线性代数讲义-强化
考研数学之线性代数讲义(考点知识点+概念定理总结)
收集自网络,不以任何盈利为目的。
欢迎考研的同学,下载学习。
线性代数讲义目录第一讲基本概念线性方程组矩阵与向量初等变换和阶梯形矩阵线性方程组的矩阵消元法第二讲行列式完全展开式化零降阶法其它性质克莱姆法则第三讲矩阵乘法乘积矩阵的列向量和行向量矩阵分解矩阵方程逆矩阵伴随矩阵第四讲向量组线性表示向量组的线性相关性向量组的极大无关组和秩矩阵的秩第五讲方程组解的性质解的情况的判别基础解系和通解第六讲特征向量与特征值相似与对角化特征向量与特征值—概念,计算与应用相似对角化—判断与实现附录一内积正交矩阵施密特正交化实对称矩阵的对角化第七讲二次型二次型及其矩阵可逆线性变量替换实对称矩阵的合同标准化和规范化惯性指数正定二次型与正定矩阵附录二向量空间及其子空间附录三两个线性方程组的解集的关系附录四06,07年考题第一讲基本概念1.线性方程组的基本概念线性方程组的一般形式为:a11x1+a12x2+…+a1nxn=b1,a21x1+a22x2+…+a2nxn=b2,…………am1x1+am2x2+…+amnxn=bm,其中未知数的个数n和方程式的个数m不必相等.线性方程组的解是一个n维向量(k1,k2, …,kn)(称为解向量),它满足:当每个方程中的未知数xi 都用ki替代时都成为等式.线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解.b 1=b2=…=bm=0的线性方程组称为齐次线性方程组.n维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解).把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组.2.矩阵和向量(1)基本概念矩阵和向量都是描写事物形态的数量形式的发展.由m⨯n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m⨯n 型矩阵.例如2 -1 0 1 11 1 1 0 22 5 4 -2 93 3 3 -1 8是一个4⨯5矩阵.对于上面的线性方程组,称矩阵a11 a12… a1na11a12… a1nb1A= a21 a22… a2n 和(A|β)= a21 a22… a2n b2…………………am1 am2… amnam1am2… amnbm为其系数矩阵和增广矩阵.增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素.元素全为0的矩阵称为零矩阵,通常就记作0.两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等.由n个数构成的有序数组称为一个n维向量,称这些数为它的分量.书写中可用矩阵的形式来表示向量,例如分量依次是a1,a2,⋯ ,an的向量可表示成a 1(a 1,a 2,⋯ ,a n )或 a 2 , ┆ a n请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1⨯n 矩阵,右边是n ⨯1矩阵).习惯上把它们分别称为行向量和列向量.(请注意与下面规定的矩阵的行向量和列向量概念的区别.)一个m ⨯n 的矩阵的每一行是一个n 维向量,称为它的行向量; 每一列是一个m 维向量, 称为它的列向量.常常用矩阵的列向量组来写出矩阵,例如当矩阵A 的列向量组为α1, α2,⋯ ,αn 时(它们都是表示为列的形式!)可记A =(α1, α2,⋯ ,αn ).矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0.两个向量α和β相等(记作α=β),是指它的维数相等,并且对应的分量都相等.(2) 线性运算和转置线性运算是矩阵和向量所共有的,下面以矩阵为例来说明.加(减)法:两个m ⨯n 的矩阵A 和B 可以相加(减),得到的和(差)仍是m ⨯n 矩阵,记作 A +B (A -B ),法则为对应元素相加(减).数乘: 一个m ⨯n 的矩阵A 与一个数c 可以相乘,乘积仍为m ⨯n 的矩阵,记作c A ,法则为A 的每个元素乘c.这两种运算统称为线性运算,它们满足以下规律:① 加法交换律: A +B =B +A .② 加法结合律: (A +B )+C =A +(B +C ).③ 加乘分配律: c(A +B )=c A +c B .(c+d)A =c A +d A . ④ 数乘结合律: c(d)A =(cd)A . ⑤ c A =0⇔ c=0 或A =0.转置:把一个m ⨯n 的矩阵A 行和列互换,得到的n ⨯m 的矩阵称为A 的转置,记作A T (或A '). 有以下规律: ① (A T )T = A . ② (A +B )T=A T+B T. ③ (c A )T =c A T .转置是矩阵所特有的运算,如把转置的符号用在向量上,就意味着把这个向量看作矩阵了.当α是列向量时, α T 表示行向量, 当α是行向量时,α T 表示列向量.向量组的线性组合:设α1, α2,…,αs 是一组n 维向量, c 1,c 2,…,c s 是一组数,则称 c 1α1+c 2α2+…+c s αs为α1, α2,…,αs 的(以c 1,c 2,…,c s 为系数的)线性组合.n 维向量组的线性组合也是n 维向量.(3) n 阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n 的矩阵也常常叫做n 阶矩阵.把n 阶矩阵的从左上到右下的对角线称为它对角线.(其上的元素行号与列号相等.)下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的.对角矩阵: 对角线外的的元素都为0的n阶矩阵.单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I).数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E.上三角矩阵: 对角线下的的元素都为0的n阶矩阵.下三角矩阵: 对角线上的的元素都为0的n阶矩阵.对称矩阵:满足A T=A矩阵.也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵.(反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.)3. 矩阵的初等变换和阶梯形矩阵矩阵有以下三种初等行变换:①交换两行的位置.②用一个非0的常数乘某一行的各元素.③把某一行的倍数加到另一行上.(称这类变换为倍加变换)类似地, 矩阵还有三种初等列变换,大家可以模仿着写出它们,这里省略了. 初等行变换与初等列变换统称初等变换.阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面.②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增.把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角.简单阶梯形矩阵:是特殊的阶梯形矩阵,特点为:③台角位置的元素为1.④并且其正上方的元素都为0.每个矩阵都可以用初等行变换化为阶梯形矩阵和简单阶梯形矩阵.这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练.请注意: 1.一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零行数和台角位置是确定的.2. 一个矩阵用初等行变换化得的简单阶梯形矩阵是唯一的.4. 线性方程组的矩阵消元法线性方程组的基本方法即中学课程中的消元法:用同解变换把方程组化为阶梯形方程组(即增广矩阵为阶梯形矩阵的方程组).线性方程组的同解变换有三种:①交换两个方程的上下位置.②用一个非0的常数乘某个方程.③把某个方程的倍数加到另一个方程上.以上变换反映在增广矩阵上就是三种初等行变换.线性方程组求解的基本方法是消元法,用增广矩阵或系数矩阵来进行,称为矩阵消元法.对非齐次线性方程组步骤如下:(1)写出方程组的增广矩阵(A|β),用初等行变换把它化为阶梯形矩阵(B|γ).(2)用(B|γ)判别解的情况:如果最下面的非零行为(0,0, ⋯,0|d),则无解,否则有解.有解时看非零行数r(r不会大于未知数个数n),r=n时唯一解;r<n时无穷多解.(推论:当方程的个数m<n时,不可能唯一解.)(3)有唯一解时求解的初等变换法:去掉(B|γ)的零行,得到一个n×(n+1)矩阵(B0|γ0),并用初等行变换把它化为简单阶梯形矩阵(E|η),则η就是解.对齐次线性方程组:(1)写出方程组的系数矩阵A,用初等行变换把它化为阶梯形矩阵B.(2)用B判别解的情况:非零行数r=n时只有零解;r<n时有非零解(求解方法在第五章讲). (推论:当方程的个数m<n时,有非零解.)讨论题1.设A是n阶矩阵,则(A) A是上三角矩阵⇒A是阶梯形矩阵.(B) A是上三角矩阵⇐A是阶梯形矩阵.(C) A是上三角矩阵⇔A是阶梯形矩阵.(D) A是上三角矩阵与A是阶梯形矩阵没有直接的因果关系.2.下列命题中哪几个成立?(1) 如果A是阶梯形矩阵,则A去掉任何一行还是是阶梯形矩阵.(2) 如果A是阶梯形矩阵,则A去掉任何一列还是是阶梯形矩阵.(3) 如果(A|B)是阶梯形矩阵,则A也是阶梯形矩阵.(4) 如果(A|B)是阶梯形矩阵,则B也是阶梯形矩阵.(5) 如果 A 是阶梯形矩阵,则A和B都是阶梯形矩阵.B第二讲 行列式一.概念复习 1. 形式和意义形式:用n 2个数排列成的一个n 行n 列的表格,两边界以竖线,就成为一个n 阶行列式: a 11 a 12 … a 1na 21 a 22 … a 2n… … … . a n1 a n2 … a nn如果行列式的列向量组为α1, α2, … ,αn ,则此行列式可表示为|α1, α2, … ,αn |. 意义:是一个算式,把这n 2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值.请注意行列式和矩阵在形式上和意义上的区别.当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.)每个n 阶矩阵A 对应一个n 阶行列式,记作|A |.行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0.2. 定义(完全展开式)2阶和3阶行列式的计算公式:a 11 a 12a 21 a 22 = a 11a 22-a 12a 21 . a 11 a 12 a 13a 21 a 22 a 23 = a 11a 22a 33+ a 12a 23a 31+ a 13a 21a 32-a 13a 22a 31- a 11a 23a 32-a 12a 21a 33.a 31 a 32 a 33一般地,一个n 阶行列式 a 11 a 12 … a 1na 21 a 22 … a 2n… … … a n1 a n2 … a nn的值是许多项的代数和,每一项都是取自不同行,不同列的n 个元素的乘积,其一般形式为:n nj j j a a a 2121,这里把相乘的n 个元素按照行标的大小顺序排列,它们的列标j 1j 2…j n 构成1,2, …,n 的一个全排列(称为一个n 元排列),共有n!个n 元排列,每个n 元排列对应一项,因此共有n!个项.所谓代数和是在求总和时每项先要乘+1或-1.规定τ(j 1j 2…j n )为全排列j 1j 2…j n 的逆序数(意义见下面),则项nnj j j a a a 2121所乘的是.)1()(21n j j jτ-全排列的逆序数即小数排列在大数右面的现象出现的个数.逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数:023********, τ(436512)=3+2+3+2+0+0=10.至此我们可以写出n 阶行列式的值: a 11 a 12 … a 1na 21 a 22 … a 2n =.)1(21212121)(n n nnj j j j j j j j j a a a τ-∑… … … a n1 a n2 … a nn这里∑nj j j 21表示对所有n 元排列求和.称此式为n 阶行列式的完全展开式.用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算.例如对角行列式,上(下)三角行列式的值就等于主对角线上的元素的乘积,因为其它项都为0.2. 化零降阶法把n 阶行列式的第i 行和第j 列划去后所得到的n-1阶行列式称为(i,j)位元素a ij 的余子式,记作M ij .称A ij =(-1)i+j M ij 为元素a ij 的代数余子式.定理(对某一行或列的展开)行列式的值等于该行(列)的各元素与其代数余子式乘积之和.命题 第三类初等变换(倍加变换)不改变行列式的值.化零降阶法 用命题把行列式的某一行或列化到只有一个元素不为0,再用定理.于是化为计算一个低1阶的行列式.化零降阶法是实际计算行列式的主要方法,因此应该熟练掌握.3.其它性质行列式还有以下性质:① 把行列式转置值不变,即|A T |=|A | . ② 某一行(列)的公因子可提出.于是, |c A |=c n |A |.③ 对一行或一列可分解,即如果某个行(列)向量α=β+γ ,则原行列式等于两个行列式之和,这两个行列式分别是把原行列式的该行(列)向量α换为β或γ 所得到的行列式.例如|α,β1+β2,γ |=|α,β1,γ |+|α,β2,γ |.④ 把两个行(列)向量交换, 行列式的值变号.⑤ 如果一个行(列)向量是另一个行(列)向量的倍数,则行列式的值为0. ⑥ 某一行(列)的各元素与另一行(列)的对应元素的代数余子式乘积之和=0. ⑦ 如果A 与B 都是方阵(不必同阶),则 A * = A O =|A ||B |. O B * B范德蒙行列式:形如1 1 1 … 1 a 1 a2 a3 … a na 12 a 22 a 32 … a n 2… … … … a 1n-i a 2n-i a 3n-i … a n n-i的行列式(或其转置).它由a 1,a 2 ,a 3,…,a n 所决定,它的值等于 ).(i j ji a a -∏<因此范德蒙行列式不等于0⇔ a 1,a 2 ,a 3,…,a n 两两不同.对于元素有规律的行列式(包括n 阶行列式),常常可利用性质简化计算,例如直接化为三角行列式等.4.克莱姆法则克莱姆法则 应用在线性方程组的方程个数等于未知数个数n (即系数矩阵为n 阶矩阵)的情形.此时,如果它的系数矩阵的行列式的值不等于0,则方程组有唯一解,这个解为(D 1/D, D 2/D,⋯,D n /D),这里D 是系数行列式的值, D i 是把系数行列式的第i 个列向量换成常数列向量所得到的行列式的值.说明与改进:按法则给的公式求解计算量太大,没有实用价值.因此法则的主要意义在理论上,用在对解的唯一性的判断,而在这方面法则不够. 法则的改进:系数行列式不等于0是唯一解的充分必要条件.实际上求解可用初等变换法:对增广矩阵(A |β)作初等行变换,使得A 变为单位矩阵: (A |β)→(E |η), η就是解.用在齐次方程组上 :如果齐次方程组的系数矩阵A 是方阵,则它只有零解的充分必要条件是|A |≠0.二. 典型例题1.利用性质计算元素有规律的行列式例1 ① 2 a a a a ② 1+x 1 1 1 ③ 1+a 1 1 1 a 2 a a a 1 1+x 1 1 2 2+a 2 2a a 2 a a . 1 1 1+x 1 . 3 3 3+a 3 .a a a 2 a 1 1 1 1+x 4 4 4 4+aa a a a 2 例2 1 2 3 4 52 3 4 5 1 3 4 5 1 2 . 4 5 1 2 3 5 1 2 3 4例3 1+x 1 1 1 1 1 1+x 2 1 1 . 1 1 1+x 3 1 1 1 1 1+x 4例4 a 0 b c0 a c b . b c a 0 c b 0 a例5 1-a a 0 0 0-1 1-a a 0 00 -1 1-a a 0 . (96四)0 0 -1 1-a a0 0 0 -1 1-a2. 测试概念与性质的题例6 x3-3 1 -3 2x+2多项式f(x)= -7 5 -2x 1 ,求f(x)的次数和最高次项的系数.X+3 -1 33x2-29 x3 6 -6例7求 x-3 a -1 4f(x)= 5 x-8 0 –2 的x4和x3的系数.0 b x+1 12 2 1 x例8 设4阶矩阵A=(α, γ1, γ2 ,γ3),B=(β, γ1, γ2 ,γ3),|A|=2, |B|=3 ,求|A+B| .例9 a b c d已知行列式 x -1 -y z+1 的代数余子式A11=-9,A12=3,A13=-1,A14=3,求x,y,z.1 -z x+3 yy-2 x+1 0 z+3例10 求行列式 3 0 4 0 的第四行各元素的余子式的和.(01) 2 2 2 20 -7 0 05 3 -2 23.几个n阶行列式两类爪形行列式及其值:例11 a1 a2a3… an-1anb1 c20 … 0 0证明 0 b2 c30 0 =11111(1)nii i i nib b ac c--+=-∑ .…………0 0 0 …b n-1 c n提示: 只用对第1行展开(M1i都可直接求出).例12 a0 a1a2… an-1anb1 c10 … 0 0证明 b2 0 c2… 0 0 =011111n ni i i i i niia c c c abc c-+==-∑∏ . …………b n 0 0 …0c n提示: 只用对第1行展开(M1i都可直接求出). 另一个常见的n阶行列式:例13 证明a+b b 0 … 0 0 a a+b b … 0 0… … … … = 11n n nn iii abab a b++-=-=-∑(当a ≠b 时).0 0 0 … a+b b0 0 0 a a+b提示:把第j 列(行)的(-1)j-1倍加到第1列(行)上(j=2,…,n),再对第1列(行)展开.4.关于克莱姆法则的题 例14设有方程组x 1+x 2+x 3=a+b+c, ax 1+bx 2+cx 3=a 2+b 2+c 2,bcx 1+acx 2+abx 3=3abc.(1)证明此方程组有唯一解的充分必要条件为a,b,c 两两不等. (2)在此情况求解.参考答案例1 ①(2+4a)(2-a)4.② x 3(x+4). ③ a 3(a+10). 例2 1875.例3 x 1x 2x 3x 4+x 2x 3x 4+x 1x 3x 4+x 1x 2x 4+x 1x 2x 3. 例4 (a+b+c)(a+b-c)(a-b+c)(a-b-c). 例5 1-a+a 2-a 3+a 4-a 5. 例6 9,-6例7 1,-10. 例8 40.例9 x=0,y=3,z=-1. 例10 -28.例14 x 1=a,x 2=b,x 3=c..第三讲矩阵一.概念复习1. 矩阵乘法的定义和性质定义2.1 当矩阵A的列数和B的行数相等时,和A和B可以相乘,乘积记作AB. AB的行数和A相等,列数和B相等. AB的(i,j)位元素等于A的第i个行向量和B的第j个列向量(维数相同)对应分量乘积之和.设 a11 a12… a1nb11b12… b1sc11c12… c1sA= a21 a22... a2n B= b21 b22... b2s C=AB=c21 c22 (2)………………………a m1 am2… amn, bn1bn2… bns, cm1cm2… cms,则c ij =ai1b1j+ai2b2j+…+ainbnj.矩阵的乘法在规则上与数的乘法有不同:①矩阵乘法有条件.②矩阵乘法无交换律.③矩阵乘法无消去律,即一般地由AB=0推不出A=0或B=0.由AB=AC和A≠0推不出B=C.(无左消去律)由BA=CA和A≠0推不出B=C. (无右消去律)请注意不要犯一种常见的错误:把数的乘法的性质简单地搬用到矩阵乘法中来.矩阵乘法适合以下法则:①加乘分配律 A(B+C)= AB+AC,(A+B)C=AC+BC.②数乘性质 (c A)B=c(AB).③结合律 (AB)C= A(BC).④ (AB)T=B T A T.2. n阶矩阵的方幂和多项式任何两个n阶矩阵A和B都可以相乘,乘积AB仍是n阶矩阵.并且有行列式性质: |AB|=|A||B|.如果AB=BA,则说A和B可交换.方幂设k是正整数, n阶矩阵A的k次方幂A k即k个A的连乘积.规定A 0=E. 显然A的任何两个方幂都是可交换的,并且方幂运算符合指数法则:①A k A h= A k+h.② (A k)h= A kh.但是一般地(AB)k和A k B k不一定相等!n阶矩阵的多项式设f(x)=am x m+am-1x m-1+…+a1x+a,对n阶矩阵A规定f(A)=a m A m+a m-1A m-1+…+ a1A+a0E.称为A的一个多项式.请特别注意在常数项上加单位矩阵E.乘法公式一般地,由于交换性的障碍,小代数中的数的因式分解和乘法公式对于n阶矩阵的不再成立.但是如果公式中所出现的n 阶矩阵互相都是乘法交换的,则乘法公式成立.例如当A 和B 可交换时,有:(A ±B )2=A 2±2AB +B 2;A 2-B 2=(A +B )(A -B )=(A +B )(A -B ). 二项展开式成立: BACB A -=∑=+1)(等等.前面两式成立还是A 和B 可交换的充分必要条件.同一个n 阶矩阵的两个多项式总是可交换的. 一个n 阶矩阵的多项式可以因式分解.3. 分块法则矩阵乘法的分块法则是简化矩阵乘法的一种方法.对两个可以相乘的矩阵A 和B ,可以先用纵横线把它们切割成小矩阵(一切A 的纵向切割和B 的横向切割一致!),再用它们来作乘法.(1)两种常见的矩阵乘法的分块法则A 11 A 12B 11 B 12 = A 11B 11+A 12B 21 A 11B 12+A 12B 22 A 21 A 22 B 21 B 22 A 21B 11+A 22B 21 A 21B 12+A 22B 22 要求A ij 的列数B jk 和的行数相等. 准对角矩阵的乘法: 形如A 1 0 ... 0 A = 0 A 2 0… … …0 0 … A n的矩阵称为准对角矩阵,其中A 1,A 2,…,A k 都是方阵.两个准对角矩阵A 1 0 ... 0 B 1 0 0A = 0 A 2 … 0 ,B = 0 B 2 … 0 … … … … … … 0 0 … A k 0 0 … B k 如果类型相同,即A i 和B i 阶数相等,则A 1B 1 0 0AB = 0 A 2B 2 … 0 .… … …0 0 … A k B k(2)乘积矩阵的列向量组和行向量组设A 是m ⨯n 矩阵B 是n ⨯s 矩阵. A 的列向量组为α1,α2,…,αn ,B 的列向量组为β1, β2,…,βs , AB 的列向量组为γ1, γ2,…,γs ,则根据矩阵乘法的定义容易看出(也是分块法则的特殊情形):① AB 的每个列向量为:γi =A βi ,i=1,2,…,s. 