[[初三数学试题]]2009年江苏省东台市九年级数学调研考试题
2009年江苏省盐城市中考数学模拟试卷
江苏省2009年高中阶段教育招生统一考试数学模拟试卷命题人:樊向东 单位:盐城市教研室一、选择题(本大题共8小题,每小题3分,共24分。
每小题都有四个备选答案,请把你认为正确的一个答案的代号填在答题纸的相应位置).1.13-的倒数是( )A .3B .-3C .13D .13-2. 如图,桌面上有一个一次性纸杯,它的俯视图应是3.如图,水平放置的甲、乙两区域分别由若干大小完全相同的黑色、白色正三角形组成,小明随意向甲、乙两个区域各抛一个小球,P (甲)表示小球停在甲中黑色三角形上的概率,P (乙)表示小球停在乙中黑色三角形上的概率,下列说法中正确的是( ) A.P(甲)>P(乙) B. P(甲)= P(乙)C. P(甲)< P(乙)D. P(甲)与P(乙)的大小关系无法确定 4. 正比例函数y=k 1x (k 1≠0)与反比例函数y=xk 2(k 2≠0)的图象有两个公共点,其中一个公共点的坐标为(-2,-1),则另一个公共点的坐标是( )A. (-2,-1) B.(2,-1) C.(-2,1) D. (2,1) 5.则这组数据的中位数与众数分别是( ) A .26.5,27 B .27.5,28C .28,27D . 27,286.二次函数1632++-=x x y 的图象如何移动就得到23x y -=的图象( ) A . 向右移动1个单位,向上移动4个单位 B . 向左移动1个单位,向上移动4个单位 C . 向右移动1个单位,向下移动4个单位D . 向左移动1个单位,向下移动4个单位7.某中学新科技馆铺设地面,已有正三角形形状的地砖,现打算购买另一种不同形状的正多边形地砖,与正三角形地砖在同一顶点处作平面镶嵌,则该学校不应该购买的地砖形状是( ) A 、正方形 B 、正六边形 C 、正八边形 D 、正十二边形8.一平面镜以与水平面成45°角固定在水平面上,如图所示,一个小球以1米/秒的速度沿桌面向点O 匀速滚去,则小球在平面镜中的像是( )A .以1米/秒的速度,做竖直向上运动 B. 以1米/秒的速度,做竖直向下运动C.以22米/秒的速度运动,且运动路线与地面成45°角 D.以2米/秒的速度,做竖直向下运动二、填空题(本大题共10题,每题3分,共30分.请把答案填在答题纸中相应的横线上)9.分解因式:x 3-9x = . 10.在函数y =x 的取值范围是 .11.北京奥运会体育场——“鸟巢”能容纳91 000位观众,将91 000用科学记数法表示为_______. 12. 半径分别为3和5的两个圆的圆心距为d ,若82<<d ,则这两个圆的位置关系一定是____. 13.如图,P 是∠α的边OA 上一点,且点P 的坐标为()3,4,则cos α的值为 . 14.近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为 .15.圆锥的底面半径为4cm,母线长为5cm,则它的侧面积为 .16. 已知关于x 的一元二次方程22x m x -= 有两个不相等的实数根,则m 的取值范围是_____ 17.如图,菱形ABCD 中,∠BAD=800,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连结DF ,则∠CDF=___________°.18.如图,在由边长为1cm 的小正方形组成的网格中,画如图所示的燕尾形工件,现要求最大限度的裁剪出10个与它全等的燕尾形工件,则这个网格的长至少为(接缝不计) ______________.三、解答题 (本大题共10题,共96分.解答应写出文字说明、证明过程或演算步骤)19.(本题8分)计算:()0214.32145sin 82π-+-++--20.(本题8分)解不等式组⎪⎩⎪⎨⎧->+--+≥+224313322x x x x ,并把它的解集在数轴上表示出来.21.(本题8分)制作甲、乙两种无盖..的长方体纸盒(如图),需要用正方形和长方形两种硬纸片,且长方形的宽与正方形的边长相等.那么,150张正方形硬纸片和300张长方形硬纸片可供制作甲、乙两种纸盒各多少个?22.(本题8分)桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同,把这些卡片反面朝上洗均匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍按反面朝上放回洗匀,乙从中再任意抽出一张,记下卡片上的数字,最后将甲、乙所记下的两数相加;(1)用列表或画树状图的方法求两数相加的和为5的概率;(4分)(2)若甲与乙按上述方式做游戏,当两数之和大于5时,甲胜;反之则乙胜。
