2014-2015高考理科数学《函数的奇偶性与周期性》练习题
第03讲函数的奇偶性、对称性与周期性(含新定义解答题) (分层精练)(解析)-25年高考数学一轮复习
分层精练)数周期性转化求值即可.【详解】因为()()110f x f x -++=,所以()()110f f -+=,且()()21log 111f =+=,则()11f -=-,又可得()()20f x f x ++=,()()240f x f x +++=,故()()4f x f x +=,所以函数()f x 是周期4T =的周期函数,()()()47412111f f f =⨯-=-=-.故选:D .4.(2023·内蒙古赤峰·统考模拟预测)函数()y f x =是定义在R 上奇函数,且(4)()f x f x -=,(3)1f -=-,则(15)f =()A .0B .1-C .2D .1【答案】B【分析】通过已知计算得出函数是周期为8的周期函数,则()()157f f =,根据已知得出(7)(3)1f f =-=-,即可得出答案.【详解】 函数()y f x =是定义在R 上奇函数,且(4)()f x f x -=,()()()4f x f x f x ∴+=-=-,()()()()4484f x f x f x f x ∴++=+=-+=,则函数()y f x =是周期为8的周期函数,则()()()151587f f f =-=,令3x =-,则(43)(3)1f f +=-=-,(15)1f ∴=-,故选:B.5.(2023上·山东烟台·高一校考期末)函数e x y =-与e x y -=的图象()A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y x =对称【答案】C【分析】画出函数图像即可判断.【详解】根据如下图像即可判断出函数图像关于原点对称.故选:C10,10由上图知:增区间为[2,1),[0,1)--,减区间为零点为2,0,2x =-共3个;最大值为1,最小值为(2)由题设()7.5(80.5)(0.5)f f f =-=-=(3)令[]21,22[1,1]1n n x x n ∈⇒-∈--+且,且存在常数若()()20h x t h x t -⋅+=有8个不同的实数解,令则20n tn t -+=有两个不等的实数根2Δ400t t t ⎧=->⎪>⎪。
高考数学(人教a版,理科)题库:函数的奇偶性与周期性(含答案)
第3讲 函数的奇偶性与周期性一、选择题1.设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)等于( ).A .3B .1C .-1D .-3 解析 由f (-0)=-f (0),即f (0)=0.则b =-1,f (x )=2x +2x -1,f (-1)=-f (1)=-3. 答案 D2.已知定义在R 上的奇函数,f (x )满足f (x +2)=-f (x ),则f (6)的值为 ( ). A .-1 B .0 C .1 D .2 解析 (构造法)构造函数f (x )=sin π2x ,则有f (x +2)=sin ⎣⎢⎡⎦⎥⎤π2x +2=-sin π2x =-f (x ),所以f (x )=sin π2x 是一个满足条件的函数,所以f (6)=sin 3π=0,故选B. 答案 B3.定义在R 上的函数f (x )满足f (x )=f (x +2),当x ∈[3,5]时,f (x )=2-|x -4|,则下列不等式一定成立的是( ).A .f ⎝ ⎛⎭⎪⎫cos 2π3>f ⎝ ⎛⎭⎪⎫sin 2π3B .f (sin 1)<f (cos 1)C .f ⎝ ⎛⎭⎪⎫sin π6<f ⎝ ⎛⎭⎪⎫cos π6D .f (cos 2)>f (sin 2)解析 当x ∈[-1,1]时,x +4∈[3,5],由f (x )=f (x +2)=f (x +4)=2-|x +4-4|=2-|x |,显然当x ∈[-1,0]时,f (x )为增函数;当x ∈[0,1]时,f (x )为减函数,cos 2π3=-12,sin 2π3=32>12,又f⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12>f ⎝ ⎛⎭⎪⎫32,所以f ⎝ ⎛⎭⎪⎫cos 2π3>f ⎝ ⎛⎭⎪⎫sin 2π3. 答案 A4.已知函数f (x )=⎩⎨⎧1-2-x,x ≥0,2x -1,x <0,则该函数是( ).A .偶函数,且单调递增B .偶函数,且单调递减C .奇函数,且单调递增D .奇函数,且单调递减解析 当x >0时,f (-x )=2-x -1=-f (x );当x <0时,f (-x )=1-2-(-x )=1-2x =-f (x ).当x =0时,f (0)=0,故f (x )为奇函数,且f (x )=1-2-x 在[0,+∞)上为增函数,f (x )=2x -1在(-∞,0)上为增函数,又x ≥0时1-2-x ≥0,x <0时2x -1<0,故f (x )为R 上的增函数. 答案 C5.已知f (x )是定义在R 上的周期为2的周期函数,当x ∈[0,1)时,f (x )=4x-1,则f (-5.5)的值为( )A .2B .-1C .-12 D .1解析 f (-5.5)=f (-5.5+6)=f (0.5)=40.5-1=1. 答案 D6.设函数D (x )=⎩⎨⎧1,x 为有理数,0,x 为无理数,则下列结论错误的是( ).A .D (x )的值域为{0,1}B .D (x )是偶函数C .D (x )不是周期函数D .D (x )不是单调函数解析 显然D (x )不单调,且D (x )的值域为{0,1},因此选项A 、D 正确.若x 是无理数,-x ,x +1是无理数;若x 是有理数,-x ,x +1也是有理数.∴D (-x )=D (x ),D (x +1)=D (x ).则D (x )是偶函数,D (x )为周期函数,B 正确,C 错误. 答案 C 二、填空题7.若函数f (x )=x 2-|x +a |为偶函数,则实数a =________.解析 由题意知,函数f (x )=x 2-|x +a |为偶函数,则f (1)=f (-1),∴1-|1+a |=1-|-1+a |,∴a =0. 答案 08.已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________.解析 因为y =f (x )+x 2是奇函数,且x =1时,y =2,所以当x =-1时,y =-2,即f (-1)+(-1)2=-2,得f (-1)=-3,所以g (-1)=f (-1)+2=-1. 答案 -19.设奇函数f (x )的定义域为[-5,5],当x ∈[0,5]时,函数y =f (x )的图象如图所示,则使函数值y <0的x 的取值集合为________.解析 由原函数是奇函数,所以y =f (x )在[-5,5]上的图象关于坐标原点对称,由y =f (x )在[0,5]上的图象,得它在[-5,0]上的图象,如图所示.由图象知,使函数值y <0的x 的取值集合为(-2,0)∪(2,5).答案 (-2,0)∪(2,5)10. 设f (x )是偶函数,且当x >0时是单调函数,则满足f (2x )=f ⎝⎛⎭⎪⎫x +1x +4的所有x 之和为________.解析 ∵f (x )是偶函数,f (2x )=f ⎝⎛⎭⎪⎫x +1x +4, ∴f (|2x |)=f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪x +1x +4, 又∵f (x )在(0,+∞)上为单调函数, ∴|2x |=⎪⎪⎪⎪⎪⎪x +1x +4, 即2x =x +1x +4或2x =-x +1x +4, 整理得2x 2+7x -1=0或2x 2+9x +1=0,设方程2x 2+7x -1=0的两根为x 1,x 2,方程2x 2+9x +1=0的两根为x 3,x 4.则(x1+x2)+(x3+x4)=-72+⎝⎛⎭⎪⎫-92=-8.答案-8三、解答题11.已知f(x)是定义在R上的不恒为零的函数,且对任意x,y,f(x)都满足f(xy)=yf(x)+xf(y).(1)求f(1),f(-1)的值;(2)判断函数f(x)的奇偶性.解(1)因为对定义域内任意x,y,f(x)满足f(xy)=yf(x)+xf(y),所以令x=y =1,得f(1)=0,令x=y=-1,得f(-1)=0.(2)令y=-1,有f(-x)=-f(x)+xf(-1),代入f(-1)=0得f(-x)=-f(x),所以f(x)是(-∞,+∞)上的奇函数.12.已知函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0,f(1)=-2.(1)求证f(x)是奇函数;(2)求f(x)在[-3,3]上的最大值和最小值.(1)证明令x=y=0,知f(0)=0;再令y=-x,则f(0)=f(x)+f(-x)=0,所以f(x)为奇函数.(2)解任取x1<x2,则x2-x1>0,所以f(x2-x1)=f[x2+(-x1)]=f(x2)+f(-x1)=f(x2)-f(x1)<0,所以f(x)为减函数.而f(3)=f(2+1)=f(2)+f(1)=3f(1)=-6,f(-3)=-f(3)=6.所以f(x)max=f(-3)=6,f(x)min=f(3)=-6.13.已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x-1,(1)求证:f(x)是周期函数;(2)当x∈[1,2]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2013)的值.解析(1)证明函数f(x)为奇函数,则f(-x)=-f(x),函数f(x)的图象关于x=1对称,则f(2+x)=f(-x)=-f(x),所以f(4+x)=f[(2+x)+2]=-f(2+x)=f(x),所以f(x)是以4为周期的周期函数.(2) 当x∈[1,2]时,2-x∈[0,1],又f(x)的图象关于x=1对称,则f(x)=f(2-x)=22-x-1,x∈[1,2].(3) ∵f(0)=0,f(1)=1,f(2)=0,f(3)=f(-1)=-f(1)=-1又f(x)是以4为周期的周期函数.∴f(0)+f(1)+f(2)+…+f(2013)=f(2 012)+f(2 013)=f(0)+f(1)=1.14.已知函数f(x)的定义域为R,且满足f(x+2)=-f(x).(1)求证:f(x)是周期函数;(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=12x,求使f(x)=-12在[0,2 014]上的所有x的个数.(1)证明∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),∴f(x)是以4为周期的周期函数.(2)解当0≤x≤1时,f(x)=12x,设-1≤x≤0,则0≤-x≤1,∴f(-x)=12(-x)=-12x.∵f(x)是奇函数,∴f(-x)=-f(x),∴-f(x)=-12x,即f(x)=12x.故f(x)=12x(-1≤x≤1).又设1<x<3,则-1<x-2<1,∴f(x-2)=12(x-2).又∵f(x)是以4为周期的周期函数∴f(x-2)=f(x+2)=-f(x),∴-f(x)=12(x-2),∴f (x )=-12(x -2)(1<x <3). ∴f (x )=⎩⎪⎨⎪⎧12x ,-1≤x ≤1,-12(x -2),1<x <3.由f (x )=-12,解得x =-1. ∵f (x )是以4为周期的周期函数, ∴f (x )=-12的所有x =4n -1(n ∈Z ).令0≤4n -1≤2 014,则14≤n ≤2 0154. 又∵n ∈Z ,∴1≤n ≤503(n ∈Z ), ∴在[0,2 014]上共有503个x 使f (x )=-12.。
高考数学总复习考点知识讲解与提升练习8 函数的奇偶性、周期性
高考数学总复习考点知识讲解与提升练习专题8 函数的奇偶性、周期性考点知识1.了解函数奇偶性的含义,了解函数的周期性及其几何意义.2.会依据函数的性质进行简单的应用.知识梳理1.函数的奇偶性2.周期性(1)周期函数:一般地,设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且f(x+T)=f(x),那么函数y=f(x)就叫做周期函数,非零常数T叫做这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.常用结论1.奇函数在关于原点对称的区间上具有相同的单调性;偶函数在关于原点对称的区间上具有相反的单调性.2.函数周期性常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=1f(x),则T=2a(a>0).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若函数f(x)为奇函数,则f(0)=0.(×)(2)不存在既是奇函数,又是偶函数的函数.(×)(3)对于函数y=f(x),若存在x,使f(-x)=-f(x),则函数y=f(x)一定是奇函数.(×)(4)若T是函数f(x)的一个周期,则kT(k∈N*)也是函数的一个周期.(√)教材改编题1.若偶函数f(x)在区间[-2,-1]上单调递减,则函数f(x)在区间[1,2]上() A.单调递增,且有最小值f(1)B.单调递增,且有最大值f(1)C.单调递减,且有最小值f(2)D.单调递减,且有最大值f(2)答案A解析偶函数f(x)在区间[-2,-1]上单调递减,则由偶函数的图象关于y轴对称,则有f(x)在[1,2]上单调递增,即有最小值为f(1),最大值为f(2).对照选项,A正确.2.已知函数y=f(x)是奇函数,且当x>0时,有f(x)=x+2x,则f(-2)=________. 答案-6解析因为函数y=f(x)是奇函数,且当x>0时,有f(x)=x+2x,所以f(-2)=-f(2)=-(2+4)=-6.3.已知函数f(x)是定义在R上的周期为4的奇函数,若f(1)=1,则f(2023)=________. 答案-1解析因为函数f(x)是定义在R上的周期为4的奇函数,所以f(2023)=f(506×4-1)=f(-1)=-f(1)=-1.题型一函数奇偶性的判断例1(多选)下列命题中正确的是()A.奇函数的图象一定过坐标原点B.函数y=x sin x是偶函数C.函数y=|x+1|-|x-1|是奇函数D.函数y=x2-xx-1是奇函数答案BC解析对于A,只有奇函数在x=0处有定义时,函数的图象过原点,所以A不正确;对于B,因为函数y=x sin x的定义域为R且f(-x)=(-x)sin(-x)=f(x),所以该函数为偶函数,所以B正确;对于C,函数y=|x+1|-|x-1|的定义域为R关于原点对称,且满足f(-x)=|-x+1|-|-x-1|=-(|x+1|-|x-1|)=-f(x),即f(-x)=-f(x),所以函数为奇函数,所以C正确;对于D,函数y=x2-xx-1满足x-1≠0,即x≠1,所以函数的定义域不关于原点对称,所以该函数为非奇非偶函数,所以D不正确.思维升华判断函数的奇偶性,其中包括两个必备条件(1)定义域关于原点对称,否则即为非奇非偶函数.(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.跟踪训练1已知函数f(x)=sin x,g(x)=e x+e-x,则下列结论正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数答案C解析选项A,f(x)g(x)=(e x+e-x)sin x,f(-x)g(-x)=(e-x+e x)sin(-x)=-(e x+e-x)sin x=-f(x)g(x),是奇函数,判断错误;选项B ,|f (x )|g (x )=|sin x |(e x +e -x ),|f (-x )|g (-x )=|sin(-x )|(e -x +e x )=|sin x |(e x +e -x )=|f (x )|g (x ),是偶函数,判断错误;选项C ,f (x )|g (x )|=|e x +e -x |sin x ,f (-x )|g (-x )|=|e -x +e x |sin(-x )=-|e x +e -x |sin x =-f (x )|g (x )|,是奇函数,判断正确;选项D ,|f (x )g (x )|=|(e x +e -x )sin x |,|f (-x )g (-x )|=|(e -x +e x )sin(-x )| =|(e x +e -x )sin x |=|f (x )g (x )|,是偶函数,判断错误.题型二函数奇偶性的应用命题点1利用奇偶性求值(解析式)例2(1)(2023·福州模拟)已知函数f (x )=⎩⎨⎧ x 3+1,x >0,ax 3+b ,x <0为偶函数,则2a +b 等于()A .3B.32C .-12D .-32答案B解析由已知得,当x >0时,-x <0,f (-x )=-ax 3+b ,∵f (x )为偶函数,∴f (-x )=f (x ),即x 3+1=-ax 3+b ,∴a =-1,b =1,∴2a +b =2-1+1=32. (2)(2023·吕梁模拟)已知函数f (x )为定义在R 上的奇函数,且当x ≥0时,f (x )=2x +x -1,则当x <0时,f (x )等于()A .2-x -x -1B .2-x +x +1C .-2-x -x -1D .-2-x +x +1答案D解析当x <0时,-x >0,因为f (x )是奇函数,所以f (x )=-f (-x )=-2-x +x +1.命题点2利用奇偶性解不等式例3函数f (x )是定义域为R 的奇函数,f (x )在(0,+∞)上单调递增,且f (2)=0.则不等式f (x )-2f (-x )x>0的解集为() A .(-2,2)B .(-∞,0)∪(0,2)C .(2,+∞)D .(-∞,-2)∪(2,+∞)答案D解析由于f (x )是定义域为R 的奇函数,所以f (0)=0,又f (x )在(0,+∞)上单调递增,且f (2)=0,所以f (x )的大致图象如图所示.由f (-x )=-f (x )可得,f (x )-2f (-x )x =f (x )+2f (x )x =3f (x )x>0, 由于x 在分母位置,所以x ≠0,当x <0时,只需f (x )<0,由图象可知x <-2;当x >0时,只需f (x )>0,由图象可知x >2;综上,不等式的解集为(-∞,-2)∪(2,+∞).思维升华(1)利用函数的奇偶性可求函数值或求参数的取值,求解的关键在于借助奇偶性转化为求已知区间上的函数或得到参数的恒等式,利用方程思想求参数的值.(2)利用函数的奇偶性可画出函数在其对称区间上的图象,结合几何直观求解相关问题.跟踪训练2(1)已知函数f (x )=sin x +x 3+1x+3,若f (a )=1,则f (-a )等于() A .1B .3C .4D .5答案D解析根据题意f (a )=sin a +a 3+1a+3=1, 即sin a +a 3+1a=-2, 所以f (-a )=sin(-a )+(-a )3+1(-a )+3 =-⎝⎛⎭⎪⎫sin a +a 3+1a +3=2+3=5. (2)已知函数f (x )=log 2(|x |+1),若f (log 2x )<f (2),则实数x 的取值范围是()A .(1,4) B.⎝⎛⎭⎪⎫0,14∪(4,+∞) C.⎝ ⎛⎭⎪⎫14,1∪(1,4) D.⎝ ⎛⎭⎪⎫14,4 答案D解析依题意,函数f (x )是偶函数,且在[0,+∞)上单调递增,∴f (x )在(-∞,0)上单调递减,则f (log 2x )<f (2)等价于|log 2x |<2,∴-2<log 2x <2,解得14<x <4. (3)(2021·新高考全国Ⅰ)已知函数f (x )=x 3(a ·2x -2-x )是偶函数,则a =________. 答案1解析方法一(定义法)因为f (x )=x 3(a ·2x -2-x )的定义域为R ,且是偶函数,所以f (-x )=f (x )对任意的x ∈R 恒成立,所以(-x )3(a ·2-x -2x )=x 3(a ·2x -2-x )对任意的x ∈R 恒成立,所以x 3(a -1)(2x +2-x )=0对任意的x ∈R 恒成立,所以a =1.方法二(取特殊值检验法)因为f (x )=x 3(a ·2x -2-x )的定义域为R ,且是偶函数,所以f (-1)=f (1),所以-⎝ ⎛⎭⎪⎫a 2-2=2a -12, 解得a =1,经检验,f (x )=x 3(2x -2-x )为偶函数,所以a =1.方法三(转化法)由题意知f (x )=x 3(a ·2x -2-x )的定义域为R ,且是偶函数.设g (x )=x 3,h (x )=a ·2x -2-x ,因为g (x )=x 3为奇函数,所以h (x )=a ·2x -2-x 为奇函数,所以h (0)=a ·20-2-0=0,解得a =1,经检验,f (x )=x 3(2x -2-x )为偶函数,所以a =1.题型三函数的周期性例4(1)若定义在R 上的偶函数f (x )满足f (2-x )=-f (x ),且当1≤x ≤2时,f (x )=x-1,则f ⎝ ⎛⎭⎪⎫72的值等于()A.52B.32C.12D .-12答案D解析∵函数f (x )是偶函数,∴f (-x )=f (x ),又∵f (2-x )=-f (x ),∴f (2-x )=-f (-x ),∴f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ),∴函数f (x )的周期为4,∴f ⎝ ⎛⎭⎪⎫72=f ⎝ ⎛⎭⎪⎫72-4=f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12=-f ⎝ ⎛⎭⎪⎫2-12=-f ⎝ ⎛⎭⎪⎫32=-12. (2)设f (x )是定义在R 上周期为4的偶函数,且当x ∈[0,2]时,f (x )=log 2(x +1),则函数f (x )在[2,4]上的解析式为____________________.答案f (x )=log 2(5-x ),x ∈[2,4]解析根据题意,设x ∈[2,4],则x -4∈[-2,0],则有4-x ∈[0,2],当x ∈[0,2]时,f (x )=log 2(x +1),则f (4-x )=log 2[(4-x )+1]=log 2(5-x ),又f (x )为周期为4的偶函数,所以f (x )=f (x -4)=f (4-x )=log 2(5-x ),x ∈[2,4],则有f (x )=log 2(5-x ),x ∈[2,4].思维升华(1)求解与函数的周期有关的问题,应根据题目特征及周期定义,求出函数的周期.(2)利用函数的周期性,可将其他区间上的求值、求零点个数、求解析式等问题,转化到已知区间上,进而解决问题.跟踪训练3(多选)已知定义在R上的偶函数f(x),其周期为4,当x∈[0,2]时,f(x)=2x-2,则()A.f(2023)=0B.f(x)的值域为[-1,2]C.f(x)在[4,6]上单调递减D.f(x)在[-6,6]上有8个零点答案AB解析f(2023)=f(506×4-1)=f(-1)=f(1)=0,所以A正确;当x∈[0,2]时,f(x)=2x-2单调递增,所以当x∈[0,2]时,函数的值域为[-1,2],由于函数是偶函数,所以函数的值域为[-1,2],所以B正确;当x∈[0,2]时,f(x)=2x-2单调递增,又函数的周期是4,所以f(x)在[4,6]上单调递增,所以C错误;令f(x)=2x-2=0,所以x=1,所以f(1)=f(-1)=0,由于函数的周期为4,所以f(5)=f(-5)=0,f(3)=f(-3)=0,所以f(x)在[-6,6]上有6个零点,所以D错误.课时精练1.