即A (β1, β2,…,βs )= (A β1,A β2,…,A βs ).② β=(b 1,b 2,…,b n )T ,则A β= b 1α1+b 2α2+…+b n αn .应用这两个性质可以得到:如果βi=(b1i,b2i,…,b ni)T,则γi=AβI=b1iα1+b2iα2+…+b niαn.即:乘积矩阵AB的第i个列向量γi是A的列向量组α1, α2,…,αn的线性组合,组合系数就是B的第i个列向量βi的各分量.类似地, 乘积矩阵AB的第i个行向量是B的行向量组的线性组合,组合系数就是A的第i个行向量的各分量.以上规律在一般教材都没有强调,但只要对矩阵乘法稍加分析就不难得出.它们无论在理论上和计算中都是很有用的.(1) 当两个矩阵中,有一个的数字很简单时,直接利用以上规律写出乘积矩阵的各个列向量或行向量,从而提高了计算的速度.(2) 利用以上规律容易得到下面几个简单推论:用对角矩阵Λ从左侧乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的各行向量; 用对角矩阵Λ从右侧乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的各列向量.数量矩阵k E乘一个矩阵相当于用k乘此矩阵;单位矩阵乘一个矩阵仍等于该矩阵.两个同阶对角矩阵的相乘只用把对角线上的对应元素相乘.求对角矩阵的方幂只需把对角线上的每个元素作同次方幂.(3) 矩阵分解:当一个矩阵C的每个列向量都是另一个A的列向量组的线性组合时,可以构造一个矩阵B,使得C=AB.例如设A=(α,β,γ), C=(α+2β-γ,3α-β+γ,α+2γ),令1 3 1B= 2 -1 0 ,则C=AB.-1 1 2(4) 初等矩阵及其在乘法中的作用对单位矩阵E作一次初等(行或列)变换,所得到的矩阵称为初等矩阵.有三类初等矩阵:E(i,j):交换E的i,j两行(或列)所得到的矩阵.E(i(c)):用非0数c乘E的第i行(或列)所得到的矩阵.也就是把E的对角线上的第i 个元素改为c.E(i,j(c))(i≠j):把E的第j行的c倍加到第i行上(或把第i列的c倍加到第j列上)所得到的矩阵, 也就是把E的(i,j)位的元素改为c.命题对矩阵作一次初等行(列)变换相当于用一个相应的初等矩阵从左(右)乘它.4. 矩阵方程和可逆矩阵(伴随矩阵)(1) 矩阵方程矩阵不能规定除法,乘法的逆运算是解下面两种基本形式的矩阵方程:(I) AX=B.(II) XA=B.这里假定A是行列式不为0的n阶矩阵,在此条件下,这两个方程的解都是存在并且唯一的.(否则解的情况比较复杂.)当B只有一列时,(I)就是一个线性方程组.由克莱姆法则知它有唯一解.如果B有s列,设 B=(β1, β2,…,βs),则 X也应该有s列,记X=(X1,X2,…,X s),则有AX i=βi,i=1,2,…,s,这是s个线性方程组.由克莱姆法则,它们都有唯一解,从而AX=B有唯一解.这些方程组系数矩阵都是A,可同时求解,即得(I)的解法:将A和B并列作矩阵(A|B),对它作初等行变换,使得A变为单位矩阵,此时B变为解X.(A|B)→(E|X)(II)的解法:对两边转置化为(I)的形式:A T X T=B T.再用解(I)的方法求出X T,转置得X..(A T|B T)→(E|X T)矩阵方程是历年考题中常见的题型,但是考试真题往往并不直接写成(I)或(II)的形式,要用恒等变形简化为以上基本形式再求解.(2) 可逆矩阵的定义与意义定义设A是n阶矩阵,如果存在n阶矩阵B,使得AB=E, BA=E,则称A为可逆矩阵.此时B是唯一的,称为A的逆矩阵,通常记作A-1.如果A可逆,则A在乘法中有消去律:AB=0⇒B=0;AB=AC⇒B=C.(左消去律);BA=0⇒B=0;BA=CA⇒B=C. (右消去律)如果A可逆,则A在乘法中可移动(化为逆矩阵移到等号另一边):AB=C⇔B=A-1C. BA=C⇔B=CA-1.由此得到基本矩阵方程的逆矩阵解法:(I) AX=B的解X=A-1B .(II) XA=B的解X= BA-1.这种解法想法自然,好记忆,但是计算量比初等变换法大(多了一次矩阵乘积运算).(3) 矩阵可逆性的判别与性质定理 n阶矩阵A可逆⇔|A|≠0.证明“⇒”对AA-1=E两边取行列式,得|A||A-1|=1,从而|A|≠0. (并且|A-1|=|A|-1.) “⇐”因为|A|≠0,矩阵方程AX=E和XA=E都有唯一解.设B,C分别是它们的解,即AB=E, CA=E. 事实上B=C(B=EB=CAB=CE=C),于是从定义得到A可逆.推论如果A和B都是n阶矩阵,则AB=E⇔BA=E.于是只要AB=E(或BA=E)一式成立,则A和B都可逆并且互为逆矩阵.可逆矩阵有以下性质:①如果A可逆,则A-1也可逆,并且(A-1)-1=A.A T也可逆,并且(A T)-1=(A-1)T.当c≠0时, c A也可逆,并且(c A)-1=c-1A-1.对任何正整数k, A k也可逆,并且(A k)-1=(A-1)k.(规定可逆矩阵A的负整数次方幂A-k=(A k)-1=(A-1)k.)②如果A和B都可逆,则AB也可逆,并且(AB)-1=B-1A-1.(请自己推广到多个可逆矩阵乘积的情形.)初等矩阵都是可逆矩阵,并且E(i,j)-1= E(i,j), E(i(c))-1=E(i(c-1)), E(i,j(c))-1= E(i,j(-c)).(4) 逆矩阵的计算和伴随矩阵①计算逆矩阵的初等变换法当A可逆时, A-1是矩阵方程AX=E的解,于是可用初等行变换求A-1:(A|E)→(E|A-1)这个方法称为求逆矩阵的初等变换法.它比下面介绍的伴随矩阵法简单得多.②伴随矩阵若A是n阶矩阵,记A ij是|A|的(i,j)位元素的代数余子式,规定A的伴随矩阵为A11 A21… An1A*= A12 A22… A n2 =(A ij)T.………A 1n A2n… Amn请注意,规定n阶矩阵A的伴随矩阵并没有要求A可逆,但是在A可逆时, A*和A-1有密切关系.基本公式: AA*=A*A=|A|E.于是对于可逆矩阵A,有A-1=A*/|A|, 即A*=|A|A-1.因此可通过求A*来计算A-1.这就是求逆矩阵的伴随矩阵法.和初等变换法比较, 伴随矩阵法的计算量要大得多,除非n=2,一般不用它来求逆矩阵.对于2阶矩阵a b * d -bc d = -c a ,因此当ad-bc≠0时,a b -1 d -bc d = -c a (ad-bc) .伴随矩阵的其它性质:①如果A是可逆矩阵,则A*也可逆,并且(A*)-1= A/|A|=(A-1)*.② |A*|=|A|n-1.③ (A T)*=(A*)T.④ (c A)*=c n-1A*.⑤ (AB)*=B*A*;(A k)*=(A*)k.⑥当n>2时,(A*)*=|A|n-2A; n=2时,(A*)*=A.二典型例题1.计算题例1 α=(1,-2,3) T,β=(1,-1/2,1/3)T, A=αβ T,求A6.讨论:(1)一般地,如果n阶矩阵A=αβ T,则A k=(βTα)k-1A=(tr(A ))k-1A .(2)乘法结合律的应用:遇到形如βTα的地方可把它当作数处理.① 1 -1 1ααT= -1 1 -1 ,求αTα.(2003一)1 -1 1②设α=(1,0,-1)T, A=ααT,求|a E-A n|.③ n维向量α=(a,0,⋯,0,a)T, a<0, A=E-ααT, A-1=E+a-1αα T,求a. (03三,四)④ n维向量α=(1/2,0,⋯,0,1/2)T, A=E-αα T, B=E+2αα T,求AB. (95四)⑤ A=E-αβ T,其中α,β都是n维非零列向量,已知A2=3E-2A,求αTβ.例2(1999三) 1 0 1设A = 0 2 0 ,求A n-2A n-1.(n>1)1 0 1例3 1 0 0设A = 1 0 1 ,(1)证明当n>1时A n=A n-2+A2-E. (2) 求A n.0 1 0例4 设A为3阶矩阵, α1,α2,α3是线性无关的3维列向量组,满足Aα1=α1+α2+α3, Aα2=2α2+ α3, Aα3=2α2+3α3.求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B. (2005年数学四)例5设3阶矩阵A=(α1,α2,α3),|A|=1,B=(α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3),求|B|.(05)例6 3维向量α1, α2, α3, β1, β2, β3满足α1+α3+2β1-β2=0, 3α1-α2+β1-β3=0, -α2+α3-β2+β3=0,已知|α1, α2, α3|=a,求| β1, β2, β3|.例7设A是3阶矩阵, α是3维列向量,使得P=(α,Aα,A2α)可逆,并且A3α=3Aα-2A2α.又3阶矩阵B满足A=PBP-1.(1)求B.(2)求|A+E|.(01一)2 1 0例8 3阶矩阵A,B满足ABA*=2BA*+E,其中A= 1 2 0 ,求|B|.(04一)0 0 1例9 3 -5 1设3阶矩阵A= 1 -1 0 , A-1XA=XA+2A,求X.-1 0 2例10 1 1 -1设3阶矩阵A= -1 1 1 , A*X=A-1+2X,求X.1 -1 1例11 4阶矩阵A,B满足ABA-1=BA-1+3E,已知1 0 0 0A*= 0 1 0 0 ,求B. (00一)1 0 1 00 -3 0 8例12 3 0 0 1 0 0已知A= 2 1 0 , B= 0 0 0 , XA+2B=AB+2X,求X11.2 13 0 0 -1例13设α1=(5,1,-5)T, α2=(1,-3,2)T, α3=(1,-2,1)T,矩阵A满足Aα1=(4,3) T, Aα2=(7,-8) T, Aα3=(5,-5) T,求A.2.概念和证明题例14 设A是n阶非零实矩阵,满足A*=A T.证明:(1)|A|>0.(2)如果n>2,则 |A|=1.例15 设矩阵A=(a ij)3⨯3满足A*=A T,a11,a12,a13为3个相等的正数,则它们为(A) 3/3.(B) 3. (C)1/3. (D) 3. (2005年数学三)例16 设A和B都是n阶矩阵,C= A 0 ,则C*=0 B(A) |A|A* 0 . (B) |B|B * 0 .0 |B|B * 0 |A|A*(C) |A|B* 0 . (D ) |B|A* 0 .0 |B|A* 0 |A|B*例17 设A是3阶矩阵,交换A的1,2列得B,再把B的第2 列加到第3 列上,得C.求Q,使得C=AQ.例18 设A是3阶可逆矩阵,交换A的1,2行得B,则(A) 交换A*的1,2行得到B*.(B) 交换A*的1,2列得到B*.(C) 交换A*的1,2行得到-B*.(D) 交换A*的1,2列得到-B*.(2005年)例19 设A是n阶可逆矩阵, 交换A的i,j行得到B.(1) 证明B可逆.(2) 求AB-1.例20设n阶矩阵A满足A2+3A-2E=0.(1)证明A可逆,并且求A-1.(2)证明对任何整数c,A-c E可逆.讨论: 如果f(A)=0,则(1) 当f(x)的常数项不等于0时,A可逆.(2) f(c)≠0时,A-c E可逆.(3) 上述两条的逆命题不成立.例21设α是n维非零列向量,记A=E-ααT.证明(1) A2=A⇔αTα =1.(2) αTα =1⇒ A不可逆. (96一)讨论: (2)的逆命题也成立.例22 设A,B都是n阶矩阵,证明E-AB可逆⇔ E-BA可逆.例23设3阶矩阵A,B满足AB=A+B.(1) 证明A-E可逆.(2) 设 1 -3 0B= 2 1 0 ,求A.0 0 2 (91)例24设A,B是3阶矩阵, A可逆,它们满足2A-1B=B-4E.(1) 证明A-2E可逆.(2) 设 1 -2 0B= 1 2 0 ,求A.0 0 2 (2002)例25设n阶矩阵A,B满足AB=a A+b B.其中ab≠0,证明(1) A-b E和B-a E都可逆.(2) A可逆⇔ B可逆.(3) AB=BA.例26设A,B都是n阶对称矩阵, E+AB可逆,证明(E+AB)-1A也是对称矩阵.例27 设A,B都是n阶矩阵使得A+B可逆,证明(1) 如果AB=BA,则B(A+B)-1A=A(A+B)-1B.(2) 如果A.B都可逆,则B(A+B)-1A=A(A+B)-1B.(3) 等式B(A+B)-1A=A(A+B)-1B总成立.例28设A,B,C都是n阶矩阵,满足B=E+AB,C=A+CA,则B-C为(A) E.(B) -E. (C) A. (D) -A. (2005年数学四)参考答案1 -1/2 1/3例135A=35 -2 1 –2/3 .3 -3/2 1① 3.② a2(a-2n). ③ -1. ④ E. ⑤ 4.例2 O.例3 (1)提示: A n=A n-2+A2-E⇔A n-2(A2-E)=A2-E ⇔ A(A2-E)=A2-E.(2)n=2k时, 1 0 0A n = k 1 0 .k 0 1n=2k+1时, 1 0 0A n = k+1 0 1 .k 1 0例 4 1 0 0B= 1 2 2 .1 1 3例5 2.例 6 –4a.例 7 0 0 0B= 1 0 3 . |E+A|=-40 1 -2例8 1/9.例 9 -6 10 4X= -2 4 2 .-4 10 0例 10 1 1 0(1/4) 0 1 1 .1 0 1例 11 6 0 0 0B= 0 6 0 0 .6 0 6 00 3 0 -1例 12 1 0 02 0 0 .6 -1 -1例 13 2 -1 1-4 -2 -5 .例15 (A).例16 (D).例 17 0 1 1Q= 1 0 0 .0 0 1例18 (D).例19 E(i,j).例22 提示:用克莱姆法则.例如证明 ,即在E-AB可逆时证明齐次方程组(E-BA)X=0只有零解.例23 1 1/2 0A= -1/3 1 0 .0 0 2例 24 0 2 0A= -1 -1 0 .0 0 -2例25 提示:计算(A-b E)(B-a E).例28 (A).第四讲 向量组的线性关系与秩一.概念复习1. 线性表示关系设α1,α2,…,αs 是一个n 维向量组.如果n 维向量β等于α1,α2,…,αs 的一个线性组合,就说β可以用α1,α2,…,αs 线性表示.如果n 维向量组β1, β2,…,βt 中的每一个都可以可以用α1,α2,…,αs 线性表示,就说向量β1,β2,…,βt 可以用α1,α2,…,αs 线性表示.判别“β是否可以用α1, α2,…,αs 线性表示? 表示方式是否唯一?”就是问:向量方程x 1α1+ x 2α2+…+x s αs =β是否有解?解是否唯一?用分量写出这个向量方程,就是以(α1, α2,…,αs |β)为增广矩阵的线性方程组.反之,判别“以(A |β)为增广矩阵的线性方程组是否有解?解是否唯一?”的问题又可转化为“β是否可以用A 的列向量组线性表示? 表示方式是否唯一?”的问题.向量组之间的线性表示问题与矩阵乘法有密切关系: 乘积矩阵AB 的每个列向量都可以表示为A 的列向量组的线性组合,从而AB 的列向量组可以用A 的列向量组线性表示;反之,如果向量组β1,β2,…,βt 可以用α1,α2,…,αs 线性表示,则矩阵(β1,β2,…,βt )等于矩阵(α1,α2,…,αs )和一个s ⨯t 矩阵C 的乘积. C 可以这样构造: 它的第i 个列向量就是βi 对α1,α2,…,αs 的分解系数(C 不是唯一的).向量组的线性表示关系有传递性,即如果向量组β1,β2,…,βt 可以用α1,α2,…,αs 线性表示,而α1,α2,…,αs 可以用γ1,γ2,…,γr 线性表示,则β1,β2,…,βt 可以用γ1,γ2,…,γr 线性表示.当向量组α1,α2,…,αs 和β1,β2,…,βt 互相都可以表示时,就说它们等价,并记作{α1,α2,…,αs }≅{β1,β2,…,βt }.等价关系也有传递性.2. 向量组的线性相关性(1) 定义(从三个方面看线性相关性)线性相关性是描述向量组内在关系的概念,它是讨论向量组α1, α2,…,αs 中有没有向量可以用其它的s-1个向量线性表示的问题.定义 设α1,α2,…,αs 是n 维向量组,如果存在不全为0的一组数c 1,c 2,…,c s 使得c 1α1+c 2α2+…+c s αs =0, 则说α1,α2,…,αs 线性相关,否则(即要使得c 1α1+c 2α2+…+c s αs =0,必须c 1,c 2,…,c s 全为0)就说它们线性无关.于是, α1,α2,…,αs “线性相关还是无关”也就是向量方程x 1α1+ x 2α2+…+x s αs =0“有没有非零解”,也就是以(α1,α2,…,αs )为系数矩阵的齐次线性方程组有无非零解.当向量组中只有一个向量(s=1)时,它相关(无关)就是它是(不是)零向量. 两个向量的相关就是它们的对应分量成比例.(2) 性质① 当向量的个数s 大于维数n 时, α1, α2,…,αs 一定线性相关.。
2015考研数学强化-线性代数(章飞)讲义
2015考研数学强化班线性代数讲义第一讲 行列式一、理论强化1.行列式的定义 2n 个数),,2,1,(n j i a j i =排成n 行n 列的方形表)(det )1(212121,,212222111211ij j n j j j j j nnn n n n a D A A a a a a a a a a a a a a nn∆====-=∑τ称为一个n 阶行列式,n 阶行列式是一个数,它等于所有来自不同行,不同列的n 个元素的乘积1211,,,n j j n j a a a ⋅⋅的代数和.其中12,,n j j j 是1,2,n 的一个排列.1=n 时,1111a a =为一阶行列式.2.行列式的性质(1)行列式转置后,其值不变,TD D =(表示行列地位平等);(2)行列式某行(列)的元素的公因子k ,可以提到行列式符号外;(3)行列式具有分行(列)相加性;例:fe dbf e c af e d c b a +=++; (4)行列式中有两行(列)元素成比例时,其值为0; (5)互换行列式两行(列),行列式变号;(6)把某行(列)的k 倍加到另一行(列)后,行列式值不变. 3.行列式的余子式、代数余子式把j i a 所在的i 行,j 列划去余下来的1-n 阶行列式称为D 的元素j i a 的余子式记为j i M ; 称(1)i j i j i j A M +=-为D 的元素j i a 的代数余子式.*4.行列式展开定理定理1.行列式等于它的任意一行(列)的元素与其对应的代数余子式的乘积之和:),,2,1(),,2,1(11n j A a n i A a D j i ni j i j i n j j i ====∑∑==.定理2.1,,0,,nk j i j j D k i a A k i ==⎧=⎨≠⎩∑ 10,,,.ni k ij i k j a A D k j =≠⎧=⎨=⎩∑5.方阵的行列式 设A 、B 为n 阶方阵,则①11--=AA ; ②Ak kA n =; ③1-*=n AA ;④B A BA AB ==; ⑤ ||||||A B A B +≠+.二、常用结论1.上(下)三角形行列式n n a a a 0*2211=n n a a a 2211 ,nn a a a *2211=n n a a a 2211.2. 副对角行列式11(1)2(1)2(1)212(1)3(2)111*(1)0*nnn n n n n n n n n n a a a a a a a a a a -----==-.3.范德蒙行列式)(1111111312112232221321j i j i n n nn n n nnn x x x x x x x x x x x x x x D -∏==≥>≥----. 4.分块行列式①B A BCA B C A ==00 ;② 0(1)0m m m mm n n n n nA CA AB BC B ⨯⨯⨯⨯==-; ③ A BAD BC C D≠-.三、题型强化1.具体行列式的计算 方法一:三角形法(基础题)求4124120233200112D =.(答案:50). 1234123412341234a x a a a a a x a a D a a a x a a a a a x--=--例:求 a b b b ba b b D bb a b bbba=例:求011211111(0)1n i na a D a a a +=≠.例:求1243411112222(0)33334444i a a D a a a ++=≠++.方法二:展开法-3-2-4-2-2=0-4-2-3λλλ求方程的根方法三:递推法:例:求2100012100200012n D =.方法四:利用范德蒙行列式例:222ab cD a b c b c c a a b=+++222323111122223333n n n nD nn n n =方法五:拆项法例: 已知232311111111124812480. 104150351211x x x x x x x ----+==则 .方法六:分块法例:设212322212223() 333245354435743x x x x x x x x f x x x x x x x x x --------=-------,则()f x 的根的个数为( ). (A) 1 (B) 2 (C) 3 (D) 4 :题型2.抽象行列式(方阵行列式)的计算 (基础题)设A 是三阶方阵,21=A ,求*--A A 2)3(1. (答案:16/27)- ()()123123122313,,=,,1,=+++A B B αααααααααααα==例:设是三维列向量,记A 且若,,,则例:设,A B 是n 阶方阵,2,A =3,B =1,A B -= 求11A B ---.例:(04-1,2)设矩阵⎪⎪⎪⎭⎫ ⎝⎛=100021012A ,矩阵B 满足E A B A B A +=**2 ,则_____B =.3.有关余子式的计算方法:利用行列式展开定理3132331234511122=321462221143150D A A A ++,求30402222=07005322D --,求第四行个元素代数余子式之和第二讲 矩阵§1、矩阵及其运算一、理论强化1 矩阵的概念 ()m n ij m n A a ⨯⨯= (是一个数表).2 矩阵的运算(1)线性运算 (+),();ij ij m n ij m n A B a b A ka ⨯⨯+=⎧⎪⎨=⎪⎩加法数乘 k(2)乘法运算 m n m s s n C A B ⨯⨯⨯= (条件:左矩阵列数=右矩阵行数); 运算性质:(i )BA AB ≠ 00=⇒/=A AB 或0=B ;(ii )AC AB C B A +=+)(,CA BA A C B +=+)(;(3)方阵的幂 mA AA A = 满足 ()m n mn A A =,但()m m m AB A B ≠;(4) 转置 设 (),ij m n A a ⨯= 则()T ji n m A a ⨯=.