2009-2010学年江苏省盐城市东台市实验初中九年级(上)期末数学试卷
2009-2010学年江苏省盐城市东台市实验初中九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(★★★★)下列各组二次根式可化为同类二次根式的是()A.和B.和C.和D.和2.(★★★)实数a、b在数轴上的位置如图所示,那么化简|a-b|- -|a+b|的结果是()A.2a-bB.b C.a D.-2a+b3.(★★★★)下列统计量中,能反映一个学生在7~9年级学段的学习成绩稳定程度的是()A.平均数B.中位数C.方差D.众数4.(★★★★)下列四边形中,两条对角线一定不相等的是()A.正方形B.矩形C.等腰梯形D.直角梯形5.(★★★★)三角形两边长分别为2和4,第三边是方程x 2-6x+8=0的解,则这个三角形的周长是()A.8B.8或10C.10D.8和106.(★★★)小明在学习了利用图象法来求一元二次方程的近似根的知识后进行了尝试:在直角坐标系中作出二次函数y=x 2+2x-10的图象,由图象可知,方程x 2+2x-10=0有两个根,一个在-5和-4之间,另一个在2和3之间.利用计算器进行探索:由下表知,方程的一个近似根是A.-4.1B.-4.2C.-4.3D.-4.47.(★★)已知两圆的半径分别是2、3,圆心距是d,若两圆有公共点,则下列结论正确的是()A.d=1B.d=5C.1≤d≤5D.1<d<58.(★★★★)二次函数y=ax 2+bx+c的图象如图所示,则直线y=bx+c的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限9.(★★★★)S型电视机经过连续两次降价,每台售价由原来的1500元降到了980元.设平均每次降价的百分率为x,则下列方程中正确的是()A.1500(1+x)2=980B.980(1+x)2=1500C.1500(1-x)2=980D.980(1-x)2=150010.(★★★)如图,P(x,y)是以坐标原点为圆心,5为半径的圆周上的点,若P都是整数点,则这样的点共有()A.4个B.8个C.12个D.16个11.(★★★)若圆锥侧面积是底面积的2倍,则这个圆锥的侧面展开图的圆心角是()A.120oB.135oC.150o D.180o12.(★★★★)如图,两个高度相等且底面直径之比为1:2的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P的距离是()A.cm B.6cm C.8cmD.10cm二、填空题(共7小题,每小题3分,满分21分)13.(★★★★)函数y= 的自变量x的取值范围是 x≤0.5且x≠-1 .14.(★★★)已知一个梯形的面积为22cm 2,高为2cm,则该梯形的中位线的长等于 11 cm.15.(★★★★)设一组数据x 1,x 2…x n的方差为S 2,将每个数据都乘以2,则新数据的方差为 4S 2.216.(★★★)抛物线y=(k+1)x 2+k 2-9开口向下,且经过原点,则k= -3 .17.(★★★)如图,小明在离树10m的A处观测树顶的仰角为60o,已知小明的眼睛离地面约1.6m,则树的高度HD约为 18.9 m(精确到0.1m).18.(★★★)如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3.5cm,则此光盘的直径是 cm.19.(★★★)如图,在直角坐标系中,第一次将△OAB变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3…已知:A(1,3),A 1(2,3),A 2(4,3),A 3(8,3);B(2,0),B 1(4,0),B 2(8,0),B 3(16,0).观察每次变换前后的三角形有何变化,按照变换规律,第五次变换后得到的三角形A 5的坐标是(32,3),B 5的坐标是(64,0).三、解答题(共9小题,满分93分)20.(★★★★)(1)计算:;(2)解方程:(x+2)2-2(x+2)+1=021.(★★★)高致病性禽流感是比SARS传染速度更快的传染病.