(通用版)2020高考数学二轮复习规范解答集训(三)概率与统计文

合集下载

热点攻关 “概率与统计”大题的常考题型探究(课件)2023年高考数学二轮复习(全国通用)

热点攻关  “概率与统计”大题的常考题型探究(课件)2023年高考数学二轮复习(全国通用)
大题攻略05 有关预测与决策问题
例5 (2022年北京卷)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到 以上(含 )的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位: ): 甲: , , , , , , , , , . 乙: , , , , , . 丙: , , , . 假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.
(3)已知该地区这种疾病的患病率为 ,该地区的年龄位于区间 的人口占该地区总人口的 .从该地区中任选一人,若此人的年龄位于区间 ,求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到 )
[解析] (1)平均年龄 (岁).(2)设 ,则 .(3)设 ,则由条件概率公式,得 .
(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;
(2)设 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计 的数学期望 ;
(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)
[解析] (1) 由频率估计概率可得,甲获得优秀奖的概率为0.4.(2)设“甲获得优秀奖”为事件 ,“乙获得优秀奖”为事件 ,“丙获得优秀奖”为事件 ,由题意知 ,又 ,则 , ,
树苗高度(单位: )
树苗售价(单位:元/株)
4
6
8
(1)现从120株树苗中,按售价分层抽样抽取8株,再从中任选3株,求售价之和高于20元的概率;
(2)以样本中树苗高度的频率作为育苗基地中树苗高度的概率.若从该育苗基地银杏树树苗中任选4株,记树苗高度超过 的株数为 ,求随机变量 的分布列和期望.
[解析] (1)由题意得, ,令 ,设 关于 的线性回归方程为 ,则有 ,则 ,所以 ,又 ,所以 关于 的回归方程为 .

文科数学专题概率与统计(学案)高考二轮复习资料含答案

文科数学专题概率与统计(学案)高考二轮复习资料含答案

文科数学专题概率与统计(学案)高考二轮复习资料含答案1.以客观题形式考查抽样方法,样本的数字特征和回归分析,独立性检验的基本思路、方法及相关计算与推断.2.本部分较少命制大题,若在大题中考查多在概率与统计、算法框图等知识交汇处命题,重点考查抽样方法,频率分布直方图和回归分析或独立性检验,注意加强抽样后绘制频率分布直方图,然后作统计分析或求概率的综合练习.3.以客观题形式考查古典概型与几何概型、互斥事件与对立事件的概率计算.4.与统计结合在大题中考查古典概型与几何概型.(1)在频率分布直方图中:频率①各小矩形的面积表示相应各组的频率,各小矩形的高=;②各小矩形面积之和等于1;③中位数组距左右两侧的直方图面积相等,因此可以估计其近似值.(2)茎叶图当数据有两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,从总体中逐个抽取少在起始部分抽样时采按事先确定的规则在各用简单随机抽样总体中的个体数较多分层抽样时采用简单总体由差异明显的随机抽样或系统抽样几部分组成即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.当数据有三位有效数字,前两位相对比较集中时,常以前两位为茎,第三位(个位)为叶(其余类推).3.样本的数字特征(1)众数在样本数据中,频率分布最大值所对应的样本数据(或出现次数最多的那个数据).(2)中位数样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取当中两个数据的平均数作为中位数.(3)平均数与方差-1样本数据的平均数某=(某1+某2++某n).n1-2-2-22方差=[(某1-某)+(某2-某)++(某n-某)].n注意:(1)现实中总体所包含的个体数往往较多,总体的平均数与标准差、方差是不知道(或不可求)的,所以我们通常用样本的平均数与标准差、方差来估计总体的平均数与标准差、方差.(2)平均数反映了数据取值的平均水平,标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定.4.变量间的相关关系(1)利用散点图可以初步判断两个变量之间是否线性相关.如果散点图中的点从整体上看大致分布在一条直线的附近,我们说变量某和y具有线性相关关系.(2)用最小二乘法求回归直线的方程^^^设线性回归方程为y=b某+a,则^b=-某-某^-^-a=y-b某ni=1nii=1--某i-某yi-y=--某iyi-n某yi=1nn22i-n某某2-i=1.--注意:回归直线一定经过样本的中心点(某,y),据此性质可以解决有关的计算问题.5.回归分析n某i-某yi-yi=1--r=n,叫做相关系数.某i-某2yi-y2i=1i=1-n-相关系数用来衡量变量某与y之间的线性相关程度;|r|≤1,且|r|越接近于1,相关程度越高,|r|越接近于0,相关程度越低.6.独立性检验假设有两个分类变量某和Y,它们的取值分别为{某1,某2}和{y1,y2},其样本频数列联表(称为2某2列联表)为某1某2总计2y1aca+c2y2bdb+d总计a+bc+da+b+c+da+b+c+dad-bc则K=,a+bc+da+cb+d若K>3.841,则有95%的把握说两个事件有关;若K>6.635,则有99%的把握说两个事件有关;若K<2.706,则没有充分理由认为两个事件有关.7.随机事件的概率随机事件的概率范围:0≤P(A)≤1;必然事件的概率为1,不可能事件的概率为0.8.古典概型①计算一次试验中基本事件的总数n;②求事件A包含的基本事件的个数m;③利用公式P(A)=计算.9.一般地,如果事件A、B互斥,那么事件A+B发生(即A、B中有一个发生)的概率,等于事件A、B分别发生的概率的和,即P(A+B)=P(A)+P(B).-10.对立事件:在每一次试验中,相互对立的事件A和A不会同时发生,但一定有一个发生,因此有222mnP(A)=1-P(A).11.互斥事件与对立事件的关系-对立必互斥,互斥未必对立.12.几何概型一般地,在几何区域D内随机地取一点,记事件“该点落在其内部区域d内”为事件A,则事件A发生的概率P(A)=考点一几何概型例1.【2022课标1,】如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是d的测度.D的测度141C.2A.【答案】Bπ8πD.4B.【变式探究】(2022·江苏卷)记函数f(某)=6+某-某的定义域为D.在区间[-4,5]上随机取一个数某,则某∈D的概率是________.5【答案】93--252【解析】由6+某-某≥0,解得-2≤某≤3,则D=[-2,3],则所求概率为=.5--49【变式探究】从区间[0,1]随机抽取2n个数某1,某2,,某n,y1,y2,,yn,构成n个数对(某1,y1),(某2,y2),,(某n,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.4n2m2nB.mC.4mn2mD.n【答案】Cmπ4m4m【解析】由题意知,=,故π=,即圆周率π的近似值为.n4nn考点二古典概型例2.(2022·全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.B.C.D.【答案】D3102511015【2022山东】从分别标有1,2,,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是(A)5475(B)(C)(D)18999【答案】C【解析】标有1,2,,9的9张卡片中,标奇数的有5张,标偶数的有4张,所以抽到的2张卡112C5C45,选C.片上的数奇偶性不同的概率是989【变式探究】袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.51011B.C.D.1212121【变式探究】(2022·天津卷)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()A.B.C.D.【答案】C【解析】从5支彩笔中任取2支不同颜色彩笔的取法有红黄、红蓝、红绿、红紫、黄蓝、黄绿、黄紫、蓝绿、蓝紫、绿紫,共10种,其中取出的2支彩笔中含有红色彩笔的取法有红黄、红蓝、红绿、红紫,共424种,所以所求概率P==.105故选C.考点三概率与其他知识的交汇例3、(2022·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温天数[10,15)2[15,20)16[20,25)36[25,30)25[30,35)7[35,40)44 5352515以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率.(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.【变式探究】某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下表:消费次数收费比例第1次1第2次0.95第3次0.90第4次0.85第5次及以上0.80该公司从注册的会员中,随机抽取了100位进行统计,得到统计数据如下表:消费次数频数第1次60第2次20第3次10第4次5第5次及以上5假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题:(1)估计该公司一位会员至少消费两次的概率;(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;(3)该公司要从这100位里至少消费两次的顾客中按消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出的2人中恰有1人消费两次的概率.40【解析】(1)100位会员中,至少消费两次的会员有40位,所以估计一位会员至少消费两次的概率为100=0.4.(2)该会员第1次消费时,公司获得的利润为200-150=50(元).50+40第2次消费时,公司获得的利润为200某0.95-150=40(元),所以,公司获得的平均利润为=245(元)。

2020高考数学二轮复习概率与统计.docx

2020高考数学二轮复习概率与统计.docx

2020 高考数学二轮复习 概率与统计概率内容的新概念 多,相近概念容易混淆,本 就学生易犯 作如下 :型一 “非等可能 ”与 “等可能 ”混同 例 1 两枚骰子,求所得的点数之和 6 的概率.解两枚骰子出 的点数之和2, 3, 4, ⋯ ,12 共 11 种基本事件,所以概率P=111剖析以上 11 种基本事件不是等可能的,如点数和 2 只有 (1, 1),而点数之和6 有 (1, 5)、(2, 4)、 (3, 3)、 (4,2)、 (5, 1)共 5 种.事 上, 两枚骰子共有 36 种基本事件,且是等可能的,所以“所得点数之和6”的概率 P= 5.36型二 “互斥 ”与 “ 立 ”混同例 2把 、黑、白、4 牌随机地分 甲、乙、丙、丁4 个人,每个人分得1 ,事件“甲分得 牌”与“乙分得 牌”是()A . 立事件B .不可能事件C .互斥但不 立事件D .以上均不解A剖析 本 的原因在于把 “互斥 ”与 “ 立”混同,二者的 系与区 主要体 在 :(1)两事件 立,必定互斥,但互斥未必 立; (2) 互斥概念适用于多个事件,但 立概念只适用于两个事件; (3) 两个事件互斥只表明 两个事件不能同 生,即至多只能 生其中一个,但可以都不 生;而两事件 立 表示它 有且 有一个 生.事件 “甲分得 牌 ”与 “乙分得 牌 ”是不能同 生的两个事件,两个事件可能恰有一个 生,一个不 生,可能两个都不 生,所以 C .型三 例 3解“互斥 ”与 “独立 ”混同甲投 命中率 O .8,乙投 命中率 0.7,每人投 3 次,两人恰好都命中 2 次的概率是多少 ?“甲恰好投中两次” 事件 A , “乙恰好投中两次” 事件B , 两人都恰好投中两次事件A+B , P(A+B)=P(A)+P(B): c 32 0.820.2 c 32 0.720.3 0.825剖析本 的原因是把相互独立同 生的事件当成互斥事件来考 , 将两人都恰好投中2 次理解 “甲恰好投中两次”与 “乙恰好投中两次 ”的和.互斥事件是指两个事件不可能同 生;两事件相互独立是指一个事件的 生与否 另一个事件 生与否没有影响,它 然都描 了两个事件 的关系,但所描 的关系是根本不同.解:“甲恰好投中两次 ” 事件 A ,“乙恰好投中两次” 事件 B ,且 A , B 相互独立,两人都恰好投中两次 事件A ·B ,于是 P(A ·B)=P(A) ×P(B)= 0.169类型四例 4错解“条件概率 P(B / A)”与“积事件的概率P(A·B)”混同袋中有 6 个黄色、 4 个白色的乒乓球,作不放回抽样,每次任取一球,取 2 次,求第二次才取到黄色球的概率.记“第一次取到白球”为事件A,“第二次取到黄球”为事件B,”第二次才取到黄球”为事件62C,所以 P(C)=P(B/A)=.93剖析本题错误在于 P(A B)与 P(B/A) 的含义没有弄清 , P(A B) 表示在样本空间S 中 ,A 与 B 同时发生的概率;而P( B/A )表示在缩减的样本空间S A中,作为条件的 A 已经发生的条件下事件 B 发生的概率。

