最新高考物理典型方法、习题及专题汇编含详解答案中集
高考物理相互作用解题技巧及经典题型及练习题(含答案)及解析
高考物理相互作用解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试相互作用1.(18分)如图所示,金属导轨MNC和PQD,MN与PQ平行且间距为L,所在平面与水平面夹角为α,N、Q连线与MN垂直,M、P间接有阻值为R的电阻;光滑直导轨NC 和QD在同一水平面内,与NQ的夹角都为锐角θ。
均匀金属棒ab和ef质量均为m,长均为L,ab棒初始位置在水平导轨上与NQ重合;ef棒垂直放在倾斜导轨上,与导轨间的动摩擦因数为μ(μ较小),由导轨上的小立柱1和2阻挡而静止。
空间有方向竖直的匀强磁场(图中未画出)。
两金属棒与导轨保持良好接触。
不计所有导轨和ab棒的电阻,ef 棒的阻值为R,最大静摩擦力与滑动摩擦力大小相等,忽略感应电流产生的磁场,重力加速度为g。
(1)若磁感应强度大小为B,给ab棒一个垂直于NQ、水平向右的速度v1,在水平导轨上沿运动方向滑行一段距离后停止,ef棒始终静止,求此过程ef棒上产生的热量;(2)在(1)问过程中,ab棒滑行距离为d,求通过ab棒某横截面的电荷量;(3)若ab棒以垂直于NQ的速度v2在水平导轨上向右匀速运动,并在NQ位置时取走小立柱1和2,且运动过程中ef棒始终静止。
求此状态下最强磁场的磁感应强度及此磁场下ab棒运动的最大距离。
【答案】(1)Q ef=;(2)q=;(3)B m=,方向竖直向上或竖直向下均可,x m=【解析】解:(1)设ab棒的初动能为E k,ef棒和电阻R在此过程产生热量分别为Q和Q1,有Q+Q1=E k①且Q=Q1 ②由题意 E k=③得 Q=④(2)设在题设的过程中,ab棒滑行的时间为△t,扫过的导轨间的面积为△S,通过△S的磁通量为△Φ,ab棒产生的电动势为E,ab棒中的电流为I,通过ab棒某截面的电荷量为q,则E=⑤且△Φ=B△S ⑥电流 I=⑦又有 I=⑧由图所示,△S=d(L﹣dcotθ)⑨联立⑤~⑨,解得:q=(10)(3)ab棒滑行距离为x时,ab棒在导轨间的棒长L x为:L x=L﹣2xcotθ (11)此时,ab棒产生的电动势E x为:E=Bv2L x (12)流过ef棒的电流I x为 I x=(13)ef棒所受安培力F x为 F x=BI x L (14)联立(11)~(14),解得:F x=(15)有(15)式可得,F x在x=0和B为最大值B m时有最大值F1.由题意知,ab棒所受安培力方向必水平向左,ef棒所受安培力方向必水平向右,使F1为最大值的受力分析如图所示,图中f m为最大静摩擦力,有:F1cosα=mgsinα+μ(mgcosα+F1sinα)(16)联立(15)(16),得:B m=(17)B m就是题目所求最强磁场的磁感应强度大小,该磁场方向可竖直向上,也可竖直向下.有(15)式可知,B为B m时,F x随x增大而减小,x为最大x m时,F x为最小值,如图可知F2cosα++μ(mgcosα+F2sinα)=mgsinα (18)联立(15)(17)(18),得x m=答:(1)ef棒上产生的热量为;(2)通过ab棒某横截面的电量为.(3)此状态下最强磁场的磁感应强度是,磁场下ab棒运动的最大距离是.【点评】本题是对法拉第电磁感应定律的考查,解决本题的关键是分析清楚棒的受力的情况,找出磁感应强度的关系式是本题的重点.2.如图所示,两个正三棱柱A、B紧靠着静止于水平地面上,三棱柱的中间有一个半径为R的光滑圆柱C,C的质量为2m,A、B的质量均为m.A、B与地面的动摩擦因数为μ.设最大静摩擦力等于滑动摩擦力,重力加速度为g.(1)三者均静止时A对C的支持力为多大?(2)A、B若能保持不动,μ应该满足什么条件?(3)若C受到经过其轴线竖直向下的外力而缓慢下降到地面,求该过程中摩擦力对A做的功【答案】(1) F N=33μ-.【解析】【分析】(1)对C进行受力分析,根据平衡求解A对C的支持力;(2)A保持静止,则地面对A的最大静摩擦力要大于等于C对A的压力在水平方向的分力,据此求得动摩擦因数μ应该满足的条件;(3)C缓慢下落同时A、B也缓慢且对称地向左右分开,A受力平衡,根据平衡条件求解滑动摩擦力大小,根据几何关系得到A运动的位移,再根据功的计算公式求解摩擦力做的功.【详解】(1) C受力平衡,2F N cos60°=2mg解得F N=2mg(2) 如图所示,A受力平衡F地=F N cos60°+mg=2mgf=F N sin60°=3mg因为f≤μF地,所以μ≥3(3) C缓慢下降的同时A、B也缓慢且对称地向左右分开.A的受力依然为4个,如图所图,但除了重力之外的其他力的大小发生改变,f也成了滑动摩擦力.A受力平衡知F′地=F′N cos60°+mgf′=F′N sin60°=μF′地解得f′33mgμμ-3μ>0,与本题第(2)问不矛盾.由几何关系知:当C下落地地面时,A向左移动的水平距离为x3所以摩擦力的功W=-f′x3μ-【点睛】本题主要是考查了共点力的平衡问题,解答此类问题的一般步骤是:确定研究对象、进行受力分析、利用平行四边形法则进行力的合成或者是正交分解法进行力的分解,然后在坐标轴上建立平衡方程进行解答.3.如图所示,AB、BC、CD和DE为质量可忽略的等长细线,长度均为5m,A、E两端悬挂在水平天花板上,AE=14m,B、D是质量均为m=7kg的相同小球,质量为M的重物挂于C点,平衡时C点离天花板的垂直距离为7m,试求重物质量M.【答案】18kg【解析】【分析】分析几何关系根据给出的长度信息可求得两绳子的夹角;再分别对整体和B、C进行受力分析,根据共点力的平衡条件分别对竖直方向和水平方向分析,联立即可求得M.【详解】设AB与竖直方向的夹角为θ,则由几何关系可知:(7﹣5sinθ)2+(7﹣5cosθ)2=52解得:sinθ+cosθ=解得:sinθ=0.6;或sinθ=0.8由图可知,夹角应小于45°,故0.8舍去;则由几何关系可知,BC与水平方向的夹角也为θ;设AB绳的拉力为T,则对整体分析可知:2Tcos37°=Mg+2mg设BC绳的拉力为N;则有:对B球分析可知:Tsinθ=Ncosθ联立解得:M=18Kg;【点睛】本题为较复杂的共点力的平衡条件问题,解题的关键在于把握好几何关系,正确选择研究对象,再利用共点力的平衡条件进行分析即可求解.4.如图所示:一根光滑的丝带两端分别系住物块A、C,丝带绕过两定滑轮,在两滑轮之间的丝带上放置了球B,D通过细绳跨过定滑轮水平寄引C物体。
高考物理专题物理方法知识点真题汇编含答案
高考物理专题物理方法知识点真题汇编含答案一、选择题1.在物理学的探索和发现过程中,科学家们运用了许多研究方法.以下关于物理学研究方法的叙述中不正确的是( )A .伽利略在研究自由落体运动时采用了微量放大法B .在不需要考虑物体本身的大小和形状时,用质点来代替物体的方法是理想模型法C .根据速度定义式v =,当△t →0时,就可以表示物体在t 时刻的瞬时速度,该定义运用了极限思维法D .在推导匀变速直线运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,再把各小段位移相加,这里运用了微元法2.如图所示,质量为m 的木块在质量为M 的长木板上,木块受到向右的拉力F 的作用向右滑行时,长木板处于静止状态,已知木块与木板间的动摩擦因数为1µ,木板与地面间的动摩擦因数为2µ,则木板受到地面的摩擦力( )A .大小为1µmg ,方向向左 B .大小为1µmg ,方向向右 C .大小为()2m M g μ+,方向向左D .大小为()2m M g μ+,方向向右3.如图所示,质量为M 、半径为R 的半球形匀质物体A 放在水平地面上,通过最高点处的钉子用水平细线拉住一质量为m 、半径为r 的光滑匀质球B ,则A .A 对地面的摩擦力方向向左B .B 对A 的压力大小为R r mg R +C .B 对A 的压力大小为mgD .细线对小球的拉力大小为r mg R4.如图所示,粗糙程度均匀的绝缘空心斜面ABC 放置在水平面上,∠CAB=30°,斜面内部O 点(与斜面无任何连接)固定有一正点电荷,一带负电的小物体(可视为质点)可以分别静止在M 、N 、MN 的中点P 上,OM =ON ,OM ∥AB ,则下列判断正确的是( )A.小物体分别在三处静止时所受力的个数一定都是4个B.小物体静止在P点时受到的支持力最大,静止在M、N点时受到的支持力相等C.小物体静止在P点时受到的摩擦力最大D.当小物体静止在N点时,地面给斜面的摩擦力为零5.在物理学的重大发现中科学家们创造出了许多物理学方法,如理想实验法、控制变量法、极限思想法、类比法和科学假说法、建立物理模型法等等.以下关于所用物理学研究方法的叙述不正确的是A.在不需要考虑物体本身的大小和形状时,用质点来代替物体的方法叫假设法B.根据速度定义式xvt∆=∆,当⊿t非常非常小时,xt∆∆就可以表示物体在t时刻的瞬时速度,该定义应用了极限思想法C.引入重心﹑合力与分力的概念时运用了等效替代法D.在推导匀变速运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,然后把各小段的位移相加,这里采用了微元法6.如图所示,在水平桌面上叠放着质量相等的A、B两块木板,在木板A上放着质量为m的物块C,木板与物块均处于静止状态.A、B、C之间以及B与地面间的动摩擦因数均为μ,设最大静摩擦力与滑动摩擦力大小相等,现用水平恒力F向右拉木板A,在下列说法正确的是( )A.A、 B间的摩擦力大小不可能等于F B.A、 C间的摩擦力大小一定等于μmg C.不管F多大,木板B一定会保持静止D.A、B、 C有可能一起向右做匀速直线运动7.下列四幅图中包含的物理思想方法叙述正确的是()A.图甲:观察桌面微小形变的实验,利用了等效法B.图乙:探究影响电荷间相互作用力的因素时,运用了微元法C.图丙:利用红蜡块的运动探究合运动和分运动的实验,体现了类比的思想D.图丁:伽利略研究力和运动关系时,运用了理想实验方法8.如图所示,质量为m的木块A放在质量为M的三角形斜面B上,现用大小均为F,方向相反的水平力分别推A和B,它们均在地面上静止不动,则( )A.B与地面之间可能存在摩擦力B.A与B之间可能存在摩擦力C.B对A的支持力一定大于mgD.B对A的支持力一定小于mg9.库仑通过实验研究电荷间的作用力与距离、电荷量的关系时,先保持电荷量不变,寻找作用力与电荷间距离的关系;再保持距离不变,寻找作用力与电荷量的关系.这种研究方法常被称为“控制变量法”.下列应用了控制变量法的实验是()A.验证机械能守恒定律B.探究力的平行四边形定则C.探究加速度与力、质量的关系D.探究匀变速直线运动速度随时间的变化规律10.物理学中建立概念运用许多科学方法,下列概念的建立有三个用到了“等效替代”的方法,有一个不属于这种方法,这个概念是()A.平均速度B.点电荷C.合力D.总电阻11.如图所示,已知M>m,不计滑轮及绳子的质量,物体M和m恰好做匀速运动,若将M与m 互换,M、m与桌面的动摩因数相同,则()A.绳子中张力增大B.物体M与m仍做匀速运动C.物体M与m做加速运动,加速度a=(M-m)g/MD.物体M与m做加速运动,加速度a=(M+m)g/M12.如图所示,重为G的光滑球在倾角为θ的斜面和竖直墙壁之间处于静止状态.若将此斜面换成材料和质量相同,但倾角θ稍小一些的斜面,以下判断正确的是 ()A.球对斜面的压力增大B.球对斜面的压力减小C.斜面可能向左滑动D.地面受到的压力变小13.从科学方法角度来说物理学中引入“质点”运用了()A.比值定义法B.理想实验法C.建立模型法D.控制变量法14.在物理学的发展过程中,科学的物理思想与方法对物理学的发展起到了重要作用,下列关于物理思想和方法的说法中,错误的是()A.