椭圆的参数方程中参数的几何意义

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆:

椭圆(Ellipse)是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。

椭圆是圆锥曲线的一种,即圆锥与平面的截线。

椭圆的周长等于特定的正弦曲线在一个周期内的长度。

椭圆的参数方程中参数的几何意义:

红点M的轨迹是椭圆,M(x,y)=(|OA|cosφ,|OB|sinφ)

所以离心角φ就是那条倾斜直线的角。

周长

椭圆周长计算公式:L=T(r+R)

T为椭圆系数,可以由r/R的值,查表找出系数T值;r为椭圆短半径;R为椭圆长半径。

椭圆周长定理:椭圆的周长等于该椭圆短半径与长半径之和与该椭圆系数的积(包括正圆)。

几何关系

点与椭圆

点M(x0,y0)椭圆x^2/a^2+y^2/b^2=1;

点在圆内:x02/a2+y02/b2<1;

点在圆上:x02/a2+y02/b2=1;

点在圆外:x02/a2+y02/b2>1;

跟圆与直线的位置关系一样的:相交、相离、相切。

直线与椭圆

y=kx+m①

x2/a2+y2/b2=1②

由①②可推出x2/a2+(kx+m)2/b2=1

相切△=0

相离△<0无交点

相交△>0可利用弦长公式:设A(x1,y1)B(x2,y2)

求中点坐标

根据韦达定理x1+x2=-b/a,x1x2=c/a

代入直线方程可求出(y1+y2)/2=可求出中点坐标。

|AB|=d=√(1+k2)[(x1+x2)2-4x1*x2]=√(1+1/k2)[(y1+y2)2-4y1y2]

手绘法

1、:画长轴AB,短轴CD,AB和CD互垂平分于O点。

2、:连接AC。

3、:以O为圆心,OA为半径作圆弧交OC延长线于E点。

4、:以C为圆心,CE为半径作圆弧与AC交于F点。

5、:作AF的垂直平分线交CD延长线于G点,交AB于H点。

6、:截取H,G对于O点的对称点H’,G’⑺:H,H’为长轴圆心,分别以HA、H‘B为半径作圆;G,G’为短轴圆心,分别以GC、G‘D为半径作圆。

用一根线或者细铜丝,铅笔,2个图钉或大头针画椭圆的方法:先画好长短轴的十字线,在长轴上以圆点为中心先找2个大于短轴半径的点,一个点先用图钉或者大头针栓好线固定住,另一个点的线先不要固定,用笔带住线去找长短轴的4个顶点。

此步骤需要多次定位,直到都正好能于顶点吻合后固定住这2个点,用笔带住线,直接画出椭圆:使用细铜丝最好,因为线的弹性较大画出来不一定准确。

相关文档
最新文档