高考数学二轮复习考点知识与题型专题讲解57---概率与统计的创新问题

高考数学二轮复习考点知识与题型专题讲解57---概率与统计的创新问题

高考数学二轮复习考点知识与题型专题讲解第57讲 概率与统计的创新问题概率与统计问题在近几年的高考中背景取自现实,题型新颖,综合性增强,难度加深,主要考查学生的阅读理解能力和数据分析能力.要从已知数表、题干信息中经过阅读分析判断获取关键信息,搞清各数据、各事件间的关系,建立相应的数学模型求解.考点一 概率和数列的综合例1 某商城玩具柜台五一期间促销,购买甲、乙系列的盲盒,并且集齐所有的产品就可以赠送节日礼物,现有甲、乙两个系列盲盒,每个甲系列盲盒可以开出玩偶A 1,A 2,A 3中的一个,每个乙系列盲盒可以开出玩偶B 1,B 2中的一个.(1)记事件E n :一次性购买n 个甲系列盲盒后集齐玩偶A 1,A 2,A 3玩偶;事件F n :一次性购买n 个乙系列盲盒后集齐B 1,B 2玩偶.求概率P (E 5)及P (F 4);(2)某礼品店限量出售甲、乙两个系列的盲盒,每个消费者每天只有一次购买机会,且购买时,只能选择其中一个系列的一个盲盒.通过统计发现:第一次购买盲盒的消费者购买甲系列的概率为23,购买乙系列的概率为13;而前一次购买甲系列的消费者下一次购买甲系列的概率为14,购买乙系列的概率为34,前一次购买乙系列的消费者下一次购买甲系列的概率为12,购买乙系列的概率为12;如此往复,记某人第n 次购买甲系列的概率为Q n . ①求{Q n }的通项公式;②若每天购买盲盒的人数约为100,且这100人都已购买过很多次这两个系列的盲盒,试估计该礼品店每天应准备甲、乙两个系列的盲盒各多少个.解 (1)若一次性购买5个甲系列盲盒,得到玩偶的情况总数为35,集齐A 1,A 2,A 3玩偶,则有两种情况:①其中一个玩偶3个,其他两个玩偶各1个,则有C 13C 35A 22种结果; ②其中两个玩偶各2个,另外一个玩偶1个,则有C 13C 15C 24种结果, 故P (E 5)=C 13C 35A 22+C 13C 15C 2435=60+90243=150243=5081; 若一次性购买4个乙系列盲盒,全部为B 1与全部为B 2的概率相等,均为124,故P (F 4)=1-124-124=78.(2)①由题可知,Q 1=23,当n ≥2时,Q n =14Q n -1+12(1-Q n -1)=12-14Q n -1,则Q n -25=-14⎝⎛⎭⎫Q n -1-25,Q 1-25=415, 即⎩⎨⎧⎭⎬⎫Q n -25是以415为首项,以-14为公比的等比数列.所以Q n -25=415×⎝⎛⎭⎫-14n -1, 即Q n =25+415×⎝⎛⎭⎫-14n -1. ②因为每天购买盲盒的100人都已购买过很多次,所以对于每一个人来说,某一天来购买盲盒时,可看作n →+∞,所以其购买甲系列的概率近似于25,假设用ξ表示一天中购买甲系列盲盒的人数, 则ξ~B ⎝⎛⎭⎫100,25, 所以E (ξ)=100×25=40,即购买甲系列盲盒的人数的均值为40,所以礼品店应准备甲系列盲盒40个,乙系列盲盒60个.规律方法 本题的关键是通过审题,找到第n 次购买与前一次购买之间的联系,从而找到数列的递推关系.跟踪演练1 (2022·青岛模拟)规定抽球试验规则如下:盒子中初始装有白球和红球各一个,每次有放回地任取一个,连续取两次,将以上过程记为一轮.如果每一轮取到的两个球都是白球,则该轮记为成功,否则记为失败.在抽取过程中,如果某一轮成功,则停止;否则,在盒子中再放入一个红球,然后接着进行下一轮抽球,如此不断继续下去,直至成功.(1)某人进行该抽球试验时,最多进行三轮,即使第三轮不成功,也停止抽球,记其进行抽球试验的轮次数为随机变量X ,求X 的分布列和均值;(2)为验证抽球试验成功的概率不超过12,有1 000名数学爱好者独立地进行该抽球试验,记t 表示成功时抽球试验的轮次数,y 表示对应的人数,部分统计数据如下:求y 关于t 的经验回归方程y ^=b ^t+a ^,并预测成功的总人数(精确到1);(3)证明:122+⎝⎛⎭⎫1-122132+⎝⎛⎭⎫1-122⎝⎛⎭⎫1-132142+…+⎝⎛⎭⎫1-122⎝⎛⎭⎫1-132…⎝⎛⎭⎫1-1n 21(n +1)2<12. 附:经验回归方程系数:b ^=∑i =1n x i y i -n x y∑i =1nx 2i -n x2,a ^=y -b ^x ;参考数据:∑i =15x 2i =1.46,x =0.46,x 2=0.212(其中x i=1t i ,x =15∑i =15x i ). (1)解 由题知,X 的取值可能为1,2,3, 所以P (X =1)=⎝⎛⎭⎫1C 122=14; P (X =2)=⎣⎡⎦⎤1-⎝⎛⎭⎫1C 122⎝⎛⎭⎫1C 132=112;P (X =3)=⎣⎡⎦⎤1-⎝⎛⎭⎫1C 122⎣⎡⎦⎤1-⎝⎛⎭⎫1C 132=23, 所以X 的分布列为所以E (X )=1×14+2×112+3×23=3+2+2412=2912.(2)解 令x i =1t i,则y ^=b ^x +a ^,由题知∑i =15x i y i =315,y =90,所以b ^=∑i =15x i y i -5x y ∑i =15x 2i -5x2=315-5×0.46×901.46-5×0.212=1080.4=270,所以a ^=90-270×0.46=-34.2,y ^=270x -34.2,故所求的经验回归方程为y ^=270t-34.2, 所以估计t =6时,y ≈11; 估计t =7时,y ≈4; 估计t ≥8时,y <0,预测成功的总人数为450+11+4=465. (3)证明 由题知,在前n 轮就成功的概率为P =122+⎝⎛⎭⎫1-122132+⎝⎛⎭⎫1-122⎝⎛⎭⎫1-132142+…+⎝⎛⎭⎫1-122⎝⎛⎭⎫1-132…⎝⎛⎭⎫1-1n 21(n +1)2,又因为在前n 轮没有成功的概率为 1-P =⎝⎛⎭⎫1-122×⎝⎛⎭⎫1-132×…×⎣⎡⎦⎤1-1(n +1)2 =⎝⎛⎭⎫1-12⎝⎛⎭⎫1+12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1+13×…×⎝⎛⎭⎫1-1n ×⎝⎛⎭⎫1+1n ×⎝⎛⎭⎫1-1n +1×⎝⎛⎭⎫1+1n +1 =12×32×23×43×…×n -1n ×n +1n ×n n +1×n +2n +1=n +22n +2=12(2n +2)+12n +2=12+12n +2>12, 故122+⎝⎛⎭⎫1-122132+⎝⎛⎭⎫1-122⎝⎛⎭⎫1-132142+…+⎝⎛⎭⎫1-122⎝⎛⎭⎫1-132…⎝⎛⎭⎫1-1n 21(n +1)2<12.考点二 概率和函数的综合例2(2022·九江模拟)瑞昌剪纸被列入第二批国家级非物质文化遗产名录.为了弘扬中国优秀的传统文化,某校将举办一次剪纸比赛,共进行5轮比赛,每轮比赛结果互不影响.比赛规则如下:每一轮比赛中,参赛者在30分钟内完成规定作品和创意作品各2幅,若有不少于3幅作品入选,将获得“巧手奖”.5轮比赛中,至少获得4次“巧手奖”的同学将进入决赛.某同学经历多次模拟训练,指导老师从训练作品中随机抽取规定作品和创意作品各5幅,其中有4幅规定作品和3幅创意作品符合入选标准.(1)从这10幅训练作品中,随机抽取规定作品和创意作品各2幅,试预测该同学在一轮比赛中获“巧手奖”的概率;(2)以上述两类作品各自入选的频率作为该同学参赛时每幅作品入选的概率.经指导老师对该同学进行赛前强化训练,规定作品和创意作品入选的概率共提高了110,以获得“巧手奖”的次数均值为参考,试预测该同学能否进入决赛? 解 (1)由题可知,所有可能的情况如下, ①规定作品入选1幅,创意作品入选2幅的概率P 1=C 14C 23C 11C 25C 25=325,②规定作品入选2幅,创意作品入选1幅的概率P 2=C 24C 13C 12C 25C 25=925,③规定作品入选2幅,创意作品入选2幅的概率P 3=C 24C 23C 25C 25=950,故所求概率P =325+925+950=3350.(2)设强化训练后,规定作品入选的概率为p 1,创意作品入选的概率为p 2, 则p 1+p 2=45+35+110=32,由已知可得,强化训练后该同学某一轮可获得“巧手奖”的概率为P =C 12p 1(1-p 1)·C 22p 22+C 22p 21·C 12p 2(1-p 2)+C 22p 21·C 22p 22=2p 1p 2(p 1+p 2)-3(p 1p 2)2=3p 1p 2-3(p 1p 2)2, ∵p 1+p 2=32,且p 1≥45,p 2≥35,即32-p 2≥45,32-p 1≥35, 即p 2≤710,p 1≤910,故可得45≤p 1≤910,35≤p 2≤710,p 1p 2=p 1⎝⎛⎭⎫32-p 1=-⎝⎛⎭⎫p 1-342+916, ∴p 1p 2∈⎣⎡⎦⎤2750,1425, 令p 1p 2=t ,则P (t )=-3t 2+3t =-3⎝⎛⎭⎫t -122+34在⎣⎡⎦⎤2750,1425上单调递减, ∴P (t )≤P ⎝⎛⎭⎫2750=-3×⎝⎛⎭⎫2502+34<34.∵该同学在5轮比赛中获得“巧手奖”的次数X ~B (5,P ), ∴E (X )=5P <5×34=154<4,故该同学没有希望进入决赛.易错提醒 构造函数求最值时,要注意变量的选取,以及变量自身的隐含条件对变量范围的限制. 跟踪演练2 (2022·新余模拟)学习强国中有两项竞赛答题活动,一项为“双人对战”,另一项为“四人赛”.活动规则如下:一天内参与“双人对战”活动,仅首局比赛可获得积分,获胜得2分,失败得1分;一天内参与“四人赛”活动,仅前两局比赛可获得积分,首局获胜得3分,次局获胜得2分,失败均得1分.已知李明参加“双人对战”活动时,每局比赛获胜的概率为12;参加“四人赛”活动(每天两局)时,第一局和第二局比赛获胜的概率分别为p ,13.李明周一到周五每天都参加了“双人对战”活动和“四人赛”活动(每天两局),各局比赛互不影响. (1)求李明这5天参加“双人对战”活动的总得分X 的分布列和均值;(2)设李明在这5天的“四人赛”活动(每天两局)中,恰有3天每天得分不低于3分的概率为f (p ).求p 为何值时,f (p )取得最大值. 解 (1)X 可取5,6,7,8,9,10, P (X =5)=C 05×⎝⎛⎭⎫125=132, P (X =6)=C 15×12×⎝⎛⎭⎫124=532, P (X =7)=C 25×⎝⎛⎭⎫122×⎝⎛⎭⎫123=516, P (X =8)=C 35×⎝⎛⎭⎫123×⎝⎛⎭⎫122=516, P (X =9)=C 45×⎝⎛⎭⎫124×12=532,P (X =10)=C 55×⎝⎛⎭⎫125=132, 分布列为所以E (X )=5×132+6×532+7×516+8×516+9×532+10×132=7.5(分).(2)设一天得分不低于3分为事件A ,则P (A )=1-(1-p )⎝⎛⎭⎫1-13=1-23(1-p )=2p +13, 则恰有3天每天得分不低于3分的概率f (p )=C 35⎝⎛⎭⎫2p +133·⎝⎛⎭⎫1-2p +132=40243(2p +1)3(1-p )2,0<p <1, 则f ′(p )=40243×6(2p +1)2(1-p )2-40243×2(2p +1)3(1-p )=40243(2p +1)2(1-p )(4-10p ),当0<p <25时,f ′(p )>0;当25<p <1时,f ′(p )<0, 所以函数f (p )在⎝⎛⎭⎫0,25上单调递增,在⎝⎛⎭⎫25,1上单调递减, 所以当p =25时,f (p )取得最大值.专题强化练1.(2022·湖北八市联考)2022年2月6日,中国女足在两球落后的情况下,以3∶2逆转击败韩国女足,成功夺得亚洲杯冠军,在之前的半决赛中,中国女足通过点球大战6∶5惊险战胜日本女足,其中门将朱钰两度扑出日本队员的点球,表现神勇.(1)扑点球的难度一般比较大,假设罚点球的球员会等可能地随机选择球门的左、中、右三个方向射门,门将也会等可能地随机选择球门的左、中、右三个方向来扑点球,而且门将即使方向判断正确也有12的可能性扑不到球.不考虑其它因素,在一次点球大战中,求门将在前三次扑出点球的个数X的分布列和均值;(2)好成绩的取得离不开平时的努力训练,甲、乙、丙、丁4名女足队员在某次传接球的训练中,球从甲脚下开始,等可能地随机传向另外3人中的1人,接球者接到球后再等可能地随机传向另外3人中的1人,如此不停地传下去,假设传出的球都能接住.记第n 次传球之前球在甲脚下的概率为p n ,易知p 1=1,p 2=0. ①试证明⎩⎨⎧⎭⎬⎫p n -14为等比数列;②设第n 次传球之前,球在乙脚下的概率为q n ,比较p 10与q 10的大小. (1)解 依题意可得,门将每次可以扑出点球的概率为p =13×13×3×12=16,门将在前三次扑出点球的个数X 可能的取值为0,1,2,3,易知X ~B ⎝⎛⎭⎫3,16, P (X =k )=C k 3×⎝⎛⎭⎫16k ×⎝⎛⎭⎫563-k ,k =0,1,2,3. 则X 的分布列为E (X )=3×16=12.(2)①证明 第n 次传球之前球在甲脚下的概率为p n ,则当n ≥2时,第(n -1)次传球之前,球在甲脚下的概率为p n -1,第(n -1)次传球之前,球不在甲脚下的概率为1-p n -1,则p n =p n -1·0+(1-p n -1)·13=-13p n -1+13,从而p n -14=-13⎝⎛⎭⎫p n -1-14, 又p 1-14=34,∴⎩⎨⎧⎭⎬⎫p n -14是以34为首项,-13为公比的等比数列.②解 由①可知p n =34⎝⎛⎭⎫-13n -1+14, p 10=34×⎝⎛⎭⎫-139+14<14, q 10=13(1-p 10)>14,故p 10<q 10.2.某网络购物平台每年11月11日举行“双十一”购物节,当天有多项优惠活动,深受广大消费者喜爱.(1)已知该网络购物平台近5年“双十一”购物节当天成交额如下表:求成交额y (百亿元)与时间变量x (记2018年为x =1,2019年为x =2,…依此类推)的经验回归方程,并预测2023年该平台“双十一”购物节当天的成交额(百亿元);(2)在2023年“双十一”购物节前,某同学的爸爸、妈妈计划在该网络购物平台上分别参加A ,B 两店各一个订单的“秒杀”抢购,若该同学的爸爸、妈妈在A ,B 两店订单“秒杀”成功的概率分别为p ,q ,记该同学的爸爸和妈妈抢购到的订单总数量为X . ①求X 的分布列及E (X );②已知每个订单由k (k ≥2,k ∈N *)件商品W 构成,记该同学的爸爸和妈妈抢购到的商品W 总数量为Y ,假设p =7sin πk 4k -πk 2,q =sinπk4k,求E (Y )取最大值时正整数k 的值.附:经验回归方程y ^=b ^x +a ^中斜率和截距的最小二乘估计公式分别为b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a ^=y -b ^x .解 (1)由已知可得x =1+2+3+4+55=3,y =9+12+17+21+275=17.2,∑i =15x i y i =1×9+2×12+3×17+4×21+5×27=303, ∑i =15x 2i =12+22+32+42+52=55, 所以b ^=∑i =15x i y i -5x y∑i =15x 2i -5x 2=303-5×3×17.255-5×32=4510=4.5, 所以a ^=y -b ^x =17.2-4.5×3=3.7,所以y ^=b ^x +a ^=4.5x +3.7,当x =6时,y ^=4.5×6+3.7=30.7(百亿元),所以预测2023年该平台“双十一”购物节当天的成交额为30.7百亿元.(2)①由题意知,X 的可能取值为0,1,2,P (X =0)=(1-p )(1-q )=1-p -q +pq ,P (X =1)=(1-p )q +(1-q )p =p +q -2pq ,P (X =2)=pq ,所以X 的分布列为E (X )=p +q -2pq +2pq =p +q .②因为Y =kX ,所以E (Y )=kE (X )=k (p +q )=k ⎝ ⎛⎭⎪⎫7sin πk 4k -πk 2+sin πk 4k =2sin πk -πk, 令t =1k ∈⎝⎛⎦⎤0,12,设f (t )=2sin πt -πt ,则E (Y )=f (t ), 因为f ′(t )=2πcos πt -π=2π⎝⎛⎭⎫cos πt -12,且πt ∈⎝⎛⎦⎤0,π2,所以当t ∈⎝⎛⎭⎫0,13时,f ′(t )>0,所以f (t )在区间⎝⎛⎭⎫0,13上单调递增;当t ∈⎝⎛⎭⎫13,12时,f ′(t )<0,所以f (t )在区间⎝⎛⎭⎫13,12上单调递减,所以当t =13,即k =3时,f (t )取得最大值,且f (t )max =f ⎝⎛⎭⎫13=3-π3(百亿元), 所以E (Y )取最大值时,k 的值为3.。

42、2020版高考文科数学突破二轮复习新课标通用讲义:第三部分 回顾9 概率与统计 Word版含答案

42、2020版高考文科数学突破二轮复习新课标通用讲义:第三部分 回顾9 概率与统计 Word版含答案

回顾9 概率与统计[必记知识]概率的几个基本性质(1)任何事件A 的概率都在0~1之间,即0≤P (A )≤1. (2)若A ⊆B ,则P (A )≤P (B ).(3)必然事件发生的概率为1,不可能事件发生的概率为0.(4)当事件A 与事件B 互斥时,P (A +B )=P (A )+P (B ).注意没有事件A 与事件B 互斥这一条件时,这个公式不成立.(5)若事件A 与事件B 互为对立事件,则P (A )+P (B )=1.古典概型与几何概型的异同(1)古典概型的概率计算公式P (A )=事件A 包含的基本事件的个数基本事件的总数.(2)几何概型的概率计算公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).抽样方法简单随机抽样、系统抽样、分层抽样.(1)从容量为N的总体中抽取容量为n的样本,则每个个体被抽到的概率都为n N.(2)分层抽样实际上就是按比例抽样,即按各层个体数占总体的比确定各层应抽取的样本容量.统计中的四个数据特征(1)众数:在样本数据中,出现次数最多的那个数据.(2)中位数:样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取中间两个数据的平均数作为中位数.(3)平均数:样本数据的算术平均数,即 x =1n (x 1+x 2+…+x n ).(4)方差与标准差方差:s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2].标准差: s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. [必会结论]直方图的三个结论(1)小长方形的面积=组距×频率组距=频率. (2)各小长方形的面积之和等于1.(3)小长方形的高=频率组距,所有小长方形高的和为1组距.线性回归方程线性回归方程y ^=b ^x +a ^一定过样本点的中心(x ,y ).独立性检验利用随机变量K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )来判断“两个分类变量有关系”的方法称为独立性检验.如果K 2的观测值k 越大,说明“两个分类变量有关系”的这种判断犯错误的可能性越小.[必练习题]1.(2019·洛阳尖子生第二次联考)已知x 与y 之间的一组数据如表:已求得y 关于x 的线性回归方程y =2.1x +0.85,则m 的值为( ) A .1 B .0.85 C .0.7D .0.5解析:选D.x -=0+1+2+34=1.5,y ^=m +3+5.5+74=m +15.54,因为点(x -,y -)在回归直线上,所以m +15.54=2.1×1.5+0.85,解得m =0.5,故选D.2.(2019·福州市第一学期抽测)随机抽取某中学甲班9名学生、乙班10名学生的期中考试数学成绩,获得茎叶图如图.估计该中学甲、乙两班期中考试数学成绩的中位数分别是( )A .75,84B .76,83C .76,84D .75,83解析:选B.甲班9名学生的期中考试数学成绩分别为52,66,72,74,76,76,78,82,96,中位数为76,乙班10名学生的期中考试数学成绩分别为62,74,76,78,82,84,85,86,88,92,中位数为82+842=83,所以估计该中学甲、乙两班期中考试数学成绩的中位数分别是76,83,故选B.3.(2019·昆明市诊断测试)高铁、扫码支付、共享单车、网购被称为中国的“新四大发明”,为评估共享单车的使用情况,选了n 座城市作试验基地.这n 座城市共享单车的使用量(单位:人次/天)分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估共享单车使用量的稳定程度的是( )A .x 1,x 2,…x n 的平均数B .x 1,x 2,…x n 的标准差C .x 1,x 2,…x n 的最大值D .x 1,x 2,…x n 的中位数解析:选B.平均数、中位数可以反映一组数据的集中程度;方差、标准差可以反映一组数据的波动大小,同时也反映这组数据的稳定程度.故选B.4.(2019·济南市学习质量评估)如图,在△ABC 中,∠C =90°,BC =2,AC =3,三角形内的空白部分由三个半径均为1的扇形构成,向△ABC 内随机投掷一点,则该点落在阴影部分的概率为( )A.π6 B .1-π6C.π4D .1-π4解析:选B.三个空白部分的面积之和为一个半径为1的圆的面积的二分之一,即π2,△ABC的面积为3,故所求的概率为1-π23=1-π6.5.某校为了了解学生一天的休息状况,分别从高一年级的510名学生、高二年级的480名学生、高三年级的450名学生中用分层抽样的方法抽取一个容量为n 的样本进行调查,其中从高三年级抽取了15名,则n =________.解析:由题意知抽样比为15450=130,所以n 510+480+450=130,解得n =48.答案:486.(一题多解)(2019·武昌区调研考试)甲盒中有红、黑皮笔记本各2本,乙盒中有黄、黑皮笔记本各1本,从两盒中各取1本,则取出的2本笔记本是不同颜色的概率为________.解析:法一:依题意,从甲盒、乙盒中各取1本笔记本共有4×2=8(种)取法,取出的2本笔记本是不同颜色的方法有2×2+2×1=6(种),所以取出的2本笔记本是不同颜色的概率P =68=34.法二:依题意,从甲盒、乙盒中各取1本笔记本共有4×2=8(种)取法,取出的2本笔记本是相同颜色的方法有2种,所以取出的2本笔记本是相同颜色的概率P ′=28=14,所以取出的2本笔记本是不同颜色的概率P =1-14=34.答案:347.(2019·武昌区调研考试)对参加某次数学竞赛的1 000名选手的初赛成绩(满分:100分)作统计,得到如图所示的频率分布直方图.(1)根据频率分布直方图完成以下表格;(3)如果从参加初赛的选手中选取380人参加复赛,那么如何确定进入复赛选手的成绩? 解:(1)填表如下.(2)平均数为55×0.05+65×0.15+75×0.35+85×0.35+95×0.1=78,方差s 22×0.05+(-13)2×0.15+(-3)2×0.35+72×0.35+172×0.1=101.(3)进入复赛选手的成绩为80+350-(380-100)350×10=82(分),所以初赛成绩为82分及其以上的选手均可进入复赛.(说明:回答82分以上,或82分及其以上均可)8.2019年国际篮联篮球世界杯,于2019年8月31日至9月15日在中国的北京、广州、南京、上海、武汉、深圳、佛山、东莞八座城市举办.为了宣传世界杯,某大学从全校学生中随机抽取了120名学生,对是否会收看篮球世界杯赛进行了问卷调查,统计数据如下:(1)(2)现从参与问卷调查且会收看篮球世界杯赛的学生中,采用按性别分层抽样的方法选取4人参加2019年国际篮联篮球世界杯志愿者宣传活动.(ⅰ)求男、女学生各选取多少人;(ⅱ)若从这4人中随机选取2人到校广播站开展2019年国际篮联篮球世界杯宣传介绍,求恰好选到2名男生的概率.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .解:(1)因为K 2=120×(60×20-20×20)280×40×80×40=7.5>6.635,所以有99%的把握认为收看篮球世界杯赛与性别有关. (2)(ⅰ)根据分层抽样的知识得,选取的男生有6060+20×4=3(人),女生有2060+20×4=1(人),所以选取的4人中,男生有3人,女生有1人.(ⅱ)设选取的3名男生分别为A ,B ,C ,1名女生为甲.从4人中随机选取2人,有(A ,B ),(A ,C ),(A ,甲),(B ,C ),(B ,甲),(C ,甲),共6种情形,其中恰好选到2名男生,有(A ,B ),(A ,C ),(B ,C ),共3种情形,所以,所求概率P =36=12.。

2020高考数学(理科)二轮专题复习课标通用版 跟踪检测: 专题3 数列 第1部分 专题3 第2讲

2020高考数学(理科)二轮专题复习课标通用版 跟踪检测: 专题3 数列 第1部分 专题3 第2讲
7.已知数列{an}的前 n 项和 Sn=3+2n,则数列{an}的通项公式为________. 解析 因为 Sn=3+2n,所以 n≥2 时,an=Sn-Sn-1=2n-1,而 n=1 时,a1=S1=5 不适
合上式,所以 an=Error!
答案 an=Error!
1
1
8.(2019·广东深圳适应性考试)在数列{an}中,a1=2 019,an+1=an+nn+1(n∈N*),
2n =n2+1-2n.故选 A
项.
3.1-4+9-16+…+(-1)n+1n2=( )
nn+1 A. 2
nn+1 B.- 2
nn+1 C.(-1)n+1 2
D.以上均不正确
C 解析 当 n 为偶数时,1-4+9-16+…+(-1)n+1n2=-3-7-…-(2n-1)=-
n 3+2n-1 2
nn+1
2 =- 2 ;当 n 为奇数时,1-4+9-16+…+(-1)
n-1 [3+2n-1-1]
2
nn+1
n+1n2=-3-7-…-[2(n-1)-1]+n2=-
2
+n2= 2 .综上可得,原
nn+1 式=(-1)n+1 2 .故选 C 项.
4.已知数列{an}的前 n 项和 Sn=an-1(a≠0),则{an}( )
2×3 3 4
n n+1
则 3Tn= 30 +30+31+…+3n-3+3n-2,②
1 1-
3n-1
( ) 1 1
1 n+1
1 n+1 15
1+ + +…+
1-
②-①得 2Tn=6+ 3 32
3n-2 -3n-1=6+ 3 -3n-1= 2 -
2n+5
2·3n-1.

