芯片丝印型号表QSM15丝印IB5YH 封装SOT23-6 封装SOT23-5 封装SOT23-8
深圳市富满电子集团股份有限公司 DW07D 二合一锂电池保护 IC 说明书
DW07D 二合一锂电池保护IC一、 概述DW07D 产品是单节锂离子/锂聚合物高压可充电电池组保护的高集成度解决方案。
DW07D 包括了先进的功率MOSFET ,高精度的电压检测电路和延时电路。
DW07D 具有非常小的SOT23-6的封装,这使得该器件非常适合应用于空间限制得非常小的可充电电池组应用。
DW07D 具有过充,过放,过流,短路等所有的电池所需保护功能,并且工作时功耗非常低。
该芯片不仅仅是为手机而设计,也适用于一切需要锂离子或锂聚合物可充电电池长时间供电的各种信息产品的应用场合。
二、 特点¾ 内部集成等效50m Ω左右的先进的功率MOSFET ;¾ 3段过流保护:过放电流1、过放电流2(可选)、负载短路电流; ¾ 充电器检测功能; ¾ 允许0V 充电功能¾ 延时时间内部设定; ¾ 高精度电压检测;¾ 低静态耗电流:正常工作电流3.8uA ¾ 兼容ROHS 和无铅标准。
¾采用SOT23-6封装形式塑封。
三、 应用¾ 单芯锂离子电池组;¾ 锂聚合物电池组。
四、 订货信息型号封装过充检测电压 [V CU ](V ) 过充解除电压[V CL ](V )过放检测电压[V DL ](V )过放解除电压 [V DR ](V )过流 (A )打印标记DW07D SOT23-6 4.4 4.2 2.8 3.0 3A DW07D五、 引脚图及说明DW07D二合一锂电池保护IC六、 极限参数参数符号参数范围单位电源电压VDD VSS-0.3~VSS+12 V CSI输入管脚电压VCSI VDD+15~VDD+0.3 V 工作温度Topr -40~+85 ℃存储温度Tstg -40~+125 ℃七、 电气特性参数参数符号测试条件最小值典型值最大值单位工作电压工作电压VDD -- 1.5--10V 电流消耗工作电流IDD VDD= 3.9V --3.06.0 uA检测电压过充电检测电压A档VOCP --4.350 4.375V B档 4.375 4.400 4.425C档 4.425 4.450过充电释放电压VOCR -- 4.15 4.20 4.25 V 过放电检测电压VODP -- 2.72 2.80 2.88 V 过放电释放电压VODR -- 2.92 3.00 3.08 V 过电流1检测电压VOI1 -- 0.12 0.15 0.18 V 过电流2(短路电流)检测电压VOI2 VDD= 3.6V 0.80 1.00 1.20 V 过电流复位电阻Rshort VDD= 3.6V 50100150 KΩ过电器检测电压VCHA -- -0.8 -0.5 -0.2 V 向0V电池充电的功能充电器起始电压V0CH 允许向0V电池充电功能1.2 -- -- V迟延时间过充电检测迟延时间TOC VDD= 3.6V~4.4V -- 110 200 ms过放电检测迟延时间TOD VDD= 3.6V~2.0V -- 80 140 ms过电流1检测迟延时间TOI1 VDD= 3.6V 51320 ms过电流2(短路电流)检测迟延时间TOI2 VDD= 3.6V --550 usMOS参数单个MOS管漏极到源极的导通阻抗R DS(on) V GS = 2.5V, I D =0.5A-- 22.0 30.0 mΩR DS(on) V GS = 4.5V, I D = 1.0A-- 16.0 25.0过流I ODC VDD= 3.6V 2.0 3.0 4.0 A 漏-源击穿电压V(BR)DSS V GS = 0V, I D= 250μA19 20 -- V连续的漏极电流I D(DeviceRef.)T J= 25°C 5 ADW07D二合一锂电池保护IC 栅极阈值电压V GS(th)V DS=VGS, I D=250μA0.55 0.65 0.95 V漏-源极电流I DSS V DS=20V, V GS= 0V,T J= 25°C1 uA栅-源极电流I GSS V GS= ±10V 100 nA 八、功能描述DW07D监控电池的电压和电流,并通过断开充电器或负载,保护单节可充电锂电池不会因为过充电压,过放电压,过放电流以及短路等情况而损坏。
芯片丝印对应型号MUN8
芯片丝印1DZAJ 丝印1DZBJ 丝印1DZCJ 丝印1DZDJ 丝印1DZEJ 丝印1DZFJ 丝印1DZGJ 丝印1DZHJ 封装SOT23-6 封装SOT23-5封装SOT23-8
芯片丝印1DZIE 丝印1DZJE 丝印1DZKE 丝印1DZLE 丝印1DZME 丝印1DZNE 丝印1DZOE 丝印1DZPE 封装SOT23-6 封装SOT23-5封装SOT23-8
芯片丝印1DZIF 丝印1DZJF 丝印1DZKF 丝印1DZLF 丝印1DZMF 丝印1DZNF 丝印1DZOF 丝印1DZPF 封装SOT23-6 封装SOT23-5封装SOT23-8
芯片丝印1DZIG 丝印1DZJG 丝印1DZKG 丝印1DZLG 丝印1DZMG 丝印1DZNG 丝印1DZOG 丝印1DZPG 封装SOT23-6 封装SOT23-5封装SOT23-8
芯片丝印1DZIH 丝印1DZJH 丝印1DZKH 丝印1DZLH 丝印1DZMH 丝印1DZNH 丝印1DZOH 丝印1DZPH 封装SOT23-6 封装SOT23-5封装SOT23-8
芯片丝印1DZAE 丝印1DZBE 丝印1DZCE 丝印1DZDE 丝印1DZEE 丝印1DZFE 丝印1DZGE 丝印1DZHE 封装SOT23-6 封装SOT23-5封装SOT23-8
芯片丝印1DZAF 丝印1DZBF 丝印1DZCF 丝印1DZDF 丝印1DZEF 丝印1DZFF 丝印1DZGF 丝印1DZHF 封装SOT23-6 封装SOT23-5封装SOT23-8
HY2213全系列
DS-HY2213-V02_SC page5
HY2213
1 节锂离子/锂聚合物电池充电平衡 IC
6. 产品目录
6.1. 电气参数选择 SOT-23-6 封装
表 1、电气参数选择表
参数 型号 HY2213-AB3B HY2213-BB3A HY2213-CB3A 过充电检测电压 VCU 4.200±0.025V 4.200±0.025V 4.180±0.025V 过充电释放电压 VCR 4.200±0.035V 4.190±0.035V 4.180±0.035V 特性代码 B A A
© 2012 HYCON Technology Corp
DS-HY2213-V02_SC page2
HY2213
1 节锂离子/锂聚合物电池充电平衡 IC
注意: 1、 本说明书中的内容,随着产品的改进,有可能不经过预告而更改。请客户及时到本公司网站下载更 新 。 2、 本规格书中的图形、应用电路等,因第三方工业所有权引发的问题,本公司不承担其责任。 3、 本产品在单独应用的情况下,本公司保证它的性能、典型应用和功能符合说明书中的条件。当使用 在客户的产品或设备中,以上条件我们不作保证,建议客户做充分的评估和测试。 4、 请注意输入电压、输出电压、负载电流的使用条件,使 IC 内的功耗不超过封装的容许功耗。对于 客户在超出说明书中规定额定值使用产品,即使是瞬间的使用,由此所造成的损失,本公司不承担 任何责任。 5、 本产品虽内置防静电保护电路,但请不要施加超过保护电路性能的过大静电。 6、 本规格书中的产品,未经书面许可,不可使用在要求高可靠性的电路中。例如健康医疗器械、防灾 器械、车辆器械、车载器械及航空器械等对人体产生影响的器械或装置,不得作为其部件使用。 7、 本公司一直致力于提高产品的质量和可靠度,但所有的半导体产品都有一定的失效概率,这些失效 概率可能会导致一些人身事故、火灾事故等。当设计产品时, 请充分留意冗余设计并采用安全指标, 这样可以避免事故的发生。 8、 本规格书中内容,未经本公司许可,严禁用于其它目的之转载或复制。
航顺HS集成电路常用IC型号-赛矽电子何小姐
航顺HS集成电路常用IC型号1,稳压LDO系列HS71XX系列(Vin(max)=18v/28v,Iq=2Ua,Iout=30MA)型号输入电压(MAX)输出电压输出电流低功耗封装HS7130 18/28V 3.0V 30MA 2UA TO-92/SOT89/SOT23HS7133 18/28V 3.3V 30MA 2UA TO-92/SOT89/SOT23HS7136 18/28V 3.6V 30MA 2UA TO-92/SOT89/SOT23HS7144 18/28V 4.4V 30MA 2UA TO-92/SOT89/SOT23HS7150 18/28V 5.0V 30MA 2UA TO-92/SOT89/SOT23HS75XX系列(Vin(max)=18V/28V, Iq=2UA,Iout=100MA)型号输入电压(MAX)输出电压输出电流低功耗封装HS7530 18V/28V 3.0V 100MA 2UA TO-92/SOT89/SOT23HS7533 18/28V 3.3V 100MA 2UA TO-92/SOT89/SOT23HS7536 18/28V 3.6V 100MA 2UA TO-92/SOT89/SOT23HS7544 18/28V 4.4V 100MA 2UA TO-92/SOT89/SOT23HS7550 18/28V 5.0V 100MA 2UA TO-92/SOT89/SOT23HS73XX系列(Vin(max) =12V, Iq=2UA,Iout=300MA)型号输入电压(MAX)输出电压输出电流低功耗封装HS7315 12V 1.5V 300MA 2UA TO-92/SOT89/SOT23HS7318 12V 1.8V 300MA 2UA TO-92/SOT89/SOT23HS7325 12V 2.5V 300MA 2UA TO-92/SOT89/SOT23HS7330 12V 3.0V 300MA 2UA TO-92/SOT89/SOT23HS7333 12V 3.3V 300MA 2UA TO-92/SOT89/SOT23HS7336 12V 3.6V 300MA 2UA TO-92/SOT89/SOT23HS7344 12V 4.4V 300MA 2UA TO-92/SOT89/SOT23HS7350 12V 5.0V 300MA 2UA TO-92/SOT89/SOT23HS72XX系列(Vin(max)=8v.Iq=4UA,Iout=240MA)型号输入电压(MAX)输出电压输出电流低功耗封装HS7218 8V 1.8V 240MA 4UA TO-92/SOT89/SOT23 HS7225 8V 2.5V 240MA 4UA TO-92/SOT89/SOT23 HS7227 8V 2.7V 240MA 4UA TO-92/SOT89/SOT23 HS7230 8V 3.0V 240MA 4UA TO-92/SOT89/SOT23 HS7233 8V 3.3V 240MA 4UA TO-92/SOT89/SOT23 HS7250 8V 5.0V 300MA 4UA TO-92/SOT89/SOT23HS78XX系列(Vin(max)=10V,Iq=2Ua,Iout=500MA)型号输入电压(MAX)输出电压输出电流低功耗封装HS7812 10V 1.2V 500MA 2UA TO-92/SOT89/SOT23 HS7815 10V 1.5V 500MA 2UA TO-92/SOT89/SOT23 HS7817 10V 1.7V 500MA 2UA TO-92/SOT89/SOT23 HS7818 10V 1.8V 500MA 2UA TO-92/SOT89/SOT23 HS7821 10V 2.1V 500MA 2UA TO-92/SOT89/SOT23 HS7825 10V 2.5V 500MA 2UA TO-92/SOT89/SOT23 HS7827 10V 2.7V 500MA 2UA TO-92/SOT89/SOT23 HS7828 10V 2.8V 500MA 2UA TO-92/SOT89/SOT23 HS7830 10V 3.0V 500MA 2UA TO-92/SOT89/SOT23 HS7833 10V 3.3V 500MA 2UA TO-92/SOT89/SOT23 HS7836 10V 3.6V 500MA 2UA TO-92/SOT89/SOT23 HS7838 10V 3.8V 500MA 2UA TO-92/SOT89/SOT23 HS7844 10V 4.4V 500MA 2UA TO-92/SOT89/SOT23 HS7850 10V 5.0V 500MA 2UA TO-92/SOT89/SOT23 2,电压检测系列型号输入电压(MAX)输出电压精度低功耗封装HS7015 24V 1.5V +/-1% 1.2UA TO-92/SOT89/SOT23 HS7019 24V 1.9V +/-1% 1.2UA TO-92/SOT89/SOT23 HS7021 24V 2.1V +/-1% 1.2UA TO-92/SOT89/SOT23 HS7022 24V 2.2V +/-1% 1.2UA TO-92/SOT89/SOT23 HS7023 24V 2.3V +/-1% 1.2UA TO-92/SOT89/SOT23 HS7024 24V 2.4V +/-1% 1.2UA TO-92/SOT89/SOT23HS7027 24V 2.7V +/-1% 1.2UA TO-92/SOT89/SOT23 HS7028 24V 2.8V +/-1% 1.2UA TO-92/SOT89/SOT23 HS7030 24V 3.0V +/-1% 1.2UA TO-92/SOT89/SOT23 HS7033 24V 3.3V +/-1% 1.2UA TO-92/SOT89/SOT23 HS7039 24V 3.9V +/-1% 1.2UA TO-92/SOT89/SOT23 HS7044 24V 4.4V +/-1% 1.2UA TO-92/SOT89/SOT23 HS7050 24V 5.0V +/-1% 1.2UA TO-92/SOT89/SOT23 HS7070 24V 7.0V +/-1% 1.2UA TO-92/SOT89/SOT23 3,非易失性存储产品EEPROM芯片24XX系列4,LCD液晶显示驱动型号主要特点工作电压封装HS1621 32列4行LCD驱动电路 2.4V-5.2V DIE/SSOP48 HS1622 32列4行LCD驱动电路 2.7V-5.2V DIE/QFP64HS1380 串行时钟电路 2.0V-5.5V DIP8HS1381 串行时钟电路 2.0V-5.5V SOP8DS1302 实时时钟电路 1.3V-5.5V SOP8/DIP85,DCDC升压6,大功率电源稳压LDO型号输出电流输入电压静态电流封装HSL7805CV 1.5A 35V 4.2-8MA TO220 HSL7806CV 1.5A 35V 4.2-8MA TO220 HSL7809CV 1.5A 35V 4.2-8MA TO220HSL7812CV 1.5A 35V 4.2-8MA TO220HSL7815CV 1.5A 35V 4.2-8MA TO220HSL7824CV 1.5A 35V 4.2-8MA TO220HS1117 800MA 20V 2MA SOT223HS6206 300MA 6.5V 8UA SOT23/SOT897,LED数码管驱动74HC系列8,锂电池充电管理系列。
