)CA=4−(−2)=4+2=6cm,(3)不变,理由如下:当移动时间为t秒时,点A. B. C分别表示的数为−2+t、−5−2t、4+4t,则CA=(4+4t)−(−2+t)=6+3t,AB=(−2+t)−(−5−2t)=3+3t,∵CA−AB=(6+3t)−(3+3t)=3∴CA−AB的值不会随着t的变化而改变.【点睛】此题考查数轴,两点间的距离,整式的加减,列代数式,解题关键在于结合数轴进行解答. 27.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.28.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长.(2)若CE=5cm,求DB的长.解析:(1)AB=18;(2)DB=15.【分析】(1)由线段中点的定义可得CD=12AC,CE=12BC,根据线段的和差关系可得DE=12AB,进而可得答案;(2)根据中点定义可得AC=BC,CE=BE,AD=CD,根据线段的和差关系即可得答案.【详解】(1)∵D是AC的中点,E是BC的中点.∴CD=12AC,CE=12BC,∵DE=CD+CE=9,∴12AC+12BC=12(AC+BC)=9,∵AC+BC=AB,∴AB=18.(2)∵C是AB的中点,D是AC的中点,E是BC的中点,∴AC=BC,CE=BE=12BC,,AD=CD=12AC,∴AD=CD=CE=BE,∴DB=CD+CE+BE=3CE,∵CE=5,∴DB=15.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.。
人教版初中七年级数学上册第四单元《几何图形初步》经典复习题(含答案解析)
一、选择题1.如图所示,OA 是北偏东30°方向的一条射线,若∠AOB =90°,则OB 的方位角是( )A .北偏西30°B .北偏西60°C .北偏东30°D .北偏东60° 2.已知点P 是CD 的中点,则下列等式中正确的个数是( )①PC CD =;②12PC CD =;③2PC PD =;④PC PD CD += A .1个 B .2个C .3个D .4个 3.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC 内,且∠DOE =60°,∠BOE =13∠EOC ,则下列四个结论正确的个数有( ) ①∠BOD =30°;②射线OE 平分∠AOC ;③图中与∠BOE 互余的角有2个;④图中互补的角有6对.A .1个B .2个C .3个D .4个4.如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°5.如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是( )A .∠AOD+∠BOE=60°B .∠AOD=12∠EOCC .∠BOE=2∠COD D .∠DOE 的度数不能确定6.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( ) A . B . C . D . 7.如图,已知线段12AB =,延长线段AB 至点C ,使得12BC AB =,点D 是线段AC 的中点,则线段BD 的长是( ).A .3B .4C .5D .68.如图,CD 是直角三角形ABC 的高,将直角三角形ABC 按以下方式旋转一周可以得到右侧几何体的是( ).A .绕着AC 旋转B .绕着AB 旋转C .绕着CD 旋转 D .绕着BC 旋转 9.如图.已知//AB CD .直线EF 分别交,AB CD 于点,,EF EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒10.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π 11.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A .8B .7C .6D .4 12.若∠A=20°18′,∠B=20°15″,∠C=20.25°,则有( ) A .∠A >∠B >∠C B .∠B >∠A >∠C C .∠A >∠C >∠B D .∠C >∠A >∠B 13.一个小立方块的六个面分别标有字母A ,B ,C ,D ,E ,F ,从三个不同的方向看形如图所示,则字母D 的对面是( )A .字母AB .字母FC .字母ED .字母B 14.由A 站到G 站的某次列车,运行途中停靠的车站依次是A 站——B 站—C 站——D 站——E 站——F 站——G 站,那么要为这次列车制作的火车票有( )A .6种B .12种C .21种D .42种15.下列说法不正确的是( )A .两条直线相交,只有一个交点B .两点之间,线段最短C .两点确定一条直线D .过平面上的任意三点,一定能作三条直线二、填空题16.长为4,宽为2的矩形绕其一边旋转构成一个圆柱的最大体积为___ (结果保留π). 17.如图所示,128∠=︒,272∠=︒,OC 平分BOD ∠,则COD ∠=________.18.如图,点C 是线段AB 的中点,点D ,E 分别在线段AB 上,且AD DB =23,AE EB =2,则CD CE的值为____.19.如图,点C ,M ,N 在线段AB 上,且M 是AC 的中点,CN :NB=1:2,若AC=12,MN=15,则线段AB 的长是_______.20.如图所示,能用一个字母表示的角有________个,以点A 为顶点的角有________个,图中所有大于0°小于180°的角有________个.21.如图是一个多面体的表面展开图,则折叠后与棱AB 重合的棱是________.22.25°20′24″=______°.23.把命题“等角的余角相等”改写成“如果……那么……”的形式:__________________________. 是______命题(填“真”或“假”)24.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若17MN cm =,则BD =__cm .25.已知∠A=67°,则∠A 的余角等于______度.26.已知线段MN=16cm ,点P 为任意一点,那么线段MP 与NP 和的最小值是_____cm .三、解答题27.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 的长;(2)求线段MN 的长;(3)若C 在线段AB 延长线上,且满足AC ﹣BC=b cm ,M ,N 分别是线段AC ,BC 的中点,你能猜想MN 的长度吗?请写出你的结论(不需要说明理由)28.如图,∠AOC :∠COD :∠BOD=2:3:4,且A ,O ,B 三点在一条直线上,OE ,OF 分别平分∠AOC 和∠BOD ,OG 平分∠EOF ,求∠GOF 的度数。
七年级数学上册第四章《几何图形初步》综合测试卷-人教版(含答案)
七年级数学上册第四章《几何图形初步》综合测试卷-人教版(含答案)一、单选题(本大题共10小题,每小题3分,共30分)1.下图中, 是正方体的展开图是( )2.如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知CA+BC >AB ,其依据是( )A .两点之间,线段最短B .两点确定一条直线C .两点之间,直线最短D .直线比线段长3.若∠P=21°18′,∠Q=21.12°,∠R=21.3°,则( )A. ∠P=∠QB. ∠Q=∠RC. ∠P=∠RD. ∠P=∠Q=∠R4.(成都中考)期末如图是一个正方体的展开图,标注了字母A 的面是正方体的正面,如果正方体的左面和右面所标数字相等,则x 的值是( )A. 6B. 1C.-21D. 05.将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的是( )A B C DA. B.C. D.6.(成都期末)如图,∠AOC和都∠BOD是直角,如果∠DOC=28°,那么∠AOB的度数是( )A. 62°B. 152°C. 118°D. 无法确定7已知线段AB=10cm,在直线AB上,若AC=8cm,若M,N分别为AB,AC的中点,那么M,N 两点之间的距离为()A. 9 cmB. 1 cmC.9或 1 cmD. 无法确定8.(仁怀期末)如图用一副三角板可以画出15°的角,用它们还可以画出其它一些特殊角,不能利用这副三角板直接画出的角度是()A.55°B.75°C.105°D.135°9.(东莞期末)将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A. B.C. D.10.(山西太原期末)如图,∠AOB=60°,,射线OC平分∠AOB,以OC为一边作∠COP=15°,则∠BOP的度数为()A.15°B.45°C.15°或30°D.15°或45°二.填空题(共8小题,每小题3分,共24分)11.如图所示,若图中共有m条线段,n条射线,则n-m=______ .12.如图,已知C,D两点在线段AB上,AB=10cm,CD=6cm,M,N分别是线段AC,BD的中点,则MN=________cm.13.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是_____2cm.14.已知数轴上A、B两点所表示的数分别为-6和4,则AB中点表示的数是_____。
人教版-学年度上学期七年级数学期末复习试卷四 几何图形初步(含答案)
2018-2019七上期末复习试题四学生版第四章几何图形初步检测卷(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.下列几何体中,属于柱体的有( )①长方体;②正方体;③圆锥;④圆柱;⑤四棱锥;⑥三棱柱.A.2个 B.3个 C.4个 D.5个2.下列语句:①点A在直线上;②直线的一半就是射线;③延长直线AB到点C;④射线OA与射线AO是同一射线.其中正确的说法有( )A.0个 B.1个 C.2个 D.3个3.如图,圆柱体的表面展开后得到的平面图形是( ).4.如图四个图形都是由6个大小相同的正方形组成,其中是正方体展开图的是( )A.①②③ B.②③④ C.①③④ D.①②④5.如图所示的正方体的展开图是( )6.由若干个相同的小正方体组合而成的一个几何体从不同方向看到的图形如图,则组成这个几何体的小正方体的个数是()从正面看从左面看从上面看A.3个B.4个C.5个D.6个7.若∠与∠互为补角,∠是∠的2倍,则∠为()A.30°B.40°C.60°D.120°8.下列立体图形中:①圆柱;②圆锥;③正方体;④四棱柱,面数相同的是( )A.①② B.①③ C.②③ D.③④9.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是()A.20°或50° B.20°或60° C.30°或50° D.30°或60°10.4点10分,时针与分针所夹的小于平角的角为()A.55°B.65°C.70°D.以上结论都不对二、填空题(每小题3分,共15分)11.木工师傅用刨子可将木板刨平,经过刨平的木板上的两个点,就能弹出一条笔直的墨线,而且只能弹出一条墨线,用数学知识解释其依据为: .12.如图,一个正方体的每个面分别标有数字1,2,3,4,5,6.根据图中该正方体三种状态所显示的数据,可推出“?”处的数字是 .①②③13.两个完全相同的长方体的长、宽、高分别是5 cm ,4 cm ,3 cm ,把它们叠放在一起组成一个新长方体,在这些新的长方体中,表面积最大是14平面上有三点A 、B 、C ,①连接其中任意两点,可得线段3条;②经过任意两点画直线,可得到直线 .15如图,∠AOC=50°,∠BOC=20°,OE 平分∠BOC ,OF 平分∠AOC ,则∠EOF 的度数为 .三、解答题(共75分) 16.(6分)已知∠与∠互余,且∠比∠小25°,求2∠-51∠的值.17.(6分)如图,C 为线段AD 上一点,点B 为CD 的中点,且AD =8cm ,BD =2cm . (1)图中共有多少条线段? (2)求AC 的长;(3)若点E 在直线AD 上,且EA =3cm .求BE 的长.18.(7分)点A 、B 、C 在同一直线上。
人教版七年级数学上册第4章 几何图形初步章末综合测试(含答案)