2020版高考数学二轮复习第2部分专题3概率与统计第1讲概率、随机变量及其分布教案理(最新整理)

2020版高考数学二轮复习第2部分专题3概率与统计第1讲概率、随机变量及其分布教案理(最新整理)

第1讲概率、随机变量及其分布[做小题——激活思维]1.若随机变量X的分布列如表所示,E(X)=1。

6,则a-b=( )X0123P0。

1a b0。

1A.0.2C.0。

8 D.-0。

8B[由0。

1+a+b+0.1=1,得a+b=0。

8,又由E(X)=0×0.1+1×a+2×b+3×0。

1=1。

6,得a+2b=1.3,解得a=0。

3,b=0.5,则a-b=-0。

2.]2.已知甲在上班途中要经过两个路口,在第一个路口遇到红灯的概率为0。

5,两个路口连续遇到红灯的概率为0。

4,则甲在第一个路口遇到红灯的条件下,第二个路口遇到红灯的概率为( )A.0。

6 B.0.7C.0.8 D.0。

9C[记“第一个路口遇到红灯"为事件A,“第二个路口遇到红灯”为事件B,则P(A)=0.5,P(AB)=0。

4,则P(B|A)=错误!=0.8,故选C。

]3.两个实习生每人加工一个零件,加工为一等品的概率分别为错误!和错误!,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A。

错误!B。

错误!C。

14D。

错误!B[设事件A:甲实习生加工的零件为一等品;事件B:乙实习生加工的零件为一等品,且A,B相互独立,则P(A)=错误!,P(B)=错误!,所以这两个零件中恰有一个一等品的概率为P(A错误!)+P(错误!B)=P(A)P(错误!)+P(错误!)P(B)=错误!×错误!+错误!×错误!=错误!。

]4.设随机变量X~B(2,p),Y~B(4,p),若P(X≥1)=错误!,则P(Y≥1)=( )A.错误!B。

错误!C。

错误!D.1C[∵X~B(2,p),∴P(X≥1)=1-P(X=0)=1-C错误!(1-p)2=错误!,解得p=错误!,∴P(Y≥1)=1-P(Y=0)=1-C0,4(1-p)4=1-错误!=错误!,故选C.]5.罐中有6个红球和4个白球,从中任取1球,记住颜色后再放回,连续取4次,设X为取得红球的次数,则X的方差D(X)的值为________.错误![因为是有放回地取球,所以每次取球(试验)取得红球(成功)的概率均为错误!,连续取4次(做4次试验),X为取得红球(成功)的次数,则X~B错误!,∴D(X)=4×错误!×错误!=错误!.]6.已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为________.(附:若随机变量X服从正态分布N(μ,σ2),则P(μ-σ<X<μ+σ)=0。

2020年高考数学二轮复习重点专题冲刺复习指导 专题3 统计与概率

2020年高考数学二轮复习重点专题冲刺复习指导  专题3  统计与概率

2020年高考数学二轮复习重点专题冲刺复习指导 专题3 统计与概率【高考考场实情】统计与概率在高考考查中一般有一道选择题或填空题、一道解答题,共2道题,分值为17分.高考对这一部分的考查难度相对稳定,选择、填空题为容易题, 解答题为中等难度题.选择题在前六题的位置,填空题在前二题的位置,解答题在前三题的位置.选择、填空题常考古典概型、几何概型(理科时而考查对立事件、相互独立事件概率及独立重复试验的概率)。

【考查重点难点】解答题以频率分布表、频率分布直方图、柱形图、折线图、茎叶图等五个样本频率分布图表为载体,理科侧重考查随机变量的分布列及期望,文科侧重考查样本数字特征的应用,突出了对应用意识、数据处理能力及创新能力的考查.下面对学生存在的主要问题进行剖析,并提出相应的教学对策.【存在问题分析】1.概念理解不透【指点迷津】本专题中,概念理解不到位的有事件、模型的判断等;容易混淆的概念有互斥事件与对立事件、超几何分布与二项分布、二项展开式的通项公式1y n r r r n T C a b -+=与n 次独立重复试验中事件A 发生k 次的概率()(1)k k n k n nP k C p p -=-等. 【例1】已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方案:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性,则在另外2只中任取l 只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.【解析】(Ⅰ)设1ξ、2ξ已分别表示依方案甲和依方案乙需化验的次数,P 表示对应的概率,则方案甲中1ξ的分布列为方案乙中2ξ的分布列为若甲化验的次数不少于乙化验的次数,则[][]1212212221(1)(1)(2)(1)(2)(3)(1)(2)(3)(4)P P P P P P P P P P P ξξξξξξξξξξ==⨯=+=⨯=+=+==+=+=+=131322=0+(0)(0)0.72555555⨯++⨯+++=. (Ⅱ)3212()1023 2.4555E ξ=⨯+⨯+⨯==. 【名师点睛】本题易错的主要原因是对事件不清.对于方案甲,患有疾病的一只动物在每一次化验时出现的概率是等可能的,学生对事件不清,易误认为化验次数的可能取值是1,2,3,4,5,且1(1)(2)(3)(4)(5)2P P P P P ξξξξξ==========.事实上,若前4次化验为阴性,第5次不需再化验即知最后一只是患病动物,所以化验次数只能取l ,2,3,4.类似地,对于方案乙,第一次化验呈阳性,再化验3只中的前2只呈阴性后也不需再化验,或第一次化验呈阴性,再化验另外2只中的第l 只呈阴性或阳性后也不需再化验,即ξ只能取2,3.在解决问题时,要理清事件,求随机变量的分布列时,要弄清随机变量可能取到的每一个值以及取每一个值时所表示的意义,然后再利用所学的概率知识求出随机变量取每一个值时的概率,从而求出分布列.2.审题析题不到位【指点迷津】审题析题不清是本专题解答错误的主要原因,主要包括题意不清,茫然作答;阅读肤浅,丢失信息;条件欠缺,鲁莽下笔;图形不准,缺乏严密;方向不明,目标模糊等情况.审题不清的最主要原因在于学生的阅读理解能力欠缺.【例2】(2017年全国卷Ⅰ理19)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(Ⅰ)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(Ⅱ)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,161622221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=, 160.997 40.959 2=0.0080.09≈.【解析】(Ⅰ)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故()16,0.0026X B -,因此()()1611010.99740.0408P X P X ≥=-==-≈,X 的数学期望为160.00260.0416EX =⨯=(Ⅱ)(i )如果生产状态正常,一个零件尺寸在(3,3)μσμσ-+之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(3,3)μσμσ-+之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii )由9.97,0.212x s =≈,得μ的估计值为ˆ9.97,μσ=的估计值为ˆ0.212σ=,由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外,因此需对当天的生产过程进行检查. 剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的平均数为1(169.979.22)10.0215⨯-= 因此μ的估计值为10.02.162221160.212169.971591.134i i x==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的样本方差为 221(1591.1349.221510.02)0.00815--⨯≈,因此σ的估计值为0.0080.09≈. 【名师点睛】面对试题中冗长的文字表述,学生方寸大乱,不知所措,从而失去读题、解题信心;没有形成通读全题的习惯,未能发现试题所附相关公式;未能根据试题提供的相关公式,提取零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026;未能准确把握较长问句“生产线在这一天的生产过程可能出现了异常情况”的关键词等,导致回答问题含混不清、词不达意.3.读图识图能力弱【指点迷津】学生面对一堆数据无从下手,主要原因是对数据、图表的直观印象和积累储备的知识经验不够;没有形成“用数据说话”的统计观念;对抽象数据的数字特征理解不到位.【例3】(2016年全国卷Ⅲ理4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15C ︒,B 点表示四月的平均最低气温约为5C ︒.下面叙述不正确的是( )(A)各月的平均最低气温都在0C ︒以上 (B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同 (D)平均最高气温高于20C ︒的月份有5个【解析】由图可知0C ︒均在虚线框内,所以各月的平均最低气温都在0C ︒以上,A 正确;由图可知七月的平均温差大于7.5C ︒,而一月的平均温差小于7.5C ︒,B 正确;由图可知三月和十一月的平均最高气温都大约在10C ︒,基本相同,C 正确;由图可知平均气温高于20C ︒的月份只有7、8两个月,D 错误.【名师点睛】解答本题错误主要是读图识图能力弱,对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;其次,不会从图表中读取有用数据并进行判断;第三,估计平均温差时易出现错误,错选B .4.解题规范性较差【指点迷津】涉及本专题内容的考查,学生失误和失分最多的是会而不对、对而不全和全而不准,如不能用字母表示事件,导致在利用简单事件表示复杂事件书写混乱;解答过程缺失关键步骤,丢三落四,导致丢分等.【例4】端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个.(Ⅰ)求三种粽子各取到1个的概率;(Ⅱ)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.【解析】(Ⅰ)设A 表示事件“三种粽子各取到1个”,则由古典概型的计算公式有()11123531014C C C P A C ==. (Ⅱ)X 的所有可能取值为0,1,2则()383107015C P X C ===,()12283107115C C P X C ===,()21283101215C C P X C === 所以X 的分布列为 X 1 2 3 P715 715 115 故()0121515155E X =⨯+⨯+⨯=个. 【名师点睛】从解题规范方面看,学生常出现错误有,没有用字母表示事件,即缺少“设A 表示事件‘三种粽子各取到l 个’”这一步骤;直接写出1()4P A =,过程没写出来,应写为1112353101()4C C C P A C ==,一但答案错误,就失去过程分数;忽视“X 的所有可能值为0,1,2”,导致丢分等.5. 运算能力弱【指点迷津】运算求解能力主要是指会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径,能根据要求对数据进行估计和近似计算.本专题中,学生运算能力弱主要体现在不能根据问题的条件寻找与设计合理、简捷的运算途径,不能根据要求对数据进行估计和近似计算.【例5】(2017年全国卷Ⅰ文19)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸: 抽取次序 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16零件尺寸 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得16119.9716i i x x ===∑,16162221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,1621(8.5)18.439i i =-≈∑,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(Ⅰ)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(Ⅱ)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数12211()()()()n i ii n n i i i i x x y y r x x y y ===--=--∑∑∑.0.0080.09≈. 【解析】(Ⅰ)由样本数据得(,)(1,2,...,16)i x i i =的相关系数为16116162211()(8.5)0.180.2121618.439()(8.5)ii ii i x x i r x x i ===--==≈-⨯⨯--∑∑∑. 由于||0.25r <,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(Ⅱ)(i )由于9.97,0.212x s =≈,由样本数据可以看出抽取的第13个零件的尺寸在(3,3)x s x s -+以外,因此需对当天的生产过程进行检查.(ii )剔除离群值,即第13个数据,剩下数据的平均数为1(169.979.92)10.0215⨯-=,这条生产线当天生产的零件尺寸的均值的估计值为10.02,162221160.212169.971591.134i i x ==⨯+⨯≈∑,剔除第13个数据,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈.[来源:学+科+网] 这条生产线当天生产的零件尺寸的标准差的估计值为0.0080.09≈.【名师点睛】从运算方面看,学生不懂从16162221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑中解出 16221()160.212i i x x =-=⨯∑;不会计算0.2121618.439r =⨯⨯的值,不懂根据保留小数点后两位的要求,实施近似处理以简化运算;不懂直接由0.2121618.439r =⨯⨯采用放缩方法判断是否满足||0.25r <;不会由9.97x =和0.212s ≈计算出区间(3,3)x s x s -+的端点值9.334,10.606;计算151115i i x x ==∑时,不懂得先做相反数相消处理或各项统一分离10后转化为15'111015i i x x ==+∑计算;计算15'1115iix x==∑时,不懂得转化为1613115iix xx=-=∑,再利用16119.9716iix x===∑简化运算;计算222222221[0.070.10.060.060.010.10.0415s=++++++22220.020.240.110.11+++++222200.020.030.07]++++0.008130.008=≈,不懂得各项统一提取20.01的技巧;计算222221[160.212169.979.221510.02]15s=⨯+⨯--⨯时,不懂得在保证精确度要求的前提下作近似处理以简化运算.【解决问题对策】1.关注统计图表的教学【指点迷津】高考试卷的解答题往往以频率分布表、频率分布直方图、柱形图、折线图、茎叶图五个样本频率分布图表为载体,理科侧重考查随机变量的分布列及期望,文科侧重考查样本数字特征的应用,突出了对应用意识、数据处理能力及创新能力的考查.复习过程中,应充分利用五个样本频率分布图表,让学生会从图表中读取有用数据,或根据问题需要选择合适图表,依据统计学中的方法对数据进行分析,作出合理的决策.【例6】【2015年全国卷Ⅱ文、理3】根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图.以下结论不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【答案】A2.关注样本数字特征的含义【指点迷津】在复习中,应关注众数、中位数、平均数(期望)、方差与标准差有的含义,并能根据解决问题的需要选择合理的数字特征说明问题.【例7】【2014年课标卷Ⅱ文19】某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(Ⅰ)分别估计该市的市民对甲、乙部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙部门的评分高于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.【答案】(Ⅰ)67;(Ⅱ)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为50.150=,80.1650=,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(Ⅲ)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.(注:考生利用其他统计量进行分析,结论合理的同样给分)3. 厘清事件及其概率【指点迷津】复习过程中,应厘清事件间的关系,准确计算相关事件的概率.特别要求学生能将复杂事件进行分解,先分解为互斥事件,每个互斥事件又分解为两个相互独立事件的积事件.【例8】(2013年全国卷Ⅰ理19)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果3n=,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果4n=,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【解析】(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品都是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)=41113 161616264⨯+⨯=.(Ⅱ)X可能的取值为400,500,800,并且P(X=400)=41111161616--=,P(X=500)=116,P(X=800)=14,所以X的分布列为EX=1111400+500+80016164⨯⨯⨯=506.25.4.关注概率模型的识别与应用【指点迷津】复习过程中,应关注概率模型的识别与应用,一定要注意弄清题意,找出题中的关键字词,厘清各种概率模型及适用范围.如超几何分布和二项分布是教材中两个重要概率分布,二项分布与超几何分布的区别为,二项分布是有放回的抽样,每做一次事件,事件A 发生的概率是相同的;超几何分布是不放回的抽样,每做一次事件,事件A发生的概率是不相同的.【例9】某食品厂为了检查一条自动包装流水线的生产情况,从该流水线上随机抽取40件产品作为样本,测得它们的重量(单位:克),将重量按如下区间分组:(490,495],(495,500],(500,505],(505,510],(510,515],得到样本的频率分布直方图(如图所示).若规定重量超过495克但不超过510克的产品为合格产品,且视频率为概率,回答下列问题:(Ⅰ)在上述抽取的40件产品中任取2件,设X 为合格产品的数量,求X 的分布列和数学期望()E X ;(Ⅱ)若从流水线上任取3件产品,求恰有2件合格产品的概率.【解析】(Ⅰ)由样本的频率分布直方图得,合格产品的频率为0.0450.0750.0550.8⨯+⨯+⨯=. 所以抽取的40件产品中,合格产品的数量为400.832⨯=. 则X 可能的取值为0,1,2,所以()2824070195C P X C ===;()11832240641195C C P X C ===;()2322401242195C P X C ===, 因此X 的分布列为 X0 1 2 P 7195 64195 124195 故X 数学期望7641243128()0121951951951955E X =⨯+⨯+⨯==. (Ⅱ)因为从流水线上任取1件产品合格的概率为40.85=, 所以从流水线上任取3件产品,恰有2件合格产品的概率为223144855125P C ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭.学1科·网 5.关注用样本估计总体的思想分析解决问题【指点迷津】复习过程中,应让学生掌握,为了考察一个总体的情况,在统计中通常是从总体中抽取一个样本,用样本的有关情况去估计总体的相应情况.这种估计大体分为两类:用样本的频率分布估计总体的分布、用样本的数字特征估计总体的数字特征.其次,“预测与决策”与人们的生活休戚相关.随着社会的不断进步,人们对许多实际问题会有多种解决方案,但哪种方案最有利于解决问题,需要进行科学的决策.而通过期望、方差等的计算,并进行大小比较,就是其中的一种科学预测与决策的手段.【例10】【2016年课标Ⅰ理19】某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数. (Ⅰ)求X的分布列;(Ⅱ)若要求()0.5≤≥,确定n的最小值;P X n(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在19n=之中选其一,应选用哪n=与20个?【答案】(Ⅰ)由柱状图并一频率代替概率知,一台机器在三年内需要更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而P X==⨯=;(16)0.20.20.04P X==⨯⨯=;(17)20.20.40.16(18)20.20.20.40.40.24P X==⨯⨯+⨯=;P X==⨯⨯+⨯⨯=;(19)20.20.220.40.20.24P X==⨯⨯+⨯=;(20)20.20.20.20.20.2P X==⨯⨯=;(21)20.20.20.08P X==⨯=(22)0.20.20.04所以X的分布列为X 16 17 18 19 20 2122P 04.0 16.0 24.0 24.0 2.0 08.0 04.0(Ⅱ)由(Ⅰ)知44.0)18(=≤X P ,68.0)19(=≤X P ,故n 的最小值为19.(Ⅲ)记Y 表示2台机器在购买易损零件上所需的费用(单位:元).当19=n 时,08.0)500220019(2.0)50020019(68.020019⨯⨯+⨯+⨯+⨯+⨯⨯=EY 404004.0)500320019(=⨯⨯+⨯+. 当20=n 时,04.0)500220020(08.0)50020020(88.020020⨯⨯+⨯+⨯+⨯+⨯⨯=EY 4080=. 可知当19=n 时所需费用的期望值小于20=n 时所需费用的期望值,故应选19=n .6.关注“冷门”知识的复习【指点迷津】高考是对高中阶段学习结果的大检阅,统计与概率的考查,在突出核心知识考查的同时,也关注知识点的覆盖面.因此,在复习教学中,要全面检索高中阶段的所有知识,特别是不能忽视对所谓的“冷门知识”的复习,如正态分布、条件概率、相关系数、残差图、拟合效果等.【例11】【2015年课标Ⅰ理18】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (1,2,,8i =⋅⋅⋅)数据作了初步处理,得到下面的散点图及一些统计量的值.x y w 281(x )ii x =-∑ 281()i i w w =-∑ 81()(y )i i i x x y =--∑ 81()()i i i w w y y =--∑46.6 56.3 6.8 289.8 1.6 1469 108.8表中i i w x =,8118i i w w ==∑ (Ⅰ)根据散点图判断,y a bx =+y 与y c b x =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)以知这种产品的年利率z 与x 、y 的关系为0.2z y x =-.根据(Ⅱ)的结果回答下列问题: (i )年宣传费49x =时,年销售量及年利润的预报值是多少?(ii)年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据11(,)u v ,22(,),,u v ⋅⋅⋅(,)n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为µ121()()()n i i i n i i u u v v uu β==--=-∑∑,µµv u αβ=-. 【解析】(Ⅰ)100.668y x =+(Ⅲ) (i )由(Ⅱ)知,当49x =时,年销售量y 的预报值$100.66849576.6y =+=,年利润的预报值0.2576.64966.32z=⨯-=$. ②根据(Ⅱ)的结果知,年利润z 的预报值0.2(100.668)13.620.12zx x x x =+-=-++$, 所以当13.6 6.82x ==,即46.24x =时,z 取得最大值. 7.加强阅读理解能力培养与训练【指点迷津】统计与概率进一步强化应用意识的考查,已成高考命题改革的必然趋势,试卷试题文字阅读量的逐年增加,或成高考试卷的发展趋势.复习中,应规范教学的阅读指导.应该呈现读题提取关键信息、析题形成解题思路、解题示范规范表达、反思积淀解题经验的“四步曲”完整过程,才能充分发挥解题教学的效益.其次,加强平时的阅读训练.需要适当增加平时作业习题的阅读量,尤其是应用性试题的读题训练,提高学生的阅读理解能力及应试心态.【例12】【2014年课标Ⅰ理18】从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s .(i )利用该正态分布,求(187.8212.2)P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i )的结果,求EX .12.2.若Z ~2(,)N μδ,则()P Z μδμδ-<<+=0.6826,(22)P Z μδμδ-<<+=0.9544.【解析】(Ⅰ) 2200,150x s ==(Ⅱ)(ⅰ)由(Ⅰ)知Z ~(200,150)N ,从而(187.8212.2)P Z <<=(20012.220012.2)0.6826P Z -<<+=,(ⅱ)由(ⅰ)知,一件产品中质量指标值为于区间(187.8,212.2)的概率为0.6826, 依题意知(100,0.6826)X B :,所以1000.682668.26EX =⨯=.8.规范答题表达形式【指点迷津】规范答题,一方面,思考问题要规范.也就是从知识的源头出发,弄清知识的来龙去脉.知识是怎么要求的,就怎么想、怎么用、怎么写,不能模棱两可,要会运用知识进行思考;另一方面,书写要规范.书写规范是一个重要的高考增分点,这一点应引起足够重视.如解题中应注意用字母表示事件,注意作答等.【例13】(2015年全国卷Ⅱ理18)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:记时间C :“A 地区用户的满意度等级高于B 地区用户的满意度等级” .假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.【解析】(Ⅰ)略;(Ⅱ)记1A C 表示事件:“A 地区用户满意度等级为满意或者非常满意”;记2A C 表示事件:“A 地区用户满意度等级为非常满意”;记1B C 表示事件:“A 地区用户满意度等级为不满意”;记2B C 表示事件:“A 地区用户满意度等级为满意”;则1A C 与1B C 独立,2A C 与2B C 独立,1B C 与2B C 互斥,1122()()B A B A C C C C C =U ,1122()(()())B A B A P C P C C C C =U 1122()()B A B A P C C P C C =+1122()()()()B A B A P C P C P C P C =+, 由所给数据得1212,,,A A B B C C C C 发生的频率分别为164108,,,20202020,故1212164108(),(),(),()20202020A A B B P C P C P C P C ====,所以164108()0.4820202020P C =⨯⨯⨯=.。