(多选)下列函数中,既是奇函数又在区间(0,1)上单调递增的是()A.y=2x3+4x B.y=x+sin(-x)C.y=log2|x|D.y=2x-2-x答案ABD解析对于A,定义域为R,且f(-x)=-2x3-4x=-f(x),故为奇函数,又y′=6x2+4>0,所以y=2x3+4x在(0,1)上单调递增,故A满足题意;对于B,定义域为R,f(-x)=-x+sin x=-f(x),故为奇函数,又y′=1-cos x≥0,且y′不恒为0,所以y=x+sin(-x)在(0,1)上单调递增,故B满足题意;对于C,定义域为{x|x≠0},f(-x)=log2|x|=f(x),故为偶函数,故C不满足题意;对于D,定义域为R,f(-x)=2-x-2x=-f(x),为奇函数,又y′=2x ln2+2-x ln2>0,所以y=2x-2-x在(0,1)上单调递增,故D满足题意.2.(2023·聊城模拟)已知函数f(x)的定义域为R,则“f(x)是偶函数”是“|f(x)|是偶函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析偶函数的图象关于y轴对称,奇函数的图象关于原点对称,根据这一特征,若f(x)是偶函数,则|f(x)|是偶函数,若f(x)是奇函数,|f(x)|也是偶函数,所以“f(x)是偶函数”是“|f(x)|是偶函数”的充分不必要条件.3.(2022·河南名校联盟模拟)若函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x,则f ⎝ ⎛⎭⎪⎫-52+f (2)等于()A .0B .2C .4D .-2 答案D解析∵f (x )是定义在R 上的奇函数, ∴f (0)=0,又f (x )在R 上的周期为2,∴f (2)=f (0)=0,f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=124-=-2,∴f ⎝ ⎛⎭⎪⎫-52+f (2)=-2.4.(2022·亳州模拟)已知函数f (x )=x 2+log 2|x |,a =f (2-0.2),b =f (lg π),c =f (log 0.26),则a ,b ,c 的大小关系正确的是() A .a <b <c B .b <c <a C .b <a <c D .c <b <a 答案C解析2-0.2<20=1,lg π>0,log 0.26<0, 因为f (-x )=(-x )2+log 2|-x |=f (x ), 所以f (x )为偶函数,所以只需判断2-0.2,lg π,-log 0.26的大小即可, -log 0.26=log 0.216>1,2-1<2-0.2<20=1,0<lg π<lg 10=12,所以-log 0.26>1>2-0.2>lg π>0,当x >0时,y =x 2,y =log 2x 都单调递增,所以f (x )=x 2+log 2|x |在(0,+∞)上单调递增,所以c =f (log 0.26)=f (-log 0.26)>a =f (2-0.2)>b =f (lg π).5.(2021·全国乙卷)设函数f (x )=1-x1+x ,则下列函数中为奇函数的是()A .f (x -1)-1B .f (x -1)+1C .f (x +1)-1D .f (x +1)+1 答案B 解析f (x )=1-x 1+x =2-(x +1)1+x =21+x-1,为保证函数变换之后为奇函数,需将函数y =f (x )的图象向右平移一个单位长度,再向上平移一个单位长度,得到的图象对应的函数为y =f (x -1)+1.6.(多选)f (x )是定义在R 上的偶函数,对∀x ∈R ,均有f (x +2)=-f (x ),当x ∈[0,1]时,f (x )=log 2(2-x ),则下列结论正确的是() A .函数f (x )的一个周期为4 B .f (2022)=1C .当x ∈[2,3]时,f (x )=-log 2(4-x )D .函数f (x )在[0,2021]内有1010个零点 答案AC解析∵f (x )是定义在R 上的偶函数,对∀x ∈R ,均有f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ), ∴函数的周期为4,故A 正确;f (2022)=f (4×505+2)=f (2)=-f (0)=-1,故B 错误; 当x ∈[2,3]时,x -2∈[0,1],则f (x )=-f (x -2)=-log 2[2-(x -2)] =-log 2(4-x ),故C 正确;易知f (1)=f (3)=f (5)=…=f (2019)=f (2021)=0, 于是函数f (x )在[0,2021]内有1011个零点,故D 错误. 7.写出一个定义域为R ,周期为π的偶函数f (x )=________. 答案cos2x (答案不唯一)解析y =cos2x 满足定义域为R ,最小正周期T =2π2=π,且为偶函数,符合要求. 8.若函数f (x )=e x -e -x ,则不等式f (ln x )+f (ln x -1)>0的解集是________. 答案(e ,+∞)解析因为f (x )=e x -e -x ,定义域为R ,且f (-x )=-(e x -e -x )=-f (x ),故其为奇函数, 又y =e x ,y =-e -x 均为增函数,故f (x )为R 上的增函数,则原不等式等价于f (ln x )>f (1-ln x ),也即ln x >1-ln x ,整理得ln x >12,解得x >e ,故不等式的解集为(e ,+∞).9.已知函数f (x )=⎩⎨⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数, 所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx , 所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎨⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式; (3)计算f (0)+f (1)+f (2)+…+f (2023). (1)证明∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ). ∴f (x )是周期为4的周期函数. (2)解当x ∈[-2,0]时,-x ∈[0,2], 由已知得f (-x )=2(-x )-(-x )2=-2x -x 2. 又f (x )是奇函数,∴f (-x )=-f (x )=-2x -x 2. ∴f (x )=x 2+2x .又当x ∈[2,4]时,x -4∈[-2,0], ∴f (x -4)=(x -4)2+2(x -4).又f(x)是周期为4的周期函数,∴f(x)=f(x-4)=(x-4)2+2(x-4)=x2-6x+8.从而求得x∈[2,4]时,f(x)=x2-6x+8.(3)解f(0)=0, f(1)=1,f(2)=0,f(3)=-1.又f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2020)+f(2021)+f(2022)+f(2023)=0.∴f(0)+f(1)+f(2)+…+f(2023)=0.11.(2023·廊坊模拟)已知定义域为R的函数f(x)满足:∀x,y∈R,f(x+y)+f(x-y)=f(x)f(y),且f(1)=1,则下列结论错误的是()A.f(0)=2B.f(x)为偶函数C.f(x)为奇函数D.f(2)=-1答案C解析因为∀x,y∈R,f(x+y)+f(x-y)=f(x)f(y),取x=1,y=0可得f(1)+f(1)=f(1)f(0),又f(1)=1,所以f(0)=2,A对;取x=0,y=x可得f(x)+f(-x)=f(0)f(x),因为f(0)=2,所以f(-x)=f(x),所以f(x)为偶函数,C错,B对;取x=1,y=1可得f(2)+f(0)=f(1)f(1),又f (1)=1,f (0)=2, 所以f (2)=-1,D 对.12.已知定义在R 上的函数y =f (x )满足:①对于任意的x ∈R ,都有f (x +1)=1f (x );②函数y =f (x )是偶函数;③当x ∈(0,1]时,f (x )=x +e x ,则f ⎝ ⎛⎭⎪⎫-32,f ⎝ ⎛⎭⎪⎫214,f ⎝ ⎛⎭⎪⎫223从小到大的排列是________. 答案f ⎝ ⎛⎭⎪⎫-32<f⎝ ⎛⎭⎪⎫223<f ⎝ ⎛⎭⎪⎫214 解析由题意知f (x +1)=1f (x ),则f (x +2)=1f (x +1)=f (x ),故函数y =f (x )的周期为2,f ⎝ ⎛⎭⎪⎫-32=f ⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫223=f ⎝ ⎛⎭⎪⎫8-23=f ⎝ ⎛⎭⎪⎫-23=f ⎝ ⎛⎭⎪⎫23,f ⎝ ⎛⎭⎪⎫214=f ⎝ ⎛⎭⎪⎫6-34=f ⎝ ⎛⎭⎪⎫34,∵当x ∈(0,1]时,f (x )=x +e x 单调递增, ∴f ⎝ ⎛⎭⎪⎫12<f⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫34, 故f ⎝ ⎛⎭⎪⎫-32<f ⎝ ⎛⎭⎪⎫223<f ⎝ ⎛⎭⎪⎫214.13.(2022·全国乙卷)若f (x )=ln ⎪⎪⎪⎪⎪⎪a +11-x +b 是奇函数,则a =______,b =______. 答案-12ln2解析f (x )=ln ⎪⎪⎪⎪⎪⎪a +11-x +b =ln ⎪⎪⎪⎪⎪⎪a +11-x +lne b=ln ⎪⎪⎪⎪⎪⎪(a +1)e b -a e bx 1-x . ∵f (x )为奇函数, ∴f (-x )+f (x )=ln ⎪⎪⎪⎪⎪⎪(a +1)2e 2b -a 2e 2b x 21-x 2=0, ∴||(a +1)2e 2b -a 2e 2b x 2=|1-x 2|.当(a +1)2e 2b -a 2e 2b x 2=1-x 2时,[(a +1)2e 2b -1]+(1-a 2e 2b )x 2=0对任意的x 恒成立,则⎩⎨⎧(a +1)2e 2b-1=0,1-a 2e 2b=0,解得⎩⎨⎧a =-12,b =ln2.当(a +1)2e 2b -a 2e 2b x 2=x 2-1时,[(a +1)2e 2b +1]-(a 2e 2b +1)x 2=0对任意的x 恒成立,则⎩⎨⎧(a +1)2e 2b+1=0,a 2e 2b+1=0,无解.综上,a =-12,b =ln2.14.已知函数f (x )=x 3+(x +1)2x 2+1在区间[-3,3]上的最大值为M ,最小值为N ,则M +N的值为________. 答案2解析f(x)=x3+x2+2x+1x2+1=x(x2+2)+x2+1x2+1=x(x2+2)x2+1+1,令g(x)=f(x)-1=x(x2+2) x2+1,则g(-x)=-x(x2+2)x2+1=-g(x),∴函数g(x)在[-3,3]上为奇函数,则g(x)max+g(x)min=0,即M-1+N-1=0,∴M+N=2.。
高一函数的奇偶性和周期性知识点+例题+练习 含答案
1.函数的奇偶性奇偶性定义图象特点偶函数一般地,设函数y=f(x)的定义域为A如果对于任意的x∈A,都有f(-x)=f(x),那么称函数y=f(x)是偶函数.关于y轴对称奇函数如果对于任意的x∈A,都有f(-x)=-f(x),那么称函数y=f(x)是奇函数.关于原点对称2.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)偶函数图象不一定过原点,奇函数的图象一定过原点.(×)(2)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.(√)(3)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.(√)(4)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.(√)(5)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.(√)(6)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.(√)1.(2015·福建改编)下列函数中,①y=x;②y=|sin x|;③y=cos x;④y=e x-e-x为奇函数的是________.(填函数序号)答案 ④解析 对于④,f (x )=e x -e -x 的定义域为R ,f (-x )=e -x -e x =-f (x ),故y =e x -e -x 为奇函数.而y =x 的定义域为{x |x ≥0},不具有对称性,故y =x 为非奇非偶函数.y =|sin x |和y =cos x 为偶函数.2.已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,则f (1)+f (2)+f (3)+f (4)=________. 答案 0解析 由f (x +1)是偶函数得f (-x +1)=f (x +1),又f (x )是定义在R 上的奇函数,所以f (-x +1)=-f (x -1),即-f (x -1)=f (x +1),所以f (x +2)=-f (x ),即f (x )+f (x +2)=0,所以f (1)+f (3)=0,f (2)+f (4)=0,因此f (1)+f (2)+f (3)+f (4)=0. 3.(2015·天津)已知定义在R 上的函数f (x )=2|x-m |-1(m 为实数)为偶函数,记a =f (log 0.53),b=f (log 25),c =f (2m ),则a ,b ,c 的大小关系为______________. 答案 c <a <b解析 由函数f (x )=2|x -m |-1为偶函数,得m =0, 所以f (x )=2|x |-1,当x >0时,f (x )为增函数, log 0.53=-log 23,所以log 25>|-log 23|>0, 所以b =f (log 25)>a =f (log 0.53)>c =f (2m )=f (0).4.(2014·天津)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2, -1≤x <0,x , 0≤x <1,则f (32)=________.答案 1解析 函数的周期是2, 所以f (32)=f (32-2)=f (-12),根据题意得f (-12)=-4×(-12)2+2=1.5.(教材改编)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x (1+x ),则x <0时,f (x )=________. 答案 x (1-x )解析 当x <0时,则-x >0,∴f (-x )=(-x )(1-x ).又f (x )为奇函数,∴f (-x )=-f (x )=(-x )(1-x ), ∴f (x )=x (1-x ).题型一 判断函数的奇偶性例1 判断下列函数的奇偶性: (1)f (x )=x 3-x ; (2)f (x )=(x +1)1-x1+x; (3)f (x )=⎩⎪⎨⎪⎧x 2+x , x <0,-x 2+x , x >0.解 (1)定义域为R ,关于原点对称, 又f (-x )=(-x )3-(-x )=-x 3+x =-(x 3-x ) =-f (x ), ∴函数为奇函数.(2)由1-x1+x ≥0可得函数的定义域为(-1,1].∵函数定义域不关于原点对称, ∴函数为非奇非偶函数.(3)当x >0时,-x <0,f (x )=-x 2+x , ∴f (-x )=(-x )2-x =x 2-x =-(-x 2+x )=-f (x ); 当x <0时,-x >0,f (x )=x 2+x , ∴f (-x )=-(-x )2-x =-x 2-x =-(x 2+x )=-f (x ).∴对于x ∈(-∞,0)∪(0,+∞), 均有f (-x )=-f (x ).∴函数为奇函数.思维升华 (1)利用定义判断函数奇偶性的步骤:(2)分段函数奇偶性的判断,要注意定义域内x 取值的任意性,应分段讨论,讨论时可依据x 的范围取相应的解析式化简,判断f (x )与f (-x )的关系,得出结论,也可以利用图象作判断.(1)下列四个函数:①f (x )=-x |x |;②f (x )=x 3;③f (x )=sin x ;④f (x )=ln xx,同时满足以下两个条件:①定义域内是减函数;②定义域内是奇函数的是________.(2)函数f (x )=log a (2+x ),g (x )=log a (2-x )(a >0且a ≠1),则函数F (x )=f (x )+g (x ),G (x )=f (x )-g (x )分别是______________(填奇偶性). 答案 (1)① (2)偶函数,奇函数解析 (1)①中,f (x )=⎩⎪⎨⎪⎧-x 2,x >0,x 2,x ≤0,由函数性质可知符合题中条件,故①正确;②中,对于比较熟悉的函数f (x )=x 3可知不符合题意,故②不正确;③中,f (x )=sin x 在定义域内不具有单调性,故②不正确;④中,定义域关于原点不对称,故④不正确. (2)F (x ),G (x )定义域均为(-2,2),由已知F (-x )=f (-x )+g (-x )=log a (2-x )+log a (2+x )=F (x ), G (-x )=f (-x )-g (-x )=log a (2-x )-log a (2+x ) =-G (x ),∴F (x )是偶函数,G (x )是奇函数.题型二 函数的周期性例2 (1)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫52=________. (2)已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=______.答案 (1)-1 (2)2.5解析 (1)因为f (x )是周期为3的周期函数, 所以f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫-12+3=f ⎝⎛⎭⎫-12 =4×⎝⎛⎭⎫-122-2=-1. (2)由已知,可得f (x +4)=f [(x +2)+2] =-1f (x +2)=-1-1f (x )=f (x ).故函数的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2≤2.5≤3,由题意,得f (2.5)=2.5. ∴f (105.5)=2.5.思维升华 (1)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值. (2)函数周期性的三个常用结论: ①若f (x +a )=-f (x ),则T =2a , ②若f (x +a )=1f (x ),则T =2a ,③若f (x +a )=-1f (x ),则T =2a (a >0).设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=____________. 答案 12解析 ∵f (x +2π)=f (x +π)+sin(x +π)=f (x )+sin x -sin x =f (x ),∴f (x )的周期T =2π, 又∵当0≤x <π时,f (x )=0,∴f ⎝⎛⎭⎫5π6=0, 即f ⎝⎛⎭⎫-π6+π=f ⎝⎛⎭⎫-π6+sin ⎝⎛⎭⎫-π6=0, ∴f ⎝⎛⎭⎫-π6=12,∴f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫4π-π6=f ⎝⎛⎭⎫-π6=12.题型三 函数性质的综合应用命题点1 函数奇偶性的应用例3 (1)已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=________.(2)(2015·课标全国Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 答案 (1)1 (2)1解析 (1)因为f (x )是偶函数,g (x )是奇函数,所以f (1)+g (1)=f (-1)-g (-1)=(-1)3+(-1)2+1=1.(2)f (x )为偶函数,则ln(x +a +x 2)为奇函数,所以ln(x +a +x 2)+ln(-x +a +x 2)=0,即ln(a +x 2-x 2)=0,∴a =1.命题点2 单调性与奇偶性、周期性结合例4 (1)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a的取值范围为________.(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则f (-25),f (11),f (80)的大小关系是__________________. 答案 (1)(-1,4) (2)f (-25)<f (80)<f (11)解析 (1)∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4.(2)∵f (x )满足f (x -4)=-f (x ),∴f (x -8)=f (x ),∴函数f (x )是以8为周期的周期函数,则f (-25)=f (-1), f (80)=f (0),f (11)=f (3). 由f (x )是定义在R 上的奇函数, 且满足f (x -4)=-f (x ), 得f (11)=f (3)=-f (-1)=f (1).∵f (x )在区间[0,2]上是增函数, f (x )在R 上是奇函数,∴f (x )在区间[-2,2]上是增函数, ∴f (-1)<f (0)<f (1), 即f (-25)<f (80)<f (11).思维升华 (1)关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题.(2)掌握以下两个结论,会给解题带来方便:①f (x )为偶函数⇔f (x )=f (|x |).②若奇函数在x =0处有意义,则f (0)=0.(1)若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.(2)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.答案 (1)-32(2)(-5,0)∪(5,+∞)解析 (1)函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e -3x +1)-ax =ln(e 3x +1)+ax ,化简得ln1+e 3xe 3x +e 6x=2ax =ln e 2ax ,即1+e 3xe 3x +e6x =e 2ax ,整理得e 3x +1=e 2ax +3x (e 3x +1),所以2ax +3x =0,解得a =-32.(2)∵f (x )是定义在R 上的奇函数,∴f (0)=0. 又当x <0时,-x >0, ∴f (-x )=x 2+4x .又f (x )为奇函数,∴f (-x )=-f (x ), ∴f (x )=-x 2-4x (x <0), ∴f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.①当x >0时,由f (x )>x 得x 2-4x >x ,解得x >5;②当x =0时,f (x )>x 无解;③当x <0时,由f (x )>x 得-x 2-4x >x , 解得-5<x <0.综上得不等式f (x )>x 的解集用区间表示为(-5,0)∪(5,+∞).2.忽视定义域致误典例 (1)若函数f (x )=k -2x1+k ·2x在定义域上为奇函数,则实数k =________.(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.易错分析 (1)解题中忽视函数f (x )的定义域,直接通过计算f (0)=0得k =1. (2)本题易出现以下错误:由f (1-x 2)>f (2x )得1-x 2>2x ,忽视了1-x 2>0导致解答失误. 解析 (1)∵f (-x )=k -2-x1+k ·2-x =k ·2x -12x +k,∴f (-x )+f (x )=(k -2x )(2x +k )+(k ·2x -1)·(1+k ·2x )(1+k ·2x )(2x +k )=(k 2-1)(22x +1)(1+k ·2x )(2x +k ).