2SC1623贴片三极管印字L5
JIANGSU CHANGJIANG ELECTRONICS TECHNOLOGY CO., LTDSOT-23 Plastic-Encapsulate Transistors2SC1623 TRANSISTOR(NPN)FEATURESz High DC current gain :h FE =200(Typ) V CE =6V,I C =1mAz High voltage:V CEO =50VMAXIMUM RATINGS (T a =25 unless otherwise noted)ELECTRICAL CHARACTERISTICS (T a =25℃ unless otherwise specified) ParameterSymbol Test conditions Min Typ Max Unit Collector-base breakdown voltageV (BR)CBO I C =100μA,I E =0 60 V Collector-emitter breakdown voltageV (BR)CEO I C =1mA,I B =0 50 V Emitter-base breakdown voltageV (BR)EBO I E =100μA,I C =0 5 V Collector cut-off currentI CBO V CB =60V,I E =0 0.1 μA Emitter cut-off currentI EBO V EB =5V,I C =0 0.1 μA DC current gainh FE V CE =6V,I C =1mA 90 200 600 Collector-emitter saturation voltageV CE(sat) I C =100mA,I B =10mA 0.3 V Base-emitter saturation voltageV BE(sat) I C =100mA,I B =10mA 1 V Transition frequency f T V CE =6V,I C =10mA 250 MHz CLASSIFICATION OF h FERankL4 L5 L6 L7 Range90-180 135-270 200-400 300-600 Marking L4 L5 L6 L7COLLECTOR℃B,Jun,2012 【南京南山半导体有限公司 — 长电贴片三极管选型资料】10010000.11100.11101234BA S E -E M I T T E R S A T U R A T I O N VOL TAG EV BE sa t(m V )2000AMBIENT TEMPERATURE T a ()℃2SC1623Typical Characteristics I h —— 50REVERSE VOLTAGE V (V)CA P A C I T AN C E C (pF ) CO L L E C T O R C U R R E N T I C(m A )Static Characteristic C O L L E C T O R C U R R E N T I C(m A )B,Jun,2012 【南京南山半导体有限公司 — 长电三极管选型资料】The bottom gasketThe top gasket3000×1 PCS 3000×15 PCS Label on the Reel Label on the Inner Box Label on the Outer Box QA Label Seal the boxwith the tape Seal the boxwith the tape Stamp “EMPTY”on the empty box Inner Box: 210 mm × 208 mm ×203 mm Outer Box: 440 mm × 440 mm × 230 mm。
FT5623NL 丝印GZ2JB 封装SOT23-6
Applications Note :FT5623NLOne Stage Flybck And PFC Controller Primary Control For LED LightingPreliminary datasheet1General DescriptionThe FT5623 is a One stage Flyback and PFC controller at led lighting applications.It is aone side controller without applying any secondary feedback circuit for Cheap,and drives the flybackconverter in the quasi-resonant mode to achieve higher efficiency. Flyback converter ing constantTime of operation to achieve high power factorOrdering InformationFT5623NLTemperature Range: -40°C to 85°CFeaturesPrimary side control to eliminate the optocoupler MOSFET to implement open low switching losses300MV initial current detection reference voltage leads to the loss of. Internal high current driveSOURCING:0.25A sinking:0.5ALow current start:15uA typicalReliable short LED and Open LED protection Power factor:big 0.90 with single-stage conversion Compact package: SOT23-6ApplicationsLED lighting Down light Tube lamp PAR lampBulbTypical ApplicationsFigure 1. Schematic Diagram SOT23-6Ordering Number Package type NoteFT5623NL SOT23-6 - - - -FT5623NLPinout (top view)ISENCOMP ZCS123456DRVGNDVIN(SOT23-6)Top Mark: Gx xxx for FT5623NLApplications Note :FT5623NLOne Stage Flybck And PFC Controller Primary Control For LED LightingPreliminary datasheetAbsolute Maximum Ratings (Note 1)VIN, DRV --------------------------------------------------------------------------------------------------------------- -0.3V~19V Supply Current I VIN ----------------------------------------------------------------------------------------------------------- 30mA ZCS ------------------------------------------------------------------------------------------------------------------------ V IN +0.3V ISEN, COMP ------------------------------------------------------------------------------------------------------------------- 3.6V Power Dissipation, @ T A = 25°C SOT23-6 --------------------------------------------------------------------------------0.6W Package Thermal Resistance (Note 2)SOT23-6,θJA --------------------------------------------------------------------------------------------------170°C/W SOT23-6,θJC --------------------------------------------------------------------------------------------------130°C/WTemperature Range ----------------------------------------------------------------------------------------------- -40°C to 150°C Lead Temperature (Soldering, 10 sec.) ------------------------------------------------------------------------------------ 260°CStorage Temperature Range -------------------------------------------------------------------------------------- -65°C to 150°CRecommended Operating Conditions (Note 3)VIN, DRV ----------------------------------------------------------------------------------------------------------------- 8V~15.4V Junction Temperature Range ------------------------------------------------------------------------------------- -40°C to 125°C Ambient Temperature Range ------------------------------------------------------------------------------------- -40°C to 105°CBlock DiagramOne Stage Flybck And PFC Controller Primary Control For LED LightingPreliminary datasheetElectrical Characteristics(V IN = 12V (Note 3), T A = 25°C unless otherwise specified)ParameterSymbol Test Conditions Min Typ Max UnitPower Supply SectionInput voltage range V VIN 8 15.4 V VIN turn-on threshold V VIN,ON 17.6 V VIN turn-off threshold V VIN,OFF 6.0 7.9 V VIN OVP voltage V VIN,OVPV VIN,ON +0.85V Start up Current I ST V VIN <V VIN,OFF 15 µA Operating Current I VIN C L =100pF,f=15kHz 1 mA Shunt current in OVP mode I VIN,OVP V VIN >V VIN,OVP1.6 22.5 mA Error Amplifier Section Internal reference voltage V REF 0.294 0.3 0.306 V Current Sense SectionCurrent limit reference voltage V ISEN,MAX 0.5 V ZCS pin SectionZCS pin OVP voltagethresholdV ZCS,OVP 1.42 V Gate Driver SectionGate driver voltage V Gate V VIN V Maximum source current I SOURCE 0.25 A Minimum sink