光纤酸性化学镀镍工艺
化学电镀镍
让你的金属受到呵护——化学电镀镍
化学电镀镍是一种常见的金属表面处理技术。
使用这种技术可以在金属表面形成一层致密、均匀的镍层,不仅可以提高材料的硬度和耐腐蚀性能,还可以美化表面,增强其耐用性。
化学电镀镍分为两种:酸性镀镍和碱性镀镍。
其中,酸性镀镍适用于电子电器行业,因为其膜层均匀、色泽亮丽,而碱性镀镍适合用于机械加工零件,因为其膜层具有较高的硬度和耐磨性。
化学电镀镍的工艺流程大致分为:清洗-酸洗-中和-水洗-电镀-水洗-烘干。
其中,清洗和酸洗是关键步骤,必须保证表面干净无油无污物。
电镀时,要控制好电流密度和镍离子浓度,以保证膜层与基材之间的结合力和膜层的成分、形貌等要求。
化学电镀镍也有一定的环保问题,需要注意化学污水的处理,以及对不合格膜层的回收和处理。
在使用化学电镀镍技术时,需要注意安全和环保问题,选择正规的生产企业或技术服务机构,以保证产品的质量和使用安全性。
总之,化学电镀镍是一项非常实用的金属表面处理技术,适用于多种行业的金属制品生产和加工。
正确使用和管理该技术,可以提高制品的品质,延长使用寿命,提高效益。
化学镀镍的工艺流程
化学镀镍的工艺流程
首先,进行表面处理。
表面处理是化学镀镍工艺中至关重要的
一步,它直接影响着后续的镀镍质量。
表面处理的主要目的是去除
基材表面的油污、氧化物和其他杂质,使基材表面变得清洁和粗糙,以利于镀液的附着和镀层的结合力。
表面处理一般包括除油、酸洗、水洗、活化和化学镀前处理等步骤。
其次,进行镀镍操作。
在表面处理完成后,就可以进行镀镍操
作了。
镀镍操作是化学镀镍工艺的核心环节,主要是将含有镍离子
的镀液中的镍离子还原成纯镍沉积在基材表面上。
镀液中的主要成
分包括镍盐、缓冲剂、还原剂和复合添加剂等。
镀液的配方和镀镍
条件的控制对镀层的质量有着重要影响。
镀液的搅拌、温度、PH值、电流密度等参数都需要严格控制,以获得致密、光亮的镀层。
最后,进行后处理。
镀镍完成后,还需要进行后处理工序。
后
处理主要包括水洗、中性化处理、烘干和包装等环节。
水洗是为了
去除镀液残留在镀层表面的杂质,中性化处理是为了中和镀液残留
在镀层上的酸碱成分,烘干是为了去除水分,包装是为了保护镀层
免受外界环境的影响。
总的来说,化学镀镍的工艺流程是一个复杂而严谨的过程,需要严格控制各个环节,以确保镀层的质量和性能。
通过合理的工艺流程和严格的操作控制,可以获得均匀、致密、光亮、耐腐蚀的镍镀层,提高基材的使用性能和寿命。
化学镀镍工艺在电子、航空、汽车等领域有着广泛的应用,对于提高产品质量和降低成本具有重要意义。
化学镀亮镍工艺
工艺文件
名称:化学镀亮镍工艺
代号:DGJS02-11-2004A
株洲电力机车研究所
时代电工厂
PH值4.8±0.2
温度85-90℃
搅拌方式空气搅拌
沉积速度8-12um/小时
时间40-60分钟
三.溶液配制及调整
用热去离子水分别溶解计算量的硫酸镍和次磷酸钠,例入镀槽,再加入复合添加剂,混合搅拌均匀过滤,再加入HH118-2光亮剂,用50%氨水调整,PH至4.5∽4.8,l加水到规定量,按以上方法配制的溶液即为HH118的化学镀,留出部分工作液作调整液,将温度升到工艺要求范围内,就要放入工作开始施镀,每轮完成后,需加入部分调整好的工作液,以补充消耗和蒸发损失,并调整PH值。
1.装载量的不恰当会直接影响镀件表面的沉积速度,过多过少都不好,工作在镀槽中应尽量摆放均匀。
2.温度过高镀液会分解,温度过低又会太慢,工作中除了使用较精密的温控器外,还必须时时观察温度的变化。