合力与分力的关系体现了等效替换的思想B.库仑扭秤实验和卡文迪许扭秤实验都用了放大的思想C.加速度a=vt∆∆、电场强度E=Fq都采用了比值定义法D.牛顿第一定律是利用逻辑思维对事实进行分析的产物,能用实验直接验证15.下列关于物理学史和物理研究方法的叙述中正确的是()A.控制变量法是科学探究两个量关系的重要方法B.牛顿通过大量实验验证得出了牛顿第一定律C.伽利略利用理想斜面实验和逻辑推理证明了自由落体运动是初速度为零的匀加速运动D.法拉第发现电流的磁效应与他坚信电和磁之间一定存在联系的哲学思想是分不开的16.许多科学家在物理学发展过程中做出了重要贡献,下列叙述中符合物理学史实的是()A.牛顿发现了万有引力定律,通过实验测出了万有引力常量B.哥白尼提出了日心说并发现了行星沿椭圆轨道运行的规律C.库仑在前人研究的基础上通过扭秤实验研究得出了库仑定律D.法拉第通过实验得出了欧姆定律17.如图所示,有3000个质量均为m的小球,将它们用长度相等的轻绳依次连接,再将其左端用细绳固定在天花板上,右端施加一水平力使全部小球静止.若连接天花板的细绳与水平方向的夹角为37°.则第1218个小球与1219个小球之间的轻绳与水平方向的夹角α的正切值等于(sin37°=0.6,cos37°=0.8)A.17814000B.12194000C.6092000D.891200018.如图所示物体在水平力F作用下静止在斜面上,斜面静止.若稍许增大水平力F,而物体和斜面仍能保持静止时()A.斜面对物体的静摩擦力一定增大B.斜面对物体的静摩擦力及支持力都不一定增大C.地面对斜面的静摩擦力一定增大,斜面对物体支持力一定增大D.斜面对物体的静摩擦力和地面对斜面的静摩擦力都不一定增大19.如图所示,三角形劈块放在粗糙的水平面上,劈块上放一个质量为m 的物块,物块和劈块均处于静止状态,则粗糙水平面对三角形劈块()A.有摩擦力作用,方向向左;B.有摩擦力作用,方向向右;C.没有摩擦力作用;D.条件不足,无法判定.20.如图所示,置于粗糙水平面上的物块A和B用轻质弹簧连接,在水平恒力F的作用下,A、B以相同的加速度向右运动.A、B的质量关系为m A>m B,它们与地面间的动摩擦因数相同.为使弹簧稳定时的伸长量增大,下列操作可行的是()A.仅减小B的质量B.仅增大A的质量C.仅将A、B的位置对调D.仅减小水平面的粗糙程度21.如图所示,质量为m=1.2Kg、顶角为α=370的直角劈和质量为M=2 Kg的正方体放在两竖直墙和水平地面间,处于静止状态.若不计一切摩擦, g取10 m/s2,墙面对正方体的弹力大小与水平地面对正方体的弹力大小分别为()A.20N,36N B.16N,32N C.16N,40N D.20N,20N22.学习物理不仅要掌握物理知识,还要领悟并掌握处理物理问题的思想方法。
高考物理专题物理方法知识点全集汇编及答案解析
高考物理专题物理方法知识点全集汇编及答案解析一、选择题1.如图,有A、B两个完全相同的小球并排放在倾角为30°的固定斜面上,B球被竖直挡板挡住,不计一切摩擦,则A、B之间的作用力与竖直挡板对B的作用力之比为()A.32B.33C.34D.362.如图所示,重为G的光滑球在倾角为θ的斜面和竖直墙壁之间处于静止状态.若将此斜面换成材料和质量相同,但倾角θ稍小一些的斜面,以下判断正确的是 ()A.球对斜面的压力增大B.球对斜面的压力减小C.斜面可能向左滑动D.地面受到的压力变小3.如图所示,A、B、C 三物块叠放并处于静止状态,水平地面光滑其他接触面粗糙,以下受力分析正确的是( )A.A 与墙面间存在压力B.A 与墙面间存在静摩擦力C.A 物块共受 3 个力作用D.B 物块共受 5 个力作用4.如图所示,竖直平面内放一直角杆MON,杆的水平部分粗糙,动摩擦因数μ=0.2,杆的竖直部分光滑.两部分各套有质量均为1 kg的小球A和B,A、B球间用细绳相连.初始A、B均处于静止状态,已知OA=3 m,OB=4 m,若A球在水平拉力的作用下向右缓慢地移动1 m(取g=10 m/s2),那么该过程中拉力F做功为()A.4 JB.10 JC.12 JD.14 J5.如图所示,bc为固定在小车上的水平横杆,物块M穿在杆上,靠摩擦力与杆保持相对静止,M又通过轻细线悬吊着一个小铁球m,此时小车以大小为a的加速度向右做匀加速运动,而M、m均相对小车静止,细线与竖直方向的夹角为小车的加速度逐渐增大,M 始终和小车保持相对静止,当加速度增加到2a时A.细线与竖直方向的夹角增加到原来的2倍B.细线的拉力增加到原来的2倍C.横杆对M弹力增大D.横杆对M的摩擦力增加到原来的2倍6.如图所示,质量为M、半径为R的半球形匀质物体A放在水平地面上,通过最高点处的钉子用水平细线拉住一质量为m、半径为r的光滑匀质球B,则A.A对地面的摩擦力方向向左B.B对A的压力大小为R rmg RC.B对A的压力大小为mgD.细线对小球的拉力大小为r mg R7.如图所示,物体A和B叠放并静止在固定粗糙斜面C上,A、B的接触面与斜面平行。
高考物理试题分类汇编及答案解析(16个专题)
7.5m ,B 选项正确。 1 1 0~1 内, x甲 = 1 10m=5m , x乙 = 1 10+15 m=12.5m , x2 x乙 x甲 =7.5m , 2 2
间间隔 t 内位移为 s,动能变为原来的 9 倍。该质点的加速度为( A.错误!未找到引用源。 源。 【答案】A B.错误!未找到引用源。
) 。
C.错误!未找到引用
D.错误!未找到引用源。
1 1 2 【解析】 设初速度为 v1 , 末速度为 v2 , 根据题意可得 9 mv12 mv2 , 解得 v2 3v1 , 2 2
说明甲、乙第一次相遇。A、C 错误。 甲、乙两次相遇地点之间的距离为 x x甲 x甲 =45m 5m=40m ,所以 D 选项正确。 2.(全国新课标 II 卷,19)两实心小球甲和乙由同一种材料制成,甲球质量大 于乙球质量. 两球在空气中从静止开始下落,假设它们运动时受到的阻力与 球的半径成正比,与球的速率无关.若它们下落相同 的距离,则 ( ) 。 A.甲球用的时间比乙球长 B.甲球末速度的大小大于乙球末速度的大小 C.甲球加速度的大小小于乙球加速度的大小 D.甲球克服阻力做的功大于乙球克服阻力做的功。 【答案】BD 【解析】由已知可设 f kR ① 则受力分析得:
高考物理试题分类汇编及答案解析(16 个专题)
目录
专题一 专题二 专题三 专题四 专题五 专题六 专题七 专题八 专题九 专题十 专题十一 专题十二 专题十三 专题十四 专题十五 专题十六 直线运动……………………………………………………………… 1 相互作用……………………………………………………………… 5 牛顿运动定律………………………………………………………… 8 曲线运动……………………………………………………………… 16 万有引力与航天……………………………………………………… 23 机械能守恒定律……………………………………………………… 27 静电场………………………………………………………………… 35 恒定电流……………………………………………………………… 47 磁场…………………………………………………………………… 50 电磁感应……………………………………………………………… 61 交流电与传感器……………………………………………………… 67 力学实验……………………………………………………………… 69 电学实验………………………………………………………………78 选修 3-3……………………………………………………………… 89 选修 3-4……………………………………………………………… 93 选修 3-5……………………………………………………………… 98
最新高考物理典型方法、习题及专题汇编含详解答案
最新高考物理典型方法、习题及专题汇编含详解答案下集内容简介-by中国旅游特产门户13、物理思想与物理方法 14、图像及其应用15、与弹簧有关的物理问题 16、与绳传送带有关的物理问题17、天体运动的各种物理模型18、物块在木板上的各种运动19、有关碰撞的综合题20、光学计算题21、高考物理证明题13、物理思想与物理方法一、隔离分析法与整体分析法隔离分析法是把选定的研究对象从所在物理情境中抽取出来,加以研究分析的一种方法.需要用隔离法分析的问题,往往都有几个研究对象,应对它们逐一隔离分析、列式.并且还要找出这些隔离体之间的联系,从而联立求解.概括其要领就是:先隔离分析,后联立求解.1.隔离法. Array Array【例1】如图所示,跨过滑轮细绳的两端分别系有m1=1kg、m2=2kg的物体A和B.滑轮质量m=0.2kg,不计绳与滑轮的摩擦,要使B静止在地面上,则向上的拉力F不能超过多大?2.整体分析法.整体分析法是把一个物体系统(内含几个物体)看成一个整体,或者是着眼于物体运动的全过程,而不考虑各阶段不同运动情况的一种分析方法. / 【例2】如图所示,质量0.5kg、长1.2m的金属盒,放在水平桌面上,它与桌面间动摩擦因数 =0.125.在盒内右端放着质量也是0.5kg、半径0.1m的弹性小球,球与盒接触光滑.若在盒的左端给盒以水平向右1.5N·s的冲量,设盒在运动中与球碰撞的时间极短,且无能量损失.求:盒从开始运动到完全停止所通过的路程是多少?(g取10m/s2)二、极值法与端值法极值问题是中学物理中常见的一类问题.在物理状态发生变化的过程中,某一个物理量的变化函数可能不是单调的,它可能有最大值或最小值.分析极值问题的思路有两种:一种是把物理问题转化为数学问题,纯粹从数学角度去讨论或求解某一个物理函数的极值.它采用的方法也是代数、三角、几何等数学方法;另一种是根据物体在状态变化过程中受到的物理规律的约束、限制来求极值.它采用的方法是物理分析法.【例3】如图所示,一辆有四分之一圆弧的小车停在不光滑的水平地面上,质量为m 的小球从静止 开始由车的顶端无摩擦滑下,且小车始终保持静止状态.试分析:当小球运动到什么位置时,地面对小车的静摩擦力最大?最大值为多少?【例4】如图所示,娱乐场空中列车 由许多节完全相同的车厢组成,列车先沿水平轨道行驶,然后滑上半径为R 的空中圆环形光滑轨道.若列车全长为L(L >2 R),R 远大于一节车厢的长 度和高度,那么列车在运行到圆环前的速度v 0至少多大,才能使整个列车安全通过圆环轨道?三、等效法等效法是物理思维的一种重要方法,其要点是在效果不变的前提下,把较复杂的问题转化为较简单或常见的问题.应用等效法,关键是要善于分析题中的哪些问题(如研究对象、运动过程、状态或电路结构等)可以等效.【例5】如图(甲)所示电路甲由8个不同的电阻组成,已知R 1=12Ω,其余电阻阻值未知,测得A、B间的总电阻为4Ω,今将R1换成6Ω的电阻,则A、B间的总电阻是多少?【例6】如图所示,一个“V”型玻璃管倒置于竖直平面内,并处于E=103v/m、方向竖直向下的匀强电场中,一个带负电的小球,Array重为G=10-3N,电量q=2×10-6C,从A点由静止开始运动,球与管壁的摩擦因数μ=0.5.已知管长AB=BC=2m,倾角α=37°,且管顶B处有一很短的光滑圆弧.求:(1)小球第一次运动到B时的速度多大?(2)小球运动后,第一次速度为0的位置在何处?(3)从开始运动到最后静止,小球通过的总路程是多少?(sin37°=0.6,cos37°=0.8)四、排除法解选择题排除法又叫筛选法,在选择题提供的四个答案中,若能判断A、B、C选项不对,则答案就是D项.在解选择题时,若能先把一些明显不正确的答案排除掉,在所剩下的较少选项中再选择正确答案就较省事了.【例7】在光滑水平面上有A、B两个小球,它们均向右在同一直线上运动,若它们在碰撞前的动量分别是p A=12kg·m/s,p B=13kg·m/s(向右为正方向),则碰撞后它们动量的变化量△p A及△p B有可能的是A.