currentI SINK0.5 A Max ON Time T ON,MAX V COMP =1.5V24 µs Min ON Time T ON,MIN 400 ns Max OFF Time T OFF,MAX 39 µs Min OFF TimeT OFF,MIN 2 µs Maximum switching frequency f MAX120 kHz Thermal SectionThermal Shutdown TemperatureT SD150CNote 1: Stresses beyond the “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Note 2: ſJA is measured in the natural convection at T A = 25°C on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard. Test condition: Device mounted on 2” x 2” FR-4 substrate PCB, 2oz copper, with minimum recommended pad on top layer and thermal vias to bottom layer ground plane.Note 3: Increase VIN pin voltage gradually higher than V VIN,ON voltage then turn down to 12V.One Stage Flybck And PFC Controller Primary Control For LED LightingPreliminary datasheetOperationFT5623 is a constant current Flyback controller withprimary side control and PFC function that targets at LED lighting applications.The Device provides primary side control to eliminate the opto-couplers or the secondary feedback circuits, which would cut down the cost of the system.High power factor is achieved by constant on operation mode, with which the control scheme and the circuit structure are both simple.In order to reduce the switching losses and improve EMI performance, Quasi-Resonant switching mode is applied, which means to turn on the power MOSFET at voltage valley,the start up current of FT5623 israther small(15uA typically) to reduce the standby power loss further; the maximum switching frequency is clamped to 120kHz to reduce switching losses and improve EMI performance when the converter is operated at light load condition.FT5623 provides reliable protections such as ShortCircuit Protection (SCP), Open LED Protection (OLP), Over Temperature Protection (OTP), etc.FT5623NL is available with SOT26Applications InformationStart upAfter AC supply or DC BUS is powered on, the capacitor C VIN across VIN and GND pin is charged up by BUS voltage through a start up resistor R ST . Once V VIN rises up to V VIN-ON , the internal blocks start to work. V VIN will be pulled down by internal consumption of IC until the auxiliary winding of Flyback transformer could supply enough energy to maintain V VIN above V VIN-OFF .The whole start up procedure is divided into two sections shown in Fig.4. t STC is the C VIN charged up section, and t STO is the output voltage built-up section. The start up time t ST composes of t STC and t STO , and usually t STO is much smaller than t STC .The start up resistor R ST and C VIN are designed by rules below:(a ) Preset start-up resistor R ST , make sure that the current through R ST is larger than I ST and smaller than I VIN _OVPBUS BUS ST VIN_OVP STV V<R I I <(1)Where V BUS is the BUS line voltage.(b) Select C VIN to obtain an ideal start up time t ST, and ensure the output voltage is built up at one time.BUS ST ST STVIN VIN_ON V(-I )t R C =V ×(2)(d) If the C VIN is not big enough to build up the output voltage at one time. Increase C VIN and decrease R ST , go back to step (a) and redo such design flow until the ideal start up procedure is obtained.Internal pre-charge design for quick start upAfter V VIN exceeds V VIN,ON , V COMP is pre-charged by an internal current source. The PWM block won’t start to output PWM signals until V COMP is over the initial voltage V COMP,IC , which can be programmed by R COMP . Such design is meant to reduce the start up time shown in Fig.5.The voltage pre-charged V COMP_IC in start-up procedure can be programmed by R COMPCOMP_IC COMP V =600mV-300µA R ×(3)Applications Note :FT5623NLOne Stage Flybck And PFC ControllerPrimary Control For LED LightingPreliminary datasheetWhere V COMP-IC is the pre-charged voltage of COMP pin.Generally, a big capacitance of C COMP is necessary toachieve high power factor and stabilize the system loop(1µF~2µF recommended); The voltage pre-charged instart-up procedure can be programmed by R COMP; On theother hand, larger R COMP can provide larger phase marginfor the control loop; A small ceramic capacitor is addedto suppress high frequency interruption (10pF~100pF isrecommended if necessary)Shut downAfter AC supply or DC BUS is powered off, the energystored in the BUS capacitor will be discharged. When theauxiliary winding of Flyback transformer can not supplyenough energy to VIN pin, V VIN will drop down. OnceV VIN is below V VIN-OFF, the IC will stop working andV COMP will be discharged to zero.Primary-side constant-current controlPrimary side control is applied to eliminate secondaryfeedback circuit or opto-coupler, which reduces thecircuit cost.The switching waveforms are shown in Fig.6.The output current I OUT can be represented by,SP DISOUTSI tI=2t×(4)Where I SP is the peak current of the secondary side; t DIS isthe discharge time of Flyback transformer; t S is theswitching period.The secondary peak current is related with primary peakcurrent, if the effect of the leakage inductor is neglected.SP PS PPI=N I×(5)Where N PS is the turns ratio of primary to secondary ofthe Flyback transformer.Thus, I OUT can be represented byPS PP DISOUTSN I tI=2t××(6)The primary peak current I PP and inductor currentdischarge time t DIS can be detected by the IC, and theeffect of the leakage inductor can be compensated byinternal control scheme. I OUT can be induced finally by12REF PSOUTSk k V NI=R×××(7)Where k1is the output current weight coefficient; k2isthe output modification coefficient; V REF is the internalreference voltage; R S is the current sense resistor.k1,k2and V REF are all internal constant parameters, I OUTcan be programmed by N PS and R S.12REF PSSOUTk k V NR=I×××(8)Applications Note :FT5623NL One Stage Flybck And PFC ControllerPrimary Control For LED LightingPreliminary datasheetQuasi-Resonant OperationQR mode operation provides low turn-on switching losses for Flyback converter.The voltage across drain and source of the primary MOSFET is reflected by the auxiliary winding of the Flyback transformer. ZCS pin detects the voltage across the auxiliary winding by a resistor divider. When the voltage across drain and source of the primary MOSFET is at voltage