运算性质:(i )()T T A A =; (ⅱ)()T T kA kA = ;(ⅲ)()T T T A B A B +=+;(ⅳ)()T T T AB B A =.*⑸ 伴随阵 *A(ⅰ)定义 设(),ij n n A a ⨯= 则1121112222*12()n n ji n nnnnn n nA A A A A A A A A A A ⨯⨯⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭为A 的伴随阵. (ⅱ)基本公式 **||A A AA A E ==. *⑹ 可逆阵(非奇异阵)(ⅰ)定义 对于n 阶方阵A ,若存在n 阶方阵B ,使AB BA E ==,则称A 可逆,B 为A 的逆阵,记1A B -=.注 1A -唯一,且11AA A A E --==. (ⅱ) A 可逆的充要条件n 阶方阵A 可逆⇔||0A ≠⇔存在n 阶方阵B 使得AB E =或BA E =⇔()R A n =⇔A 的行(列)向量组线性无关⇔方程组Ax =0只有零解⇔12s A PP P =(其中i P 为初等方阵); (ⅲ)逆阵公式 1*1||AA A -=; (ⅳ)性质 ① 11()A A --=; ② 111() (0)kA A k k--=≠; ③11()()T T A A --=; ④ 111()AB B A ---= ; ⑤111()A B A B ---+≠+.3. 分块矩阵(1)概念 将大矩阵用若干条纵线和横线分成多个小矩阵,每个小矩阵称为A 的子块,以子块为元素的形式上的矩阵称为分块矩阵.如123422440002100001000010A A A A A ⨯⨯⎛⎫ ⎪ ⎪⎛⎫⎪== ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭例: 100001000010001000121000131110100214010010121A B ⎛⎫⎛⎫ ⎪⎪- ⎪ ⎪⎪ ⎪==-- ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,则AB= (2)运算性质分块矩阵的运算与普通矩阵的运算规则相似,但要注意,运算的两矩阵按块能运算,并且参与的子块也能运算,即内外都能运算.(3)常用的分块(ⅰ)列分块 ()121,,,m n n n A ⨯⨯=ααα,i α——1⨯n .(ⅱ)行分块 121m nm m A ⨯⨯⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭βββ,i β——1n ⨯. (ⅲ)A =0x 的分块12121122()n n n n x xA x x x x ⎛⎫ ⎪ ⎪=⇔⇔++= ⎪ ⎪⎝⎭000ααααααx .(ⅳ)O AB =的分块1212(,,)(0,0,0)(,,)(0,0,0)n n AB A A A A =⇔=⇔=0ββββββ0 (1,2,)i A i n ⇔==β.结论:若O AB =,则B 的列向量i β是方程组A =0x 的解.(V )分块对角阵 1s A A ⎛⎫ ⎪Λ= ⎪ ⎪⎝⎭.二、常用结论1. 设,αβ为n 维列向量,T A =αβ,则1()n T n A A -=βα.2.① *1||A A A -=; ② ()kA *=1n k-*A ; ③ 1*()A -=*1()A - ;④ ***()AB B A =. 3. 1110000A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭, 1110000A B B A---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. 4.1122n n n A A A A ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭.三、题型强化1.求nA .方法:数学归纳法、拆项法、分块法、利用常用结论1、相似对角化法1013101-120100302-24001002-11-2A A A ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭例:()222,,,0n A B B A B A B AB BA ==-=+==阶矩阵满足A 证明:2. 逆阵的计算或证明(具体矩阵、抽象矩阵) 方法一:公式法例:123045002A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则1()A *-=__________方法二:初等变换法求具体矩阵的逆例:223110121A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,求1A -例:()1240A A E A E -+-=-若,求例:设T A E =+αβ,其中,αβ是n 维列向量,且2T =αβ,证明:A 是可逆阵,并求1A -.例:设,A B 是n 阶矩阵,E AB -可逆,证明E BA -可逆.例:设0,i a ≠1,2,...i n =,12100000000000n na a A a a -⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭,求 1A -.*题型3. 解矩阵方程(基础题)设矩阵301110014A ⎛⎫⎪= ⎪ ⎪⎝⎭,且2AX A X =+,求矩阵X .(答案:522432223--⎛⎫⎪-- ⎪ ⎪-⎝⎭)例:设矩阵111111111A -⎛⎫⎪=- ⎪ ⎪-⎝⎭,且*11(2)()84A X A X -=+,求矩阵X .§2、初等变换与矩阵的秩一、理论强化1.初等变换 初等行变换 (i j r r ↔ , i r k ⨯ (0),k ≠ )i j r ki + 初等列变换 (i j c c ↔ , i c k ⨯ (0),k ≠ )i j c kc +*2.初等方阵 (1).定义: 由单位阵经过一次初等变换而得到的矩阵.如: 13312(2)11021010(1,3(2))1001r r c c E E ++⎛⎫⎛⎫⎪ ⎪=−−−−→= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. (2).共三种①11(,) 101E i j ⎛⎫⎪⎪= ⎪ ⎪⎝⎭ (对应 i j r r ↔或i j c c ↔); ②1(())1E i k k ⎛⎫⎪= ⎪ ⎪⎝⎭(对应 i r k ⨯或 (0)i c k k ⨯≠); ③11(,())11k E i j k ⎛⎫⎪⎪= ⎪ ⎪⎝⎭(对应 i j r kr +或()j ic kc +). (3).性质① 1(,)(,)E i j E i j -=; 11(())(()k E i k E i -=; 1(,())(,())E i j k E i j k -=- 如11102102(1,3(2))010010(1,3(2))001001E E ---⎛⎫⎛⎫⎪ ⎪===- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;②初等方阵与初等变换的关系1A B PA B −−−−→⇔=一次行变换,其中1P为相应的初等方阵, A B −−−−→一次列变换A ⇔1Q =B , 其中1Q 为相应的初等方阵, 如 12110201201110(1,2)123123r r A B E A B ↔⎛⎫⎛⎫⎪ ⎪=−−−→=⇔= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. *3.矩阵等价⑴ 概念:若A B −−−−−→有限次初等变换,称A 与B 等价,记A B . ⑵性质 ①,m n m n A B A B ⨯⨯⇔同型且()()R A R B =⇔∃可逆阵,m n P Q 使m n P AQ B =.②000rE A ⎛⎫⎪⎝⎭,其中()r R A =. *4.矩阵的秩(1).概念()R A r =⇔至少有一个r 阶子式 0r D ≠ (())R A r ≥,所有1r + 阶子式 1=0r D +(())R A r ≤.如 123401252468A ⎛⎫⎪= ⎪ ⎪⎝⎭, 110D ∃=≠,()1R A ≥,212=001D ∃≠(()2R A ≥),所有30D =(()2R A ≤), ()2R A ∴=.(2).性质 若B A ~,则()()R A R B =.二、常用结论1.00,()10;A R A A =⇔=⎧=⎨≥⇔≠⎩2.设()ij m n A a ⨯=,则()()()min{,}(0)T R A R A R kA m n k ==≤≠; 3.设A 为n 阶矩阵,则||0,()||0;n A R A n A =⇔≠⎧=⎨<⇔=⎩4.()min{(),()}R AB R A R B ≤; 5.()()()R A B R A R B +≤+;6.设0m n n s A B ⨯⨯=,则()()R A R B n +≤;7.(),()1()1,0()1;n R A n R A R A n R A n *⇔=⎧⎪=⇔=-⎨⎪⇔<-⎩8.设,P Q 为可逆阵,则()()()()R A R PA R AQ R PAQ ===.三、题型强化4.初等变换与初等矩阵的关系与应用 例:(2011-1,2,3)设A 是3阶方阵,将A 的第2行加到第1行得矩阵B ,再将B 的第1列的-1倍加到第2列得到C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭则(). (A )1C P AP -= (B )1C PAP -= (C )T C P AP = (D )TC PAP =.5.求矩阵的秩方法:基本方法:初等变换法对矩阵作初等行变换,化为阶梯形,阶梯形中非零行的个数即为矩阵的秩。
《线性代数讲义》课件
在工程学中,性变换也得到了广泛的应用。例如,在图像处理中,可
以通过线性变换对图像进行缩放、旋转等操作;在线性控制系统分析中
,可以通过线性变换对系统进行建模和分析。
THANKS
感谢观看
特征向量的性质
特征向量与特征值一一对应,不同的 特征值对应的特征向量线性无关。
特征值与特征向量的计算方法
01
定义法
根据特征值的定义,通过解方程 组Av=λv来计算特征值和特征向 量。
02
03
公式法
幂法
对于某些特殊的矩阵,可以利用 公式直接计算特征值和特征向量 。
通过迭代的方式,不断计算矩阵 的幂,最终得到特征值和特征向 量。
矩阵表示线性变换的方法
矩阵的定义与性质
矩阵是线性代数中一个基本概念,它可以表示线性变 换。矩阵具有一些重要的性质,如矩阵的加法、标量 乘法、乘法等都是封闭的。
矩阵表示线性变换的方法
通过将线性变换表示为矩阵,可以更方便地研究线性 变换的性质和计算。具体来说,如果一个矩阵A表示 一个线性变换L,那么对于任意向量x,有L(x)=Ax。
特征值与特征向量的应用
数值分析
在求解微分方程、积分方程等数值问题时, 可以利用特征值和特征向量的性质进行求解 。
信号处理
在信号处理中,可以利用特征值和特征向量的性质 进行信号的滤波、降噪等处理。
图像处理
在图像处理中,可以利用特征值和特征向量 的性质进行图像的压缩、识别等处理。
05
二次型与矩阵的相似性
矩阵的定义与性质
数学工具
矩阵是一个由数字组成的矩形阵列,表示为二维数组。矩阵具有行数和列数。矩阵可以进行加法、数 乘、乘法等运算,并具有相应的性质和定理。矩阵是线性代数中重要的数学工具,用于表示线性变换 、线性方程组等。
《线性代数》考点强化班 配套讲义 第六章 二次型
2 0 2 E AT A 0 2 2 ( 2)( 6) 。
2 2 4
故 AT A 的特征值为 1 0, 2 2, 3 6 .
2 0 2 1 0 1
由 E
AT
A
0
2 2 0 1 1 ,得 AT A 的对应于特征值 1 0 的特征量
2 2 4 0 0 0
则原二次型化为标准形 f 2z12 2z22 ,
1 0 1
【例 4】
已知 A
0
1
1 0
1 a
,二次型
f
(x1 ,
x2 ,
x3 )
xT
AT A x 的秩为 2。
பைடு நூலகம் 0 a 1
(1)求实数 a 的值;
(2)求正交变换 x Qy 将 f 化为标准形,
【分析】第一问利用秩的结论 r AT A r( A) 简化计算,第二问是一个常规的化为标准
0 02
1 1 0 (Ⅱ)这里 A 1 1 0 ,可求出其特征值为 1 2 2, 3 0 .
0 0 2
解 (2E A)x 0 ,得特征向量为:1 1,1, 0T ,2 0, 0,1T ,
解 (0E A)x 0 ,得特征向量为:3 1, 1, 0T
由于1, 2 已经正交,直接将1,2 ,3 单位化,得:
形问题。
【详解】(1)由 f (x1 , x2 , x3 ) xT AT A x 的秩为 2,即 r AT A 2 ,于是 r( A) 2 ,因此
A 的任意 3 阶子式都为 0.故
1 01 10 1 0 1 1 0 1 1 1 a 0, 1 0 a 0 0 1 a
解得 a 1.
2 0 2 (2)当 a 1时, AT A 0 2 2 ,
《线性代数》考点强化班 配套讲义 第二章 矩阵
( A2 )2
0
1
0
0
1
0
E
0
0
1
0
0
1
所以 B2 P1APP1AP P1A(PP1) AP P1A2P,,
B2020 P1A2020 P P1 A4 505 P P1EP P1P E
1 0 0 3 0 0
所以Leabharlann B2020 2 A2 E 2 0
1
0
,
AB A AE 1,33 A E 1,33 2E 1,33
1 0 3
AB
1
2E
1, 3 3
1
1 2
0 0
1 0
0
1
1 0 0
【例
12】设
A
为
3
阶矩阵,
P
为
3
阶可逆矩阵,且
P 1
AP
0
1
0
.若
0
0
2
P 1,2 ,3 , Q (1 2 ,2 ,3 ) ,则 Q1AQ ( )
行(3)-3行(1)
3 4 6 0 0 1
0 -2 -3 -3 0 1
1 0 0 -2 0 1
1 0 0 -2 0 1
行(1)行(3)
行(3)-2行(2)
0 -1 -1 -1 1 -1 0 1 1 1 -1 1
行(2)-行(3)
(-1)行(2)
0 -2 -3 -3 0 1
0 0 -1 -1 -2 3
0
0 a2
0
【例 2】设 A 其中 ai 0 ;求 Ak1 Ak 2 Akn .
0 0 0 an1
an 0 0 0
1
0 A 0
24李永乐线代强化课程表
24李永乐线代强化课程表摘要:I.引言A.介绍李永乐线代强化课程B.课程的重要性和特点II.课程概述A.课程时间安排B.课程内容简介C.课程教学目标III.课程讲师A.讲师简介B.讲师的教学经验和成果IV.课程大纲A.课程章节概述B.课程重点和难点V.课程学习资源A.课程教材B.课程辅助教材C.课程在线学习资源VI.课程评价A.学生评价B.专家评价C.社会评价VII.结论A.总结课程特点和优势B.提出课程改进建议正文:【引言】李永乐线代强化课程是针对考研数学线代部分的强化课程,由著名的考研数学辅导专家李永乐老师主讲。
该课程旨在帮助学生深入理解线代知识点,提高线代解题能力,从而在考试中取得更好的成绩。
【课程概述】该课程共分为24 讲,每讲时长约为1-1.5 小时。
课程从基础的线代知识入手,逐步过渡到复杂的线代题目解析,涵盖了线代考试的全部内容。
学生通过学习这个课程,可以系统地掌握线代知识,为考研数学做好充分的准备。
【课程讲师】李永乐老师是考研数学辅导领域的权威专家,具有丰富的教学经验和显著的教学成果。
他的课程讲解通俗易懂,深入浅出,能够引导学生迅速掌握线代知识,深受广大学生的喜爱和信赖。
【课程大纲】课程大纲涵盖了线代的所有知识点,从行列式、矩阵、向量到线性方程组、特征值和特征向量等,既有基础知识的讲解,也有难题的解析。
学生可以根据自己的需求选择学习相应的章节。
【课程学习资源】课程配备了丰富的学习资源,包括课程教材、辅助教材和在线学习资源。
课程教材详细讲解了课程大纲中的所有知识点,辅助教材提供了大量的练习题和解析,帮助学生巩固所学知识。
在线学习资源包括课程视频、PPT 和题库,方便学生随时随地进行学习。
【课程评价】该课程在学生中享有很高的口碑,许多学生在学习后都表示对线代知识有了更深刻的理解,解题能力也有了显著提高。
专家也对李永乐老师的教学方法和成果给予了高度评价,认为他的课程对于提高学生的考研数学成绩具有重要作用。
(整理)考研网校线代强化讲义1-2章
第一章行列式线性代数的特点是这些内容联系非常紧密。
不但后面的知识用到前面的知识,而且有时前面的知识也用到后面的一些结论。
因此,把它们串在一起学习,同学们会发现线性代数是1条主线,2种运算,3个工具。
即:一条主线是方程组;二种运算是求行列式和求矩阵的初等行(列)变换;三个工具是行列式,矩阵,向量(组)。
行列式的核心考点是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶。
但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。
另外,用简单的递推公式求行列式的方法也应掌握。
【大纲内容】行列式的概念和基本性质;行列式按行(列)展开定理。
【大纲要求】了解行列式的概念,掌握行列式的性质。
会应用行列式的性质和行列式按行(列)展开定理计算行列式。
【考点分析】考研试题中关于行列式的题型主要是填空题,纯粹考行列式的题目很少,但行列式是线性代数中必不可少的工具,它在处理以下问题中都有重要应用:1.判定方阵是否可逆以及应用公式求逆矩阵;2.判定n个n维向量的线性相关性;3.计算矩阵的秩;4.讨论系数矩阵为方阵的线性方程组的解的情况并利用克莱姆法则求方程组的解;5.求方阵的特征值;6.判定二次型及实对称矩阵的正定性。
同时,上述内容也可与行列式知识相结合构造新的关于行列式的题型。
在复习过程中,请大家注意及时归纳总结。
相应知识点精讲一、行列式的定义1.行列式的形式:个数排列成n行、n列,组装成一个正方形,两边画两根竖线,即形如:,称为一个n阶行列式。
其中数称为行列式的元素,横排的一行元素称为行列式的第i行,自上而下计序,共有n行。
竖排的一列元素称为行列式的第j列,自左向右计序,共有n列。
自左上角到右下角倾斜的一列元素称为行列式的主对角线,自右上角到左下角倾斜的一列元素称为行列式的次对角线或副对角线。
2.行列式的值:行列式的数学属性是一个数,称为该行列式的值。
当一个行列式的元素给定后,该行列式的值可通过特定的运算,从其元素计算得到。
2022考研线性代数强化讲义(知识体系+重点题型解析)
第一章行列式一、知识体系 1122,,A i j i j A i j i j =a A a A a A ≠ i j i j 1122 +++= 0,= a A a A a A i j i j +++= ≠ 0, in jnn ! 项不同行不同列元素乘积的代数 定 ni nj 义和 性质 上()或下三角、主对角行列式 副对角行列式ab 型行列式 拉普拉斯展开式 范德蒙行列式行列式12,,,,12,,,T n kA k A A A D n D D x x x −D D D1−1n −1i =1 行列式的概念重要行列式展开定理=nAB A B ==A A= 行列式的公式 * =A A=12=== = ∏ n i 设 n A A 的特征值为λλλλ则 若A B A B 与相似,则Cramer 法则二、重点题型重点题型一数字行列式的计算【方法】【例1.1】设212322212223333245354435743x x x x x x x x x x x x −−−−−−−− f x ()=−−−−x x x x −−− 则方程f x ()0 =根的个数为【】(B )2(C )3(A )1【详解(D )4】【例1.2】利用范德蒙行列式计算222a a bcb bac cc ab=.【详解】【例1.3】设x x x x 1234≠0,则11121314212223243132333441424344x a a a a a a a a a x a a a a a a a a a x a a a +a a a a a a x a 2+2=+2+2.【详解】【例1.4】计算三对角线行列式000000000000αβαβαβαβαββαβ+++D n =++αβα【详解】重点题型二代数余子式求和【方法】【例1.5】已知1234522211312451112243150A=27,则A A A 414243=++=,A A 4445+=.【详解】010000200001n 000【例1.6】设A =n −,则A 的所有代数余子式的和为.【详解】重点题型三抽象行列式的计算【方法】【例1.7】(2005,数一、二)设α1,α2,α3均为3维列向量,A =(α1,α2,α3),(,24,39)B ααααααααα=++++++123123123.若A =1,则=B .【详解】【例1.8】设A 为n 阶矩阵,αβ,为n 维列向量.若A a =,TAαb=0,β则TA β【详解】(2)(2)A A O −O A 1*−【例1.9】设A 为2阶矩阵,B =2 .若A =−1,则=B .【详解】【例1.10】设n 阶矩阵A 满足A A 2=,A E ≠,证明A =0.【详解】第二章矩阵一、知识体系 ()AB A A Ax +A B kAAT⇔≠||0 ⇔=r A n ⇔ ⇔=⇔=定 义 性质 定义法 初等变换 求法伴 随矩法阵法 分块矩阵法的列(或行)向量组线性无关 充要条件齐次线性方0 程组只有零解 非齐次线性方程组Ax b 有唯一解 ⇔A 的特征值均不为零 定义矩性质阵求法基本运算逆 秩定 义 伴随矩阵性质 定义 性质 求矩阵的逆初等变换与初等矩阵 求矩阵的秩线性 应用求表极大示线性无关组 解线性方程组 求二次型的标准形分块矩阵二、重点题型重点题型一求高次幂【方法】2131【例2.1】设46A a b c − =,B 为3阶矩阵,满足BA O=,且r B ()1>,则A n =.【详解】200412 【例2.2】设A =−320,则A n=.【详解】−−121 【例2.3】设A =−− −−363 121,P 为3阶可逆矩阵,B P AP =−12022B E ,则()+=.【详解】重点题型二逆的判定与计算【方法】 【例2.4】设n 阶矩阵A 满足A 2=2A ,则下列结论不正确的是【】 (B )A E (C )−可逆A E(D )+可逆A E −3可逆 (A )A 可逆【详解】,为n 阶矩阵,【例2.5】设A B a b ,为非零常数.证明: I )若(AB aA bB ,则=+AB BA =2+=,则(II )若A aAB E AB BA ;=.【详解】11a 0110a 【例2.6】(2015,数二、三)设A a =−,满足A O 3=. (I )求a 的值;(II )若矩阵X 满足22X XA AX AXA E ,求X −−+=.