2020版高考数学二轮复习第三部分教材知识重点再现回顾7概率与统计练习(含解析)

2020版高考数学二轮复习第三部分教材知识重点再现回顾7概率与统计练习(含解析)

回顾7 概率与统计[必记知识]1.分类加法计数原理完成一件事,可以有n类办法,在第一类办法中有m1种方法,在第二类办法中有m2种方法,…,在第n类办法中有m n种方法,那么完成这件事共有N=m1+m2+…+m n种方法(也称加法原理).2.分步乘法计数原理完成一件事需要经过n个步骤,缺一不可,做第一步有m1种方法,做第二步有m2种方法,…,做第n步有m n种方法,那么完成这件事共有N=m1×m2×…×m n种方法(也称乘法原理).3.排列数、组合数公式及其相关性质(1)排列数公式A m n=n(n-1)(n-2)…(n-m+1)=错误!(m≤n,m,n∈N*),A错误!=n!=n(n-1)(n-2)…·2·1(n∈N*).[提醒](1)在这个公式中m,n∈N*,且m≤n,并且规定0!=1,当m=n时,A错误!=n!.(2)A错误!=错误!主要有两个作用:①利用此公式计算排列数;②对含有字母的排列数的式子进行变形时常使用此公式。

)错误!(2)组合数公式C错误!=错误!=错误!=错误!(m≤n,n,m∈N*).[提醒] (1)公式C错误!=错误!主要有两个作用:①利用此公式计算组合数;②对含有字母的组合数的式子进行变形和证明时,常用此公式.(2)组合数的性质,C m n=C错误!(m≤n,n,m∈N*),C错误!=C错误!+C错误!(m≤n,n,m∈N*).(3)排列数与组合数的联系,A m n=C错误!A错误!.4.二项式定理(a+b)n=C错误!a n+C错误!a n-1b1+…+C错误!a n-k b k+…+C错误!b n (n∈N*).这个公式叫做二项式定理,右边的多项式叫做(a+b)n的二项展开式,其中各项的系数C错误!(k=0,1,2,…,n)叫做二项式系数.式中的C k,n a n-k b k叫做二项展开式的通项,用T k+1表示,即通项为展开式的第k+1项:T k+1=C错误!a n-k b k(其中0≤k≤n,k∈N,n∈N*).5.二项展开式形式上的特点(1)项数为n+1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n。

2020年高考数学(理)二轮专项复习专题11 概率统计(含答案)

2020年高考数学(理)二轮专项复习专题11  概率统计(含答案)