valley, the MOSFET would be turned on.Over Voltage Protection (OVP) & Open LEDFig.8 OVP&OLPThe output voltage is reflected by the auxiliary winding voltage of the Flyback transformer, and both ZCS pin and VIN pin provide over voltage protection function. When the load is null or large transient happens, the output voltage will exceed the rated value. When V VIN exceeds V VIN,OVP or V ZCS exceeds V ZCS,OVP , the over voltage protection is triggered and the IC will discharge V VIN by an internal current source I VIN,OVP . Once V VIN is below V VIN,OFF , the IC will shut down and be charged again by BUS voltage through start up resistor. If the over voltagecondition still exists, the system will operate in hiccup mode.Thus, the turns of the auxiliary winding N AUX and the resistor divider is related with the OVP function.ZCS_OVP AUX ZCSDOVP S ZCSU ZCSD V N R =V N R +R ×(9)VIN_OVP AUXOVP S V N V N ≥(10)Where V OVP is the output over voltage specification; R ZCSU and R ZCSD compose the resistor divider. The turns ratio of N S to N AUX and the ratio of R ZCSU to R ZCSD could be induced from equation (9) and (10).Short Circuit Protection (SCP)When the output is shorted to ground, the output voltage is clamped to zero. The voltage of the auxiliary winding is proportional to the output winding, so V VIN will drop down without auxiliary winding supply. Once V VIN is below V VIN,OFF , the IC will shut down and be charged again by the BUS voltage through the start up resistor. If the short circuit condition still exists, the system will operate in hiccup mode.In order to guarantee SCP function not effected by voltage spike of auxiliary winding, a filter resistor R AUX is needed (10Ω typically) shown in Fig.8.Line regulation modificationThe IC provides line regulation modification function to improve line regulation performance.Due to the sample delay of ISEN pin and other internal delay, the output current increases with increasing inputBUS line voltage. A small compensation voltage ∆V ISEN-C is added to ISEN pin during ON time to improve such performance. This ∆V ISEN-C is adjusted by the upper resistor of the divider connected to ZCS pin.AUX ISEN,C BUS 3P ZCSUN 1∆V =V k N R ×××(11)Where R ZCSU is the upper resistor of the divider; k3 is an internal constant as the modification coefficient; N AUXand N P are the turns of auxiliary winding and primary winding of the transformer.The compensation is mainly related with R ZCSU , larger compensation is achieved with smaller R ZCSU . Normally, R ZCS ranges from 100kΩ~1MΩ.Then R ZCSD can be selected by,ZCS_OVP SOUT AUXZCSU ZCSD ZCS_OVP SOUT AUXV N V N R >R V N 1-V N ×××(12),And,ZCS_OVP SOVP AUXZCSD ZCSU ZCS_OVP S OVP AUXV NV N R R V N 1-V N ×≥××(13)Where V OVP is the output over voltage protection specification; V OUT is the rated output voltage; R ZCSU is the upper resistor of the divider; N S and N AUX are the turns of secondary winding and auxiliary winding separately.Power Device DesignMOSFET and DiodeWhen the operation condition is with maximum input voltage and full load, the voltage stress of MOSFET and secondary power diode is maximized;MOS_DS_MAX AC_MAX PS OUT D_F S V +N (V +V )+∆V ×(14)D_R_MAX OUT PSV (15)Where V AC,MAX is maximum input AC RMS voltage; N PS is the turns ratio of the Flyback transformer; V OUT is the rated output voltage; V D,F is the forward voltage of secondary power diode; ∆V S is the overshoot voltage clamped by RCD snubber during OFF time.When the operation condition is with minimum input voltage and full load, the current stress of MOSFET and power diode is maximized.MOS_PK_MAX P_PK_MAX I =I (16) MOS_RMS_MAX P_RMS_MAX I =I (17)D_PK_MAX PS P_PK_MAX I =N I ×(18)D_AVG OUT I =I (19)Where I P-PK-MAX and I P-RMS-MAX are maximum primary peak current and RMS current, which will be introduced later.Transformer (N PS and L M )N PS is limited by the electrical stress ofthe power MOSFET:PS OUT D_FN ≤(20)Where V MOS,(BR)DS is the breakdown voltage of the power MOSFET.In Quasi-Resonant mode, each switching period cycle t S consists of three parts: current rising time t 1, current falling time t 2 and quasi-resonant time t 3 shown in Fig.9.VI V IIFig.9 switching waveformsThe system operates in the constant on time mode to achieve high power factor. The ON time increases with the input AC RMS voltage decreasing and the load increasing. When the operation condition is with minimum input AC RMS voltage and full load, the ON time is maximized. On the other hand, when the input voltage is at the peak value, the OFF time is maximized. Thus, the minimum switching frequency f S-MIN happens at the peak value of input voltage with minimum input AC RMS voltage and maximum load condition; Meanwhile, the maximum peak current through MOSFET and the transformer happens.Once the minimum frequency f S-MIN is set, the inductance of the transformer could be induced. The design flow is shown as below:(a)PS OUT D_F N (21)(b) Preset minimum frequency f S-MIN(c) Compute relative t S , t 1 (t 3 is omitted to simplify the design here)S S_MIN1t=f (22) 1t(d) Design inductance L M22AC_MIN1M OUT SV t ηL =2P t ×××(24)(e)Compute t 33t =πWhere C Drain is the parasitic capacitance at drain of MOSFET.(f) Compute primary maximum peak current I P-PK-MAX and RMS current I P-RMS-MAX forthe transformer fabrication.MOUT PS OUT D_F P_PK_MAX M L 2P ]N (V +V )I =L η×××M (26)Where η is the efficiency; P OUT is rated full load powerAdjust t 1 and t S to t 1' and t S ' considering the effect of t 32M P_PK_MAX S OUTηL I t =4P ××′(27)1t′(28)P_RMS_MAX P_PK_MAX I I ≈(29)(g) Compute secondary maximum peak current I S-PK-MAX and RMS current I S-RMS-MAX for the transformer fabrication.S_PK_MAX PS P_PK_MAX I =N I ×(30)'''2S 13t =t -t-t (31)S_RMS_MAX S_PK_MAX I I (32)Transformer design (N P ,N S ,N AUX )The design of the transformer is similar with ordinary Flyback transformer. the parameters below are necessary:Necessary parameters Turns ratio N PS Inductance L MPrimary maximum current I P-PK-MAX Primary maximum RMS current I P-RMS-MAX Secondary maximum RMS current I S-RMS-MAXThe design rules are as followed:(a) Select the magnetic core style, identify the effective area A e.