3.其他方面如:循环过滤不好,镀液搅拌方法不当,PH值测试不准确,都会产生镀液的分解,镀速下降,镀层质量不理想等问题。
株洲电力机车研究所时代电工厂
工艺文件
代号
化学镀亮镍工艺
代替
共2张
第1张
一.工艺流程
清洗助焊剂超声波清洗水洗预腐蚀化学抛光
超声波清洗碱中和水洗活化水洗
预热化镀亮镍水洗热去离子水封闭烘干
检验包装入库。
二.工艺配方及工作条件
硫酸镍27克/L
次亚磷酸钠30g/L
HH118-3添加剂80 g/L
HH118-2光亮剂1-2mL/L
化学镀镍工艺流程
化学镀镍工艺流程
化学镀镍是利用电解作用将镍溶解在金属基体上形成一层均匀且具有一定厚度的镍层。
以下是一种常见的化学镀镍工艺流程:
1. 预处理:首先将需要进行镀镍的金属基体进行清洗,去除表面的油污、铁锈等杂质。
常用的清洗方法包括酸洗、碱洗、电解洗等。
2. 然后将清洗干净的基体浸泡在活化液中,目的是进一步去除表面的氧化物,提高基体的活性,以便镀镍液能够更好地附着在基体上。
常用的活化液有硫酸、氯化锌等溶液。
3. 镀镍液准备:将适量的镍盐(如硫酸镍、氯化镍等)溶解在水中,加入适量的缓冲剂、络合剂等辅助剂,以控制镀液的酸碱度和镍离子的稳定性。
4. 镀镍:将经过预处理的金属基体放入镀液中,设定适当的工艺条件(如温度、电压、电流密度等),在电解槽中进行电解镀镍。
正电极为镍阳极,在阳极上产生镍离子;负电极为基体,镀液中的镍离子被还原成金属镍,沉积在基体上形成一层均匀的镍层。
5. 后处理:镀完镍后,将金属基体从电解槽中取出,用清水冲洗净镀液的残留物。
随后,进行镀层的后处理,如烘干、抛光、防腐等。
总的来说,化学镀镍是通过电解作用将镍溶解在金属基体上,
形成一层均匀且具有一定厚度的镍层。
这一工艺流程需要经过预处理、镀镍、后处理等多个步骤,工艺条件的控制和辅助剂的添加都对镀液的稳定性和镀层的质量有着重要影响。
化学镀镍具有镀层硬度高、抗腐蚀性好、外观美观等优点,广泛应用于金属制品的表面处理和装饰。
化学镀镍(ENP)工艺技术
化学镀镍(EPN)工艺技术ENP俗称化学镀镍或自催化镀镍或镍磷镀及无电镀镍,是一种用化学的方法,在金属表面沉积出十分均匀、光亮、坚硬的镍磷(硼)合金镀层的表面处理工艺技术。
它具有高均匀性、高结合强度、高耐磨性、高耐腐蚀及绿色环保等品质特征。
化学镀镍(ENP)工艺技术ENP(Electroless Nickel plating)工艺是一种用非电镀(化学)的方法,在零部件表面沉镀出十分均匀、光亮、坚硬的镍磷硼合金镀层的先进表面处理工艺。
它兼有高匀性、高结合强度、高耐磨性、高耐腐蚀性和无漏镀缺陷及仿真性极好六大优点,其综合性能优于电镀铬。
在很多环境介质中甚至比不锈钢更耐腐蚀,用来代替不锈钢可以降低工件成本。
在工艺方面,化学镀镍是靠化学方法形成镀层,不受零件形状和尺寸的限制,任何复杂形状的零件各部位镀层厚度均匀一致,施镀过程中厚度精度为±2μm,能够满足各种复杂精密部件的尺寸要求,而且镍合金镀层质密光滑,镀后无需任何加工,还可以反复修镀。
该技术是目前发达国家重点推广的表面处理新技术。
一、ENP的基本原理ENP的基本原理是以次亚磷酸盐为还原剂,将镍盐还原成镍,同时使金属层中含有一定的磷,沉淀的镍膜具有催化性,可使反应继续进行下去。