2020年高考数学(理)二轮专项复习专题11 概率统计统计是研究如何合理收集、整理、分析数据的学科,为人们制定决策提供依据.概率是研究随机现象规律的学科,为人们认识客观世界提供重要的思维模式和解决问题的方法.统计一章介绍随机抽样、样本估计总体、线性回归的基本方法,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用.概率一章介绍随机现象与概率的意义、古典概型及几何概型,学习某些离散型随机变量分布列及其期望、方差等内容,初步学会利用离散型随机变量思想描述和分析某些随机现象的方法,并能用所学知识解决一些简单的实际问题,进一步体会概率模型的作用及运用概率思考问题的特点,初步形成用随机观念观察、分析问题的意识.§11-1 概率(一)【知识要点】1.事件与基本事件空间:随机事件:当我们在同样的条件下重复进行试验时,有的结果始终不会发生,它称为不可能事件;有的结果在每次试验中一定会发生,它称为必然事件;在试验中可能发生也可能不发生的结果称为随机事件,随机事件简称为事件.基本事件与基本事件空间:在一次试验中我们常常要关心的是所有可能发生的基本结果,它们是试验中不能再分的最简单的随机事件,其他事件可以用它们来描述,这样的事件称为基本事件.所有基本事件构成的集合叫做基本事件空间,常用 表示.2.频率与概率频率:在相同的条件S 下,重复n 次试验,观察某个事件A 是否出现,称n 次试验中事件A 的出现次数m 为事件A 出现的频数,称事件A 出现的比例为事件A 出现的频率. 概率:一般的,在n 次重复进行的试验中,事件A 发生的频率,当n 很大时总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记做P (A ).显然有0≤P (A )≤1.不可能事件的概率为0,必然事件的概率为1,随机事件的概率在(0,1)之间. 3.互斥事件的概率加法公式事件的并:由事件A 或B 至少有一个发生构成的事件C 称为事件A 与B 的并,记做C =A ∪B .nmnm互斥事件:不可能同时发生的两个事件称为互斥事件.互斥事件加法公式:如果事件A 、B 互斥,则事件A ∪B 发生的概率等于这两个事件分别发生的概率和,即P (A ∪B )=P (A )+P (B ).如果A 1,A 2,…,A n 两两互斥,那么事件A 1∪A 2∪…∪A n 发生的概率,等于这n 个事件分别发生的概率和,即P (A 1∪A 2∪…∪A n )=P (A 1)+P (A 2)+…+P (A n ).对立事件:不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作,满足P ()=1-P (A ).概率的一般加法公式(选学):事件A 和B 同时发生构成的事件D ,称为事件A 与B 的交(积),记作D =A ∩B .在古典概型中,P (A ∪B )=P (A )+P (B )-P (A ∩B ).4.古典概型古典概型:一次试验有下面两个特征:(1)有限性,在一次试验中可能出现的结果只有有限个,即只有有限个不同的基本事件;(2)等可能性,每个基本事件发生的可能性是均等的,则称这个试验为古典概型.古典概型的性质:对于古典概型,如果试验的n 个基本事件为A 1,A 2,…,A n ,则有P (A 1∪A 2∪…∪A n )=1且 概率的古典定义:在古典概型中,如果试验的基本事件总数为n (Ω ),随机事件A 包含的基本事件数为n (A),则p (A)=,即 5.几何概型几何概型:一次试验具有这样的特征:事件A 理解为区域Ω的一个子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,这样的试验称为几何概型.几何概型的特点:(1)无限性:一次试验中可能出现的结果有无穷多个;(2)等可能性,每个基本事件发生的可能性相等.几何概型中事件A 的概率定义:,其中μ Ω 表示区域Ω 的几何度量,μ A 表示子区域A 的几何度量. 随机数:就是在一定范围内随机产生的数,并且得到这个范围内的每一个数的机会均等.计算机随机模拟法(蒙特卡罗方法)是利用模型来研究某种现象的性质的一种有效方法,可以节约大量的人力物力.6.条件概率与事件的独立性条件概率:一般的,设A 、B 为两个事件,且P (A )>0,称P (B |A )=为在事件A 发生的条件下,事A A ⋅=nA P i 1)(试验的基本事件总数包含的基本事件数事件A ⋅=)()()(Ωn A n A P ΩAA P μμ=)()()(A P B A P I件B 发生的概率.一般把P (B |A )读作“A 发生的条件下B 发生的概率”.在古典概型中,用n (A )表示事件A 中基本事件的个数,则有P (B |A )=.事件的独立性:设A 、B 为两个事件,如果P (B |A )=P (B ),则称事件A 与事件B 相互独立,并称事件A 、B 为相互独立事件.若A 、B 为两个相互独立事件,则A 与、与B 、与也都相互独立. 若事件A 与事件B 相互独立,则P (A ∩B )=P (A )·P (B ). 【复习要求】1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别. 2.了解两个互斥事件的概率加法公式.3.理解古典概型及其概率计算公式,会计算一些随机事件所含的基本事件数及事件发生的概率. 4.了解随机数的意义,了解几何概型的意义.5.在具体情境中,了解条件概率,了解两个事件相互独立的概念及独立事件的概率乘法公式,并能解决一些简单的实际问题. 【例题分析】例1 国家射击队的某队员射击一次,命中7-10环的概率如下表:命中环数 10环 9环 8环 7环 … 概率0.320.280.180.12求该队员射击一次, (1)射中9环或10环的概率; (2)至少命中8环的概率; (3)命中不足8环的概率.【分析】射击运动员一次射击只能命中1个环数,命中不同的环数是互斥事件,射中9环或10环的概率等于射中9环与射中10环的概率和.命中不足8环所包含的事件较多,而其对立事件为“至少命中8环”,可先求其对立事件的概率,再通过P (A )=1-P ()求解.解:设事件“射击一次,命中k 环”为事件A k (k ∈N ,k ≤10),则事件A k 彼此互斥.)()(A n B A n A A A B A(1)记“射击一次,射中9环或10环”为事件A ,则 P (A )=P (A 10)+P (A 9)=0.60.(2)记“射击一次,至少命中8环”为事件B ,则 P (B )=P (A 10)+P (A 9)+P (A 8)=0.78.(3)“射击一次,命中不足8环”为事件B 的对立事件,则 P ()=1-P (B )=0.22.【评析】解决概率问题时,要先分清所求事件由哪些事件组成,分析是否是互斥事件,再决定用哪个公式.当用互斥事件的概率加法公式解题时,要学会不重不漏的将事件拆为几个互斥事件,要善于用对立事件解题.例2 现有8名奥运会志愿者,其中志愿者A 1,A 2,A 3通晓日语,B 1,B 2,B 3通晓俄语,C 1,C 2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(Ⅰ)求A 1被选中的概率;(Ⅱ)求B 1和C 1不全被选中的概率.【分析】本题是一个古典概型的问题,可以直接用概率公式求解. 解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2), (A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1), (A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2)}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的. 用M 表示“A 1恰被选中”这一事件,则M ={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1), (A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2)} 事件M 由6个基本事件组成,因而 (Ⅱ)用N 表示“B 1,C 1不全被选中”这一事件,则其对立事件表示“B 1,C 1全被选中”这一事件,B )()()(Ωn A n A P =⋅==31186)(M P N由于={(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1)},事件由3个基本事件组成,所以,由对立事件的概率公式得 【评析】古典概型解决概率问题时,选定基本事件空间并计算其所含基本事件的个数是重要的一步.本题中选定“从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果”为基本事件空间,计算时采用列举法,也可以利用乘法计数原理计算3×3×2=18.本题第一问还可以选定“从通晓日语的3人中选出1人的可能结果”为基本事件空间,共有3个基本事件,选出A 1只有一种可能,故所求概率为例3 一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回.(1)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率;(2)连续摸球2次,在第一次摸到黑球的条件下,求第二次摸到白球的概率; (3)如果摸出红球,则停止摸球,求摸球次数不超过3次的概率.【分析】本题是一个古典概型问题,因为基本事件空间中所含基本事件的个数较多,宜用排列组合公式计算,当然也可利用两个计数原理计数.本题第二问是条件概率问题.做第三问时,要分为三个事件:“第一次摸到红球”,“第一次摸到不是红球,第二次摸到红球”,“前两次摸到不是红球,第三次摸到红球”,显然三个事件是互斥事件.解:(1)从袋中依次摸出2个球共有种结果,第一次摸出黑球、第二次摸出白球有3×4=12种结果,则所求概率(或). (2)设“第一次摸到黑球”为事件A ,“第二次摸到白球”为事件B ,则“第一次摸到黑球,且第二次摸到白球”为事件A ∩B ,又,P (A ∩B ),所以或(或). (3)第一次摸出红球的概率为,第二次摸出红球的概率为,第三次摸出红球的概率为,则摸球次数不超过3次的概率为 N N 61183)(==N P ⋅=-=-=65611)(1)(N P N P ⋅3129A 6112291==A P 6184931=⨯=P 31)(=A P 61=⋅==213161)|(A B P 2184)|(==A B P 1912A A 291217A A A 391227A A A ⋅=++=12739122729121719122A A A A A A A A P【评析】利用古典概型求解时,求基本事件的个数和事件发生的总数时求法要一致,若无序则都无序,若有序则都有序,分子和分母的标准要相同.在求事件个数时常用列举法(画树状图、列表、坐标系法),有时也与排列组合联系紧密,计算时灵活多变,但要注意分类讨论,做到不重不漏.要正确识别条件概率问题,理解P (A),P (A ∩B ),P (B |A )的含义.例4 (1)两根相距6米的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2米的概率是______.(2)甲乙两人约定在6点到7点之间在某处会面,并约好先到者等候另一人一刻钟,过时即可离去.则两人能会面的概率是______.(3)正方体内有一个内切球,则在正方体内任取一点,这个点在球内的概率为______.【分析】这三个题都可转化为几何概率问题求解.分别转化为线段长度、图形面积、几何体体积问题求解.解:(1)本题可转化为:“在长为6m 的线段上随机取点,恰好落在2m 到4m 间的概率为多少?” 易求得 (2)本题可转化为面积问题:即“阴影部分面积占总面积的多少?”, 解得 (3)本题可转化为体积问题:即“内切球的体积与正方体体积之比是多少?”.解得 【评析】几何概型也是一种概率模型,它具有等可能性和无限性两个特点.解题的关键是要建立模型,将实际问题转化为几何概率问题.基本步骤是:把基本事件空间转化为与之对应的区域Ω;把随机事件A 转化为与之对应的区域A ;利用概率公式计算.常用的几何度量包括:长度、面积、体积. 例5 设有关于x 的一元二次方程x 2+2ax +b 2=0.(Ⅰ)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(Ⅱ)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.⋅=31P ⋅=167)(A P ⋅=6πP )()()(ΩA A P μμ=【分析】本题第一问是古典概型问题,第二问由于a 、b 在实数区间选取,可以转化为几何概型问题求解. 解:设事件A 为“方程x 2+2ax +b 2=0有实根”.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件为a ≥b . (Ⅰ)基本事件共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,事件A 发生的概率为 (Ⅱ)试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2}. 构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b }.所以所求的概率为【评析】几何概型与古典概型的每个基本事件发生的可能性是均等的,只是几何概型的基本事件有无限个,而古典概型的基本事件有有限个.在具体问题中,不能因为古典概型的基本事件的个数多而误认为是几何概型.例6 如图,用A 、B 、C 三类不同的元件连结成两个系统N 1、N 2,当元件A 、B 、C 都正常工作时,系统N 1正常工作;当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作,已知元件A 、B 、C 正常工作的概率为0.80、0.90、0.90,分别求系统N 1、N 2正常工作的概率.【分析】三个元件能否正常工作相互独立.当元件A 、B 、C 同时正常工作时,系统N 1正常工作;当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作,而B 、C 至少有一个正常工作的概率可通过其对立事件计算.解:设元件A 、B 、C 正常工作为事件A 、B 、C ,则P (A )=0.8,P (B)=0.9,P (C)=0.9,且事件A 、B 、C 相互独立.(1)系统N 1正常工作的概率为p 1=P (A ·B ·C )=P (A )·P (B )·P (C )=0.80×0.90×0.90=0.648. (2)元件B 、C 至少有一个正常工作的概率为1-P (·)=1-P ()·P ()=1-0.1×0.1=0.99,所以系统N 2正常工作的概率为p 2=P (A )·(1-P (·))=0.80×0.99=0.792.⋅==43129)(A P ⋅=⨯⨯-⨯=3223221232B C B C B C【评析】本题以串、并联为背景,重点在正确理解题意.在计算几个事件同时发生的概率时,要先判断各个事件之间是否相互独立.独立事件、互斥事件、对立事件的概率各有要求,要依据题目特点,巧妙地选用相关方法.例7 每次抛掷一枚质地均匀的骰子(六个面上分别标以数字1,2,3,4,5,6). (1)连续抛掷3次,求向上的点数之和为3的倍数的概率; (2)连续抛掷6次,求向上的点数为奇数且恰好出现4次的概率.【分析】向上点数之和为3的倍数共有6种情况,计数时要不重不漏;向上点数为奇数的概率为,连续抛掷6次是独立重复试验.解:(1)向上的点数之和为3的结果有1种情况,为6的结果共10种情况,为9的结果共25种情况,为12的结果共25种情况,为15的结果共10种情况,为18的结果共1种情况.所以(2)因为每次抛掷骰子,向上的点数为奇数的概率为P =, 根据独立重复试验概率公式有【评析】独立重复试验是一类重要的概率问题,要善于分析模型的特点,正确合理的解题.例8 某学校进行交通安全教育,设计了如下游戏,如图,一辆车模要直行通过十字路口,此时前方交通灯为红灯,且该车模前面已有4辆车模依次在同一车道上排队等候(该车道只可以直行或左转行驶).已知每辆车模直行的概率是,左转行驶的概率是,该路口红绿灯转换间隔时间均为1分钟.假设该车道上一辆直行去东向的车模驶出停车线需要10秒钟,一辆左转去北向的车模驶出停车线需要20秒钟,求:(1)前4辆车模中恰有2辆车左转行驶的概率;(2)该车模在第一次绿灯亮起时的1分钟内通过该路口的概率(汽车驶出停车线就算通过路口). 【分析】该车模1分钟内通过路口包含2种情况:4辆车都直行,3辆车直行1辆车左转. 解:(1)设前4辆车模中恰有2辆左转行驶为事件A ,则21⋅=⨯⨯+++++=3166611025251012P 21⋅==⋅⋅6415)21()21(24463C P 5352(2)设该车在第一次绿灯亮起时的1分钟内通过该路口为事件B ,其中4辆车模均 直行通过路口为事件B 1,3辆直行1辆左转为事件B 2,则事件B 1、B 2互斥.【评析】善于从复杂的背景中发现线索,体会其实质.善于转化问题的叙述,恰当的分类.练习11-1一、选择题1.下列随机事件的频率和概率的关系中哪个是正确的( ) A .频率就是概率B .频率是客观存在的,与试验次数无关C .随着试验次数增加,频率一般会越来越接近概率D .概率是随机的,在试验前不能确定2.从装有2个黑球2个白球的口袋中任取2个球,那么互斥而不对立的两个事件是( ) A .至少有一个白球,都是白球 B .至少有一个白球,至少有一个红球 C .恰有一个白球,恰有两个白球 D .至少有一个白球,都是红球3.独立工作的两套报警系统遇危险报警的概率均为0.4,则遇危险时至少有一套报警系统报警的概率是( ) A .0.16B .0.36C .0.48D .0.644.考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于( ) A .B .C .D .二、填空题5.甲、乙二人掷同一枚骰子各一次.如果谁掷的点数大谁就取胜,则甲取胜的概率为______.⋅=⨯=625216)52()53()(2224C A P =+=+=)()()()(2121B B P B B P B P ⋅=⨯+62529752)53()53(334444C C 7517527537546.设每门高射炮命中飞机的概率都是0.6.今有一敌机来犯,要有99%的把握击中敌机,至少需要______门高射炮. 7.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中概率为______.8.一个口袋中有4个白球,2个黑球.有放回的取出3个球,如果第一次取出的是白球,则第三次取出的是黑球的概率为______;不放回的取出3个球,在第一次取出的是白球的条件下,第二次取出的是黑球的概率为______. 三、解答题9.已知集合A ={-4.-2,0,1,3,5},在平面直角坐标系中点M (x ,y )的坐标满足x ∈A ,y ∈A .计算:(1)点M恰在第二象限的概率;(2)点M 不在x 轴上的概率;(3)点M 恰好落在区域上的概率.10.某个高中研究性学习小组共有9名学生,其中有3名男生和6名女生.在研究学习过程中,要进行两次汇报活动(即开题汇报和结题汇报),每次汇报都从这9名学生中随机选1人作为代表发言.设每人每次被选中与否均互不影响;(1)求两次汇报活动都是由小组成员甲发言的概率; (2)求男生发言次数不少于女生发言次数的概率.11.3名志愿者在10月1日至10月5日期间参加社区服务工作,若每名志愿者在这5天中任选两天参加社区服务工作,且各名志愿者的选择互不影响.求(1)这3名志愿者中在10月1日都参加社区服务工作的概率; (2)这3名志愿者中在10月1日至多有1人参加社区服务工作的概率.⎪⎩⎪⎨⎧>>>-+0008y x y x§11-2 概率(二)【知识要点】1.离散型随机变量及其分布列随机变量:如果随机试验的可能结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量.离散型随机变量的分布列:设离散型随机变量X 的可能取值为x 1,x 2,…,x n ,X 取到每一个值x i (i =1,2,…,n )的概率为P (X =x i )=p i ,则称表X x 1 x 2 … x i … x n Pp 1p 2…p i…p n为离散型随机变量X 的分布列.具有性质:①p i ≥0,i =1,2,3,…,n ;②p 1+p 2+…+p n =1. 离散型随机变量在某个范围取值的概率等于它取这个范围内各个值的概率和. 二点分布:如果随机变量的分布列为X 1 0 Ppq其中0<p <1,q =1-p ,则称离散型随机变量X 服从参数为p 的二点分布.二项分布:一般的,在相同条件下重复地做n 次试验,各次试验的结果相互独立,称为n 次独立重复试验.在n 次独立重复试验中,事件A恰好发生k次的概率为(其中p 为在一次试验中事件A 发生的概率,q =1-p ,k =0,1,…,n ).若将n 次独立重复试验中事件A发生的次数设为X ,则X 的分布列为 X 01… k… nP……称这样的离散型随机变量X 服从参数为n 、p 的二项分布,记作X ~B (n ,p ).超几何分布:一般的,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件(n ≤N ),这n 件==)(k X P k n k k n q p C -nn q p C 00111-n n q p C kn k k n q p C -0q p C n n n中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为≤l ,其中l 为n 和M 中较小的一个).我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N 、M 、n 的超几何分布.2.随机变量的数字特征及正态分布离散型随机变量的数学期望(均值)与方差:若离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的数学期望(或均值),它反映了离散型随机变量的平均取值水平.称为随机变量X 的方差,它反映了离散型随机变量X 相对于期望的平均波动大小(或说离散程度),其算数平方根为随机变量X 的标准差,记作σ (X ),方差(或标准差)越小表明X 的取值相对于期望越集中,否则越分散.均值与方差的性质:①E (aX +b )=aE (X )+b ②D (aX +b )=a 2D (X ) 若X 服从两点分布,则E (X )=p ,D (X )=pq ; 若X ~B (n ,p ),则E (X )=np ,D (X )=npq .正态曲线:函数,其中μ ∈R ,σ >0)的图象为正态分布密度曲线,简称正态曲线.其特点有:①曲线位于x 轴上方,与x 轴不相交;②曲线是单峰的,关于x =μ 对称;③曲线在x =μ 处达到峰值;④曲线与x 轴之间的面积为1;⑤当σ 一定时,曲线随着μ 的变化而沿x 轴平移;⑥当μ 一定时,曲线的形状由σ 决定.σ 越小,曲线越“瘦高”,表示总体的分布越集中;σ 越大,曲线越“矮胖”,表示总体的分布越分散.正态分布:如果对于任意实数a <b ,随机变量X 满足,则称X 的分布为正态分布;随机变量X 服从参数μ 、σ 的正态分布,记作N ~(μ ,σ 2).正态分布的三个常用数据:①P (μ -σ <X <μ +σ )=68.3%;②P (μ -2σ <X <μ +2σ )=95.4%;③P (μ -3σ <X <μ +3σ )=99.7%. 【复习要求】m C C C m X P n Nm n MN m M ≤==--0()(i ini p X E xX D ⋅-=∑=21))(()()(X D ),((21)(222)(+∞∝-∈=--x e x x σμσπϕσ2π1=≤<)(b X a P dx x ba)(ϕ⎰①在对具体问题的分析中,理解取有限值的离散型随机变量及其分布列的概念,认识分布列对于刻画随机现象的重要性.②通过实例,理解超几何分布及其导出过程,并能进行简单的应用.③通过实例,理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.④通过实例,理解取有限值的离散型随机变量期望、方差的概念,能计算简单离散型随机变量的期望、方差,并能解决一些实际问题.⑤通过实际问题,认识正态分布曲线的特点及曲线所表示的意义. 【例题分析】例1 一袋中装有编号为1、2、3、4、5、6的6个大小相同的小球,现从中随机取出3个球,以X 表示取出球的最大号码,(1)求X 的分布列;(2)求X >4的概率;(3)求E (X ).【分析】随机变量X 可能取的值为3、4、5、6,应用古典概型求得X 取每一个值的概率,就可以写出分布列.解:(1)随机变量X 可能取的值为3、4、5、6,且,,所求X 的分布列为 X 3 4 5 6P(2) (3) 【评析】离散型随机变量的分布列反映了一次试验的所有可能结果(X 的所有可能取值),以及取得每个结果(X 的每一个值)的概率.书写分布列首先要根据具体情况正确分析X 可取的所有值,然后利用排列组合及概率的有关知识求得每个x i 所对应的概率p i ,最后列成表格.要注意不同的X 值所对应的事件之间是互斥的,求离散型随机变量在某一范围的概率等于它取这个范围内各个值的概率和.例2 袋中装有大小相同的5个红球、5个白球,现从中任取4个球,其中所含红球的个数为X ,写出X 的分布列,并求X 的期望.,203)4(,2011)3(362336======C C X P C X P 3624)5(C C X P ==103206==212010)6(3625====C C X P 20120310321==+==>)6()5()4(X P X P X P ⋅5.25.5216103520342013)(=⨯+⨯+⨯+⨯=X E【分析】袋中共有10个球,从中任取4个,所含红球的个数为0、1、2、3、4,每个事件的概率可以利用古典概型求解.解:随机变量X 可取的值有0、1、2、3、4,==,,,, 分布列为X 01234P【评析】本题的随机变量X 服从参数为N ,M ,n 的超几何分布,其中N =10,M =5,n =4. 例3 某人练习射击,每次击中目标的概率为. (1)用X 表示击中目标的次数.①若射击1次,求X 的分布列和期望; ②若射击6次,求X 的分布列和期望;(2)若他连续射击6次,设ξ为他第一次击中目标前没有击中目标的次数,求ξ的分布列;(3)他一共只有6发子弹,若击中目标,则不再射击,否则子弹打完为止,求他射击次数η 的分布列. 【分析】射击问题常被看做是独立重复试验.ξ的取值为0到6,η 的取值为1到6. 解:(1)①X 服从二点分布X 01P)0(=X P ,42121054104505==⋅C C C )1(=X P 215210504103515==⋅C C C )2(=X P 21102101004102525===⋅C C C ===⋅4101535)3(C C C X P 21050215=4212105)4(4100545==⋅==C C C X P 42121521102154212424213212211420)(=⨯+⨯-+⨯+⨯+⨯=X E 313231⋅=31)(X E②X 服从二项分布,分布列为X 0123456P(2)ξ的取值为0到6,ξ=k (k =0,1,…,5)表示第k +1次击中目标,前k 次都没击中目标,则P (ξ=k )=,ξ=6表示射击6次都未击中目标, .ξ的分布列为 ξ 0123456P(3)η 的取值为1到6.η =k (k =1,2,…,5)表示第k 次时第一次击中目标,表示前5次都没有击中目标,.η 的分布列为 η 123456P【评析】要书写分布列,必须先弄清随机变量X 的含义以及取值情况,并准确定义事件“X =k ”.在计算满足二点分布和二项分布的随机变量的期望和方差时,可直接应用公式计算.例4 甲乙两名射手在一次射击中的得分为两个相互独立的随机变量X 和Y ,且X 和Y 的分布列为X 10987650 P0.5 0.2 0.1 0.1 0.05 0.05Y 1098765P0.1 0.1 0.1 0.1 0.2 0.2 0.2)6,,1,0()32()31()(),31,6(~66Λ===-k C k X P B kkk7296472919272924072916072960729127291.236)(=⨯=X E )5,,1,0(31)32(.Λ=k k ==)6(ξP 6)32(3192274818243167293272964==)(k P η6;31)32(.1=-ηk 5)32()6(==ξP 31922748182431624332计算X 和Y 的期望和方差,并以此为依据分析两人的技术水平.【分析】先由分布列所提供的数据用期望和方差公式计算,再根据实际意义作出分析.解:E (X )=8.85,D (X )=2.2275;E (Y )=5.6,D (Y )=10.24.由于E (X )>E (Y ),说明甲射击的平均水平比乙高;由于D (X )<D (Y ),说明甲射击的环数比较集中,发挥比较稳定,乙射击的环数比较分散,技术波动较大,不稳定,由此可以看出甲比乙的技术好.【评析】正确记忆期望和方差的公式,在分布列中,期望是每个变量乘以它所对应的概率再相加,求方差要先求期望,再作差、平方、乘以相应概率再相加.科学对待计算结果,正确分析数据所表达的实际意义.例5 设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x 2+bx +c =0实根的个数(重根按一个计).(1)求方程x 2+bx +c =0有实根的概率;(2)求在先后两次出现的点数中有5的条件下,方程x 2+bx +c =0有实根的概率; (3)若η =2ξ+1,求ξ、η 的数学期望和方差;【分析】本题概率问题是古典概型,要分别求出事件中所含元素的个数,第一问事件“二次方程有实根”等价于“∆=b 2-4c ≥0”,b 、c 的值都取自{1,2,3,4,5,6};第二问是条件概率问题;第三问先求ξ的期望和方差,再由公式求η 的期望和方差.解:(1)由题意知:设基本事件空间为Ω,记“方程x 2+bx +c =0没有实根”为事件A ,“方程x 2+bx +c =0有且仅有一个实根”为事件B ,“方程x 2+bx +c =0有两个相异实数”为事件C ,Ω中基本事件总数为36个,A 中的基本事件总数为17个,B 中的基本事件总数为2个,C 中的基本事件总数为17个.又因为B ,C 是互斥事件,故所求概率 (2)记“先后两次出现的点数中有5”为事件D ,“方程x 2+bx +c =0有实数”为事件E ,由上面分析得∩,∴ (Ⅱ)由题意ξ的可能取值为0,1,2,则故ξ的分布列为:ξ12⋅=+=+=36193617362)()(C B B P P D P D P (,3611)(=367)=E ⋅==117)()()|(D P E D P D E P I ,3617}2{,181}1{,3617}0{======&ξξξP P P。

2020年高考文科数学 规范解答集训(三) 概率与统计

2020年高考文科数学 规范解答集训(三) 概率与统计

规范解答集训(三)概率与统计(建议用时:40分钟)前言“一学就会,一考就废?”,正是因为考试后缺少了这个环节从小学到初中,学生们经历了无数次考试。

通过考试可以检测同学们对知识的理解、掌握情况,提高应试能力。

但对待考试,部分同学只关注自己的分数,而对试卷的分析和总结缺乏重视。

结果常常出现一些题在考试中屡次出现,但却一错再错的情况。

这样,学生们无法从考试中获益,考试也就失去了它的重要意义。

做好试卷分析和总结是十分有必要的。

那么,怎样做好试卷分析呢?我认为,应从下面两点做起:一.失分的原因主要有如下四方面:(1)考试心理:心理紧张,马虎大意;(2)知识结构:知识面窄,基础不扎实;(3)自身能力:审题不清,读不懂题意;(4)解题基本功:答题规范性差。

只有查出、找准原因,才能对症下药,从弱项方面加强训练,以提高成绩。

二.“扭转乾坤”的方法做题的过程中对每一道题要试图问如下几个问题?(1)怎样做出来的?——想解题方法;(2)为什么这样做?——思考解题原理;(3)怎样想到这种方法?——想解题的基本思路;(4)题目体现什么样的思想?——揭示本质,挖掘规律;(5)是否可将题目变化?——一题多变,拓宽思路;(6)题目是否有创新解法?——创新、求异思维。