为防止禽流感蔓延,政府规定:离疫点3km范围内为扑杀区;离疫点3km~5km范围内为免疫区,对扑杀区与免疫区内的村庄、道路实行全封闭管理.现有一条笔直的公路AB通过禽流感病区,如图,在扑杀区内公路CD长为4km.(1)请用直尺和圆规找出疫点O(不写作法,保留作图痕迹);(2)求这条公路在免疫区内有多少千米?22.(★★★)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CD于D,AC平分∠DAB.求证:CD是⊙O的切线.23.(★★★)如图,河旁有一座小山,从山顶A处测得河对岸点C的俯角为30o,测得岸边点D的俯角为45o,又知河宽CD为50米.现需从山顶A到河对岸点C拉一条笔直的缆绳AC,求缆绳AC的长(答案可带根号).24.(★★)如图,在等腰Rt△ABC中,P是斜边BC的中点,以P为顶点的直角的两边分别与边AB,AC交于点E,F,连接EF.当∠EPF绕顶点P旋转时(点E不与A,B重合),△PEF也始终是等腰直角三角形,请你说明理由.25.(★★)在直角坐标平面内,二次函数图象的顶点为A (1,-4),且过点B (3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.26.(★★★)如图,在四边形ABCD 中,点E 是线段AD 上的任意一点(E 与A ,D 不重合),G ,F ,H 分别是BE ,BC ,CE 的中点.(1)证明:四边形EGFH 是平行四边形;(2)在(1)的条件下,若EF ⊥BC ,且EF= BC ,证明:平行四边形EGFH 是正方形.27.(★★★)为选派一名学生参加全市实践活动技能竞赛,A 、B 两位同学在学校实习基地现场进行加工直径为20mm 的零件的测试,他俩各加工的10个零件的相关数据依次如下图表所示(单位:mm ) 根据测试得到的有关数据,试解答下列问题:(1)考虑平均数与完全符合要求的个数,你认为B 的成绩好些;(2)计算出S B 2的大小,考虑平均数与方差,说明谁的成绩好些;(3)考虑图中折线走势及竞赛中加工零件个数远远超过10个的实际情况,你认为派谁去参赛较合适?说明你的理由.28.(★★)已知:如图①,tan ∠MON= ,点A 是OM 上一定点,AC ⊥ON 于点C ,AC=4cm ,点B 在线段OC 上,且tan ∠ABC=2.点P 从点O 出发,以每秒 cm 的速度在射线OM 上匀速运动,点Q 、R 在射线ON 上,且PQ ∥AB ,PR ∥AC .设点P 运动了x 秒.(1)用x表示线段OP的长为 cm;用x表示线段OR的长为 2x cm;(2)设运动过程中△PQR与△ABC重叠部分的面积为S,试写出S与时间的x函数关系式;(图②供同学画草图使用)(3)当点P运动几秒时,△PQR与△ABC重叠部分的面积为?。
东台市2013-2014学年度第一学期九年级数学期末调研测试 (1)
东台市2013-2014学年度第一学期期末调研测试九年级数学试卷(本试卷卷面总分:150分, 考试时间:120分钟,考试形式:闭卷)一、选择题.(本大题共8小题,每小题3分,共24分,每小题只有一个正确答案,请把你认为正确的一个答案的代号填涂在答题纸的相应位置)1.下列等式是一元二次方程的是A .2112=+x B .032=-x C .xx 213=- D . 0332=+-x x2.如图,在ABC Rt ∆中,90=∠C ,下列式子不正确...的是 A . AB BCB =cos B .AB BCB =sinC . ABBCA =sin D .ACBCA =tan 3. 双语阅读大赛上,初三年级一班到十班获得一等奖的人数分别是6,4,5,2,6,5,7,6,7,2,这组数据的平均数是A .6B . 5.5C .5D .34. 若关于x 的一元二次方程052=+-a x x 的一个根为6,则另一个根是 A .-1 B .1 C .2 D .35. 在矩阵ABCD 中,cm AB 8=,cm CD 6=,以点A 为圆心,cm r 4=作圆,则直线BC 与⊙A 的位置关系是A .相交B .相切C .相离D .无法判断 6. 抛物线1282++=x x y 的顶点坐标为A .()4,4--B .()4,4-C .()4,4-D .()4,4 7.半径为8 cm 的圆的内接正三角形的边长为:A .38cmB .C .8cmD .4cm8.