关于ENP的具体反应机理,目前尚无统一认识,现为大多数人所接受的原子氢态理论是:1、镀液在加热时,通过次亚磷酸根在水溶液中脱氢,而形成亚磷酸根,同时放出生态原子氢,即:H2PO2-+H2O→H2PO32-+H++2[H]2、初生态的原子氢吸附催化金属表面而使之活化,使镀液中的镍离子还原,在催化金属表面上沉积金属镍:Ni2++2[H]→Nio+2H+3、随着次亚磷酸根的分解,还原成磷:H2PO2-+[H]→H2O+OH-+Po镍原子和磷原子共同沉积而形成Ni-P合金,因此,ENP的基本原理也就是通过镀液中离子还原,同时伴随着次亚磷酸盐的分解而产生磷原子进入镀层,形成过饱和的Ni-P固溶体。
化学镀镍–工艺,优势和应用
化学镀镍–工艺,优势和应用什么是化学镀镍:将化学镀镍添加到金属表面的过程是自催化化学还原。
这意味着,与在类似的电镀过程中不使用外部电源一样,化学镀镍过程使用化学浴将镍/磷层沉积到金属表面上。
甚至可以在非导电表面上使用化学镀镍表面,从而可以镀覆多种基础材料。
这种无电工艺极大地提高了物体的抗磨损性,并为高精度零件留下了可预测的均匀镍涂层,该涂层可应用于任何几何形状或复杂形状的含铁和非含铁表面。
化学镀镍是一种自动催化反应,用于在基材上沉积镍涂层。
与电镀不同,无需使电流通过溶液形成沉积物。
这种电镀技术可防止腐蚀和磨损。
通过将粉末悬浮在镀液中,化学镀镍技术也可用于制造复合涂层。
与电镀相比,化学镀镍具有几个优点。
EN镀层无助焊剂密度和电源问题,无论工件的几何形状如何,均能提供均匀的沉积。
使用合适的预镀催化剂,EN镀层会沉积在非导电表面上。
化学镀镍EN电镀步骤•首先,首先要对表面进行预处理,然后用一系列化学药品将其清洁以去除油脂。
彻底清洁对于组件的适当电镀至关重要。
每个组件都基于表面材料进行精心清洁。
•清洁后,用酸蚀刻剂或专用溶液活化基材,为表面沉积镍-磷做好准备。
•电镀完成后,化学镀镍工艺使该部件更耐腐蚀和摩擦。
•这些电镀技术可制造独特的复合涂层,从而提供更多的特定于应用程序的优势。
化学镀镍厚度化学镀镍可以每小时5微米的速率沉积,一直到每小时25微米。
由于这是一个连续的过程,因此涂层的厚度基本上是无限的。
然而,随着厚度的增加,细微的瑕疵变得更加明显。
优势包括:•不使用电源。
•甚至可以在零件表面上实现涂层。
•无需复杂的夹具或架子。
•镀层的体积和厚度具有灵活性。
•该工艺可以电镀厚度稳定的凹槽和盲孔。
•化学品补给可以自动监控。
•不需要复杂的过滤方法•可获得哑光,半光亮或光亮饰面。
缺点包括:•化学品的使用寿命有限。
•由于化学物质的快速更新,废物处理成本很高。
•与电解工艺相比,化学镀的多孔性质导致材料结构较差。
应用领域它通常用于需要耐磨性,硬度和腐蚀防护的工程涂料应用中。
化学镀镍 ENP 工艺介绍
化学镀镍ENP 工艺介绍化学镀镍(ENP)工艺介绍2010-07-11 15:36 ENP(Electroless Nickel plating)工艺是一种用非电镀(化学)的方法,在零部件表面沉镀出十分均匀、光亮、坚硬的镍磷硼合金镀层的先进表面处理工艺。
它兼有高匀性、高结合强度、高耐磨性、高耐腐蚀性和无漏镀缺陷及仿真性极好六大优点,其综合性能优于电镀铬。
在很多环境介质中甚至比不锈钢更耐腐蚀,用来代替不锈钢可以降低工件成本。
在工艺方面,化学镀镍是靠化学方法形成镀层,不受零件形状和尺寸的限制,任何复杂形状的零件各部位镀层厚度均匀一致,施镀过程中厚度精度为±2μm,能够满足各种复杂精密部件的尺寸要求,而且镍合金镀层质密光滑,镀后无需任何加工,还可以反复修镀。
该技术是目前发达国家重点推广的表面处理新技术。
一、ENP的基本原理ENP的基本原理是以次亚磷酸盐为还原剂,将镍盐还原成镍,同时使金属层中含有一定的磷,沉淀的镍膜具有催化性,可使反应继续进行下去。