【详解】重点题型三秩的计算与证明 【方法】秩的性质(1)设A 为m ×n 阶矩阵,则()min ,r A m n {}≤; 2)(()()()r A B r A r B +≤+; ({3)()min (),()r AB r A r B }≤;({4)max (),()()()()r A r B r A B r A r B }≤≤+;5)r A r kA k (()()(0)=≠;(6)设A 为m ×n 阶矩阵,P 为m 阶可逆矩阵,Q 为n 阶可逆矩阵,则()()()()r A r PA r AQ r PAQ ===;7)设A 为m ×n 阶矩阵,若(r A n ()=,则()()r AB r B ;若=r A m ()=,则()()r CA r C =;===TTT8)(()()()()r A r A r AA r AA ;(9)设A 为m ×n 阶矩阵,B 为n ×s 阶矩阵,AB O =,则r A r B n ()()+≤.,为n 阶矩阵,【例2.7】(2018,数一、二、三)设A B () X Y 表示分块矩阵,则【】 (A )( )()r A AB r A (B )=( )()r A BA r A ={ }(C )( )max (),()r A B r A r B =T T(D )r A B r A B ( )( )=【详解】 【例2.8】设A 为n 阶矩阵.证明:I )若A 2=A ,则(r A r A E n ()()+−=;2=,则(II )若A E r A E r A E n ()()++−=.【详解】重点题型四关于伴随矩阵【伴随矩阵的性质】||01**11(1),AA A AA E A A A A AA A≠**−−== →==; (*1*=n 2)()kA k A −; 3)()AB B A (***=(4;)*A A n −1=;(** A A 5)()()T T=;( 6)()()A 1**1A A A−−==;( n −7)()A A A 2**=; ,()8)r A r A n (()1,()1=n r A n *==−r A n <−0,()1.【例2.9】设n 阶矩阵A 的各列元素之和均为2,且A =6,则A ∗的各列元素之和均为【】(B )31(C )3 (A )2【详解(D )6】ij 为n n 【例2.10】设A a =()(3)阶非零矩阵,A ij 为a ij 的代数余子式,≥证明:(*(,1,2,,)TTI )a A i j n A A AA E ij ij ==⇔=⇔= 且A =1;*(,1,2,,)TT(II )a A i j n A A AA E ij ij =−=⇔=−⇔= 且A =−1.【详解】重点题型五初等变换与初等矩阵【初等变换与初等矩阵的性质】(1)E i j (,)1=−,(())E i k k =,E ij k (())1=; T2)((,)(,)E i j E i j =T,E ij k E ji k T ,E i k E i k (())(())=(())(())=;−13)((,)(,)E i j E i j =1,E i k E i k(())−1=−1,(())(())E ij k E ij k =−;(4)初等行(或列)变换相当于左(或右)乘相应的初等矩阵;(5)可逆矩阵可以写成有限个初等矩阵的乘积.【例2.11】(2005,数一、二)设A 为n (n ≥2)阶可逆矩阵,交换A 的第1行与第2行得到矩阵B ,则【】(A )交换A *的第1列与第2列,得B *(B )交换A *的第1行与第2行,得B *(C )交换A *的第1列与第2列,得−B *(D )交换A *的第1行与第2行,得−B *【详解】123012001 【例2.12】设A = 001010100,P =110010001 ,Q = ,则()()T −P A Q 120212022=__________.【详解】第三章向量一、知识体系212(,,,)(,,,) (,,,)s k k k x 1x x r r βαααααααααβ αααβαβ+ k α [αβ,] =+++ ⇔= ⇔= →1122 s s 12 s 12 s s 12 s 定初等行变换义非齐次线性方程组(,,,)αααβ有解 充要条件 充分条件 求法行最简形矩阵向线性相关量 1 22 (,,,)0(,,,)x x x s r s x 1x x s ααα 定ααα义 ⇔=⇔< ⇔= 12s 12 s 12s ⇔至少有一个向量可由其余向量线性表 示齐次线性方程组充要条件ααα有非零解 充分条件齐次线性方程组充要条件(,,,)0只有零解 (,,,)ααα基本运算线性表示定义⇔任意向量均不能由其余向量线性表示线性无 关αs =s ⇔r (,,αα12,)12 s → 充分条初等行变换件定义极大线性无关组与向量组的秩求法行阶梯形矩阵二、重点题型重点题型一线性表示的判定与计算 【方法】,,与数【例3.1】设向量组αβγk l m ,,满足k l m km αβγ++=≠0(0),则【】,与(A )αβαγ ,等价 ,与(B )αββγ,等价(D )α与γ,,与(C )αγβγ等价等价【详解】【例3.2】(123(1,2,0),(1,2,3),(1,2,2)T T T2004,数三)设αααa ab a b ==+−=−−−+,β=−(1,3,3)T .当a ,b 为何值时, ,,线性表示I )β不能由ααα(123;,,唯一地线性表示,并求出表示式(II )β可由ααα123;,,线性表示,但表示式不唯一,并求出表示式(III )β可由ααα123. 【详解】【例3.3】(2019,数二、三)设向量组(123(1,1,4),(1,0,4),(1,2,3)T TT a 2I )ααα===+;向量组2a a a 123(1,1,3),(0,2,1),(1,3,3)T T T (II )βββ=+=−=+I )与(II )等价,求a 的.若向量组(值,,,线性表示并将β3由ααα123.【详解】重点题型二线性相关与线性无关的判定【方法】【例3.4】(2014,数一、二、三)设ααα123,,均为3维列向量,则对任意常数k l,,1323,αααα ++k l ,,线性无关的【线性无关是ααα123】(B )充分非必要条件(C )充分必要条件(A )必要非充分条件【详解(D )既非充分又非必要条件】【例3.5】设A 为n 阶矩阵,ααα123,,均为n 维列向量,满足A A 2αα11=≠0,212A A2ααα=+, 2323A A ααα=+ ,,线性无关,证明ααα123.【详解】,,线性无关,与4维列向量β1,β2两两正交,证明β1,β2线性相关【例3.6】设4维列向量ααα123.【详解】重点题型三极大线性无关组的计算与证明【方法】 1234(1,1,1,3),(1,3,5,1),(3,2,1,2),(2,6,10,)TTTT【例3.7】设ααααa a ==−−=−+=−−.(I )当a 为何值时,该向量组线性相关,并求其一个极大线性无关组;(II )当a 为何值时,该向量组线性无关,并将α=(4,1,6,10)T 由其线性表示.【详解】,为I )设A B m n ×矩阵,则()()()r A B r A r B +≤+;×矩阵,B 为n s {×矩阵,则()min (),()r AB r A r B 【例3.8】证明:((II )设A 为m n 【详解}≤.】重点题型四向量空间(数一专题)【方法】过渡矩阵12,,,n 到基β1,β2, ,βn 的过渡矩阵为由基ααα(,,,)(,,,)=βββααα12C 12 n n ,−12αααβββ1C =(,,,)(,,,) 12 n n .12坐标变换公式,,, n 下的坐标为设向量γ在基αααx x x x12 n T,在基β1,β2, ,βn 下=(,,,)的坐标为y y y y 12 n T,则坐标变换公式为x =Cy =(,,,).2015,数一)设向量组ααα【例3.9】(123,,为R 3的一个基,113βαα=+22k ,βα22=2,313k=++βαα(1).,,为R 3的一个基I )证明向量组βββ(123;(II )当k 为何值时,存在非零向量ξ在基ααα123,,下的坐标相同,并求所有的ξ,,与基βββ123.I 【详解】()3123201(,,)(22,2,(1))(,,)020201k k βββαααααααα1231321=+++= k k +201020201令C =k k +,则,,为R 3的一个基,,线性无关,故βββ=≠40,从而βββC 123123.(II )设ξ在基ααα123,,下的坐标为x ,,与基βββ123,则 123123123Cx x=ξαααβββααα(,,)(,,)(,,)=x =C E x −=得()0.对C E −作初等行变换,1011010100102000k k kC E −=→当k =0时,方程组()00−C E x −=有非零解,所有非零解为1x c 1=,在两个基下坐标相同的所有非零向量为1231231xc −ξαααααααα1=(,,)(,,)0()==−c 31,其中c 为非零常数第四章线性方程组一、知识体系11220 () 0() ()()()()1 ()()()()r A n Ax r A n r A r A n r A r A n k k k ξξξ−− =⇔= Ax =0Ax =⇔<Ax b r A r A r A r A =⇔<⇔=− Ax b Ax b ==⇔== Ax b =⇔=< +++ 性 n r n r 质只有零解有非零解无解 判定有唯一解有无穷多解的通解线性方程组 1122()()()()()()()AX BAX B r A r A B n r A r A B n ξξξη−− Ax =0 ++++ Ax b k k k = =⇔< AX B r A r A B =⇔== AX B =⇔=< A B → n r n r =的通初等行变换解 定义无解矩阵方程判定有唯一解有无穷多解 求法行最简形矩阵 定义 求法,的行向量组等价()()A ⇔r A r r B B 解的性质与判定解的结构公共解定义公共解与同解 ⇔ A B 同解充要条 件==二、重点题型重点题型一解的判定【方法】【例4.1】(0TA2001,数三)设A 为n 阶矩阵,α为n 维列向量,且r r A α α=(),则线性方程组(A )Ax =α有无穷多解(B )Ax =α有唯一解A x α (C )αT0y =0只 有零解Ax α(D ) αT 0y =0有 非零解 【详解】 ×阶矩阵,且【例4.2】设A 为m n r A m n ()=<,则下列结论不正确的是【】T =0(A )线性方程组A x 只有零解 T (B )线性方程组A Ax =0有非零解 (C )∀b ,线性方程组A x b(D )∀b ,线性方程组T =有唯一解Ax b =有无穷多解【详解】重点题型二求齐次线性方程组的基础解系与通解【方法】1234为4阶矩阵,(1,0,1,0)T为线性方程组Ax =0【例4.3】(2011,数一、二)设A =αααα(,,,)的 *=0的基础解系可为【基础解系,则A x 】 , (A )αα12,(B )αα13,,(C )ααα123,,(D )ααα234【详解】a b c ,【例4.4】(2005,数一、二)设3阶矩阵A 的第1行为(,,)a b c 12324636k ,,不全为零,B =,满足AB O=,求线性方程组Ax =0的通解.【详解】【例4.5】(2002,数三)设线性方程组n 0n 0n 0 123n 0++++=ax bx bx bx bx ax bx bx 123++++=123++++=bx bx ax bx123++++=bx bx bx ax其中a ≠0,b ≠0,n ≥2. 当a b 求其通解,为何值时,方程组只有零解、有非零解,当方程组有非零解时,.【详解】重点题型三求非齐次线性方程组的通解【方法】,,为非齐次线性方程组【例4.6】设A 为4阶矩阵,k 为任意常数,ηηη123Ax b =的三个解,满足124ηη12+=23245 3,ηη23+==,则.若r A ()3Ax b =的通解为【】11203142− (A ) +k (B )21324051 +k (C )01102132− +k (D )11121011 +k【详解】2017,数一、二、三)设3阶矩阵A =【例4.7】((,,)=+2ααα123有三个不同的特征值,其中312ααα. I )证明r A (()2=;(II )若βααα=++123,求线性方程组Ax =β的通解.【详解】1101011λλλ 【例4.8】(2010,数一、二、三)设A =−11a ,b =,线性方程组 Ax b=有两个不同的解.(I )求λ,a 的值;(II )求方程组Ax b =的通解.【详解】【例4.9】设A 为m n ×阶矩阵,且r A r 12,,,()=.若ξξξ−为齐次线性方程组Ax =0的 n r 基础解系,η为非齐次线性方程组Ax =b 的特解,证明:(,,,,I )ηξξξ12 n r −线性无关;,,,,(II )ηηξηξηξ+++12 n r −线性无关;,,,,(III )ηηξηξηξ+++n r −为Ax =b 所有解的极大线性无关组12 .【详解】重点题型四解矩阵方程【方法】矩阵方程解的判定AX B=无解⇔<()()r A r A B AX B ()()r Ar A B n =有唯一解⇔==AX B ()()r Ar A B n =有无穷多解⇔=<矩阵方程的求法对()AB 作初等行变换,化为行最简形矩阵,得矩阵X .101−202101【例4.10】设A =−−,矩阵X 满足AX E A X 20222,求矩阵X +=+.【详解】【例4.11】(123401111203−−2014,数一、二、三)设A =− −.(I )求线性方程组Ax =0的一个基础解系;(II )求满足AB E =的所有矩阵B .【详解】重点题型五公共解的判定与计算【方法】【例4.12】(2007,数一、二、三)设线性方程组(+ +=++=001321x x I )x x 1+4x 2+a 2x 3=0ax 2x 32x 与方程(II )x 1+2x 2+x 3=a −1有公共解,求a 的值及所有公共解.【详解】【例4.13】设齐次线性方程组(123420x x x 123+−=230I )x x x x ++−= 12(2,1,2,1),(1,2,4,8)齐次线性方程组(II )的一个基础解系为ααa a T T =−+=−+.(1)求方程组(I )的一个基础解系;(2)当a 为何值时,方程组(I )与(II )有非零公共解,并求所有非零公共解.【详解】重点题型六同解的判定与计算【方法】【例4.14】(2005,数三)设线性方程组( =+=++ I )202132+321 x 35 x 1+x 2+ax 3=0x x x x 3x +=++0 12+321 2(1)x 3=0c x 0与(II ) x cx b x +bx 2同解,求a ,b ,c 的值.【详解】第五章特征值与特征向量一、知识体系 (0)0()0A E B P AP P AP A n A λλA αλαα−1=≠ −= A E x −= =−1=Λ ⇔ ⇔k k A n 定义性质 特征方程法 定义 性质特征值与特 定义征有个线性无关的特征向量 充要条件重特征值有个线性无关的向特征向量量有个不同的特征值 充分条件为实对称矩阵 T k k 特征值与特征向量相似矩阵相似对角化==Λ特征值均为实数不同特征值的特征向量正交实对称矩阵重特征值有个线性 无关的特征向量,使得− A 可正交相似对角化,即存在正交矩阵Q Q AQ Q AQ 1二、重点题型重点题型一特征值与特征向量的计算【方法】特征值与特征向量的性质 (1)不同特征值的特征向量线性无关;(2)不同特征值的特征向量之和不是特征向量;(3)k 重特征值最多有k 个线性无关的特征向量;4)设A 的特征值为12(,,,λλλnn ,则i =1∑nA λi=tr A (),λi i =1=∏;=,即A =αβT,其中5)若r A (()1αβ,为n 维非零列向量,则A 的特征值为TT tr A ()λαββαn1===0 ,λλ2===(6)设α为矩阵A 属于特征值λ的特征向量,则【例5.1】设1111111111111111−−A = −− −−求A 的特征值与特征向量.【详解】322 223010001【例5.2】(2003,数一)设A = 232 ,P = 101 ,B =P −1A *P ,求B +2E 的特征值与特征向量.【详解】12214212a 【例5.3】设A = −−− 的特征方程有一个二重根,求A 的特征值与特征向量. 【详解】 2【例5.4】设3阶非零矩阵A 满足A O = ,则A 的线性无关的特征向量的个数是【】(B )1(C )2(A )0【详解(D )3】【例5.5】设A =+αββαTT,其中αβ 1,为3维单位列向量,且αβT 3=,证明:(I )0为A 的特征值; ,(II )αβαβ为A +−的特征向量;(III )A 可相似对角化.【详解】重点题型二相似的判定与计算【相似的性质】(1)若A B ,则A B ,有相同的行列式、秩、特征方程、特征值、迹;2)若(A B ,则()()f A f B ,A B −− 11 ,(0)AB BA A ≠,A B T T ,A B ** ;3)若(A B ,B C,则A C .【例5.6】设1000030000110022 A =矩阵B 与A 相似,则r B E r B E ()(3)−+−=.【详解】【例5.7】设n 阶矩阵A 与B 相似,满足A E 2=2,则 AB A B E +−−=. 【详解】【例5.8】(22−−002221 2019,数一、二、三)设A x =−−21001000y与B =−相似.I )求(x y ,的值;−(II )求可逆矩阵P ,使得P AP B 1=.【详解】重点题型三相似对角化的判定与计算【方法】【例5.9】设3阶矩阵A 的特征值为1,3,−2,对应的特征向量分别为ααα123,,.若P =−ααα(,2,)−1*=【132,则P A P 】12 (A )−1− 36 (B )−2 −36 (C ) −2 13(D ) −2【详解】【例5.10】设n 阶方阵A 满足32A A E O ,证明A 可相似对角化2−+=.【详解】【例5.11】(2020,数一、二、三)设A 为2阶矩阵,P A =(,)αα,其中α为非零向量且不是A 的特征向量.(I )证明P 为可逆矩阵; 2ααα+−=60,求II )若(A A P AP−1,并判断A 是否相似于对角矩阵.【详解】重点题型四实对称矩阵的计算【方法】2+=,n 阶矩阵B 满足【例5.12】设n 阶实对称矩阵A 满足A A O B B E 2+=,且r AB ()2=,则A +【详解】01413【例5.13】(2010,数二、三)设40A a a −=−T,正交矩阵Q 使得Q AQ 为对角矩阵.若Q的第12,1)T ,求a Q ,.【详解】 2=,【例5.14】设3阶实对称矩阵A 满足A E A E+的各行元素之和均为零,且r A E ()2+=.(I )求A 的特征值与特征向量;(II )求矩阵A .【详解】第六章二次型一、知识体系0,0T T f x Ax B C AC x Ax x Bx =x x Ax T =T ⇔ ⇔ 定∀≠>义 拉格朗日配方法 合同变换 标准形的求法法正交变换法 定义与有相同的正、负惯性指数 充要条件A B ,有相同的正、负特征值的个数 充分条件A B 与相似必要条件二次A B 与等价型有T 0(1,,)0A E A A 二次型与标准形合同矩阵定义 性质 ⇔f n ⇔ 正定矩阵 ⇔ii >= a i n > 的正惯性指数为与合同充要条件的特征 值均大于零⇔A 的顺序主子式均大于零必要条件二、重点题型重点题型一求二次型的标准形【方法】222【例6.1】(2016,数二、三)设二次型123123122313(,,)()222f x x x a x x x x x x x x x=+++++ 的正、负惯性指数分别为1,2,则【】(B )a <−2 a (A )a >1【详解(D )a =1或−(C )−<<212】 =−+++++222【例6.2】(2018,数一、二、三)设二次型1231232313(,,)()()()f x x x x x x x x x ax .I )求f x x x ((,,)0 123=的解;(II )求f x x x (,,)123的规范形.【详解】【例6.3】(2020,数一、三)设二次型121122(,)44f x x x x x x 1122x y =−+22经正交变换x y =Q化为二=++22,其中次型(,)4121122g y y ay y y by a b ≥.I )求(a b ,的值;(II )求正交矩阵Q .【详解】重点题型二合同的判定【方法】 12【例6.4】(2008,数二、三)设A =21,与A 合同的矩阵是【】−1221 (A )− 21− (B ) −12 21 12(C )12− (D )−21 【详解】【例6.5】设A B ,为n 阶实对称可逆矩阵,则存在n 阶可逆矩阵P ,使得 ①PA B −;②=P ABP BA 1−;③=P AP B 122T =;④P A P B =. 成立的个数是【 】 (A )1 (B )2(C )3 (D )4【详解】重点题型三二次型正定与正定矩阵的判定【方法】【例6.6】设A 为m n ×阶矩阵,且r A m ()=,则下列结论 ①AA T 与单位矩阵等价;③AA T 与单位矩阵合同;②AA T 与对角矩阵相似;④AA T 正定. 正确的个数是【 】(B )2(C )3 (A )1【详解(D )4】 I )设A 为n 阶正定矩阵,B 为n 阶反对称矩阵,则【例6.7】证明:(A B −2为正定矩阵;,为n 阶矩阵,且(II )设A B r A B n TT()+=,则A A B B +为正定矩阵.【详解】。
线代强化讲义