△p A =4kg·m/s △p B =-4kg ·m/sB.△p A =-3kg ·m/s △p B =3kg ·m/sC.△p A =-24kg ·m/s △p B =24kg ·m/sD.△p A =-5kg ·m/s △p B =8kg ·m/s五、微元法一切宏观量都可被看成是由若干个微小的单元组成的.在整个物体运动的全过程中,这些微小单元是其时间、空间、物质的量的任意的且又具有代表性的一小部分.通过对这些微小单元的研究,我们常能发现物体运动的特征和规律.微元法就是基于这种思想研究问题的一种方法.【例8】真空中以速度v飞行的银原子持续打在器壁上产生的压强为P,设银原子打在器壁上后便吸附在器壁上,银的密度为ρ.则器壁上银层厚度增加的速度u为多大?六、作图法作图法就是通过作图来分析或求解某个物理量的大小及变化趋势的一种解题方法.通过作图来揭示物理过程、物理规律,具有直观形象、简单明了等优点.【例9】某物体做初速度不为0的匀变速直线运动,在时间t 内通过的位移为s ,设运动过程中间时刻的瞬时速度为v 1,通过位移s 中点的瞬间速度为v 2,则A.若物体做匀加速直线运动,则v 1>v 2B.若物体做匀加速直线运动,则v 1 <v 2C.若物体做匀减速直线运动,则v 1 >v 2D.若物体做匀减速直线运动,则v 1 <v 2 练习题1.如图所示,直杆质量为M ,小猴质量为m .今将悬线剪断后,小猴保持所在高度不变,直杆的加速度有多大?2.带电量为q 的质量为m 的小球在离光滑绝缘平面高H0处,以v0速度竖直向上运动.已知小球在运动中所受阻力为f ,匀强电场场强为E ,方向竖直向下,如图9-15所示.小球每次与水平面相碰均无机械能损失,带电小球经过的路程多大?3.两相互平行的金属板,长L ,板间距离为d ,两板间有沿水平向纸面外的匀强磁场.今有一质量为m 带电量为q 的正离子(重力不计)从两板中央的左端水平射入磁场中,如图所示.问初速度v 0应满足什么条件,才能使带电粒子飞离磁场而不至于落到金属板上?专题十三物理思想与物理方法答案【例1】【解析】(1)先以B为研究对象,当B即将离开地面时,地面对它的支持力为0.它只受到重力m B g和绳子的拉力T的作用,且有:T- m B g=0.(2)再以A为研究对象,在B即将离地时,A受到重力和拉力的作用,由于T=m B g>m A g,所示A将加速上升.有T- m A g=m A a A.(3)最后以滑轮为研究对象,此时滑轮受到四个力作用:重力、拉力、两边绳子的两个拉力T.有F- mg-2T=ma.这里需要注意的是:在A上升距离s时,滑轮只上升了s/2,故A的加速度为滑轮加速度的2倍,即:a A=2a.由以上四式联立求解得:F=43N.【例2】【解析】此题中盒与球交替做不同形式的运动,若用隔离法分段求解,将非常复杂.我们可以把盒和球交替运动的过程看成是在地面摩擦力作用下系统动能损耗的整体过程.这个系统运动刚开始所具有的动能即为盒的动能mv02/2=p2/2m=1.52/(2×0.5)=2.25J整体在运动中受到的摩擦力:f=μN=μ2mg=10×0.125=1.25N根据动能定理,可得-fs=0-mv02/2 , s=1.8m【解题回顾】不少同学分析完球与盒相互作用和运动过程后,用隔离法分段求解.先判断盒与球能否相撞,碰撞后交换速度,再求盒第二次运动的路程,再把各段路程相加.对有限次碰撞尚能理解,但如果起初的初动能很大,将会发生多次碰撞,遇到这种情况时,同学们会想到整体法吗?当然,隔离分析法与整体分析法是相辅相成的,是不可分割的一个整体。
高考物理最新物理方法知识点全集汇编含答案
高考物理最新物理方法知识点全集汇编含答案一、选择题1.如图所示,OA、OB是两根轻绳,AB是轻杆,它们构成一个正三角形。
在A、B处分别固定着质量均为m的小球,此装置悬挂在O点。
现对B处小球施加水平外力F,让绳OA位于竖直位置。
设此状态下OB绳中张力大小为T,已知当地重力加速度为g,则( )A.T=2mg B.T>2mgC.T<2mg D.三种情况皆有可能2.如图所示,粗糙的水平地面上有三块材料完全相同的木块A、B、C,质量均为m,B、C之间用轻质细绳连接.现用一水平恒力F作用在C上,三者开始一起做匀加速运动,运动过程中把一块橡皮泥粘在某一块上面,系统仍加速运动,且始终没有相对滑动.则在粘上橡皮泥并达到稳定后,下列说法正确的是()A.若粘在C木块上面,绳的拉力增大,A、B间摩擦力减小B.若粘在A木块上面,绳的拉力减小,A、B间摩擦力不变C.若粘在B木块上面,绳的拉力增大,A、B间摩擦力增大D.若粘在C木块上面,绳的拉力和A、B间摩擦力都减小3.在物理学的重大发现中科学家们创造出了许多物理学方法和思路,以下关于所用研究方法或思路的叙述正确的是()A.在不需要考虑物体本身的大小和形状时,用质点来代替物体的方法叫假设法B.根据速度定义式xvt∆=∆,当△t非常非常小时,xt∆∆就可以表示物体在t时刻的瞬时速度,该定义应用了极限思想方法C.伽利略对落体问题的研究思路是:问题→猜想→实验验证→数学推理→合理外推→得出结论D.在推导匀变速运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,然后把各小段的位移相加,这里采用了类比法4.如图所示,竖直平面内放一直角杆MON,杆的水平部分粗糙,动摩擦因数μ=0.2,杆的竖直部分光滑.两部分各套有质量均为1 kg的小球A和B,A、B球间用细绳相连.初始A、B均处于静止状态,已知OA=3 m,OB=4 m,若A球在水平拉力的作用下向右缓慢地移动1 m(取g=10 m/s2),那么该过程中拉力F做功为()A .4 JB .10 JC .12 JD .14 J5.如图所示,物体A 和B 叠放并静止在固定粗糙斜面C 上,A 、B 的接触面与斜面平行。
高中物理动量定理解题技巧及经典题型及练习题(含答案)及解析.docx
高中物理动量定理解题技巧及经典题型及练习题( 含答案 ) 及解析一、高考物理精讲专题动量定理1.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。
某型“礼花”底座仅0.2s 的发射时间,就能将质量为 m=5kg 的礼花弹竖直抛上 180m 的高空。
(忽略发射底座高度,不计空气阻力, g 取 10m/s 2)(1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力)(2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略不计),测得前后两块质量之比为1: 4,且炸裂时有大小为E=9000J 的化学能全部转化为了动能,则两块落地点间的距离是多少?【答案】 (1)1550N; (2)900m【解析】【分析】【详解】(1)设发射时燃烧的火药对礼花弹的平均作用力为F,设礼花弹上升时间为t,则:h 1gt 2 2解得t 6s对礼花弹从发射到抛到最高点,由动量定理Ft 0mg(t t0 )0其中t00.2s解得F 1550N(2)设在最高点爆炸后两块质量分别为m1、 m2,对应的水平速度大小分别为v1、 v2,则:在最高点爆炸,由动量守恒定律得m1v1m2 v2由能量守恒定律得E 1m1v121m2v22 22其中m11m24 m m1m2联立解得v1120m/sv230m/s 之后两物块做平抛运动,则竖直方向有h 1gt 2 2水平方向有s v1t v2t由以上各式联立解得s=900m2.质量为 m 的小球,从沙坑上方自由下落,经过时间t1到达沙坑表面,又经过时间t2停在沙坑里.求:⑴沙对小球的平均阻力F;⑵小球在沙坑里下落过程所受的总冲量I.mg(t1t 2 )【答案】 (1)(2) mgt1t2【解析】试题分析:设刚开始下落的位置为A,刚好接触沙的位置为B,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t1 +t2,而阻力作用时间仅为t2,以竖直向下为正方向,有:mg(t 1+t2)-Ft2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t1时间内只有重力的冲量,在t2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有:mgt 1-I=0,∴I=mgt1方向竖直向上考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.3.如图所示,足够长的木板端, A、 B、C 的质量分别为A 和物块m、2m 和C置于同一光滑水平轨道上,物块 B 置于 A 的左3m,已知 A、 B 一起以 v0的速度向右运动,滑块C向左运动,A、C 碰后连成一体,最终A、B、 C 都静止,求:(i) C 与 A 碰撞前的速度大小(i i )A、 C 碰撞过程中 C 对 A 到冲量的大小.【答案】( 1) C 与 A 碰撞前的速度大小是v0;(2) A、 C 碰撞过程中 C 对 A 的冲量的大小是3mv0.2【解析】【分析】【详解】试题分析:①设 C 与 A 碰前速度大小为v1,以A碰前速度方向为正方向,对A、 B、 C 从碰前至最终都静止程由动量守恒定律得:(m 2m) v0-3mv1 ?0解得: v1v0.②设 C 与 A 碰后共同速度大小为v2,对A、C在碰撞过程由动量守恒定律得:mv0-3mv1( m 3m)v2在 A、 C 碰撞过程中对 A 由动量定理得:I CA mv2- mv0解得: I CA 3mv0 2即A、 C 碰过程中 C 对 A 的冲量大小为3mv0.方向为负.2考点:动量守恒定律【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.4.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m=1.0kg、可视为质点的物体,以 v0=6.0m/s 的初速度沿斜面上滑。
高考物理数学物理法技巧和方法完整版及练习题及解析
高考物理数学物理法技巧和方法完整版及练习题及解析一、数学物理法1.如图所示,圆心为O 1、半径4cm R =的圆形边界内有垂直纸面方向的匀强磁场B 1,边界上的P 点有一粒子源,能沿纸面同时向磁场内每个方向均匀发射比荷62.510C/kg qm=⨯、速率5110m/s v =⨯的带负电的粒子,忽略粒子间的相互作用及重力。
其中沿竖直方向PO 1的粒子恰能从圆周上的C 点沿水平方向进入板间的匀强电场(忽略边缘效应)。
两平行板长110cm L =(厚度不计),位于圆形边界最高和最低两点的切线方向上,C 点位于过两板左侧边缘的竖线上,上板接电源正极。
距极板右侧25cm L =处有磁感应强度为21T B =、垂直纸面向里的匀强磁场,EF 、MN 是其左右的竖直边界(上下无边界),两边界间距8cm L =,O 1C 的延长线与两边界的交点分别为A 和O 2,下板板的延长线与边界交于D ,在AD 之间有一收集板,粒子打到板上即被吸收(不影响原有的电场和磁场)。
求:(1)磁感应强度B 1的方向和大小;(2)为使从C 点进入的粒子出电场后经磁场偏转能打到收集板上,两板所加电压U 的范围; (3)当两板所加电压为(2)中最大值时,打在收集板上的粒子数与总粒子数的比值η。
(可用反三解函数表示,如π1arcsin 62=)【答案】(1)11B =T ,方向垂直纸面向里;(2)1280V 2400V U ≤≤;(3)17arcsinarcsin168π+【解析】 【分析】 【详解】 (1)由题可知,粒子在圆形磁场区域内运动半径r R =则21v qvB m R=得11T B =方向垂直纸面向里。