关于ENP的具体反应机理,目前尚无统一认识,现为大多数人所接受的原子氢态理论是:1、镀液在加热时,通过次亚磷酸根在水溶液中脱氢,而形成亚磷酸根,同时放出生态原子氢,即:H2PO2-+H2O→H2PO32-+H++2[H]2、初生态的原子氢吸附催化金属表面而使之活化,使镀液中的镍离子还原,在催化金属表面上沉积金属镍:Ni2++2[H]→Nio+2H+3、随着次亚磷酸根的分解,还原成磷:H2PO2-+[H]→H2O+OH-+Po镍原子和磷原子共同沉积而形成Ni-P合金,因此,ENP的基本原理也就是通过镀液中离子还原,同时伴随着次亚磷酸盐的分解而产生磷原子进入镀层,形成过饱和的Ni-P固溶体。
二、ENP工艺特点1、该工艺从原料到操作对环境无毒无污染,属于环保型表面处理工艺。
2、属于热化学镀,靠化学反应在零件表面生成镀层。
3、工艺独特,对任何复杂形状的零件,只要浸到镀液,就能获得各个部位完全均匀一致的镀层(彻底弥补了电镀工艺的漏镀缺陷)。
化学镀镍一般工艺
化学镀镍一般工艺Revised on November 25, 2020化学镀镍一般工艺在化学镀镍前,金属制品表面前处理包括:研磨抛光、除油、除锈、活化等过程,化学镀镍中经常使用的金属前处理方法与电镀工艺中的类似。
研磨、抛光等物理方法,我们不做讨论。
下面主要介绍一些化学处理方法。
1、除油除油方法可分为有机溶剂除油、化学除油。
有机溶剂除油的特点是除油速度快,不腐蚀金属,但除油不彻底,需用化学法或电化学方法进行补充除油,常用的有机溶剂有:汽油、煤油、苯类、酮类、某些氯化烷烃及烯烃。
有机溶剂除油还有一个优点即经除油后的溶剂还可回收再利用。
有机溶剂一般属易燃品,使用时要格外小心。
化学除油是利用碱溶液的皂化作用和表面活性物质对非皂化性油脂的乳化作用,除去工件表面上的各种油污的。
化学除油的温度通常取在60-80度之间,工件除油效果一般为目测,即工件表面能完全被水润湿就是油污完全除尽的标志。
一般的除油液由氢氧化钠、碳酸钠、磷酸三钠、水玻璃、乳化剂等组成。
电化学除油分阴极除油和阳极除油,在相同的电流下,阴极除油产生的氢气比阳极除油产生的氧气多一倍,气泡小而密,乳化能力大,除油效果更好。
但容易造成工件氢脆和杂质在阴极析出的现象。
阳极除油虽没有这些缺点但可能造成工件表面氧化和溶解。
目前常用正负极交换的化学除油法。
电化学除油液配方与化学除油的配方相似。
2、除锈除锈方法有机械法、化学法和电化学法。
机械法除锈是对工件表面进行喷砂、研磨、滚光或擦光等机械处理,在工件表面得到整平的同时除去表面锈层。
化学法除锈是用酸或碱溶液对金属制品进行强浸蚀处理使制品表面的锈层通过化学作用和浸蚀过程所产生氢气泡的机械剥离作用而除去。
电化学除锈是在酸或碱溶液中对金属制品进行阴极或阳极处理除去锈层。
阳极除锈是化学溶解、电化学溶解和电极反应析出的氧气泡的机械剥离作用而去除。
阴极除锈是化学溶解和阴极析出氢气的机械剥离作用而去除。
用于化学镀镍前处理除锈工艺基本与电镀的除锈工艺相同。
化学镀镍正确步骤
化学镀镍正确步骤化学镀镍是一种常用的表面处理技术,可以在金属表面形成一层致密、均匀且具有良好附着力的镍层,以提高金属的耐腐蚀性、硬度和美观度。
下面将介绍化学镀镍的正确步骤。
1. 表面清洁:在进行化学镀镍之前,首先需要将金属表面彻底清洁,去除表面的油脂、污垢和氧化物等杂质。
常用的清洁方法包括机械清洗、化学清洗和电解清洗等。
2. 酸洗处理:清洁后的金属表面需要进行酸洗处理,以去除表面的氧化物和其他不良物质,提高镀层的附着力。
一般使用硝酸或硫酸溶液进行酸洗,酸洗时间和温度需要根据具体情况进行调整。