由f (-x )+f (x )=0可得k 2=1, ∴k =±1.(2)画出f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0的图象,由图象可知,若f (1-x 2)>f (2x ),则⎩⎪⎨⎪⎧1-x 2>0,1-x 2>2x ,即⎩⎪⎨⎪⎧-1<x <1,-1-2<x <-1+2,得x ∈(-1,2-1). 答案 (1)±1 (2)(-1,2-1)温馨提醒 (1)已知函数的奇偶性,利用特殊值确定参数,要注意函数的定义域.(2)解决分段函数的单调性问题时,应高度关注:①对变量所在区间的讨论.②保证各段上同增(减)时,要注意左、右段端点值间的大小关系.③弄清最终结果取并集还是交集.[方法与技巧]1.判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. 2.利用函数奇偶性可以解决以下问题①求函数值;②求解析式;③求函数解析式中参数的值;④画函数图象,确定函数单调性. 3.在解决具体问题时,要注意结论“若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期”的应用. [失误与防范]1.f (0)=0既不是f (x )是奇函数的充分条件,也不是必要条件.应用时要注意函数的定义域并进行检验.2.判断分段函数的奇偶性时,要以整体的观点进行判断,不可以利用函数在定义域某一区间上不是奇、偶函数而否定函数在整个定义域的奇偶性.A 组 专项基础训练 (时间:40分钟)1.下列函数中,①y =log 2|x |;②y =cos 2x ;③y =2x -2-x 2;④y =log 22-x 2+x ,既是偶函数又在区间(1,2)上单调递增的是________. 答案 ①解析 对于①,函数y =log 2|x |是偶函数且在区间(1,2)上是增函数;对于②,函数y =cos 2x在区间(1,2)上不是增函数;对于③,函数y =2x -2-x 2不是偶函数;对于④,函数y =log 22-x2+x 不是偶函数.2.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)的值为________. 答案 -4解析 由f (x )是定义在R 上的奇函数,得f (0)=1+m =0,解得m =-1,∴f (x )=3x -1.∵log 35>log 31=0,∴f (-log 35)=-f (log 35)=3log 5(31)--=-4.3.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 019)=________. 答案 -2解析 ∵f (x +4)=f (x ),∴f (x )是以4为周期的周期函数, ∴f (2 019)=f (504×4+3)=f (3)=f (-1).又f (x )为奇函数,∴f (-1)=-f (1)=-2×12=-2, 即f (2 019)=-2.4.若函数f (x )=(ax +1)(x -a )为偶函数,且函数y =f (x )在x ∈(0,+∞)上单调递增,则实数a 的值为________. 答案 1解析 ∵函数f (x )=(ax +1)(x -a )=ax 2+(1-a 2)x -a 为偶函数, ∴f (-x )=f (x ),即f (-x )=ax 2-(1-a 2)x -a =ax 2+(1-a 2)x -a , ∴1-a 2=0,解得a =±1.当a =1时,f (x )=x 2-1,在x ∈(0,+∞)上单调递增,满足条件.当a =-1时,f (x )=-x 2+1,在x ∈(0,+∞)上单调递减,不满足条件.故a =1.5.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是____________. 答案 (-2,1)解析 ∵f (x )是奇函数,∴当x <0时,f (x )=-x 2+2x .作出函数f (x )的大致图象如图中实线所示,结合图象可知f (x )是R 上的增函数,由f (2-a 2)>f (a ),得2-a 2>a ,解得-2<a <1.6.函数f (x )在R 上为奇函数,且当x >0时,f (x )=x +1,则当x <0时,f (x )=________. 答案 --x -1解析 ∵f (x )为奇函数,当x >0时,f (x )=x +1,∴当x <0时,-x >0,f (-x )=-x +1=-f (x ),即x <0时,f (x )=-(-x +1)=--x -1. 7.已知定义在R 上的偶函数f (x )在[0,+∞)上单调递增,且f (1)=0,则不等式f (x -2)≥0的解集是____________________.答案 (-∞,1]∪[3,+∞)解析 由已知可得x -2≥1或x -2≤-1,解得x ≥3或x ≤1,∴所求解集是(-∞,1]∪[3,+∞).8.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 答案 2解析 依题意知:函数f (x )为奇函数且周期为2,∴f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12+f (1)-f ⎝⎛⎭⎫12+f (0)+f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12+f (1)+f (0)=212-1+21-1+20-1= 2. 9.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ).于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式;(3)计算f (0)+f (1)+f (2)+…+f (2 016).(1)证明 ∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ).∴f (x )是周期为4的周期函数.(2)解 ∵x ∈[2,4],∴-x ∈[-4,-2],∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8.又f (4-x )=f (-x )=-f (x ),∴-f (x )=-x 2+6x -8,即f (x )=x 2-6x +8,x ∈[2,4].(3)解 ∵f (0)=0,f (1)=1,f (2)=0,f (3)=-1.又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2 012)+f (2 013)+f (2 014)+f (2 015)=0.∴f (0)+f (1)+f (2)+…+f (2 016)=f (2 016)=f (0)=0.B 组 专项能力提升(时间:20分钟)11.已知f (x )是定义域为(-1,1)的奇函数,而且f (x )是减函数,如果f (m -2)+f (2m -3)>0,那么实数m 的取值范围是____________.答案 ⎝⎛⎭⎫1,53 解析 ∵f (x )是定义域为(-1,1)的奇函数,∴-1<x <1,f (-x )=-f (x ).∴f (m -2)+f (2m -3)>0可转化为f (m -2)>-f (2m -3),∴f (m -2)>f (-2m +3),∵f (x )是减函数,∴m -2<-2m +3,∵⎩⎪⎨⎪⎧ -1<m -2<1,-1<2m -3<1,m -2<-2m +3.∴1<m <53. 12.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.答案 -10解析 因为f (x )是定义在R 上且周期为2的函数,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12,且f (-1)=f (1),故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,从而12b +212+1=-12a +1,即3a+2b=-2.①由f(-1)=f(1),得-a+1=b+2 2,即b=-2a.②由①②得a=2,b=-4,从而a+3b=-10.13.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为________.答案7解析因为当0≤x<2时,f(x)=x3-x,又f(x)是R上最小正周期为2的周期函数,且f(0)=0,所以f(6)=f(4)=f(2)=f(0)=0.又f(1)=0,所以f(3)=f(5)=0.故函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为7.14.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=2x,则有①2是函数f(x)的周期;②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;③函数f(x)的最大值是1,最小值是0.其中所有正确命题的序号是________.答案①②解析在f(x+1)=f(x-1)中,令x-1=t,则有f(t+2)=f(t),因此2是函数f(x)的周期,故①正确;当x∈[0,1]时,f(x)=2x是增函数,根据函数的奇偶性知,f(x)在[-1,0]上是减函数,根据函数的周期性知,函数f(x)在(1,2)上是减函数,在(2,3)上是增函数,故②正确;由②知f(x)在[0,2]上的最大值f(x)max=f(1)=2,f(x)的最小值f(x)min=f(0)=f(2)=20=1,且f(x)是周期为2的周期函数.∴f(x)的最大值是2,最小值是1,故③错误.15.函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.解 (1)∵对于任意x 1,x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)f (x )为偶函数.证明:令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0. 令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ),∴f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2, 由(2)知,f (x )是偶函数,∴f (x -1)<2⇔f (|x -1|)<f (16).又f (x )在(0,+∞)上是增函数.∴0<|x -1|<16,解之得-15<x <17且x ≠1. ∴x 的取值范围是{x |-15<x <17且x ≠1}.。
高考数学专题《函数的奇偶性、对称性、周期性》填选压轴题及答案
6.(多选题)函数f(x)的定义域为R,且f(x+1)与f(x+2)都为奇函数,则()
A.f(x)为奇函数B.f(x)为周期函数
C.f(x+3)为奇函数D.f(x+4)为偶函数
专题03函数的奇偶性、对称性、周期性
【方法点拨】
1.常见的与周期函数有关的结论如下:
(1)如果f(x+a)=-f(x)(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.
(2)如果f(x+a)= (a≠0),那么f(x)是周期函数,其中的一个周期T=2a.
(3)如果f(x+a)+f(x)=c(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.
对于 , 是函数 的一条对称轴,且函数 是周期为4的周期函数,则 是函数 的一条对称轴,
又由函数为奇函数,则直线 是函数 图象的一条对称轴, 正确;
对于 ,函数 在 , 上有7个零点:分别为 , , ,0,2,4,6; 错误;
对于 , 在区间 , 上为增函数且其周期为4,函数 在 , 上为增函数,
又由 为函数 图象的一条对称轴,则函数 在 , 上为减函数, 正确;
2.函数奇偶性、对称性间关系:
(1)若函数y=f(x+a)是偶函数,即f(a+x)=f(a-x)恒成立,则y=f(x)的图象关于直线x=a对称;一般的,若f(a+x)=f(b-x)恒成立,则y=f(x)的图象关于直线x= 对称.
(2)若函数y=f(x+a)是奇函数,即f(-x+a)+f(x+a)=0恒成立,则函数y=f(x)关于点(a,0)中心对称;一般的,若对于R上的任意x都有f(a+x)+f(a-x)=2b恒成立,则y=f(x)的图象关于点(a,b)对称.
山东省2014届理科一轮复习试题选编4:函数的奇偶性与周期性
山东省2014届理科数学一轮复习试题选编4:函数的奇偶性与周期性、对称性(教师版)一、选择题错误!未指定书签。
.(2013届山东省高考压轴卷理科数学)已知函数()f x 是R 上的奇函数,若对于0x ≥,都有()2()f x f x +=, [)()()20,2,log 1x f x x ∈=+当时时,()()20132012f f -+的值为 ( )A .2-B .1-C .1D .2【答案】B 【解析】由()2()f x f x +=知,函数()f x 的周期为2,所以()()20132012f f -+ .1)0()1()0()121006()21006()2013(-=+-=++⨯-=⨯+-=f f f f f f错误!未指定书签。
.(山东省枣庄市2013届高三4月(二模)模拟考试数学(理)试题)已知函数()f x 对任意x R ∈都有(6)()2(3),(f x f x f y f x ++==-的图象关于点(1,0)对称,则(2013)f = ( )A .10B .5-C .5D .0【答案】D错误!未指定书签。
.(山东省威海市2013届高三上学期期末考试理科数学)已知函数()f x 的定义域为(32,1)a a -+,且(1)f x +为偶函数,则实数a 的值可以是( ) A .23 B .2 C .4 D .6【答案】B 因为函数(1)f x +为偶函数,所以(1)(1)f x f x -+=+,即函数()f x 关于1x =对称,所以区间(32,1)a a -+关于1x =对称,所以32112a a -++=,即2a =,所以选 B . 错误!未指定书签。
.(山东省烟台市莱州一中2013届高三第二次质量检测数学(理)试题)已知函数()f x 是定义在R 上的奇函数,当x >0时,()12x f x -=-,则不等式()f x <12-的解集是 ( )A .(),1-∞-B .(],1-∞-C .()1,+∞D .[)1,+∞ 【答案】A 【解析】因为()111122f -=-=,又因为函数为奇函数,所以1(1)(1)2f f -=-=-,所以不等式1()2f x <-等价于()(1)f x f <-,当0x >时,()1121()2x x f x -=-=-单调递增,且0()1f x <<,所以在(,0)-∞上函数也单调递增,由()(1)f x f <-得1x <-,即不等式的解集为(),1-∞-,选 ( )A .错误!未指定书签。
2014年高考上海理科数学试题及答案(word解析版)
2014年普通高等学校招生全国统一考试(上海卷)数学(理科)第Ⅰ卷(选择题 共50分)一、填空题(本大题共14小题,共56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. (1)【2014年上海,理1,4分】函数212cos (2)y x =-的最小正周期是 . 【答案】2π【解析】原式=cos4x -,242T ππ==. (2)【2014年上海,理2,4分】若复数12i z =+,其中i 是虚数单位,则1z z z ⎛⎫+⋅= ⎪⎝⎭ .【答案】6【解析】原式=211516z z z ⋅+=+=+=.(3)【2014年上海,理3,4分】若抛物线22y px =的焦点与椭圆22195x y +=的右焦点重合,则该抛物线的准线方程为 . 【答案】2x =-【解析】椭圆右焦点为(2,0),即抛物线焦点,所以准线方程2x =-.(4)【2014年上海,理4,4分】设2(,)()[,)xx a f x xx a ∈-∞⎧=⎨∈+∞⎩,若(2)4f =,则a 的取值范围为 .【答案】2a ≤【解析】根据题意,2[,)a ∈+∞,∴2a ≤.(5)【2014年上海,理5,4分】若实数x ,y 满足1xy =,则222x y +的最小值为 .【答案】【解析】2222x y x +≥⋅=. (6)【2014年上海,理6,4分】若圆锥的侧面积是底面积的3倍,则其母线与底面夹角的大小为 .(结果用反三角函数值表示)【答案】1arccos 3【解析】设圆锥母线长为R ,底面圆半径为r ,∵3S S =侧底,∴23r R r ππ⋅⋅=⋅,即3R r =,∴1cos 3θ=,即母线与底面夹角大小为1arccos 3.(7)【2014年上海,理7,4分】已知曲线C 的极坐标方程为(3cos 4sin )1ρθθ-=,则C 与极轴的交点到极点的距离是 .【答案】13【解析】曲线C 的直角坐标方程为341x y -=,与x 轴的交点为1(,0)3,到原点距离为13.(8)【2014年上海,理8,4分】设无穷等比数列{}n a 的公比为q ,若()134lim n n a a a a →∞=+++L ,则q = .【解析】223111011a a q a q q q q q ==⇒+-=⇒=--,∵01q <<,∴q =P2P 5P6P 7P 8P 4P 3P 1B A (9)【2014年上海,理9,4分】若2132()f x x x -=-,则满足()0f x <的x 的取值范围是 . 【答案】(0,1)【解析】2132()0f x x x -<⇒<,结合幂函数图像,如下图,可得x 的取值范围是(0,1). (10)【2014年上海,理10,4分】为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是 .(结果用最简分数表示) 【答案】115【解析】3108115P C ==.(11)【2014年上海,理11,4分】已知互异的复数,a b 满足0ab ≠,集合{}{}22,,a b a b =,则a b += . 【答案】1-【解析】第一种情况:22,a a b b ==,∵0ab ≠,∴1a b ==,与已知条件矛盾,不符;第二种情况:22,a b b a ==,∴431a a a =⇒=,∴210a a ++=,即1a b +=-.(12)【2014年上海,理12,4分】设常数a使方程sin x x a +=在闭区间[0,2]π上恰有三个解123,,x x x ,则123x x x ++= . 【答案】73π【解析】化简得2sin()3x a π+=,根据下图,当且仅当a =恰有三个交点,即12370233x x x πππ++=++=.(13)【2014年上海,理13,4分】某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分.若() 4.2E ξ=,则小白得5分的概率至少为 .【答案】0.2【解析】设得i 分的概率为i p ,∴123452345 4.2p p p p p ++++=,且123451p p p p p ++++=,∴12345444444p p p p p ++++=,与前式相减得:1235320.2p p p p ---+=, ∵0i p ≥,∴1235532p p p p p ---+≤,即50.2p ≥.(14)【2014年上海,理14,4分】已知曲线:C x =,直线:6l x =. 若对于点(,0)A m ,存在C 上的点P 和l 上的Q 使得0AP AQ +=u r r,则m 的取值范围为 .【答案】1615-【解析】根据题意,A 是PQ 中点,即622P Q P x x x m ++==,∵20P x -≤≤,∴[2,3]m ∈. 二、选择题(本大题共有4题,满分20分)考生应在答题纸相应编号位置填涂,每题只有一个正确选项,选对得5分,否则一律得零分. (15)【2014年上海,理15,5分】设,a b ∈R ,则“4a b +>”是“2a >且2b >”的( )(A )充分条件 (B )必要条件 (C )充要条件 (D )既非充分也非必要条件 【答案】B【解析】充分性不成立,如5a =,1b =;必要性成立,故选B .(16)【2014年上海,理16,5分】如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,(1,2,,8)i P i =L 是上底面上其余的八个点,则(1, 2, , 8)i AB AP i ⋅=u u u r u u u r K 的 不同值的个数为( )(A )1 (B )2 (C )4 (D )8【答案】AA βC BαD【解析】根据向量数量积的几何意义,i AB AP ⋅u u u r u u u r 等于AB u u u r乘以i AP u u u r 在AB u u u r 方向上的投影,而i AP u u u r 在AB u u u r 方向上的投影是定值,AB u u u r也是定值,∴i AB AP ⋅u u u r u u u r 为定值1,故选A .(17)【2014年上海,理17,5分】已知111(,)P a b 与222(,)P a b 是直线1y kx =+(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a x b y a x b y +=⎧⎨+=⎩的解的情况是( )(A )无论12,,k P P 如何,总是无解 (B )无论12,,k P P 如何,总有唯一解(C )存在12,,k P P ,使之恰有两解 (D )存在12,,k P P ,使之有无穷多解 【答案】B【解析】由已知条件111b ka =+,221b ka =+,11122122a b D a b a b a b ==-122112(1)(1)0a ka a ka a a =+-+=-≠, ∴有唯一解,故选B .(18)【2014年上海,理18,5分】设2(),0,()1,0.x a x f x x a x x ⎧-≤⎪=⎨++>⎪⎩若(0)f 是()f x 的最小值,则a 的取值范围为( ) (A )[1,2]- (B )[1,0]- (C )[1,2] (D )[0,2]【答案】D【解析】先分析0x ≤的情况,是一个对称轴为x a =的二次函数,当0a <时,min ()()(0)f x f a f =≠,不符合题意,排除AB 选项;当0a =时,根据图像min ()(0)f x f =,即0a =符合题意,排除C 选项,故选D .三、解答题(本题共5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. (19)【2014年上海,理19,12分】底面边长为2的正三棱锥P ABC -,其表面展开图是三角形123PP P ,如图.求123PP P ∆的各边长及此三棱锥的体积V . 解:根据题意可得12,,P B P 共线,∵112ABP BAP CBP ∠=∠=∠,60ABC ∠=︒,∴11260ABP BAP CBP ∠=∠=∠=︒,∴160P ∠=︒,同理2360P P ∠=∠=︒,∴123PP P ∆是等 边三角形,P ABC -是正四面体,所以123PP P ∆边长为4;∴3123V AB =⨯=. (20)【2014年上海,理20,14分】设常数0a ≥,函数2()2xx af x a+=-.(1)若4a =,求函数()y f x =的反函数1()y f x -=;(2)根据a 的不同取值,讨论函数()y f x =的奇偶性,并说明理由.