第四章几何图形初步章末综合测试一.选择题1.下列立体图形中,面数相同的是()①正方体;②圆柱;③四棱柱;④圆锥.A.①②B.①③C.②③D.③④2.“节日的焰火”可以说是()A.面与面交于线B.点动成线C.面动成体D.线动成面3.如图1,A,B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小,图2中所示的C点即为所求的码头的位置,那么这样做的理由是()A.两直线相交只有一个交点B.两点确定一条直线C.两点之间,线段最短D.经过一点有无数条直线4.下列说法中错误的是()A.线段AB和射线AB都是直线的一部分B.直线AB和直线BA是同一条直线C.射线AB和射线BA是同一条射线D.线段AB和线段BA是同一条线段5.如图,AB=18,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度是()A.8B.10C.12D.156.两根木条,一根长10cm,另一根长12cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.1cm B.11cm C.1cm或11cm D.2cm或11cm7.当分针指向12,时针这时恰好与分针成60°的角,此时是()A.9点钟B.10点钟C.4点钟或8点钟D.2点钟或10点钟8.如图,点O在直线AE上,OC平分∠AOE,∠DOB是直角.若∠1=25°,那么∠AOB的度数是()A.65°B.25°C.90°D.115°9.下列语句错误的个数是()①一个角的补角不是锐角就是钝角;②角是由两条射线组成的图形;③如果点C是线段AB的中点,那么AB=2AC=2BC;④连接两点之间的线段叫做两点的距离.A.4个B.3个C.2个D.1个10.如图,OC是∠AOB的平分线,∠BOD=∠DOC,∠BOD=18°,则∠AOD的度数为()A.72°B.80°C.90°D.108°二.填空题11.一个七棱柱的顶点的个数为个.12.秒针旋转一周时,形成一个圆面,用数学知识可以理解为.13.如图,已知线段AB=8cm,M是AB的中点,P是线段MB上一点,N为PB的中点,NB=1.5cm,则线段MP=cm.14.已知点A、B、C在同一直线上,若AB=10cm,AC=16cm,点M、N分别是线段AB、AC中点,则线段MN的长是.15.如图,线段AB=8cm,点C在BA的延长线上,AC=2cm,M是BC中点,则AM的长是cm.16.如图,已知CD=AD=BC,E、F分别是AC、BC的中点,且BF=40cm,则EF的长度为cm.17.已知一个角的补角为132°48′,则这个角的余角的度数为.18.将一副三角板按如图方式摆放在一起,且∠1比∠2大20°,则∠1的度数等于.19.若∠AOB=45°,∠BOC=75°,OD平分∠AOB,OE平分∠BOC,则∠DOE的度数为.20.如图,射线OC,OD在∠AOB内,∠AOB和∠BOC互为补角,.若∠COD比∠BOD大m°(m<30),则∠AOC=°.(用含m的式子表示)三.解答题21.在七年级第一章的学习中,我们已经学习过:点动成,线动成,动成体.比如:(1)圆规在纸上划过会留下一个封闭的痕迹,这种现象说明.(2)一个人手里拿着一个绑在一根棍上的半圆面,当这个人把这个半圆面绕着这根棍飞快地旋转起来时就会看到一个球,这种现象说明.(3)聪明的你一定观察过生活中还有许多类似的现象,你能举出一个例子吗?并解释该现象.22.如图,点B是线段AC上一点,且AB=21cm,BC=AB.(1)试求出线段AC的长;(2)如果点O是线段AC的中点,请求线段OB的长.23.如图,线段AB=8cm,C是线段AB上一点,M是AB的中点,N是AC的中点.(1)AC=3cm,求线段CM、NM的长;(2)若线段AC=m,线段BC=n,求MN的长度(m<n用含m,n的代数式表示).24.如图所示,∠AOC和∠BOD都是直角.(1)填空:图中与∠BOC互余的角有和;(2)∠AOD与∠BOC互补吗?为什么?25.已知:如图,∠AOB=30°,∠COB=20°,OC平分∠AOD,求∠BOD的度数.26.已知:如图1,OB、OC分别为锐角∠AOD内部的两条动射线,当OB、OC运动到如图的位置时,∠AOC+∠BOD=100°,∠AOB+∠COD=40°,(1)求∠BOC的度数;(2)如图2,射线OM、ON分别为∠AOB、∠COD的平分线,求∠MON的度数.(3)如图3,若OE、OF是∠AOD外部的两条射线,且∠EOB=∠COF=90°,OP平分∠EOD,OQ平分∠AOF,当∠BOC 绕着点O旋转时,∠POQ的大小是否会发生变化,若不变,求出其度数,若变化,说明理由.参考答案一.选择题1.解:∠正方体六个面;∠圆柱三个面;∠四棱柱六个面;∠圆锥两个面,面数相同的是∠∠,故选:B.2.解:根据节日的焰火的火的运动路线,可以认为节日的焰火的火就是一个点,可知点动即可成线.故选:B.3.解:A,B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小,图2中所示的C点即为所求的码头的位置,那么这样做的理由是两点之间,线段最短,故选:C.4.解:A、线段AB和射线AB都是直线的一部分,正确,不合题意;B、直线AB和直线BA是同一条直线,正确,不符合题意;C、射线AB和射线BA不是同一条射线,错误,符合题意;D、线段AB和线段BA是同一条线段,正确,不合题意;故选:C.5.解:∠AB=18,点C为AB的中点,∠BC=AB=×18=9,∠AD:CB=1:3,∠AD=×9=3,∠DB=AB﹣AD=18﹣3=15.故选:D.6.解:如图,设较长的木条为AB=12cm,较短的木条为BC=10cm,∠M、N分别为AB、BC的中点,∠BM=6cm,BN=5cm,∠如图1,BC不在AB上时,MN=BM+BN=6+5=11cm,∠如图2,BC在AB上时,MN=BM﹣BN=6﹣5=1cm,综上所述,两根木条的中点间的距离是1cm或11cm,故选:C.7.解:∠钟表上每一个大个之间的夹角是30°,∠当分针指向12,时针这时恰好与分针成60°的角时,距分针成60°的角时针应该有两种情况,即距时针2个格,∠只有2点钟或10点钟时符合要求.故选:D.8.解:∠点O在直线AE上,OC平分∠AOE,∠∠AOC=∠COE=90°,∠∠DOB是直角,∠1=25°,∠∠BOC=∠DOB﹣∠1=90°﹣25°=65°,∠∠AOB+∠BOC=∠AOC=90°∠∠AOB=90°﹣∠BOC=90°﹣65°=25°.故选:B.9.解:∠直角的补角是直角,故原说法错误;∠角是由有公共的端点的两条射线组成的图形,故原说法错误;∠如果点C是线段AB的中点,那么AB=2AC=2BC,说法正确;∠连接两点之间的线段的长度叫做两点的距离,故原说法错误.故错误的个数有∠∠∠共3个.故选:B.10.解:设∠DOB=k,∠∠BOD=∠DOC,∠∠BOC=2k,∠OC是∠AOB的平分线,∠∠COA=∠BOC=2k,∠∠AOD=∠DOB+∠BOC+∠COA=5k,∠∠BOD=18°,∠∠AOD=5×18°=90°,故选:C.二.填空题11.解:一个七棱柱的顶点的个数为7×2=14(个).故答案为:14.12.解:根据点、线、面、体之间的关系可得,线动成面.13.解:∠M是AB的中点,AB=8cm,∠AM=BM=4cm,∠N为PB的中点,NB=1.5cm,∠PB=2NB=3cm,∠MP=BM﹣PB=4﹣3=1cm.故答案为1.14.解:(1)如图1,,∠AB=10cm,点M是线段AB的中点,∠AM=10÷2=5(cm);∠AC=16cm,点N是线段AC的中点,∠AN=16÷2=8(cm),∠MN=AM+AN=5+8=13(cm)(2)如图2,,∠AB=10cm,点M是线段AB的中点,∠AM=10÷2=5(cm);∠AC=16cm,点N是线段AC的中点,∠AN=16÷2=8(cm),∠MN=AN﹣AM=8﹣5=3(cm),综上,线段MN的长是13cm或3cm.故答案为:13cm或3cm.15.解:∠AB=8cm,AC=2cm,∠BC=AB+AC=8cm+2cm=10cm,∠M是BC的中点,∠CM=BC=×10cm=5cm,∠AM=CM﹣AC=5﹣2=3(cm),故答案为:3.16.解:∠点F是BC的中点,且BF=40cm,∠CD=AD=BC,∠CD=×80=16cm,AD=64cm,∠AC=AD﹣CD=48cm,∠E、F分别是AC、BC的中点,∠CE=AC=24cm,CF=BF=40cm,∠EF的长度为CE+CF=64cm,故答案为:64.17.解:设这个角为x°,则补角为(180°﹣x°),余角为(90°﹣x°),由题意得,180°﹣x°=132°48′,解得:x°=47°12′,∠90°﹣47°12′=42°48′.即这个角的余角的度数为42°48′.故答案为:42°48′.18.解:设∠2为x,则∠1=x+20°;根据题意得:x+x+20°=90°,解得:x=35°,则∠1=35°+20°=55°;故答案为:55°.19.解:如图1,∠∠AOB=45°,∠∠BOD=22.5°,∠∠BOC=75°,∠∠BOE=37.5°,∠∠DOE=22.5°+37.5°=60°;如图2,∠∠AOB=45°,∠∠BOC=75°,∠∠BOE=37.5°,∠∠DOE=37.5°﹣22.5°=15°,故答案为:60°或15°.20.解:∠∠AOB和∠BOC互为补角,∠∠AOB+∠BOC=180°,∠∠BOD=,∠3∠BOD+∠BOC=180°,即∠BOC=180°﹣3∠BOD,∠∠COD+∠BOD=∠BOC,∠180°﹣3∠BOD=∠COD+∠BOD,∠∠COD+4∠BOD=180°,∠∠COD比∠BOD大m°(m<30),∠∠COD﹣∠BOD=m°,∠∠BOD=()°,∠COD=()°∠∠BOC=()°,∠∠AOB=180°﹣∠BOC=(108﹣)°,∠∠AOC=∠AOB﹣∠BOC=(108﹣)°﹣()°=(36﹣m)°.故答案为(36﹣m).三.解答题21.解:(1)故答案为:线,面,面;(2)由点、线、面、体的关系得,点动成线,故答案为:点动成线;(3)由点、线、面、体的关系得,面动成体,故答案为:面动成体;(4)例如:彗星从天空中划过一道明亮的弧线陨落,是点动成线的例子.22.解:(1)∠AB=21cm,BC=AB=7cm,∠AC=AB+BC=21+7=28(cm);(2)由(1)知:AC=28cm,∠点O是线段AC的中点,∠CO=AC=×28=14(cm),∠OB=CO﹣BC=14﹣7=7(cm).23.解:(1)∠AB=8cm,M是AB的中点,∠AM=AB=4cm,∠AC=3cm,∠CM=AM﹣AC=4﹣3=1(cm);∠AB=8cm,AC=3cm,M是AB的中点,N是AC的中点,∠AM=AB=4cm,AN=AC=1.5cm,∠MN=AM﹣AN=4﹣1.5=2.5(cm);(2)∠AC=m,BC=n,∠AB=AC+BC=m+n,∠M是AB的中点,N是AC的中点,∠AM=AB=(m+n),AN=AC=m,∠MN=AM﹣AN=(m+n)﹣m=n.24.解:(1)因为∠AOC和∠BOD都是直角,所以∠AOB+∠BOC=∠COD+∠BOC=90°,所以∠BOC与∠AOB互余,∠BOC与∠COD互余,所以图中与∠BOC互余的角有∠AOB和∠COD;(2)∠AOD与∠BOC互补,理由如下:因为∠AOC和∠BOD都是直角,所以∠AOB+∠BOC=∠COD+∠BOC=90°,又因为∠AOD=∠AOB+∠BOC+∠COD,所以∠AOD+∠BOC=∠AOB+∠BOC+∠COD+∠BOC=180°,所以∠AOD与∠BOC互补.故答案为:∠AOB,∠COD25.解:∠∠AOB=30°,∠COB=20°,∠∠AOC=∠AOB+∠BOC=30°+20°=50°,∠OC平分∠AOD,∠∠AOC=∠COD=50°,∠∠BOD=∠BOC+∠COD=20°+50°=70°.26.解:(1)∠∠AOC+∠BOD=100°,∠∠AOB+∠BOC+∠BOC+∠COD=100°,又∠∠AOB+∠COD=40°,∠2∠BOC=100°﹣40°=60°,∠∠BOC=30°,答:∠BOC的度数为30°;(2)∠OM是∠AOB的平分线,∠∠AOM=∠BOM=∠AOB,又∠ON是∠COD的平分线,∠∠CON=∠DON=∠COD,∠∠DON+∠BOM=(∠COD+∠AOB)=×40°=20°,∠∠MON=∠BOM+∠BOC+∠DON=20°+30°=50°,答:∠MON的度数为50°;(3)∠∠EOB=∠COF=90°,∠BOC=30°,∠∠EOF=90°+90°﹣30°=150°,∠∠AOD=∠AOB+∠BOC+∠COD=40°+30°=70°,∠∠AOF+∠DOE=∠EOF﹣∠AOD=150°﹣70°=80°,又∠OP平分∠EOD,OQ平分∠AOF,∠∠AOQ=∠FOQ=∠AOF,∠DOP=∠EOP=∠DOE,∠∠AOQ+∠DOP=(∠AOF+∠DOE)=×80°=40°,∠∠POQ=∠AOQ+∠DOP+∠AOD=40°+70°=110°.。