3. 洁净水冲洗:酸洗后,需要使用洁净水对金属表面进行冲洗,将残留的酸液和杂质彻底清除。
4. 化学镀镍溶液准备:将适量的镍盐和其他添加剂按比例加入水中,搅拌溶解,制备出化学镀镍溶液。
镀镍溶液的配方会根据不同的金属材料和镀层要求进行调整。
5. 镀镍操作:将清洁后的金属样品悬挂在镀镍槽中,保证样品与阳极之间有适当的距离,防止镍盐的直接接触。
然后将阳极连接到电源的阳极端,样品连接到阴极端。
通过控制电流密度和镀镍时间,控制镍层的厚度和均匀性。
6. 洗净:镀镍完成后,将样品从镀镍槽中取出,用洁净水进行冲洗,去除残留的镀液和杂质。
7. 烘干:冲洗后的样品需要进行烘干,可以使用加热器、烘箱或吹风机等设备。
在烘干过程中要注意温度和时间的控制,避免过高的温度导致镀层变色或脱落。
8. 表面处理:烘干后的样品可以进行表面处理,如打磨、抛光等,以提高镀层的光洁度和光亮度。
9. 防护处理:为了保护镀层的耐腐蚀性和美观度,可以对镀层进行防护处理,如涂覆保护漆、进行化学处理等。
总结起来,化学镀镍的正确步骤包括表面清洁、酸洗处理、洁净水冲洗、化学镀镍溶液准备、镀镍操作、洗净、烘干、表面处理和防护处理等。
通过严格按照这些步骤进行操作,可以获得质量优良、均匀致密的镍层,提高金属材料的性能和使用寿命。
同时,在进行化学镀镍过程中需要注意安全操作,避免对人体和环境造成伤害。
化学镀镍(ENP)工艺技术
化学镀镍(EPN)工艺技术ENP俗称化学镀镍或自催化镀镍或镍磷镀及无电镀镍,是一种用化学的方法,在金属表面沉积出十分均匀、光亮、坚硬的镍磷(硼)合金镀层的表面处理工艺技术。
它具有高均匀性、高结合强度、高耐磨性、高耐腐蚀及绿色环保等品质特征。
化学镀镍(ENP)工艺技术ENP(Electroless Nickel plating)工艺是一种用非电镀(化学)的方法,在零部件表面沉镀出十分均匀、光亮、坚硬的镍磷硼合金镀层的先进表面处理工艺。
它兼有高匀性、高结合强度、高耐磨性、高耐腐蚀性和无漏镀缺陷及仿真性极好六大优点,其综合性能优于电镀铬。
在很多环境介质中甚至比不锈钢更耐腐蚀,用来代替不锈钢可以降低工件成本。
在工艺方面,化学镀镍是靠化学方法形成镀层,不受零件形状和尺寸的限制,任何复杂形状的零件各部位镀层厚度均匀一致,施镀过程中厚度精度为±2μm,能够满足各种复杂精密部件的尺寸要求,而且镍合金镀层质密光滑,镀后无需任何加工,还可以反复修镀。
该技术是目前发达国家重点推广的表面处理新技术。
一、ENP的基本原理ENP的基本原理是以次亚磷酸盐为还原剂,将镍盐还原成镍,同时使金属层中含有一定的磷,沉淀的镍膜具有催化性,可使反应继续进行下去。
关于ENP的具体反应机理,目前尚无统一认识,现为大多数人所接受的原子氢态理论是:1、镀液在加热时,通过次亚磷酸根在水溶液中脱氢,而形成亚磷酸根,同时放出生态原子氢,即:H2PO2-+H2O→H2PO32-+H++2[H]2、初生态的原子氢吸附催化金属表面而使之活化,使镀液中的镍离子还原,在催化金属表面上沉积金属镍:Ni2++2[H]→Nio+2H+3、随着次亚磷酸根的分解,还原成磷:H2PO2-+[H]→H2O+OH-+Po镍原子和磷原子共同沉积而形成Ni-P合金,因此,ENP的基本原理也就是通过镀液中离子还原,同时伴随着次亚磷酸盐的分解而产生磷原子进入镀层,形成过饱和的Ni-P固溶体。
光纤酸性化学镀镍工艺
关键 词 : 酸性 化 学镀镍 ; 英光 纤 ; 石 沉积 速率 ; 化 ; 敏 活化 ;温度 中图分 类号 : 4 4 4 0 8 . 文献标 识 码 : A