解:(1)∵4a =,∴24()24x x f x y +==-,∴4421x y y +=-,∴244log 1y x y +=-, ∴1244()log 1x y f x x -+==-,(,1)(1,)x ∈-∞-+∞U . ……6分(2)若()f x 为偶函数,则()()f x f x =-,∴2222x x x xa aa a --++=--,整理得(22)0x x a --=,∴0a =,此时为偶函, 若()f x 为奇函数,则()()f x f x =--,∴2222x x x xa aa a--++=---,整理得210a -=,∵0a ≥,∴1a =,此时 为奇函数,当(0,1)(1,)a ∈⋃+∞时,此时()f x 既非奇函数也非偶函数. ……14分(21)【2014年上海,理21,14分】如图,某公司要在A B 、两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35米,CB 长80米. 设点A B 、在同一水平面上,从A 和B 看D 的仰角分别为α和β.(1)设计中CD 是铅垂方向. 若要求2αβ≥,问CD 的长至多为多少(结 果精确到0.01米)?(2)施工完成后,CD 与铅垂方向有偏差.现在实测得38.12α=︒,18.45β=︒,求CD 的长(结果精确到0.01米).P 2解:(1)设CD 的长为x 米,则tan ,tan 3580x x αβ==,∵202παβ>≥>, ∴tan tan 2αβ≥,∴22tan tan 1tan βαβ≥-, ∴2221608035640016400xx x x x ≥=--,解得028.28x <≤≈,∴CD 的长至多为28.28米. ……6分 (2)设,,DB a DA b DC m ===,180123.43ADB αβ∠=︒--=︒,则sin sin a ABADBα=∠, 解得115sin38.1285.06sin123.43a ︒=≈︒∴26.93m =≈∴CD 的长为26.93米. ……14分(22)【2014年上海,理22,16分】在平面直角坐标系xOy 中,对于直线:0l ax by c ++=和点111222(,),(,)P x y P x y ,记1122()()ax by c ax by c η=++++. 若0η<,则称点12,P P 被直线l 分割. 若曲线C 与直线l 没有公共点,且曲线C 上存在点12,P P 被直线l 分割,则称直线l 为曲线C 的一条分割线. (1)求证:点(1,2),(1,0)A B -被直线10x y +-=分割;(2)若直线y kx =是曲线2241x y -=的分割线,求实数k 的取值范围;(3)动点M 到点(0,2)Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为曲线E .求证:通过原点的直线中,有且仅有一条直线是E 的分割线.解:(1)将(1,2),(1,0)A B -分别代入1x y +-,得(121)(11)40+-⨯--=-<,∴点(1,2),(1,0)A B -被直线10x y +-=分割. ……3分 (2)联立2241x y y kx⎧-=⎨=⎩,得22(14)1k x -=,依题意,方程无解∴2140k -≤,∴12k ≤-或12k ≥.……8分(3)设(,)M x y1=,∴曲线E 的方程为222[(2)]1x y x +-= ① 当斜率不存在时,直线0x =,显然与方程①联立无解,又12(1,2),(1,2)P P -为E 上两点,且代入0x =,有10η=-<,∴0x =是一条分割线;当斜率存在时,设直线为y kx =,代入方程得:2432(1)4410k x kx x +-+-=, 令2432()(1)441f x k x kx x =+-+-,则(0)1f =-,22(1)143(2)f k k k =+-+=-,22(1)143(2)f k k k -=+++=+,当2k ≠时,(1)0f >,∴(0)(1)0f f <,即()0f x =在(0,1)之间存在实根,∴y kx =与曲线E 有公共点当2k =时,(0)(1)0f f -<,即()0f x =在(1,0)-之间存在实根,∴y kx =与曲线E 有公共点, ∴直线y kx =与曲线E 始终有公共点,∴不是分割线,综上,所有通过原点的直线中,有且仅有一条直线0x =是E 的分割线. ……16分(23)【2014年上海,理23,18分】已知数列{}n a 满足1133n n n a a a +≤≤,*n ∈N ,11a =.(1)若2342,,9a a x a ===,求x 的取值范围;(2)设{}n a 是公比为q 的等比数列,12n n S a a a =+++L . 若1133n n n S S S +≤≤,*n ∈N ,求q 的取值范围;(3)若12,,,k a a a L 成等差数列,且121000k a a a +++=L ,求正整数k 的最大值,以及k 取最大值时相应数列12,,,k a a a L 的公差.解:(1)依题意,232133a a a ≤≤,∴263x ≤≤,又343133a a a ≤≤,∴327x ≤≤,综上可得36x ≤≤.……3分(2)由已知得1n n a q -=,又121133a a a ≤≤,∴133q ≤≤,当1q =时,n S n =,1133n n n S S S +≤≤,即133nn n ≤+≤,成立;当13q <≤时,11n n q S q -=-,1133n n n S S S +≤≤,即1111133111n n n q q q q q q +---≤≤---, ∴111331n nq q +-≤≤-, 此不等式即11320320n n n nq q q q ++⎧--≥⎨-+≤⎩,∵1q >,∴132(31)2220n n n n q q q q q +--=-->->,对于不等式1320n n q q +-+≤,令1n =,得2320q q -+≤,解得12q ≤≤,又当12q <≤时,30q -<,∴132(3)2(3)2(1)(2)0n n n q q q q q q q q +-+=-+≤-+=--≤成立,∴12q <≤,当113q ≤<时,11n n q S q -=-,1133n n n S S S +≤≤,即1111133111n n nq q q q q q +---≤≤---,即11320320n n n nq q q q ++⎧--≤⎨-+≥⎩,310,30q q ->-<, ∵132(31)2220n n n n q q q q q +--=--<-<,132(3)2(3)2(1)(2)0n n n q q q q q q q q +-+=-+≥-+=--> ∴113q ≤<时,不等式恒成立,综上,q 的取值范围为123q ≤≤. ……10分 (3)设公差为d ,显然,当1000,0k d ==时,是一组符合题意的解,∴max 1000k ≥,则由已知得1(2)1(1)3[1(2)]3k dk d k d +-≤+-≤+-,∴(21)2(25)2k d k d -≥-⎧⎨-≥-⎩, 当1000k ≥时,不等式即22,2125d d k k ≥-≥---,∴221d k ≥--,12(1) (10002)k k k da a a k -+++=+=,∴1000k ≥时,200022(1)21k d k k k -=≥---,解得10001000k ≤+1999k ≤, ∴k 的最大值为1999,此时公差2000219981(1)199919981999k d k k -==-=--⨯. ……18分。
函数的奇偶性与周期性练习题
函数的奇偶性与周期性【2 】1.奇函数f(x)的界说域为R,若f(x+2)为偶函数,则f(1)=1,则f(8)+f(9)= ( )A. -2B.-1C. 0D. 12.在函数①|2|cos xy=,②|cos|xy= ,③)62cos(π+=xy,④)42tan(π-=xy中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③3.设函数)(),(xgxf的界说域为R,且)(xf是奇函数,)(xg是偶函数,则下列结论中准确的是A.)()(xgxf是偶函数 B. )(|)(|xgxf是奇函数C.|)(|)(xgxf是奇函数 D. |)()(|xgxf是奇函数4.已知()f x是界说在R上的奇函数,且是以2为周期的周期函数,若当(]0,1x∈时2()1f x x=-,则7()2f的值为A34-B34 C12-D125.下列函数为偶函数的是A.siny x= B.3y x= C.xy e=D.y=6.设()f x是周期为2的奇函数,当0≤x≤1时,()f x=2(1)x x-,则5()2f-=(A) -12 (B)14-(C)14 (D)127.下列函数中,既是偶函数又在()0,+∞单调递增的函数是(A)3y x= (B) 1y x=+(C)21y x=-+ (D) 2xy-=8.下列函数为偶函数的是()A.()1f x x=-B.()2f x x x=+C.()22x xf x-=-D.()22x xf x-=+9.偶函数y=f(x)的图像关于直线x=2对称,f(3)=3,则f(-1)=_______.10.函数)4)(()(-+=x a x x f 为偶函数,则实数a = .11.已知()f x 为奇函数,()()9,(2)3,(2)g x f x g f =+-==则.试卷答案1.D2.A :由cos y x =是偶函数可知cos 2cos2y x x ==,最小正周期为π,即①准确;y =|cos x |的最小正周期也是π ,即②也准确;cos 26y x π⎛⎫=+ ⎪⎝⎭最小正周期为π,即③准确;tan(2)4y x π=-的最小正周期为2T π=,即④不准确. 即准确答案为①②③,选A3.C 设()()()F x f x g x =,则()()()F x f x g x -=--,∵()f x 是奇函数,()g x 是偶函数,∴()()()()F x f x g x F x -=-=-,()F x 为奇函数,选C.4.B5.D选项 A .B 为奇函数,选项C 为非奇非偶函数,对于D有()()f x f x -===.6.A.本题重要考核了函数的奇偶性和周期性,难度较低.因为函数为2T =的奇函数,所以511()()()222f f f -=-=-,又因为01x ≤≤的函数解析式为()2(1)f x x x =-,求得51()22f -=-. 7.B本题重要考核了函数的单调性.奇偶性和函数图像的翻折变换,难度较小.选项A 为奇函数,C.D在),0(+∞均为减函数,故选B.8.D应用奇偶性的断定轨则:()()()()()()f x f x f x f x f x f x -=-⇒-=⇒为奇函数为偶函数.即可得到答案为D.考核最简略的奇偶性断定.9.3 3)1-(∴3)3()1(∴2)()1()1-()(=====∴f f f x x f f f x f 对称图像关于为偶函数 10.4=a因为函数)4)(()(-+=x a x x f 为偶函数,所以)()(x f x f =-,由a x a x x a x x f 4)4()4)(()(2--+=-+=,得a x a x a x a x 4)4(4)4(22--+=---,即4,04==-a a .11.6本题考核抽象函数求值问题,难度中等.由题知(2)(2)9g f -=-+,(2)(2)96f g -=--=-,(2)(2)f f -=-,所以(2)6f =.。
高考数学专题训练 函数的奇偶性与周期性
函数的奇偶性与周期性注意事项:1.考察知识内容:函数的奇偶性与周期性 2.题目难度:中等难度题型3.题型方面:10道选择,4道填空,4道解答。
4.参考答案:有详细答案5.资源类型:试题/课后练习/单元测试一、选择题1.下列函数中,在其定义域内既是奇函数又是减函数的是( )A 、x y sin =R x ∈B 、xy )21(=R x ∈C 、x y =R x ∈D 、3x y -=R x ∈2.设偶函数f(x)=log a |x +b|在(0,+∞)上单调递增,则f(b -2)与f(a +1)的大小关系为A .f(b -2)=f(a +1)B .f(b -2)>f(a +1)C .f(b -2)<f(a +1)D .不能确定3.定义在(-∞,+∞)上的奇函数f (x )和偶函数g (x )在区间(-∞,0]上的图像关于x轴对称,且f (x )为增函数,则下列各选项中能使不等式f (b )-f (-a )>g (a )-g (-b )成立的是( ) A .a>b >0B .a<b <0C .ab >0D .ab <04.如下四个函数,其中既是奇函数,又在(),0-∞是增函数的是A 、1y x =-+B 、3y x =-C 、1y x=-D 、3y =5.设函数()f x 与()g x 的定义域是{x R ∈}1x ≠±,函数()f x 是一个偶函数,()g x 是一个奇函数,且1()()1f xg x x -=-,则()f x 等于 A.112-x B.1222-x x C.122-x D.122-x x6.下列函数为偶函数的是 ( ) A 、y x = B 、2y x = C 、3y x = D 、2xy =7.已知定义在R 上的函数f (x )的图象关于)0,43(-成中心对称,且满足f (x ) =1)1(),23(=-+-f x f , f (0) = –2,则f (1) + f (2) +…+ f (2007)的值为() A .–2 B .–1 C .0 D .18.已知f (x )是定义在R 上的周期为2的偶函数,当时,f (x )=x 2,若直线与的图像恰好有两个公共点,则a =( )A .B . k,∈ZC .D .9.已知以4T =为周期的函数21,(1,1]()12,(1,3]x x f x x x ⎧-∈-⎪=⎨--∈⎪⎩,其中0m >。
(聚焦典型)2014届高三数学一轮复习《函数的奇偶性与周期性》理 新人教B版
A [第6讲 函数的奇偶性与周期性](时间:35分钟 分值:80分)基础热身 1.[2013·东北师大附中模拟] 奇函数f (x )在(0,+∞)上的解析式是f (x )=x (1-x ),则在(-∞,0)上f (x )的函数解析式是( )A .f (x )=-x (1-x )B .f (x )=x (1+x )C .f (x )=-x (1+x )D .f (x )=x (x -1)2.函数f (x )=a 2x -1ax (a >0,a ≠1)的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称3.[2013·哈尔滨师大附中月考] 设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( )A .-3B .-1C .1D .34.[2013·上海卷] 已知y =f (x )是奇函数,若g (x )=f (x )+2且g (1)=1,则g (-1)=________.能力提升5.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=x ,则f ⎝ ⎛⎭⎪⎫-134=( ) A.32 B .-32 C.12 D .-126.[2013·长春外国语学校月考] 已知函数f (x )是定义在R 上的奇函数,且f (x +2)=-f (x ),若f (1)=1,则f (3)-f (4)=( )A .-1B .1C .-2D .27.[2013·保定摸底] 若函数f (x )=|x -2|+a 4-x2的图象关于原点对称,则f a2=( ) A.33 B .-33C .1D .-1 8.已知定义在R 上的奇函数f (x )是一个减函数,且x 1+x 2<0,x 2+x 3<0,x 3+x 1<0,则f (x 1)+f (x 2)+f (x 3)的值( )A .大于0B .小于0C .等于0D .以上都有可能 9.[2013·银川一中月考] 已知f (x )是定义在R 上的函数,且满足f (x +1)+f (x )=3,当x ∈[0,1]时,f (x )=2-x ,则f (-2 005.5)=________.10.[2013·青岛二中月考] 已知函数f (x )=x 2-m 是定义在区间[-3-m ,m 2-m ]上的奇函数,则f (m )=________.11.[2013·南京三模] 若函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2+ax ,x <0是奇函数,则满足f (x )>a 的x的取值范围是________.12.(13分)[2013·衡水中学一调] 已知函数f (x )=x m-2x 且f (4)=72.(1)求m 的值;(2)判定f (x )的奇偶性;(3)判断f (x )在(0,+∞)上的单调性,并给予证明.难点突破13.(12分)已知函数f (x )=ax 2+1bx +c(a ,b ,c ∈Z )是奇函数,又f (1)=2,f (2)<3,求a ,b ,c 的值.B [第6讲 函数的奇偶性与周期性](时间:35分钟 分值:80分)基础热身1.[2013·佛山质检] 下列函数中既是奇函数,又在区间(-1,1)上是增函数的为( )A .y =|x |B .y =sin xC .y =e x +e -xD .y =-x 32.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A .-13 B.13 C.12 D .-123.已知f (x )=⎩⎪⎨⎪⎧x 2-x +1(x >0),-x 2-x -1(x <0),则f (x )为( )A .奇函数B .偶函数C .非奇非偶函数D .不能确定奇偶性4.[2013·浙江卷] 设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝ ⎛⎭⎪⎫32=________.能力提升5.[2013·郑州模拟] 设函数f (x )=⎩⎪⎨⎪⎧2x,x <0,0,x =0,g (x ),x >0,且f (x )为奇函数,则g (3)=( )A .8 B.18 C .-8 D .-186.已知y =f (x )是定义在R 上的偶函数,且f (x )在(0,+∞)上是增函数,如果x 1<0,x 2>0,且|x 1|<|x 2|,则有( )A .f (-x 1)+f (-x 2)>0B .f (x 1)+f (x 2)<0C .f (-x 1)-f (-x 2)>0D .f (x 1)-f (x 2)<07.已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2 012)+f (2 011)的值为( )A .1B .2C .-2D .-18.[2013·忻州一中月考] 命题p :∀x ∈R ,使得3x>x ;命题q :若函数y =f (x -1)为奇函数,则函数y =f (x )的图象关于点(1,0)成中心对称.以下说法正确的是( ) A .p ∨q 真 B .p ∧q 真 C .綈p 真 D .綈q 假9.[2013·山东师大附中期中] 函数f (x )是定义在R 上的偶函数,且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (2 013)=________. 10.[2013·枣庄二模] 已知定义在R 上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x +32=-f (x ),且函数y =f ⎝ ⎛⎭⎪⎫x -34为奇函数,给出三个结论:①f (x )是周期函数;②f (x )的图象关于点⎝ ⎛⎭⎪⎫-34,0对称;③f (x )是偶函数.其中正确结论的个数为________.11.设定义在[-2,2]上的奇函数f (x )在[0,2]上单调递减,若f (3-m )≤f (2m 2),则实数m 的取值范围是________.12.(13分)[2013·吉林一模] 已知函数f (x )=lg 1+x1-x.(1)求证:对于f (x )的定义域内的任意两个实数a ,b ,都有f (a )+f (b )=f ⎝ ⎛⎭⎪⎫a +b 1+ab ;(2)判断f (x )的奇偶性,并予以证明.难点突破 13.(12分)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围.课时作业(六)A【基础热身】1.B [解析] 当x ∈(-∞,0)时,-x ∈(0,+∞),由于函数f (x )是奇函数,故f (x )=-f (-x )=x (1+x ).2.A [解析] 因为f (-x )=a -x -1a-x =-(a x -a -x)=-f (x ),所以f (x )是奇函数,其图象关于原点对称.故选A.3.A [解析] 依题意当x >0时,f (x )=-f (-x )=-(2x 2+x ),所以f (1)=-3.故选A.4.3 [解析] 考查函数的奇偶性和转化思想,解此题的关键是利用y =f (x )为奇函数. 已知函数y =f (x )为奇函数,由已知得g (1)=f (1)+2=1, ∴f (1)=-1,则f (-1)=-f (1)=1,所以g (-1)=f (-1)+2=1+2=3. 【能力提升】5.A [解析] 依题意f -134=f -54=f 34=32.故选A.6.A [解析] 由f (x +2)=-f (x )得f (x +4)=-f (x +2)=f (x ),根据f (x )为R 上的奇函数,得f (0)=0,所以f (3)=f (-1)=-f (1)=-1,f (4)=f (0)=0,所以f (3)-f (4)=-1.故选A.7.A [解析] 函数f (x )定义域为{x |-2<x <2},依题意函数f (x )为奇函数,所以f (0)=0,得a =-2,所以f a 2=f (-1)=|-1-2|-24-1=33.故选A.8.A [解析] 由x 1+x 2<0,得x 1<-x 2.又f (x )为减函数,所以f (x 1)>f (-x 2),又f (x )为R 上的奇函数,所以f (x 1)>-f (x 2). 所以f (x 1)+f (x 2)>0.同理f (x 2)+f (x 3)>0,f (x 1)+f (x 3)>0, 所以f (x 1)+f (x 2)+f (x 3)>0.故选A. 9.1.5 [解析] 由f (x +1)+f (x )=3得f (x )+f (x -1)=3,两式相减得f (x +1)=f (x -1),所以f (x +2)=f (x ),所以函数f (x )是周期为2的周期函数,所以f (-2 005.5)=f (-1.5)=f (-2+0.5)=f (0.5)=1.5.10.-1 [解析] 由已知必有m 2-m =3+m ,即m 2-2m -3=0,∴m =3或m =-1.当m =3时,函数f (x )=x -1,x ∈[-6,6],∴f (x )在x =0处无意义,故舍去;当m =-1时,函数f (x )=x 3,此时x ∈[-2,2],∴f (m )=f (-1)=(-1)3=-1.11.(-1-3,+∞) [解析] 由函数f (x )为奇函数,所以当x <0时,-x >0,f (-x )=(-x )2-2(-x )=x 2+2x =-f (x )=x 2-ax ,所以a =-2.当x ≥0时,f (x )>a 即x 2-2x >-2恒有x 2-2x +2>0;当x <0时,f (x )>a 即-x 2-2x >-2⇒x 2+2x -2<0,解得-1-3<x <0.综上,满足f (x )>a 的x 的取值范围是(-1-3,+∞).12.解:(1)因为f (4)=72,所以4m-24=72,所以m =1.(2)因为f (x )的定义域为{x |x ≠0},又f (-x )=-x -2-x =-x -2x=-f (x ),所以f (x )是奇函数.(3)设x 1>x 2>0,则f (x 1)-f (x 2)=x 1-2x 1-x 2-2x 2=(x 1-x 2)1+2x 1x 2,因为x 1>x 2>0,所以x 1-x 2>0,1+2x 1x 2>0,所以f (x 1)>f (x 2),所以f (x )在(0,+∞)上为单调递增函数.(或用求导数的方法) 【难点突破】13.解:由f (x )是奇函数,知f (-x )=-f (x ),从而a (-x )2+1b (-x )+c =-ax 2+1bx +c,即-bx +c =-(bx +c ),c =-c ,∴c =0.又由f (1)=2,知a ·12+1b ·1+c =2,得a +1=2b ①,而由f (2)<3,知a ·22+1b ·2+c <3,得4a +12b<3②,由①②可解得-1<a <2.又a ∈Z ,∴a =0或a =1.