线性代数讲义目录第一讲基本概念线性方程组矩阵与向量初等变换和阶梯形矩阵线性方程组的矩阵消元法第二讲行列式完全展开式化零降阶法其它性质克莱姆法则第三讲矩阵乘法乘积矩阵的列向量和行向量矩阵分解矩阵方程逆矩阵伴随矩阵第四讲向量组线性表示向量组的线性相关性向量组的极大无关组和秩矩阵的秩第五讲方程组解的性质解的情况的判别基础解系和通解第六讲特征向量与特征值相似与对角化特征向量与特征值—概念,计算与应用相似对角化—判断与实现附录一内积正交矩阵施密特正交化实对称矩阵的对角化第七讲二次型二次型及其矩阵可逆线性变量替换实对称矩阵的合同标准化和规范化惯性指数正定二次型与正定矩阵附录二向量空间及其子空间附录三两个线性方程组的解集的关系附录四06,07年考题第一讲基本概念1.线性方程组的基本概念线性方程组的一般形式为:a11x1+a12x2+…+a1n x n=b1,a21x1+a22x2+…+a2n x n=b2,…………a m1x1+a m2x2+…+a mn x n=b m,其中未知数的个数n和方程式的个数m不必相等.线性方程组的解是一个n维向量(k1,k2, …,k n)(称为解向量),它满足:当每个方程中的未知数x i都用k i替代时都成为等式.线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解.b1=b2=…=b m=0的线性方程组称为齐次线性方程组.n维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解).把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组.2.矩阵和向量(1)基本概念矩阵和向量都是描写事物形态的数量形式的发展.由m⨯n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m⨯n型矩阵.例如3 3 3 -1 8是一个4⨯5矩阵.对于上面的线性方程组,称矩阵a11 a12… a1n a11 a12… a1n b1A= a21 a22… a2n 和(A|β)= a21 a22… a2n b2…………………a m1 a m2… a mn a m1 a m2… a mnb m为其系数矩阵和增广矩阵.增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素.元素全为0的矩阵称为零矩阵,通常就记作0.两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等.由n个数构成的有序数组称为一个n维向量,称这些数为它的分量.书写中可用矩阵的形式来表示向量,例如分量依次是a1,a2,⋯ ,a n的向量可表示成a1(a1,a2,⋯ ,a n)或 a2 ,┆a n请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1⨯n矩阵,右边是n⨯1矩阵).习惯上把它们分别称为行向量和列向量.(请注意与下面规定的矩阵的行向量和列向量概念的区别.)一个m⨯n的矩阵的每一行是一个n维向量,称为它的行向量; 每一列是一个m维向量, 称为它的列向量.常常用矩阵的列向量组来写出矩阵,例如当矩阵A的列向量组为α1, α2,⋯ ,αn时(它们都是表示为列的形式!)可记A=(α1, α2,⋯ ,αn).矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0.两个向量α和β相等(记作α=β),是指它的维数相等,并且对应的分量都相等.(2) 线性运算和转置线性运算是矩阵和向量所共有的,下面以矩阵为例来说明.加(减)法:两个m⨯n的矩阵A和B可以相加(减),得到的和(差)仍是m⨯n矩阵,记作A+B (A-B),法则为对应元素相加(减).数乘: 一个m⨯n的矩阵A与一个数c可以相乘,乘积仍为m⨯n的矩阵,记作c A,法则为A的每个元素乘c.这两种运算统称为线性运算,它们满足以下规律:①加法交换律:A+B=B+A.②加法结合律:(A+B)+C=A+(B+C).③加乘分配律:c(A+B)=c A+c B.(c+d)A=c A+d A.④数乘结合律: c(d)A=(cd)A.⑤ c A=0⇔ c=0 或A=0.转置:把一个m⨯n的矩阵A行和列互换,得到的n⨯m的矩阵称为A的转置,记作A T(或A').有以下规律:① (A T)T=A.② (A+B)T=A T+B T.③ (c A)T=c A T.转置是矩阵所特有的运算,如把转置的符号用在向量上,就意味着把这个向量看作矩阵了.当α是列向量时, α T表示行向量, 当α是行向量时,α T表示列向量.向量组的线性组合:设α1, α2,…,αs是一组n维向量, c1,c2,…,c s是一组数,则称c1α1+c2α2+…+c sαs为α1, α2,…,αs的(以c1,c2,…,c s为系数的)线性组合.n维向量组的线性组合也是n维向量.(3) n阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵.把n阶矩阵的从左上到右下的对角线称为它对角线.(其上的元素行号与列号相等.)下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的.对角矩阵: 对角线外的的元素都为0的n阶矩阵.单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I).数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E.上三角矩阵: 对角线下的的元素都为0的n阶矩阵.下三角矩阵: 对角线上的的元素都为0的n阶矩阵.对称矩阵:满足A T=A矩阵.也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵.(反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.)3. 矩阵的初等变换和阶梯形矩阵矩阵有以下三种初等行变换:①交换两行的位置.②用一个非0的常数乘某一行的各元素.③把某一行的倍数加到另一行上.(称这类变换为倍加变换)类似地, 矩阵还有三种初等列变换,大家可以模仿着写出它们,这里省略了. 初等行变换与初等列变换统称初等变换.阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面.②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增.把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角.简单阶梯形矩阵:是特殊的阶梯形矩阵,特点为:③台角位置的元素为1.④并且其正上方的元素都为0.每个矩阵都可以用初等行变换化为阶梯形矩阵和简单阶梯形矩阵.这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练.请注意: 1.一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零行数和台角位置是确定的.2. 一个矩阵用初等行变换化得的简单阶梯形矩阵是唯一的.4. 线性方程组的矩阵消元法线性方程组的基本方法即中学课程中的消元法:用同解变换把方程组化为阶梯形方程组(即增广矩阵为阶梯形矩阵的方程组).线性方程组的同解变换有三种:①交换两个方程的上下位置.②用一个非0的常数乘某个方程.③把某个方程的倍数加到另一个方程上.以上变换反映在增广矩阵上就是三种初等行变换.线性方程组求解的基本方法是消元法,用增广矩阵或系数矩阵来进行,称为矩阵消元法. 对非齐次线性方程组步骤如下:(1)写出方程组的增广矩阵(A|β),用初等行变换把它化为阶梯形矩阵(B|γ).(2)用(B|γ)判别解的情况:如果最下面的非零行为(0,0, ⋯,0|d),则无解,否则有解.有解时看非零行数r(r不会大于未知数个数n),r=n时唯一解;r<n时无穷多解.(推论:当方程的个数m<n时,不可能唯一解.)(3)有唯一解时求解的初等变换法:去掉(B|γ)的零行,得到一个n×(n+1)矩阵(B0|γ0),并用初等行变换把它化为简单阶梯形矩阵(E|η),则η就是解.对齐次线性方程组:(1)写出方程组的系数矩阵A,用初等行变换把它化为阶梯形矩阵B.(2)用B判别解的情况:非零行数r=n时只有零解;r<n时有非零解(求解方法在第五章讲). (推论:当方程的个数m<n时,有非零解.)讨论题1.设A是n阶矩阵,则(A) A是上三角矩阵⇒A是阶梯形矩阵.(B) A是上三角矩阵⇐A是阶梯形矩阵.(C) A是上三角矩阵⇔A是阶梯形矩阵.(D) A是上三角矩阵与A是阶梯形矩阵没有直接的因果关系.2.下列命题中哪几个成立?(1) 如果A是阶梯形矩阵,则A去掉任何一行还是是阶梯形矩阵.(2) 如果A是阶梯形矩阵,则A去掉任何一列还是是阶梯形矩阵.(3) 如果(A|B)是阶梯形矩阵,则A也是阶梯形矩阵.(4) 如果(A|B)是阶梯形矩阵,则B也是阶梯形矩阵.(5) 如果 A 是阶梯形矩阵,则A和B都是阶梯形矩阵.B第二讲行列式一.概念复习1. 形式和意义形式:用n2个数排列成的一个n行n列的表格,两边界以竖线,就成为一个n阶行列式:a11 a12 (1)a21 a22 (2)……… .a n1 a n2… a nn如果行列式的列向量组为α1, α2, … ,αn,则此行列式可表示为|α1, α2, … ,αn|.意义:是一个算式,把这n2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值.请注意行列式和矩阵在形式上和意义上的区别.当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.)每个n 阶矩阵A 对应一个n 阶行列式,记作|A |.行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0.2. 定义(完全展开式)2阶和3阶行列式的计算公式:a 11 a 12a 21 a 22 = a 11a 22-a 12a 21 .a 11 a 12 a 13a 21 a 22 a 23 = a 11a 22a 33+ a 12a 23a 31+ a 13a 21a 32-a 13a 22a 31- a 11a 23a 32-a 12a 21a 33.a 31 a 32 a 33一般地,一个n 阶行列式a 11 a 12 … a 1na 21 a 22 … a 2n… … …a n1 a n2 … a nn 的值是许多项的代数和,每一项都是取自不同行,不同列的n 个元素的乘积,其一般形式为:n nj j j a a a 2121,这里把相乘的n 个元素按照行标的大小顺序排列,它们的列标j 1j 2…j n 构成1,2, …,n 的一个全排列(称为一个n 元排列),共有n!个n 元排列,每个n 元排列对应一项,因此共有n!个项. 所谓代数和是在求总和时每项先要乘+1或-1.规定τ(j 1j 2…j n )为全排列j 1j 2…j n 的逆序数(意义见下面),则项n nj j j a a a 2121所乘的是.)1()(21n j j j τ-全排列的逆序数即小数排列在大数右面的现象出现的个数.逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数: 002323215634, τ(436512)=3+2+3+2+0+0=10.至此我们可以写出n 阶行列式的值:a 11 a 12 … a 1na 21 a 22 … a 2n =.)1(21212121)(n n n nj j j j j j j j j a a a τ-∑ … … …a n1 a n2 … a nn这里∑n j j j 21表示对所有n 元排列求和.称此式为n 阶行列式的完全展开式.用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算.例如对角行列式,上(下)三角行列式的值就等于主对角线上的元素的乘积,因为其它项都为0.2. 化零降阶法把n 阶行列式的第i 行和第j 列划去后所得到的n-1阶行列式称为(i,j)位元素a ij 的余子式,记作M ij .称A ij =(-1)i+j M ij 为元素a ij 的代数余子式.定理(对某一行或列的展开)行列式的值等于该行(列)的各元素与其代数余子式乘积之和.命题 第三类初等变换(倍加变换)不改变行列式的值.化零降阶法 用命题把行列式的某一行或列化到只有一个元素不为0,再用定理.于是化为计算一个低1阶的行列式.化零降阶法是实际计算行列式的主要方法,因此应该熟练掌握.3.其它性质行列式还有以下性质:① 把行列式转置值不变,即|A T |=|A | .② 某一行(列)的公因子可提出.于是, |c A |=c n |A |.③ 对一行或一列可分解,即如果某个行(列)向量α=β+γ ,则原行列式等于两个行列式之和,这两个行列式分别是把原行列式的该行(列)向量α换为β或γ 所得到的行列式.例如|α,β1+β2,γ |=|α,β1,γ |+|α,β2,γ |.④ 把两个行(列)向量交换, 行列式的值变号.⑤ 如果一个行(列)向量是另一个行(列)向量的倍数,则行列式的值为0.⑥ 某一行(列)的各元素与另一行(列)的对应元素的代数余子式乘积之和=0.⑦ 如果A 与B 都是方阵(不必同阶),则A * = A O =|A ||B |.O B * B范德蒙行列式:形如1 1 1 (1)a 1 a 2 a 3 … a na 12 a 22 a 32 … a n 2… … … …a 1n-i a 2n-i a 3n-i … a n n-i的行列式(或其转置).它由a 1,a 2 ,a 3,…,a n 所决定,它的值等于).(i j ji a a -∏< 因此范德蒙行列式不等于0⇔ a 1,a 2 ,a 3,…,a n 两两不同.对于元素有规律的行列式(包括n 阶行列式),常常可利用性质简化计算,例如直接化为三角行列式等.4.克莱姆法则克莱姆法则 应用在线性方程组的方程个数等于未知数个数n (即系数矩阵为n 阶矩阵)的情形.此时,如果它的系数矩阵的行列式的值不等于0,则方程组有唯一解,这个解为(D 1/D, D 2/D,⋯,D n /D),这里D 是系数行列式的值, D i 是把系数行列式的第i 个列向量换成常数列向量所得到的行列式的值.说明与改进:按法则给的公式求解计算量太大,没有实用价值.因此法则的主要意义在理论上,用在对解的唯一性的判断,而在这方面法则不够. 法则的改进:系数行列式不等于0是唯一解的充分必要条件.实际上求解可用初等变换法:对增广矩阵(A |β)作初等行变换,使得A 变为单位矩阵:(A |β)→(E |η),η就是解.用在齐次方程组上 :如果齐次方程组的系数矩阵A 是方阵,则它只有零解的充分必要条件是|A |≠0.二. 典型例题1.利用性质计算元素有规律的行列式例1 ① 2 a a a a ② 1+x 1 1 1 ③ 1+a 1 1 1a 2 a a a 1 1+x 1 1 2 2+a 2 2a a 2 a a . 1 1 1+x 1 . 3 3 3+a 3 .a a a 2 a 1 1 1 1+x 4 4 4 4+a a a a a 2例2 1 2 3 4 52 3 4 5 13 4 5 1 2 .4 5 1 2 35 1 2 3 4例3 1+x 1 1 1 11 1+x2 1 1 .1 1 1+x 3 11 1 1 1+x 4例4 a 0 b c0 a c b .b c a 0c b 0 a例5 1-a a 0 0 0-1 1-a a 0 00 -1 1-a a 0 . (96四)0 0 -1 1-a a0 0 0 -1 1-a2. 测试概念与性质的题例6 x 3-3 1 -3 2x+2多项式f(x)= -7 5 -2x 1 ,求f(x)的次数和最高次项的系数.X+3 -1 3 3x 2-29 x 3 6 -6例7 求 x-3 a -1 4f(x)= 5 x-8 0 –2 的x 4和x 3的系数.0 b x+1 12 2 1 x例8 设4阶矩阵A =(α, γ1, γ2 ,γ3),B =(β, γ1, γ2 ,γ3),|A | =2, |B |=3 ,求|A +B | .例9 a b c d已知行列式 x -1 -y z+1 的代数余子式A 11=-9,A 12=3,A 13=-1,A 14=3,求x,y,z.1 -z x+3 yy-2 x+1 0 z+3例10 求行列式 3 0 4 0 的第四行各元素的余子式的和.(01)2 2 2 20 -7 0 05 3 -2 23.几个n 阶行列式两类爪形行列式及其值:例11 a 1 a 2 a 3 … a n-1 a nb 1c 2 0 … 0 0证明 0 b 2 c 3 0 0 =11111(1)ni i i i n i b b a c c --+=-∑ .… … … …0 0 0 … b n-1 c n提示: 只用对第1行展开(M 1i 都可直接求出).例a 0 a 1 a 2 … a n-1 a nb 1c 1 0 …证明 b 2 0 c 2 … 0 0 =011111n ni i i i i n i i a c c c a b c c -+==-∑∏ .… … … …b n 0 0 … 0c n提示: 只用对第1行展开(M 1i 都可直接求出).另一个常见的n 阶行列式:例13 证明a+b b 0 … 0 0a a+b b … 0 0… … … … = 110n n nn i i i a b a b a b ++-=-=-∑(当a ≠b 时).0 0 0 … a+b b0 0 0 a a+b提示:把第j 列(行)的(-1)j-1倍加到第1列(行)上(j=2,…,n),再对第1列(行)展开.4.关于克莱姆法则的题例14设有方程组 x 1+x 2+x 3=a+b+c,ax 1+bx 2+cx 3=a 2+b 2+c 2,bcx 1+acx 2+abx 3=3abc.(1)证明此方程组有唯一解的充分必要条件为a,b,c 两两不等.(2)在此情况求解.参考答案例1 ①(2+4a)(2-a)4.② x 3(x+4). ③ a 3(a+10).例2 1875.例3 x 1x 2x 3x 4+x 2x 3x 4+x 1x 3x 4+x 1x 2x 4+x 1x 2x 3.例4 (a+b+c)(a+b-c)(a-b+c)(a-b-c).例5 1-a+a 2-a 3+a 4-a 5.例6 9,-6例7 1,-10.例8 40.例9 x=0,y=3,z=-1.例10 -28.例14 x 1=a,x 2=b,x 3=c..第三讲矩阵一.概念复习1. 矩阵乘法的定义和性质定义2.1 当矩阵A的列数和B的行数相等时,和A和B可以相乘,乘积记作AB. AB的行数和A相等,列数和B 相等. AB的(i,j)位元素等于A的第i个行向量和B的第j个列向量(维数相同)对应分量乘积之和.设 a11 a12... a1n b11 b12... b1s c11 c12 (1)A= a21 a22... a2n B= b21 b22... b2s C=AB=c21 c22 (2)………………………a m1 a m2… a mn ,b n1 b n2… b ns ,c m1 c m2… c ms ,则c ij=a i1b1j+a i2b2j+…+a in b nj.矩阵的乘法在规则上与数的乘法有不同:①矩阵乘法有条件.②矩阵乘法无交换律.③矩阵乘法无消去律,即一般地由AB=0推不出A=0或B=0.由AB=AC和A≠0推不出B=C.(无左消去律)由BA=CA和A≠0推不出B=C. (无右消去律)请注意不要犯一种常见的错误:把数的乘法的性质简单地搬用到矩阵乘法中来.矩阵乘法适合以下法则:①加乘分配律 A(B+C)= AB+AC,(A+B)C=AC+BC.②数乘性质 (c A)B=c(AB).③结合律 (AB)C= A(BC).④ (AB)T=B T A T.2. n阶矩阵的方幂和多项式任何两个n阶矩阵A和B都可以相乘,乘积AB仍是n阶矩阵.并且有行列式性质:|AB|=|A||B|.如果AB=BA,则说A和B可交换.方幂设k是正整数, n阶矩阵A的k次方幂A k即k个A的连乘积.规定A 0=E.显然A的任何两个方幂都是可交换的,并且方幂运算符合指数法则:①A k A h= A k+h.② (A k)h= A kh.但是一般地(AB)k和A k B k不一定相等!n阶矩阵的多项式设f(x)=a m x m+a m-1x m-1+…+a1x+a0,对n阶矩阵A规定f(A)=a m A m+a m-1A m-1+…+ a1A+a0E.称为A的一个多项式.请特别注意在常数项上加单位矩阵E.乘法公式一般地,由于交换性的障碍,小代数中的数的因式分解和乘法公式对于n阶矩阵的不再成立.但是如果公式中所出现的n阶矩阵互相都是乘法交换的,则乘法公式成立.例如当A和B可交换时,有:(A±B)2=A2±2AB+B2;A2-B2=(A+B)(A-B)=(A+B)(A-B).二项展开式成立: B AC B A -=∑=+1)(等等.前面两式成立还是A 和B 可交换的充分必要条件.同一个n 阶矩阵的两个多项式总是可交换的. 一个n 阶矩阵的多项式可以因式分解.3. 分块法则矩阵乘法的分块法则是简化矩阵乘法的一种方法.对两个可以相乘的矩阵A 和B ,可以先用纵横线把它们切割成小矩阵(一切A 的纵向切割和B 的横向切割一致!),再用它们来作乘法.(1)两种常见的矩阵乘法的分块法则 A 11 A 12 B 11 B 12 = A 11B 11+A 12B 21 A 11B 12+A 12B 22A 21 A 22B 21 B 22 A 21B 11+A 22B 21 A 21B 12+A 22B 22要求A ij 的列数B jk 和的行数相等.准对角矩阵的乘法:形如A 1 0 0A = 0 A 2 0… … …0 0 … A n的矩阵称为准对角矩阵,其中A 1,A 2,…,A k 都是方阵.两个准对角矩阵A 1 0 ... 0 B 1 0 0A = 0 A 2 ... 0 , B = 0 B 2 0… … … … … …0 0 … A k 0 0 … B k即A i 和B i , A 1B 1 0 0AB = 0 A 2B 2 … 0 .… … …0 0 … A k B k(2)乘积矩阵的列向量组和行向量组设A 是m ⨯n 矩阵B 是n ⨯s 矩阵. A 的列向量组为α1,α2,…,αn ,B 的列向量组为β1, β2,…,βs , AB 的列向量组为γ1, γ2,…,γs ,则根据矩阵乘法的定义容易看出(也是分块法则的特殊情形):① AB 的每个列向量为:γi =A βi ,i=1,2,…,s.即A (β1, β2,…,βs )= (A β1,A β2,…,A βs ).② β=(b 1,b 2,…,b n )T ,则A β= b 1α1+b 2α2+…+b n αn .应用这两个性质可以得到:如果βi =(b 1i ,b 2i ,…,b ni )T ,则γi =A βI =b 1i α1+b 2i α2+…+b ni αn .即:乘积矩阵AB 的第i 个列向量γi 是A 的列向量组α1, α2,…,αn 的线性组合,组合系数就是B 的第i 个列向量βi 的各分量.类似地, 乘积矩阵AB 的第i 个行向量是B 的行向量组的线性组合,组合系数就是A 的第i 个行向量的各分量.以上规律在一般教材都没有强调,但只要对矩阵乘法稍加分析就不难得出.它们无论在理论上和计算中都是很有用的.(1) 当两个矩阵中,有一个的数字很简单时,直接利用以上规律写出乘积矩阵的各个列向量或行向量,从而提高了计算的速度.(2) 利用以上规律容易得到下面几个简单推论:用对角矩阵Λ从左侧乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的各行向量; 用对角矩阵Λ从右侧乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的各列向量.