Te h o o y o e t o e s Nik e p a i g c n l g fElc r l s c l— l tn — o i e n a i n ii n n F b ri n Acd Co d to
f u d t a n e e s r o c a s n f e h r c s f r h n l o o t u u lt g ly r o n h ti i u n c sa y t o r e i r n t e p o e s o e a d ef r c n i o sp ai e .Th il e l e ts b i p n n a en e y r d a o t e s u i r ,c n iu u ,b i h n u t ,a d h sg o d e ief r ef m eq a t b r t o t a s b mn d wa nf m o o t o s r t d s b l n o d a h s c r t u rzf e h u t — n g a e a v o o h i wi o c
文 章 编 号 : 6 42 7 ( 0 1 0 —0 50 1 7 — 9 4 2 1 ) 20 5 — 5
光 纤 酸 性 化 学 镀 镍 . 艺 T.
谢 中 , 李 科 , 桂 芳 , 艳 明 , 双磊 , 扬 昭 黄 周 冯 马
( 南 大学 物 理 与 微 电 子 科 学 学 院 , 南 长 沙 湖 湖 408 ) 1 0 2
H2 i O 3 ,tep i 4 8 a dtepaigtmp rtr s8 s . 5 h H . ,n h lt O s n e eau ei 8℃.I ec n t n f pi zd po es th sb e nt o d i so t e r cs ,i a en h i o o mi
化学镀镍流程
化学镀镍流程化学镀镍是一种常见的表面处理工艺,通过在金属表面沉积一层镍来提高其耐腐蚀性、耐磨性和美观度。
下面将介绍化学镀镍的流程及相关注意事项。
首先,准备工作。
在进行化学镀镍之前,需要对待镀件进行表面处理,包括去油、酸洗、水洗等工序,确保表面干净,无杂质。
同时,准备镀液和镀液搅拌设备,确保镀液的配制和搅拌均匀。
其次,浸泡清洗。
将经过表面处理的待镀件浸入预处理槽中,进行清洗。
清洗的目的是去除表面残留的杂质和氧化物,确保镀层的附着力和光洁度。
然后,进行化学镀镍。
将清洗后的待镀件浸入镀液中,通电进行镀镍。
镀液中的主要成分包括镍盐、氨水、硼砂等,通过控制电流密度和镀液温度来控制镀层的厚度和均匀度。
接着,水洗。
在镀镍结束后,将镀件取出,进行水洗。
水洗的目的是去除镀液残留在表面的化学物质,防止对镀层质量的影响。
最后,烘干和包装。
将水洗后的镀件进行烘干,确保表面无水痕。
然后进行包装,以防止镀层在运输和储存过程中受到损坏。
在进行化学镀镍的过程中,需要注意以下几点:1. 控制镀液的配制和搅拌,保持镀液的均匀性和稳定性,以确保镀层的质量。
2. 控制镀液的温度和PH值,这对镀层的光洁度和均匀度有重要影响。
3. 控制电流密度和镀液的流速,以确保镀层的厚度和均匀度。
4. 定期对镀液进行分析和调整,确保镀液的成分和性能符合要求。
5. 在操作过程中,要严格遵守安全操作规程,避免镀液的溅洒和工作场所的污染。
综上所述,化学镀镍是一项重要的表面处理工艺,通过严格控制每个环节,可以获得高质量的镀层,提高金属制品的使用性能和外观质量。
希望以上内容对您有所帮助,谢谢阅读!。
石英光纤表面化学镀ni-p-b工艺及其动力学