七年级数学上册第四章《几何图形初步》综合测试卷-人教版(含答案)
七年级数学上册第四章《几何图形初步》综合测试卷-人教版(含答案)一、选择题1.[2019·天津和平区期中]下列立体图形中,面数相同的是()①正方体;②圆柱;③四棱柱;④圆锥.A.①②B.①③C.②③D.③④2.[2019·梧州]如图,钟表上10点整时,时针与分针所成的角是()A.30°B.60°C.90°D.120°3.[2019·淄博]如图,小明从A处沿北偏东40°方向行走至点B处,又从点B处沿南偏东70°方向行走至点C处,则∠ABC等于 ()A.130°B.120°C.110°D.100°4.[2019·鄂尔多斯]如图所示的四个图形中,经过折叠能围成如图所示的几何图形的是 ()5.[2019·山西]某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对面上的汉字是()A.青B.春C.梦D.想6.如图,A,B,C为直线上顺次三点,已知AB=10 cm,BC=4 cm.D是AC的中点,M是AB的中点,那么MD的长为()A.4 cmB.3 cmC.2 cmD.1 cm7.下列现象中,可用基本事实“两点之间,线段最短”来解释的是()A.把弯曲的公路改直,就能缩短路程B.用两个钉子就可以把木条固定在墙上C.利用圆规可以比较两条线段的大小关系D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线8.一副三角板如图①放置(∠D=30°,∠A=45°),将三角板DBE绕点B逆时针旋转一定角度,如图②所示,且0°<∠CBE<90°,则下列结论中正确的有()①∠DBC+∠ABE的值恒为105°;②在旋转过程中,若BM平分∠DBA,BN平分∠EBC,∠MBN的角度恒为定值;③在旋转过程中,两块三角板的边所在直线夹角成90°的次数为2次;④在图①的情况下,作∠DBF=∠EBF,则BA平分∠DBF.A.1个B.2个C.3个D.4个二、填空题9.[2020·威海文登区期末]已知点A,B,C在同一直线上,若AB=10 cm,AC=16 cm,M,N分别是线段AB,AC中点,则线段MN的长是.10.已知∠A=25.12°,∠B=25°12',∠C=1518',那么它们的大小关系为.(用“<”号连接)三、解答题∠AOB.若∠COD 11.如图,射线OC,OD在∠AOB内,∠AOB和∠BOC互为补角,∠BOD=13比∠BOD大m°(m<30),则∠AOC等于多少度?(用含m的式子表示)12.如图①,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=30°,则∠DOE的度数为;(2)将图①中的∠COD绕顶点O顺时针旋转至图②的位置,其他条件不变,探究∠AOC和∠DOE的数量关系,写出你的结论,并说明理由;(3)将图①中的∠COD绕顶点O顺时针旋转至图③的位置,其他条件不变,直接写出∠AOC和∠DOE的数量关系:.13.[2019·莆田期末]定义:若α-β=90°,且90°<α<180°,则我们称β是α的差余角.例如:若α=110°,则α的差余角β=20°.(1)如图0①,点O在直线AB上,射线OE是∠BOC的平分线,若∠COE是∠AOC的差余角,求∠BOE的度数.(2)如图②,点O在直线AB上,若∠BOC是∠AOE的差余角,那么∠BOC与∠BOE有什么数量关系?(3)如图③,点O在直线AB上,若∠COE是∠AOC的差余角,且OE与OC在直线AB 的同侧,请你探究∠AOC-∠BOC是不是定值,若是,请求出定值;若不是,请说明理由.∠COE参考答案1.B[解析] ①正方体有六个面;②圆柱有三个面;③四棱柱有六个面;④圆锥有两个面,故面数相同的是①③.故选B.2.B3.C4.B5.B6.C[解析] 因为AB=10 cm,BC=4 cm,所以AC=AB+BC=14 cm.因为D是AC的中点,所以AD=12AC=7 cm.因为M是AB的中点,所以AM=12AB=5 cm.所以MD=AD-AM=2 cm.故选C.7.A8.A[解析] 设旋转角度为x°.①当x>45°时,∠DBC+∠ABE=(x+60)°+(x-45)°=(2x+15)°>105°,于是此小题结论错误;②∠MBN=∠DBC-∠DBM-∠CBN=∠DBC-12∠DBA-12∠CBE=(60+x)°-12(15+x)°-12x°=52.5°,于是此小题结论正确;③当旋转30°时,BD⊥BC,当旋转45°时,DE⊥AB,当旋转75°时,DB⊥AB,则在旋转过程中,两块三角板的边所在直线夹角成90°的次数为3次,于是此小题结论错误;④当BF在∠DBE外时,如图所示,虽然∠DBF=∠EBF,但BA不平分∠DBF,于是此小题结论错误.综上,正确的结论只有1个.故选A.9.13 cm或3 cm[解析] (1)如图①,因为AB=10 cm,M是线段AB的中点,所以AM=10÷2=5(cm).因为AC=16 cm,N是线段AC的中点,所以AN=16÷2=8(cm).所以MN=AM+AN=5+8=13(cm).(2)如图②,因为AB=10 cm,M是线段AB的中点,所以AM=10÷2=5(cm).因为AC=16 cm,N是线段AC的中点,所以AN=16÷2=8(cm).所以MN=AN-AM=8-5=3(cm).综上,线段MN的长是13 cm或3 cm.故答案为:13 cm或3 cm.10.∠A<∠B<∠C[解析] ∠A=25.12°,∠B=25°12'=25.2°,∠C=1518'=25.3°,所以∠A<∠B<∠C. 11.解:因为∠AOB 和∠BOC 互为补角, 所以∠AOB+∠BOC=180°. 因为∠BOD=13∠AOB , 所以∠AOB=3∠BOD. 所以3∠BOD+∠BOC=180°, 即∠BOC=180°-3∠BOD. 因为∠COD+∠BOD=∠BOC , 所以180°-3∠BOD=∠COD+∠BOD. 所以∠COD+4∠BOD=180°. 因为∠COD 比∠BOD 大m °(m<30), 所以∠COD-∠BOD=m °.所以∠BOD=36-m5°,∠COD=36+45m °. 所以∠BOC=72+35m °.所以∠AOB=180°-∠BOC=108-35m °.所以∠AOC=∠AOB-∠BOC=108-35m °-72+35m °=36-65m °. 12.解:(1)因为∠AOC=30°,所以∠BOC=180°-∠AOC=150°. 又∠COD 是直角,OE 平分∠BOC ,所以∠DOE=∠COD-∠COE=∠COD-12∠BOC=90°-12×150°=15°.故答案为15°. (2)∠AOC=2∠DOE.理由:因为∠COD 是直角,OE 平分∠BOC , 所以∠COE=∠BOE=90°-∠DOE.所以∠AOC=180°-∠BOC=180°-2∠COE=180°-2(90°-∠DOE )=2∠DOE. (3)∠AOC=360°-2∠DOE. 理由:因为OE 平分∠BOC , 所以∠BOE=∠COE.所以∠AOC=180°-∠BOC=180°-2∠COE=180°-2(∠DOE-90°)=360°-2∠DOE.13.解:(1)因为OE是∠BOC的平分线,所以∠COE=∠BOE=12∠BOC.因为∠COE是∠AOC的差余角,所以∠AOC-∠COE=∠AOC-12∠BOC=90°.又因为∠AOC+∠BOC=180°,所以∠BOC=60°.所以∠BOE=30°.(2)因为∠BOC是∠AOE的差余角,所以∠AOE-∠BOC=∠AOC+∠COE-∠COE-∠BOE=∠AOC-∠BOE=90°.又因为∠AOC+∠BOC=180°,所以∠BOC+∠BOE=90°.(3)是.如图①,若OE在OC的左侧,因为∠COE是∠AOC的差余角,所以∠AOC-∠COE=∠AOE=90°.所以∠AOC=90°+∠COE,∠BOC=90°-∠COE.所以∠AOC-∠BOC∠COE =90°+∠COE-90°+∠COE∠COE=2(定值).如图②,若OE在OC的右侧,因为∠COE是∠AOC的差余角,所以∠AOC-∠COE=90°.所以∠AOC=90°+∠COE.因为∠BOC=180°-∠AOC=180°-(90°+∠COE)=90°-∠COE,所以∠AOC-∠BOC∠COE =90°+∠COE-90°+∠COE∠COE=2(定值).综上所述,∠AOC-∠BOC∠COE为定值2.。
人教版七年级数学上册 第4章 几何图形初步 期末综合复习卷(含答案)
人教版数学七年级上册第四章几何图形初步期末综合复习卷(时间90分钟,满分120分)第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1.如图所示的几何体从左面看得到的图形是( )2.下列立体图形中,从上面看得到的图形是正方形的是( )3.下列立体图形中,从正面看到的是三角形的是( )4.有如下说法:①平角是一条直线;②射线是直线的一半;③射线AB与射线BA表示同一射线;④用一个扩大2倍的放大镜去看一个角,这个角扩大2倍;⑤两点之间,线段最短;⑥12.5°=12°50′.其中正确的有( )A.4个B.3个C.2个D.1个5.如过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图所示的几何体,其正确展开图为( )6.如图,点B是线段AD的中点,点C是线段BD的中点,BC=2 cm,那么线段AD等于( ) A.2 cm B.4 cmC.6 cm D.8 cm7.已知线段AB=8 cm,在直线AB上画线段BC,使它等于3 cm,则线段AC等于( )A.11 cm B.5 cmC.11 cm或5 cm D.8 cm或11 cm8.如图,∠AOB=120°,OC是∠AOB内部任意一条射线,OD,OE分别是∠AOC,∠BOC的角平分线,下列叙述正确的是( )A.∠DOE的度数不能确定B.∠AOD=∠EOCC.∠AOD+∠BOE=60°D.∠BOE=2∠COD9.一副三角板按如图所示的方式摆放,且∠1比∠2大50°,则∠2的度数为( )A.20°B.50°C.70°D.30°10.如图,将一副三角板的直角如图示摆放,若重叠的角度为θ,∠MON=α,则θ和α满足的数量关系是( )A.α-θ=90°B.α+θ=180°C.α-2θ=90°D.α+2θ=180°第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.如图,从学校A到书店B最近的路线是____号路线,其中的道理用数学知识解释应是______________________.12.如图,点O是线段AB的中点,C是AB的三等分点,OC=2 cm,则AB=______cm.13.普通的钟表在4点钟时,时针与分针的夹角的度数为.14.在数轴上有两个点A,B,它们对应的数分别是-2,6,点M是线段AB的中点,则点M表示的数是_______.15.如图,点C,D是线段AB上的两点,若CB=4 cm,DB=7 cm,且D是AC的中点,则AC的长等于( )16. 计算:(1)49.9°=____°____′;(2)25°42′=°;17. 如图,∠AOC=∠BOD,∠AOD=120°,∠BOC=70°,则∠AOB=_________度.18. 如图,已知线段AD =6 cm ,线段AC =BD =4 cm ,点E ,F 分别是线段AB ,CD 的中点,线段EF=__________.三.解答题(共7小题,66分)19.(8分)一个角的余角比这个角的补角的13还小10°,求这个角的度数.20. (8分) 如图是由八个相同小正方体组合而成的几何体,分别画出从正面、左面、上面看得到的平面图形.21. (8分)已知线段AB ,延长AB 到点C ,使BC =12AB ,延长线BA 到点D ,使AD =2AB ,点M ,N 分别是BC ,AD 的中点,若MN =18 cm ,求AB 的长.22. (10分)如图,∠BOC=2∠AOB,OD平分∠AOC,∠BOD=25°,求∠AOB的度数.23. (10分)如图,点B,C是线段AD上的两点,且AB∶BC∶CD=3∶2∶5,点E,F分别是AB,CD的中点,且EF=24,求线段AB,BC,CD的长.24. (10分)已知∠AOB=80°,∠BOC=30°,求∠AOC的大小.25.(12分)如图①,已知∠AOB=150°,∠COE与∠DOE互余,OE平分∠AOD.