数量矩阵k E乘一个矩阵相当于用k乘此矩阵;单位矩阵乘一个矩阵仍等于该矩阵.两个同阶对角矩阵的相乘只用把对角线上的对应元素相乘.求对角矩阵的方幂只需把对角线上的每个元素作同次方幂.(3) 矩阵分解:当一个矩阵C的每个列向量都是另一个A的列向量组的线性组合时,可以构造一个矩阵B,使得C=AB.例如设A=(α,β,γ), C=(α+2β-γ,3α-β+γ,α+2γ),令1 3 1B= 2 -1 0 ,则C=AB.-1 1 2(4) 初等矩阵及其在乘法中的作用对单位矩阵E作一次初等(行或列)变换,所得到的矩阵称为初等矩阵.有三类初等矩阵:E(i,j):交换E的i,j两行(或列)所得到的矩阵.E(i(c)):用非0数c乘E的第i行(或列)所得到的矩阵.也就是把E的对角线上的第i个元素改为c.E(i,j(c))(i≠j):把E的第j行的c倍加到第i行上(或把第i列的c倍加到第j列上)所得到的矩阵, 也就是把E的(i,j)位的元素改为c.命题对矩阵作一次初等行(列)变换相当于用一个相应的初等矩阵从左(右)乘它.4. 矩阵方程和可逆矩阵(伴随矩阵)(1) 矩阵方程矩阵不能规定除法,乘法的逆运算是解下面两种基本形式的矩阵方程:(I) AX=B.(II) XA=B.这里假定A是行列式不为0的n阶矩阵,在此条件下,这两个方程的解都是存在并且唯一的.(否则解的情况比较复杂.)当B只有一列时,(I)就是一个线性方程组.由克莱姆法则知它有唯一解.如果B有s列,设 B=(β1, β2,…,βs),则X也应该有s列,记X=(X1,X2,…,X s),则有AX i=βi,i=1,2,…,s,这是s个线性方程组.由克莱姆法则,它们都有唯一解,从而AX=B有唯一解.这些方程组系数矩阵都是A,可同时求解,即得(I)的解法:将A和B并列作矩阵(A|B),对它作初等行变换,使得A变为单位矩阵,此时B变为解X.(A|B)→(E|X)(II)的解法:对两边转置化为(I)的形式:A T X T=B T.再用解(I)的方法求出X T,转置得X..(A T|B T)→(E|X T)矩阵方程是历年考题中常见的题型,但是考试真题往往并不直接写成(I)或(II)的形式,要用恒等变形简化为以上基本形式再求解.(2) 可逆矩阵的定义与意义定义设A是n阶矩阵,如果存在n阶矩阵B,使得AB=E, BA=E,则称A为可逆矩阵.此时B是唯一的,称为A的逆矩阵,通常记作A-1.如果A可逆,则A在乘法中有消去律:AB=0⇒B=0;AB=AC⇒B=C.(左消去律);BA=0⇒B=0;BA=CA⇒B=C. (右消去律)如果A可逆,则A在乘法中可移动(化为逆矩阵移到等号另一边):AB=C⇔B=A-1C. BA=C⇔B=CA-1.由此得到基本矩阵方程的逆矩阵解法:(I) AX=B的解X=A-1B .(II) XA=B的解X= BA-1.这种解法想法自然,好记忆,但是计算量比初等变换法大(多了一次矩阵乘积运算).(3) 矩阵可逆性的判别与性质定理 n阶矩阵A可逆⇔|A|≠0.证明“⇒”对AA-1=E两边取行列式,得|A||A-1|=1,从而|A|≠0. (并且|A-1|=|A|-1.)“⇐”因为|A|≠0,矩阵方程AX=E和XA=E都有唯一解.设B,C分别是它们的解,即AB=E, CA=E. 事实上B=C(B=EB=CAB=CE=C),于是从定义得到A可逆.推论如果A和B都是n阶矩阵,则AB=E⇔BA=E.于是只要AB=E(或BA=E)一式成立,则A和B都可逆并且互为逆矩阵.可逆矩阵有以下性质:①如果A可逆,则A-1也可逆,并且(A-1)-1=A.A T也可逆,并且(A T)-1=(A-1)T.当c≠0时, c A也可逆,并且(c A)-1=c-1A-1.对任何正整数k, A k也可逆,并且(A k)-1=(A-1)k.(规定可逆矩阵A的负整数次方幂A-k=(A k)-1=(A-1)k.)②如果A和B都可逆,则AB也可逆,并且(AB)-1=B-1A-1.(请自己推广到多个可逆矩阵乘积的情形.)初等矩阵都是可逆矩阵,并且E(i,j)-1= E(i,j), E(i(c))-1=E(i(c-1)), E(i,j(c))-1= E(i,j(-c)).(4) 逆矩阵的计算和伴随矩阵①计算逆矩阵的初等变换法当A可逆时, A-1是矩阵方程AX=E的解,于是可用初等行变换求A-1:(A|E)→(E|A-1)这个方法称为求逆矩阵的初等变换法.它比下面介绍的伴随矩阵法简单得多.②伴随矩阵若A是n阶矩阵,记A ij是|A|的(i,j)位元素的代数余子式,规定A的伴随矩阵为A11 A21… A n1A*= A12 A22… A n2 =(A ij)T.………A1n A2n… A mn请注意,规定n阶矩阵A的伴随矩阵并没有要求A可逆,但是在A可逆时, A*和A-1有密切关系.基本公式: AA*=A*A=|A|E.于是对于可逆矩阵A,有A-1=A*/|A|, 即A*=|A|A-1.因此可通过求A*来计算A-1.这就是求逆矩阵的伴随矩阵法.和初等变换法比较, 伴随矩阵法的计算量要大得多,除非n=2,一般不用它来求逆矩阵.对于2阶矩阵a b * d -bc d = -c a ,因此当ad-bc≠0时,a b -1 d -bc d = -c a (ad-bc) .伴随矩阵的其它性质:①如果A是可逆矩阵,则A*也可逆,并且(A*)-1= A/|A|=(A-1)*.② |A*|=|A|n-1.③ (A T)*=(A*)T.④ (c A)*=c n-1A*.⑤ (AB)*=B*A*;(A k)*=(A*)k.⑥当n>2时,(A*)*=|A|n-2A; n=2时,(A*)*=A.二典型例题1.计算题例1 α=(1,-2,3) T,β=(1,-1/2,1/3)T, A=αβ T,求A6.讨论:(1)一般地,如果n阶矩阵A=αβ T,则A k=(βTα)k-1A=(tr(A ))k-1A .(2)乘法结合律的应用:遇到形如βTα的地方可把它当作数处理.① 1 -1 1ααT= -1 1 -1 ,求αTα.(2003一)1 -1 1②设α=(1,0,-1)T, A=ααT,求|a E-A n|.③ n维向量α=(a,0,⋯,0,a)T, a<0, A=E-ααT, A-1=E+a-1αα T,求a. (03三,四)④ n维向量α=(1/2,0,⋯,0,1/2)T, A=E-αα T, B=E+2αα T,求AB. (95四)⑤ A=E-αβ T,其中α,β都是n维非零列向量,已知A2=3E-2A,求αTβ.例2(1999三) 1 0 1设A = 0 2 0 ,求A n-2A n-1.(n>1)1 0 1例3 1 0 0设A = 1 0 1 ,(1)证明当n>1时A n=A n-2+A2-E. (2) 求A n.0 1 0例4 设A为3阶矩阵, α1,α2,α3是线性无关的3维列向量组,满足Aα1=α1+α2+α3, Aα2=2α2+ α3, Aα3=2α2+3α3.求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B. (2005年数学四)例5设3阶矩阵A=(α1,α2,α3),|A|=1,B=(α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3),求|B|.(05)例6 3维向量α1, α2, α3, β1, β2, β3满足α1+α3+2β1-β2=0, 3α1-α2+β1-β3=0, -α2+α3-β2+β3=0,已知|α1, α2, α3|=a,求| β1, β2, β3|.例7设A是3阶矩阵, α是3维列向量,使得P=(α,Aα,A2α)可逆,并且A3α=3Aα-2A2α.又3阶矩阵B满足A=PBP-1.(1)求B.(2)求|A+E|.(01一)2 1 0例8 3阶矩阵A,B满足ABA*=2BA*+E,其中A= 1 2 0 ,求|B|.(04一)0 0 1例9 3 -5 1设3阶矩阵A= 1 -1 0 , A-1XA=XA+2A,求X.-1 0 2例设3阶矩阵A A*X=A-1+2X,求X.1 -1 1例11 4阶矩阵A,B满足ABA-1=BA-1+3E,已知1 0 0 0A*= 0 1 0 0 ,求B. (00一)1 0 1 00 -3 0 8例12 3 0 0 1 0 0已知A= 2 1 0 , B= 0 0 0 , XA+2B=AB+2X,求X11.2 13 0 0 -1例13设α1=(5,1,-5)T, α2=(1,-3,2)T, α3=(1,-2,1)T,矩阵A满足Aα1=(4,3) T, Aα2=(7,-8) T, Aα3=(5,-5) T,求A.2.概念和证明题例14 设A是n阶非零实矩阵,满足A*=A T.证明:(1)|A|>0.(2)如果n>2,则 |A|=1.例15 设矩阵A=(a ij)3⨯3满足A*=A T,a11,a12,a13为3个相等的正数,则它们为(A) 3/3.(B) 3. (C)1/3. (D) 3. (2005年数学三)例16 设A和B都是n阶矩阵,C= A 0 ,则C*=0 B(A) |A|A* 0 . (B) |B|B * 0 .0 |B|B * 0 |A|A*(C) |A|B* 0 . (D ) |B|A* 0 .0 |B|A* 0 |A|B*例17 设A是3阶矩阵,交换A的1,2列得B,再把B的第2 列加到第3 列上,得C.求Q,使得C=AQ.例18 设A是3阶可逆矩阵,交换A的1,2行得B,则(A) 交换A*的1,2行得到B*.(B) 交换A*的1,2列得到B*.(C) 交换A*的1,2行得到-B*.(D) 交换A*的1,2列得到-B*.(2005年)例19 设A是n阶可逆矩阵, 交换A的i,j行得到B.(1) 证明B可逆.(2) 求AB-1.例20设n阶矩阵A满足A2+3A-2E=0.(1)证明A可逆,并且求A-1.(2)证明对任何整数c,A-c E可逆.讨论: 如果f(A)=0,则(1) 当f(x)的常数项不等于0时,A可逆.(2) f(c)≠0时,A-c E可逆.(3) 上述两条的逆命题不成立.例21设α是n维非零列向量,记A=E-ααT.证明(1) A2=A⇔αTα =1.(2) αTα =1⇒ A不可逆. (96一)讨论: (2)的逆命题也成立.例22 设A,B都是n阶矩阵,证明E-AB可逆⇔ E-BA可逆.例23设3阶矩阵A,B满足AB=A+B.(1) 证明A-E可逆.(2) 设 1 -3 0B= 2 1 0 ,求A.0 0 2 (91)例24设A,B是3阶矩阵, A可逆,它们满足2A-1B=B-4E.(1) 证明A-2E可逆.(2) 设 1 -2 0B= 1 2 0 ,求A.0 0 2 (2002)例25设n阶矩阵A,B满足AB=a A+b B.其中ab≠0,证明(1) A-b E和B-a E都可逆.(2) A可逆⇔ B可逆.(3) AB=BA.例26设A,B都是n阶对称矩阵, E+AB可逆,证明(E+AB)-1A也是对称矩阵.例27 设A,B都是n阶矩阵使得A+B可逆,证明(1) 如果AB=BA,则B(A+B)-1A=A(A+B)-1B.(2) 如果A.B都可逆,则B(A+B)-1A=A(A+B)-1B.(3) 等式B(A+B)-1A=A(A+B)-1B总成立.例28设A,B,C都是n阶矩阵,满足B=E+AB,C=A+CA,则B-C为(A) E.(B) -E. (C) A. (D) -A. (2005年数学四)参考答案1 -1/2 1/3例135A=35 -2 1 –2/3 .3 -3/2 1① 3.② a2(a-2n). ③ -1. ④ E. ⑤ 4.例2 O.例3 (1)提示: A n=A n-2+A2-E⇔A n-2(A2-E)=A2-E ⇔ A(A2-E)=A2-E.(2)n=2k时, 1 0 0A n = k 1 0 .k 0 1n=2k+1时, 1 0 0A n = k+1 0 1 .k 1 0例 4 1 0 0B= 1 2 2 .1 1 3例5 2.例 6 –4a.例 7 0 0 0B= 1 0 3 . |E+A|=-40 1 -2例8 1/9.例 9 -6 10 4X= -2 4 2 .-4 10 0例 10 1 1 0(1/4) 0 1 1 .1 0 1例 11 6 0 0 0B= 0 6 0 0 .6 0 6 00 3 0 -1例 12 1 0 02 0 0 .6 -1 -1例 13 2 -1 1-4 -2 -5 .例15 (A).例16 (D).例 17 0 1 1Q= 1 0 0 .0 0 1例18 (D).例19 E(i,j).例22 提示:用克莱姆法则.例如证明⇒,即在E-AB可逆时证明齐次方程组(E-BA)X=0只有零解.例23 1 1/2 0A= -1/3 1 0 .0 0 2例 24 0 2 0A= -1 -1 0 .0 0 -2例25 提示:计算(A-b E)(B-a E).例28 (A).第四讲向量组的线性关系与秩一.概念复习1. 线性表示关系设α1,α2,…,αs是一个n维向量组.如果n维向量β等于α1,α2,…,αs的一个线性组合,就说β可以用α1,α2,…,αs线性表示.如果n维向量组β1, β2,…,βt 中的每一个都可以可以用α1,α2,…,αs线性表示,就说向量β1,β2,…,βt可以用α1,α2,…,αs线性表示.判别“β是否可以用α1, α2,…,αs线性表示? 表示方式是否唯一?”就是问:向量方程x1α1+ x2α2+…+x sαs=β是否有解?解是否唯一?用分量写出这个向量方程,就是以(α1, α2,…,αs |β)为增广矩阵的线性方程组.反之,判别“以(A|β)为增广矩阵的线性方程组是否有解?解是否唯一?”的问题又可转化为“β是否可以用A的列向量组线性。
考研数学强化线性代数讲义(至讲)讲义
= 31 .
0 8 -6 0 8 -18 -26
二.线性方程组的基本概念 线性方程组的一般形式为 :
a x11 1+a12x2+…+a1nxn=b1, a x21 1+a22x2+…+a2nxn=b2,
………… a xm1 1+am2x2+…+amnxn=bm, 对线性方程组讨论的主要问题两个 : (1) 判断解的情况 : 无解 , 唯一解 , 无穷多解 . (2) 求解 , 特别是在有无穷多解时求通解 .
第一讲 基本概念
一. 关于矩阵和向量的几个问题。
1.行向量和列向量
3
问题 :(3,-2,1) 和 -2 是不是一样 ?
1
2. 下列矩阵都是什么矩阵 ?
① 100
②c 0 0
③ 2 -1 1
④001
⑤000
000 0c0 017 020 000
002 00c 000 100 000
⑥222
⑦ 2 -1 0 1
220
0127
200
0020
对角矩阵 : ① ② ⑤ .
上三角矩阵 : ① ② ③ ⑤ .
下三角矩阵 : ① ② ⑤
.
对称矩阵 : ① ② ⑤ ④ ⑥ .
3.
3 -1 4
例 : 求矩阵 A= 5 0 7 的列向量组的系数为 2,-1,3 的线性组合 .
0 8 -6
3 -1 4 6 1 12 17
解 :2 5 - 0 +3 7 = 10 - 0 + 21
000 00 000 0 0
1111 1 1 11
111 1
(2) 0 1 -1 2 0 1 -1 2
《线性代数》部分讲义(Word版)
《线性代数》部分讲义(Word版)GCT 线性代数辅导第一讲行列式一. 行列式的定义● 一阶行列式定义为1111a a =● 二阶行列式定义为2112221122211211a a a a a a a a -=● 在n 阶行列式中,划去元素ij a 所在的第i 行第j 列,剩余元素构成1-n 阶行列式,称为元素ij a 的余子式,记作ij M .● 令ij j i ij M A +-=)1(,称ij A 为ij a 的代数余子式.●n 阶行列式定义为n n nnn n nn A a A a A a a a a a a a a a a 1112121111212222111211+++=.二. 行列式的性质1.行列式中行列互换,其值不变.=333231232221131211a a a a a a a a a 332313322212312111a a a a a a a a a 2.行列式中两行对换,其值变号.=333231232221131211a a a a a a a a a –333231131211232221a a a a a a a a a 3.行列式中如果某行元素有公因子,可以将公因子提到行列式外.=333231232221131211a a a ka ka ka a a a 333231232221131211a a a a a a a a a k4.行列式中如果有一行每个元素都由两个数之和组成,行列式可以拆成两个行列式的和.=+++333231232322222121131211a a a b a b a b a a a a +333231232221131211a a a a a a a a a 333231232221131211a a a b b b a a a 由以上四条性质,还能推出下面几条性质5.行列式中如果有两行元素对应相等,则行列式的值为0.6.行列式中如果有两行元素对应成比例,则行列式的值为0.7.行列式中如果有一行元素全为0,则行列式的值为0.8.行列式中某行元素的k 倍加到另一行,其值不变.=333231232221131211a a a a a a a a a 133312321131232221131211ka a ka a ka a a a a a a a +++三.n 阶行列式展开性质nnn n nn a a a a a a a a a D212222111211= 等于它的任意一行的各元素与其对应代数余子式的乘积的和,即in in i i i i A a A a A a D +++= 2211 n i ,,2,1 = ● 按列展开定理nj nj j j j j A a A a A a D +++= 2211 n j ,,2,1 =●n 阶行列式D 的某一行的各元素与另一行对应元素的代数余子式的乘积的和等于零.即02211=+++jn in j i j i A a A a A a j i ≠ ● 按列展开的性质02211=+++nj ni j i j i A a A a A a j i ≠四.特殊行列式●nn nna a a a a a22112211=;()11212)1(11211n n n n n n n na a a a a a ----=● 上(下)三角行列式和上面的对角行列式的结果相同.五.计算行列式● 消零降阶法.● 消为特殊行列式(上(下)三角行列式或和对角行列式)..典型习题1. =3D xx x 121332=()。
线性代数总复习讲义PPT课件
在计算机科学中的应用
01
Байду номын сангаас
02
03
04
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
100%
相似变换法
通过相似变换将矩阵对角化,从 而得到其特征值和特征向量。
80%
数值计算法
对于一些大型稀疏矩阵,可以使 用数值计算方法来计算其特征值 和特征向量。
特征值与特征向量的应用
01
在物理、工程等领域中,特征值和特征向量被广泛 应用于求解振动、波动等问题。
02
在图像处理中,特征值和特征向量被用于图像压缩 和图像识别。
二次型的应用与优化问题
总结词
了解二次型在解决优化问题中的应用
详细描述
二次型的一个重要应用是在解决优化问题中, 特别是在求解二次规划问题时。通过将问题 转化为二次型的形式,可以方便地应用各种 优化算法进行求解,如梯度下降法、牛顿法 等。此外,二次型在统计分析、机器学习等 领域也有着广泛的应用。
06
矩阵的逆与行列式的值
要点一
总结词
矩阵的逆和行列式的值是线性代数中的重要概念,它们在 解决线性方程组、向量空间和特征值等问题中有着广泛的 应用。
要点二
详细描述
矩阵的逆是矩阵运算的一个重要概念,它表示一个矩阵的 逆矩阵与其原矩阵相乘为单位矩阵。逆矩阵的存在条件是 矩阵的行列式值不为零。行列式的值是一个由n阶方阵构 成的代数式,表示n个未知数的n阶线性方程组的解的系数 。行列式的值可以用来判断线性方程组是否有解以及解的 个数。同时,行列式的值也与特征值和特征向量等问题密 切相关。
线代强化知识点总结
线代强化知识点总结1. 向量与向量空间向量是线性代数中最基本的概念之一,它是指具有大小和方向的量。
向量可以表示为n维空间中的一个点,也可以表示为一个有序元组。
在给定向量空间V上,向量满足以下性质:- 加法交换律和结合律:对于所有的向量u、v、w∈V,有u+v=v+u和(u+v)+w=u+(v+w);- 乘法分配律:对于所有的标量c和向量u、v∈V,有c(u+v)=cu+cv和 (c+d)u=cu+du;- 零元素:存在一个向量0,对任意向量u∈V,有u+0=u;- 相反元素:对于每个向量u∈V,存在一个向量-v∈V,使得u+(-u)=0。
向量空间就是满足上述性质的集合V。
在向量空间中,我们可以定义向量的线性组合、线性相关和线性无关等概念,这些概念对于理解和应用线性代数是非常重要的。
2. 矩阵与矩阵运算矩阵是线性代数中另一个重要的概念,它可以表示为一个矩形的数组,其中的元素可以是实数或复数。
矩阵可以进行加法、数乘、转置、乘法等运算,这些运算对应着线性代数中的向量空间的运算规则。
矩阵的运算有一些重要的性质,如加法的交换律和结合律、数乘和矩阵乘法的分配律等。
对于n×n矩阵A,我们还可以定义其行列式与逆矩阵。
行列式可以描述矩阵的某种度量,而逆矩阵则是用来求解线性方程组的重要工具。
在矩阵的运算中,有一些特殊的矩阵可以对我们理解线性代数理论有所帮助,比如对称矩阵、正定矩阵、酉矩阵等。
3. 线性变换与矩阵表示线性变换是指一个向量空间到另一个向量空间的映射,它保持加法和数乘运算。
线性变换可以用一个矩阵来表示,这个矩阵就是线性变换的矩阵表示。
对于给定的线性变换T:V→W,其中V和W分别为向量空间,我们可以找到V和W的一组基底,然后通过线性变换T将V中的基底映射到W中,这样就可以得到线性变换T的矩阵表示。
矩阵表示的选择不唯一,但是在特定的基底下,线性变换的矩阵表示是确定的。
线性变换与矩阵表示的关系对于理解矩阵和向量空间之间的联系非常重要。
考研数学之线性代数讲义
收集自网络,不以任何盈利为目的。
欢迎考研的同学,下载学习。