(2)如图所示211()22L qU y mR v=⋅且要出电场04cm y ≤≤在磁场B 2中运动时22v qvB mr=合,cos v v a =合 进入B 2后返回到边界EF 时,进出位置间距2cos y r a ∆=得22mv y qB ∆=代入得8cm y ∆=说明与加速电场大小无关。
最新高考物理典型方法、习题及专题汇编含详解答案中集
B.能量耗散不符合热力学第二定律
C.能量耗散过程中能量仍守恒
D.能量耗散是从能量转化的角度反映出自然界中的宏观过程具有的方向性
【例10】(05广东)热力学第二定律常见的表述有两种。
第一种表述:不可能使热量由低温物体传递到高温物体,而不引起其他变化;
第二种表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化。
【例3】解析:温度越高,分子平均动能越大,但内能不仅与动能有关,还和分子势能有关;对理想气体,温度不变,其内能不变,由热力学第一定律知,仍可以和外界发生热交换;布朗运动不是液体分子的运动,而是固体颗粒的运动,它液体分子的无规则的运动的反应;扩散现象说明分子是永不停息的运动,不能说明分子间是否存在斥力。正确答案是A。
B.分子间的作用力表现为引力时,分子间的距离增大,分子势能增大
C.知道某物质摩尔体积和阿伏加德罗常数,一定可估算其分子直径
D.知道某物质摩尔质量和阿伏加德罗常数,一定可求其分子质量
7.阿伏加德罗数为 ,铁的摩尔质量为 ,铁的密度为 ,下列说法中不正确的是()
A. 铁所含的原子数目是 B.1个铁原子的质量是
B.理想气体在等温变化时,内能不改变,因而与外界不发生热交换
C.布朗运动是液体分子的运动,它说明分子永不停息地做无规则运动
D.扩散现象说明分子间存在斥力
3..某气体的摩尔质量为M,摩尔体积为V,密度为ρ,每个分子的质量和体积分别为m和V0,则阿伏加德罗常数NA可表示为()
A.NA= B.NA= C.NA= D.NA=
C.W1=W2D.Q1>Q2
【例8】如图所示,某同学将空的薄金属筒开口向下压入水中。设水温均匀且恒定,筒内空气无泄漏,不计气体分了间相互作用,则被淹没的金属筒在缓慢下降过程中,筒内空气体积减小()
高考物理数学物理法技巧和方法完整版及练习题含解析
高考物理数学物理法技巧和方法完整版及练习题含解析一、数学物理法1.如图所示,直角MNQ △为一个玻璃砖的横截面,其中90Q ︒∠=,30N ︒∠=,MQ 边的长度为a ,P 为MN 的中点。
一条光线从P 点射入玻璃砖,入射方向与NP 夹角为45°。
光线恰能从Q 点射出。
(1)求该玻璃的折射率;(2)若与NP 夹角90°的范围内均有上述同频率光线从P 点射入玻璃砖,分析计算光线不能从玻璃砖射出的范围。
【答案】(1)2;(2)312a - 【解析】 【详解】(1)如图甲,由几何关系知P 点的折射角为30°。
则有sin 452sin 30n ==o o(2)如图乙,由折射规律结合几何关系知,各方向的入射光线进入P 点后的折射光线分布在CQB 范围内,设在D 点全反射,则DQ 范围无光线射出。
D 点有1sin n α=解得45α=︒由几何关系知DQ EQ ED =-,12ED EP a ==,32EQ a = 解得31DQ a -=2.如右图所示,一位重600N 的演员,悬挂在绳上.若AO 绳与水平方向的夹角为37︒,BO 绳水平,则AO 、BO 两绳受到的力各为多大?若B 点位置往上移动,则BO 绳的拉力如何变化?(孩子:你可能需要用到的三角函数有:3375sin ︒=,4cos375︒=,3374tan ︒=,4373cot ︒=)【答案】AO 绳的拉力为1000N ,BO 绳的拉力为800N ,OB 绳的拉力先减小后增大. 【解析】试题分析:把人的拉力F 沿AO 方向和BO 方向分解成两个分力,AO 绳上受到的拉力等于沿着AO 绳方向的分力,BO 绳上受到的拉力等于沿着BO 绳方向的分力.根据平衡条件进行分析即可求解.把人的拉力F 沿AO 方向和BO 方向分解成两个分力.如图甲所示由平衡条件得:AO 绳上受到的拉力为21000sin 37OA GF F N ===oBO 绳上受到的拉力为1cot 37800OB F F G N ===o若B 点上移,人的拉力大小和方向一定不变,利用力的分解方法作出力的平行四边形,如图乙所示:由上图可判断出AO 绳上的拉力一直在减小、BO 绳上的拉力先减小后增大.3.质量为M 的木楔倾角为θ (θ < 45°),在水平面上保持静止,当将一质量为m 的木块放在木楔斜面上时,它正好匀速下滑.当用与木楔斜面成α角的力F 拉木块,木块匀速上升,如图所示(已知木楔在整个过程中始终静止).(1)当α=θ时,拉力F 有最小值,求此最小值; (2)求在(1)的情况下木楔对水平面的摩擦力是多少? 【答案】(1)min sin 2F mg θ= (2)1sin 42mg θ 【解析】 【分析】(1)对物块进行受力分析,根据共点力的平衡,利用正交分解,在沿斜面和垂直斜面两方向列方程,进行求解.(2)采用整体法,对整体受力分析,根据共点力的平衡,利用正交分解,分解为水平和竖直两方向列方程,进行求解. 【详解】木块在木楔斜面上匀速向下运动时,有mgsin mgcos θμθ=,即tan μθ= (1)木块在力F 的作用下沿斜面向上匀速运动,则:Fcos mgsin f αθ=+N Fsin F mgcos αθ+=N f F μ=联立解得:()2mgsin F cos θθα=-则当=αθ时,F 有最小值,2min F mgsin =θ(2)因为木块及木楔均处于平衡状态,整体受到地面的摩擦力等于F 的水平分力,即()f Fcos αθ='+当=αθ时,12242f mgsin cos mgsin θθθ='=【点睛】木块放在斜面上时正好匀速下滑隐含动摩擦因数的值恰好等于斜面倾角的正切值,当有外力作用在物体上时,列平行于斜面方向的平衡方程,求出外力F 的表达式,讨论F 取最小值的条件.4.人在A 点拉着绳通过一个定滑轮匀速吊起质量50kg m =的物体,如图所示,开始时绳与水平方向成60o 角,当人拉着绳由A 点沿水平方向运动2m s =而到达B 点时,绳与水平方向成30o 角,求人对绳的拉力做了多少功?(不计摩擦,g 取210m/s )【答案】732J 【解析】 【分析】 【详解】人对绳的拉力所做的功与绳对物体的拉力所做的功相等,设人手到定滑轮的竖直距离为h ,物体上升的高度等于滑轮右侧绳子增加的长度,即sin 30sin 60h hh ∆=-o o又tan 30tan 60h hs =-o o所以人对绳的拉力做的功31)732J W mg h mg s =∆=⋅≈5.某校物理兴趣小组决定举行遥控赛车比赛,比赛路径如图所示.可视为质点的赛车从起点 A 出发,沿水平直线轨道运动L 后,由B 点进人半径为R 的光滑竖直半圆轨道,并通过半圆轨道的最高点C ,才算完成比赛.B 是半圆轨道的最低点.水平直线轨道和半圆轨道相切于B 点.已 知赛车质量m= 5kg ,通电后以额定功率P =2W 工作,进入竖直半圆轨道前受到的阻力恒为F 1=0.4N ,随后在运动中受到的阻力均可不计,L = 10.0m ,R = 0. 32m ,g 取l0m/s 2.求:(1)要使赛车完成比赛,赛车在半圆轨道的B 点对轨道的压力至少为多大? (2)要使赛车完成比赛,电动机至少工作多长时间?(3)若电动机工作时间为t 0=5s 当半圆轨道半径为多少时赛车既能完成比赛且飞出的水平距离最大?水平距离最大是多少? 【答案】(1)30N (2) 4s (3) 1.2m 【解析】试题分析:(1)赛车恰能过最高点时,根据牛顿定律:解得由B点到C 点,由机械能守恒定律可得:2211222B c mv mv mg R =+⋅a 在B 点根据牛顿定律可得:联立解得:54m/s B v gR ==则:630N F mg == (2)对赛车从A 到B 由动能定理得:解得:t=4s(3)对赛车从A 到C 由动能定理得:200122f Pt F L mg R mv --⋅=赛车飞出C 后有:解得:所以 当R=0.3m 时x 最大, x max =1.2m考点:牛顿第二定律;动能定理;平抛物体的运动.6.2016年7月5日,美国宇航局召开新闻发布会,宣布已跋涉27亿千米的朱诺号木星探测器进入木星轨道。
高考物理数学物理法技巧和方法完整版及练习题及解析
高考物理数学物理法技巧和方法完整版及练习题及解析一、数学物理法1.如图所示,在竖直边界1、2间倾斜固定一内径较小的光滑绝缘直管道,其长度为L ,上端离地面高L ,下端离地面高2L.边界1左侧有水平向右的匀强电场,场强大小为E 1(未知),边界2右侧有竖直向上的场强大小为E 2(未知)的匀强电场和垂直纸面向里的匀强磁场(图中未画出).现将质量为m 、电荷量为q 的小球从距离管上端口2L 处无初速释放,小球恰好无碰撞进入管内(即小球以平行于管道的方向进入管内),离开管道后在边界2右侧的运动轨迹为圆弧,重力加速度为g . (1)计算E 1与E 2的比值;(2)若小球第一次过边界2后,小球运动的圆弧轨迹恰好与地面相切,计算满足条件的磁感应强度B 0;(3)若小球第一次过边界2后不落到地面上(即B >B 0),计算小球在磁场中运动到最高点时,小球在磁场中的位移与小球在磁场中运动时间的比值.(若计算结果中有非特殊角的三角函数,可以直接用三角函数表示)【答案】(131;(23(23)m gL -;(3)36gL︒【解析】 【分析】根据题意,粒子先经过电场,做匀加速直线运动,在进入管中,出来以后做匀速圆周运动,画出物体的运动轨迹,再根据相关的公式和定理即可求解。
【详解】(1)设管道与水平面的夹角为α,由几何关系得:/21sin 2L L L α-== 解得:30︒=α由题意,小球在边界1受力分析如下图所示,有:1tan mg qE α=因小球进入边界2右侧区域后的轨迹为圆弧,则有:mg =qE 2解得比值:E 1 :E 2=3:1(2)设小球刚进入边界2时速度大小为v ,由动能定理有:2113sin302cos302mg L E q L mv ︒︒⋅+⋅=联立上式解得:3v gL =设小球进入E 2后,圆弧轨迹恰好与地面相切时的轨道半径为R ,如下图,由几何关系得:cos30+2L R R ︒= 代入数据解得:(23)R L =+洛伦兹力提供向心力,由牛顿第二定律得:20v qvB m R=代入数据解得:03(23)m gLB -=(3)如下图,设此时圆周运动的半径为r ,小球在磁场中运动到最高点时的位移为:2cos15S r ︒=⋅圆周运动周期为:2rT vπ=则小球运动时间为:712t T =解得比值:362cos15cos15712gLS rt T︒==︒【点睛】考察粒子在复合场中的运动。
高考物理最新物理方法知识点技巧及练习题附答案解析
高考物理最新物理方法知识点技巧及练习题附答案解析一、选择题1.如图所示,两质量相等的物体A、B叠放在水平面上静止不动,A与B间及B与地面间的动摩擦因数相同.现用水平恒力F拉物体A,A与B恰好不发生相对滑动;若改用另一水平恒力拉物体B,要使A与B能发生相对滑动,设最大静摩擦力等于滑动摩擦力,则拉物体B的水平恒力至少应大于A.F B.2F C.3F D.4F2.如图所示,竖直平面内放一直角杆MON,杆的水平部分粗糙,动摩擦因数μ=0.2,杆的竖直部分光滑.两部分各套有质量均为1 kg的小球A和B,A、B球间用细绳相连.初始A、B均处于静止状态,已知OA=3 m,OB=4 m,若A球在水平拉力的作用下向右缓慢地移动1 m(取g=10 m/s2),那么该过程中拉力F做功为()A.4 JB.10 JC.12 JD.14 J3.如图所示,三个重均为100N的物块,叠放在水平桌面上,各接触面水平,水平拉力F=20N作用在物块2上,三条轻质绳结于O点,水平绳与物块3连接,竖直绳悬挂重物B,倾斜绳通过定滑轮与物体A连接,已知倾斜绳与水平绳间的夹角为120o,A物体重40N,不计滑轮质量及摩擦,整个装置处于静止状态。