(1)在图①中,若∠COE=32°,则∠DOE=____,∠BOD=____;(2)在图①中,设∠COE=α,∠BOD=β,请探究α与β之间的数量关系;(3)在已知条件不变的前提下,当∠COD绕点O逆时针转动到如图②的位置时,(2)中α与β的数量关系是否仍然成立?若成立,请说明理由;若不成立,直接写出α与β的数量关系.参考答案:1-5ABBDB 6-10DCCAB 11. (1),两点之间,线段最短 12. 12 13. 120° 14. 2 15.6 cm 16. 49,54;25.7 17. 25 18. 419. 解:设这个角的度数为x°,则90-x =13(180-x)-10,解得x =60.则这个角的度数为60° 20. 解: 如图所示:21. 解:设AB =x cm ,则BC =12AB =x 2 cm ,BM =12BC =x4 cm ,AD =2x cm ,AN =12AD =x cm ,由MN =18 cm ,得x +x +x4=18,解得x =8,则AB =8 cm22. 解:设∠AOB =x ,∠BOC =2x ,则∠AOC =3x. 因为OD 平分∠AOC , 所以∠AOD =32x.所以∠BOD =∠AOD -∠AOB =32x -x =25°.所以x =50°,即∠AOB =50°23. 解:设AB =3x ,则BC =2x ,CD =5x.因为点E 是AB 的中点, 所以BE =12AB =32x.因为点F 为CD 的中点,所以CF =12CD =52x ,因为BE +BC +CF =EF ,所以32x +2x +52x =24,解得x =4,所以AB =3x =12,BC =2x =8,CD =5x =2024. 解:分两种情况讨论.①当∠BOC 在∠AOB 的内部时, ∠AOC =∠AOB -∠BOC =80°-30°=50°; ②当∠BOC 在∠AOB 的外部时,∠AOC =∠AOB +∠BOC =80°+30°=110°,故∠AOC 的度数为50°或110° (2)如图①,∵射线OD 平分∠AOC ,∴∠AOD =12∠AOC =20°,∴∠BOD =∠AOB +∠AOD =80°;如图②,∵射线OD 平分∠AOC ,∴∠AOD =12∠AOC =20°,∴∠BOD =∠AOB -∠AOD =40°25. 解:(1)58°,34°(2)因为∠COE 与∠DOE 互余,所以∠DOE =90°-∠COE =90°-α,因为OE 平分∠AOD ,所以∠AOD =2∠DOE =2(90°-α).因为∠AOB =150°,∠BOD =β,所以2(90°-α)+β=150°,整理,得2α-β=30°(3)不成立.因为∠COE 与∠DOE 互余,所以∠DOE =90°-∠COE =90°-α.因为OE 平分∠AOD ,所以AOD =2∠DOE =2(90°-α).因为∠AOB =150°,∠BOD =β,所以2(90°-α)-150°=β,整理,得2α+β=30°。
人教版七年级上册数学第四章几何图形初步复习卷(含答案)
第四章·几何图形初步复习卷姓名: 班级: 学号: 分数:知识点1 立体图形与平面图形 1.下列几何体中,是圆柱的为( )2.下列说法错误的是( )A .长方体、正方体都是棱柱B .六棱柱有18条棱、6个侧面、12个顶点C .三棱柱的侧面是三角形D .圆柱由两个平面和一个曲面围成 3.下列四个几何体中,从上面看得到的平面图形是四边形的是( )4.下列四个几何体中,各自..从不同角度(从正面看,从上面看,从左面看)看它们,观察所得图形中有两个相同,而另一个不同的几何体有 ( ) A .①② B .②③ C .②④ D .③④5.下列图形中,哪一个是圆锥的侧面展开图( )6.下列各图形经过折叠不能..围成一个正方体的是( )C D知识点2 直线、射线、线段直线公理:线段公理: 7.下列说法中正确的有① 过两点有且只有一条直线 ② 连接两点的线段叫两点的距离③ 两点之间,线段最短 ④ 如果AB=BC ,则点B 是AC 的中点8.过A 、B 、C 三点作直线,能做 条;过A 、B 、C 三点中的两点作直线,能做 条. 9.如图,图中有 条直线,有 条射线,有 条线段10.如图,点B 是线段AD 的中点,点C 是线段BD 的中点,BC =2 cm ,那么线段AD 等于( )A .2 cmB .4 cmC .6 cmD .8 cmA DB C 第9题11.已知线段AB =10cm ,C 为直线AB 上一点,且BC =6cm ,M ,N 分别是AB 、BC 的中点,则MN = cm. 12.已知线段AB =6 cm ,AB 所在直线上有一点C ,若AC =2BC ,则线段AC 的长为 cm .13.如图,M 是线段AC 的中点,点B 在线段AC 上,且AB =4 cm ,BC =2AB ,则MC = ,BM = .知识点3 余角与补角14.下列图形中,∠1和∠2互为余角的是( )A B C D15.已知一个角的补角是80°48′,那么这个角的度数是( )A .9°12′B .10°48′C .99°12′D .100°48′知识点4 角度的有关计算16.把一副三角板按如图所示那样拼在一起,那么∠ABC 的度数是( )A .150°B .135°C .120°D .105°第11题图第12题图17.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC ,∠EOC =70°,则∠BOD 的度数等于 . 18.用角度表示方向:一般以正北、正南为基准,用向东或向西旋转的角度表示方向。
人教版数学七年级上册第四章《几何图形初步》 综合复习题
第四章几何图形初步综合复习题一、单选题1.(2022·福建三明·七年级期末)如图,下列图形全部属于柱体的是()A.B.C.D.2.(2022·福建龙岩·七年级期末)下列图形中,绕铅垂线旋转一周可得到如图所示几何体的是()A.B.C.D.3.(2022·福建泉州·七年级期末)在开会前,工作人员进行会场布置,如图为工作人员在主席台上由两人拉着一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线4.(2022·福建宁德·七年级期末)如图,已知线段a,b.按如下步骤完成尺规作图,则AC的长是()①作射线AM;①在射线AM 上截取2AB a =;①在线段AB 上截取BC b =.A .a b +B .b a -C .2a b +D .2a b -5.(2022·福建莆田·七年级期末)如图,点,C D 在线段AB 上.则下列表述或结论错误的是( )A .若AC BD =,则AD BC =B .AC AD DB BC =+- C .AD AB CD BC =+- D .图中共有线段12条6.(2022·福建南平·七年级期末)如图,线段6,4AB BC ==,点D 是AB 的中点,则线段CD 的长为( )A .3B .5C .7D .87.(2022·福建福州·七年级期末)在同一条直线上按顺序从左到右有P 、Q 、M 、N 四个点,若MN QM PQ -=,则下列结论正确是( )A .Q 是线段PM 的中点B .Q 是线段PN 的中点C .M 是线段QN 的中点D .M 是线段PN 的中点8.(2022·福建泉州·七年级期末)如图,下列说法中错误的是( )A .OA 方向是北偏东30°B .OB 方向是北偏西15°C .OC 方向是南偏西25°D .OD 方向是东南方向9.(2022·福建莆田·七年级期末)如图,按照上北下南,左西右东的规定画出方向十字线,①AOE =m °,①EOF =90°,OM ,ON 分别平分①AOE 和①BOF ,下面说法:①点E 位于点O 北偏西m °的方向上;①点F 位于点O 北偏东m °的方向上;①①MON =135°,其中正确的有( )A.3个B.2个C.1个D.0个∠的余角的度数为()10.(2022·福建泉州·七年级期末)如果52a∠=︒,则aA.38︒B.48︒C.52︒D.128︒二、填空题11.(2022·福建漳州·七年级期末)如图,是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x-y=_____.12.(2022·福建泉州·七年级期末)如图,是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面上,与“祝”相对的面上的汉字是______.13.(2022·福建福州·七年级期末)木工师傅用两根钉子就能将一根细木条固定在墙上了,这其中含有的数学知识是___.14.(2022·福建南平·七年级期末)植树时,只要定出两个树坑的位置,就能使同一行树坑在同一条直线上,这是根据___.(应用所学过的数学知识填空)15.(2022·福建漳州·七年级期末)已知,线段AB=6,点C在直线AB上,AB=3BC,则AC= ___.16.(2022·福建三明·七年级期末)如图,两块三角板的直角顶点O重叠在一起,且OB恰好平分①COD,则①AOD的度数是____度.∠三等分,若图中所有小于平角的角的度17.(2022·福建龙岩·七年级期末)如图,射线OA,OB把POQ∠的度数为_____.数之和是300,则POQ18.(2022·福建泉州·七年级期末)把两块三角板按如图所示那样拼在一起,则①ABC等于___°.三、解答题19.(2022·福建宁德·七年级期末)在如图所示的正方形网格中,每个小正方形中都标有1个有理数,其中4个已经涂上阴影.现要在网格中选择2个空白的小正方形并涂上阴影,与图中的4个阴影正方形一起构成正方体的表面展开图.(1)图1是小明涂成的一个正方体表面展开图,求该表面展开图上6个有理数的和;(2)你能涂出一种与小明涂法不一样的正方体表面展开图吗?请在图2中涂出;(3)若要使涂成的正方体表面展开图上的6个有理数之和最大,应该如何选择?请在图3中涂出.20.(2022·福建龙岩·七年级期末)如图,已知四点A、B、C、D,用圆规和无刻度的直尺,按下列要求与步骤画出图形;(1)画直线AB;(2)画射线CB;(3)延长线段DA 至点E ,使AE=AD (保留作图痕迹).21.(2022·福建泉州·七年级期末)已知A ,B ,C ,D 四点在同一条直线上,点C 是线段AB 的中点.(1)点D 在线段AB 上,且AB =6,13BD BC =,求线段CD 的长度; (2)若点E 是线段AB 上一点,且AE =2BE ,当:2:3AD BD =时,线段CD 与CE 具有怎样的数量关系,请说明理由.22.(2022·福建福州·七年级期末)如图,已知线段10AB =,点C 是AB 的中点,点D 是线段上一点,3AD =.求线段CD 的长.23.(2022·福建厦门·七年级期末)如图,,B C 两点在射线AM 上,AC BC >,在射线BM 上作一点D 使得BD AC BC =-.(1)请用圆规作出点D 的位置;(2)若6cm AD =,求线段AC 的长.24.(2022·福建泉州·七年级期末)如图,在数轴上有A 、B 两点(点B 在点A 的右边),点C 是数轴上不与A 、B 两 点重合的一个动点,点M 、N 分别是线段AC 、BC 的中点.(1)如果点A 表示4-,点B 表示8,则线段AB = ;(2)如果点A 表示数a ,点B 表示数b ,①点C 在线段AB 上运动时,求线段MN 的长度(用含a 和b 的代数式表示);①点C 在点B 右侧运动时,请直接写出线段MN 的长度:___________________(用含a 和b 的代数式表示). 25.(2022·福建福州·七年级期末)如图,以直线AB 上一点O 为端点作射线OC ,使70AOC ∠=︒,在同一个平面内将一个直角三角板的直角顶点放在点O 处.(注:90DOE ∠=︒)(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,那么COE ∠的度数为______;(2)如图2,将直角三角板DOE 绕点O 按顺时针方向转动到某个位置,如果OC 恰好平分AOE ∠,求COD ∠的度数;(3)如图3,将直角三角板DOE 绕点O 任意转动,如果OD 始终在AOC ∠的内部,请直接用等式表示AOD ∠和COE ∠之间的数量关系.26.(2022·福建厦门·七年级期末)如图,对于线段AB 和A OB ''∠,点C 是线段AB 上的任意一点,射线OC '在A OB ''∠内部,如果AC A OC AB A OB ∠=∠'''',则称线段AC 是A OC ''∠的伴随线段,A OC ''∠是线段AC 的伴随角.例如:10,100AB A OB '='=∠︒,若3AC =,则线段AC 的伴随角30A OC ∠=''︒.