(b) Preset the maximum magnetic flux ∆B∆B=0.22~0.26TApplications Note :FT5623NLOne Stage Flybck And PFC Controller Primary Control For LED LightingPreliminary datasheet(c) Compute primary turn N PM P_PK_MAXP eL I N =∆B A ××(33)(d) Compute secondary turn N SP S PSNN =N (34)(e) compute auxiliary turn N AUXVIN AUX S OUTVN =N V ×(35)Where V VIN is the working voltage of VIN pin (10V~11V is recommended).(f) Select an appropriate wire diameterWith I P-RMS-MAX and I S-RMS-MAX , select appropriate wire to make sure the current density ranges from 4A/mm 2 to 10A/mm 2.(g) If the winding area of the core and bobbin is not enough, reselect the core style, go to (a) and redesign the transformer until the ideal transformer is achieved.Output capacitor C OUTPreset the output current ripple ∆I OUT , C OUT is induced byOUT AC LEDC (36)Where I OUT is the rated output current; ∆I OUT is the demanded current ripple; f AC is the input AC supply frequency; R LED is the equivalent series resistor of the LED load.RCD snubber for MOSFETThe power loss of the snubber P RCD is evaluated firstPS OUT D_F SKRCD OUT SMN (V +V )+∆V L P =P ∆V L ××× (37)Where N PS is the turns ratio of the Flyback transformer; V OUT is the output voltage; V D-F is the forward voltage of the power diode; ∆V S is the overshoot voltage clamped by RCD snubber; L K is the leakage inductor; L M is the inductance of the Flyback transformer; P OUT is the output power.The R RCD is related with the power loss:2PS OUT D_F S RCD RCD(N (V +V )+∆V )R =P ×(38) The C RCD is related with the voltage ripple of the snubber ∆V C-RCD :PS OUT D_F SRCD RCD S C_RCD N (V +V )+∆V C =R f ∆V ×(39)Layout(a) To achieve better EMI performance and reduce line frequency ripples, the output of the bridge rectifier should be connected to the BUS line capacitor first, then to the switching circuit.(b) The ground of the BUS line capacitor, the ground of the current sample resistor and the signal ground of the IC should be connected in a star connection.(c) The circuit loop of all switching circuit should be kept small: primary power loop, secondary loop and auxiliary power loop.(d) The wire connected to ISEN and DRV should be as thick as possible.(e) The resistor divider is recommended to be put beside the IC.Applications Note :FT5623NLOne Stage Flybck And PFC ControllerPrimary Control For LED LightingPreliminary datasheetDesign ExampleA design example of typical application is shown below step by step.#1. Identify design specificationDesign Specification V AC (RMS) 90V~264V V OUT 20V I OUT 200mA η 85%#2. Transformer design (N PS , L M )Refer to Power Device DesignConditions V AC,MIN90V V AC-MAX264V △V S 50V V MOS-(BR)DS 600V P OUT 4W V D,F 1V C Drain 100pF f S-MIN75kHz(a)Compute turns ratio N PS firstPS OUT D,FN=5.54N PS is set toPS N =4.2(b)f S,MIN is presetS_MIN f =75kHz(c) Compute the switching period t S and ON time t 1 at the peak of input voltage.S S_MIN1t ==13.3µs f1t =5.464µs(d) Compute the inductance L MOne Stage Flybck And PFC Controller Preliminary datasheet22AC_MIN1M OUT S22V t ηL =2P t 90V 4.897µs 0.85=24W 13.3µs =1.973mH×××××××SetM L =1.6mH(e) Compute the quasi-resonant time t 33t =π=π=1.257sµ(f) Compute primary maximum peak current I P-PK-MAXP_PK_MAX M M I =0.39AAdjust switching period t S and ON time t 1 to S t ′and 1t ′. 2M P_PK_MAXS OUT2ηL I t =4P 0.85 1.6H 0.39A =44W=13.2µs m ××′×××Compute primary maximum RMS current I P-RMS-MAXP_RMS_MAX P_PK_MAX I I 0.39A=0.102A ≈1t =4.897µs′One Stage Flybck And PFC ControllerPreliminary datasheet(g) Compute secondary maximum peak current and the maximum RMS current.S_PK_MAX PS P_PK_MAX I =N I =2.67 1.038A=2.77A ××'''2S 13t =t -t -t =14.45µs-6.12µs-0.86µs=7.47µsS,RMS,MAX S_PK_MAX I I 1.638A=0.466A ≈#3. Select power MOSFET and secondary power diodeRefer to Power Device DesignKnown conditions at this step V AC-MAX 264VN PS 4.2 V OUT 20V V D-F1V ΔV S50V η85%(a) Compute the voltage and the current stress of MOSFET:MOS_DS_MAX AC_MAX PS OUT D_F SV +N (V +V )+∆V 264V+4.2(20V+1V)+50V =511.5V××MOS_PK_MAX P_PK_MAX I =I =0.39AMOS_RMS_MAX P_RMS_MAX I =I =0.102A(b) Compute the voltage and the current stress of secondary power diodeD_R_MAX OUTPSV =108.9VD_PK_MAX PS P_PK_MAX I =N I =4.20.39A=1.638A ××D_AVG OUT I =I =0.32A#4. Select the output capacitor C OUTRefer to Power Device DesignApplications Note :FT5623NLOne Stage Flybck And PFC Controller Primary Control For LED LightingPreliminary datasheetConditionsI OUT 200mA ∆I OUT0.3I OUT f AC 50HzR LED6×1.6ΩThe output capacitor isOUT AC LEDC =527µF#5. Design RCD snubberRefer to Power Device DesignConditions V OUT 20V ∆V S50V N PS 4.2 L K /L M 1% P OUT 4WThe power loss of the snubber isPS OUT D_F S KRCD OUT S MN (V +V )+∆V L P =P ∆V L 4.2(20V+1V)+50V=0.014W50V=0.111W ××××××The resistor of the snubber is2PS OUT D_F S RCD RCD2(N (V +V )+∆V )R =P (4.2(20V+1V)+50V)=0.111W=176kΩ××The capacitor of the snubber isPS OUT D_F SRCD RCD S C_RCDN (V +V )+∆V C =R f ∆V 4.2(20V+1V)+50V=178kΩ100kHz 25V =0.3nF××××One Stage Flybck And PFC Controller Preliminary datasheet#6. Set VIN pinRefer to Start upConditions V BUS-MIN 90V ×1.414 V BUS-MAX264V ×1.414 I ST 15µA (typical) V IN-ON 16V (typical)I VIN-OVP 2mA (typical) t ST 500ms (designed by user)(a) R ST is presetBUS ST ST V 90V 1.414R <==8.48MΩI 15µA×,BUS ST VIN_OVPV 264V 1.414R >==186kΩI 2mA×Set R STST R =250kΩ3=750kΩ×(b) Design C VINBUS ST ST STVIN VIN_ONV(-I )t R C =V 90V 1.414(-15µA)500ms750kΩ=16V=4.83µF ×××Set C VINVIN C =20µF#7 Set COMP pinRefer to Internal pre-charge design for quick start upParameters designed R COMP 500Ω V COMP,IC 450mV C COMP1 2µF C COMP2 100pFOne Stage Flybck And PFC Controller Preliminary datasheet#8 Set current sense resistor to achieve ideal output currentRefer to Primary-side constant-current controlKnown conditions at this step k 1×k 2 0.16 N PS 4.2 V REF 0.3V I OUT 0.2AThe current sense resistor is12REF PSS OUTk k V N R =I 0.160.3V 4.2=0.2A=1.008Ω×××××#9 set ZCS pinRefer to Line regulation modification and Over Voltage Protection (OVP) & Open Loop Protection (OLP)First identify R ZCSU need for line regulation.Known conditions at this step k 3 68 Parameters Designed R ZCSU 200kΩThen compute R ZCSD Conditions V ZCS_OVP 1.42V V OVP 48V V OUT 20V Parameters designed R ZCSU100kΩ N S 32 N AUX 38ZCS_OVP SOUT AUXZCSD ZCSUZCS_OVP S OUT AUXV NV N R <R V N 1-V N 1.42V 3220V 38=200k 1.42V 321-20V 3812.7k ×××××Ω×=ΩApplications Note :FT5623NLOne Stage Flybck And PFC Controller Primary Control For LED LightingPreliminary datasheetZCS_OVPS OVP AUXZCSD ZCSUZCS_OVP S OVPAUXV N V N R R V N 1-V N 1.42V 3224V 38=200kΩ1.42V 321-24V 38=10.48kΩ×≥×××××R ZCSD is set toZCSD R =11.05kΩ#10 final resultApplications Note :FT5623NLOne Stage Flybck And PFC ControllerPrimary Control For LED LightingPreliminary datasheetFT5623NLSOT23-6 Package outline & PCB layout design2.400.50Recommended Pad LayoutApplications Note :FT5623NLOne Stage Flybck And PFC Controller Primary Control For LED LightingPreliminary datasheet。