则物块3受力个数为()A.3个B.4个C.5个D.6个4.如图所示,在水平粗糙横杆上,有一质量为m的小圆环A,用一细线悬吊一个质量为m的球B。
现用一水平力F缓慢地拉起B,在此过程中A一直保持静止不动,设圆环A受F,摩擦力为f ,此过程中:()到的支持力为NF增大,f增大A.NF减小,f增大B.NF不变,f减小C.NF不变,f增大D.N5.如图所示,相互垂直的固定绝缘光滑挡板PO、QO竖直放置在重力场中,a、b为两个带有同种电荷的小球(可以近似看成点电荷),当用水平向左的作用力F作用于b时,a、b 紧靠挡板处于静止状态.现若稍改变F的大小,使b稍向左移动一段小距离,则当a、b重新处于静止状态后 ()A.a、b间电场力增大B.作用力F将减小C.地面对b的支持力变大D.地面对b的支持力变小6.如图所示,在水平桌面上叠放着质量相等的A、B两块木板,在木板A上放着质量为m的物块C,木板与物块均处于静止状态.A、B、C之间以及B与地面间的动摩擦因数均为μ,设最大静摩擦力与滑动摩擦力大小相等,现用水平恒力F向右拉木板A,在下列说法正确的是( )A.A、 B间的摩擦力大小不可能等于F B.A、 C间的摩擦力大小一定等于μmg C.不管F多大,木板B一定会保持静止D.A、B、 C有可能一起向右做匀速直线运动7.下列四幅图中包含的物理思想方法叙述正确的是()A.图甲:观察桌面微小形变的实验,利用了等效法B.图乙:探究影响电荷间相互作用力的因素时,运用了微元法C.图丙:利用红蜡块的运动探究合运动和分运动的实验,体现了类比的思想D.图丁:伽利略研究力和运动关系时,运用了理想实验方法8.如图所示,两个质量都是m的小球A和B用轻杆连接,斜靠在墙上处于平衡状态。
最新高考物理曲线运动解题技巧及经典题型及练习题(含答案).docx
最新高考物理曲线运动解题技巧及经典题型及练习题( 含答案 )一、高中物理精讲专题测试曲线运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的1倍.地球表面的重力加速度2为 g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为 L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能承受的最大拉力?【答案】(1)1(2)s 2 g0(3)T1s2g星 = g v0[1] mg 04H L40 42( H L) L【解析】【分析】【详解】(1)由万有引力等于向心力可知G Mm m v2R2R G Mm mgR2v2可得gR则g星=1g0 4(2)由平抛运动的规律: H L 1g星t 22s v0t解得 v s2g004H L2(3)由牛顿定律,在最低点时:T mg星= mvL解得: T11s2mg042( H L )L【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图所示,一根长为0.1 m的细线,一端系着一个质量是0.18kg 的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,当小球的转速增加到原转速的 3 倍时,细线断裂,这时测得线的拉力比原来大40 N.求:(1)线断裂的瞬间,线的拉力;(2)这时小球运动的线速度;(3)如果桌面高出地面 0.8 m,线断裂后小球沿垂直于桌子边缘的方向水平飞出去落在离桌面的水平距离.【答案】( 1)线断裂的瞬间,线的拉力为45N;(2)线断裂时小球运动的线速度为5m/s ;(3)落地点离桌面边缘的水平距离2m.【解析】【分析】【详解】(1) 小球在光滑桌面上做匀速圆周运动时受三个力作用;重力 mg 、桌面弹力F N和细线的拉力F,重力 mg 和弹力 F N平衡,线的拉力提供向心力,有:F N=F=mω2R,设原来的角速度为ω00ω,线断时的拉力是1,线上的拉力是 F ,加快后的角速度为 F ,则有:2F1:F0=ω2: 0 =9:1,又 F1=F0+40N,所以 F 0 =5N,线断时有: F 1=45N. (2) 设线断时小球的线速度大小为v,由 F 1= mv 2,R代入数据得: v=5m/ s.(3) 由平抛运动规律得小球在空中运动的时间为:t=2h 2 0.8s =0.4s ,g10则落地点离桌面的水平距离为:x=vt=5×0.4=2m.3. 如图所示,一轨道由半径 R 2m 的四分之一竖直圆弧轨道AB 和水平直轨道 BC 在 B 点平滑连接而成.现有一质量为m 1Kg 的小球从 A 点正上方 R处的 O 点由静止释放,小2球经过圆弧上的 B 点时,轨道对小球的支持力大小F N18 N ,最后从 C 点水平飞离轨道,落到水平地面上的 P. B 点与地面间的高度 h3.2m ,小球与 BC段轨道间的动 点 已知 摩擦因数 0.2 ,小球运动过程中可视为质点 . (不计空气阻力, g 取 10 m/s 2). 求:(1)小球运动至 B 点时的速度大小 v B (2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功W f(3)水平轨道 BC 的长度 L 多大时,小球落点 P 与 B 点的水平距最大. 【答案】( 1) v B =4?m / s ( 2) W f =22?J (3) L 3.36m【解析】试题分析: ( 1)小球在 B 点受到的重力与支持力的合力提供向心力,由此即可求出 B 点 的速度;( 2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;( 3)结合平抛运动的公式,即可求出为使小球落点P 与 B 点的水平距离最大时BC 段的长度 .(1)小球在 B 点受到的重力与支持力的合力提供向心力,则有: F Nmg mv B 2R解得: v B 4m / s(2)从 O 到 B 的过程中重力和阻力做功,由动能定理可得:mg RRW f 1 mv B 2 022解得: W f22J(3)由 B 到 C 的过程中,由动能定理得:mgL BC1mv C21mv B222v2v2解得: L BC B C2g从 C 点到落地的时间:t02h0.8s gB 到 P 的水平距离:Lv B2v C22v C t0g代入数据,联立并整理可得:124L 44v C5v C由数学知识可知,当v C 1.6m / s时, P 到 B 的水平距离最大,为: L=3.36m【点睛】该题结合机械能守恒考查平抛运动以及竖直平面内的圆周运动,解题的关键就是对每一个过程进行受力分析,根据运动性质确定运动的方程,再根据几何关系求出最大值.4.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为 R 0.32m 的竖直圆轨道的最高点,DF 部分水平,末端 F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m.物块B静止在水平面的最右端 F 处.质量为m A 1kg的物块 A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点 E ,然后与B发生碰撞并粘在一起.若 B 的质量是A的k倍,A、B 与传送带的动摩擦因数都为0.2 ,物块均可视为质点,物块 A 与物块B的碰撞时间极短,取 g 10m / s2.求:(1)当k 3时物块A、B碰撞过程中产生的内能;(2)当 k=3 时物块A、B在传送带上向右滑行的最远距离;(3)讨论k在不同数值范围时,A、B 碰撞后传送带对它们所做的功W 的表达式.k 22k15【答案】(1) 6J( 2) 0.25m( 3)①W2 k 1 J ②W12 k【解析】(1)设物块 A 在 E 的速度为v0,由牛顿第二定律得:m A g m A v02①,R设碰撞前 A 的速度为v1.由机械能守恒定律得:2m A gR1m A v021m A v12②,22联立并代入数据解得: v1 4m / s③;设碰撞后 A、B 速度为v2,且设向右为正方向,由动量守恒定律得m A v1 m A m2 v2④;解得: v2m A v1141m / s⑤;m A m B 1 3由能量转化与守恒定律可得:Q 1m A v121m A m B v22⑥,代入数据解得Q=6J⑦;22(2)设物块 AB 在传送带上向右滑行的最远距离为s,由动能定理得:m A m B gs 1m A m B v22⑧,代入数据解得 s0.25m ⑨;2(3)由④式可知:v2m Av14m A m B1m / s ⑩;k(i )如果 A、 B 能从传送带右侧离开,必须满足1m A m B v22m A m B gL ,2解得: k< 1,传送带对它们所做的功为:W m A m B gL 2 k1 J;(ii )( I)当v2v 时有:k 3 ,即AB返回到传送带左端时速度仍为v2;由动能定理可知,这个过程传送带对AB 所做的功为: W=0J,(II)当0 k时, AB 沿传送带向右减速到速度为零,再向左加速,当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧.在这个过程中传送带对AB 所做的功为W 1m A m B v21m A m B v22,22k 22k15;解得 Wk12【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解. A 恰好通过最高点E,由牛顿第二定律求出 A 通过 E 时的速度,由机械能守恒定律求出 A 与 B 碰撞前的速度,A、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.5.如图所示,在竖直平面内固定有两个很靠近的同心圆形轨道,外圆 ABCD光滑,内圆的上半部分 B′C′粗D糙′,下半部分 B′A′光D′.一质量滑 m=0.2kg 的小球从轨道的最低点 A 处以初速度 v0向右运动,球的直径略小于两圆间距,球运动的轨道半径2g=10m/s .R=0.2m,取(1)若要使小球始终紧贴着外圆做完整的圆周运动,初速度v0 至少为多少?(2)若 v0C =3m/s ,经过一段时间小球到达最高点,内轨道对小球的支持力 F =2N,则小球在这段时间内克服摩擦力做的功是多少?(3)若 v0=3.1m/s ,经过足够长的时间后,小球经过最低点 A 时受到的支持力为多少?小球在整个运动过程中减少的机械能是多少?(保留三位有效数字)【答案】( 1)v0= 10m/s(2) 0.1J ( 3) 6N; 0.56J【解析】【详解】(1)在最高点重力恰好充当向心力mv2mg CR从到机械能守恒2mgR 1mv02 -1mv C2 22解得v010m/s (2)最高点mv C'2mg - F CR 从 A 到 C 用动能定理-2mgR - W f 1mv C'2-1mv02 22得W f =0.1J(3)由v0=3.1m/s< 10m/s于,在上半圆周运动过程的某阶段,小球将对内圆轨道间有弹力,由于摩擦作用,机械能将减小.经足够长时间后,小球将仅在半圆轨道内做往复运动.设此时小球经过最低点的速度为v A,受到的支持力为F A12mgR mv AF A - mg得 F A =6N整个运动过程中小球减小的机械能mv 2ARE1mv 02 - mgR 2得E =0.56J6. 如图是节水灌溉工程中使用喷水龙头的示意图。