若关于x 的一元二次方程02=++b ax x 有两个不同的实数根n m ,)(n m <,方程12=++b ax x 有两个不同的实数根q p ,)(q p <,则q p n m ,,,的大小关系为A .n q p m <<<B .q n m p <<<C .q n p m <<<D .n q m p <<<第2题图二、填空题.(本题共10小题,每小题3分,共30分,不需写出解答过程,请把最后结果填在答题纸的相应位置) 9.实数14的算术平方根是是 ▲ . 10.方程0)3(=+x x 的两个根为1=x ▲ 2=x ▲ .11.如图,ABC ∆中,6=BC ,4=AB ,若ABC ∆的面积为9,则=B sin ▲ .12.用半径为4的半圆围成一个圆锥的侧面,则该圆锥的底面积为 ▲ .13.如图, AB 是⊙O 的直径,点C 在⊙O 上,40=∠AOC ,D 是BC 弧的中点,则=∠ACD▲ .14.从2,3,-1这三个数中任取两个不同的数分别作为点C 的横坐标和纵坐标,则点C 在第二象限的概率是 ▲ .15.如果关于x 的二次函数222a x ax y +-=的图象经过点()2,1-,则a 的值为 ▲ .16.如图,AB 是半径为10的⊙O 的一条弦,延长AB 至C ,使10==BC AB ,过C 作⊙O 的切线CD ,D 为切点,则=CD ▲ .17.对于实数b a ,定义运算“*”:⎪⎩⎪⎨⎧<-≥-=*)()(22b a b ab b a ab a b a 例如4*2,因为4>2,所以4*224428=-⨯=.若32=*x ,则x 的值为 ▲ .18.已知关于x 的二次函数c bx ax y ++=2的图象如图所示,则a c cb b a +++++可化简为 ▲ .三、解答题. (本大题共10小题,计96分,解答时应写出文字说明,证明过程或演算步骤.)19.(本题满分8分)计算:021242130tan 60sin ⎪⎭⎫⎝⎛+⋅+⋅20.(本题满分8分)用两种方法解方程:02522=+-x x第11题图第16题图第18题图第13题图21.(本题满分8分)在我市开展的“‘新华杯’中学双语课外阅读”活动中,某中学为了解八年级400名学生读书情况,随机调查了八年级50名学生读书的册数.统计数据如下表所示:(1) 求这50个样本数据的众数和中位数;(2) 根据样本数据,估计该校八年级400名学生在本次活动中读书多于2册的人数。
2009年初中毕业生学业考试数学调研测试卷参考答案
2009年学业考试数学调研测试卷参考答案 2009.3一、选择题: AABAC BCCDD二、填空题: 11.)2)(2(-+x x a 12.内切 13.31 14.60° 15. 100 16.(0,10)或(1,4)或(56,5) (对1个给2分;对两个给3分;对3个给4分;多写扣1分.)三、解答题:17.(1)原式= 3133--= 23-1(每式化简正确各得1分,最多得2分,结论1分)(2) 原方程可化为x x 312=+,解得1=x …………(化简、结果各1分,共2分) 经检验,1=x 是原方程的解………………………………………………(1分)18.(1)(4分)(2)BC AB =或∠A ﹦∠C 等(仅限于与△ABC 有关的边角关系,2分)19.(1)(-1,1)(2分) (2)解:由已知D '的坐标为(-1,1+k ), (1分)又∵D '在xy 3-=的图像上,∴ 有1+k ﹦-)1(3-﹦3(2分)解得2=k .(1分) 20.解:(1)∵AB 是⊙O 的直径,∴∠ACB =90°∴ Sin ∠135==AB BC BAC .(2分) (2)∵OD ⊥AC ,BC ⊥AC ,∴OD ∥BC ,又∵OB OA =,∴DC AD =, 又125132222=-=-=BC AB AC ,∴6=AD .……………… (3分) (3)∵ππ8169213212=⨯=)(半圆S ,305122121=⨯⨯=⨯⨯=BC AC S ACB △ ∴ 4.36308169≈-=-=πACB S S S △半圆阴影………………………… (3分) 21.解:(1) 设所求抛物线的解析式为2ax y =,由已知点D 的坐标为(20,-10)∴400a ﹦-10,解得401-=a ,∴所求抛物线的解析式为2401x y -=(3分) (2) 设B 点坐标为(24,b ),则有224401⨯-=b ﹦14.4 ∴货车在甲地时,水面和桥面的距离为14.4-10-2﹦2.4 (m ) ∴水位继续上涨至桥面需要83.04.2= (h ) ∵ 320840=⨯< 360,∴货车按原来速度行驶,不能安全通过此桥 (3分) 又∵8360﹦45,∴要使货车安全通过此桥,速度不得低于45 h km / (2分) 22.