(1)当8,130AB A OB '='=∠︒时,若65A OC ∠=''︒,试求A OC ''∠的伴随线段AC 的长;(2)如图,对于线段AB 和,6,120A OB AB A OB ''''∠=∠=︒.若点C 是线段AB 上任一点,E ,F 分别是线段,AC BC 的中点,,,A OE A OC A OF ''∠∠'∠'''分别是线段,,AE AC AF 的伴随角,则在点C 从A 运动到B 的过程中(不与A ,B 重合),E OF ''∠的大小是否会发生变化?如果会,请说明理由;如果不会,请求出E OF ''∠的大小.(3)如图,已知AOC ∠是任意锐角,点M ,N 分别是射线,OA OC 上的任意一点,连接MN ,AOC ∠的平分线OD 与线段MN 相交于点Q .对于线段MN 和AOC ∠,线段MP 是AOD ∠的伴随线段,点P 和点Q 能否重合?如果能,请举例并用数学工具作图,再通过测量加以说明;如果不能,请说明理由.27.(2022·福建三明·七年级期末)已知,O 为直线AB 上一点,①DOE =90°.(1)如图1,若①AOC =128°,OD 平分①AOC .①求的①BOD 度数;①请通过计算说明OE 是否平分①BOC .(2)如图2,若①AOD :①DOB =4:5,求①BOE 的度数.28.(2022·福建泉州·七年级期末)时钟上的分针和时针像两个运动员,绕着它们的跑道昼夜不停地运转.以下请你解答有关时钟的问题:(1)分针每分钟转了几度?(2)中午12时整后再经过几分钟,分针与时针所成的钝角会第一次等于121︒?(3)在(2)中所述分针与时针所成的钝角等于121︒后,再经过几分钟两针所成的钝角会第二次等于121︒?参考答案:1.C【解析】解:A 、有一个是三棱锥,故不符合题意;B 、有一个是不规则的多面体,故不符合题意;C 、分别是一个圆柱体、两个四棱柱;D 、有一个是圆台,故不符合题意.故选:C .2.A【解析】面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.解:A 、是直角梯形绕高旋转形成的圆台,故A 正确;B 、是直角梯形绕底边的腰旋转形成的圆柱加圆锥,故B 错误;C 、绕直径旋转形成球,故C 错误;D 、绕直角边旋转形成圆锥,故D 错误.故选A.本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.3.B由两人拉着一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是两点确定一条直线 故选B .4.D【解析】根据题意作出图形,根据线段的和差进行求解即可解:如图,根据作图可知,AC AB BC =-2a b =-故选D本题考查了尺规作图作线段,线段和差的计算,数形结合是解题的关键.5.D【解析】根据两点间的距离的含义和求法,以及直线、射线和线段的认识,逐项判断即可. 解: A. 因为AD=AC+CD,BC=CD+DB,若AC=BD ,所以可得AC=BD ,此选项说法正确;B. AC AD DB BC =+-,此选项说法正确;C. AD AB CD BC =+-,此选项说法正确;D.由图形可得图中共有线段6条所以,此选项说法错误,故选D.此题主要考查了两点间的距离的含义和求法,以及直线、射线和线段的认识,要熟练掌握.6.C【解析】根据点D是AB的中点,可得BD=3,再由CD=BD+BC,即可求解.解:①AB=6,点D是AB的中点,①BD=3,①BC=4,①CD=BD+BC=3+4=7.故选:C本题主要考查了有关中点的计算,明确题意,准确得到线段间的数量关系是解题的关键.7.D-=,得出线段之间的关系,逐项进行判断即【解析】根据题意画出图形,根据MN QM PQ可.①PQ不一定等于QM,①Q不一定是线段PM的中点,故A错误;-=,①MN QM PQ=+=,①MN PQ QM PM①PM MN PN+=,①M是线段PN的中点,故B错误,D正确;-=,①MN QM PQ>,①MN QM①M不是线段QN的中点,故C错误.故选:D.本题主要考查了线段之间的关系,根据题意画出图形是解题的关键.8.A试题分析:方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.根据定义就可以解决.解:A、OA方向是北偏东60°,此选项错误;B、OB方向是北偏西15°,此选项正确;C、OC方向是南偏西25°,此选项正确;D、OD方向是东南方向,此选项正确.错误的只有A.故选A.9.B【解析】观察方向图形,根据方向角解答即可.解:①点E位于点O北偏西(90﹣m)°的方向上,原结论错误;①①①AOE+①EOD=90°,①DOF+①EOD=90°,∴①DOF=①AOE=m°,∴点F位于点O北偏东m°的方向上,原结论正确;①①①AOE+①BOF=90°,OM,ON分别平分①AOE和①BOF,①①MOE+①NOF=45°,①∠MON=135°,原结论正确;其中正确的有2个.故选:B.此题考查的知识点是方向角,角平分线的性质,解题关键是明确方向角的意义,熟练运用角平分线和余角的性质推导角的关系.10.A【解析】根据余角的定义,利用90°减去52°即可.a∠的余角=90°-52°=38°.故选A.本题考查求一个数的余角,关键在于牢记余角的定义.11.5【解析】由正方体的表面展开图中的相对面中间一定隔着一个面的特点出发,确定相对面,再求解,x y的值,从而可得答案.解:由正方体的表面展开图可得:3和y相对,2-与x相对,而相对面上所标的两个数互为相反数,3,2,y xx y23235,故答案为:5本题考查的是正方体展开图中相对面上的数字,掌握正方体是立体图形,从相对面的特点进行分析是解本题的关键.12.功【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点,即可作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,① “你”与“试”相对,“考”与“成”相对,“祝”与“功”相对,①与“迎祝”相对的面上的汉字是“功”.故答案为:功本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题是解题的关键.13.两点确定一条直线【解析】细木条为一条线段,两根钉子相当于两个点,即可求解.解:细木条代表一条直线,两根钉子相当于两个点,两个点确定,细木条代表的直线就确定了,故答案为:两点确定一条直线此题考查了两点确定一条直线的应用,解题的关键是理解题意,掌握并运用两点确定一条直线的性质.14.两点确定一条直线【解析】根据两点确定一条直线,即可求解.解:根据题意得的:这是根据两点确定一条直线.故答案为:两点确定一条直线本题主要考查了直线的基本事实,熟练掌握两点确定一条直线是解题的关键.15.4或8【解析】先求出BC的长,根据点C的位置分别计算可得答案.解:①AB=6,AB=3BC,①BC=2,当点C在线段AB上时,AC=AB-BC=6-2=4;当点C在线段AB延长线上时,AC=AB+BC=6+2=8;故答案为:4或8.此题考查了线段的和差计算,掌握分类思想解决问题是解题的关键,避免漏解的现象.16.135°【解析】本题是有公共定点的两个直角三角形问题,通过图形可知①AOC+①BOC=90°,①BOD+①BOC=90°,同时①AOC+①BOC+①BOD+①BOC=180°,可以通过角平分线性质求解.①OB平分①COD,①①COB=①BOD=45°,①①AOB=90°,①①AOC=45°,①①AOD=135°.故答案为135.本题考查的知识点是角的平分线与对顶角的性质,解题关键是熟记角平分线的性质是将两个角分成相等的两个角.17.90°【解析】先找出所用的角,分别用含字母x的代数式将每个角的度数表示出来,再列方程即可求出x的值,进一步求出①POQ的度数.设①QOB=x,则①BOA=①AOP=x,则①QOA=①BOP=2x,①QOP=3x,①①QOB+①BOA+①AOP+①QOA+①BOP+①QOP=10x=300°,解得:x=30°,①①POQ=3x=90°.故答案为:90°.本题考查了确定角的个数及角的度数的计算,解答本题的关键是根据题意列出方程.18.120解:由图可知①ABC=30°+90°=120°.故答案为:12019.(1)-6(2)见解析(3)见解析【解析】(1)根据有理数加法法则计算即可得答案;(2)根据正方体表面展开图添加即可;(3)根据正方体表面展开图,选择两个数字的和最大的添加即可.(1)-4+2+6+1+(-3)+(-8)=-6,答:该表面展开图上6个有理数的和是-6.(2)根据正方体表面展开图添加如下:(3)根据正方体表面展开图可添加数字如下:-4+4=0,-6+(-8)=-14,-6+4=-2,-6+3=-3,-6+(-1)=-7,3+(-1)=2,①涂成的正方体表面展开图上的6个有理数之和最大,①添加3和-1,如图所示:本题考查有理数加法运算及正方体表面展开图,熟练掌握正方体11种展开图是解题关键.20.(1)见解析(2)见解析(3)见解析【解析】(1)画直线AB,直线向两方无限延伸;(2)画射线CB,C为端点,再沿CB方向延长;(3)画线段DA,延长线段DA,以A为圆心,AD为半径作弧交DA的延长线于E,则AE=AD.(1)画出直线AB;(2)画出射线CB;(3)延长线段DA,以A为圆心,AD为半径作弧交DA的延长线于E,则AE=AD(要求保留作图圆弧的痕迹,弧线和点E各画直线),所以,AE为所求作的线段(或表述E为所求作的点),如图所示:本题主要考查了直线、射线、线段,关键是掌握直线向两方无限延伸,射线向一方无限延伸,线段不能向两方无限延伸.21.(1)线段CD的长度为2;(2)5CD=3CE或CD=15CE.理由见解析【解析】(1)根据线段中点的性质求出BC,根据题意计算即可;(2)分两种情况讨论,当点D在线段AB上和点D在BA延长线上时,利用设元的方法,分别表示出AB以及CD、CE的长,即可得到CD与CE的数量关系.(1)解:如图1,①点C是线段AB的中点,AB=6,①BC=12AB=3,①BD=13 BC,①BD=1,①CD=BC-BD=2;(2)解:5CD=3CE或CD=15CE.理由如下:当点D在线段AB上,如图2,设AD =2x ,则BD =3x ,①AB =AD +BD =5x ,①点C 是线段AB 的中点,①AC =12AB =52x , ①CD =AC -AD =12x , ①AE =2BE ,①AE =23AB =103x , CE =AE -AC =56x , ①CD CE =1256x x ,即5CD =3CE ; 当点D 在BA 延长线上时,如图3,设AD =2a ,则BD =3a ,①AB =BD -AD =a ,①点C 是线段AB 的中点,①AC =12AB =12a , ①CD =AC +AD =52a , ①AE =2BE ,①AE =23AB =23a , CE =AE -AC =16a , ①CD CE =5216a a ,即CD =15CE . 综上,5CD =3CE 或CD =15CE .本题考查的是两点间的距离,正确理解线段中点的概念和性质是解题的关键.解第2问注意分类讨论.22.2CD =【解析】根据中点的性质可得AC 的长,再根据线段的和差计算出CD 的长即可. ①10AB =,点C 是AB 的中点 ①1110522AC AB ==⨯= ①5AC =,3AD =①532CD AC AD =-=-=本题考查了中点的定义和线段的和差,熟练掌握相关知识是解题的关键.23.(1)见解析(2)3cm【解析】(1)以C 为圆心,以AC 的长为半径画弧与射线CM 交于点D ,点D 即为所求; (2)根据BD AC BC =-,BD CD BC =-,得到AC CD =,由此即可得到答案.(1)解:如图所示,点D 即为所求;(2)解:①BD AC BC =-,BD CD BC =-,①AC CD =, ①13cm 2AC AD ==. 本题主要考查了尺规作图—作线段,线段的和差计算,熟知相关知识是解题的关键.24.