贴片元件大全
05 05 05 05 05 05 05 -05 050 050 05F 05F 05L 05NU 05s 06 06 06 06 06 06 06 06 06 06 06 06 -06 -06 065 066 066 067 06F 07 07 07 07 07 07 07 07 07 -07 071 074 07N60S5 07N60S5 08 08 08 08 08 08 08 08
TK17020M SPB02N60S5 SPD02N60S5 SPN02N60S5 TK70002M DTC143TE DTC143TKA DTC143TUA Gali-3 JDP2S05CT MAR-3SM PDTA114EE PDTA114EE PDTA114EEF PDTA114EK PDTA114EK RAM-3 VAM-3 00 BZG03-C10 BZG03-C110 BZG03-C11 BZG03-C120 BZG03-C12 BZG03-C130 BZG03-C13 BZG03-C150 BZG03-C15 BZG03-C160 BZG03-C16 BZG03-C180 BZG03-C18 BZG03-C200 BZG03-C20 BZG03-C220 BZG03-C22 BZG03-C240 BZG03-C24 BZG03-C270 BZG03-C27 BZG03-C30 BZG03-C33 BZG03-C36 BZG03-C39 BZG03-C43 BZG03-C47 BZG03-C51 BZG03-C56 BZG03-C62 BZG03-C68 BZG03-C75 BZG03-C82 BZG03-C91
Manufacturer
Infineon WJC WJC WJC WJC WJC WJC WJC WJC Toshiba Toshiba Toshiba Toshiba Toshiba NEC Hitachi Toshiba Toko Toko Toko Siliconix MCL MiniCircuits MCL MiniCircuits Philips Philips Philips Philips MCL MiniCircuits Philips SGS Siliconix-Vishay SGS Toko Toko Infineon Infineon Infineon Toko Philips Philips Philips Motorola Rohm MCL MiniCircuits Toshiba MCL MiniCircuits Motorola Philips Philips Philips Philips MCL MiniCircuits Philips Siliconix
富满电子 FM6211系列500mA LDO稳压器说明书
FM6211系列(文件编号:S&CIC1194)500mA LDO稳压器概述FM6211系列是以CMOS工艺制造的高精度,高纹波抑制比,低噪音,超快响应低压差线性稳压器。
FM6211系列稳压器内置固定的参考电压源,误差修正电路,限流电路,相位补偿电路以及低内阻的MOSFET,达到高纹波抑制,低输出噪音,超快响应低压差的性能。
FM6211系列兼容体积比钽电容更小的陶瓷电容,而且不需使用0.1μF的By-pass电容,更能节省空间。
FM6211系列的高速响应特性能应付负载电流的波动,所以特别适合使用于手持及射频产品上。
通过控制芯片上的CE脚可将输出关断,在关断后的功耗只有1μA以下。
特点最大输出电流:500mA(V IN=5V,V OUT=3.3V)低压差:100mV@I OUT=100mA工作电压范围:2V~6.0V输出电压范围:1.2V~5.0V高输出精度:±2%低静态电流:50uA(TYP.)关断电流:0.1uA(TPY.)高纹波抑制比:70dB@1KHz低输出噪声:50uVrms输入稳定性好:0.05%(TYP.)封装形式:SOT23-5产品应用手机无绳电话设备照相机FM6211系列(文件编号:S&CIC1194)500mA LDO稳压器主要参数及工作特性FM6211系列(文件编号:S&CIC1194)500mA LDO稳压器FM6211系列(文件编号:S&CIC1194)500mA LDO稳压器FM6211系列(文件编号:S&CIC1194)500mA LDO稳压器注:1.V OUT(T):规定的输出电压2.V OUT(E):有效输出电压(即当I OUT保持一定数值,V IN=(V OUT(T)+1.0V)时的输出电压。
3.Vdif:V IN1–V OUT(E)’V IN1:逐渐减小输入电压,当输出电压降为V OUT(E)的98%时的输入电压。
深圳市富满电子集团股份有限公司 662K. 65K5低压差电压稳压器IC Version 2.0说明
662K./65K5.(文件编号:S&CIC1763)300mA低压差电压稳压器IC 1特性•高精度输出电压:±2%,最大工作电压:6.0V;•输出电压:1.5V~5.0V(步长0.1V);•极低的静态偏置电流(Typ.=10uA);•带载能力强:当Vin=3.75V且Vout=3.3V时Iout=300mA;•输入稳定性好:Typ.0.03%/V;•低的温度调整系数;•可以作为调整器和参考电压来使用;•封装形式:SOT23-3(小)2应用•电池供电系统;•无绳电话设备;•无线控制系统;•便携/手掌式计算机;•便携式消费类设备;•便携式仪器;•电子设备;•汽车电子设备;•电压基准源。
3应用电路662K./65K5.典型应用图662K./65K5.(文件编号:S&CIC1763)300mA低压差电压稳压器IC 4产品概述该662K./65K5.系列是一款高精度,低功耗,高电压,正电压调整器的芯片,并采用CMOS工艺和激光微调技术。
具有很低的静态偏置电流(10uA Typ.),它们能在输入、输出电压差极小的情况下有300mA的输出电流,并且仍能保持良好的调整率。
662K./65K5.系列芯片包括一个电流限制电路,一个驱动器三极管,一个高精度参考电压源和一个误差校正电路。
662K./65K5.系列可使用低ESR陶瓷电容。
该电流限制器的返回电路可为电流限制器和输出引脚提供短路保护。
通过激光微调技术,可设定芯片的输出电压的范围是1.5V至5.0V,间隔为0.1V。
由于输入输出间的电压差很小和静态偏置电流很小,这些器件特别适用于希望延长有用电池寿命的电池供电类产品,如计算机、消费类产品和工业设备等。
5引脚定义和封装662K./65K5.引脚图6订购信息印字说明:第一行,XXXX:芯片型号;第二行,XXXXXX+X:Lot Number+封装或软件版本。
662K./65K5.(文件编号:S&CIC1763)300mA低压差电压稳压器IC 7电气规格7.1极限工作参数(1)(1)超出极限工作范围值可能会造成器件永久性损坏。
元器件丝印代码反查型号共享D
表面丝印为 丝印为AJY9HG 丝印为AJY8HG 丝印为AJY7HG 丝印为AJY6HG 丝印为AJY5HG 丝印为AJY4HG 丝印为AJY3HG 丝印为AJY2HG 丝印为AJY1HG 丝印为AJY0HG 丝印为AJYOHG 表面丝印代码封装SOT23-6封装SOT23-5封装SOT23封装SOT343封装SOP8封装SOP10是什么型号?丝印反查型号
表面丝印为 丝印为AJY9HS 丝印为AJY8HS 丝印为AJY7HS 丝印为AJY6HS 丝印为AJY5HS 丝印为AJY4HS 丝印为AJY3HS 丝印为AJY2HS 丝印为AJY1HS 丝印为AJY0HS 丝印为AJYOHS 表面丝印代码封装SOT23-6封装SOT23-5封装SOT23封装SOT343封装SOP8封装SOP10是什么型号?丝印反查型号
表面丝印为 丝印为AJY9HE 丝印为AJY8HE 丝印为AJY7HE 丝印为AJY6HE 丝印为AJY5HE 丝印为AJY4HE 丝印为AJY3HE 丝印为AJY2HE 丝印为AJY1HE 丝印为AJY0HE 丝印为AJYOHE 表面丝印代码封装SOT23-6封装SOT23-5封装SOT23封装SOT343封装SOP8封装SOP10是什么型号?丝印反查型号
表面丝印为 丝印为AJY9GW 丝印为AJY8GW 丝印为AJY7GW 丝印为AJY6GW 丝印为AJY5GW 丝印为AJY4GW 丝印为AJY3GW 丝印为AJY2GW 丝印为AJY1GW 丝印为AJY0GW 丝印为AJYOGW 表面丝印代码封装SOT23-6封装SOT23-5封装SOT23封装SOT343封装SOP8封装SOP10是什么型号?丝印反查型号
CH系列IC常用封装尺寸
常用封装尺寸
2
DIP 类(PDIP)
DIP8
常用封装尺寸
3
DIP14
常用封装尺寸
4
DIP16
常用封装尺寸
5
DIP18
常用封装尺寸
6
DIP20
常用封装尺寸
7
DIP24S(SKDIP24、DIP24-300mil)
常用封装尺寸
8
DIP28(DIP28W、DIP28-600mil)
常用封装尺寸
······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ······························· ·······························
深圳市富满电子集团股份有限公司 TC2120 双节锂电池保护 IC 说明书
TC2120(文件编号:S&CIC0927)双节锂电池保护IC概述TC2120系列IC,内置高精度电压检测电路和延时电路,是用于2节串联锂离子/锂聚合物可再充电电池的保护IC。
此系列IC适合于对2节串联可再充电锂离子/锂聚合物电池的过充电、过放电和过电流进行保护。
特点TC2120全系列IC具备如下特点:(1)高精度电压检测电路过充电检测电压V CUn(n=1,2) 4.10V~4.50V精度±25mV过充电释放电压V CRn(n=1,2) 3.90V~4.30V精度±50mV过放电检测电压V DLn(n=1,2) 2.00V~3.00V精度±80mV过放电释放电压V DRn(n=1,2) 2.30V~3.40V精度±100mV放电过流检测电压(可选择)充电过流检测电压(可选择)精度±30mV负载短路检测电压 1.0V(固定)精度±0.4V(2)各延迟时间由内部电路设置(不需外接电容)过充电检测延迟时间典型值1000ms过放电检测延迟时间典型值110ms放电过流检测延迟时间典型值10ms充电过流检测延迟时间典型值7ms负载短路检测延迟时间典型值250μs(3)低耗电流工作模式典型值5.0μA,最大值9.0μA(VDD=7.8V)休眠模式最大值0.1μA(VDD=4.0V)(4)连接充电器的端子采用高耐压设计(CS端子和OC端子,绝对最大额定值是33V)(5)允许向0V电池充电功能(6)宽工作温度范围:-40℃~+85℃(7)小型封装:SOT-23-6(8)TC2120系列是无卤素绿色环保产品产品应用2节串联锂离子可再充电电池组。
2节串联锂聚合物可再充电电池组。
产品目录参数型号过充电检测电压过充电释放电压过放电检测电压过放电释放电压放电过流检测电压充电过流检测电压向0V电池充电功能V CUn V CRn V DLn V DRn V DIP V CIP V0CHTC2120-BB 4.35±0.025V 4.15±0.05V 2.30±0.08V 3.00±0.1V200±30mV-210±30mV允许TC2120-CB(A档)4.28±0.025V 4.08±0.05V 2.90±0.08V 3.00±0.1V200±30mV-210±30mV允许TC2120(文件编号:S&CIC0927)双节锂电池保护ICTC2120(文件编号:S&CIC0927)双节锂电池保护IC 绝对最大额定值(VSS=0V,Ta=25°C,除非特别说明)电气特性(VSS=0V,Ta=25°C,除非特别说明)TC2120(文件编号:S&CIC0927)双节锂电池保护ICTC2120(文件编号:S&CIC0927)双节锂电池保护IC *3、C1和C2有稳定VDD电压的作用,请不要连接0.01μF以下的电容。
SiT2025数据手册-SOT23-5封装115.20–137MHz任意频率SiTimeAECQ-100认证汽车级振荡器
Note: 5. Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.