(1) 1450 (2分) (2)64.12 (3分)(3)设甲型卡车需x 辆,则乙型卡车需(9-x )辆班, 由题意可得: ⎩⎨⎧≥-+≥-+130)9(2010300)9(3050x x x x (1分) 解得 523≤≤x , ∴x 可取2,3,4,5 ∴即甲乙两种卡车的配置方案有:甲2辆,乙7辆;甲3辆,乙6辆;甲4辆,乙5辆;甲5辆,乙4辆. (各1分,共4分) 答: (略)23.简解:(1) 分别延长AD 、BC ,相交于点E易求得3=ED ,32=EB∴323=-=EDC EAB ABCD S S S △△四边形 (2分) (2)分别延长CB 、DA ,相交于点P ,易证PA EA DE 22==,△PCD 是等腰三角形利用相似三角形的性质,可求得813=S ,∴87312=-=S S S . (3分) (3)如图,分别延长或反向延长DE 、BC 、AF ,得三个交点P N M .. ∵六个内角都是120°,∴△MEF 、△PAB 、△NDC 、△MNP 都是正三角形∴ ABCDEF S 六边形3435=---=NDC PAB MEF MNP S S S S △△△△ (3分) 24.(1) 2=AB ,5=AD (各2分,共4分)(2)由(1)知,2=AB ,5=AD存在如下图的三种等腰三角形的情况:易求得,PQ 的长为710或920. (各2分,共4分) (3) 当322+=b 时,2=AB ,32=BC由已知,以A 、P 、D 为顶点的三角形与△BMC 相似,又易证得∠CBM ﹦∠DAP .∴另一对对应角相等有两种情况:①∠ADP ﹦∠BCM ;②∠APD ﹦∠BCM . 当∠ADP ﹦∠BCM 时,∵BC ∥AD ,∴∠BCM ﹦∠CAD ,∴∠CAD ﹦∠ADC .∴DC AC =,易得342==BC AD ;当∠APD ﹦∠BCM 时,∵BC ∥AD ,∴∠BCM ﹦∠CAD ,∴∠CAD ﹦∠APD ,又∠D 是公共角,∴△CAD ∽△APD ,∴PD AD AD CD =, 即2221CD PD CD AD =⋅=,可解得AD =)37(2- 综上所述,所求线段AD 的长为34或)37(2-. (各2分,共4分)。
江苏省2009年中考数学试卷(含答案)
解析1.-2、0、1、-3四个数中,最小的数是()A.-2 B.0 C.1 D.-3 VIP显示解析2.如果收入50元,记作+50元,那么支出30元记作()A.+30 B.-30 C.+80 D.-80 VIP显示解析3.下面的几何体中,主视图不是矩形的是()A.B.C.D.显示解析4.若式子x−3在实数范围内有意义,则x的取值范围是()A.x≥3B.x≤3C.x>3 D.x<3显示解析5.下列运算中,正确的是()A.2a2+3a2=a4B.5a2-2a2=3 C.a3×2a2=2a6D.3a6÷a2=3a4A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元显示解析7.如图,直线a∥b,∠1=120°,∠2=40°,则∠3等于()A.60°B.70°C.80°D.90°显示解析8.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()A.4种B.5种C.6种D.7种显示解析二、填空题(本大题共10小题,每小题3分,共30分。
不需要写出解答过程,请将答案直接写在答题卡相应位置上)9.16的平方根是.★★★★★显示解析10.因式分解:a2-9=.★★☆☆☆显示解析11.2013年4月20日,四川省雅安市芦山县发生7.0级地震.我市爱心人士情系灾区,积极捐款,截止到5月6日,市红十字会共收到捐款约1400000元,这个数据用科学记数法可表示为元.显示解析12.使分式x+12x−1的值为零的条件是x=.显示解析13.如图所示是一飞镖游戏板,大圆的直径把一组同心圆分成四等份,假设飞镖击中圆面上每一个点都是等可能的,则飞镖落在黑色区域的概率是12.显示解析14.若x2-2x=3,则代数式2x2-4x+3的值为.显示解析15.写出一个过点(0,3),且函数值y随自变量x的增大而减小的一次函数关系式:.(填上一个答案即可)显示解析16.如图,将⊙O沿弦AB折叠,使AB经过圆心O,则∠OAB=.显示解析17.如图,在△ABC中,∠BAC=90°,AB=5cm,AC=2cm,将△ABC绕顶点C按顺时针方向旋转45°至△A1B1C的位置,则线段AB扫过区域(图中的阴影部分)的面积为8cm2.显示解析18.如图,在以点O为原点的平面直角坐标系中,一次函数y=-12x+1的图象与x轴交于点A,与y轴交于点B,点C在直线AB上,且OC=12AB,反比例函数y=kx的图象经过点C,则所有可能的k值为121150.显示解析三、解答题(本大题共有10小题,共96分。