线性代数讲义目录第一讲基本概念线性方程组矩阵与向量初等变换和阶梯形矩阵线性方程组的矩阵消元法第二讲行列式完全展开式化零降阶法其它性质克莱姆法则第三讲矩阵乘法乘积矩阵的列向量和行向量矩阵分解矩阵方程逆矩阵伴随矩阵第四讲向量组线性表示向量组的线性相关性向量组的极大无关组和秩矩阵的秩第五讲方程组解的性质解的情况的判别基础解系和通解第六讲特征向量与特征值相似与对角化特征向量与特征值—概念,计算与应用相似对角化—判断与实现附录一内积正交矩阵施密特正交化实对称矩阵的对角化第七讲二次型二次型及其矩阵可逆线性变量替换实对称矩阵的合同标准化和规范化惯性指数正定二次型与正定矩阵附录二向量空间及其子空间附录三两个线性方程组的解集的关系附录四06,07年考题第一讲基本概念1.线性方程组的基本概念线性方程组的一般形式为:a11x1+a12x2+…+a1n x n=b1,a21x1+a22x2+…+a2n x n=b2,…………a m1x1+a m2x2+…+a mn x n=b m,其中未知数的个数n和方程式的个数m不必相等.线性方程组的解是一个n维向量(k1,k2, …,k n)(称为解向量),它满足:当每个方程中的未知数x i都用k i替代时都成为等式.线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解.b1=b2=…=b m=0的线性方程组称为齐次线性方程组.n维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解).把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组.2.矩阵和向量(1)基本概念矩阵和向量都是描写事物形态的数量形式的发展.由mn个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个mn型矩阵.例如2 -1 0 1 11 1 1 0 22 5 4 -2 93 3 3 -1 8是一个45矩阵.对于上面的线性方程组,称矩阵a11 a12…a1n a11 a12…a1n b1A= a21 a22…a2n 和(A|)= a21 a22…a2n b2…………………a m1 a m2…a mn a m1 a m2…a mnb m为其系数矩阵和增广矩阵.增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素.元素全为0的矩阵称为零矩阵,通常就记作0.两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等.由n个数构成的有序数组称为一个n维向量,称这些数为它的分量.书写中可用矩阵的形式来表示向量,例如分量依次是a1,a2, ,a n的向量可表示成a1(a1,a2, ,a n)或a2,┆a n请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1n矩阵,右边是n1矩阵).习惯上把它们分别称为行向量和列向量.(请注意与下面规定的矩阵的行向量和列向量概念的区别.)一个mn的矩阵的每一行是一个n维向量,称为它的行向量; 每一列是一个m维向量, 称为它的列向量.常常用矩阵的列向量组来写出矩阵,例如当矩阵A的列向量组为1,2, ,n时(它们都是表示为列的形式!)可记A=(1,2, ,n).矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0.两个向量和相等(记作=),是指它的维数相等,并且对应的分量都相等.(2) 线性运算和转置线性运算是矩阵和向量所共有的,下面以矩阵为例来说明.加(减)法:两个mn的矩阵A和B可以相加(减),得到的和(差)仍是mn矩阵,记作A+B (A-B),法则为对应元素相加(减).数乘: 一个mn的矩阵A与一个数c可以相乘,乘积仍为mn的矩阵,记作c A,法则为A 的每个元素乘c.这两种运算统称为线性运算,它们满足以下规律:①加法交换律:A+B=B+A.②加法结合律:(A+B)+C=A+(B+C).③加乘分配律:c(A+B)=c A+c B.(c+d)A=c A+d A.④数乘结合律: c(d)A=(cd)A.⑤ c A=0 c=0 或A=0.转置:把一个mn的矩阵A行和列互换,得到的nm的矩阵称为A的转置,记作A T(或A).有以下规律:① (A T)T=A.② (A+B)T=A T+B T.③ (c A)T=c A T.转置是矩阵所特有的运算,如把转置的符号用在向量上,就意味着把这个向量看作矩阵了.当是列向量时, T表示行向量,当是行向量时, T表示列向量.向量组的线性组合:设1,2,…,s是一组n维向量, c1,c2,…,c s是一组数,则称c11+c22+…+c ss为1,2,…,s的(以c1,c2,…,c s为系数的)线性组合.n维向量组的线性组合也是n维向量.(3) n阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵.把n阶矩阵的从左上到右下的对角线称为它对角线.(其上的元素行号与列号相等.)下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的.对角矩阵: 对角线外的的元素都为0的n阶矩阵.单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I).数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E.上三角矩阵: 对角线下的的元素都为0的n阶矩阵.下三角矩阵: 对角线上的的元素都为0的n阶矩阵.对称矩阵:满足A T=A矩阵.也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n 阶矩阵.(反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.)3. 矩阵的初等变换和阶梯形矩阵矩阵有以下三种初等行变换:①交换两行的位置.②用一个非0的常数乘某一行的各元素.③把某一行的倍数加到另一行上.(称这类变换为倍加变换)类似地, 矩阵还有三种初等列变换,大家可以模仿着写出它们,这里省略了. 初等行变换与初等列变换统称初等变换.阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面.②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增.把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角.简单阶梯形矩阵:是特殊的阶梯形矩阵,特点为:③台角位置的元素为1.④并且其正上方的元素都为0.每个矩阵都可以用初等行变换化为阶梯形矩阵和简单阶梯形矩阵.这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练.请注意: 1.一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零行数和台角位置是确定的.2. 一个矩阵用初等行变换化得的简单阶梯形矩阵是唯一的.4. 线性方程组的矩阵消元法线性方程组的基本方法即中学课程中的消元法:用同解变换把方程组化为阶梯形方程组(即增广矩阵为阶梯形矩阵的方程组).线性方程组的同解变换有三种:①交换两个方程的上下位置.②用一个非0的常数乘某个方程.③把某个方程的倍数加到另一个方程上.以上变换反映在增广矩阵上就是三种初等行变换.线性方程组求解的基本方法是消元法,用增广矩阵或系数矩阵来进行,称为矩阵消元法.对非齐次线性方程组步骤如下:(1)写出方程组的增广矩阵(A|),用初等行变换把它化为阶梯形矩阵(B|).(2)用(B|)判别解的情况:如果最下面的非零行为(0,0, ,0|d),则无解,否则有解.有解时看非零行数r(r不会大于未知数个数n),r=n时唯一解;r<n时无穷多解.(推论:当方程的个数m<n时,不可能唯一解.)(3)有唯一解时求解的初等变换法:去掉(B|)的零行,得到一个n×(n+1)矩阵(B0|0),并用初等行变换把它化为简单阶梯形矩阵(E|),则就是解.对齐次线性方程组:(1)写出方程组的系数矩阵A,用初等行变换把它化为阶梯形矩阵B.(2)用B判别解的情况:非零行数r=n时只有零解;r<n时有非零解(求解方法在第五章讲). (推论:当方程的个数m<n时,有非零解.)讨论题1.设A是n阶矩阵,则(A) A是上三角矩阵A是阶梯形矩阵.(B) A是上三角矩阵A是阶梯形矩阵.(C) A是上三角矩阵A是阶梯形矩阵.(D) A是上三角矩阵与A是阶梯形矩阵没有直接的因果关系.2.下列命题中哪几个成立(1) 如果A是阶梯形矩阵,则A去掉任何一行还是是阶梯形矩阵.(2) 如果A是阶梯形矩阵,则A去掉任何一列还是是阶梯形矩阵.(3) 如果(A|B)是阶梯形矩阵,则A也是阶梯形矩阵.(4) 如果(A|B)是阶梯形矩阵,则B也是阶梯形矩阵.(5) 如果 A 是阶梯形矩阵,则A和B都是阶梯形矩阵.B第二讲行列式一.概念复习1. 形式和意义形式:用n2个数排列成的一个n行n列的表格,两边界以竖线,就成为一个n阶行列式: a11 a12 (1)a21 a22 (2)……… .a n1 a n2…a nn如果行列式的列向量组为1,2, …,n,则此行列式可表示为|1,2, …,n|.意义:是一个算式,把这n2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值.请注意行列式和矩阵在形式上和意义上的区别.当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.)每个n阶矩阵A对应一个n阶行列式,记作|A|.行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0.2. 定义(完全展开式)2阶和3阶行列式的计算公式:a11 a12a21 a22 = a11a22-a12a21 .a11 a12 a13a21 a22 a23 = a11a22a33+ a12a23a31+ a13a21a32-a13a22a31- a11a23a32-a12a21a33.a31 a32 a33一般地,一个n阶行列式a11 a12 (1)a21 a22 (2)… … …a n1 a n2 … a nn的值是许多项的代数和,每一项都是取自不同行,不同列的n 个元素的乘积,其一般形式为:n nj j j a a a 2121,这里把相乘的n 个元素按照行标的大小顺序排列,它们的列标j 1j 2…j n 构成1,2, …,n 的一个全排列(称为一个n 元排列),共有n!个n 元排列,每个n 元排列对应一项,因此共有n!个项.所谓代数和是在求总和时每项先要乘+1或-1.规定(j 1j 2…j n )为全排列j 1j 2…j n 的逆序数(意义见下面),则项n nj j j a a a 2121所乘的是.)1()(21n j j j全排列的逆序数即小数排列在大数右面的现象出现的个数.逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数:002323215634,(436512)=3+2+3+2+0+0=10.至此我们可以写出n 阶行列式的值:a 11 a 12 … a 1na 21 a 22 … a 2n =.)1(21212121)(n n n nj j j j j j j j j a a a… … …a n1 a n2 … a nn这里 n j j j 21表示对所有n 元排列求和.称此式为n 阶行列式的完全展开式.用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算.例如对角行列式,上(下)三角行列式的值就等于主对角线上的元素的乘积,因为其它项都为0.2. 化零降阶法把n阶行列式的第i行和第j列划去后所得到的n-1阶行列式称为(i,j)位元素a ij的余子式,记作M ij.称A ij=(-1)i+j M ij为元素a ij的代数余子式.定理(对某一行或列的展开)行列式的值等于该行(列)的各元素与其代数余子式乘积之和.命题第三类初等变换(倍加变换)不改变行列式的值.化零降阶法用命题把行列式的某一行或列化到只有一个元素不为0,再用定理.于是化为计算一个低1阶的行列式.化零降阶法是实际计算行列式的主要方法,因此应该熟练掌握.3.其它性质行列式还有以下性质:①把行列式转置值不变,即|A T|=|A| .②某一行(列)的公因子可提出.于是, |c A|=c n|A|.③对一行或一列可分解,即如果某个行(列)向量则原行列式等于两个行列式之和,这两个行列式分别是把原行列式的该行(列)向量换为或所得到的行列式.例如|,1+2|=|,1|+|,2|.④把两个行(列)向量交换, 行列式的值变号.⑤如果一个行(列)向量是另一个行(列)向量的倍数,则行列式的值为0.⑥某一行(列)的各元素与另一行(列)的对应元素的代数余子式乘积之和=0.⑦如果A与B都是方阵(不必同阶),则A * = A O =|A||B|.O B* B范德蒙行列式:形如1 1 1 (1)a1a2 a3 …a na12a22a32…a n2…………a1n-i a2n-i a3n-i…a n n-i的行列式(或其转置).它由a1,a2 ,a3,…,a n所决定,它的值等于因此范德蒙行列式不等于0 a1,a2 ,a3,…,a n两两不同.对于元素有规律的行列式(包括n阶行列式),常常可利用性质简化计算,例如直接化为三角行列式等.4.克莱姆法则克莱姆法则应用在线性方程组的方程个数等于未知数个数n (即系数矩阵为n阶矩阵)的情形.此时,如果它的系数矩阵的行列式的值不等于0,则方程组有唯一解,这个解为(D1/D, D2/D,,D n/D),这里D是系数行列式的值, D i是把系数行列式的第i个列向量换成常数列向量所得到的行列式的值.说明与改进:按法则给的公式求解计算量太大,没有实用价值.因此法则的主要意义在理论上,用在对解的唯一性的判断,而在这方面法则不够. 法则的改进:系数行列式不等于0是唯一解的充分必要条件.实际上求解可用初等变换法:对增广矩阵(A|)作初等行变换,使得A变为单位矩阵: (A|)(E|),就是解.用在齐次方程组上:如果齐次方程组的系数矩阵A是方阵,则它只有零解的充分必要条件是|A|0.二. 典型例题1.利用性质计算元素有规律的行列式例1① 2 a a a a ②1+x 1 1 1 ③1+a 1 1 1a 2 a a a 1 1+x 1 1 2 2+a 2 2a a 2 a a . 1 1 1+x 1 . 3 3 3+a 3 .a a a 2 a 1 1 1 1+x 4 4 4 4+aa a a a 2例2 1 2 3 4 52 3 4 5 13 4 5 1 2 .4 5 1 2 35 1 2 3 4例31+x1 1 1 11 1+x2 1 1 .1 1 1+x311 1 1 1+x4例4 a 0 b c0 a c b .b c a 0c b 0 a例5 1-a a 0 0 0-1 1-a a 0 00 -1 1-a a 0 . (96四)0 0 -1 1-a a0 0 0 -1 1-a2. 测试概念与性质的题例6 x3-3 1 -3 2x+2多项式f(x)= -7 5 -2x 1 ,求f(x)的次数和最高次项的系数.X+3 -1 33x2-29 x3 6 -6例7求x-3 a -1 4f(x)= 5 x-8 0 –2 的x4和x3的系数.0 b x+1 12 2 1 x例8 设4阶矩阵A=(, 1, 2 ,3),B=(, 1, 2 ,3),|A| =2, |B|=3 ,求|A+B| .例9 a b c d已知行列式x -1 -y z+1 的代数余子式A11=-9,A12=3,A13=-1,A14=3,求x,y,z.1 -z x+3 yy-2 x+1 0 z+3例10 求行列式 3 0 4 0 的第四行各元素的余子式的和.(01)2 2 2 20 -7 0 0 5 3 -2 2 3.几个n 阶行列式 两类爪形行列式及其值:例11 a 1 a 2 a 3 … a n-1 a n b 1 c 2 0 … 0 0 证明 0 b 2 c 3 0 0 =11111(1)ni i i i n i b b a c c L L .… … … …0 0 0 … b n-1 c n提示: 只用对第1行展开(M 1i 都可直接求出). 例12 a 0 a 1 a 2 … a n-1 a nb 1c 1 0 … 0 0证明 b 2 0 c 2 … 0 0 =011111n nii i i i n i i a c c c a b c c LL .… … … … b n … 0 c n提示: 只用对第1行展开(M 1i 都可直接求出). 另一个常见的n 阶行列式: 例13 证明a+b b 0 … 0 0 a a+b b … 0 0… … … … = 11n n nn i ii a b a b a b (当ab 时).0 0 0 …a+b b0 0 0 a a+b提示:把第j列(行)的(-1)j-1倍加到第1列(行)上(j=2,…,n),再对第1列(行)展开.4.关于克莱姆法则的题例14设有方程组x1+x2+x3=a+b+c,ax1+bx2+cx3=a2+b2+c2,bcx1+acx2+abx3=3abc.(1)证明此方程组有唯一解的充分必要条件为a,b,c两两不等.(2)在此情况求解.参考答案例1 ①(2+4a)(2-a)4.② x3(x+4). ③ a3(a+10).例2 1875.例3 x1x2x3x4+x2x3x4+x1x3x4+x1x2x4+x1x2x3.例4 (a+b+c)(a+b-c)(a-b+c)(a-b-c).例5 1-a+a2-a3+a4-a5.例6 9,-6例7 1,-10.例8 40.例9 x=0,y=3,z=-1.例10 -28.例14 x1=a,x2=b,x3=c..第三讲矩阵一.概念复习1. 矩阵乘法的定义和性质定义当矩阵A的列数和B的行数相等时,和A和B可以相乘,乘积记作AB.AB的行数和A相等,列数和B相等. AB的(i,j)位元素等于A的第i个行向量和B的第j个列向量(维数相同)对应分量乘积之和.设a11 a12...a1n b11 b12...b1s c11 c12 (1)A= a21 a22...a2n B= b21 b22...b2s C=AB=c21 c (2)………………………a m1 a m2…a mn ,b n1 b n2…b ns ,c m1 c m2…c ms ,则c ij=a i1b1j+a i2b2j+…+a in b nj.矩阵的乘法在规则上与数的乘法有不同:①矩阵乘法有条件.②矩阵乘法无交换律.③矩阵乘法无消去律,即一般地由AB=0推不出A=0或B=0.由AB=AC和A0推不出B=C.(无左消去律)由BA=CA和A0推不出B=C. (无右消去律)请注意不要犯一种常见的错误:把数的乘法的性质简单地搬用到矩阵乘法中来.矩阵乘法适合以下法则:①加乘分配律A(B+C)= AB+AC,(A+B)C=AC+BC.②数乘性质(c A)B=c(AB).③结合律(AB)C= A(BC).④ (AB)T=B T A T.2. n阶矩阵的方幂和多项式任何两个n阶矩阵A和B都可以相乘,乘积AB仍是n阶矩阵.并且有行列式性质: |AB|=|A||B|.如果AB=BA,则说A和B可交换.方幂设k是正整数, n阶矩阵A的k次方幂A k即k个A的连乘积.规定A 0=E.显然A的任何两个方幂都是可交换的,并且方幂运算符合指数法则:①A k A h= A k+h.② (A k)h= A kh.但是一般地(AB)k和A k B k不一定相等!n阶矩阵的多项式设f(x)=a m x m+a m-1x m-1+…+a1x+a0,对n阶矩阵A规定f(A)=a m A m+a m-1A m-1+…+ a1A+a0E.称为A的一个多项式.请特别注意在常数项上加单位矩阵E.乘法公式一般地,由于交换性的障碍,小代数中的数的因式分解和乘法公式对于n阶矩阵的不再成立.但是如果公式中所出现的n阶矩阵互相都是乘法交换的,则乘法公式成立.例如当A和B可交换时,有:(AB)2=A22AB+B2;A 2-B 2=(A +B )(A -B )=(A +B )(A -B ).二项展开式成立: B AC B A1)(等等.前面两式成立还是A 和B 可交换的充分必要条件.同一个n 阶矩阵的两个多项式总是可交换的. 一个n 阶矩阵的多项式可以因式分解. 3. 分块法则矩阵乘法的分块法则是简化矩阵乘法的一种方法.对两个可以相乘的矩阵A 和B ,可以先用纵横线把它们切割成小矩阵(一切A 的纵向切割和B 的横向切割一致!),再用它们来作乘法.(1)两种常见的矩阵乘法的分块法则A 11 A 12B 11 B 12 = A 11B 11+A 12B 21 A B 12+A 12B 22 A 21 A 22 B 21 B 22 A 21B 11+A 22B 21 A 21B 12+A 22B 22要求A ij 的列数B jk 和的行数相等. 准对角矩阵的乘法: 形如A 1 0 ... 0 A = 0 A 2 0… … … 0 0 … A n的矩阵称为准对角矩阵,其中A 1,A 2,…,A k 都是方阵.两个准对角矩阵A 1 0 ... 0 B 1 0 0A = 0 A 2 ... 0 , B = 0 B 2 0… … … … … …0 0 …A k 0 0 …B k如果类型相同,即A i和B i阶数相等,则A1B10 0AB = 0 A2B2 …0 .………00 …A k B k(2)乘积矩阵的列向量组和行向量组设A是mn矩阵B是ns矩阵. A的列向量组为1,2,…,n,B的列向量组为1,2,…,s, AB的列向量组为1,2,…,s,则根据矩阵乘法的定义容易看出(也是分块法则的特殊情形):①AB的每个列向量为:i=A i,i=1,2,…,s.即A(1,2,…,s)=(A1,A2,…,A s).② =(b1,b2,…,b n)T,则A= b11+b22+…+b nn.应用这两个性质可以得到:如果i=(b1i,b2i,…,b ni)T,则=A I=b1i1+b2i2+…+b nin.i即:乘积矩阵AB的第i个列向量i是A的列向量组1,2,…,n的线性组合,组合系数就是B 的第i个列向量i的各分量.类似地, 乘积矩阵AB的第i个行向量是B的行向量组的线性组合,组合系数就是A的第i个行向量的各分量.以上规律在一般教材都没有强调,但只要对矩阵乘法稍加分析就不难得出.它们无论在理论上和计算中都是很有用的.(1) 当两个矩阵中,有一个的数字很简单时,直接利用以上规律写出乘积矩阵的各个列向量或行向量,从而提高了计算的速度.(2) 利用以上规律容易得到下面几个简单推论:用对角矩阵从左侧乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的各行向量; 用对角矩阵从右侧乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的各列向量.数量矩阵k E乘一个矩阵相当于用k乘此矩阵;单位矩阵乘一个矩阵仍等于该矩阵.两个同阶对角矩阵的相乘只用把对角线上的对应元素相乘.求对角矩阵的方幂只需把对角线上的每个元素作同次方幂.(3) 矩阵分解:当一个矩阵C的每个列向量都是另一个A的列向量组的线性组合时,可以构造一个矩阵B,使得C=AB.例如设A=(,,), C=(+2-,3-+,+2),令1 3 1B= 2 -1 0 ,则C=AB.-1 1 2(4) 初等矩阵及其在乘法中的作用对单位矩阵E作一次初等(行或列)变换,所得到的矩阵称为初等矩阵.有三类初等矩阵:E(i,j):交换E的i,j两行(或列)所得到的矩阵.E(i(c)):用非0数c乘E的第i行(或列)所得到的矩阵.