Table 6. Environmental Compliance
Table 5. Maximum Operating Junction Temperature[5]
Max Operating Temperature (ambient) 85°C 105°C 125°C Maximum Operating Junction Temperature 95°C 115°C 135°C
Parameter Mechanical Shock Mechanical Vibration Temperature Cycle Solderability Moisture Sensitivity Level Condition/Test Method MIL-STD-883F, Method 2002 MIL-STD-883F, Method 2007 JESD22, Method A104 MIL-STD-883F, Method 2003 MSL1 @ 260°C
(°C/W) 421
θJC, Bottom
(°C/W) 175
Note: 4. Refer to JESD51 for θJA and θJC definitions, and reference layout used to determine the θJA and θJC values in the above table.
Hale Waihona Puke Supply Voltage and Current Consumption
TH3401 TH3402 规格书
工作电压:4.5V~5.5V 双端口控制功能(TH3402 ):可同时独立支持
两路 USB 充电协议检测 支持多种USB充电协议,各充电协议自动切换,
包括: Divider1/Divider2/Divider3充电协议(苹果
专用) D+/D–置1.2V模式(三星专用) BC1.2 DCP及CTIS YD/T 1591-2009充电
5/9
6.应用电路图
TH3401/TH3402_SPEC
TH3401A TH3401
图 3 TH3401/TH3401A 电路示意图 TH3402
TH3402B
TH3402A
图4
电路示意图
说明:
1. TH3402 的两组 DP/DM 等同,通过与 USB 端子 D+/D-的不同连接配置为 Divider1 或 2 协议以匹配
SOT23-6L
Tape and Reel / 3000 units
TH3402A
SOT23-6L
Tape and Reel / 3000 units
TH3402B
SOT23-6L
Tape and Reel / 3000 units
产品印章
TH3401 X Wxxxx TH3401A X Wxxxx TH3402 X Wxxxx TH3402A X Wxxxx TH3402B X Wxxxx
TH3401/TH3402_SPEC
USB 充电协议端口控制器 TH3401/TH3402
规格书
Revision 2.1 2015-1-16
1/9
TH3401/TH3402_SPEC
目录
1. 简介 .............................................................................................................................................. 3 2. 特性 .............................................................................................................................................. 3 3. 封装引脚示意图 ............................................................................................................................. 3 4. 定购信息 ....................................................................................................................................... 4 5. 功能描述 ....................................................................................................................................... 5
高速低压差LDO
V
4
0
0.35
V
4
10
V
50
70
mA
第 2 页 共 12 页
MD53RXX 系列(MD53R18,输出电压+1.8V)
项目
记号
条件
输出电压 输出电流*1 输入输出电压差
输入稳定度
负载稳定度
抗纹波率
输出电压温度系数
电流消耗
静态电流
CE 上拉电流 CE 输入高电平 CE 输入低电平
输入电压 输出短路电流
输入电压 输出短路电流
VOUT IOUT Vdrop
△VOUT1 △VIN·VOUT
△VOUT2
PSRR
△VOUT △Ta·VOUT
ISS
ISS1
ICEH VCEH
VIN= 4.3V,IOUT=50mA VIN= 4.3V
IOUT=10 mA IOUT=200 mA 4.3V≤VIN≤10V
IOUT=1mA VIN=4.3V 1.0mA≤IOUT≤200mA VIN=VOUT(S)+1V+1Vp_p f = 1KC Iout=50mA VIN=4.3V,IOUT=10mA -40℃≤Ta≤85℃ VIN= VOUT(S)+2V
无负载
VIN=10V CE=GND 无负载
VIN=VCE=Vout+1V
VIN
--
Ilim
Vout=0V
(除特殊注明以外:Ta=25℃)
最小 典型 最大 单位 测定
值
值
值
电路
2.744 2.8 2.856
V
1
450
mA
3
12
18
硕芯科技产品手册2
型号封装应用功率SX1301SOT23-6(3K/ tape&reel)内置MOS低电源升压,输入电压2.6-6V,输出电压3.3V-20V,3V升5V 1A典型应用,开关频率1MHZSX1315SOT23-5(3K/ tape&reel)外置MOS升压芯片,输入电压1.5~6.5V,输出电压1.5-15V,输出电流1A至3A可调,开关频率300KHzSX1318SOP-8(2.5K/ tape&reel)大电流升压,输入电压5V-32V,输出电压6V-40V,12V升18V 0.8A 12W以内应用,开关频率400KHZSX1328TO263-5(800pcs/ tape&reel)大电流升压,输入电压5V-32V,输出电压6V-40V,12V升18V 1.5A 28W以内应用,开关频率SX1302TSSOP-8(2.5K/ tape&reel)外置MOS大电流升压,输入电压2.2V-15V,输出电压3V-60V,19V/4A 80W以内应用,开关频率100KHZ-1MHZSX1303SOT23-5(3K/ tape&reel)外置MOS升压芯片,输入电压2~5V,输出电压固定5V,输出电流1A至2A可调,开关频率300KHzSX1308TO23-6(3K/ tape&reel)内置MOS低电源升压,输入电压2.6-6V,输出电压3.3V-20V,3V升5V 1.5A典型应用,开关频率1MHZSX3002SOP-8(2.5K/ tape&reel)降压恒流恒压芯片,输入电压4.5V-40V,输出电压1.235V-37V,5V/2A 8W以内应用,开关频率52KHZSX3003TO263-5(800pcs/ tape&reel)降压恒流恒压芯片,输入电压4.5V-40V,输出电压1.235V-37V,5V/3A12W以内应用,开关频率52KHZSX3478TO263-5(800pcs/ tape&reel)5A开关稳压电路,输入电压3.6V-32V,输出电压adj0.8V-30V,5V/5A 22W以内应用,开关频率300KHZSX2106SOT23-6(3K/ tape&reel)2A同步整流芯片,输入电压4.5-21V,输出电压0.8-17.85V,5V/2A 5W以内应用,开关频率450KHzSX2103SOP-8(2.5K/ tape&reel)3A同步整流芯片,输入电压4.75-23V,输出电压0.925V to 20V,5V/2A10W以内应用,开关频率600KHzSX2105SOP-8(2.5/ tape&reel)5A同步整流芯片,输入电压4.75-21V,输出电压 0.805V to 21V,5V/5A 25W以内应用,开关频率300KHz-800KHzSX3700DIP8(100PCS/Tube)40V-80v-400V输入高耐压降压型DC/DC稳压芯片,交流220V直接降压直流12V方案,输出电流200mA,SX3600SOP-8(2.5/ tape&reel)25VDC-75VDC高耐压降压型DC/DC芯片,振荡频率可以从10KHZ-100KHZ可调,输出电流500MASX3130SOP-8(2.5K/ tape&reel)外置MOS升压型LED驱动SX5055SOT23-5(3K/ tape&reel)500MA线性单节锂电4.2V充电芯片SX5058SOP-8(2.5K/ tape&reel)1000MA线性单节锂电4.2V充电芯片SX5201SOP-8(2.5K/ tape&reel)500MA线性双节锂电8.4V充电芯片SX5202SOP-8(2.5K/ tape&reel)1500MA开关型双节锂电8.4V充电芯片型号封装主要功能说明SX6116SOP-16(50PCS/Tube)内置MCU立体声接收芯片,输入电压1.8V-3.6V,接收频率76-108MHz SX6510SOP-10(2.5K/ tape&reel)64-125MHZ高性能低功耗调频立体声发射芯片SX750SMD(50PCS/Tube)I2C高性能、低功耗调频立体声发射模块,供电电压2.4V-3.6V,发射频率范围76MHz-110MHzSX710SMD(50PCS/Tube)I2C高性能、低功耗调频立体声发射模块,供电电压2.4V-3.6V,发射频率范围64MHz-125MHz电池管理FM收音IC FM发射深圳市硕芯科技有限公司产 品 手 