转变,让我们从每一次练习开始。

按照上面两点认真完成后面练习题。

希望每一位同学经过时间后,能够扭转“一考就废”的局面,最后决胜2020年高考。

1.某机构组织语文、数学学科能力竞赛,按照一定比例淘汰后,颁发一、二、三等奖(分别对应成绩等级的一、二、三等).现有某考场所有考生的两科成绩等级统计如图1所示,其中获数学二等奖的考生有12人.图1(1)求该考场考生中获语文一等奖的人数;(2)用随机抽样的方法从获得数学和语文二等奖的考生中各抽取5人,进行综合素质测试,将他们的综合得分绘成茎叶图(如图2所示),求样本的平均数及方差并进行比较分析;图2(3)已知本考场的所有考生中,恰有3人两科均获一等奖,在至少一科获一等奖的考生中,随机抽取2人进行访谈,求这2人两科均获一等奖的概率.[解](1)∵获数学二等奖的考生有12人,∴该考场考生的总人数为121-0.40-0.26-0.10=50,故该考场获语文一等奖的考生人数为50×(1-0.38×2-0.16)=4.(2)设获数学二等奖考生综合得分的平均数和方差分别为x1,s21,获语文二等奖考生综合得分的平均数和方差分别为x2,s22.x 1=81+84+92+90+935=88, x 2=79+89+84+86+875=85, s 21=15×[(-7)2+(-4)2+42+22+52]=22, s 22=15×[(-6)2+42+(-1)2+12+22]=11.6, ∵88>85,11.6<22,∴获数学二等奖考生较获语文二等奖考生综合素质测试的平均分高,但是成绩差距较大,稳定性较差.(3)两科均获一等奖的考生共有3人,则仅数学获一等奖的考生有2人,仅语文获一等奖的考生有1人.把两科均获一等奖的3人分别记为A 1,A 2,A 3,仅数学获一等奖的2人分别记为B 1,B 2,仅语文获一等奖的1人记为C ,则在至少一科获一等奖的考生中,随机抽取2人的基本事件有A 1A 2,A 1A 3,A 1B 1,A 1B 2,A 1C ,A 2A 3,A 2B 1,A 2B 2,A 2C ,A 3B 1,A 3B 2,A 3C ,B 1B 2,B 1C ,B 2C ,共15个.记“这2人两科均获一等奖”为事件M ,则事件M 包含的基本事件有A 1A 2,A 1A 3,A 2A 3,共3个,∴P (M )=315=15,故这2人两科均获一等奖的概率为15.2.(2019·唐山模拟)最近青少年的视力健康问题引起人们的高度重视,某地区为了解当地24所小学,24所初中和12所高中的学生的视力状况,准备采用分层抽样的方法从这些学校中随机抽取5所学校对学生进行视力调查.(1)若从所抽取的5所学校中再随机抽取3所学校进行问卷调查,求抽到的这3所学校中,小学、初中、高中分别有一所的概率;(2)若某小学被抽中,调查得到了该小学前五个年级近视率y 的数据如下表:根据方程预测六年级学生的近视率.附:回归直线y ^=b ^x +a ^的斜率和截距的最小二乘法估计公式分别为b ^=∑ni =1x i y i -n x y∑ni =1x 2i -n x 2,a ^=y -b ^ x .参考数据:∑5i =1x i y i =2.76,∑5i =1x 2i =55.[解] (1)由24∶24∶12=2∶2∶1,得抽取的5所学校中有2所小学、2所初中、1所高中,分别设为a 1,a 2,b 1,b 2,c ,从这5所学校中随机抽取3所学校的所有基本事件为(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 2,c ),(a 1,b 1,b 2),(a 1,b 1,c ),(a 1,b 2,c ),(a 2,b 1,b 2),(a 2,b 1,c ),(a 2,b 2,c ),(b 1,b 2,c ),共10种, 设事件A 表示“抽到的这3所学校中,小学、初中、高中分别有一所”,则事件A 包含的基本事件为(a 1,b 1,c ),(a 1,b 2,c ),(a 2,b 1,c ),(a 2,b 2,c ),共4种,故P (A )=410=25.(2)由题中表格数据得x =3,y =0.15,5x y =2.25,5x 2=45,且由参考数据:∑5i =1x i y i =2.76,∑5i =1x 2i =55,得b ^=2.76-2.2555-45=0.051,a ^=0.15-0.051×3=-0.003, 得线性回归方程为y ^=0.051x -0.003.当x =6时,代入得y ^=0.051×6-0.003=0.303,所以六年级学生的近视率在0.303左右.3.(2019·昆明模拟)《中国大能手》是央视推出的一档大型职业技能挑战赛类的节目,旨在通过该节目,在全社会传播和弘扬“劳动光荣、技能宝贵、创造伟大”的时代风尚.某公司准备派出选手代表公司参加《中国大能手》职业技能挑战赛.经过层层选拔,最后集中在甲、乙两位选手在一项关键技能的区分上,选手完成该项挑战的时间越少越好.已知这两位选手在15次挑战训练中,完成该项关键技能挑战所用的时间(单位:秒)及挑战失败(用“×”表示)的情况如表1:据表1中甲、乙两位选手完成该项关键技能挑战所用时间的数据,应用统计软件得表2:(1)在表1中,从选手甲完成挑战用时低于90秒的成绩中,任取2个,求这2个成绩都低于80秒的概率;(2)若该公司只有一个参赛名额,以完成该项关键技能挑战所用时间为标准,根据以上信息,判断哪位选手代表公司参加职业技能挑战赛更合适?请说明你的理由.[解] (1)选手甲完成挑战用时低于90秒的成绩共有6个,其中低于80秒的成绩有3个,分别记为A 1,A 2,A 3,其余的3个分别记为B 1,B 2,B 3,从6个成绩中任取2个的所有取法有:A 1A 2,A 1A 3,A 1B 1,A 1B 2,A1B3,A2A3,A2B1,A2B2,A2B3,A3B1,A3B2,A3B3,B1B2,B1B3,B2B3,共15种,其中2个成绩都低于80秒的有A1A2,A1A3,A2A3,共3种,所以所取的2个成绩都低于80秒的概率P=315=15.(2)甲、乙两位选手完成关键技能挑战的次数都为10,挑战失败的次数都为5,所以只需要比较他们完成关键技能挑战的情况即可,其中x甲=85(秒),x乙=84(秒),s2甲=50.2,s2乙=54.答案①:选手乙代表公司参加职业技能挑战赛比较合适,因为在相同次数的挑战中,两位选手在关键技能挑战的完成次数和失败次数都分别相同,但x甲>x乙,乙选手平均用时更短.答案②:选手甲代表公司参加职业技能挑战赛比较合适,因为在相同次数的挑战中,两位选手在关键技能挑战的完成次数和失败次数都分别相同,虽然x甲>x乙,但两者相差不大,水平相当,s2甲<s2乙,表明甲选手的发挥更稳定.答案③:选手乙代表公司参加职业技能挑战赛比较合适,因为在相同次数的挑战中,两位选手在关键技能挑战的完成次数和失败次数都分别相同,但x乙<x甲,乙选手平均用时更短,从表1中的数据整体看,甲、乙的用时都逐步减少,s2乙>s2甲,说明乙选手进步幅度更大,成绩提升趋势更好.(答案不唯一) 4.(2019·昆明模拟)互联网使我们的生活日益便捷,网络外卖也开始成为不少人日常生活中不可或缺的一部分.某市一调查机构针对该市市场占有率较高的甲、乙两家网络外卖企业(以下简称外卖甲、外卖乙)的经营情况进行了调查,调查结果如下表:业的经营状况;(2)据统计表明,y 与x 之间具有线性关系.①请用相关系数r 对y 与x 之间的相关性强弱进行判断(若|r |>0.75,则可认为y 与x 有较强的线性相关关系(r 值精确到0.001));②经计算求得y 与x 之间的回归方程为y ^=1.382x -2.674,假定每单外卖业务,企业平均能获取纯利润3元,试预测当外卖乙日接单量不低于25百单时,外卖甲所获取的日纯利润的大致范围(x 值精确到0.01).相关公式:r =∑ni =1(x i -x )(y i -y )∑ni =1 (x i -x )2∑n i =1 (y i -y )2. 参考数据:∑5i =1(x i -x )(y i -y )=66, ∑5i =1 (x i -x )2∑5i =1 (y i -y )2≈77.[解] (1)由题可知x =5+2+9+8+115=7(百单), y =2+3+10+5+155=7(百单). 外卖甲的日接单量的方差s 2甲=10,外卖乙的日接单量的方差s 2乙=23.6,因为x =y ,s 2甲<s 2乙,即外卖甲平均日接单量与外卖乙相同,且外卖甲日接单量更集中一些,所以外卖甲比外卖乙经营状况更好.(2)①计算可得,相关系数r =6677≈0.857>0.75,所以可认为y 与x 之间有较强的线性相关关系.②令y ≥25,得1.382x -2.674≥25,解得x ≥20.02,又20.02×100×3=6 006,所以当外卖乙日接单量不低于25百单时,外卖甲所获取的日纯利润大约不低于6 006元.5.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i =x i ,w =18∑i =1w i . (1)根据散点图判断,y ^=a ^+b ^ x 与y ^=c ^+d ^x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题:①年宣传费x =49时,年销售量及年利润的预报值是多少?②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v ^=α^+β^u的斜率和截距的最小二乘法估计分别为β^=∑ni =1 (u i -u )(v i -v )∑ni =1(u i -u )2,α^=v -β^ u . [解] (1)由散点图可以判断,y ^=c ^+d ^x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2)令w =x ,先建立y 关于w 的线性回归方程.由于d ^=∑8i =1 (w i -w )(y i -y )∑8i =1(w i -w )2=108.81.6=68, c ^=y -d ^ w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w ,因此y 关于x 的回归方程为y ^=100.6+68x .(3)①由(2)知,当x =49时,年销售量y 的预报值y ^=100.6+6849=576.6,年利润z 的预报值z ^=576.6×0.2-49=66.32.②根据(2)的结果知,年利润z 的预报值z ^=0.2(100.6+68x )-x =-x +13.6x +20.12. 所以当x =13.62=6.8,即x =46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.。

2020年高考数学二轮复习回归教材基础知识总结-专题6概率与统计

2020年高考数学二轮复习回归教材基础知识总结-专题6概率与统计

2020年高考数学二轮复习回归教材基础知识总结-专题6概率与统计1.分类加法计数原理完成一件事,可以有n 类办法,在第一类办法中有m 1种方法,在第二类办法中有m 2种方法,…,在第n 类办法中有m n 种方法,那么完成这件事共有N =m 1+m 2+…+m n 种方法(也称加法原理).2.分步乘法计数原理完成一件事需要经过n 个步骤,缺一不可,做第一步有m 1种方法,做第二步有m 2种方法,…,做第n 步有m n 种方法,那么完成这件事共有N =m 1×m 2×…×m n 种方法(也称乘法原理).3.排列(1)排列的定义:从n 个不同元素中取出m (m ≤n )个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(2)排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数,用A m n 表示.(3)排列数公式:A m n =n (n -1)(n -2)…(n -m +1).(4)全排列:n 个不同元素全部取出的一个排列,叫做n 个元素的一个全排列,A n n =n ·(n -1)·(n-2)·…·2·1=n !.排列数公式写成阶乘的形式为A m n =n !(n -m )!,这里规定0!=1. 4.组合(1)组合的定义:从n 个不同元素中取出m (m ≤n )个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合.(2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用C m n 表示.(3)组合数的计算公式:C m n =A m n A m m =n !m !(n -m )!=n (n -1)(n -2)…(n -m +1)m !,由于0!=1,所以C 0n =1.(4)组合数的性质:①C m n =C n -m n ;②C m n +1=C m n +C m -1n . 5.二项式定理(a +b )n =C 0n a n +C 1n a n -1b 1+…+C k n a n -k b k +…+C n n b n (n ∈N *). 这个公式叫做二项式定理,右边的多项式叫做(a +b )n 的二项展开式,其中的系数C k n(k ∈{0,1,2,…,n })叫做二项式系数.式中的C k n a n -k b k 叫做二项展开式的通项,用T k +1表示,即展开式的第k +1项:T k +1=C k n a n -k b k . 6.二项展开式形式上的特点(1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C n n . 7.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,即C m n =C n -m n . (2)增减性与最大值:二项式系数C k n ,当k <n +12时,二项式系数是递增的;当k >n +12时,二项式系数是递减的.当n 是偶数时,那么其展开式中间一项+12n T 的二项式系数最大.当n 是奇数时,那么其展开式中间两项1+12n T -和1+12n T +的二项式系数相等且最大.(3)各二项式系数的和(a +b )n 的展开式的各个二项式系数的和等于2n ,即C 0n +C 1n +C 2n +…+C k n +…+C n n =2n .二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n +…=2n -1. 8.概率的计算公式(1)古典概型的概率计算公式P (A )=事件A 包含的基本事件数m 基本事件总数n. (2)互斥事件的概率计算公式P (A ∪B )=P (A )+P (B ).(3)对立事件的概率计算公式P (A )=1-P (A ).(4)几何概型的概率计算公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积). (5)条件概率公式P (B |A )=P (AB )P (A ). 9.抽样方法简单随机抽样、分层抽样、系统抽样.(1)从容量为N 的总体中抽取容量为n 的样本,则每个个体被抽到的概率都为n N. (2)分层抽样实际上就是按比例抽样,即按各层个体数占总体的比确定各层应抽取的样本容量.10.统计中四个数据特征(1)众数:在样本数据中,出现次数最多的那个数据.(2)中位数:在样本数据中,将数据按从大到小(或从小到大)排列,位于最中间的数据.如果数据的个数为偶数,就取中间两个数据的平均数作为中位数.(3)平均数:样本数据的算术平均数,即x =1n(x 1+x 2+…+x n ). (4)方差与标准差方差:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 标准差:s =1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 11.离散型随机变量(1)离散型随机变量的分布列的两个性质①p i ≥0(i =1,2,…,n );②p 1+p 2+…+p n =1.(2)期望公式E (X )=x 1p 1+x 2p 2+…+x n p n .(3)期望的性质①E (aX +b )=aE (X )+b ;②若X ~B (n ,p ),则E (X )=np ;③若X 服从两点分布,则E (X )=p .(4)方差公式D (X )=[x 1-E (X )]2·p 1+[x 2-E (X )]2·p 2+…+[x n -E (X )]2·p n ,标准差为D (X ).(5)方差的性质①D (aX +b )=a 2D (X );②若X ~B (n ,p ),则D (X )=np (1-p );③若X 服从两点分布,则D (X )=p (1-p ).(6)独立事件同时发生的概率计算公式 P (AB )=P (A )P (B ).(7)独立重复试验的概率计算公式P (X =k )=C k n p k (1-p )n -k ,k =0,1,2,…,n .12.线性回归(1)线性回归方程y ^=b ^x +a ^一定过样本点的中心(x ,y ), 其中⎩⎪⎨⎪⎧ b ^=∑i =1n (x i -x )(y i -y )∑i =1n (x i -x )2,a ^=y -b ^ x .(2)相关系数r 具有如下性质:①|r |≤1;②|r |越接近于1,x ,y 的线性相关程度越高;③|r |越接近于0,x ,y 的线性相关程度越弱.13.独立性检验利用随机变量K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )来判断“两个分类变量有关系”的方法称为独立性检验.如果K 2的观测值k 越大,说明“两个分类变量有关系”的可能性越大.14.正态分布如果随机变量X 服从正态分布,则记为X ~N (μ,σ2).满足正态分布的三个基本概率的值是①P (μ-σ<X ≤μ+σ)≈0.682 7;②P (μ-2σ<X ≤μ+2σ)≈0.954 5;③P (μ-3σ<X ≤μ+3σ)≈0.997 3.1.关于两个计数原理应用的注意事项(1)分类加法计数原理和分步乘法计数原理,都是关于做一件事的不同方法的种数的问题,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.(2)混合问题一般是先分类再分步.(3)分类时标准要明确,做到不重复不遗漏.(4)要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.2.对于有附加条件的排列、组合应用题,通常从三个途径考虑:(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素.(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数.3.排列、组合问题的求解方法与技巧(1)特殊元素优先安排.(2)合理分类与准确分步.(3)排列、组合混合问题先选后排.(4)相邻问题捆绑处理.(5)不相邻问题插空处理.(6)定序问题排除法处理.(7)分排问题直排处理.(8)“小集团”排列问题先整体后局部.(9)构造模型.(10)正难则反,等价条件.4.二项式定理应用时的注意点(1)区别“项的系数”与“二项式系数”,审题时要仔细.项的系数与a,b有关,可正可负,二项式系数只与n有关,恒为正.(2)运用通项求展开式的一些特殊项,通常都是由题意列方程求出k,再求所需的某项;有时需先求n,计算时要注意n和k的取值范围及它们之间的大小关系.(3)赋值法求展开式中的系数和或部分系数和,常赋的值为0,±1.(4)在化简求值时,注意二项式定理的逆用,要用整体思想看待a,b.5.应用互斥事件的概率加法公式时,一定要注意首先确定各事件是否彼此互斥,然后求出各事件分别发生的概率,再求和.6.正确区别互斥事件与对立事件的关系:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.7.混淆频率分布条形图和频率分布直方图,误把频率分布直方图纵轴的几何意义当成频率,导致样本数据的频率求错.8.要注意概率P(A|B)与P(AB)的区别(1)在P(A|B)中,事件A,B发生有时间上的差异,B先A后;在P(AB)中,事件A,B同时发生.(2)样本空间不同,在P(A|B)中,事件B成为样本空间;在P(AB)中,样本空间仍为Ω,因而有P(A|B)≥P(AB).9.易忘判定随机变量是否服从二项分布,盲目使用二项分布的期望和方差公式计算致误.10.涉及求分布列时,要注意区分是二项分布还是超几何分布.。