若a =0,则b =12∉Z ,应舍去;若a =1,则b =1∈Z .∴a =b =1,c =0.课时作业(六)B【基础热身】1.B [解析] 由题中选项可知,y =|x |,y =e x +e -x为偶函数,排除A ,C ;而y =-x 3在R 上递减,故选B.2.B [解析] 因为函数f (x )=ax 2+bx 在[a -1,2a ]上为偶函数,所以b =0,且a -1+2a =0,即b =0,a =13.所以a +b =13.3.A [解析] 若x <0,则-x >0,所以f (-x )=(-x )2-(-x )+1=x 2+x +1=-f (x ).若x >0,则-x <0,所以f (-x )=-(-x )2-(-x )-1=-x 2+x -1=-f (x ).所以f (x )为奇函数.4.32[解析] 函数f (x )是定义在R 上的周期为2的偶函数,且当x ∈[0,1]时,f (x )=x +1,那么f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-32=f ⎝ ⎛⎭⎪⎫2-32=f ⎝ ⎛⎭⎪⎫12=32.【能力提升】5.D [解析] 因为f (x )为奇函数,所以x >0时,f (x )=-f (-x )=-2-x,即g (x )=-2-x ,所以g (3)=-2-3=-18.故选D.6.D [解析] 因为x 1<0,x 2>0,|x 1|<|x 2|,所以0<-x 1<x 2.又f (x )是(0,+∞)上的增函数,所以f (-x 1)<f (x 2).又f (x )为定义在R 上的偶函数,所以f (x 1)<f (x 2),所以f (x 1)-f (x 2)<0.选D.7.A [解析] 由已知f (x )是偶函数且是周期为2的周期函数,则f (-2 012)=f (2 012)=f (0)=log 21=0,f (2 011)=f (1)=log 22=1,所以f (-2 012)+f (2 011)=0+1=1,故选择A.8.A [解析] 命题p 是真命题.对于命题q ,函数y =f (x -1)为奇函数,将其图象向左平移1个单位,得到函数y =f (x )的图象,该图象的对称中心为(-1,0),而得不到对称中心为(1,0),所以命题q 为假命题,所以p ∨q 是真命题.故选A.9.-13 [解析] 因为f (x +2)=-1f (x ),所以f (x +4)=f (x ),即函数f (x )的周期是4,f (2 013)=f (1)=-1f (3)=-13.10.A [解析] 由f ⎝ ⎛⎭⎪⎫x +32=-f (x ),得f (x +3)=-f ⎝ ⎛⎭⎪⎫x +32=f (x ),可得3是函数f (x )的一个周期,故结论①正确;由于函数y =f ⎝ ⎛⎭⎪⎫x -34为奇函数,其图象关于坐标原点对称,把这个函数图象向左平移34个单位即得函数y =f (x )的图象,此时坐标原点移到点⎝ ⎛⎭⎪⎫-34,0,故f (x )的图象关于点⎝ ⎛⎭⎪⎫-34,0对称,结论②正确;由于函数y =f ⎝ ⎛⎭⎪⎫x -34为奇函数,故-f ⎝ ⎛⎭⎪⎫x -34=f ⎝ ⎛⎭⎪⎫-x -34,以x +34代换x 得-f (x )=f ⎝ ⎛⎭⎪⎫-x -32,又f ⎝ ⎛⎭⎪⎫x +32=-f (x ),所以f ⎝ ⎛⎭⎪⎫x +32=f ⎝⎛⎭⎪⎫-x -32,以x -32代换x 得f (x )=f (-x ),故f (x )是偶函数,结论③正确. 11.{1} [解析] 因为f (x )是定义在[-2,2]上的奇函数,且在[0,2]上单调递减,所以f (x )在[-2,2]上单调递减,所以f (3-m )≤f (2m 2)等价于⎩⎪⎨⎪⎧-2≤3-m ≤2,-2≤2m 2≤2,3-m ≥2m 2⇔⎩⎪⎨⎪⎧1≤m ≤5,-1≤m ≤1,-32≤m ≤1,即m =1,所以m 的取值范围是{1}. 12.解:函数的定义域为{x |-1<x <1}=(-1,1).(1)证明:∀a ,b ∈(-1,1),f (a )+f (b )=lg 1+a 1-a +lg 1+b 1-b =lg (1+a )(1+b )(1-a )(1-b ),f a +b 1+ab =lg 1+a +b 1+ab 1-a +b 1+ab=lg 1+ab +a +b 1+ab -a -b =lg (1+a )(1+b )(1-a )(1-b ), 所以f (a )+f (b )=f a +b1+ab.(2)∀x ∈(-1,1),f (-x )+f (x )=lg 1-x 1+x +lg 1+x 1-x =lg (1-x )(1+x )(1+x )(1-x )=lg1=0,即f (-x )=-f (x ),所以f (x )是奇函数. 【难点突破】13.解:(1)因为对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2), 所以令x 1=x 2=1,得f (1)=2f (1),所以f (1)=0. (2)令x 1=x 2=-1,有f (1)=f (-1)+f (-1),所以f (-1)=12f (1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ), 所以f (-x )=f (x ),所以f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2,f (16×4)=f (16)+f (4)=3, 又f (3x +1)+f (2x -6)≤3,即f ((3x +1)(2x -6))≤f (64).(*) 方法一:因为f (x )为偶函数,所以f (|(3x +1)(2x -6)|)≤f (64). 又f (x )在(0,+∞)上是增函数, 所以0<|(3x +1)(2x -6)|≤64.解上式,得3<x ≤5或-73≤x <-13或-13<x <3.所以x 的取值范围为x ⎪⎪⎪-73≤x <-13,或-13<x <3,或3<x ≤5.方法二:因为f (x )在(0,+∞)上是增函数,所以(*)等价于不等式组 ⎩⎪⎨⎪⎧(3x +1)(2x -6)>0,(3x +1)(2x -6)≤64,或⎩⎪⎨⎪⎧(3x +1)(2x -6)<0,-(3x +1)(2x -6)≤64, ⎩⎪⎨⎪⎧x >3或x <-13,-73≤x ≤5或⎩⎪⎨⎪⎧-13<x <3,x ∈R .所以3<x ≤5或-73≤x <-13或-13<x <3.所以x 的取值范围为x 错误!-错误!≤x <-错误!,或-错误!<x <3,或3<x ≤5.。
函数的奇偶性与周期性试题(答案)
函数的奇偶性与周期性一、选择题1.(2015·四川绵阳诊断性考试)下列函数中定义域为R ,且是奇函数的是( )A .f(x)=x2+xB .f(x)=tan xC .f(x)=x +sin xD .f(x)=lg 1-x1+x2.(2014·新课标全国卷Ⅰ)设函数f(x),g(x)的定义域都为R ,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( )A .f(x)g(x)是偶函数B .|f(x)|g(x)是奇函数C .f(x)|g(x)|是奇函数D .|f(x)g(x)|是奇函数3.(2015·长春调研)已知函数f(x)=,若f(a)=,则f(-a)=( )x2+x +1x2+123A. B .- C. D .-232343434.已知f(x)在R 上是奇函数,且满足f(x +4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)等于( )A .-2B .2C .-98D .985.函数f(x)是周期为4的偶函数,当x∈[0,2]时,f(x)=x -1,则不等式xf(x)>0在[-1,3]上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)6.设奇函数f(x)的定义域为R ,最小正周期T =3,若f(1)≥1,f(2)=,则a 2a -3a +1的取值范围是( )A .a<-1或a≥B .a<-1C .-1<a≤D .a≤232323二、填空题7.(2014·湖南高考)若f(x)=ln(e3x +1)+ax 是偶函数,则a =________.8.(2015·广州市调研)已知f(x)是奇函数,g(x)=f(x)+4,g(1)=2,则f(-1)的值是________.9.(2015·嘉兴模拟)函数y =(x -2)|x|在[a,2]上的最小值为-1,则实数a 的取值范围为________.10.(文科)设函数f(x)是定义在R 上的偶函数,且对任意的x∈R 恒有f(x +1)=f(x -1),已知当x∈[0,1]时,f(x)=1-x ,则(12)①2是函数f(x)的周期;②函数f(x)在(1,2)上递减,在(2,3)上递增;③函数f(x)的最大值是1,最小值是0;④当x∈(3,4)时,f(x)=x -3.(12)其中所有正确命题的序号是________.10.(理科)(2015·丽水模拟)已知定义在R 上的奇函数f(x)满足f(x -4)=-f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m >0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=________.三、解答题11.已知函数f(x)是定义在R 上的奇函数,且它的图象关于直线x =1对称.(1)求证:f(x)是周期为4的周期函数;(2)若f(x)=(0<x≤1),求x∈[-5,-4]时,函数f(x)的解析式.x 12.已知函数f(x)=Error!是奇函数.(1)求实数m 的值;(2)若函数f(x)在区间[-1,a -2]上单调递增,求实数a 的取值范围.参考答案一、选择题1.解析:函数f(x)=x2+x 不是奇函数;函数f(x)=tan x 的定义域不是R ;函数f(x)=lg 的定义域是(-1,1).故选C.1-x1+x 答案:C2.解析:因为f(x)是奇函数,g(x)是偶函数,所以有f(-x)=-f(x),g(-x)=g(x),于是f(-x)·g(-x)=-f(x)g(x),即f(x)g(x)为奇函数,A 错;|f(-x)|g(-x)=|f(x)|g(x),即|f(x)|g(x)为偶函数,B 错;f(-x)|g(-x)|=-f(x)|g(x)|,即f(x)|g(x)|为奇函数,C 正确;|f(-x)g(-x)|=|f(x)g(x)|,即f(x)g(x)为偶函数,所以D 也错.答案:C3.解析:根据题意,f(x)==1+,而h(x)=是奇函数,故x2+x +1x2+1x x2+1xx2+1f(-a)=1+h(-a)=1-h(a)=2-[1+h(a)]=2-f(a)=2-=,故选C.2343答案:C4.解析:∵f(x+4)=f(x),∴f(x)是周期为4的函数,∴f(7)=f(2×4-1)=f(-1),又∵f(x)在R 上是奇函数,∴f(-x)=-f(x),∴f(-1)=-f(1),而当x∈(0,2)时,f(x)=2x2,∴f(1)=2×12=2,∴f(7)=f(-1)=-f(1)=-2,故选A.答案:A5.解析:f(x)的图象如图.当x∈(-1,0)时,由xf(x)>0得x∈(-1,0);当x∈(0,1)时,由xf(x)<0得x∈∅;当x∈(1,3)时,由xf(x)>0得x∈(1,3).故x∈(-1,0)∪(1,3).答案:C6.解析:函数f(x)为奇函数,则f(1)=-f(-1).由f(1)=-f(-1)≥1,得f(-1)≤-1;函数的最小正周期T =3,则f(-1)=f(2),由≤-1,解得-1<a≤.2a -3a +123答案:C 二、填空题7.解析:由偶函数的定义可得f(-x)=f(x),即ln(e -3x +1)-ax =ln(e3x +1)+ax ,∴2ax=-ln e3x =-3x ,∴a=-.32答案:-328.解析:∵g(x)=f(x)+4,∴f(x)=g(x)-4,又f(x)是奇函数,∴f(-1)=-f(1)=-g(1)+4=2.答案:29.解析:y =(x -2)|x|=Error!函数的图象如图所示,当x<0时,由-x2+2x =-1,得x =1-.2借助图形可知1-≤a≤1.2答案:[1-,1]210.解析:由已知条件:f(x +2)=f(x),则y =f(x)是以2为周期的周期函数,①正确;当-1≤x≤0时0≤-x≤1,f(x)=f(-x)=1+x ,(12)函数y =f(x)的图象如图所示:当3<x<4时,-1<x -4<0,f(x)=f(x -4)=x -3,因此②④正确.③不正确.(12)答案:①②④10.解析:∵f(x)为奇函数并且f(x -4)=-f(x).∴f(x-4)=-f(4-x)=-f(x),即f(4-x)=f(x),且f(x -8)=-f(x -4)=f(x),即y =f(x)的图象关于x =2对称,并且是周期为8的周期函数.∵f(x)在[0,2]上是增函数,∴f(x)在[-2,2]上是增函数,在[2,6]上为减函数,据此可画出y =f(x)的图象,其图象也关于x =-6对称,∴x1+x2=-12,x3+x4=4,∴x1+x2+x3+x4=-8.答案:-8三、解答题11.解:(1)证明:由函数f(x)的图象关于直线x =1对称,有f(x +1)=f(1-x),即有f(-x)=f(x +2).又函数f(x)是定义在R 上的奇函数,故有f(-x)=-f(x).故f(x +2)=-f(x).从而f(x +4)=-f(x +2)=f(x),即f(x)是周期为4的周期函数.(2)解:由函数f(x)是定义在R 上的奇函数,有f(0)=0.x∈[-1,0)时,-x∈(0,1],f(x)=-f(-x)=-.-x 故x∈[-1,0]时,f(x)=-.-x x∈[-5,-4]时,x +4∈[-1,0],-x-4f(x)=f(x+4)=-.-x-4从而,x∈[-5,-4]时,函数f(x)=-. 12.解:(1)设x<0,则-x>0,所以f(-x)=-(-x)2+2(-x)=-x2-2x.又f(x)为奇函数,所以f(-x)=-f(x),于是x<0时,f(x)=x2+2x=x2+mx,所以m=2.(2)由(1)知f(x)在[-1,1]上是增函数,要使f(x)在[-1,a-2]上单调递增.结合f(x)的图象知Error!所以1<a≤3,故实数a的取值范围是(1,3].。
高考数学每日一练(3)-人教版高三全册数学试题
高三数学每日一练(29)——奇偶性(2)1.下列函数中既是奇函数又存在极值的是( )A .3x y = B .)ln(x y -= C .xxe y = D .xx y 2+= 2.已知函数)(x f 为奇函数,且当0>x 时,xx x f 1)(2+=,则=-)1(f ( ) A .-2 B .0 C .1 D .23.(2014·某某理,3)已知f (x )、g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( )A .-3B .-1C .1D .34.已知函数f (x )是R 上的偶函数,g (x )是R 上的奇函数,且g (x )=f (x -1),若g (1)=2,则f (2014)的值为( )A .2B .0C .-2D .±2 5.已知函数()1log 1a mxf x x -=-是奇函数()01a a <≠且 (1)求m 的值(2)判断()f x 在区间()1,+∞上的单调性并加以证明(3)当1,a >(x ∈时,()f x 的值域是()1,+∞,求a 的值高三数学每日一练(30)——奇偶性(3)1.(2014·某某某某灵宝实验高中月考)f (x )=tan x +sin x +1,若f (b )=2,则f (-b )=( )A .0B .3C .-1D .-22.已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于 ( )A .4B .3C .2D .13.如果奇函数)(x f 在]7,3[上是增函数且最小值是5,那么)(x f 在]3,7[--上是( )A .增函数且最小值是5-B .增函数且最大值是5-C .减函数且最小值是5-D .减函数且最大值是5- 4.已知函数()sin 3f x x x π=+-, 则12340292015201520152015f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值为.5.已知函数()21ax f x bx c+=+是奇函数,,,a b c 为常数(1) 某某数c 的值;(2) 若,a b Z ∈,且()()12,23f f =<,求()f x 的解析式;(3) 对于(2)中的()f x ,若()2f x m x ≥-对()0,x ∈+∞恒成立,某某数m 的取值X 围.高三数学每日一练(31)——奇偶性(4)1.下列函数中,与函数,0,1,0x x e x y x e ⎧≥⎪=⎨⎛⎫<⎪ ⎪⎝⎭⎩的奇偶性相同,且在(),0-∞上单调性也相同的是( )A .1y x=-B .22y x =+C .33y x =- D .1log ey x =2.定义在R 上的偶函数()f x 满足:对任意的1212,[0,)()x x x x ∈+∞≠,有2121()()0f x f x x x -<-.则( )A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-3.(2015某某市3月质检)已知函数(1)f x -是定义在R 上的奇函数,且在[0,)+∞上是增函数,则函数()f x 的图象可能是( )4.(2014·华师附中检测)已知函数f (x )是定义域为R 的偶函数,且f (x +1)=-f (x ),若f (x )在[-1,0]上是减函数,那么f (x )在[1,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数5.已知函数y =f (x )的定义域为R .且对任意a ,b ∈R ,都有f (a +b )=f (a )+f (b ).且当x >0时,f (x )<0恒成立,f (3)=-3.(1)证明:函数y =f (x )是R 上的减函数; (2)证明:函数y =f (x )是奇函数;(3)试求函数y =f (x )在[m ,n ](m ,n N ∈+)上的值域.高三数学每日一练(32)——奇偶性(5)1.(2014·某某某某专题练习)若函数f (x ),g (x )分别是R 上的奇函数、偶函数,且满足f (x )-g (x )=e x ,则有( )A .f (2)<f (3)<g (0)B .g (0)<f (3)<f (2)C .f (2)<g (0)<f (3)D .g (0)<f (2)<f (3) 2.(2014·某某和平区期末)已知函数y =f (x )是偶函数,y =f (x -2)在[0,2]上单调递减,设a =f (0),b =f (2),c =f (-1),则( )A .a <c <bB .a <b <cC .b <c <aD .c <b <a3.(2014·某某统一检测)已知f (x )是定义在R 上的奇函数,且在[0,+∞)上单调递增,若f (lg x )<0,则x 的取值X 围是( )A .(0,1)B .(1,10)C .(1,+∞) D.(10,+∞)4.(2014·某某某某一中调研)若f (x )=3x +sin x ,则满足不等式f (2m -1)+f (3-m )>0的m 的取值X 围为________.5.已知定义在(1,1)-上的函数2()1ax b f x x +=+为奇函数,且12()25f =. (1)求()f x 的解析式;(2)判断()f x 的单调性,并解关于t 的不等式(1)()0f t f t -+<.高三数学每日一练(33)——奇偶性(6)1.如果函数xx f )21()(=(-+∞<<∞x ),那么函数)(x f 是 ( )A. 奇函数,且在)0,(-∞上是增函数B. 偶函数,且在)0,(-∞上是减函数C. 奇函数,且在),0(+∞上是增函数D. 偶函数,且在),0(+∞上是减函数 2.偶函数)(x f 在区间],0[a (0>a )上是单调函数,且0)()0(<⋅a f f ,则方程0)(=x f 在区间],[a a -内根的个数是( )A .1B .2C .3D .03.定义两种运算:m n ⊕=,a b a b ⊗=-,则函数2()(2)2xf x x ⊕=⊗-是( )A .奇函数B .偶函数C .奇函数且为偶函数D .非奇函数且非偶函数4.已知R 上的不间断函数()g x 满足:(1)当0x >时,'()0g x >恒成立;(2)对任意的x R ∈都有()()g x g x =-。
2015年高考理科数学创新演练:函数的奇偶性及周期性(含答案)