(1)12 (2)①1()2b a -;①1()2MN b a =-【解析】(1)结合数轴根据两点距离求解即可;(2)①由点M 、N 分别是线段AC 、BC 的中点,得AC BC AB b a +==-,进而根据12MN CM CN AB =+=求解即可; ①同理可得12MN CM CN AB =-=. (1) 点A 表示4-,点B 表示8,()8412AB ∴=--=故答案为:12(2)如果点A 表示数a ,点B 表示数b , ①点C 在线段AB 上,点M 、N 分别是线段AC 、BC 的中点,12CM AC ∴=,12CN BC =,AC BC AB b a +==-, 11()22MN CM CN AB b a ∴=+==-; ①点C 在点B 右侧运动时,设C 点表示的数为c ,点M 、N 分别是线段AC 、BC 的中点,12CM AC ∴=,12CN BC =,()()AC BC c a c b b a -=---=-, ()11()22MN AC BC b a ∴=-=- 故答案为:1()2MN b a =-. 本题考查了数轴上两点距离,线段段中点的性质,线段和差的计算,数形结合是解题的关键. 25.(1)20︒;(2)20︒;(3)20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【解析】(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,则①COE =20°; (2)由角平分线可得70COE AOC ∠=∠=︒,再利用角的和差进行计算即可;(3)分别用①COE 及①AOD 的式子表达①COD ,进行列式即可.解:(1)①90DOE ∠=︒,70AOC ∠=︒①907020COE DOE AOC =∠-∠=︒-︒=︒∠故答案为:20︒(2)①OC 平分AOE ∠,70AOC ∠=︒,①70COE AOC ∠=∠=︒,①90DOE ∠=︒,①907020COD DOE COE ∠=∠-∠=︒-︒=︒.(3)①90COD DOE COE COE =∠-∠=︒-∠∠, 70COD AOC AOD AOD =∠-∠=︒-∠∠ ①9070COE AOD ︒-∠=︒-∠①20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.故答案为:20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.本题考查了角的和差关系,准确表达出角的和差关系是解题的关键.26.(1)AC =4;(2)不会,①E ′OF ′=60°.理由见解析(3)能,理由见解析【解析】(1)根据伴随角和伴随线段的定义定义列出等式即可求解;(2)由中点的定义可得EF =12AB ,再利用伴随角和伴随线段的定义列出等式,可得出结论; (3)由伴随角和伴随线段的定义可得,点P 和点Q 重合时,是MN 的中点,画出图形,测量即可.(1) 解:由伴随角和伴随线段的定义可知,AC A OC AB A OB ∠=∠'''',, ①65181302AC ︒==︒, ①AC =4;(2)解:不会,①E ′OF ′=60°.理由如下:①点E ,F 分别是线段AC ,BC 的中点,①EC =12AC ,CF =12BC , ①EF =12AB =3. ①①A ′OE ′,①A ′OC ′,①A ′OF ′分别是线段AE ,AC ,AF 的伴随角, ①AE A OE AB A OB ∠=∠'''',AC A OC AB A OB ∠=∠'''',AF A OF AB A OB ∠=∠'''', ①EF =AF -AE , ①12EF AF AE A OF A OE E OF AB AB AB A OB A OB A OB ∠∠'''''''''''∠'=-=-==∠∠∠, ①①A ′OB ′=120°,①①E ′OF ′=60°;(3)解:能,理由如下:①OD 是①AOC 的平分线,①①AOD =12①AOC ,①线段MP是①AOD的伴随线段,①12MP AODMN AOC∠==∠.即点P是MN的中点.若点P和点Q重合,则点Q为MN的中点.根据题意画出图形如下所示:测量得出当点P和点Q重合时,NP=MQ=1.25cm.本题属于线段和角度中新定义类问题,涉及中点的定义和角平分线的定义,关键是理解伴随角和伴随线段的定义.27.(1)①①BOD=116°;①OE平分①BOC,见解析(2)①BOE=10°.【解析】(1)①根据角平分线的定义求出①AOD的度数,再根据平角的定义求出①BOD的度数;①根据角的和差求出①COE=①DOE-①DOC=90°-64°=26°,①BOE=①BOD-①DOE=116°-90°=26°,根据角平分线的定义即可求解;(2)设①AOD=4x,则①DOB=5x,根据平角的定义列出方程求出x,进一步求出①BOE的度数.(1)解:①①OD平分①AOC,①AOC=128°,①①AOD=①DOC=12①AOC=12×128°=64°,①①BOD=180°-①AOD=180°-64°=116°;①①①DOE=90°,又①①DOC=64°,①①COE=①DOE-①DOC=90°-64°=26°,①①BOD=116°,①DOE=90°,①①BOE=①BOD-①DOE=115°-90°=26°,①①COE=①BOE,即OE平分①BOC;(2)解:若①AOD :①DOB =4:5,设①AOD =4x ,则①DOB =5x ,又①①AOD +①DOB =180°,①4x +5x =180°,①x =20°,①①AOD =4x =80°,①①DOE =90°,①①BOE =180°-80°-90°=10°.本题主要考查了角平分线的定义和角的运算.结合图形找到其中的等量关系是解题的关键. 28.(1)6︒(2)22 (3)23611【解析】(1)根据分针一小时转一圈即360°,用360°除以60计算即得;(2)根据分针每分钟转6°,时针每分钟转0.5°,时针与分针转过的角度差是121︒,列方程解答即可;(3)相对于12时整第二次所成的钝角第二次等于121︒时,时针与分针转过的角度差超过180°,这个差与121︒之和是360°.(1)解:①分针一小时转一圈即360°,①分针每分钟转过的角度是:360606︒÷=︒ ,答:分针每分钟转了6度;(2)设中午12时整后再经过x 分钟,分针与时针所成的钝角会第一次等于121°,①时针一小时转动角度为: 3601230︒÷=︒,时分针每分钟转过的角度是:30600.5÷︒=︒ ;①分针与时针所成的钝角会第一次等于121︒,①时针与分针转过的角度差是121︒,①60.5121x x -=,解得:22x =,答:中午12时整后再经过22分钟,分针与时针所成的钝角会第一次等于121°;(3)设经过y 分钟两针所成的钝角会第二次等于121︒,则从12时算起经过(y +22)分钟两针所成的钝角会第二次等于121︒,因为时针与分针转过的角度差超过180°,这个差与121︒之和是360°,故列得方程:6(22)0.5(22)121360y y +-++=,解得:6(22)0.5(22)121360y y +-++=, 解得:23611y =, 答:经过23611分钟两针所成的钝角会第二次等于121︒. 本题通过钟面角考查一元一次方程,掌握时针分针的转动情况,会根据已知条件列方程是解题的关键.选择合适的初始时刻会简化理解和运算难度,起到事半功倍的效果.。
人教版七年级数学上册第四章《几何图形初步》测试卷(含答案)
人教版七年级数学上册第四章《几何图形初步》测试卷(含答案)一、选择题1.如图所示的四种物体中,哪种物体最接近于圆柱 ( )2.一个几何体从前面、左面、上面看到的图形如图所示,则该几何体是( )A.棱柱B.圆柱C.圆锥D.球3.如图所示的几何体是由右边哪个图形绕虚线旋转一周得到( )A. B. C. D.4.下列四个平面图形中,不能折叠成无盖的长方体盒子的是( )A. B. C. D.5.下列图形中的线段和射线能够相交的是( )6.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则2x+y的值为( )A.0B.﹣1C.﹣2D.17.七年级一班的同学想举行一次拔河比赛,他们想从两条大绳中挑出一条最长的绳子,请你为他们选择一种合适的方法( )A.把两条大绳的一端对齐,然后拉直两条大绳,另一端在外面的即为长绳B.把两条绳子接在一起C.把两条绳子重合,观察另一端情况D.没有办法挑选8.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是( )A.用两个钉子就可以把木条固定在墙上B.利用圆规可以比较两条线段的大小关系C.把弯曲的公路改直,就能缩短路程D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线9.下列语句正确的是( ).A.由两条射线组成的图形叫做角B.如图,∠A就是∠BACC.在∠BAC的边AB延长线上取一点D;D.对一个角的表示没有要求,可任意书定10.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β与∠γ关系式为( )A.∠β﹣∠γ=90°B.∠β+∠γ=90°C.∠β+∠γ=80°D.∠β﹣∠γ=180°11.如图,C、D是线段AB上两点,已知图中所有线段的长度都是正整数,且总和为29,则线段AB的长度是()A.8 B.9 C.8或9 D.无法确定12.用一副学生用的三角板的内角(其中一个三角板的内角是45°,45°,90°;另一个是30°,60°,90°,可以画出大于0°且小于等于150°的不同角度的角共有( )种.A.8B.9C.10D.11二、填空题13.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出现这一现象的原因14.两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.15.用“度分秒”来表示:8.31度=度分秒.16.如图,点O是直线AD上的点,∠AOB,∠BOC,∠COD三个角从小到大依次相差25°,则这三个角的度数分别是.17.比较大小:52°52′________ 52.52°.(填“>”、“<”或“=”)18.如图,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与点B,C重合),使点C落在长方形的内部点E处.若FH平分∠BFE,则∠GFH的度数是__________.三、作图题19.按要求画出图形,并回答问题:(1)画直线l,在直线l上取A,B,C三点,使点C在线段AB上,在直线l外取一点P,画直线BP,射线PC,连结AP;(2)在(1)中所画图中,共有几条直线,几条射线,几条线段?请把所有直线和线段用图中的字母表示出来.四、解答题20.如图(1),已知直角三角形两直角边的长分别为3和4,斜边的长为5.(1)试计算该直角三角形斜边上的高;(2)按如图(2),(3),(4)三种情形计算该直角三角形绕某一边旋转得到的立体图形的体积.(结果保留π)21.如图,点M是线段AC的中点,点B在线段AC上,且AB=4 cm,BC=2AB,求线段MC和线段BM的长.22.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;(3)请通过计算说明OE是否平分∠BOC.23.如图,把一副三角尺的直角顶点O重叠在一起.(1)如图①,当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?(2)如图②,当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?24.如图,已知线段AB上有两点C,D,且AC∶CD∶DB=2∶3∶4,E,F分别为AC,DB的中点,EF=2.4 cm,求线段AB的长.25.如图,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.(1)求∠EOF的度数;(2)若将条件“∠AOB是直角,∠BOC=60°”改为:∠AOB=x°,∠EOF=y°,其它条件不变.①则请用x的代数式来表示y;②如果∠AOB+∠EOF=156°.则∠EOF是多少度?答案1.A.2.B.3.C.4.A.5.D6.B7.A8.C9.B10.A11.C12.C13.答案为:两点之间,线段最短14.答案为:1;3;1.15.答案为:8,18,36.16.答案为:35°,60°,85°.17.答案为:>.18.答案为:90°19.解:(1)如图所示;(2)2条直线,12条射线,6条线段,直线l,直线BP,线段AC,BC,AB,AP,CP,BP.20.解:(1)三角形的面积为12×5h=12×3×4,解得h= 12/5.(2)在图4-11(2)中,所得立体图形的体积为13π×32×4=12π;在图4-11(3)中,所得立体图形的体积为13π×42×3=16π;在图4-11(4)中,所得立体图形的体积为13π×(125)2×5= 9.6π.21.