2020高考二轮复习概率与统计

2020高考二轮复习概率与统计

专题四概率与统计第1讲概率、随机变量与其分布列[全国卷3年考情分析]年份全国卷Ⅰ全国卷Ⅱ全国卷Ⅲ2019古典概型·T6互斥事件、独立事件、离散型随机变量·T18独立重复试验的概率·T15随机变量的分布列、等比数列·T212018几何概型·T10古典概型·T8相互独立事件与二项分布·T8二项分布、导数的应用与变量的数学期望、决策性问题·T202017数学文化、有关面积的几何概型·T2二项分布的方差·T13频数分布表、概率分布列的求解、数学期望的应用·T18正态分布、二项分布的性质与概率、方差·T19(1)概率、随机变量与其分布是高考命题的热点之一,命题形式为“一小一大”,即一道选择题或填空题和一道解答题.(2)选择题或填空题常出现在第4~10题或第13~15题的位置,主要考查随机事件的概率、古典概型、几何概型,难度一般.考点一古典概型与几何概型1.(2019·全国卷Ⅰ)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,右图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A.516 B.1132 C.2132 D.11162.(2019·市模拟考试)2019年1月1日,轨道交通1号线试运行,轨道交通集团面向广大市民开展“参观体验,征求意见”活动.市民可以通过地铁APP 抢票,小抢到了三体验票,准备从四位朋友小王、小、小、小中随机选择两位与自己一起去参加体验活动,则小王和小至多一人被选中的概率为( )A.16 B.13 C.23 D.563.(2019·市质量检测)如图,线段MN 是半径为2的圆O 的一条弦,且MN 的长为2.在圆O ,将线段MN 绕点N 按逆时针方向转动,使点M 移动到圆O 上的新位置,继续将新线段NM 绕新点M 按逆时针方向转动,使点N 移动到圆O 上的新位置,依此继续转动,……点M 的轨迹所围成的区域是图中阴影部分.若在圆O 随机取一点,则该点取自阴影部分的概率为( )A.4π-6 3B.1-332πC.π-332D.332π4.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.34考点二 互斥事件、相互独立事件的概率1.(2019·市调研测试)已知甲袋中有1个黄球和1个红球,乙袋中有2个黄球和2个红球,现随机从甲袋中取出1个球放入乙袋中,再从乙袋中随机取出1个球,则从乙袋中取出的球是红球的概率为( )A.13B.12C.59D.292.(2019·市模拟(一))袋子中装有大小、形状完全相同的2个白球和2个红球,现从中不放回地摸取2个球,已知第二次摸到的是红球,则第一次摸到红球的概率为( )A.16B.13 C.12 D.153.(2019·全国卷Ⅰ)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.4.(2019·全国卷Ⅱ)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.考点三随机变量的分布列、均值与方差题型一超几何分布与其均值与方差[例1](2019·模拟)某市某超市为了回馈新老顾客,决定在2019年元旦来临之际举行“庆元旦,迎新年”的抽奖派送礼品活动.为设计一套趣味性抽奖送礼品的活动方案,该超市面向该市某高中学生征集活动方案,该中学某班数学兴趣小组提供的方案获得了征用.方案如下:将一个4×4×4的正方体各面均涂上红色,再把它分割成64个相同的小正方体.经过搅拌后,从中任取两个小正方体,记它们的着色面数之和为ξ,记抽奖一次中奖的礼品价值为η.(1)求P(ξ=3).(2)凡是元旦当天在该超市购买物品的顾客,均可参加抽奖.记抽取的两个小正方体着色面数之和为6,设为一等奖,获得价值50元的礼品;记抽取的两个小正方体着色面数之和为5,设为二等奖,获得价值30元的礼品;记抽取的两个小正方体着色面数之和为4,设为三等奖,获得价值10元的礼品,其他情况不获奖.求某顾客抽奖一次获得的礼品价值的分布列与数学期望.题型二相互独立事件的概率与均值与方差[例2](2019·市模拟(一))商店欲购进某种食品(保质期两天),此商店每两天购进该食品一次(购进时,该食品为刚生产的).根据市场调查,该食品每份进价8元,售价12元,如果两天无法售出,则食品过期作废,且两天的销售情况互不影响,为了解市场的需求情况,现统计该食品在本地区100天的销售量如下表:销售量/份15161718天数20304010(视样本频率为概率)(1)根据该食品100天的销售量统计表,记两天中一共销售该食品份数为ξ,求ξ的分布列与数学期望;(2)以两天该食品所获得的利润期望为决策依据,商店一次性购进32或33份,哪一种得到的利润更大?题型三二项分布与其均值与方差[例3](2019·模拟)前不久,省社科院发布了2017年度“城市居民幸福排行榜”,市成为本年度“最幸福城市”.随后,师大附中学生会组织部分同学,用“10分制”随机调查“”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)记录了他们的幸福度分数.(1)指出这组数据的众数和中位数;(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”,求从这16人中随机选取3人,至多有1人的幸福度是“极幸福”的概率;(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示选到幸福度为“极幸福”的人数,求ξ的分布列与数学期望.(2019·市调研测试)某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,若该项质量指标值落在[20,40)的产品视为合格品,否则为不合格品,下图是设备改造前样本的频率分布直方图,下表是设备改造后样本的频数分布表.设备改造前样本的频率分布直方图设备改造后样本的频数分布表质量指标[15,20)[20,25)[25,30)[30,35)[35,40)[40,45) 值频数218481416 2(2)该企业将不合格品全部销毁后,对合格品进行等级细分,质量指标值落在[25,30)的定为一等品,每件售价240元;质量指标值落在[20,25)或[30,35)的定为二等品,每件售价180元;其他的合格品定为三等品,每件售价120元.根据上表的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.现有一名顾客随机购买两件产品,设其支付的费用为X(单位:元),求X的分布列和数学期望.考点四正态分布[例4]为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X 表示一天抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P (X ≥1)与X 的数学期望;(2)一天抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①试说明上述监控生产过程方法的合理性; ②下面是检验员在一天抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95用样本平均数x —作为μ的估计值μ^,用样本标准差s 作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查?剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布N (μ,σ2),则P (μ-3σ<Z <μ+3σ)=0.997 4.0.997 416≈0.959 2,0.008≈0.09.已知某厂生产的电子产品的使用寿命X(单位:小时)服从正态分布N(1 000,σ2),且P(X<800)=0.1,P(X≥1 300)=0.02.(1)现从该厂随机抽取一件产品,求其使用寿命在[1 200,1 300)的概率;(2)现从该厂随机抽取三件产品,记抽到的三件产品使用寿命在[800,1 200)的件数为Y,求Y的分布列和数学期望E(Y).考点五概率问题中的交汇与创新[例5](2019·全国卷Ⅰ)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.①证明:{p i+1-p i}(i=0,1,2,…,7)为等比数列;②求p4,并根据p4的值解释这种试验方案的合理性.1.已知某种植物的种子每粒发芽的概率都为13,某实验小组对该种植物的种子进行发芽试验,若该实验小组共种植四粒该植物的种子(每粒种子的生长因素相同且发芽与否相互独立),用ξ表示这四粒种子中发芽的种子数与未发芽的种子数的差的绝对值.(1)求随机变量ξ的概率分布和数学期望;(2)求不等式ξx2-ξx+1>0的解集为R的概率.2.某网络广告公司计划从甲、乙两个中选择一个拓展公司的广告业务,为此该公司随机抽取了甲、乙两个某月中10天的日访问量(单位:万次),整理后得到如图所示的茎叶图.(1)请说明该公司应该选择哪个;(2)根据双方规定,该公司将根据所选的日访问量进行付费,付费标准如下:日访问量n (单位:万次) n <25 25≤n ≤35n >35 付费标准(单位:元/日)5007001 000哪个?【课后专项练习】A 组一、选择题1.(2019·省适应性考试)在2018中国国际大数据产业博览会期间,有甲、乙、丙、丁4名游客准备到的黄果树瀑布、梵净山、万峰林三个景点旅游,其中每个人只能去一个景点,每个景点至少要去一个人,则游客甲去梵净山旅游的概率为( )A.14B.13C.12D.232.(2019·八所重点中学联考)小华的爱好是玩飞镖,现有如图所示的由两个边长都为2的正方形ABCD 和OPQR 构成的标靶图形,如果O 正好是正方形ABCD 的中点,而正方形OPQR 可以绕O 点旋转.若小华随机向标靶投飞镖,一定能射中标靶,则他射中阴影部分的概率是( )A.13B.14C.16D.173.小、小钱、小、小到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点不相同”,事件B =“小独自去一个景点”,则P (A |B )=( )A.29B.13C.49D.594.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )5.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX =2.4,P (X =4)<P (X =6),则p =( )6.(2019·市调研测试)为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,他前一球投进则后一球投进的概率为34,他前一球投不进则后一球投进的概率为14.若他第1球投进的概率为34,则他第2球投进的概率为( )A.34B.58 C.716 D.916二、填空题7.(2019·市模拟(一))已知实数x ∈[0,10],则x 满足不等式x 2-4x +3≤0的概率为________.8.我国数学家景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是________.9.(2019·期中)为了解高三复习备考情况,某校组织了一次阶段考试.若高三全体考生的数学成绩近似服从正态分布N (100,17.52).已知成绩在117.5分以上(含117.5分)的学生有80人,则此次参加考试的学生成绩不超过82.5分的概率为________;如果成绩大于135分的为特别优秀,那么本次数学考试成绩特别优秀的大约有________人.(若X ~N (μ,σ2),则P (μ-σ<X <μ+σ)≈0.68,P (μ-2σ<X <μ+2σ)≈0.96)三、解答题10.(2019·模拟)甲、乙两位工人分别用两种不同工艺生产同一种零件,已知尺寸在[223,228](单位:mm)的零件为一等品,其余为二等品.甲、乙当天生产零件尺寸的茎叶图如图所示:(1)从甲、乙两位工人当天所生产的零件中各随机抽取1个零件,求抽取的2个零件等级互不相同的概率;(2)从工人甲当天生产的零件中随机抽取3个零件,记这3个零件中一等品数量为X,求X的分布列和数学期望.11.为调查大学生这个微信用户群体中每人拥有微信群的数量,现从某市大学生中随机抽取300位同学进行调查,结果如下:微信群数量0至5个6至10个11至15个16至20个20个以上合计频数09090x 15300频率00.30.3y z 1(2)以这300人的样本数据估计该市的总体数据且以频率估计概率,若从全市大学生(数量很大)中随机抽取3人,记X表示抽到的是微信群个数超过15的人数,求X的分布列、数学期望和方差.12.(2019·市第二次质量检测)某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出2种超过质保期后2年的延保维修优惠方案,方案一:交纳延保金7 000元,在延保的2年可免费维修2次,超过2次每次收取维修费2 000元;方案二:交纳延保金10 000元,在延保的2年可免费维修4次,超过4次每次收取维修费1 000元.某医院准备一次性购买2台这种机器.现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保2年维修的次数,得下表:以这50X表示这2台机器超过质保期后延保的2年共需维修的次数.(1)求X的分布列;(2)以方案一与方案二所需费用(所需延保金与维修费用之和)的期望值为决策依据,医院选择哪种延保方案更合算?B组1.(2019·市综合检测(一))为了引导居民合理用电,国家决定实行合理的阶梯电价,居民用电原则上以住宅为单位(一套住宅为一户).梯超出第二阶梯的部分每度0.8元,试计算某居民用电户用电410度时应交电费多少元?(2)现要从这10户家庭中任意选取3户,求取到第二阶梯电量的户数的分布列与期望.(3)以表中抽到的10户作为样本估计全市居民用电,现从全市中依次抽取10户,若抽到k户用电量为第一阶梯的可能性最大,求k的值.2.(2019·市质量检测)某地区为贯彻总书记关于“绿水青山就是金山银山”的理念,鼓励农户利用荒坡种植果树.某农户考察三种不同的果树苗A,B,C,经引种试验后发现,引种树苗A的自然成活率为0.8,引种树苗B,C的自然成活率均为p(0.7≤p≤0.9).(1)任取树苗A,B,C各一棵,估计自然成活的棵数为X,求X的分布列与数学期望E(X).(2)将(1)中的E(X)取得最大值时p的值作为B种树苗自然成活的概率.该农户决定引种n棵B种树苗,引种后没有自然成活的树苗中有75%的树苗可经过人工栽培技术处理,处理后成活的概率为0.8,其余的树苗不能成活.①求一棵B种树苗最终成活的概率;②若每棵树苗最终成活后可获利300元,不成活的每棵亏损50元,该农户为了获利不低于20万元,问至少引种B种树苗多少棵?3.(2019·市高三模拟)某客户准备在家中安装一套净水系统,该系统为三级过滤,使用寿命为十年.如图所示,两个一级过滤器采用并联安装,二级过滤器与三级过滤器为串联安装.其中每一级过滤都由核心部件滤芯来实现,在使用过程中,一级滤芯和二级滤芯都需要不定期更换(每个滤芯是否需要更换相互独立),三级滤芯无需更换,若客户在安装净水系统的同时购买滤芯,则一级滤芯每个80元,二级滤芯每个160元.若客户在使用过程中单独购买滤芯,则一级滤芯每个200元,二级滤芯每个400元.现需决策安装净水系统的同时购滤芯的数量,为此参考了根据100套该款净水系统在十年使用期更换滤芯的相关数据制成的图表,其中图是根据200个一级过滤器更换的滤芯个数制成的柱状图,表是根据100个二级过滤器更换的滤芯个数制成的频数分布表.二级滤芯更换频数分布表二级滤芯更换的个数5 6频数6040以200以100个二级过滤器更换滤芯的频率代替1个二级过滤器更换滤芯发生的概率.(1)求一套净水系统在使用期需要更换的各级滤芯总个数恰好为30的概率;(2)记X表示该客户的净水系统在使用期需要更换的一级滤芯总数,求X的分布列与数学期望;(3)记m,n分别表示该客户在安装净水系统的同时购买的一级滤芯和二级滤芯的个数.若m+n=28,且n∈{5,6},以该客户的净水系统在使用期购买各级滤芯所需总费用的期望为决策依据,试确定m,n的值.4.(2019·四大名校模拟)超级病菌是一种耐药性细菌,产生超级细菌的主要原因是用于抵抗细菌侵蚀的药物越来越多,但是由于滥用抗生素的现象不断的发生,很多致病菌也对相应的抗生素产生了耐药性,更可怕的是,抗生素药物对它起不到什么作用,病人会因为感染而引起可怕的炎症,高烧、痉挛、昏迷直到最后死亡.某药物研究所为筛查某种超级细菌,需要检验血液是否为阳性,现有n(n∈N*)份血液样本,每个样本取到的可能性均等,有以下两种检验方式:(1)逐份检验,则需要检验n次;(2)混合检验,将其中k(k∈N*且k≥2)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为k+1次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p(0<p<1).(1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过2次检验就能把阳性样本全部检验出来的概率;(2)现取其中k(k∈N*且k≥2)份血液样本,记采用逐份检验方式,样本需要检验的总次数为ξ1,采用混合检验方式,样本需要检验的总次数为ξ2.(ⅰ)试运用概率统计的知识,若E(ξ1)=E(ξ2),试求p关于k的函数关系式p=f(k);(ⅱ)若p=1-13e,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求k的最大值.参考数据:ln 2≈0.693 1,ln 3≈1.098 6,ln 4≈1.386 3,ln 5≈1.609 4,ln 6≈1.791 8.第2讲统计、统计案例[全国卷3年考情分析](1)统计与统计案例在选择题或填空题中的命题热点主要集中在随机抽样、用样本估计总体以与变量间的相关性判断等,难度较低,常出现在3~4题的位置.(2)统计与统计案例在解答题中多出现在第18或19题位置,考查茎叶图、直方图、数字特征与统计案例,多以计算为主.考点一抽样方法1.福利彩票“双色球”中红球的可以从01,02,03,…,32,33这33个两位中选取,小明利用如下所示的随机数表选取红色球的6个,选取方法是从第1行第9列的数字开始,从左到右依次读取数据,则第四个被选中的红色球为()A.12B.33C.06D.16解析:选C被选中的红色球依次为17,12,33,06,32,22.所以第四个被选中的红色球为06,故选C.2.利用系统抽样法从编号分别为1,2,3,…,80的80件不同产品中抽出一个容量为16的样本,如果抽出的产品中有一件产品的编号为13,则抽到产品的最大编号为( )A .73 B.78 C .77D.76解析:选B 样本的分段间隔为8016=5,所以13号在第三组,则最大的编号为13+(16-3)×5=78.故选B.3.某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的一共有20 000人,其中各种态度对应的人数如下表所示:电视台为了了解观众的具体想法和意见,打算从中抽选100人进行更为详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中应抽选的人数分别为( )A.25,25,25,25B.48,72,64,16C.20,40,30,10D.24,36,32,84.某班共有学生56人,学号依次为1,2,3,…,56,现用系统抽样的方法抽取一个容量为4的样本,已知学号为2,30,44的同学在样本中,则样本中还有一位同学的学号为________.考点二用样本估计总体[例1](2019·全国卷Ⅲ)为了解甲、乙两种离子在小鼠体的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).[解](1)由已知得0.70=a+0.20+0.15,1.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量/度120140160180200户数2358 2则这20户家庭该月用电量的众数和中位数分别是()A.180,170 B.160,180C.160,170 D.180,1602.(2019·模拟)如图的折线图是某超市2018年一月份至五月份的营业额与成本数据,根据该折线图,下列说确的是()A.该超市2018年的前五个月中三月份的利润最高B.该超市2018年的前五个月的利润一直呈增长趋势C.该超市2018年的前五个月的利润的中位数为0.8万元D.该超市2018年前五个月的总利润为3.5万元3.(2019·武昌区调研考试)对参加某次数学竞赛的1 000名选手的初赛成绩(满分:100分)作统计,得到如图所示的频率分布直方图.(1)根据直方图完成以下表格;成绩[50,60)[60,70)[70,80)[80,90)[90,100] 频数(2)求参赛选手初赛成绩的平均数与方差(同一组中的数据用该组区间的中点值作代表);(3)如果从参加初赛的选手中选取380人参加复赛,那么如何确定进入复赛选手的成绩?考点三 统计案例题型一 回归分析在实际问题中的应用[例2] (2018·全国卷Ⅱ)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,…,17)建立模型①:y ^=-30.4+13.5t ;根据2010年至2016年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:y ^=99+17.5t .(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.题型二 独立性检验在实际问题中的应用[例3](2019·市调研测试)2019年,在庆祝中华人民国成立70周年之际,又迎来了以“创军人荣耀,筑世界和平”为口号的第七届世界军人运动会(以下简称“军运会”).据悉,这次军运会将于2019年10月18日至27日在美丽的江城举行,届时将有来自100多个国家的近万名军人运动员参赛.相对于奥运会、亚运会等大型综合赛事,军运会或许对很多人来说还很陌生,所以某高校为了在学生中更广泛地推介普与军运会相关知识容,特在网络上组织了一次“我所知晓的军运会”知识问答比赛.为便于对答卷进行对比研究,组委会抽取了1。

2020届高考数学二轮复习(理)讲义及题型归纳(拔高):概率与统计

2020届高考数学二轮复习(理)讲义及题型归纳(拔高):概率与统计

概率与统计一、考纲解读1.理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性。

2.理解超几何分布及其推导过程,并能进行简单的应用。

3.了解条件概率和两个事件相互独立的概念,理解次独立重复实验的模型及二n 项分布,并能解决一些简单的实际问题。

4.理解取有限个值的离散型变量均值,方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题。

5.利用实际问题的频率分布直方图,了解正态分布密度曲线的特点及曲线所表示的意义。

二、命题趋势探究1.高考命题中,该部分命题形式有选择题、填空题,但更多的是解答题。

2.主要以离散型随机变量分布列为主体命题,计算离散型随机变量的期望和方差,其中二项分布与超几何分布为重要考点,难度中等以下。

3.有关正态分布的考题多为一道小题。

三、知识点精讲(一).条件概率与独立事件(1)在事件A 发生的条件下,时间B 发生的概率叫做A 发生时B 发生的条件概率,记作 ,条件概率公式为 。

()P B A ()=P B A ()()P AB P A (2)若,即,称与为相互独立事件。

与()=P B A P B ()()=()()P AB P A P B A B A B 相互独立,即发生与否对的发生与否无影响,反之亦然。

即相互独立,A B ,A B 则有公式。

()=()()P AB P A P B(3)在次独立重复实验中,事件发生次的概率记作,记n A k ()0k n ≤≤()n P k A在其中一次实验中发生的概率为 ,则 .()P A p =()()1n k k k n n P k C p p -=-(二).离散型随机变量分布列、期望、方差及其性质(1)离散型随机变量的分布列(如表13-1所示).ξ表13-1ξ 1ξ 2ξ 3ξ… n ξ P 1p 2p 3pn p ① ;()11,i p i n i N θ*≤≤≤≤∈② .121n p p p ++= (2)表示的期望:,反应随机变量的平均水平,E ξξ1122=+n n p p p E ξξξξ++…若随机变量满足,则.ξη,=a b ηξ+E aE b ηξ=+(3)表示的方差:,反映随机D ξξ()()()2221122=---n n E p E p E p D ξξξξξξξ+++ 变量取值的波动性。

2020新高考数学二轮冲刺概率与统计全归纳(基础中档拔高题全解析)

2020新高考数学二轮冲刺概率与统计全归纳(基础中档拔高题全解析)
93
统计与统计案例
一、考纲解读
1. 理解随机抽样的必要性和重要性。 2. 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。 3. 了解分布的意义和作用,会列频率分布表,会画出频率分布直方图、频率折 线图、茎叶图,理解它们各自的特点。 4. 理解样本数据标准差的意义和作用,会计算数据标准差。 5. 能从样本的频率分布估计总体分布,会用样本的基本数字牲估计总体的基本 数字特征,理解用样本估计总体的思想。 6. 会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题。 7. 会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系。 8. 了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归 方程。 9. 了解常见的统计方法,并能应用这些方法解决一些实际问题。 (1)独立性检验 了解独立性检验(只要求 2×2 列联表)的基本思想、方法及其简单应用。 (2)回归分析 了解回归分析的基本思想、方法及其简单应用。
个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为
A. 1 3
B. 1 2
C. 2 3
D. 3 4
答案:
1.D【解析】将 2 名男同学分别记为 x , y ,3 名女同学分别记为 a ,b ,c .设 “选中的 2 人都是女同学”为事件 A ,则从 5 名同学中任选 2 人参加社区服务的所 有可能情况有 (x, y) ,(x, a) ,(x,b) ,(x, c) ,( y, a) ,( y,b) ,( y, c) ,(a,b) ,(a, c) , (b, c) 共 19 种,其中事件 A 包含的可能情况有 (a,b) , (a, c) , (b, c) 共 3 种,故 P(A) 3 0.3,故选 D.