创新演练一、选择题1.已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是( )①y =f (|x |);②y =f (-x );③y =xf (x );④y =f (x )+x . A .①③ B .②③ C .①④D .②④D [由奇函数的定义验证可知②④正确.]2.(2014·考感统考)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=( )A .-12B .-14 C.14D.12A [由题意得f ⎝ ⎛⎭⎪⎫-52=-f ⎝ ⎛⎭⎪⎫52=-f ⎝ ⎛⎭⎪⎫52-2=-f ⎝ ⎛⎭⎪⎫12=-⎣⎢⎡⎦⎥⎤2×12×⎝ ⎛⎭⎪⎫1-12=-12.] 3.已知函数f (x )=x |x |-2x ,则下列结论正确的是( )A .f (x )是偶函数,递增区间是(0,+∞)B .f (x )是偶函数,递减区间是(-∞,1)C .f (x )是奇函数,递减区间是(-1,1)D .f (x )是奇函数,递增区间是(-∞,0)C [将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎨⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.]4.(2014·吉林模拟)已知函数f (x )=|x +a |-|x -a |(a ≠0),h (x )=⎩⎨⎧-x 2+x ,x >0,x 2+x ,x ≤0,则f (x ),h (x )的奇偶性依次为( )A .偶函数,奇函数B .奇函数,偶函数C .偶函数,偶函数D .奇函数,奇函数D [f (-x )=|-x +a |-|-x -a |=|x -a |-|x +a |=-f (x ),故f (x )为奇函数. 画出h (x )的图象可观察到它关于原点对称或当x >0时,-x <0, 则h (-x )=x 2-x =-(-x 2+x )=-h (x ), 当x <0时-x >0,则h (-x )=-x 2-x =-(x 2+x )=-h (x ). x =0时,h (0)=0,故h (x )为奇函数.]5.(2014·杭州月考)已知函数f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +m (m 为常数),则f (-1)的值为( )A .-3B .-1C .1D .3A [函数f (x )为定义在R 上的奇函数, 则f (0)=0,即f (0)=20+m =0,解得m =-1.则f (x )=2x +2x -1,f (1)=21+2×1-1=3,f (-1)=-f (1)=-3.] 6.若函数f (x )=x(2x +1)(x -a )为奇函数,则a =( )A.12B.23C.34 D .1A [∵f (x )=x(2x +1)(x -a )是奇函数,∴f (-1)=-f (1), ∴-1(-2+1)(-1-a )=-1(2+1)(1-a ),∴a +1=3(1-a ),解得a =12.]7.(2013·天津高考)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是( )A .[1,2] B.⎝ ⎛⎦⎥⎤0,12 C.⎣⎢⎡⎦⎥⎤12,2 D .(0,2]C [因为log 12a =-log 2a ,且f (x )是偶函数, 所以f (log 2a )+f (log 12a )=2f (log 2a )=2f (|log 2a |)≤2f (1),即f (|log 2a |)≤f (1),又函数在[0,+∞)上单调递增,所以0≤|log 2a |≤1, 即-1≤log 2a ≤1,解得12≤a ≤2.]8.(2014·淄博一模)设定义在R 上的奇函数y =f (x ),满足对任意t ∈R ,都有f (t )=f (1-t ),且x ∈⎣⎢⎡⎦⎥⎤0,12时,f (x )=-x 2,则f (3)+f ⎝ ⎛⎭⎪⎫-32的值等于( )A .-12 B .-13 C .-14D .-15C [由f (t )=f (1-t )得f (1+t )=f (-t )=-f (t ), 所以f (2+t )=-f (1+t )=f (t ),所以f (x )的周期为2.又f (1)=f (1-1)=f (0)=0, 所以f (3)+f ⎝ ⎛⎭⎪⎫-32=f (1)+f ⎝ ⎛⎭⎪⎫12=0-⎝ ⎛⎭⎪⎫122=-14.故选C.]二、填空题9.定义在[-2,2]上的奇函数f (x )在(0,2]上的图象如图所示,则不等式f (x )>x 的解集为________.解析 依题意,画出y =f (x )与y =x 的图象,如图所示,注意到y =f (x )的图象与直线y =x 的交点坐标是⎝ ⎛⎭⎪⎫23,23和⎝ ⎛⎭⎪⎫-23,-23,结合图象可知, f (x )>x 的解集为⎣⎢⎡⎭⎪⎫-2,-23∪⎝ ⎛⎭⎪⎫0,23.答案 ⎣⎢⎡⎭⎪⎫-2,-23∪⎝ ⎛⎭⎪⎫0,23 10.若偶函数y =f (x )为R 上的周期为6的周期函数,且满足f (x )=(x +1)(x -a )(-3≤x ≤3),则f (-6)等于________. 解析 ∵y =f (x )为偶函数, 且f (x )=(x +1)(x -a )(-3≤x ≤3), ∴f (x )=x 2+(1-a )x -a , ∴1-a =0.∴a =1.f (x )=(x +1)(x -1)(-3≤x ≤3). f (-6)=f (-6+6)=f (0)=-1. 答案 -1 三、解答题11.已知函数f (x )=x 2+ax(x ≠0,常数a ∈R ).(1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在[2,+∞)上的单调性.解析 (1)当a =0时,f (x )=x 2,f (-x )=f (x ),函数是偶函数. 当a ≠0时,f (x )=x 2+ax (x ≠0,常数a ∈R ), 取x =±1,得f (-1)+f (1)=2≠0;f (-1)-f (1)=-2a ≠0, 即f (-1)≠-f (1),f (-1)≠f (1). 故函数f (x )既不是奇函数也不是偶函数. (2)若f (1)=2,即1+a =2,解得a =1, 这时f (x )=x 2+1x .任取x 1,x 2∈[2,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫x 21+1x 1-⎝ ⎛⎭⎪⎫x 22+1x 2 =(x 1+x 2)(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫x 1+x 2-1x 1x 2.由于x 1≥2,x 2≥2,且x 1<x 2. 故x 1-x 2<0,x 1+x 2>1x 1x 2,所以f (x 1)<f (x 2),故f (x )在[2,+∞)上是单调递增函数.12.已知函数f (x )=⎩⎨⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解析 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数, 所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2. (2)要使f (x )在[-1,a -2]上单调递增, 结合f (x )的图象知⎩⎨⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].。
高中数学函数的奇偶性与周期性应用题解析
高中数学函数的奇偶性与周期性应用题解析在高中数学中,函数的奇偶性与周期性是重要的概念,对于解题具有很大的指导作用。
本文将通过具体的题目举例,分析奇偶性与周期性的应用,帮助高中学生更好地理解和运用这些概念。
一、奇偶函数的性质与应用奇函数和偶函数是函数的一种特殊性质,它们在数学中有着重要的应用。
首先,我们来看一个例子:例题1:已知函数$f(x)=x^3-2x$,求证$f(x)$是奇函数。
解析:要证明$f(x)$是奇函数,需要证明对于任意的$x$,有$f(-x)=-f(x)$成立。
我们将$f(-x)$代入并化简,得到$f(-x)=(-x)^3-2(-x)=-x^3+2x$。
然后,我们将$-f(x)$化简,得到$-f(x)=-(x^3-2x)=-x^3+2x$。
可以看出,$f(-x)$和$-f(x)$的结果是相等的,因此$f(x)$是奇函数。
这个例题中,我们通过代入$x$和$-x$,并对函数进行化简,证明了函数$f(x)$是奇函数。
奇函数的一个重要性质是,当自变量$x$取正值和负值时,函数值的符号相反。
在解题中,我们可以利用奇函数的性质进行简化计算,例如可以通过奇偶性关系得到一些特殊点的函数值。
二、周期函数的性质与应用周期函数是指函数在一定区间内满足$f(x+T)=f(x)$的函数,其中$T$为函数的周期。
周期函数在数学中有着广泛的应用。
接下来,我们来看一个例子:例题2:已知函数$f(x)=\sin(2x)$,求证$f(x)$是周期函数,并求出它的最小正周期。
解析:要证明$f(x)$是周期函数,需要证明对于任意的$x$,有$f(x+T)=f(x)$成立。
我们将$f(x+T)$代入并化简,得到$f(x+T)=\sin(2(x+T))=\sin(2x+2T)$。
然后,我们将$f(x)$化简,得到$f(x)=\sin(2x)$。
要使得$f(x+T)=f(x)$成立,必须满足$\sin(2x+2T)=\sin(2x)$。
5函数函数的奇偶性与周期性练习题答案
函数函数的奇偶性与周期性一、函数的奇偶性 知识点归纳1函数的奇偶性的定义:如果对于函数f(x)定义域内的任意一个x , 都有f(-x)=f(x), 那么函数f(x)就叫偶函数.如果对于函数f(x)定义域内的任意一个x ,都有f(-x)=-f(x),那么函数f(x)就叫奇函数. 2奇偶函数的性质:(1)定义域关于原点对称;(2)偶函数的图象关于y 轴对称,奇函数的图象关于原点对称;3()f x 为偶函数()(||)f x f x ⇔=;若奇函数()f x 的定义域包含0,则(0)0f =“f(x)为奇函数”是"f(0)=0"的非充分非必要条件;4判断函数的奇偶性的方法:(1)定义法:若函数的定义域不是关于原点的对称区间,则立即判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点的对称区间,再判断f(-x)= -f(x )或f(-x)=f(x)是否成立判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1()f x f x =±- (2)图像法:奇(偶)函数的充要条件是它的图像关于原点(或y 轴)对称. 5设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇 应用举例1、常见函数的奇偶性:奇函数:ax y =(a 为常数),x y sin =,x y tan =,k xky (=为常数) 偶函数:a y =(a 为常数),0=a 时既为奇函数又为偶函数2ax y =()0≠a ,c ax y +=2()0≠a ,ax y =(a 为常数),x y cos = 非奇非偶函数:)0(≠+=b b kx y ,)0(2≠++=b c bx ax y ,)0(≠+=c c ax y ,)0(≠+=c cx ky ,)1,0(≠>=a a a y x ,)1,0(log ≠>=a a x y a既奇又偶函数:0=y2、对奇偶性定义的理解例1 下面四个结论:①偶函数的图象一定与y 轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y 轴对称;④既是奇函数又是偶函数的函数一定是f(x)=0(x ∈R),其中正确命题的个数是( ) A .1 B .2 C .3 D .4分析:偶函数的图象关于y 轴对称,但不一定相交,因此③正确,①错误;奇函数的图象关于原点对称,但不一定经过原点,因此②不正确;若y=f(x)既是奇函数,又是偶函数,由定义可得f(x)=0,但不一定x ∈R ,故④错误,选A . 练习:1、(2007全国Ⅰ))(x f ,是定义在R 上的函数,,则“)(x f ,均为偶函数”是“)(x h 为偶函数”的BA.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件 解析:∵f (x )、g (x )均为偶函数,∴f (-x )=f (x ),g (-x )=g (x ).∴h (-x )=f (-x )+g (-x )=f (x )+g (x )=h (x ).∴h (x )为偶函数. 但若h (-x )=h (x ),即f (-x )+g (-x )=f (x )+g (x ), 不一定f (-x )=f (x ),g (-x )=g (x ), 例f (x )=x 2+x ,g (x )=-x . 2、(2007江苏)设f (x )=l g ()是奇函数,则使f (x )<0的x 的取值范围是AA.(-1,0)B.(0,1)C.(-∞,0)D.(-∞,0)∪(1,+∞) 解析:∵f (x )为奇函数,∴f (0)=0.解之,得a =-1. ∴f (x )=lg.令f (x )<0,则0<<1,∴x ∈(-1,0).3、已知函数解析式,判断或证明函数的奇偶性例2判断下列函数的奇偶性(1) f (x)=x 3+x (2) f (x)=3x 4+6x 2 +a (3) f (x)=3x+1 (4) f (x)=x 2 ,x ∈[- 4 , 4),(5)1sin +=x y 例3判断下列各函数的奇偶性:(1)()(f x x =-(2)22lg(1)()|2|2x f x x -=--;解:(1)由101xx+≥-,得定义域为[1,1)-,关于原点不对称,∴()f x 为非奇非偶函数 (2)由2210|2|20x x ⎧->⎪⎨--≠⎪⎩得定义域为(1,0)(0,1)- ,∴22lg(1)()(2)2x f x x -=---22lg(1)x x -=-,∵2222lg[1()]lg(1)()()x x f x x x----=-=--()f x = ∴()f x 为偶函数练习:1、判断函数 f ( x ) = 的奇偶性解:由题∴ 函数的定义域为 [-1 , 0 ) ∪ ( 0 , 1 ]此时 f ( x ) =故 f ( x ) 是奇函数4、抽象函数奇偶性的判定与证明例4(2007北京西城)已知函数()f x 对一切,x y R ∈,都有()()()f x y f x f y +=+,(1)求证:()f x 是奇函数;(2)若(3)f a -=,用a 表示(12)f解:(1)显然()f x 的定义域是R ,它关于原点对称.在()()()f x y f x f y +=+中,2|2|12-+-x x ⎩⎨⎧≠-+≥-02|2|012x x ⎩⎨⎧±≠+≤-+⇒220)1)(1(x x x ⎩⎨⎧-≠≠≤≤-⇒4011x x x 且2)2(12-+-x x x x 21-=x x x f ---=-2)(1)(又x x 21--== -f ( x )令y x =-,得(0)()()f f x f x =+-,令0x y ==,得(0)(0)(0)f f f =+,∴(0)0f =, ∴()()0f x f x +-=,即()()f x f x -=-, ∴()f x 是奇函数. (2)由(3)f a -=,()()()f x y f x f y +=+及()f x 是奇函数, 得(12)2(6)4(3)4(3)4f f f f a ===--=-. 例5.(2006年辽宁)设是上的任意函数,下列叙述正确的是(C )A.是奇函数 B.是奇函数 C.是偶函数 D.是偶函数解:据奇偶函数性质:易判定f (x )·f (-x )是偶函数,f (x )-f (-x )是奇函数 f (x )·|f (-x )|的奇偶取决于f (x )的性质,只有f (x )+f (-x )是偶函数正确。
新高考数学一轮复习考点知识专题讲解与练习 9 函数的奇偶性与周期性
新高考数学一轮复习考点知识专题讲解与练习考点知识总结9 函数的奇偶性与周期性高考概览 本考点是高考的必考知识点,常考题型为选择题、填空题,分值为5分,中等难度考纲研读 1.结合具体函数,了解函数奇偶性的含义2.会运用函数图象理解和研究函数的奇偶性 3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性一、基础小题1.定义在R 上的奇函数f (x )满足f (-x )=f (3+x ),f (2022)=2,则f (1)的值是( )A .-1B .-2C .1D .2答案 B解析 奇函数f (x )满足f (-x )=f (3+x )=-f (x ),-f (x +3)=f (x +6)=f (x ),则f (2022)=f (-1)=-f (1)=2,则f (1)=-2.故选B.2.设函数f (x )=⎩⎨⎧log 2(1-x )(x <0),g (x )+1(x >0),若f (x )是奇函数,则g (3)的值是( ) A .1 B .3 C .-3 D .-1答案 C解析 因为函数f (x )=⎩⎨⎧log 2(1-x )(x <0),g (x )+1(x >0),且f (x )是奇函数,所以f (-3)=-f (3),所以log 2(1+3)=-[g (3)+1],则g (3)=-3.故选C.3.已知f (x )不是常数函数,∀x ∈R 有f (8+x )=f (8-x )且f (4+x )=f (4-x ),则f (x )满足( )A .是奇函数不是偶函数B .是奇函数也是偶函数C .是偶函数不是奇函数D .既不是奇函数也不是偶函数答案 C解析 f (8+x )=f (8-x ),则f (x )的图象关于直线x =8对称,f (4+x )=f (4-x ),则f (x )的图象关于直线x =4对称,则f (x )的图象关于直线x =0对称,是偶函数,又f (x )不是常数函数,则f (x )不能恒等于0,不是奇函数.故选C.4.已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,则f (6)=( ) A .-2 B .-1 C .0 D .2答案 D解析 当x >0时,x +12>12,所以f ⎝ ⎛⎭⎪⎫x +12+12=f ⎝ ⎛⎭⎪⎫x +12-12,即f (x +1)=f (x ),所以f (6)=f (5)=f (4)=…=f (1)=-f (-1)=2.故选D.5.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( )A .e x -e -xB .12(e x +e -xC .e x +e -xD .12(e x -e -x )答案 D解析 因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x ,所以g (x )=12(e x-e -x ).故选D.6.已知偶函数f ⎝ ⎛⎭⎪⎫x +π2,当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f (x )=x 13+sin x ,设a =f (1),b =f (2),c =f (3),则( )A .a <b <cB .b <c <aC .c <b <aD .c <a <b答案 D解析 ∵当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,y =sin x 为增函数,y =x 13也为增函数,∴函数f (x )=x 13+sin x 在⎝ ⎛⎭⎪⎫-π2,π2上也为增函数.∵函数f ⎝ ⎛⎭⎪⎫x +π2为偶函数,∴f ⎝ ⎛⎭⎪⎫-x +π2=f ⎝ ⎛⎭⎪⎫x +π2,f (x )的图象关于直线x =π2对称,∴f (2)=f (π-2),f (3)=f (π-3),∵0<π-3<1<π-2<π2,∴f (π-3)<f (1)<f (π-2),即c <a <b .故选D.7.已知函数y =f (x )是定义在R 上的偶函数,且在(-∞,0]上是增函数,若不等式f (a )≥f (x )对任意x ∈[1,2]恒成立,则实数a 的取值范围是( )A .(-∞,1]B .[-1,1]C .(-∞,2]D .[-2,2]答案 B解析 因为函数f (x )为偶函数,且在(-∞,0]上是增函数,所以函数f (x )在[0,+∞)上是减函数,则不等式f (a )≥f (x )对任意x ∈[1,2]恒成立等价于f (a )≥f (x )max =f (1),所以|a |≤1,解得-1≤a ≤1,即实数a 的取值范围为[-1,1].故选B.8.定义在R 上的偶函数f (x )满足f (x )=f (x +2),当x ∈[3,4]时,f (x )=2x ,则下列不等式中正确的是( )A .f ⎝ ⎛⎭⎪⎫sin 12<f ⎝ ⎛⎭⎪⎫cos 12B .f ⎝ ⎛⎭⎪⎫sin π3>f ⎝ ⎛⎭⎪⎫cos π3 C .f (sin 1)<f (cos 1) D .f ⎝ ⎛⎭⎪⎫cos 32<f ⎝ ⎛⎭⎪⎫sin 32 答案 C解析 x ∈[3,4]时,f (x )=2x ,故偶函数f (x )在[3,4]上是增函数,T =2,∴偶函数f (x )在[-1,0]上是增函数,∴f (x )在[0,1]上是减函数.对于A ,0<sin 12<cos 12<1,∴f ⎝ ⎛⎭⎪⎫sin 12>f ⎝ ⎛⎭⎪⎫cos 12;对于B ,1>sin π3>cos π3>0,∴f ⎝ ⎛⎭⎪⎫sin π3<f ⎝ ⎛⎭⎪⎫cos π3;对于C ,1>sin 1>cos 1>0,∴f (sin 1)<f (cos 1);对于D ,0<cos 32<sin 32<1,∴f ⎝ ⎛⎭⎪⎫cos 32>f ⎝ ⎛⎭⎪⎫sin 32.故选C. 9.(多选)函数f (x )的定义域为R ,且f (x +1)与f (x +2)都为奇函数,则( )A .f (x )为奇函数B .f (x )为周期函数C .f (x +3)为奇函数D .f (x +4)为偶函数答案 ABC解析 ∵f (x +1)与f (x +2)都为奇函数,∴f (-x +1)=-f (x +1) ①,f (-x +2)=-f (x +2) ②,∴由①可得f [-(x +1)+1]=-f (x +1+1),即f (-x )=-f (x +2) ③,∴由②③得f (-x )=f (-x +2),∴f (x )的周期为2,∴f (x )=f (x +2)=-f (-x ),则f (x )为奇函数,∴f (x +1)=f (x +3),则f (x +3)为奇函数.故选ABC.10.(多选)定义在R 上的偶函数f (x )满足f (x +2)=-f (x ),且在[-2,0]上是增函数,下列关于f (x )的判断正确的是( )A.f(x)的图象关于点P(1,0)对称B.f(0)是函数f(x)的最大值C.f(x)在[2,3]上是减函数D.f(x0)=f(4k+x0),k∈Z答案ABD解析因为f(x)是定义在R上的偶函数,所以f(-x)=f(x),又f(x+2)=-f(x),所以f(x+2)=-f(-x),所以f(x)的图象关于点P(1,0)对称,所以A正确;由f(x+2)=-f(x)知,f(x+4)=-f(x+2)=f(x),所以f(x)是以4为周期的函数,所以f(x0)=f(4k+x0)(k∈Z),所以D正确;因为f(x)是以4为周期的函数,且在[-2,0]上是增函数,所以f(x)在[2,4]上也是增函数,因此C不正确;因为f(x)是定义在R上的偶函数,所以f(x)在[0,2]上是减函数,所以f(x)在[-2,2]上的最大值是f(0),又f(x)是以4为周期的函数,所以B正确.故选ABD.11.若f(x)=x ln (x+a+x2)为偶函数,则实数a=________.答案 1解析因为f(x)为偶函数,所以f(-x)-f(x)=0恒成立,所以-x ln (-x+a+x2)-x ln (x+a+x2)=0恒成立,所以x ln a=0恒成立,所以ln a=0,即实数a=1.12.已知偶函数f(x)和奇函数g(x)的定义域都是(-4,4),且在(-4,0]上的图象如图所示,则关于x的不等式f(x)·g(x)<0的解集是________.答案 (-4,-2)∪(0,2)解析 当x ∈(-4,0)时,f (x )·g (x )<0,又g (x )<0,则f (x )>0,所以-4<x <-2;当x =0时,g (x )=0,则f (x )·g (x )=0,不符合题意,舍去;当x ∈(0,4)时,f (x )·g (x )<0,又g (x )>0,则f (x )<0,所以0<x <2,所以解集为(-4,-2)∪(0,2).二、高考小题13.(2022·全国乙卷)设函数f (x )=1-x 1+x ,则下列函数中为奇函数的是( ) A .f (x -1)-1 B .f (x -1)+1C .f (x +1)-1D .f (x +1)+1答案 B解析 解法一:因为f (x )=1-x 1+x =-1+2x +1,其图象关于点(-1,-1)中心对称,将其图象向右平移1个单位长度,再向上平移1个单位长度后关于原点(0,0)中心对称,所以f (x -1)+1为奇函数.故选B.解法二:因为f (x )=1-x 1+x ,所以f (x -1)=1-(x -1)1+(x -1)=2-x x ,f (x +1)=1-(x +1)1+(x +1)=-x x +2.对于A ,F (x )=f (x -1)-1=2-x x -1=2-2x x ,定义域关于原点对称,但不满足F (x )=-F (-x );对于B ,G (x )=f (x -1)+1=2-x x +1=2x ,定义域关于原点对称,且满足G (x )=-G (-x );对于C ,f (x +1)-1=-x x +2-1=-2x +2x +2,定义域不关于原点对称;对于D ,f (x +1)+1=-x x +2+1=2x +2,定义域不关于原点对称.故选B. 14.(2022·新高考Ⅱ卷)已知函数f (x )的定义域为R ,f (x +2)为偶函数,f (2x +1)为奇函数,则( )A .f ⎝ ⎛⎭⎪⎫-12=0 B .f (-1)=0 C .f (2)=0 D .f (4)=0答案 B解析 因为函数f (x +2)为偶函数,则f (2+x )=f (2-x ),可得f (x +3)=f (1-x ),因为函数f (2x +1)为奇函数,则f (1-2x )=-f (2x +1),所以f (1-x )=-f (x +1),所以f (x +3)=-f (x +1),所以f (x +1)=-f (x -1),所以f (x +3)=f (x -1),即f (x )=f (x +4),故函数f (x )是以4为周期的周期函数,因为f (2x +1)为奇函数,所以f (1)=0,故f (-1)=-f (1)=0,其他三个选项未知.故选B.15.(2022·全国甲卷)设函数f (x )的定义域为R ,f (x +1)为奇函数,f (x +2)为偶函数,当x ∈[1,2]时,f (x )=ax 2+b .若f (0)+f (3)=6,则f ⎝ ⎛⎭⎪⎫92=( ) A .-94B .-32 C .74D .52答案 D解析 因为f (x +1)为奇函数,所以f (-x +1)=-f (x +1),所以f (1)=0,即a +b =0,所以b =-a ,所以f (0)=f (-1+1)=-f (1+1)=-f (2)=-4a -b =-3a ,又f (x +2)为偶函数,所以f (x +2)=f (-x +2),所以f (3)=f (1+2)=f (-1+2)=f (1)=0,由f (0)+f (3)=6,得a =-2.