解:因为AB=4 cm,BC=2AB,所以BC=8 cm,所以AC=AB+BC=12 cm,因为M是线段AC中点,所以MC=AM=12AC=6 cm,所以BM=AM-AB=2 cm22.解:(1)图中小于平角的角有∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB,共9个.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=1/2∠AOC=25°,∠BOC=180°-∠AOC=130°.所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE-∠DOC=90°-25°=65°.又因为∠BOE=∠BOD-∠DOE=155°-90°=65°,所以∠COE=∠BOE,即OE平分∠BOC.23.解:(1)∵∠AOB=∠COD=90°,当OB平分∠COD时,∠DOB=∠BOC=∠COA=45°,∴∠AOD+∠BOC=3×45°+45°=4×45°=180°.(2)∠AOD+∠BOC=∠AOB+(∠COD-∠BOC)+∠BOC=∠AOB+∠COD=90°+90°=180°.24.解:因为AC∶CD∶DB=2∶3∶4,所以设AC=2x cm,CD=3x cm,DB=4x cm.所以EF=EC+CD+DF=x+3x+2x=6x cm.所以6x=2.4,即x=0.4.所以AB=2x+3x+4x=9x=3.6 cm.25.解:(1)∵∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC. ∴∠EOF=∠EOC﹣∠FOC=12∠AOC﹣12∠BOC=12(∠AOB+∠BOC)﹣12∠BOC=12∠AOB=45°;(2)①∵∠AOB=x°,∠EOF=y°,OE平分∠AOC,OF平分∠BOC. ∴∠EOF=∠EOC﹣∠FOC=12∠AOC﹣12∠BOC=12(∠AOB+∠BOC)﹣12∠BOC=12∠AOB.即y=12x.②∵∠AOB+∠EOF=156°.则x+y=156°,又∵y=12x.联立解得y=52°. 即∠EOF是52°.。
解析卷人教版七年级数学上册第四章几何图形初步专项测试试题(含详解)
人教版七年级数学上册第四章几何图形初步专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,河道l 的同侧有,M N 两个村庄,计划铺设一条管道将河水引至,M N 两地,下面的四个方案中,管道长度最短的是( )A .B .C .D .2、下面图形中,以直线l 为轴旋转一周,可以得到圆柱体的是( )A .B .C .D .3、如图,如果把原来的弯曲河道改直,关于两地间河道长度的说法正确的是( )A.变长了B.变短了C.无变化D.是原来的2倍4、下列判断正确的有()(1)正方体是棱柱,长方体不是棱柱;(2)正方体是棱柱,长方体也是棱柱;(3)正方体是柱体,圆柱也是柱体;(4)正方体不是柱体,圆柱是柱体.A.1个B.2个C.3个D.4个5、一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A.A代表B.B代表C.C代表D.B代表6、①~④是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择()A.①③B.②③C.③④D.①④7、如图,已知直线上顺次三个点A、B、C,已知AB=10cm,BC=4cm.D是AC的中点,M是AB的中点,那么MD=()cmA.4 B.3 C.2 D.18、下列展开图中,是正方体展开图的是()A.B.C.D.9、下列图形经过折叠不能围成棱柱的是()A.B.C.D.10、将如图所示的图形绕着给定的直线L旋转一周后形成的几何体是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,90AOC BOD∠=∠=︒,那么12∠=∠,理由是_____________.2、水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的平面展开图,若图中的“锦”表示正方体的右面,则“_______”表示正方体的左面.3、已知点M是线段AB上一点,且:2:3AM MB,MB比AM长2cm,则AB长为_______.=4、在朱自清的《春》中有描写春雨“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了线,这说明_____________.︒,则这个角的补角是________.5、一个角的余角是2325'三、解答题(5小题,每小题10分,共计50分)1、(1)如图所示的长方体,长、宽、高分别为4,3,6.若将它的表面沿某些棱剪开,展成一个平面图形,则下列图形中,可能是该长方体表面展开图的有________(填序号).(2)图A,B分别是题(1)中长方体的两种表面展开图,求得图A的外围周长为52,请你求出图B 的外围周长.(3)第(1)题中长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个表面展开图,并求出它的外围周长.2、已知一个角的余角比它的补角的14还多15 ,求这个角.3、如图,平面内有A、B、C、D四点.按下列语句画图.(1)画直线AB,射线BD,线段BC;(2)连接AC,交射线BD于点E.4、如图是一个正方体纸盒的表面展开图,纸盒中相对两个面上的数互为倒数.(1)填空:=a ______,b =_________;(2)先化简,再求值:()()2223252ab a b ab a ab ⎡⎤------⎣⎦.5、已知∠AOB 和∠COD 均为锐角,∠AOB >∠COD ,OP 平分∠AOC ,OQ 平分∠BOD ,将∠COD 绕着点O 逆时针旋转,使∠BOC =α(0≤α<180°)(1)若∠AOB =60°,∠COD =40°,①当α=0°时,如图1,则∠POQ = ;②当α=80°时,如图2,求∠POQ 的度数;③当α=130°时,如图3,请先补全图形,然后求出∠POQ 的度数;(2)若∠AOB =m °,∠COD =n °,m >n ,则∠POQ = ,(请用含m 、n 的代数式表示).-参考答案-一、单选题1、A【解析】根据两点之间线段最短可判断方案A比方案C、D中的管道长度最短,根据垂线段最短可判断方案A 比方案B中的管道长度最短.【详解】解:四个方案中,管道长度最短的是A.故选:A.【考点】本题考查了垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.2、C【解析】【分析】直接根据旋转变换的性质即可解答.【详解】解:因为圆柱从正面看到的是一个长方形,所以以直线为轴旋转一周,可以形成圆柱的是长方形,故选:C.【考点】此题主要考查图形的旋转变换,发挥空间想象是解题关键.3、B【解析】【分析】根据两点之间线段最短解答.【详解】解:如果把原来的弯曲河道改直,根据两点之间线段最短可得到两地间河道长度变短了,【考点】此题考查线段的性质:两点之间线段最短.4、B【解析】【分析】根据棱柱的定义:有两个面平行,其余面都是四边形,并且相邻的两个四边形的公共边都互相平行;柱体的定义:一个多面体有两个面互相平行且相同,余下的每个相邻两个面的交线互相平行,进行判断即可.【详解】解:(1)正方体是棱柱,长方体是棱柱,故此说法错误;(2)正方体是棱柱,长方体也是棱柱,故此说法正确;(3)正方体是柱体,圆柱也是柱体,故此说法正确;(4)正方体是柱体,圆柱是柱体,故此说法错误.故选B.【考点】本题主要考查了棱柱和柱体的定义,解题的关键在于能够熟练掌握相关定义.5、A【解析】【分析】根据正方体展开图的对面,逐项判断即可.【详解】解:由正方体展开图可知,A的对面点数是1;B的对面点数是2;C的对面点数是4;∵骰子相对两面的点数之和为7,∴A代表,故选:A.【考点】本题考查了正方体展开图,解题关键是明确正方体展开图中相对面间隔一个正方形,判断哪两个面相对.6、D【解析】【分析】观察图形可知,①~④的小正方体的个数分别为4,3,3,2,其中②③组合不能构成长方体,①④组合符合题意【详解】解:观察图形可知,①~④的小正方体的个数分别为4,3,3,2,其中②③组合不能构成长方体,①④组合符合题意故选D【考点】本题考查了立体图形,应用空间想象能力是解题的关键.7、C【解析】【分析】由AB=10cm,BC=4cm.于是得到AC=AB+BC=14cm,根据线段中点的定义由D是AC的中点,得到AD,根据线段的和差得到MD=AD﹣AM,于是得到结论.【详解】解:∵AB=10cm,BC=4cm,∴AC=AB+BC=14cm,∵D是AC的中点,AC=7cm;∴AD=12∵M是AB的中点,AB=5cm,∴AM=12∴DM=AD﹣AM=2cm.故选:C.【考点】此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.8、C【解析】【分析】根据正方体的表面展开图共有11种情况,A,D是“田”型,对折不能折成正方体,B是“凹”型,不能围成正方体,由此可进行选择.【详解】解:根据正方体展开图特点可得C答案可以围成正方体,故选:C.【考点】此题考查了正方体的平面展开图.关键是掌握正方体展开图特点.9、D【分析】根据题意由平面图形的折叠及棱柱的展开图逐项进行判断即可.【详解】解:A可以围成四棱柱,B可以围成三棱柱,C可以围成五棱柱,D选项侧面上多出一个长方形,故不能围成一个三棱柱.故选:D.【考点】本题考查立体图形的展开图,熟记常见立体图形的表面展开图的特征是解决此类问题的关键.10、B【解析】【分析】根据面动成体的原理以及空间想象力可直接选出答案.【详解】解:将如图所示的图形绕着给定的直线L旋转一周后形成的几何体是圆台,故选:B.【考点】此题主要考查了点、线、面、体,关键是同学们要注意观察,培养自己的空间想象能力.二、填空题1、同角的余角相等【分析】由∠AOC+∠BOC=∠BOD+∠BOC=90°可以判断同角的余角相等.【详解】∵∠AOB+∠BOC=∠COD+∠BOC=90°,∠AOB和∠COD都与∠BOC互余,故同角的余角相等,故答案为:同角的余角相等.【点睛】本题主要考查补角与余角的基本知识,比较简单.2、程.【解析】【分析】根据展开图得到“锦”的对面是“程”.【详解】由展开图得到“锦”的对面是“程”,故填:程.【点睛】此题考查正方体展开的平面图,需熟知正方体展开的形式,由此即可正确解答.3、10cm【解析】【分析】由:2:3=AM MB,可得MB比AM多1份,MB比AM长2cm,从而可得每一份为2cm,于是可得答案.【详解】解:2(32)10cm32AB=⨯+=-.故答案为:10.cm【点睛】本题考查的是部分与总体的关系,线段的和差关系,理解题意弄清楚部分与整体的比值是解题的关键.4、点动成线.【解析】【分析】根据点动成线可得答案.【详解】解:“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了线,这说明点动成线.故答案为:点动成线.【点睛】本题主要考查了点、线、面、体,从运动的观点来看:点动成线,线动成面,面动成体.5、11325'︒【解析】【分析】先根据题意求出这个角的度数,再根据补角的定义求解即可.【详解】∵一个角的余角的度数是23°25′,∴这个角为90°-23°25′=66°35′,∴这个角的补角的度数是180°-66°35′=113°25′.故答案为:113°25′.【点睛】本题考查了余角和补角的定义,解答本题的关键是掌握互余两角之和为90°,互补两角之和为180°.三、解答题1、(1)①②③;(2)28;(3)能,70【解析】【分析】(1)根据长方体展开图的特征可得解;(2)给图B标上尺寸,然后根据周长意义可得解;(3)为了使外围周长最大,可以沿着长方体长度为6的4条棱和长度为4的2条棱剪开即可得到解答.【详解】解:(1)根据长方体展开图的特征可得答案为:①②③;(2)由已知可以给图B标上尺寸如下:∴图B的外围周长为6×3+4×4+4×6=58.(3)能.如图所示.外围周长为6×8+4×4+3×2=48+16+6=70.【考点】本题考查长方体的应用,熟练掌握长方体的各种展开图是解题关键.2、这个角是40°.【解析】【分析】设这个角为x,则它的余角为(90°-x),补角为(180°-x),再根据题中给出的等量关系列方程即可求解.【详解】设这个角的度数为x,则它的余角为(90°-x),补角为(180°-x),依题意,得:1(90)(180)154x x︒--︒-=︒,解得x=40︒.