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h="0.3" m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1="30" kg ,冰块的质量为m 2="10" kg ,小孩与滑板始终无相对运动.取重力加速度的大小g="10" m/s 2.(i )求斜面体的质量;(ii )通过计算判断,冰块与斜面体分离后能否追上小孩? 【答案】(i )20 kg (ii )不能 【解析】试题分析:①设斜面质量为M ,冰块和斜面的系统,水平方向动量守恒:222()m v m M v =+系统机械能守恒:22222211()22m gh m M v m v ++= 解得:20kg M =②人推冰块的过程:1122m v m v =,得11/v m s =(向右)冰块与斜面的系统:22223m v m v Mv '=+ 22222223111+222m v m v Mv ='解得:21/v m s =-'(向右) 因21=v v ',且冰块处于小孩的后方,则冰块不能追上小孩. 考点:动量守恒定律、机械能守恒定律.2.光滑水平轨道上有三个木块A 、B 、C ,质量分别为3A m m =、B C m m m ==,开始时B 、C 均静止,A 以初速度0v 向右运动,A 与B 相撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小.【答案】065B v v = 【解析】 【分析】【详解】设A 与B 碰撞后,A 的速度为A v ,B 与C 碰撞前B 的速度为B V ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得: 对A 、B 木块:0A A A B B m v m v m v =+对B 、C 木块:()B B B C m v m m v =+由A 与B 间的距离保持不变可知A v v = 联立代入数据得:065B v v =.3.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。
最新高考物理典型方法习题及专题汇编含详解答案下集
最新高考物理典型方法、习题及专题汇编含详解答案下集内容简介13、物理思想与物理方法 14、图像及其应用15、与弹簧有关的物理问题 16、与绳传送带有关的物理问题17、天体运动的各种物理模型 18、物块在木板上的各种运动19、有关碰撞的综合题 20、光学计算题21、高考物理证明题13、物理思想与物理方法一、隔离分析法与整体分析法隔离分析法是把选定的研究对象从所在物理情境中抽取出来,加以研究分析的一种方法.需要用隔离法分析的问题,往往都有几个研究对象,应对它们逐一隔离分析、列式.并且还要找出这些隔离体之间的联系,从而联立求解.概括其要领就是:先隔离分析,后联立求解.1.隔离法.【例1】如图所示,跨过滑轮细绳的两端分别系有 m1=1kg、m2=2kg的物体A和B.滑轮质量m=0.2kg,不计绳与滑轮的摩擦,要使B静止在地面上,则向上的拉力F不能超过多大?2.整体分析法.整体分析法是把一个物体系统(内含几个物体)看成一个整体,或者是着眼于物体运动的全过程,而不考虑各阶段不同运动情况的一种分析方法.【例2】如图所示,质量0.5kg、长1.2m的金属盒,放在水平桌面上,它与桌面间动摩擦因数?=0.125.在盒内右端放着质量也是0.5kg、半径0.1m的弹性小球,球与盒接触光滑.若在盒的左端给盒以水平向右1.5N・s的冲量,设盒在运动中与球碰撞的时间极短,且无能量2损失.求:盒从开始运动到完全停止所通过的路程是多少?(g取10m/s)- 1 -二、极值法与端值法极值问题是中学物理中常见的一类问题.在物理状态发生变化的过程中,某一个物理量的变化函数可能不是单调的,它可能有最大值或最小值.分析极值问题的思路有两种:一种是把物理问题转化为数学问题,纯粹从数学角度去讨论或求解某一个物理函数的极值.它采用的方法也是代数、三角、几何等数学方法;另一种是根据物体在状态变化过程中受到的物理规律的约束、限制来求极值.它采用的方法是物理分析法.【例3】如图所示,一辆有四分之一圆弧的小车停在不光滑的水平地面上,质量为m的小球从静止开始由车的顶端无摩擦滑下,且小车始终保持静止状态.试分析:当小球运动到什么位置时,地面对小车的静摩擦力最大?最大值为多少?【例4】如图所示,娱乐场空中列车由许多节完全相同的车厢组成,列车先沿水平轨道行驶,然后滑上半径为 R的空中圆环形光滑轨道.若列车全长为L(L>2?R),R远大于一节车厢的长度和高度,那么列车在运行到圆环前的速度v0至少多大,才能使整个列车安全通过圆环轨道?三、等效法等效法是物理思维的一种重要方法,其要点是在效果不变的前提下,把较复杂的问题转化为较简单或常见的问题.应用等效法,关键是要善于分析题中的哪些问题(如研究对象、运动过程、状态或电路结构等)可以等效. 【例5】如图(甲)所示电路甲由8个不同的电阻组成,已知R1=12Ω,其余电阻阻值未知,测得A、B间的总电阻为4Ω,今将R1换成 - 2 -6Ω的电阻,则A、B间的总电阻是多少?【例6】如图所示,一个“V”型玻璃管倒置于竖直平面内,并处于E=103v/m、方向竖直向下的匀强电场中,一个带负电的小球, -3-6重为G=10N,电量q=2×10C,从A点由静止开始运动,球与管壁的摩擦因数?=0.5. 已知管长AB=BC=2m,倾角?=37°,且管顶B 处有一很短的光滑圆弧.求:(1)小球第一次运动到B时的速度多大?(2)小球运动后,第一次速度为0的位置在何处?(3)从开始运动到最后静止,小球通过的总路程是多少? (sin37°=0.6,cos37°=0.8)四、排除法解选择题排除法又叫筛选法,在选择题提供的四个答案中,若能判断A、B、C选项不对,则答案就是D项.在解选择题时,若能先把一些明显不正确的答案排除掉,在所剩下的较少选项中再选择正确答案就较省事了.【例7】在光滑水平面上有A、B两个小球,它们均向右在同一直线上运动,若它们在碰撞前的动量分别是pA=12kg・m/s,pB=13kg・m/s(向右为正方向),则碰撞后它们动量的变化量△pA及△pB有可能的是 A.△pA =4kg・m/s △pB =-4kg ・m/s B.△pA =-3kg ・m/s △pB =3kg ・m/s C.△pA =-24kg ・m/s △pB =24kg ・m/s D.△pA =-5kg ・m/s △pB =8kg ・m/s五、微元法一切宏观量都可被看成是由若干个微小的单元组成的.在整个物体运动的全过程中,这些微小单元是其时间、空间、物质的量的任意的且又具有代表性的一小部分.通过对这些微小单元的研究,我们常能发现物体运动的特征和规律.微元法就是基于这种思想研究问题的一种方法.【例8】真空中以速度v飞行的银原子持续打在器壁上产生的压强为P,设银原子打在器壁上后便吸附在器壁上,银的密度为?.则器壁上银层厚度增加的速度u为多大?六、作图法作图法就是通过作图来分析或求解某个物理量的大小及变化趋势的一种解题方法.通过作图来揭示物理过程、物理规律,具有直观形象、简单明了等优点.- 3 -【例9】某物体做初速度不为0的匀变速直线运动,在时间t内通过的位移为s,设运动过程中间时刻的瞬时速度为v1,通过位移s中点的瞬间速度为v2,则A.若物体做匀加速直线运动,则v1>v2B.若物体做匀加速直线运动,则v1 <v2C.若物体做匀减速直线运动,则v1 >v2D.若物体做匀减速直线运动,则v1 <v2练习题1.如图所示,直杆质量为M,小猴质量为m.今将悬线剪断后,小猴保持所在高度不变,直杆的加速度有多大?2.带电量为q的质量为m的小球在离光滑绝缘平面高H0处,以v0速度竖直向上运动.已知小球在运动中所受阻力为f,匀强电场场强为E,方向竖直向下,如图9-15所示.小球每次与水平面相碰均无机械能损失,带电小球经过的路程多大?3.两相互平行的金属板,长L,板间距离为d,两板间有沿水平向纸面外的匀强磁场.今有一质量为m带电量为q的正离子(重力不计)从两板中央的左端水平射入磁场中,如图所示.问初速度v0应满足什么条件,才能使带电粒子飞离磁场而不至于落到金属板上?- 4 -专题十三物理思想与物理方法答案【例1】【解析】(1)先以B为研究对象,当B即将离开地面时,地面对它的支持力为0.它只受到重力mBg和绳子的拉力 T的作用,且有:T- mBg=0.(2)再以A为研究对象,在B即将离地时, A受到重力和拉力的作用,由于T=mBg>mAg,所示A将加速上升.有T- mAg=mAaA.(3)最后以滑轮为研究对象,此时滑轮受到四个力作用:重力、拉力、两边绳子的两个拉力T.有F- mg-2T=ma.这里需要注意的是:在A上升距离s时,滑轮只上升了s/2,故A的加速度为滑轮加速度的2倍,即: aA=2a.由以上四式联立求解得:F=43N.【例2】【解析】此题中盒与球交替做不同形式的运动,若用隔离法分段求解,将非常复杂.我们可以把盒和球交替运动的过程看成是在地面摩擦力作用下系统动能损耗的整体过程. 这个系统运动刚开始所具有的动能即为盒的动能mv02/2=p2/2m=1.52/(2×0.5)=2.25J 整体在运动中受到的摩擦力:f=?N=?2mg=10×0.125=1.25N根据动能定理,可得-fs=0-mv02/2 , s=1.8m【解题回顾】不少同学分析完球与盒相互作用和运动过程后,用隔离法分段求解.先判断盒与球能否相撞,碰撞后交换速度,再求盒第二次运动的路程,再把各段路程相加.对有限次碰撞尚能理解,但如果起初的初动能很大,将会发生多次碰撞,遇到这种情况时,同学们会想到整体法吗?当然,隔离分析法与整体分析法是相辅相成的,是不可分割的一个整体。
高考物理专题物理方法知识点真题汇编及答案解析
高考物理专题物理方法知识点真题汇编及答案解析一、选择题1.许多科学家在物理学发展过程中做出了重要贡献,下列叙述中符合物理学史实的是( )A .牛顿发现了万有引力定律,通过实验测出了万有引力常量B .哥白尼提出了日心说并发现了行星沿椭圆轨道运行的规律C .库仑在前人研究的基础上通过扭秤实验研究得出了库仑定律D .法拉第通过实验得出了欧姆定律2.如图,质量均为m 的两个铁块a 、b 放在水平桌面上,二者用张紧的轻质橡皮绳,通过光滑的定滑轮相连,系统都处于静止状态,若用水平外力将a 向左由P 缓慢移至M 处,b 未动;撤掉外力后仍都能保持静止,对a 、b 进行分析,正确的有( )A .铁块a 在P 、M 两点位置所受的摩擦力大小都等于b 受的摩擦力大小B .两者对桌面的压力一定都变大C .b 与地面间最大静摩擦力一直增大D .天花板对定滑轮作用力的方向竖直向上3.如图所示,质量为m 的木块在质量为M 的长木板上,木块受到向右的拉力F 的作用向右滑行时,长木板处于静止状态,已知木块与木板间的动摩擦因数为1µ,木板与地面间的动摩擦因数为2µ,则木板受到地面的摩擦力( )A .大小为1µmg ,方向向左 B .大小为1µmg ,方向向右 C .大小为()2m M g μ+,方向向左D .大小为()2m M g μ+,方向向右4.如图所示,三个重均为100N 的物块,叠放在水平桌面上,各接触面水平,水平拉力F =20N 作用在物块2上,三条轻质绳结于O 点,水平绳与物块3连接,竖直绳悬挂重物B ,倾斜绳通过定滑轮与物体A 连接,已知倾斜绳与水平绳间的夹角为120o ,A 物体重40N ,不计滑轮质量及摩擦,整个装置处于静止状态。
则物块3受力个数为( )A.3个B.4个C.5个D.6个5.如图所示,物体A和B叠放并静止在固定粗糙斜面C上,A、B的接触面与斜面平行。