所以f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫2+52=f ⎝ ⎛⎭⎪⎫2-52=f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫-32+1=-f ⎝ ⎛⎭⎪⎫32+1=-f ⎝ ⎛⎭⎪⎫12+2=-f ⎝ ⎛⎭⎪⎫-12+2=-f ⎝ ⎛⎭⎪⎫32=-94a -b =-54a =52.故选D. 16.(2022·新高考Ⅰ卷)已知函数f (x )=x 3(a ·2x -2-x )是偶函数,则a =________. 答案 1解析 设g (x )=a ·2x -2-x ,h (x )=x 3.因为函数f (x )=x 3(a ·2x -2-x )是R 上的偶函数,函数h (x )=x 3是R 上的奇函数,所以函数g (x )=a ·2x -2-x 是R 上的奇函数,故g (0)=a ·20-2-0=a -1=0,因此a =1.17.(2022·江苏高考)已知y =f (x )是奇函数,当x ≥0时,f (x )=x 23,则f (-8)的值是______.答案 -4解析 f (8)=823=4,因为f (x )为奇函数,所以f (-8)=-f (8)=-4.三、模拟小题18.(2022·湖北新高考联考协作体高三上新起点考试)已知定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=a 2x -a -2x +1(a >0,a ≠1),则f (1)=( )A .-1B .0C .1D .2答案 C解析 由已知可得f (1)+g (1)=a 2-a -2+1,f (-1)+g (-1)=a -2-a 2+1,因为f (x )为偶函数,g (x )为奇函数,所以f (1)-g (1)=a -2-a 2+1,联立⎩⎨⎧f (1)+g (1)=a 2-a -2+1,f (1)-g (1)=a -2-a 2+1,解得f (1)=1.故选C. 19.(2022·河北衡水深州长江中学高三上开学考试)已知函数y =f (x +1)是定义在R 上的偶函数,且f (x )在(-∞,1)上单调递减,f (2)=0,则f (x )f (x +1)<0的解集为( )A.(-2,-1)∪(0,1) B .(-1,0)∪(1,2)C .(-1,2)D .(-2,1)答案 B解析因为函数y =f (x +1)是偶函数,所以f (x )的图象关于直线x =1对称.由f (x )在(-∞,1)上单调递减,得f (x )在(1,+∞)上单调递增,且f (0)=f (2)=0,所以当x <0或x >2时,f (x )>0,当0<x <2时,f (x )<0.函数f (x )的图象如图所示,f (x )f (x +1)<0等价于⎩⎨⎧f (x )>0,f (x +1)<0或⎩⎨⎧f (x )<0,f (x +1)>0,即⎩⎨⎧x <0或x >2,0<x +1<2或⎩⎨⎧0<x <2,x +1<0或x +1>2,解得-1<x <0或1<x <2.故选B.20.(2022·陕西咸阳一模)设f (x )为R 上的奇函数,满足f (2-x )=f (2+x ),且当0≤x ≤2时,f (x )=x e x ,则f (1)+f (2)+f (3)+…+f (100)=( )A .2e +2e 2B .50e +50e 2C .100e +100e 2D .-2e -2e 2答案 A解析 由f (2-x )=f (2+x )得f (x )的图象关于直线x =2对称,又f (x )为R 上的奇函数,∴f (x )是以8为周期的周期函数.∵f (1)+f (2)+…+f (8)=f (1)+f (2)+f (3)+f (4)+f (-1)+f (-2)+f (-3)+f (-4)=0,且f (1)+f (2)+f (3)+f (4)=2e +2e 2,∴f (1)+f (2)+…+f (100)=12×[f (1)+f (2)+…+f (8)]+[f (1)+f (2)+f (3)+f (4)]=2e +2e 2.故选A.21.(多选)(2022·福建省永安市第三中学高三月考)已知函数f (x )对任意x ∈R 都有f (x +4)-f (x )=2f (2),若y =f (x -1)的图象关于直线x =1对称,且对任意的x 1,x 2∈(0,2),x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0,则下列结论正确的是( ) A .f (x )是偶函数 B .f (x )的周期T =4C .f (2022)=0D .f (x )在(-4,-2)上单调递减答案 ABC解析 由y =f (x -1)的图象关于直线x =1对称,则f (1+x -1)=f (1-x -1),即f (-x )=f (x ),故f (x )是偶函数,A 正确;由f (x +4)-f (x )=2f (2),令x =-2,可得f (2)=0,则f (x +4)=f (x ),则f (x )的周期T =4,B 正确;f (2022)=f (4×505+2)=f (2)=0,故C 正确;又f (x )在(0,2)上单调递增,周期T =4,则f (x )在(-4,-2)上单调递增,故D 错误.故选ABC.22.(多选)(2022·三湘名校教育联盟高三联考)已知奇函数f (x )的定义域为R ,且满足:对任意的x ∈R ,都有f (-x )=f (x +1).当0≤x ≤12时,f (x )=log 2(1+x ),则下列说法正确的是( )A .f (x )的周期为2B .若i ∈N *,则∑ni =1f (i )=0C .点(-1,0)为f (x )的一个对称中心D .∑2022i =1f ⎝ ⎛⎭⎪⎫i 2=log 2⎝ ⎛⎭⎪⎫321011答案ABC解析 因为f (x )为奇函数,f (-x )=f (x +1),所以函数f (x )的图象关于直线x =12对称,所以f (x )=-f (x +1)=-[-f (x +2)]=f (x +2),故f (x )的周期T =2,A 正确;当0≤x ≤12时,f (x )=log 2(1+x ),所以f (1)=f (0)=f (2)=0,所以若i ∈N *,则∑ni =1f (i )=0,B 正确;因为f (-2-x )=f (-x )=-f (x ),点(-1,0)为f (x )的一个对称中心,C 正确;当i =2k 时,f ⎝ ⎛⎭⎪⎫i 2=f (k )=0,当i =4k +1时,f ⎝ ⎛⎭⎪⎫i 2=f ⎝ ⎛⎭⎪⎫2k +12=f ⎝ ⎛⎭⎪⎫12,当i =4k +3时,f ⎝ ⎛⎭⎪⎫i 2=f ⎝ ⎛⎭⎪⎫2k +32=f ⎝ ⎛⎭⎪⎫1+12=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12,所以∑2022i =1f ⎝ ⎛⎭⎪⎫i 2=log 232,D 错误.故选ABC. 23.(多选)(2022·山东省兖州市高三质量检测)在平面直角坐标系xOy 中,如图放置的边长为2的正方形ABCD 沿x 轴滚动(无滑动滚动),点D 恰好经过坐标原点,设顶点B (x ,y )的轨迹方程是y =f (x ),则对函数y =f (x )的判断正确的是( )A.函数y =f (x )是奇函数B.对任意的x∈R,都有f(x+4)=f(x-4)C.函数y=f(x)的值域为[0,22]D.函数y=f(x)在区间[6,8]上单调递增答案BCD解析由题意,当-4≤x<-2时,顶点B(x,y)的轨迹是以点A(-2,0)为圆心,2为半径的14圆;当-2≤x<2时,顶点B(x,y)的轨迹是以点D(0,0)为圆心,22为半径的1 4圆;当2≤x<4时,顶点B(x,y)的轨迹是以点C(2,0)为圆心,2为半径的14圆;当4≤x<6时,顶点B(x,y)的轨迹是以点A(6,0)为圆心,2为半径的14圆,与-4≤x<-2的形状相同,因此函数y=f(x)在[-4,4]上的图象恰好为一个周期的图象,所以函数y =f(x)的周期是8,其图象如下:由图象及题意可得,该函数为偶函数,故A错误;因为函数的周期为8,所以f(x +8)=f(x),因此f(x+4)=f(x-4),故B正确;由图象可得,该函数的值域为[0,22],故C正确;因为该函数是以8为周期的函数,因此函数y=f(x)在区间[6,8]上的图象与在区间[-2,0]上的图象形状相同,因此单调递增,故D正确.故选BCD.24.(2022·新高考八省联考)写出一个最小正周期为2的奇函数f(x)=________.答案sin πx(答案不唯一)解析由最小正周期为2,可考虑三角函数中的正弦型函数f(x)=A sin ωx(A≠0,ω>0),满足f (-x )=-sin ωx =-f (x ),即是奇函数;根据最小正周期T =2πω=2,可得ω=π.故函数可以是f (x )=A sin πx (A ≠0)中的任一个,可取f (x )=sin πx .25.(2022·河北邯郸高三上开学摸底考试)已知定义在R 上的函数f (x )满足f (x +2)=-1f (x ),当x ∈(0,2]时,f (x )=2x ,则f (0)=________,f ⎝ ⎛⎭⎪⎫log 4364=________.答案 -14 2 3解析 函数f (x )满足f (x +2)=-1f (x ),可得f (x +4)=-1f (x +2)=f (x ),所以函数的周期T =4,所以f (0)=-1f (2)=-14,f⎝ ⎛⎭⎪⎫log 4364=f (log 43-3)=f (log 43+1)=2log 43+1=2×212log 23=2×2log 2312=2 3.一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2022·上海徐汇区模拟)判断下列函数的奇偶性: (1)f (x )=3-x 2+x 2-3;(2)f (x )=lg (1-x 2)|x -2|-2;(3)f (x )=⎩⎨⎧x 2+x ,x <0,-x 2+x ,x >0.解 (1)由⎩⎨⎧3-x 2≥0,x 2-3≥0,得x 2=3,解得x =±3,即函数f (x )的定义域为{-3,3}, 从而f (x )=3-x 2+x 2-3=0. 因此f (-x )=-f (x )且f (-x )=f (x ), ∴f (x )既是奇函数又是偶函数.(2)由⎩⎨⎧1-x 2>0,|x -2|≠2,得f (x )的定义域为(-1,0)∪(0,1),关于原点对称.∴x -2<0,∴|x -2|-2=-x , ∴f (x )=lg (1-x 2)-x.又f (-x )=lg [1-(-x )2]x =-lg (1-x 2)-x =-f (x ),∴f (x )为奇函数.(3)显然函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称. ∵当x <0时,-x >0,则f (-x )=-(-x )2-x =-x 2-x =-f (x ); 当x >0时,-x <0,则f (-x )=(-x )2-x =x 2-x =-f (x ).综上可知,对于定义域内的任意x ,总有f (-x )=-f (x )成立, ∴f (x )为奇函数.2.(2022·安徽省巢湖市第四中学模拟)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ), 于是x <0时,f (x )=x 2+2x =x 2+mx , 所以m =2.(2)由(1)可画出f (x )的图象如图所示,知f (x )在[-1,1]上是增函数,要使f (x )在[-1,a -2]上单调递增.结合f (x )的图象知⎩⎨⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].3.(2022·山东临沂高三阶段考试)设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成的图形的面积. 解 (1)由f (x +2)=-f (x ),得f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ),所以f (x )是以4为周期的周期函数.所以f (π)=f (-1×4+π)=f (π-4)=-f (4-π)=-(4-π)=π-4. (2)由f (x )是奇函数与f (x +2)=-f (x ), 得f [(x -1)+2]=-f (x -1)=f [-(x -1)], 即f (1+x )=f (1-x ).从而可知函数f (x )的图象关于直线x =1对称.又当0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示.设当-4≤x ≤4时,f (x )的图象与x 轴所围成的图形的面积为S ,则S =4S △OAB =4×⎝ ⎛⎭⎪⎫12×2×1=4. 4.(2022·青海模拟)设f (x )是定义在R 上不恒为0的奇函数,对任意实数x 都有f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x 恒成立.(1)证明f (x )是周期函数,并指出其周期; (2)若f (1)=2,求f (2)+f (3)的值;(3)若g (x )=x 2+ax +3,且y =|f (x )|g (x )是偶函数,求实数a 的值. 解 (1)由f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x ,且f (-x )=-f (x ), 知f (3+x )=f ⎝ ⎛⎭⎪⎫32+⎝⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-⎝⎛⎭⎪⎫32+x =-f (-x )=f (x ),所以f (x )是周期函数,且T =3是其一个周期.(2)因为f (x )为定义在R 上不恒为0的奇函数,所以f (0)=0, 且f (-1)=-f (1)=-2, 又因为T =3是f (x )的一个周期,所以f (2)+f (3)=f (-1)+f (0)=-2+0=-2. (3)因为y =|f (x )|g (x )是偶函数, 且|f (-x )|=|-f (x )|=|f (x )|, 所以|f (x )|为偶函数.故g (x )=x 2+ax +3为偶函数, 即g (-x )=g (x )恒成立,于是(-x )2+a (-x )+3=x 2+ax +3恒成立. 于是2ax =0恒成立,所以实数a =0.。
函数的奇偶性与周期性-知识梳理与典型题(非常全面)
函数的奇偶性与周期性1.(2021·全国高考真题(理))设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭()A .94-B .32-C .74D .52【答案】D 【分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案.【详解】因为()1f x +是奇函数,所以()()11f x f x -+=-+①;因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+,因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以935222f f ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭.思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =.所以91352222f f f ⎛⎫⎛⎫⎛⎫==-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D .【点睛】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果.1.函数的奇偶性奇偶性定义图象特点偶函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )就叫做偶函数关于y 轴对称奇函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )关于原点对称就叫做奇函数2.周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,非零常数T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.1.(2021·安徽池州市·池州一中高三其他模拟(理))若定义在R 上的奇函数()f x 在()0,∞+上单调递增,且()20f =,则不等式()10xf x -≤的解集为()A .(][),13,-∞-+∞B .(][],11,3-∞-C .[][]1,01,3- D .[][)1,03,-+∞ 2.(2021·黑龙江佳木斯市·佳木斯一中高三三模(理))已知()y f x =为奇函数且对任意x ∈R ,()()2f x f x +=-,若当[]0,1x ∈时,()()2log a f x x =+,则()2021f =()A .1-B .0C .1D .23.(2021·云南民族大学附属中学高三月考(理))若()f x 是R 上周期为5的奇函数,且满足()11f =,()22f =,则()()124f f --等于()A .-2B .2C .-1D .14.(2021·江苏南通市·高三一模)已知()f x 是定义在R 上的函数,()22f =,且对任意的x ∈R ,都有()()33f x f x +≥+,()()11f x f x +≤+,若()()1g x f x x =+-,则()2020g =()A .2020B .3C .2D .15.(2021·河南高三其他模拟(理))高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号.设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数.例如:[]5,16-=-,[]3π=.已知函数()21xf x x =+,则函数()y f x ⎡⎤=⎣⎦的值域为()A .{}1-B .{}1,0-C .{}1D .{}0,16.(2021·全国高三其他模拟)以下四个选项中的函数,其函数图象最适合如图的是()A .y =||2x e xB .y =2(1)||xx e x +C .y =|2|xe x D .y =22xe x 7.(2021·珠海市第二中学高三其他模拟)设21()log (1)f x x a=++是奇函数,若函数()g x 图象与函数()f x 图象关于直线y x =对称,则()g x 的值域为()A .11(,)(,)22-∞-+∞ B .11(,)22-C .(,2)(2,)-∞-+∞ D .(2,2)-8.(2021·四川成都市·石室中学高二期中(理))已知函数()2xxf x e ex -=--,若不等式()()2120f ax f ax +-≥对x R ∀∈恒成立,则实数a 的取值范围是()A .(]0,e B .[]0,e C .(]0,1D .[]0,19.(2021·贵州贵阳市·贵阳一中(理))已知定义在R 上的函数()f x ,对任意实数x 有()()55f x f x +=-+,若函数()1f x -的图象关于直线1x =对称,()12f -=,则()2021f =()A .5B .-2C .1D .210.(2021·宁夏银川市·高三其他模拟(理))已知()y f x =为R 上的奇函数,()1y f x =+为偶函数,若当[]0,1x ∈,()()2log a f x x =+,则()2021f =()A .2-B .1-C .1D .211.(2021·新余市第一中学高三其他模拟(理))关于函数()sin xf x x=,()0,x ∈+∞的性质,以下说法正确的是()A .函数()f x 的周期是2πB .函数()f x 在()0,π上有极值C .函数()f x 在()0,∞+单调递减D .函数()f x 在()0,∞+内有最小值12.(2021·陕西咸阳市·高三三模(理))已知定义域为R 的奇函数()f x 满足()()26f x f x -=-+,当[]0,4x ∈时,()31,02,164,24,x x f x x x ⎧-≤≤=⎨-<≤⎩则()()()20202021f f f +=()A .1-B .4C .4-D .113.(2021·全国高三专题练习(理))已知函数()f x 是定义在R 上的偶函数,满足()()2f x f x +=,当[]0,1x ∈时,()πcos2f x x =,则函数()y f x x =-的零点个数是()A .2B .3C .4D .514.(2021·陕西高三三模(理))已知函数f (x )为R 上的奇函数,且()(2)f x f x -=+,当[0,1]x ∈时,()22x xaf x =+,则f (101)+f (105)的值为()A .3B .2C .1D .015.(2020·全国高考真题(理))设函数()ln |21|ln |21|f x x x =+--,则f (x )()A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减16.(2019·全国高考真题(理))函数3222x xx y -=+在[]6,6-的图像大致为A .B .C .D .17.(2010·安徽高考真题(理))若()f x 是R 上周期为5的奇函数,且满足()()11,22f f ==,则()()34f f -=A .-1B .1C .-2D .218.(2016·四川高考真题(理))已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4x f x =,则5((1)2f f -+54-=____________.19.(2020·全国高考真题(理))关于函数f (x )=1sin sin x x+有如下四个命题:①f (x )的图象关于y 轴对称.②f (x )的图象关于原点对称.③f (x )的图象关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________.20.(2019·北京高考真题(理))设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则a =________若f (x )是R 上的增函数,则a 的取值范围是___________.1.C 【分析】首先将()10xf x -≤转化为()010x f x ≤⎧⎨-≥⎩或()010x f x ≥⎧⎨-≤⎩,根据函数单调性解()10f x -≥和()10f x -≤,进而可以求出结果.【详解】因为()10xf x -≤,所以()010x f x ≤⎧⎨-≥⎩或()010x f x ≥⎧⎨-≤⎩,因为()f x 在()0,∞+上单调递增,且()20f =,所以()001310012x x x f x x ≥≥⎧⎧⇒⇒≤≤⎨⎨-≤≤-≤⎩⎩,因为()f x 在R 上为奇函数,所以()f x 在(),0-∞上单调递增,且()20f -=,因此()001010211x x x f x x ≤≤⎧⎧⇒⇒-≤≤⎨⎨-≥-≤-≤-⎩⎩,综上:不等式()10xf x -≤的解集为[][]1,01,3- .故选:C.2.C 【分析】由()y f x =为奇函数且对任意x ∈R ,()()2f x f x +=-,可得函数的周期为4,再奇函数的性质可得()20log 0f a ==,从而可求出1a =,进而可求得()2021f 的值【详解】解:因为()y f x =为奇函数,即()()f x f x -=-,因为对任意x ∈R ,()()()2f x f x f x +=-=-,所以()()4f x f x +=,当[]0,1x ∈时,()()2log a f x x =+,所以()20log 0f a ==,所以1a =,则()()()22021505411log 21=⨯+===f f f .