石英光纤表面化学镀ni-p-b工艺及其动力学石英光纤表面化学镀Ni-P-B工艺是用镀液在石英光纤表面均匀地
沉积层Ni-P-B合金,以提高石英光纤的化学稳定性和耐腐蚀性能的方法。
同时,Ni-P-B合金具有优异的磁性、磨损和机械性能,因此也可
以应用于某些探测器、传感器等领域。
该工艺主要涉及镀液的配制、表面预处理和镀液处理等环节。
首先,将NiCl2、NaH2PO2、boric acid、聚乙二醇等化合物按一定比例
配制成镀液,并通过pH值的调整和温度的控制保持相对稳定。
然后,
对石英光纤表面进行预处理,包括去油、清洗、激活等步骤,以增强
镀液与石英光纤表面的联系。
接下来,将石英光纤浸泡在镀液中,进
行化学反应,使得镀液中的Ni、P、B离子与石英光纤表面反应生成
Ni-P-B合金保护层。
该工艺的动力学是一个复杂的过程,其速率决定于许多因素,如
反应温度、pH值、镀液浓度等。
一般而言,反应温度和pH值对反应速率的影响比较大。
与低温下(40℃左右)的反应相比,在高温下(60℃
以上)反应的速度会更快。
而在一定范围内,增加pH值可以增加Ni、P、B离子的浓度,加快反应速率。
总之,石英光纤表面化学镀Ni-P-B工艺可以改善石英光纤的化学稳定性和耐腐蚀性能,并可以在某些场合下应用于探测器、传感器等领域。
该工艺的动力学受多种因素的影响,需在实际应用中进行针对性的调控。
化学镀镍的工艺流程
化学镀镍的工艺流程
《化学镀镍的工艺流程》
化学镀镍是一种在金属表面进行电化学处理,将镍层镀在金属表面上的工艺。
它不仅可以提高金属的外观质感,增加金属的耐腐蚀性能,还可以改善金属的导电性能和磨损性能。
下面将介绍化学镀镍的工艺流程。
1. 准备工作
在进行化学镀镍之前,需要将被镀物件进行清洗和除油处理,以确保表面干净平整。
2. 酸洗
将准备好的被镀物件浸泡在酸性溶液中,去除表面的氧化层和杂质,保证镍涂层与金属基材之间的良好结合。
3. 镀前处理
在酸洗之后,需要进行镀前处理,比如进行特定的电镀活性剂处理,以便于后续的电镀操作。
4. 化学镀镍
将经过酸洗和镀前处理的被镀物件浸泡在含有镍盐和对应添加剂的电解液中,利用电流的作用在金属表面上沉积出一层均匀的镍涂层。
5. 镀后处理
镀后处理是为了提高镀件的表面质量和光亮度。
通常包括洗净、
中和、干燥等步骤。
通过上述工艺流程,可以将镍均匀地镀在金属表面上,提高金属的性能和外观。
化学镀镍因其工艺简单、成本适中,广泛应用于汽车零部件、五金配件、家电产品等领域。
化学镍工艺流程
化学镍工艺流程化学镍工艺流程是指利用化学方法将镍离子还原成金属镍的过程。
化学镍工艺流程主要包括前处理、电镀和后处理等环节。
首先是前处理环节。
在进行化学镍电镀之前,需要对待镀对象进行一系列的处理。
第一步是清洗,通过浸泡在碱性溶液中,去除表面的油脂、污垢和氧化物。
第二步是酸洗,使用酸性溶液去除金属表面的氧化皮,增加镍层与金属表面的结合力。
第三步是活化,使用活化液处理金属表面,以提高电镀效果。
接下来是电镀环节。
在准备好了处理过的镀对象后,需要将其放置在含有镍离子的电解液中进行电镀。
电解液中的主要成分是含有镍离子的盐酸镍溶液。
电镀过程中,将镀对象作为阴极,镍阳极作为阳极,施加直流电流,使镍离子在阴极上还原成金属镍,并沉积在镀对象表面,形成一层均匀、致密的镍层。
最后是后处理环节。
电镀完成后,需要对镀层进行一系列的后处理步骤,以提高镍层的附着力和防腐性。
第一步是清洗,使用去离子水和碱性溶液去除电镀液残留和污染物。
第二步是抛光,通过机械或化学方法去除表面的氧化层和不良镍层。