以下说法正确的是()A.A物体受到四个力的作用B.B物体受到A的作用力的合力方向竖直向上C.A物体受到B的摩擦力沿斜面向上D.斜面受到B的压力作用,方向垂直于斜面向下6.两个质量均为m的A、B小球用轻杆连接,A球与固定在斜面上的光滑竖直挡板接触,B球放在倾角为θ的斜面上,A、B均处于静止,B球没有滑动趋势,则A球对挡板的压力大小为A.mg tanθB.2tanmgθC.tanmgθD.2mg tan θ7.如图所示,质量为m的木块A放在质量为M的三角形斜面B上,现用大小均为F,方向相反的水平力分别推A和B,它们均在地面上静止不动,则( )A.B与地面之间可能存在摩擦力B.A与B之间可能存在摩擦力C .B 对A 的支持力一定大于mgD .B 对A 的支持力一定小于mg8.如图所示,三个木块 A 、B 、C 在水平推力F 的作用下靠在竖直墙上,且处于静止状态,则下列说法中正确的是( )A .A 与墙的接触面可能是光滑的B .B 受到A 作用的摩擦力,方向可能竖直向下C .B 受到A 作用的静摩擦力,方向与C 作用的静摩擦力方向一定相同D .当力F 增大时,A 受到墙作用的静摩擦力不变9.如图所示,MON 是固定的光滑绝缘直角杆,MO 沿水平方向,NO 沿竖直方向,A 、B 为两个套在此杆上的带有同种电荷的小球.用一指向竖直杆的力F 作用在A 球,使两球均处于静止状态,现将A 球沿水平方向向右缓慢拉动一小段距离后,A 、B 两小球可以重新平衡.则后一种平衡状态与前一种平衡状态相比较,下列判断正确的是A .A 、B 两小球间的库仑力变大,A 球对MO 杆的压力变大B .A 、B 两小球间的库仑力变小,A 球对MO 杆的压力变小C .A 、B 两小球间的库仑力变小,A 球对MO 杆的压力不变D .A 、B 两小球间的库仑力变大,A 球对MO 杆的压力不变.10.如图,弹簧秤外壳质量为m 0,弹簧及挂钩质量忽略不计,挂钩拖一重物质量为m ,现用一方向沿斜面向上的外力F 拉着弹簧秤,使其沿光滑的倾角为θ的斜面向上做匀加速直线运动,则弹簧秤读数为( )A .sin mg θB .00m F m m +C .0m F m m +D .0•sin m mg m mθ+ 11.如图所示,两根直木棍AB 和CD 相互平行,斜靠在竖直墙壁上固定不动,一根水泥圆筒从木棍的上部匀速滑下.若保持两木棍倾角不变,将两棍间的距离减小后固定不动,仍将水泥圆筒放在两木棍上部,则水泥圆筒在两木棍上将()A.仍匀速滑下B.匀加速滑下C.可能静止D.一定静止12.2014年,我国在实验中发现量子反常霍尔效应,取得世界级成果。
高考物理专题物理方法知识点全集汇编含答案解析
高考物理专题物理方法知识点全集汇编含答案解析一、选择题1.如图所示,OA、OB是两根轻绳,AB是轻杆,它们构成一个正三角形。
在A、B处分别固定着质量均为m的小球,此装置悬挂在O点。
现对B处小球施加水平外力F,让绳OA位于竖直位置。
设此状态下OB绳中张力大小为T,已知当地重力加速度为g,则( )A.T=2mg B.T>2mgC.T<2mg D.三种情况皆有可能2.在物理学的发展过程中,许多物理学家都做出了重要的贡献,他们也创造出了许多物理学研究方法。
下列关于物理学史与物理学研究方法的叙述中正确的是()A.物理学中所有物理量都是采用比值法定义的B.元电荷、点电荷都是理想化模型C.奥斯特首先发现了电磁感应现象D.法拉第最早提出了“电场”的概念3.如图所示,A、B、C 三物块叠放并处于静止状态,水平地面光滑其他接触面粗糙,以下受力分析正确的是( )A.A 与墙面间存在压力B.A 与墙面间存在静摩擦力C.A 物块共受 3 个力作用D.B 物块共受 5 个力作用4.在物理学的重大发现中科学家们创造出了许多物理学研究方法,如理想实验法、控制变量法、极限思维法、类比法和科学假说法、建立理想模型法、微元法等等.以下关于所用物理学研究方法的叙述不正确的是()A.牛顿用微元法提出了万有引力定律,并计算出了太阳和地球之间的引力B.根据速度定义式xvt∆=∆,当△t非常非常小时,xt∆∆就可以表示物体在t时刻的瞬时速度,该定义应用了极限思维法C.将插有细长玻璃管的玻璃瓶内装满水.用力捏玻璃瓶,通过细管内液面高度的变化,来反映玻璃瓶发生形变,该实验采用了放大的思想D.在推导匀变速运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,然后把各小段的位移相加,这里采用了微元法5.如图所示,质量为M、半径为R的半球形匀质物体A放在水平地面上,通过最高点处的钉子用水平细线拉住一质量为m、半径为r的光滑匀质球B,则A.A对地面的摩擦力方向向左B.B对A的压力大小为R rmg RC.B对A的压力大小为mgD.细线对小球的拉力大小为r mg R6.如图所示,三个重均为100N的物块,叠放在水平桌面上,各接触面水平,水平拉力F=20N作用在物块2上,三条轻质绳结于O点,水平绳与物块3连接,竖直绳悬挂重物B,倾斜绳通过定滑轮与物体A连接,已知倾斜绳与水平绳间的夹角为120o,A物体重40N,不计滑轮质量及摩擦,整个装置处于静止状态。
高考物理新物理方法知识点分类汇编及答案解析
高考物理新物理方法知识点分类汇编及答案解析一、选择题1.如图,有A、B两个完全相同的小球并排放在倾角为30°的固定斜面上,B球被竖直挡板挡住,不计一切摩擦,则A、B之间的作用力与竖直挡板对B的作用力之比为()A.32B.33C.34D.362.如图所示,重为G的光滑球在倾角为θ的斜面和竖直墙壁之间处于静止状态.若将此斜面换成材料和质量相同,但倾角θ稍小一些的斜面,以下判断正确的是 ()A.球对斜面的压力增大B.球对斜面的压力减小C.斜面可能向左滑动D.地面受到的压力变小3.如图所示,bc为固定在小车上的水平横杆,物块M穿在杆上,靠摩擦力与杆保持相对静止,M又通过轻细线悬吊着一个小铁球m,此时小车以大小为a的加速度向右做匀加速运动,而M、m均相对小车静止,细线与竖直方向的夹角为小车的加速度逐渐增大,M 始终和小车保持相对静止,当加速度增加到2a时A.细线与竖直方向的夹角增加到原来的2倍B.细线的拉力增加到原来的2倍C.横杆对M弹力增大D.横杆对M的摩擦力增加到原来的2倍4.如图所示,三个重均为100N的物块,叠放在水平桌面上,各接触面水平,水平拉力F=20N作用在物块2上,三条轻质绳结于O点,水平绳与物块3连接,竖直绳悬挂重物B,倾斜绳通过定滑轮与物体A连接,已知倾斜绳与水平绳间的夹角为120o,A物体重40N,不计滑轮质量及摩擦,整个装置处于静止状态。
则物块3受力个数为()A.3个B.4个C.5个D.6个5.如图所示,粗糙程度均匀的绝缘空心斜面ABC放置在水平面上,∠CAB=30°,斜面内部O点(与斜面无任何连接)固定有一正点电荷,一带负电的小物体(可视为质点)可以分别静止在M、N、MN的中点P上,OM=ON,OM∥AB,则下列判断正确的是()A.小物体分别在三处静止时所受力的个数一定都是4个B.小物体静止在P点时受到的支持力最大,静止在M、N点时受到的支持力相等C.小物体静止在P点时受到的摩擦力最大D.当小物体静止在N点时,地面给斜面的摩擦力为零6.如图所示,在水平粗糙横杆上,有一质量为m的小圆环A,用一细线悬吊一个质量为m的球B。
高考物理数学物理法技巧和方法完整版及练习题含解析
高考物理数学物理法技巧和方法完整版及练习题含解析一、数学物理法1.两块平行正对的水平金属板AB ,极板长0.2m L =,板间距离0.2m d =,在金属板右端竖直边界MN 的右侧有一区域足够大的匀强磁场,磁感应强度3510T B -=⨯,方向垂直纸面向里。
两极板间电势差U AB 随时间变化规律如右图所示。
现有带正电的粒子流以5010m/s v =的速度沿水平中线OO '连续射入电场中,粒子的比荷810C/kg qm=,重力忽略不计,在每个粒子通过电场的极短时间内,电场视为匀强电场(两板外无电场)。
求: (1)要使带电粒子射出水平金属板,两金属板间电势差U AB 取值范围;(2)若粒子在距O '点下方0.05m 处射入磁场,从MN 上某点射出磁场,此过程出射点与入射点间的距离y ∆;(3)所有粒子在磁场中运动的最长时间t 。
【答案】(1)100V 100V AB U -≤≤;(2)0.4m ;(3) 69.4210s -⨯ 【解析】 【分析】 【详解】(1)带电粒子刚好穿过对应偏转电压最大为m U ,此时粒子在电场中做类平抛运动,加速大小为a ,时间为t 1。
水平方向上01L v t =①竖直方向上21122d at =② 又由于mU qma d=③ 联立①②③得m 100V U =由题意可知,要使带电粒子射出水平金属板,两板间电势差100V 100V AB U -≤≤(2)如图所示从O '点下方0.05m 处射入磁场的粒子速度大小为v ,速度水平分量大小为0v ,竖直分量大小为y v ,速度偏向角为θ。
粒子在磁场中圆周运动的轨道半径为R ,则2mv qvB R=④ 0cos v v θ=⑤2cos y R θ∆=⑥联立④⑤⑥得20.4m mv y qB∆== (3)从极板下边界射入磁场的粒子在磁场中运动的时间最长。
如图所示粒子进入磁场速度大小为v 1,速度水平分量大小为01v ,竖直分量大小为v y 1,速度偏向角为α,则对粒子在电场中011L v t =⑦11022y v d t +=⑧ 联立⑦⑧得101y v v =101tan y v v α=得π4α=粒子在磁场中圆周运动的轨道半径为R',则211mv qv B R ='⑨ 1mv R qB'=⑩ 带电粒子在磁场中圆周运动的周期为T12π2πR m T v qB'==⑪在磁场中运动时间2π(π2)2πt T α--=⑫联立⑪⑫得663π10s 9.4210s t --=⨯=⨯2.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cos m gB q R θ=⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得sin cos gRv θθ=⑨3.如图所示,在竖直分界线MN 的左侧有垂直纸面的匀强磁场,竖直屏与MN 之间有方向向上的匀强电场。
高考物理数学物理法技巧和方法完整版及练习题含解析
高考物理数学物理法技巧和方法完整版及练习题含解析一、数学物理法1.如图所示,在x ≤0的区域内存在方向竖直向上、电场强度大小为E 的匀强电场,在x >0的区域内存在方向垂直纸面向外的匀强磁场。
现一带正电的粒子从x 轴上坐标为(-2l ,0)的A 点以速度v 0沿x 轴正方向进入电场,从y 轴上坐标为(0,l )的B 点进入磁场,带电粒子在x >0的区域内运动一段圆弧后,从y 轴上的C 点(未画出)离开磁场。
已知磁场的磁感应强度大小为,不计带电粒子的重力。
求: (1)带电粒子的比荷; (2)C 点的坐标。
【答案】(1)202v qm lE=;(2)(0,-3t )【解析】 【详解】(1)带电粒子在电场中做类平抛运动,x 轴方向02l v t =y 轴方向212qE l t m=联立解得202v qm lE=(2)设带电粒子经过B 点时的速度方向与水平方向成θ角00tan 1yqE t v m v v θ===解得45θ=︒则带电粒子经过B 点时的速度02v v =由洛伦兹力提供向心力得2mv qvB r= 解得22mvr l qB== 带电粒子在磁场中的运动轨迹如图所示根据几何知识可知弦BC 的长度24L r l ==43l l l -=故C 点的坐标为(0,-3t )。
2.如图所示,空间有场强E =1.0×102V/m 竖直向下的电场,长L =0.8m 不可伸长的轻绳固定于O 点.另一端系一质量m =0.5kg 带电q =+5×10-2C 的小球.拉起小球至绳水平后在A 点无初速度释放,当小球运动至O 点的正下方B 点时绳恰好断裂,小球继续运动并垂直打在同一竖直平面且与水平面成θ=53°、无限大的挡板MN 上的C 点.试求:(1)小球运动到B 点时速度大小及绳子的最大张力; (2)小球运动到C 点时速度大小及A 、C 两点的电势差;(3)当小球运动至C 点时,突然施加一恒力F 作用在小球上,同时把挡板迅速水平向右移至某处,若小球仍能垂直打在档板上,所加恒力F 的最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.(06 年徐州)关于热现象和热学规律,下列说法中正确的是