答:这个角是40°.【考点】本题主要考查了余角、补角的定义以及一元一次方程的应用.解题的关键是能准确地从题中找出各个量之间的数量关系,列出方程,从而计算出结果.互为余角的两角的和为90°,互为补角的两角的和为180°.3、(1)见解析;(2)见解析【解析】【分析】(1)根据直线、射线、线段定义画出即可;(2)根据要求画出线段标出交点即可.【详解】解:(1)如图所示,直线AB,射线BD,线段BC即为所求(2)连接AC,点E即为所求【考点】本题考查了对直线、射线、线段定义的应用,主要考查学生的理解能力和画图能力.4、(1)1-,13-;(2)22242a ab b+-,289【解析】【分析】(1)先根据正方体的平面展开图确定a、b、c所对的面的数字,再根据相对的两个面上的数互为倒数,确定a、b、c的值;(2)先去括号,再合并同类项化简代数式后代入求值即可.【详解】解:(1)由长方体纸盒的平面展开图知,a与-1、b与-3、c与2是相对的两个面上的数字或字母,因为相对的两个面上的数互为倒数,所以111,,32a b c=-=-=.故答案为:1-,13-. (2)()()2223252ab a b ab a ab ⎡⎤------⎣⎦22233252ab a b ab a ab =-+-+-+22242a ab b =+- 将11,,3a b =-=-代入, 原式()()22112141233⎛⎫⎛⎫=⨯-+⨯-⨯--⨯- ⎪ ⎪⎝⎭⎝⎭ 42239=+- 289=. 【考点】本题考查了正方体的平面展开图、倒数及整式的加减化简求值,解决本题的关键是根据平面展开图确定a 、b 、c 的值.5、(1)①50°;②50°;③130°;(2)12m °+12n °或180°-12m °-12n °【解析】【分析】(1)根据角的和差和角平分线的定义即可得到结论;(2)根据角的和差和角平分线的定义即可得到结论.【详解】解:(1)①∵∠AOB =60°,∠COD =40°,OP 平分∠AOC ,OQ 平分∠BOD ,∴∠BOP =12∠AOB =30°,∠BOQ =12∠COD =20°,∴∠POQ=50°,故答案为:50°;②解:∵∠AOB=60°,∠BOC=α=80°,∴∠AOC=140°,∵OP平分∠AOC,∴∠POC=1∠AOC=70°,2∵∠COD=40°,∠BOC=α=80°,且OQ平分∠BOD,同理可求∠DOQ=60°,∴∠COQ=∠DOQ-∠DOC=20°,∴∠POQ=∠POC-∠COQ=70°-20°=50°;③解:补全图形如图3所示,∵∠AOB=60°,∠BOC=α=130°,∴∠AOC=360°-60°-130°=170°,∵OP平分∠AOC,∴∠POC=1∠AOC=85°,2∵∠COD=40°,∠BOC=α=130°,且OQ平分∠BOD,同理可求∠DOQ=85°,∴∠COQ=∠DOQ-∠DOC=85°-40°=45°,∴∠POQ=∠POC+∠COQ=85°+45°=130°;(2)当∠AOB=m°,∠COD=n°时,如图2,∴∠AOC= m°+ α°,∵OP平分∠AOC,∴∠POC=12(m°+ α°),同理可求∠DOQ=12(n°+ α°),∴∠COQ=∠DOQ-∠DOC=12(n°+ α°)- n°=12(-n°+ α°),∴∠POQ=∠POC-∠COQ=12(m°+ α°)-12(-n°+ α°)=1 2m°+12n°,当∠AOB=m°,∠COD=n°时,如图3,∵∠AOB=m°,∠BOC=α,∴∠AOC=360°-m°-α°,∵OP平分∠AOC,∴∠POC=12∠AOC=180°12-(m°+ α°),∵∠COD=n°,∠BOC=α,且OQ平分∠BOD,同理可求∠DOQ=12(n°+ α°),∴∠COQ=∠DOQ-∠DOC=12(n°+ α°)-n°=12(-n°+ α°),∴∠POQ=∠POC+∠COQ=180°12-(m°+ α°)+12(-n°+ α°)=180°-12m°-12n°,综上所述,若∠AOB=m°,∠COD=n°,则∠POQ=12m°+12n°或180°-12m°-12n°.故答案为:12m°+12n°或180°-12m°-12n°.【考点】本题考查了角的计算,角平分线的定义,正确的识别图形是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学七年级上册 第四章 几何图形初步 期末综合复习卷
(时间90分钟,满分120分)
第Ⅰ卷(选择题)
一.选择题(本大题共10小题,每小题3分,共30分) 1.下列几何体中,属于锥体的是( )
2.将下列如图的平面图形绕轴l 旋转一周,可以得到的立体图形是( )
3.如图是由3个大小相同的小正方体组成的几何体,它的左视图是( )
4.如图所示,点C 为AB 的中点,点D 是BC 的中点,则下列说法错误 的是( ) A .CD =AC -BD B .CD =1
2AB -BD
C .C
D =2
3BC
D .AD =BC +CD
5.如图是正方体的表面展开图,则与“前”字相对的字是( ) A .认 B .真 C .复 D .习
6.下列说法中,正确的有( )
①射线与其反向延长线共同构成一条直线;②直线a,b一定相交于点M;③两直线交于两点;④三条直线两两相交,一定有3个交点.
A.3个B.2个
C.1个D.0个
7.若数轴上点A,B分别表示数2,-2,则A,B两点之间的距离可表示为( )
A.2+(-2) B.2-(-2)
C.(-2)+2 D.(-2)-2
8.下列说法中,正确的个数为( )
①过两点有且只有一条直线;
②连接两点的线段叫两点间的距离;
③两点之间所有连线中,线段最短;
④射线比直线小一半.
A.1 B.2
C.3 D.4
9.一个几何体的表面展开图如图所示,则这个几何体是( )
A.四棱锥B.四棱柱
C.三棱锥D.三棱柱
10.如图,从B点看A点,A点所在的方向为( )
A.南偏东58°
B.北偏西32°
C.南偏东32°
D.东偏南58°
第Ⅱ卷(非选择题)
二.填空题(共8小题,3*8=24)
11.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是_____________________.
12.用度、分、秒表示91.34°为______________.
13. 已知∠1=200,∠2=300,∠3=600,∠4=1500,则∠2是____的余角,_____是∠4的补角.
14. 己知点C为线段AB的中点,且AB=6 cm,若点D是线段AB的三等分点,则DC= __ cm。
15. 如图,点O在直线AB上,射线OC平分∠DOB,若∠COB=35°,则∠AOD=___________°.
16.如图,两块三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD的度数是
__________度.
17.在如图所示的五面体中,共有___条棱,以A为端点的棱有____条.
18.已知线段AB =6 cm ,点C 在直线AB 上,且CA =4 cm ,O 是AB 的中点,则线段OC 的长度是________cm.
三.解答题(共7小题,66分)
19. (8分)已知点C 在直线AB 上,线段AB =20 cm ,线段BC =5 cm ,求线段AC 的长.
20. (8分) 如图,已知直线AB 和CD 相交于点O ,∠COE 是直角,OF 平分∠AOE ,∠COF =34°,求∠BOD 的度数.
21. (8分)如图,已知线段AB 和CD 的公共部分BD =13AB =1
4CD ,线段AB ,CD 的中点E ,F 之
间的距离是10 cm ,求AB ,CD 的长.
22. (10分)如图,已知C是AB的中点,D是AC的中点,E是BC的中点.
(1)若AB=18 cm,求DE的长;
(2)若CE=5 cm,求DB的长.
23. (10分)如图,OM是∠AOC的平分线,ON是∠BOC的平分线.
(1)如图①,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?
(2)如图②,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;
(3)如图③,当∠AOB=α,∠BOC=β时,猜想∠MON与α,β有数量关系吗?如果有,写出你的结论,并说明理由.
24. (10分)(1)如图①,线段AC=6 cm,线段BC=15 cm,点M是AC的中点,CN∶NB=1∶2,求MN的长;
(2)如图②,∠AOB=35°,∠BOC=90°,OD是∠AOC的平分线.求∠BOD的度数.
25. (12分)把一副三角板的直角顶点O重叠在一起,
(1)如图1,当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?
(2)如图2,当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?
(3)当∠BOC的余角的4倍等于∠AOD时,则∠BOC是多少度?
参考答案:
1-5BDDCB 6-10CBBAB 11.两点确定一条直线 12.91°20′24″ 13. ∠3,∠2 14. 1 15. 110 16.135 17. 9,3 18. 1或7
19. 解:当点C 在线段AB 上时,AC =AB -BC =20-5=15(cm); 当点C 在线段AB 的延长线上时,AC =AB +BC =20+5=25(cm) 20. 解:因为∠COE 是直角,∠COF =34°,所以∠EOF =56°, 又因为OF 平分∠AOE ,所以∠AOF =∠EOF =56°. 因为∠COF =34°,所以∠AOC =∠AOF -∠COF =22°, 所以∠BOD =∠AOC =22°
21. 解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm ,
因为点E ,F 分别为AB ,CD 的中点,所以AE =12AB =1.5x cm ,CF =1
2CD =2x cm ,
所以EF =AC -AE -CF =6x -1.5x -2x =2.5x(cm), 因为EF =10 cm ,所以2.5x =10,解得x =4, 所以AB =12 cm ,CD =16 cm
22. 解:(1)∵C 是AB 的中点,∴AC =BC =1
2AB =9 cm.
∵D 是AC 的中点,∴AD =DC =12AC =9
2 cm.
∵E 是BC 的中点,∴CE =BE =12BC =9
2 cm.
又∵DE =DC +CE ,∴DE =92 cm +9
2
cm =9 cm.
(2)由(1)知AD =DC =CE =BE ,∴CE =1
3
BD.∵CE =5 cm ,∴BD =15 cm.
23. 解:(1)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC)=1
2∠AOB =45°
(2)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC)=12∠AOB =1
2
α
(3)∠MON =12α.理由:∠MON =∠MOC -∠NOC =12(α+β)-12β=1
2α
24. 解:(1)因为线段AC =6 cm ,点M 是AC 的中点,所以CM =3 cm. 因为BC =15 cm ,CN ∶NB =1∶2,所以CN =5 cm. 所以MN =CM +CN =3+5=8(cm) (2)因为∠AOB =35°,∠BOC =90°,
所以∠AOC =∠AOB +∠BOC =35°+90°=125°.
又因为OD 是∠AOC 的平分线,所以∠AOD =12∠AOC =1
2×125°=62.5°.
所以∠BOD =∠AOD -∠AOB =62.5°-35°=27.5°
25. 解:(1)当OB 平分∠COD 时,有∠BOC =∠BOD =45°, 于是∠AOC =90°-45°=45°,
∴∠AOD +∠BOC =∠AOC +∠COD +∠BOC =45°+90°+45°=180°. (2)当OB 不平分∠COD 时,
有∠AOB =∠AOC +∠BOC =90°,∠COD =∠BOD +∠BOC =90°, 于是∠AOD +∠BOC =∠AOC +∠BOC +∠BOD +∠BOC =∠AOB +∠COD =90°+90° =180°.
(3)由(2)得∠AOD +∠BOC =180°,有∠AOD =180°-∠BOC, 180°-∠BOC =4(90°-∠BOC), ∴∠BOC =60°。