第三步是硬化,将镀对象在高温下烘烤,使镍层表面形成一层致密的氧化镍膜,提高镀层的硬度和耐腐蚀性。
化学镍工艺流程在实际应用中广泛用于各种金属制品的表面处理,如汽车零部件、工具、家电等。
它具有厚膜、均匀性好、附着力强、耐腐蚀性好等优点。
通过不同的处理参数和控制条件,可以得到不同要求的镀层,如亮镍、半亮镍和黑镍等。
总之,化学镍工艺流程是一种应用广泛的金属表面处理方法。
它通过一系列的前处理、电镀和后处理环节,将镍离子还原成金属镍,并形成一层均匀、致密的镍层。
化学镍工艺流程的应用可以提高制品的表面质量和性能,延长其使用寿命。
在未来的发展中,化学镍工艺流程将继续得到改进和创新,以满足不断变化的工业需求。
石英光纤表面化学镀ni-p-b工艺及其动力学
石英光纤表面化学镀ni-p-b工艺及其动力学1. 石英光纤表面化学镀Ni-P-B工艺是什么?该工艺是通过在石英光纤表面进行化学镀Ni-P-B,以提高其表面性能和使用寿命。
其主要步骤包括表面处理、镀前处理、浸镀处理、洗涤处理和烘干处理。
2. 该工艺的优点是什么?该工艺有以下优点:a. 可以在石英光纤表面形成一层致密的、均匀的、具有良好的耐腐蚀性和耐磨性的Ni-P-B合金沉积层,提高其表面性能;b. 工艺简单、操作方便、成本低廉;c. 沉积层厚度可控,易于调节;d. 沉积速率快,可大规模生产。
3. 该工艺的缺点是什么?该工艺的缺点主要有以下几个方面:a. 镀层的均匀性和致密性会受到石英光纤表面形态、成分和形状的影响;b. 有可能产生镀层内部应力和开裂现象;c. 化学镀Ni-P-B工艺有一定的毒性和污染性,需要注意环保问题。
4. 该工艺的动力学模型是什么?该工艺的动力学模型是通过分析化学反应的速率、反应物浓度、温度等因素,建立了反应动力学模型,可以预测反应速率和沉积层的性质。
其中,主要的动力学方程包括表征沉积速率的Mass Action Law、Langmuir–Hinshelwood假设和电荷转移控制假设等。
5. 该工艺的应用领域是什么?该工艺主要应用范围包括石英光纤、LCD、LED、传感器等领域,在这些领域中,石英光纤是该工艺的主要应用对象。
石英光纤作为光通信的基础材料,其表面性能的好坏对光通信的传输性能、稳定性和使用寿命等方面有着重要的影响。
因此,化学镀Ni-P-B工艺在石英光纤的制备过程中发挥了重要作用。
同时,该工艺在其他领域中也有其独特的应用价值。
6. 该工艺未来的发展趋势是什么?随着科技的发展,人们对石英光纤的需求越来越高,而石英光纤的表面化学镀技术也在不断研究和改进中。
未来,该技术将更加注重环境友好、高效节能、快速自动化等方面的发展。
同时,精密化和智能化的要求也将成为该技术的一个重要发展趋势,以满足不同领域的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙源期刊网
光纤酸性化学镀镍工艺
作者:谢中李科黄桂芳周艳明冯双磊马扬昭
来源:《湖南大学学报·自然科学版》2011年第02期
摘要:系统研究了石英光纤表面酸性化学镀镍工艺,同时研究了温度、主盐浓度、pH
等影响镀层表面形貌的因素,得到石英光纤敏化、活化的最佳温度为35℃,最佳施镀条件为:次磷酸钠浓度为0.2mol/L,镀液中镍离子与次磷酸钠的质量浓度比为0.35,pH值为
4.8,温度为88℃,在优化的工艺条件下,发现光纤施镀前预处理过程中的粗化不是得到连续镀层的必要条件,在未经粗化的石英光纤表面得到了均匀、连续、光亮、细腻、附着力良好的镍镀层,镀层的沉积速率为
5.76um/h,。