(通用版)高考数学二轮复习 规范解答集训(三) 概率与统计 文-人教版高三全册数学试题

(通用版)高考数学二轮复习 规范解答集训(三) 概率与统计 文-人教版高三全册数学试题

规X 解答集训(三) 概率与统计(建议用时:40分钟)1.某机构组织语文、数学学科能力竞赛,按照一定比例淘汰后,颁发一、二、三等奖(分别对应成绩等级的一、二、三等).现有某考场所有考生的两科成绩等级统计如图1所示,其中获数学二等奖的考生有12人.图1(1)求该考场考生中获语文一等奖的人数;(2)用随机抽样的方法从获得数学和语文二等奖的考生中各抽取5人,进行综合素质测试,将他们的综合得分绘成茎叶图(如图2所示),求样本的平均数及方差并进行比较分析;图2(3)已知本考场的所有考生中,恰有3人两科均获一等奖,在至少一科获一等奖的考生中,随机抽取2人进行访谈,求这2人两科均获一等奖的概率.[解] (1)∵获数学二等奖的考生有12人,∴该考场考生的总人数为121-0.40-0.26-0.10=50,故该考场获语文一等奖的考生人数为50×(1-0.38×2-0.16)=4.(2)设获数学二等奖考生综合得分的平均数和方差分别为x 1,s 21,获语文二等奖考生综合得分的平均数和方差分别为x 2,s 22.x 1=81+84+92+90+935=88,x 2=79+89+84+86+875=85,s 21=15×[(-7)2+(-4)2+42+22+52]=22,s 22=15×[(-6)2+42+(-1)2+12+22]=11.6,∵88>85,11.6<22,∴获数学二等奖考生较获语文二等奖考生综合素质测试的平均分高,但是成绩差距较大,稳定性较差.(3)两科均获一等奖的考生共有3人,则仅数学获一等奖的考生有2人,仅语文获一等奖的考生有1人.把两科均获一等奖的3人分别记为A 1,A 2,A 3,仅数学获一等奖的2人分别记为B 1,B 2,仅语文获一等奖的1人记为C ,则在至少一科获一等奖的考生中,随机抽取2人的基本事件有A 1A 2,A 1A 3,A 1B 1,A 1B 2,A 1C ,A 2A 3,A 2B 1,A 2B 2,A 2C ,A 3B 1,A 3B 2,A 3C ,B 1B 2,B 1C ,B 2C ,共15个.记“这2人两科均获一等奖”为事件M ,则事件M 包含的基本事件有A 1A 2,A 1A 3,A 2A 3,共3个, ∴P (M )=315=15,故这2人两科均获一等奖的概率为15.2.(2019·某某模拟)最近青少年的视力健康问题引起人们的高度重视,某地区为了解当地24所小学,24所初中和12所高中的学生的视力状况,准备采用分层抽样的方法从这些学校中随机抽取5所学校对学生进行视力调查.(1)若从所抽取的5所学校中再随机抽取3所学校进行问卷调查,求抽到的这3所学校中,小学、初中、高中分别有一所的概率;(2)若某小学被抽中,调查得到了该小学前五个年级近视率y 的数据如下表:测六年级学生的近视率.附:回归直线y ^=b ^x +a ^的斜率和截距的最小二乘法估计公式分别为b ^=∑ni =1x i y i -n x y ∑ni =1x 2i -n x2,a ^=y -b ^x .参考数据:∑5i =1x i y i =2.76,∑5i =1x 2i =55.[解] (1)由24∶24∶12=2∶2∶1,得抽取的5所学校中有2所小学、2所初中、1所高中,分别设为a 1,a 2,b 1,b 2,c ,从这5所学校中随机抽取3所学校的所有基本事件为(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 2,c ),(a 1,b 1,b 2),(a 1,b 1,c ),(a 1,b 2,c ),(a 2,b 1,b 2),(a 2,b 1,c ),(a 2,b 2,c ),(b 1,b 2,c ),共10种,设事件A 表示“抽到的这3所学校中,小学、初中、高中分别有一所”,则事件A 包含的基本事件为(a 1,b 1,c ),(a 1,b 2,c ),(a 2,b 1,c ),(a 2,b 2,c ),共4种,故P (A )=410=25.(2)由题中表格数据得x =3,y =0.15,5x y =2.25,5x 2=45,且由参考数据:∑5i =1x i y i =2.76,∑5i =1x 2i =55,得b ^=2.76-2.2555-45=0.051,a ^=0.15-0.051×3=-0.003,得线性回归方程为y ^=0.051x -0.003.当x =6时,代入得y ^=0.051×6-0.003=0.303, 所以六年级学生的近视率在0.303左右.3.(2019·某某模拟)《中国大能手》是央视推出的一档大型职业技能挑战赛类的节目,旨在通过该节目,在全社会传播和弘扬“劳动光荣、技能宝贵、创造伟大”的时代风尚.某公司准备派出选手代表公司参加《中国大能手》职业技能挑战赛.经过层层选拔,最后集中在甲、乙两位选手在一项关键技能的区分上,选手完成该项挑战的时间越少越好.已知这两位选手在15次挑战训练中,完成该项关键技能挑战所用的时间(单位:秒)及挑战失败(用“×”表示)的情况如表1:据表1中甲、乙两位选手完成该项关键技能挑战所用时间的数据,应用统计软件得表2:(1)在表1中,从选手甲完成挑战用时低于90秒的成绩中,任取2个,求这2个成绩都低于80秒的概率;(2)若该公司只有一个参赛名额,以完成该项关键技能挑战所用时间为标准,根据以上信息,判断哪位选手代表公司参加职业技能挑战赛更合适?请说明你的理由.[解](1)选手甲完成挑战用时低于90秒的成绩共有6个,其中低于80秒的成绩有3个,分别记为A1,A2,A3,其余的3个分别记为B1,B2,B3,从6个成绩中任取2个的所有取法有:A1A2,A1A3,A1B1,A1B2,A1B3,A2A3,A2B1,A2B2,A2B3,A3B1,A3B2,A3B3,B1B2,B1B3,B2B3,共15种,其中2个成绩都低于80秒的有A1A2,A1A3,A2A3,共3种,所以所取的2个成绩都低于80秒的概率P=315=1 5.(2)甲、乙两位选手完成关键技能挑战的次数都为10,挑战失败的次数都为5,所以只需要比较他们完成关键技能挑战的情况即可,其中x甲=85(秒),x乙=84(秒),s2甲=50.2,s2乙=54.答案①:选手乙代表公司参加职业技能挑战赛比较合适,因为在相同次数的挑战中,两位选手在关键技能挑战的完成次数和失败次数都分别相同,但x甲>x乙,乙选手平均用时更短.答案②:选手甲代表公司参加职业技能挑战赛比较合适,因为在相同次数的挑战中,两位选手在关键技能挑战的完成次数和失败次数都分别相同,虽然x甲>x乙,但两者相差不大,水平相当,s2甲<s2乙,表明甲选手的发挥更稳定.答案③:选手乙代表公司参加职业技能挑战赛比较合适,因为在相同次数的挑战中,两位选手在关键技能挑战的完成次数和失败次数都分别相同,但x乙<x甲,乙选手平均用时更短,从表1中的数据整体看,甲、乙的用时都逐步减少,s2乙>s2甲,说明乙选手进步幅度更大,成绩提升趋势更好.(答案不唯一)4.(2019·某某模拟)互联网使我们的生活日益便捷,网络外卖也开始成为不少人日常生活中不可或缺的一部分.某市一调查机构针对该市市场占有率较高的甲、乙两家网络外卖企业(以下简称外卖甲、外卖乙)的经营情况进行了调查,调查结果如下表:况;(2)据统计表明,y与x之间具有线性关系.①请用相关系数r对y与x之间的相关性强弱进行判断(若|r|>0.75,则可认为y与x有较强的线性相关关系(r值精确到0.001));②经计算求得y 与x 之间的回归方程为y ^=1.382x-2.674,假定每单外卖业务,企业平均能获取纯利润3元,试预测当外卖乙日接单量不低于25百单时,外卖甲所获取的日纯利润的大致X 围(x 值精确到0.01).相关公式:r =∑ni =1(x i -x )(y i -y )∑ni =1(x i -x )2∑ni =1(y i -y )2.参考数据:∑5i =1(x i -x )(y i -y )=66,∑5i =1(x i -x )2∑5i =1(y i -y )2≈77.[解] (1)由题可知x =5+2+9+8+115=7(百单),y =2+3+10+5+155=7(百单).外卖甲的日接单量的方差s 2甲=10,外卖乙的日接单量的方差s 2乙=23.6,因为x =y ,s 2甲<s 2乙,即外卖甲平均日接单量与外卖乙相同,且外卖甲日接单量更集中一些,所以外卖甲比外卖乙经营状况更好.(2)①计算可得,相关系数r =6677≈0.857>0.75,所以可认为y 与x 之间有较强的线性相关关系. ②令y ≥25,得1.382x -2.674≥25,解得x ≥20.02, 又20.02×100×3=6 006,所以当外卖乙日接单量不低于25百单时,外卖甲所获取的日纯利润大约不低于6 006元. 5.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.x y w∑8i =1(x i -x )2∑8i =1(w i -w )2∑8i =1(x i -x )(y i-y )∑8i =1(w i -w )(y i-y )表中w i =x i ,w =18∑i =1w i .(1)根据散点图判断,y ^=a ^+b ^x 与y ^=c ^+d ^x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题: ①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v ^=α^+β^u 的斜率和截距的最小二乘法估计分别为β^=∑ni =1(u i -u )(v i -v )∑ni =1(u i -u )2,α^=v -β^u . [解] (1)由散点图可以判断,y ^=c ^+d ^x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2)令w =x ,先建立y 关于w 的线性回归方程.由于d ^=∑8i =1(w i -w )(y i -y )∑8i =1(w i -w )2=108.81.6=68, c ^=y -d ^w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w , 因此y 关于x 的回归方程为y ^=100.6+68x . (3)①由(2)知,当x =49时,年销售量y 的预报值y ^=100.6+6849=576.6, 年利润z 的预报值z ^=576.6×0.2-49=66.32. ②根据(2)的结果知,年利润z 的预报值 z ^=0.2(100.6+68x )-x =-x +13.6x +20.12.所以当x =13.62=6.8,即x =46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

规范解答集训(三) 概率与统计(建议用时:40分钟)1.某机构组织语文、数学学科能力竞赛,按照一定比例淘汰后,颁发一、二、三等奖(分别对应成绩等级的一、二、三等).现有某考场所有考生的两科成绩等级统计如图1所示,其中获数学二等奖的考生有12人.图1(1)求该考场考生中获语文一等奖的人数;(2)用随机抽样的方法从获得数学和语文二等奖的考生中各抽取5人,进行综合素质测试,将他们的综合得分绘成茎叶图(如图2所示),求样本的平均数及方差并进行比较分析;图2(3)已知本考场的所有考生中,恰有3人两科均获一等奖,在至少一科获一等奖的考生中,随机抽取2人进行访谈,求这2人两科均获一等奖的概率.[解] (1)∵获数学二等奖的考生有12人,∴该考场考生的总人数为121-0.40-0.26-0.10=50,故该考场获语文一等奖的考生人数为50×(1-0.38×2-0.16)=4.(2)设获数学二等奖考生综合得分的平均数和方差分别为x 1,s 21,获语文二等奖考生综合得分的平均数和方差分别为x 2,s 22.x 1=81+84+92+90+935=88,x 2=79+89+84+86+875=85,s 21=15×[(-7)2+(-4)2+42+22+52]=22,s 22=15×[(-6)2+42+(-1)2+12+22]=11.6,∵88>85,11.6<22,∴获数学二等奖考生较获语文二等奖考生综合素质测试的平均分高,但是成绩差距较大,稳定性较差.(3)两科均获一等奖的考生共有3人,则仅数学获一等奖的考生有2人,仅语文获一等奖的考生有1人.把两科均获一等奖的3人分别记为A 1,A 2,A 3,仅数学获一等奖的2人分别记为B 1,B 2,仅语文获一等奖的1人记为C ,则在至少一科获一等奖的考生中,随机抽取2人的基本事件有A 1A 2,A 1A 3,A 1B 1,A 1B 2,A 1C ,A 2A 3,A 2B 1,A 2B 2,A 2C ,A 3B 1,A 3B 2,A 3C ,B 1B 2,B 1C ,B 2C ,共15个.记“这2人两科均获一等奖”为事件M ,则事件M 包含的基本事件有A 1A 2,A 1A 3,A 2A 3,共3个, ∴P (M )=315=15,故这2人两科均获一等奖的概率为15.2.(2019·唐山模拟)最近青少年的视力健康问题引起人们的高度重视,某地区为了解当地24所小学,24所初中和12所高中的学生的视力状况,准备采用分层抽样的方法从这些学校中随机抽取5所学校对学生进行视力调查.(1)若从所抽取的5所学校中再随机抽取3所学校进行问卷调查,求抽到的这3所学校中,小学、初中、高中分别有一所的概率;(2)若某小学被抽中,调查得到了该小学前五个年级近视率y 的数据如下表:测六年级学生的近视率.附:回归直线y ^=b ^x +a ^的斜率和截距的最小二乘法估计公式分别为b ^=∑ni =1x i y i -n x y ∑ni =1x 2i -n x2,a ^=y -b ^x .参考数据:∑5i =1x i y i =2.76,∑5i =1x 2i =55.[解] (1)由24∶24∶12=2∶2∶1,得抽取的5所学校中有2所小学、2所初中、1所高中,分别设为a 1,a 2,b 1,b 2,c ,从这5所学校中随机抽取3所学校的所有基本事件为(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 2,c ),(a 1,b 1,b 2),(a 1,b 1,c ),(a 1,b 2,c ),(a 2,b 1,b 2),(a 2,b 1,c ),(a 2,b 2,c ),(b 1,b 2,c ),共10种,设事件A 表示“抽到的这3所学校中,小学、初中、高中分别有一所”,则事件A 包含的基本事件为(a 1,b 1,c ),(a 1,b 2,c ),(a 2,b 1,c ),(a 2,b 2,c ),共4种,故P (A )=410=25.(2)由题中表格数据得x =3,y =0.15,5x y =2.25,5x 2=45,且由参考数据:∑5i =1x i y i =2.76,∑5i =1x 2i =55,得b ^=2.76-2.2555-45=0.051,a ^=0.15-0.051×3=-0.003,得线性回归方程为y ^=0.051x -0.003.当x =6时,代入得y ^=0.051×6-0.003=0.303, 所以六年级学生的近视率在0.303左右.3.(2019·昆明模拟)《中国大能手》是央视推出的一档大型职业技能挑战赛类的节目,旨在通过该节目,在全社会传播和弘扬“劳动光荣、技能宝贵、创造伟大”的时代风尚.某公司准备派出选手代表公司参加《中国大能手》职业技能挑战赛.经过层层选拔,最后集中在甲、乙两位选手在一项关键技能的区分上,选手完成该项挑战的时间越少越好.已知这两位选手在15次挑战训练中,完成该项关键技能挑战所用的时间(单位:秒)及挑战失败(用“×”表示)的情况如表1:据表1中甲、乙两位选手完成该项关键技能挑战所用时间的数据,应用统计软件得表2:(1)在表1中,从选手甲完成挑战用时低于90秒的成绩中,任取2个,求这2个成绩都低于80秒的概率;(2)若该公司只有一个参赛名额,以完成该项关键技能挑战所用时间为标准,根据以上信息,判断哪位选手代表公司参加职业技能挑战赛更合适?请说明你的理由.[解](1)选手甲完成挑战用时低于90秒的成绩共有6个,其中低于80秒的成绩有3个,分别记为A1,A2,A3,其余的3个分别记为B1,B2,B3,从6个成绩中任取2个的所有取法有:A1A2,A1A3,A1B1,A1B2,A1B3,A2A3,A2B1,A2B2,A2B3,A3B1,A3B2,A3B3,B1B2,B1B3,B2B3,共15种,其中2个成绩都低于80秒的有A1A2,A1A3,A2A3,共3种,所以所取的2个成绩都低于80秒的概率P=315=1 5.(2)甲、乙两位选手完成关键技能挑战的次数都为10,挑战失败的次数都为5,所以只需要比较他们完成关键技能挑战的情况即可,其中x甲=85(秒),x乙=84(秒),s2甲=50.2,s2乙=54.答案①:选手乙代表公司参加职业技能挑战赛比较合适,因为在相同次数的挑战中,两位选手在关键技能挑战的完成次数和失败次数都分别相同,但x甲>x乙,乙选手平均用时更短.答案②:选手甲代表公司参加职业技能挑战赛比较合适,因为在相同次数的挑战中,两位选手在关键技能挑战的完成次数和失败次数都分别相同,虽然x甲>x乙,但两者相差不大,水平相当,s2甲<s2乙,表明甲选手的发挥更稳定.答案③:选手乙代表公司参加职业技能挑战赛比较合适,因为在相同次数的挑战中,两位选手在关键技能挑战的完成次数和失败次数都分别相同,但x乙<x甲,乙选手平均用时更短,从表1中的数据整体看,甲、乙的用时都逐步减少,s2乙>s2甲,说明乙选手进步幅度更大,成绩提升趋势更好.(答案不唯一)4.(2019·昆明模拟)互联网使我们的生活日益便捷,网络外卖也开始成为不少人日常生活中不可或缺的一部分.某市一调查机构针对该市市场占有率较高的甲、乙两家网络外卖企业(以下简称外卖甲、外卖乙)的经营情况进行了调查,调查结果如下表:况;(2)据统计表明,y与x之间具有线性关系.①请用相关系数r对y与x之间的相关性强弱进行判断(若|r|>0.75,则可认为y与x有较强的线性相关关系(r值精确到0.001));②经计算求得y 与x 之间的回归方程为y ^=1.382x -2.674,假定每单外卖业务,企业平均能获取纯利润3元,试预测当外卖乙日接单量不低于25百单时,外卖甲所获取的日纯利润的大致范围(x 值精确到0.01).相关公式:r =∑ni =1 (x i -x )(y i -y )∑ni =1(x i -x )2∑ni =1(y i -y )2.参考数据:∑5i =1(x i -x )(y i -y )=66,∑5i =1(x i -x )2∑5i =1(y i -y )2≈77.[解] (1)由题可知x =5+2+9+8+115=7(百单),y =2+3+10+5+155=7(百单).外卖甲的日接单量的方差s 2甲=10,外卖乙的日接单量的方差s 2乙=23.6,因为x =y ,s 2甲<s 2乙,即外卖甲平均日接单量与外卖乙相同,且外卖甲日接单量更集中一些,所以外卖甲比外卖乙经营状况更好.(2)①计算可得,相关系数r =6677≈0.857>0.75,所以可认为y 与x 之间有较强的线性相关关系. ②令y≥25,得1.382x -2.674≥25,解得x ≥20.02, 又20.02×100×3=6 006,所以当外卖乙日接单量不低于25百单时,外卖甲所获取的日纯利润大约不低于6 006元. 5.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i =x i ,w =18∑i =1w i .(1)根据散点图判断,y ^=a ^+b ^ x 与y ^=c ^+d ^x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题: ①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v ^=α^+β^u 的斜率和截距的最小二乘法估计分别为β^=∑ni =1(u i -u )(v i -v )∑ni =1(u i -u )2,α^=v -β^ u . [解] (1)由散点图可以判断,y ^=c ^+d ^x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2)令w =x ,先建立y 关于w 的线性回归方程.由于d ^=∑8i =1(w i -w )(y i -y )∑8i =1(w i -w )2=108.81.6=68, c ^=y -d ^w =563-68×6.8=100.6, 所以y 关于w 的线性回归方程为y ^=100.6+68w , 因此y 关于x 的回归方程为y ^=100.6+68x . (3)①由(2)知,当x =49时,年销售量y 的预报值y ^=100.6+6849=576.6, 年利润z 的预报值z ^=576.6×0.2-49=66.32. ②根据(2)的结果知,年利润z 的预报值 z ^=0.2(100.6+68x )-x =-x +13.6x +20.12.所以当x =13.62=6.8,即x =46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.。

相关文档
最新文档