(
)
A.随着低温技术的发展.我们可以使温度逐渐降低,并最终达到绝对零度 B.热量是不可能从低温物体传递给高温物体的 C.第二类水动机不能制成是因为它违反了能量守恒定律 D.用活塞压缩气缸里的空气,对空气做功 2.0× 105J,同时空气向外界放出热量 1.5× 105 J,则空气的内能增加了 0.5× 105 J 6.(2005年南通市高三第二次调研测试)下列说法正确的是 ( ) A.分子间的作用力表现为引力时,分子间的距离增大,则分子间的作用力减小 B.分子间的作用力表现为引力时,分子间的距离增大,分子势能增大 C.知道某物质摩尔体积和阿伏加德罗常数,一定可估算其分子直径 D.知道某物质摩尔质量和阿伏加德罗常数,一定可求其分子质量 7. 阿伏加德罗数为 N A , 铁的摩尔质量为 M A , 铁的密度为 , 下列说法中不正确的是 ( ) A. 1m 铁所含的原子数目是
C.制冷系统能将冰箱内的热量传给外界较高温度的空气,而不引起其它变化 D.满足能量守恒定律的客观过程都可以自发地进行 训练题.(南京市 2005 届高三物理第三次调研性测试)热现象过程中不可避免地出现能量耗 散的现象. 所谓能量耗散是指在能量转化的过程中无法把流散的能量重新收集、 重新加以利 用.下列关于能量耗散的说法中正确的是( ) A.能量耗散说明能量不守恒 B.能量耗散不符合热力学第二定律 C.能量耗散过程中能量仍守恒 D.能量耗散是从能量转化的角度反映出自然界中的宏观过程具有的方向性 【例 10】(05 广东)热力学第二定律常见的表述有两种。 第一种表述:不可能使热量由低温物体传递到高温物体,而不引起其他变化; 第二种表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化。 图 10(a)是根据热力学第二定律的第一种表述画出的示意图:外界对制冷机做功,使热量 从低温物体传递到高温物体。 请你根据第二种表述完成示意图 10 ( b ) 。根据你的理解,热力学第二定律的实质是 _________________________。
高温物体 Q1 W 制冷机 Q2 低温物体 图 10(a) 低温物体 图)下列关于分子力和分子势能的说法中,正确的是 ( ) A.当分子力表现为引力时,分子力和分子势能总是随分子间距离的增大而增大 B.当分子力表现为引力时,分子力和分子势能总是随分子间距离的增大而减小 C.当分子力表现为斥力时,分子力和分子势能总是随分子间距离的减小而增大 D.当分子力表现为斥力时,分子力和分子势能总是随分子间距离的减小而减小
最新高考物理典型方法、习题及专题汇编含详解答案中集 内容简介
7、热学 8、带电粒子在场中的运动 9、直流电路和交流电路 10、电磁感应与电路 11、光学、原子物理学 12、物理实验 7、热学 典型例题
【例 1】(05 徐州市第二次质量检测_已知阿伏伽德罗常数为 N,铝的摩尔质量为 M,铝的密 度为 P,则下列说法正确的是( ) A.1kg 铝所含原子数为 PN B.1 个铝原予的质量为 M/N C.1m,铝所含原子数为 N/(PM) D.1 个铝原子所占的体积为 M/(PN) 训练题(04 山东理综)若以 表示水的摩尔质量, v 表示在标准状态下水蒸气的摩尔体积, 为在标准状态下水蒸气的密度,NA 为阿伏加德罗常数,m、△分别表示每个水分子的质量 和体积,下面是四个关系式: ( ) v ① NA ② ③m ④ v 其中 m N A NA NA A.①和②都是正确的; C.②和④都是正确的; 升高时,以下说法正确的是 A.气体的密度增大 C.气体分子的平均动能减小 ( ) B.气体的压强增大 D.每秒撞击单位面积器壁的气体分子数增 ( ) B.①和③都是正确的; D.①和④都是正确的。
【例 8】 如图所示,某同学将空的薄金属筒开口向下压入水中。设水 温均匀且恒定,筒内空气无泄漏,不计气体分了间相互作用,则被淹没的金 属筒在缓慢下降过程中,筒内空气体积减小( A.从外界吸热 ) D.内能减小
B.内能增大 C.向外界放热
训练题 1 如图所示,两个相通的容器 P、Q 间装有阀门 K,P 中充满气体,Q 内为真空, 整个系统与外界没有热交换。 打开阀门 K 后, P 中的气体进入 Q 中, 最终达到平衡, 则 ( ) A.气体体积膨胀,内能增加 B.气体分子势能减少,内能增加 C.气体分子势能增加,压强可能不变 D.Q 中气体不可能自发地全部退回到 P 中 训练题 2 下列说法中正确的是( ) A.气体的温度升高时,分子的热运动变得剧烈,分子的平均动能增大,撞击器壁时对 器壁的作用力增大,从而气体的压强一定增大 B.气体的体积变小时,单位体积的分子数增多,单位时间内打到器壁单位面积上的分 子数增多,从而气体的压强一定增大 C.压缩一定量的气体,气体的内能一定增加 D.分子 a 从远处趋近固定不动的分子 b ,当 a 到达受 b 的作用力为零处时, a 的动能 一定最大
【例 2】(05 年高考广东) 封闭在气缸内一定质量的气体,如果保持气体体积不变,当温度
多 训练题 1(05 年高考天津)下列说法中正确的是
A.一定质量的气体被压缩,气体压强不一定增大 B.一定质量的气体温度不变压强增大时,其体积也增大 C.气体压强是由气体分子间的斥力产生的 D.在失重的情况下,密闭容器内的气体对器壁没有压强 训练题 2(04 江苏)甲、乙两个相同的密闭容器中分别装有等质量的同种气体,已知甲、乙容 器中气体的压强分别为 p 甲、p 乙,且 p 甲<p 乙,则( ) A. 甲容器中气体的温度高于乙容器中气体的温度 B. 甲容器中气体的温度低于乙容器中气体的温度 C. 甲容器中气体分子的平均动能小于乙容器中气体分子的平均动能 D. 甲容器中气体分子的平均动能大于乙容器中气体分子的平均动能 【例 3】 对于分子动理论和物体内能的理解,下列说法正确的是 ( ) A.温度高的物体内能不一定大,但分子平均动能一定大 B.理想气体在等温变化时,内能不改变,因而与外界不发生热交换
3
N A MA
B.1 个铁原子的质量是
MA NA
C.1 个铁原子占有的体积是
MA N A
D.1 kg 铁所含有的原子数目是 N A )
8.(2005 年苏州市高三教学情况调查)对一定质量的理想气体,下列判断正确的是( A.气体对外做功,温度一定降低 B.气体吸热,温度也可能降低 C.气体体积不变,压强增大,内能一定增大
第 - 4 - 页 共 81 页
2.对于分子动理论和物体内能理解,下列说法正确的是 ( ) A.温度高的物体内能不一定大,但分子平均动能一定大 B.理想气体在等温变化时,内能不改变,因而与外界不发生热交换 C.布朗运动是液体分子的运动,它说明分子永不停息地做无规则运动 D.扩散现象说明分子间存在斥力 3..(05 年高考江苏)某气体的摩尔质量为 M,摩尔体积为 V, 密度为 ρ, 每个分子的质量和 体积分别为 m 和 V0,则阿伏加德罗常数 NA 可表示为 A.NA= ( ) D.NA= )
V V0
B.NA=
V
m
C.NA=
M m
M V0
4.(05 年高考北京)下列关于热现象的说法,正确的是 ( A.外界对物体做功,物体的内能一定增加 B.气体的温度升高,气体的压强一定增大 C.任何条件下.热量都不会由低温物体传递到高温物体 D.任何热机都不可能使燃料释放的热量完全转化为机械能
【例 9】 (南京市 2005 届第二次调研性测试试卷)根据热力学定律, 下列判断正确的是( ) A.我们可以把火炉散失到周围环境中的能量全部收集到火炉中再次用来取暖 B.利用浅层海水和深层海水间的温度差制造出一种热机,将海水的一部分内能转化为 机械能,这在原理上是可行的
第 - 3 - 页 共 81 页
第 - 2 - 页 共 81 页
【例 7】一定量的气体在某一过程中,外界对气体做功 8.0³104J,气体内能减少 1.2³ 105J,传递热量为 Q,则下列各式正确的是( ) A. W 8.0 104 J , U 1.2 105 J , Q 4.0 104 J B. W 8.0 104 J , U 1.2 105 J , Q 2 105 J C. W 8.0 104 J , U 1.2 105 J , Q 2 105 J D. W 8.0 104 J , U 1.2 105 J , Q 4.0 104 J 训练题(04 甘肃理综)一定质量的理想气体,从某一状态开始,经过系列变化后又回一开始 的状态,用 W1 表示外界对气体做的功,W2 表示气体对外界做的功,Q1 表示气体吸收的热 量,Q2 表示气体放出的热量,则在整个过程中一定有( A.Q1-Q2=W2-W1 C.W1=W2 B.Q1=Q2 D.Q1>Q2 )
第 - 1 - 页 共 81 页
C.布朗运动是液体分子的运动,它说明分子永不停息地做无规则运动 D.扩散现象说明分子间存在斥力
训练题(2005 年广州一模)关于布朗运动,下列说法正确的是( ) A.布朗运动是指悬浮在液体中的微粒分子的无规则运动 B.布朗运动的无规则性反映了液体分子运动的无规则性 C.液体温度越高,布朗运动越激烈 D.悬浮微粒越小,在某一瞬间撞击它的液体分子数就越少,布朗运动越不明显 【例 4】 (2005 年苏州一模)如图所示,固定在水平面上的汽缸内,用活塞封闭一定质量的 理想气体,活塞与汽缸间无摩擦且和周围环境没有热交换。当用一个水平恒力 F 向外拉动 活塞时,下列叙述正确的是( ) A.由于没有热交换,汽缸内气体的温度不变 B.由于拉力对活塞做正功,气体的温度升高 C.由于气体体积变大,所以气体内能变大 D.由于气体膨胀对外做功,所以气体内能减少 训练题(2005 年黄冈二模)如图所示,密闭绝热的具有一定质量的活塞,活塞的下部封闭 F 着理想气体,上部为真空,活塞与器壁的摩擦忽略不计,置于真空中的轻弹簧的一端固定于 容器的顶部.另一端固定在活塞上,弹簧处于自然长度后用绳扎紧,此时活塞的重力势能为 Ep (活塞在底部时的重力势能为零).现绳突然断开,活塞在重力的作用下向下 运动,经过多次往复运动后活塞静止,气体达到平衡态,经过此过程( ) A.Ep 全部转换为气体的内能 理想 气体 B.Ep 一部分转换成活塞的重力势能,其余部分仍为弹簧的弹性势能 C.Ep 一部分转换成弹簧的弹性势能,一部分转换为气体的内能,其余部分仍 为活塞的重力势能 D.Ep 全部转换成弹簧的弹性势能和气体的内能 【例 5】 如图所示,甲分子固定在坐标原点 O,乙分子位于 x 轴上,甲分子对乙分子 的作用力与两分子间距离的关系如图中曲线所示, F >0 表示斥力, F <0 表示引力, a、b、c、d 为 x 轴上四个特定的位置,现把乙分子从 a 处静 止释放,则( ) A.乙分子从 a 到 b 做加速运动,由 b 到 c 做减速运动 B.乙分子由 a 到 c 做加速运动,到达 c 时速度最大 C.乙分子由 a 到 b 的过程中,两分子间的分子势能一直增加 D.乙分子由 b 到 d 的过程中,两分子间的分子势能一直增加 【例 6】(01 春季)一定质量的理想气体经过一系列过程,如图所示. 下列说法中正确的是( ) (A) a b 过程中,气体体积增大,压强减小 (B) b c 过程中,气体压强不变,体积增大 (C) c a 过程中,气体压强增大,体积变小 (D) c a 过程中,气体内能增大,体积不变 训练题 (01 理综)一定质量的理想气体由状态 A 经过图中所示过程变到状态 B。在此过程中气体的密度( ) A. 一直变小 B. 一直变大 C. 先变小后变大 D. 先变大后变小