故选:C.3.C 【分析】根据函数的周期性与奇偶性计算可得;【详解】解:∵若()f x 是R 上周期为5的奇函数,∴()()f x f x -=-,(5)()f x f x +=,∴(12)(12)f f -=-(2)2f =-=-,(4)(1)(1)1f f f =-=-=-,∴(12)(4)2(1)1f f --=---=-,故选:C .4.D 【分析】本题由不等式()()33f x f x +≥+和()()11f x f x +≤+,带入()()1g x f x x =+-后得到即()()1g x g x +≤,即()()1g x g x ≤+,可得()()1g x g x +=,可得周期为1,即可得解.【详解】因为对任意的x ∈R ,都有()()33f x f x +≥+,()()1g x f x x =+-,所以()()()33113g x x g x x +++-≥+-+,即()()3g x g x +≥.又对任意的x ∈R ,()()11f x f x +≤+,所以()()()11111g x x g x x +++-≤+-+,即()()1g x g x +≤,所以()()()()321g x g x g x g x ≤+≤+≤+,即()()1g x g x ≤+,所以()()1g x g x +=,从而()g x 是周期为1的周期函数.又()()22121g f =+-=,所以()()202021g g ==.故选:D5.B 【分析】由()21xf x x =+为奇函数,可先分析函数0x >时值域,即可得函数在R 上值域,利用高斯函数的意义求解即可.【详解】因为x ∈R ,()()f x f x -=-,所以()f x 是R 上的奇函数.当0x >时,()210122x x f x x x <=≤=+,所以当x ∈R 时,()11,22f x ⎡⎤∈-⎢⎥⎣⎦,从而()y f x ⎡⎤=⎣⎦的值域为{}1,0-.故选:B 6.C 【分析】通过奇偶性及特殊值分析即可【详解】A 项为奇函数,排除,B 项,当0x >,1||e 2e 2||x xy x x ⎛⎫=+> ⎪⎝⎭,排除D 项2x =时218e y =<,排除故选:C7.A 【分析】先求出()f x 的定义域,然后利用奇函数的性质求出a 的值,从而得到()f x 的定义域,然后利用反函数的定义,即可求出()g x 的值域.【详解】因为21()log (1)f x x a=++,所以1110x a x a x a+++=>++可得1x a <--或x a >-,所以()f x 的定义域为{|1x x a <--或}x a >-,因为()f x 是奇函数,定义域关于原点对称,所以1a a --=,解得12a =-,所以()f x 的定义域为11(,(,)22-∞-+∞ ,因为函数()g x 图象与函数()f x 图象关于直线y x =对称,所以()g x 与()f x 互为反函数,故()g x 的值域即为()f x 的定义域11(,)(,)22-∞-+∞ .故选:A .8.D 【分析】先根据函数解析式判断函数的奇偶性和单调性,再根据函数的奇偶性和单调性即可将不等式转化为2210ax ax -+≥对x R ∀∈恒成立,根据恒成立问题求解即可.【详解】解:()2xxf x e ex -=-- 的定义域为R 关于原点对称,且()()2xx f x ee xf x --=-+=-,()f x ∴为R 上的奇函数,又()12xx f x e e'=+- ,而12x x e e +≥=,当且仅当1xx e e =,即0x =时等号成立,故()120x x f x e e '=+-≥恒成立,故()f x 为R 上的增函数,不等式()()2120f axf ax +-≥对x R ∀∈恒成立,即()()212f axf ax ≥--对x R ∀∈恒成立,即()()221f ax f ax ≥-对x R ∀∈恒成立,即221ax ax ≥-对x R ∀∈恒成立,即2210ax ax -+≥对x R ∀∈恒成立,当0a =时,不等式恒成立,当0a ≠时,则()20240a a a >⎧⎪⎨∆=--≤⎪⎩,解得:01a <≤,综上所述:[]0,1a ∈.故选:D.9.D【分析】先根据对称性分析出()f x 的奇偶性,然后根据()()55f x f x +=-+分析出()f x 为周期函数并求解出一个周期,根据奇偶性和周期性求解出()2021f 的值.【详解】由函数()1y f x =-的图象关于直线1x =对称可知,函数()f x 的图象关于y 轴对称,故()f x 为偶函数,又由()()55f x f x +=-+,得()()()()555555f x f x f x f x ++=-++=--++=⎡⎤⎣⎦,所以()f x 是周期为10的偶函数.所以()()()()2021120210112f f f f =+⨯==-=,故选:D.结论点睛:通过对称性判断函数奇偶性的常见情况:(1)若函数()y f x a =+的图象关于直线x a =-对称,则()f x 为偶函数;(2)若函数()y f x a =+的图象关于点(),0a -成中心对称,则()f x 为奇函数.10.C【分析】根据()f x 为R 上的奇函数可求出a ,又()1f x +为偶函数,可推出()f x 为周期函数,利用周期性即可求解.【详解】解: ()f x 为R 上的奇函数,且当[]0,1x ∈时,()()2log a f x x =+∴()00f =,即2log 0a =,1a \=,∴当[]0,1x ∈时,()()2log 1f x x =+,()1f x +为偶函数,()()11f x f x ∴+=-+,()()2f x f x ∴+=-,又 ()f x 为R 上的奇函数,()()f x f x ∴-=-,()()2f x f x ∴+=-,()()()42f x f x f x ∴+=-+=,∴()f x 是周期为4的周期函数,∴()()()()22021450511log 111f f f =⨯+==+=,故选:C.【点睛】()数,利用周期性求解.11.D【分析】根据周期性的定义可知,函数()f x 的周期不是2π;再利用导数即可判断函数的单调性,极值和最值.【详解】对于A ,因为()()sin 2sin 222x x f x x x ππππ++==++,当sin 0x ≠时,()()2f x f x π+≠,所以函数()f x 的周期不是2π,A 错误;对于B ,因为()2cos sin x x x f x x-'=,设()cos sin g x x x x =-,()cos sin cos sin g x x x x x x x '=--=-,当()0,πx ∈时,()0g x '<,所以()()00g x g <=,即()0f x '<,故函数()f x 在()0,π上单调递减,B 错误;对于C ,()()20f f ππ==,所以函数()f x 在()0,∞+上不单调,C 错误;对于D ,因为当0sin 1x ≤≤时,()0f x ≥,当1sin 0x -≤<时,()sin 10x f x x x >=≥-,当且仅当()322x k k N ππ=+∈时取等号,而1y x=-在()0,∞+上单调递增,所以当32x π=时,函数()f x 取得最小值,D 正确.故选:D.12.C【分析】由已知可求得函数()f x 的周期为8,再利用函数的解析式代入可得选项.【详解】因为()f x 是定义域为R 的奇函数,所以()()f x f x -=-,且()00f =,又()()26f x f x -=-+,所以()()2262f x f x ⎡⎤⎡⎤--=-+-⎣⎦⎣⎦,即()()()444f x f x f x -=-+=--,所以函数()f x 的周期为8,所以()()4164402020f f =-⨯==,()()()202000f f f ==,()()()()20215316434f f f ==-=--⨯=-,故选:C .【点睛】方法点睛:函数的周期性有关问题的求解策略:1、求解与函数的周期性有关问题,应根据题目特征及周期定义,求出函数的周期;2、解决函数周期性、奇偶性和单调性结合问题,通常先利用周期性中为自变量所在区间,再利用奇偶性和单调性求解.13.A【分析】由()()2f x f x +=,可知()f x 是周期2T =的周期函数,结合函数的奇偶性,可作出()f x 的图象.令()0f x x -=,可将函数()y f x x =-的零点问题转化为()y f x =和()g x x =的图象交点个数问题,进而求出交点个数即可.【详解】因为()()2f x f x +=,即函数()f x 是周期2T =的周期函数.又∵函数()f x 是定义在R 上的偶函数,且[0,1]x ∈时,()πcos2f x x =,∴当[1,0)x ∈-时,ππ()()cos()cos 22f x f x x x =-=-=,令()0f x x -=,则函数()y f x x =-的零点个数即为函数()y f x =和()g x x =的图象交点个数,分别作出函数()y f x =和()g x x =的图象,如下图,显然()f x 与()g x 在[1,0)-上有1个交点,在[0,1]上有一个交点,当1x >时,()1g x >,而()1f x ≤,所以1x >或1x <-时,()f x 与()g x 无交点.综上,函数()y f x =和()g x x =的图象交点个数为2,即函数()y f x x =-的零点个数是2.故选:A.【点睛】方法点睛:本题考查求函数零点个数问题.一般的,求函数()y f x =的零点个数,常用的方法:(1)直接解方程()0f x =,求出方程的解的个数,也就是函数()y f x =的零点个数;(2)作出函数()y f x =的图象,其图象与x 轴交点的个数就是函数()y f x =的零点的个数;(3)化函数零点个数问题为方程()()=g x h x 的解的个数问题,在同一平面直角坐标系中画出两个函数的图象,两函数图象的交点个数就是函数()y f x =的零点的个数.14.A【分析】根据函数为奇函数可求得函数的解析式,再由()(2)f x f x -=+求得函数f (x )是周期为4的周期函数,由此可计算得选项.【详解】解:根据题意,函数f (x )为R 上的奇函数,则f (0)=0,又由x ∈[0,1]时,()22x x a f x =+,则有f (0)=1+a =0,解可得:a =﹣1,则有1()22x xf x =-,又由f (﹣x )=f (2+x ),即f (x +2)=﹣f (x ),则有f (x +4)=﹣f (x +2)=f (x ),即函数f (x )是周期为4的周期函数,则1313(101)(1)2,(105)(1)22222f f f f ==-===-=,故有f (101)+f (105)=3,故选:A .【点睛】方法点睛:函数的周期性有关问题的求解策略:1、求解与函数的周期性有关问题,应根据题目特征及周期定义,求出函数的周期;2、解决函数周期性、奇偶性和单调性结合问题,通常先利用周期性中为自变量所在区间,再利用奇偶性和单调性求解.15.D根据奇偶性的定义可判断出()f x 为奇函数,排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,利用函数单调性的性质可判断出()f x 单调递增,排除B ;当1,2x ⎛⎫∈-∞-⎪⎝⎭时,利用复合函数单调性可判断出()f x 单调递减,从而得到结果.【详解】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D.【点睛】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据()f x -与()f x 的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f 的近似值即可得出结果.【详解】设32()22x x x y f x -==+,则332()2()()2222x x x x x x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A ,故选B .【点睛】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.17.A【解析】∵f(x)是R 上周期为5的奇函数∴f(3)=f(3-5)=f(-2)=-f(2)=-2f(4)=f(4-5)=f(-1)=-f(1)=-1,f(3)-f(4)=-2+1=-118.-2【详解】试题分析:因为函数()f x 是定义在R 上周期为2的奇函数,所以(1)(1),(1)(12)(1)f f f f f -=--=-+=,所以(1)(1)f f -=,即(1)0f =,125111()(2)()()422222f f f f -=--=-=-=-=-,所以5()(1)22f f -+=-.考点:函数的奇偶性和周期性.19.②③【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论.对于命题①,152622f π⎛⎫=+= ⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+ ⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+ ⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<,命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.20.-1;(],0-∞.【分析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用导函数的解析式可得a 的取值范围.【详解】若函数()x x f x e ae -=+为奇函数,则()()(),x x x x f x f x e ae e ae ---=-+=-+,()()1 0x x a e e -++=对任意的x 恒成立.若函数()x x f x e ae -=+是R 上的增函数,则()' 0x x f x e ae -=-≥恒成立,2,0x a e a ≤≤.-∞即实数a的取值范围是(],0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015高考理科数学《函数的奇偶性与周期性》练习题[A 组 基础演练·能力提升]一、选择题1.下列函数中,与函数y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( ) A .y =-1xB .y =log 2|x |C .y =1-x 2D .y =x 3-1解析:函数y =-3|x |为偶函数,在(-∞,0)上为增函数,选项B 是偶函数但单调性不符合,只有选项C 符合要求答案:C 2.函数f (x )=lg1-x1+x是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数D .非奇非偶函数解析:易知函数的定义域为(-1,1),又f (-x )+f (x )=lg 1+x 1-x +lg 1-x1+x =lg 1=0,故f (x )为奇函数.答案:A3.已知函数f (x )满足:当x ≥4时,f (x )=⎝ ⎛⎭⎪⎫12x ;当x <4时,f (x )=f (x +1),则f (2+log 23)=( )A.124 B.112 C.18 D.38解析:由于1<log 23<2,则f (2+log 23)=f (2+log 23+1)=f (3+log 23)=⎝ ⎛⎭⎪⎫123+log23=⎝ ⎛⎭⎪⎫123·⎝ ⎛⎭⎪⎫12log23=18·2-log23=18·2log213=18·13=124,故选A. 答案:A4.若函数f (x )=2x -k ·2-x2x +k ·2-x (k 为常数)在定义域内为奇函数,则k 的值为( )A .1B .-1C .±1D .0解析:依题意,f (-x )=2-x -k ·2x 2-x +k ·2x =-2x-k ·2-x2x +k ·2-x ,即(2-x -k ·2x )(2x +k ·2-x )=(2-x +k ·2x )(-2x +k ·2-x ),∴k 2=1,k =±1,选C.答案:C5.偶函数f (x )在[0,+∞)上为增函数,若不等式f (ax -1)<f (2+x 2)恒成立,则实数a 的取值范围是( )A .(-23,2)B .(-2,2)C .(-23,23)D .(-2,23)解析:由题意可知,f (|ax -1|)<f (2+x 2),所以|ax -1|<2+x 2恒成立. 设m (x )=|ax -1|,n (x )=2+x 2,其临界位置的图象如图所示:下面求出相切情形下的a 的大小:如左图,设切点坐标为(x 0,y 0),则n ′(x )⎪⎪⎪x =x 0=2x 0=-a ,切点可表示为⎝ ⎛⎭⎪⎫-a 2,a 24+2,所以a 24+2-0-a 2-1a=-a ,得a =2;如右图,同理可求得a =-2.综上可知a ∈(-2,2).答案:B6.(2014年宁夏三市联考)已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为( )A .6B .7C .8D .9解析:由f (x )=0,x ∈[0,2)可得x =0或x =1,即在一个周期内,函数的周象与x 轴有两个交点,在区间[0,6)上共有6个交点,当x =6时,也是符合要求的交点,故共有7个不同的交点.答案:B二、填空题7.若函数f (x )=ln(x 2+ax +1)是偶函数,则实数a 的值为________.解析:由题意知,f (x )=ln(x 2+ax +1)为偶函数,即ln(x 2-ax +1)=ln(x 2+ax +1),即x 2-ax +1=x 2+ax +1,显然a =0.答案:08.(2013年高考四川卷)已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________.解析:当x ≥0时,f (x )=x 2-4x <5的解集为[0,5),又f (x )为偶函数,所以f (x )<5的解集为(-5,5).所以f (x +2)<5的解集为(-7,3).答案:(-7,3)9.(2014年银川质检)已知定义在R 上的偶函数满足:f (x +4)=f (x )+f (2),且当x ∈[0,2]时,y =f (x )单调递减,给出以下四个命题:①f (2)=0;②x =-4为函数y =f (x )图象的一条对称轴; ③函数y =f (x )在[8,10]上单调递增;④若方程f (x )=m 在[-6,-2]上的两根为x 1,x 2,则x 1+x 2=-8 以上命题中所有正确命题的序号为________.解析:令x =-2,得f (2)=f (-2)+f (2),即f (-2)=0.又函数f (x )是偶函数,故f (2)=0,①正确;根据f (2)=0可得f (x +4)=f (x ),所以函数f (x )的周期是4,由于偶函数的图象关于y 轴对称,故x =-4也是函数y =f (x )的图象的一条对称轴,②正确;根据函数的周期性可知,函数f (x )在[8,10]上单调递减,③不正确;由于函数f (x )的图象关于直线x =-4对称,故如果方程f (x )=m 在区间[-6,-2]上的两根为x 1,x 2,则x 1+x 22=-4,即x 1+x 2=-8,④正确.故正确命题的序号为①②④.答案:①②④ 三、解答题10.已知函数f (x )=⎩⎨⎧-x 2+2x ,x >0,0, x =0,x 2+mx , x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解析:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2. (2)要使f (x )在[-1,a -2]上单调递增, 结合f (x )的图象知⎩⎨⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].11.已知f (x )是偶函数,且f (x )在[0,+∞)上是增函数,如果f (ax +1)≤f (x -2)在x ∈⎣⎢⎡⎦⎥⎤12,1上恒成立,求实数a 的取值范围.解析:由于f (x )为偶函数,且在[0,+∞)上为增函数,则在(-∞,0]上为减函数,由f (ax +1)≤f (x -2),则|ax +1|≤|x -2|.又x ∈⎣⎢⎡⎦⎥⎤12,1,故|x -2|=2-x ,即x -2≤ax +1≤2-x .∴1-3x ≤a ≤1x -1在⎣⎢⎡⎦⎥⎤12,1上恒成立.∴⎝⎛⎭⎪⎫1x -1min =0,⎝ ⎛⎭⎪⎫1-3x max =-2, ∴-2≤a ≤0.12.(能力提升)设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围图形的面积. 解析:(1)由f (x +2)=-f (x ),得f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ), 所以f (x )是以4为周期的周期函数,从而得f (π)=f [-1×4+π]=f (π-4)=-f (4-π) =-(4-π)=π-4.(2)由f (x )是奇函数与f (x +2)=-f (x ),得f [(x -1)+2]=-f (x -1)=f [-(x -1)], 即f (1+x )=f (1-x ).故知函数y =f (x )的图象关于直线x =1对称.又0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示. 当-4≤x ≤4时,f (x )的图象与x 轴围成的图形面积为S ,则S =4S △OAB =4×⎝ ⎛⎭⎪⎫12×2×1=4.[B 组 因材施教·备选练习]1.已知函数g (x )是R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎨⎧x3x gxx,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A .(-2,1)B .(-∞,-2)∪(1,2)∪(2,+∞)C .(-1,2)D .(-2,-2)∪(-2,0)∪(0,1)解析:因为函数g (x )是R 上的奇函数,所以当x >0时,g (x )=-g (-x )=ln(1+x ),而当x =0时,x 3=ln(1+x )=0,在函数f (x )中补充f (0)=0,则根据y =x 3,y =ln(1+x )都是单调递增的,可得函数f (x )在(-∞,+∞)上单调递增,所以f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.注意到函数的定义域,还应该有2-x 2≠0,x ≠0,即x ≠±2,x ≠0,所以实数x 的取值范围是(-2,-2)∪(-2,0)∪(0,1).答案:D2.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2). (1)求f (1)的值;(2)判断f (x )的奇偶性并证明;(3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围. 解析:(1)令x 1=x 2=1,有f (1×1)=f (1)+f (1),解得f (1)=0. (2)f (x )为偶函数,证明如下:令x 1=x 2=-1,有f [(-1)×(-1)]=f (-1)+f (-1)=f (1)=0,解得f (-1)=0. 令x 1=-1,x 2=x , 有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ). ∴f (x )为偶函数.(3)f (4×4)=f (4)+f (4)=2,f (16×4)=f (16)+f (4)=3, 而f (3x +1)+f (2x -6)≤3, 即f [(3x +1)(2x -6)]≤f (64).(*) ∵f (x )在(0,+∞)上是增函数, ∴(*)式等价于不等式组 ⎩⎨⎧x +x -,x +x -或⎩⎨⎧x +x -,x +x --64.解得⎩⎪⎨⎪⎧x >3或x <-13,-73≤x ≤5或⎩⎨⎧-13<x <3,x ∈R .∴3<x ≤5或-73≤x <-13或-13<x <3,∴x 的取值范围为{x |-73≤x <-13或-13<x <3或3<x ≤5}.。