册DC-DC升压系列DC-DC降压系列LED驱动系列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电源芯片丝印IB5IJ 丝印IB5JJ 丝印IB5KJ 丝印IB5LJ 丝印IB5MJ 丝印IB5NJ 丝印IB5OJ 丝印IB5OJ 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5IU 丝印IB5JU 丝印IB5KU 丝印IB5LU 丝印IB5MU 丝印IB5NU 丝印IB5OU 丝印IB5OU 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5IV 丝印IB5JV 丝印IB5KV 丝印IB5LV 丝印IB5MV 丝印IB5NV 丝印IB5OV 丝印IB5OV 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5IO 丝印IB5JO 丝印IB5KO 丝印IB5LO 丝印IB5MO 丝印IB5NO 丝印IB5OO 丝印IB5OO 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5IP 丝印IB5JP 丝印IB5KP 丝印IB5LP 丝印IB5MP 丝印IB5NP 丝印IB5OP 丝印IB5OP 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5AQ 丝印IB5BQ 丝印IB5CQ 丝印IB5DQ 丝印IB5EQ 丝印IB5FQ 丝印IB5GQ 丝印IB5GQ 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5AR 丝印IB5BR 丝印IB5CR 丝印IB5DR 丝印IB5ER 丝印IB5FR 丝印IB5GR 丝印IB5GR 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5IA 丝印IB5JA 丝印IB5KA 丝印IB5LA 丝印IB5MA 丝印IB5NA 丝印IB5OA 丝印IB5OA 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5IB 丝印IB5JB 丝印IB5KB 丝印IB5LB 丝印IB5MB 丝印5NB 丝印IB5OB 丝印IB5OB 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5AC 丝印IB5BC 丝印IB5CC 丝印IB5DC 丝印IB5EC 丝印IB5FC 丝印IB5GC 丝印IB5GC 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5AD 丝印IB5BD 丝印IB5CD 丝印IB5DD 丝印IB5ED 丝印IB5FD 丝印IB5GD 丝印IB5GD 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5IC 丝印IB5JC 丝印IB5KC 丝印IB5LC 丝印IB5MC 丝印IB5NC 丝印IB5OC 丝印IB5OC 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5ID 丝印IB5JD 丝印IB5KD 丝印IB5LD 丝印IB5MD 丝印IB5ND 丝印IB5OD 丝印IB5OD 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5AK 丝印IB5BK 丝印IB5CK 丝印IB5DK 丝印IB5EK 丝印IB5FK 丝印IB5GK 丝印IB5GK 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5AL 丝印IB5BL 丝印IB5CL 丝印IB5DL 丝印IB5EL 丝印IB5FL 丝印IB5GL 丝印IB5GL 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5IW 丝印IB5JW 丝印IB5KW 丝印IB5LW 丝印IB5MW 丝印IB5NW 丝印IB5OW 丝印IB5OW 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5IS 丝印IB5JS 丝印IB5KS 丝印IB5LS 丝印IB5MS 丝印IB5NS 丝印IB5OS 丝印IB5OS 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5IT 丝印IB5JT 丝印IB5KT 丝印IB5LT 丝印IB5MT 丝印IB5NT 丝印IB5OT 丝印IB5OT 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5AE 丝印IB5BE 丝印IB5CE 丝印IB5DE 丝印IB5EE 丝印IB5FE 丝印IB5GE 丝印IB5GE 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5AF 丝印IB5BF 丝印IB5CF 丝印IB5DF 丝印IB5EF 丝印IB5FF 丝印IB5GF 丝印IB5GF 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5AI 丝印IB5BI 丝印IB5CI 丝印IB5DI 丝印IB5EI 丝印IB5FI 丝印IB5GI 丝印IB5GI 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5AJ 丝印IB5BJ 丝印IB5CJ 丝印IB5DJ 丝印IB5EJ 丝印IB5FJ 丝印IB5GJ 丝印IB5GJ 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5IQ 丝印IB5JQ 丝印IB5KQ 丝印IB5LQ 丝印IB5MQ 丝印IB5NQ 丝印IB5OQ 丝印IB5OQ 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5IR 丝印IB5JR 丝印IB5KR 丝印IB5LR 丝印IB5MR 丝印IB5NR 丝印IB5OR 丝印IB5OR 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5AM 丝印IB5BM 丝印IB5CM 丝印IB5DM 丝印IB5EM 丝印IB5FM 丝印IB5GM 丝印IB5GM 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5AN 丝印IB5BN 丝印IB5CN 丝印IB5DN 丝印IB5EN 丝印IB5FN 丝印IB5GN 丝印IB5GN 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5AW 丝印IB5BW 丝印IB5CW 丝印IB5DW 丝印IB5EW 丝印IB5FW 丝印IB5GW 丝印IB5GW 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5AX 丝印IB5BX 丝印IB5CX 丝印IB5DX 丝印IB5EX 丝印IB5FX 丝印IB5GX 丝印IB5GX 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5IG 丝印IB5JG 丝印IB5KG 丝印IB5LG 丝印IB5MG 丝印IB5NG 丝印IB5OG 丝印IB5OG 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5IH 丝印IB5JH 丝印IB5KH 丝印IB5LH 丝印IB5MH 丝印IB5NH 丝印IB5OH 丝印IB5OH 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5AG 丝印IB5BG 丝印IB5CG 丝印IB5DG 丝印IB5EG 丝印IB5FG 丝印IB5GG 丝印IB5GG 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5AH 丝印IB5BH 丝印IB5CH 丝印IB5DH 丝印IB5EH 丝印IB5FH 丝印IB5GH 丝印IB5GH 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5AA 丝印IB5BA 丝印IB5CA 丝印IB5DA 丝印IB5EA 丝印IB5FA 丝印IB5GA 丝印IB5GA 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5AB 丝印IB5BB 丝印IB5CB 丝印IB5DB 丝印IB5EB 丝印IB5FB 丝印IB5GB 丝印IB5GB 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5IK 丝印IB5JK 丝印IB5KK 丝印IB5LK 丝印IB5MK 丝印IB5NK 丝印IB5OK 丝印IB5OK 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5IL 丝印IB5JL 丝印IB5KL 丝印IB5LL 丝印IB5ML 丝印IB5NL 丝印IB5OL 丝印IB5OL 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5IE 丝印IB5JE 丝印IB5KE 丝印IB5LE 丝印IB5ME 丝印IB5NE 丝印IB5OE 丝印IB5OE 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5IF 丝印IB5JF 丝印IB5KF 丝印IB5LF 丝印IB5MF 丝印IB5NF 丝印IB5OF 丝印IB5OF 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5IM 丝印IB5JM 丝印IB5KM 丝印IB5LM 丝印IB5MM 丝印IB5NM 丝印IB5OM 丝印IB5OM 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN
电源芯片丝印IB5IN 丝印IB5JN 丝印IB5KN 丝印IB5LN 丝印IB5MN 丝印IB5NN 丝印IB5ON 丝印IB5ON 封装SOT23-6 封装SOT23-5 封装SOT23-8 封装QFN