也就是把E的对角线上的第i个元素改为c.E(i,j(c))(ij):把E的第j行的c倍加到第i行上(或把第i列的c倍加到第j列上)所得到的矩阵, 也就是把E的(i,j)位的元素改为c.命题对矩阵作一次初等行(列)变换相当于用一个相应的初等矩阵从左(右)乘它.4. 矩阵方程和可逆矩阵(伴随矩阵)(1) 矩阵方程矩阵不能规定除法,乘法的逆运算是解下面两种基本形式的矩阵方程:(I) AX=B.(II) XA=B.这里假定A是行列式不为0的n阶矩阵,在此条件下,这两个方程的解都是存在并且唯一的.(否则解的情况比较复杂.)当B只有一列时,(I)就是一个线性方程组.由克莱姆法则知它有唯一解.如果B有s列,设B=(1,2,…,s),则X也应该有s列,记X=(X1,X2,…,X s),则有AX i=i,i=1,2,…,s,这是s个线性方程组.由克莱姆法则,它们都有唯一解,从而AX=B有唯一解.这些方程组系数矩阵都是A,可同时求解,即得(I)的解法:将A和B并列作矩阵(A|B),对它作初等行变换,使得A变为单位矩阵,此时B变为解X.(A|B)(E|X)(II)的解法:对两边转置化为(I)的形式:A T X T=B T.再用解(I)的方法求出X T,转置得X..(A T|B T)(E|X T)矩阵方程是历年考题中常见的题型,但是考试真题往往并不直接写成(I)或(II)的形式,要用恒等变形简化为以上基本形式再求解.(2) 可逆矩阵的定义与意义定义设A是n阶矩阵,如果存在n阶矩阵B,使得AB=E, BA=E,则称A为可逆矩阵.此时B是唯一的,称为A的逆矩阵,通常记作A-1.如果A可逆,则A在乘法中有消去律:AB=0B=0;AB=ACB=C.(左消去律);BA=0B=0;BA=CAB=C. (右消去律)如果A可逆,则A在乘法中可移动(化为逆矩阵移到等号另一边):AB=CB=A-1C. BA=CB=CA-1.由此得到基本矩阵方程的逆矩阵解法:(I) AX=B的解X=A-1B .(II) XA=B的解X= BA-1.这种解法想法自然,好记忆,但是计算量比初等变换法大(多了一次矩阵乘积运算).(3) 矩阵可逆性的判别与性质定理n阶矩阵A可逆|A|0.证明“”对AA-1=E两边取行列式,得|A||A-1|=1,从而|A|0. (并且|A-1|=|A|-1.)“”因为|A|0,矩阵方程AX=E和XA=E都有唯一解.设B,C分别是它们的解,即AB=E, CA=E. 事实上B=C(B=EB=CAB=CE=C),于是从定义得到A可逆.推论如果A和B都是n阶矩阵,则AB=EBA=E.于是只要AB=E(或BA=E)一式成立,则A和B都可逆并且互为逆矩阵.可逆矩阵有以下性质:①如果A可逆,则A-1也可逆,并且(A-1)-1=A.A T也可逆,并且(A T)-1=(A-1)T.当c0时, c A也可逆,并且(c A)-1=c-1A-1.对任何正整数k, A k也可逆,并且(A k)-1=(A-1)k.(规定可逆矩阵A的负整数次方幂A-k=(A k)-1=(A-1)k.)②如果A和B都可逆,则AB也可逆,并且(AB)-1=B-1A-1.(请自己推广到多个可逆矩阵乘积的情形.)初等矩阵都是可逆矩阵,并且E(i,j)-1= E(i,j), E(i(c))-1=E(i(c-1)), E(i,j(c))-1= E(i,j(-c)).(4) 逆矩阵的计算和伴随矩阵①计算逆矩阵的初等变换法当A可逆时, A-1是矩阵方程AX=E的解,于是可用初等行变换求A-1:(A|E)(E|A-1)这个方法称为求逆矩阵的初等变换法.它比下面介绍的伴随矩阵法简单得多.②伴随矩阵若A是n阶矩阵,记A ij是|A|的(i,j)位元素的代数余子式,规定A的伴随矩阵为A11 A21…A n1A*= A12 A22…A n2 =(A ij)T.………A1n A2n…A mn请注意,规定n阶矩阵A的伴随矩阵并没有要求A可逆,但是在A可逆时, A*和A-1有密切关系.基本公式: AA*=A*A=|A|E.于是对于可逆矩阵A,有A-1=A*/|A|, 即A*=|A|A-1.因此可通过求A*来计算A-1.这就是求逆矩阵的伴随矩阵法.和初等变换法比较, 伴随矩阵法的计算量要大得多,除非n=2,一般不用它来求逆矩阵.对于2阶矩阵a b * d -bc d = -c a ,因此当ad-bc0时,a b -1 d -bc d = -c a (ad-bc) .伴随矩阵的其它性质:①如果A是可逆矩阵,则A*也可逆,并且(A*)-1= A/|A|=(A-1)*.② |A*|=|A|n-1.③ (A T)*=(A*)T.④ (c A)*=c n-1A*.⑤ (AB)*=B*A*;(A k)*=(A*)k.⑥当n>2时,(A*)*=|A|n-2A;n=2时,(A*)*=A.二典型例题1.计算题例1 =(1,-2,3) T,=(1,-1/2,1/3)T, A= T,求A6.讨论:(1)一般地,如果n阶矩阵A= T,则A k=(T)k-1A=(tr A)k-1A .(2)乘法结合律的应用:遇到形如T的地方可把它当作数处理.① 1 -1 1T= -1 1 -1 ,求T.(2003一)②设=(1,0,-1)T, A=T,求|a E-A n|.③n维向量=(a,0,,0,a)T, a<0, A=E-T, A-1=E+a-1 T,求a. (03三,四)④ n维向量=(1/2,0,,0,1/2)T, A=E- T, B=E+2 T,求AB. (95四)⑤ A=E- T,其中,都是n维非零列向量,已知A2=3E-2A,求T.例2(1999三) 1 0 1设A = 0 2 0 ,求A n-2A n-1.(n>1)例3 1 0 0设A = 1 0 1 ,(1)证明当n>1时A n=A n-2+A2-E. (2) 求A n.例4设A为3阶矩阵, 1,2,3是线性无关的3维列向量组,满足A1=1+2+3, A2=22+3, A3=22+33.求作矩阵B,使得A(1,2,3)=(1,2,3)B. (2005年数学四)例5设3阶矩阵A=(1,2,3),|A|=1,B=(1+2+3,1+22+33,1+42+93),求|B|.(05)例6 3维向量1,2,3,1,2,3满足+3+21-2=0,31-2+1-3=0,2+3-2+3=0,1已知1,2,3|=a,求|1,2,3|.例7设A是3阶矩阵,是3维列向量,使得P=(,A,A2)可逆,并且A3=3A-2A2.又3阶矩阵B满足A=PBP-1.(1)求B.(2)求|A+E|.(01一)2 1 0例8 3阶矩阵A,B满足ABA*=2BA*+E,其中A= 1 2 0 ,求|B|.(04一)0 0 1例9 3 -5 1设3阶矩阵A= 1 -1 0 , A-1XA=XA+2A,求X.-1 0 2例10 1 1 -1设3阶矩阵A= -1 1 1 , A*X=A-1+2X,求X.1 -1 1例11 4阶矩阵A,B满足ABA-1=BA-1+3E,已知1 0 0 0A*= 0 1 0 0 ,求B. (00一)1 0 1 00 -3 0 8例12 3 0 0 1 0 0已知A= 2 1 0 , B= 0 0 0 , XA+2B=AB+2X,求X11.2 13 0 0 -1例13设1=(5,1,-5)T,2=(1,-3,2)T,3=(1,-2,1)T,矩阵A满足A1=(4,3) T, A2=(7,-8) T, A3=(5,-5) T,求A.2.概念和证明题例14 设A是n阶非零实矩阵,满足A*=A T.证明:(1)|A|>0.(2)如果n>2,则|A|=1.例15 设矩阵A=(a ij)33满足A*=A T,a11,a12,a13为3个相等的正数,则它们为(A) 3/3.(B) 3. (C)1/3. (D) 3. (2005年数学三)例16 设A和B都是n阶矩阵,C= A0 ,则C*=0 B(A) |A|A* 0 . (B) |B|B * 0 .0 |B|B * 0 |A|A*(C) A|B* 0 . (D ) |B|A* 00 |B|A* 0 |A|B*例17 设A是3阶矩阵,交换A的1,2列得B,再把B的第2 列加到第3 列上,得C.求Q,使得C=AQ.例18 设A是3阶可逆矩阵,交换A的1,2行得B,则(A) 交换A*的1,2行得到B*.(B) 交换A*的1,2列得到B*.(C) 交换A*的1,2行得到-B*.(D) 交换A*的1,2列得到-B*.(2005年)例19 设A是n阶可逆矩阵, 交换A的i,j行得到B.(1) 证明B可逆.(2) 求AB-1.例20设n阶矩阵A满足A2+3A-2E=0.(1)证明A可逆,并且求A-1.(2)证明对任何整数c,A-c E可逆.讨论: 如果f(A)=0,则(1) 当f(x)的常数项不等于0时,A可逆.(2) f(c)0时,A-c E可逆.(3) 上述两条的逆命题不成立.例21设是n维非零列向量,记A=E-T.证明(1) A2=A T =1.(2)T =1 A不可逆. (96一)讨论: (2)的逆命题也成立.例22 设A,B都是n阶矩阵,证明E-AB可逆E-BA可逆.例23设3阶矩阵A,B满足AB=A+B.(1) 证明A-E可逆.(2) 设 1 -3 0B= 2 1 0 ,求A.0 0 2 (91)例24设A,B是3阶矩阵, A可逆,它们满足2A-1B=B-4E.(1) 证明A-2E可逆.(2) 设 1 -2 0B= 1 2 0 ,求A.0 0 2 (2002)例25设n阶矩阵A,B满足AB=a A+b B.其中ab0,证明(1) A-b E和B-a E都可逆.(2) A可逆B可逆.(3) AB=BA.例26设A,B都是n阶对称矩阵, E+AB可逆,证明(E+AB)-1A也是对称矩阵.例27 设A,B都是n阶矩阵使得A+B可逆,证明(1) 如果AB=BA,则B(A+B)-1A=A(A+B)-1B.(2) 如果都可逆,则B(A+B)-1A=A(A+B)-1B.(3) 等式B(A+B)-1A=A(A+B)-1B总成立.例28设A,B,C都是n阶矩阵,满足B=E+AB,C=A+CA,则B-C为(A) E.(B) -E. (C) A. (D) -A. (2005年数学四)参考答案1 -1/2 1/3例1 35A=35 -2 1 –2/3 .3 -3/2 1①3.②a2(a-2n). ③-1. ④E. ⑤4.例2 O.例3 (1)提示: A n=A n-2+A2-EA n-2(A2-E)=A2-E A(A2-E)=A2-E.(2)n=2k时, 1 0 0A n = k 1 0 .k 0 1n=2k+1时, 1 0 0A n = k+1 0 1 .k 1 0例4 1 0 0B= 1 2 2 .1 1 3例5 2.例6 –4a.例7 0 0 0B= 1 0 3 . |E+A|=-40 1 -2例8 1/9.例9 -6 10 4X= -2 4 2 .-4 10 0例10 1 1 0(1/4) 0 1 11 0 1例11 6 0 0 0B= 0 6 0 0 .6 0 6 00 3 0 -1例12 1 0 02 0 0 .6 -1 -1例13 2 -1 1-4 -2 -5 .例15 (A).例16 (D).例17 0 1 1Q= 1 0 0 .0 0 1例18 (D).例19E(i,j).例22提示:用克莱姆法则.例如证明,即在E-AB可逆时证明齐次方程组(E-BA)X=0只有零解.例23 1 1/2 0A= -1/3 1 0 .0 0 2例24 0 2 0A= -1 -1 0 .0 0 -2例25 提示:计算(A-b E)(B-a E).例28 (A).第四讲向量组的线性关系与秩一.概念复习1. 线性表示关系设1,2,…,s是一个n维向量组.如果n维向量等于1,2,…,s的一个线性组合,就说可以用1,2,…,s线性表示.如果n维向量组1,2,…,t中的每一个都可以可以用1,2,…,s线性表示,就说向量,2,…,t可以用1,2,…,s线性表示.1判别“是否可以用1,2,…,s线性表示表示方式是否唯一”就是问:向量方程x11+x22+…+x ss=是否有解解是否唯一用分量写出这个向量方程,就是以1,2,…,s为增广矩阵的线性方程组.反之,判别“以A为增广矩阵的线性方程组是否有解解是否唯一”的问题又可转化为“是否可以用A的列向量组线性表示表示方式是否唯一”的问题.。
线性代数总复习讲义
主对角线上的元素都是1, 其余元素都是零的 n阶方阵,叫做n阶单位阵, 简记作E .
5 矩阵相加
设A
(a ij)m n
,
B
(b
ij
) m
n
为两个同型矩阵,
矩阵加法定义为A B (aijbij)mn , A B称为
A与B的和.
交换律 A B B A
结合律 ( A B) C A (B C)
则称矩阵A是可逆的(或非奇异的、非退化的、满 秩的),且矩阵B称为A的逆矩阵.
若A有逆矩阵,则A的逆矩阵是唯一的, A的逆 矩阵记作 A1 .
相关定理及性质
方阵A可逆的充分必要条件是A 0.
若矩阵A可逆,则 A1 A .
( A )1 1
A;(A)1
1
A
A1 (
0);
( AT )1 ( A1)T .
4对换
定义 在排列中,将任意两个元素对调,其余元 素不动,称为一次对换.将相邻两个元素对调, 叫做相邻对换.
定理 一个排列中的任意两个元素对换,排列改 变奇偶性.
推论 奇排列调成标准排列的对换次数为奇数, 偶排列调成标准排列的对换次数为偶数.
5 n阶行列式的定义
a11 a12 a1n
D
a21 a22 a2n
若 同 阶 方 阵A与B都 可 逆, 那 么AB也 可 逆, 且
( AB)1 B1 A1 .
11 分块矩阵
矩阵的分块,主要目的在于简化运算及便于 论证.
分块矩阵的运算规则与普通矩阵的运算规则 相类似.
典型例题
一、矩阵的运算 二、逆矩阵的运算及证明 三、矩阵的分块运算
1 初等变换的定义
《线性代数》考点强化班 配套讲义 第一章 行列式
提取 2,以此类推,第 n行提取 n,即为范德蒙行列式
1 1 1 1 11 1 1
2 22 23 2n
1 2 22 2n1
Dn 3 32 33 3n n!1 3 32 3n1 n!n 1!2!1!
n n2 n3 nn
1 n n2 nn1
1a a 0 0 0 1 1 a a 0 0 【例 6】 五阶行列式 D 0 1 1 a a 0 ____________ . 0 0 1 1 a a 0 0 0 1 1 a
kn 即转化为一个 n 阶行列式的计算
ai11 ai12 ai1n
an1 an2 ann
ab c d
cbd a 【例 12】已知 D4 d b c a ,则 A14 A24 A34 A44 __________ .
abd c
【详解】 A14 A24 A34 A44 1 A14 1 A24 1 A34 1 A44
A
n1
A.
01 0
所以, A
31
A
2
A 9
;又
A 2E 1
0
0 1.故 B
1
1 .
A 2E A 9
0 0 1
【评注】注意本题没有必要先由 (3A 6E)B A 求出 B ,再计算其行列式,而是可直接利
用方阵相乘的行列式公式:若 A, B 为 n 阶方阵,则 AB A B .
1
1
]
[1,
2
,,
n
]
a12
a22
am
2
a1n a2n amn
1 0 0
1 1 1
【评注 3】作为做题技巧,可令 A 0 1 0 ,则 B 1 2 3 ,于是 B 2 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数——强化
题型一:求矩阵方程行列式 例1.(2006一5)设矩阵211
2A ⎡⎤
=⎢
⎥-⎣⎦
,矩阵B 满足2BA B E =+其中E 为单位矩阵,求||B 例 2.(2003二)设三阶方阵A 、B 满足2A B A B E --= 其中E 为单位矩阵,1010
202
1A ⎡⎤
⎢⎥
=⎢⎥⎢⎥-⎣⎦
求||B 例3.设矩阵1
11
3A ⎡⎤
=⎢
⎥⎣⎦
,矩阵B 满足AB A B +=求||B 例4.设矩阵111
3A ⎡⎤
=⎢
⎥⎣⎦
,矩阵B 满足32A E B A B -+=求||B 例5.(2004一5)设矩阵2101
200
1A ⎡⎤
⎢
⎥
=⎢⎥⎢⎥⎣⎦
,矩阵B 满足**2ABA BA E =+其中E 为单位矩阵,*A 为A 的伴随矩阵,求||B 题型二:求向量行列式
例1. 设12,αα为二维列向量,记矩阵121212(,),(,2)A B αααααα==++,||1A =,求||B 例2. (2005一5)设123,,ααα为三维列向量,记矩阵123(,,),A ααα=
123123123(,24,39)B ααααααααα=++++++已知||1A =,求||B
例3. 设123,,ααα为三维列向量,记矩阵123(,,),A ααα=
131231(,2,)B αααααα=+++已知||1A =,求||B
例4. 设123,,ααα为三维列向量,记矩阵123(2,,),A ααα=
12(B αα=+12313,2,)ααααα+++已知||2A =,求||B
题型三:求解矩阵方程 例1. 已知2
202
130
1
0A ⎡⎤
⎢
⎥
=⎢⎥⎢⎥⎣⎦
,B 满足方程AB A B =+,求B
例2. 已知1213A ⎡⎤
=⎢
⎥⎣⎦
,B 满足方程2A E AB B -+=,求B 例3. 已知121
0A ⎡⎤
=⎢
⎥⎣⎦
,B 满足方程A BA E -=,求B 例4. 已知1
21
0A ⎡⎤
=⎢
⎥⎣⎦
,B 满足方程AB E =,求B 例5. (2002二)已知1201
200
2A -⎡⎤
⎢
⎥
=⎢⎥⎢⎥⎣⎦
,B 满足方程124AB A E -=-,求B 题型四:求抽象逆矩阵
例1. 设A 为n 阶非零矩阵,E 为n 阶单位矩阵,若 22A A O -=求1()A E -- 例2. (2001一4)设A 为n 阶非零矩阵,E 为n 阶单位矩阵,若24A A E O +-=求1()A E --
例3. (2008一、三5)设A 为n 阶非零矩阵,E 为n 阶单位矩阵,若 3A O =求1()A E -+ 例4.设A 、B 为3阶非零矩阵,E 为3阶单位矩阵,若2AB A B E =--,求1(2)A E -+ 例5.设A 、B 为3阶非零矩阵,E 为3阶单位矩阵,若243A B A B E =-+,求1(2)A E -+ 例6.(2002二)设A 、B 为3阶矩阵,E 为3阶单位矩阵,若124A B B E -=-,求1(2)A E -- 题型五:求矩阵的秩 例1.已知矩阵1
122
11
1010
2
6A ⎡⎤⎢⎥⎢
⎥=⎢⎥-⎢⎥⎣⎦
求A 的秩。
例2.(2010一5) 设A 为m n ⨯矩阵,B 为n m ⨯矩阵,E 为m 阶单位矩阵,若AB=E ,求A 和B 的秩
例3.(2008一20)设,αβ为3维列向量,矩阵T
T
A ααββ=+证明:()2r A ≤ 题型六:线性相关性的判断
例1.已知向量组A :123112211
,,101026ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
判断A 的线性相关性。
例2.已知向量组A :123112
1211,,12
212
ααα⎛⎫
-⎛⎫ ⎪
- ⎪-⎛⎫
⎪
⎪ ⎪
⎪===
⎪ ⎪ ⎪ ⎪ ⎪- ⎪
⎝⎭ ⎪ ⎪
⎝⎭ ⎪
⎝⎭
判断A 的线性相关性。
例3.已知向量组A :123,,ααα线性无关,向量组B :
1121231232,2,βαβααβααα==+=++证明:123,,βββ线性无关
例4.已知向量组A :123,,ααα线性无关,向量组B :
112223331,,βααβααβαα=+=+=+证明:123,,βββ线性无关
例5.(2008三21)已知向量组12,αα线性无关,3α满足1122323()0k k k αααα-+++=,
123,,k k k 为任意常数,证明:123,,ααα线性无关
题型七:求矩阵参数 例1. 设1110
2011
1A -⎡⎤⎢
⎥=-⎢⎥⎢⎥-⎣⎦,11a b ⎡⎤
⎢⎥
=⎢⎥
⎢⎥⎣⎦
已知线性方程组A x b =有两个不同解,求a 例2. 设1110
1011A a
⎡⎤
⎢
⎥
=⎢⎥⎢⎥-⎣⎦
已知线性方程组0A x =有非零解,求a 例3.(2007一)设线性方程组12312321
230
2040
x x x x x ax x x a x ++=⎧⎪
++=⎨⎪++=⎩与方程 12321x x x a ++=-有公共解,
求a
例4.(2005三)设线性方程组1231231
23230
23500
x x x x x x x x ax ++=⎧⎪
++=⎨⎪++=⎩与方程 1232
12302(1)0x b x c x x b x c x ++=⎧⎨+++=⎩同解,求,,a b c
题型八:求解线性方程组 例1.(2010一20)设1
1120
20,11
1
11A b --⎡⎤⎛⎫
⎪⎢
⎥
=-= ⎪⎢⎥
⎪⎢⎥-⎣⎦⎝⎭
求A x b =的通解。
例2.求齐次线性方程组的通解123412341
2340253207730
x x x x x x x x x x x x +--=⎧⎪
-++=⎨⎪-++=⎩
例3.(2007一21)求线性方程组1231231
230
220440
x x x x x x x x x ++=⎧⎪
++=⎨⎪++=⎩与方程12321x x x ++=所有的公共解。
题型九:求特征值
例1.设三阶矩阵A 的特征值为1,2,2,E 是单位矩阵,求14A E --的特征值。
例2.设三阶矩阵A 的特征值为1,2,2, E 是单位矩阵,求*1222A A A E -+--特征值 例3.(2011一21截选)设三阶实对称矩阵A 的秩为2,求A 的特征值
例4. (部分)设A 是三阶实对称矩阵,2个线性无关向量满足0A x =,求A 的特征值。
例 5.(2006一21) 设三阶实对称矩阵A 的各行元素之和均为3,1(1,2,1)T α=--,
2(0,1,1)T
α=-是方程0A x =的两个解,求A 的特征值。
例6.(2005四21)设A 为3阶矩阵,123,,ααα是线性无关的3维列向量,
1123223,2A A ααααααα=++=+,32323A ααα=+求A 的特征值。
例7.(2008一)设A 为2阶矩阵,
12,αα是线性无关的2维列向量,12120,2A A αααα==+求A 的非零特征值。
题型十:利用正交求特征向量
例1. 已知2阶实对称矩阵A 的特征值为1,2,其中 1对应特征向量为()12T
求A 的所有
特征向量
例 2.(2010一21改编)已知3阶实对称矩阵A 的特征值为1,1,0,0
对应特征向量为
22T
⎛⎫
⎪ ⎪⎝
⎭
求A 的所有特征向量 例3.(2010一21改编)已知3阶实对称矩阵A 的特征值为1,1,0,0对应特征向量为求A
题型十一:实对称阵对角化与二次型标准化 例1.设实对称阵0141
314
1
0A -⎡⎤
⎢
⎥
=--⎢⎥⎢⎥-⎣⎦
利用正交矩阵Q ,使得T Q AQ =Λ求正交矩阵Q 和对角矩阵
例2.(2003三)已知二次型222
12312313(,,)224f x x x x x x x x =+-+利用正交变换x =Qy 使二
次型化为标准形,并求正交矩阵Q。