江苏省盐城市东台九年级下学期第一次月考数学试题有答案
江苏省盐城市东台市第一教研片2016届九年级下学期第一次月考数学试题一.选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题纸相应位置上 )1.12-的结果是……………………………………(▲)A .12-B .12C .-2D .22.56.2万平方米用科学记数法表示正确的是………………………………(▲)A .45.6210⨯m 2B .456.210⨯ m 2C .55.6210⨯ m 2D .30.56210⨯ m 2 3.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是………………………………(▲) A .35 B .25 C .15 D .454.今年4月,全国山地越野车大赛在我市某区举行,其中8名选手某项得分如表: 则这8名选手得分的众数、中位数分别是………………………………………(▲)A .85、85B .87、85C .85、86D .85、875.如图,DE ∥BC ,在下列比例式中,不能成立的是………………………………(▲)A .DB AD =ECAE B .BCDE =ECAE C .AD AB =AEAC D .EC DB =ACAB6.菱形周长为20 cm ,它的一条对角线长6 cm ,则菱形的面积为…………………(▲ ) A .6 B .12 C .18 D .247.若式子12-x -x 21-+1有意义,则x 的取值范围是………………………(▲)A .x ≥21B . x ≤21C . x =21 D .以上都不对8.任意大于1的正整数m 的三次幂均可“分裂”成m 个连续奇数的和,如:5323+=,119733++=,1917151343+++=,…按此规律,若3m 分裂后其中有一个奇数是2015,则m 的值是………………………………………………(▲) A .46 B .45 C .44 D .43二、填空题(本大题共10小题,每小题3分,共30分。
2009年初中毕业生学业考试数学调研测试卷试题卷
2009学年初三数学调研测试试题卷一、选择题(本题有10小题,每小题3分,共30分) 2的相反数是( ▲ )A .2-B 2C .2-D 2 2.下列各点在如图4×4网格区域内的是 ( ▲ )A .(3,2)B .(-3,2)C .(3,-2)D .(-3,-2)3. 已知α是等腰直角三角形的一个锐角,则sin α的值为( ▲ )A .12B .22C .32D .1 4. 计算32)(x x ⋅-所得的结果是( ▲ )A. 5xB.-5xC. 6xD. -6x5. 15 ▲ )A .点P 子B .点QC .点MD .点N6. 在平面直角坐标系中,将点A (1,2)的横坐标乘以-1,纵坐标不变,得到点A ',则点A 与点A '的关系是( ▲ )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .将点A 向x 轴负方向平移一个单位得点A '7. 若等腰三角形的一条边长等于6,另一条边长等于3,则它的周长是( ▲ )A .9B .12C .15D .12或158. “龟兔赛跑”的故事大家都非常熟悉:对兔子来说,真是“身手敏捷速度快,赛时先快后却慢,中途美梦来相伴,输了比赛留遗憾” .下列图像中,最能反映寓言故事中兔子行进的距离s (米)与行进时间t (小时)关系的是( ▲ )9. 如图是一个几何体的三视图,根据图中提供的数据(单位:cm )可求得这个几何体的体积为( ▲ )A . 83cmB .63cmC .4 3cmD .2 3cm10.在同一直角坐标系中,函数y mx m =+和222y mx x =-++(m 是常数,且0m ≠)的图象可能..是( ▲ )二、填空题 (本题有6小题,每小题4分,共24分) 11. 分解因式:=-a ax 42 ▲ .12. 0,3),和(0,1),它们的半径分别是3和5,那么这两个圆的位置关系是 ▲ .13. 一只小鸟自由自在地在空中飞行,然后随意落在图中所示某个方格中(每个方格除颜色外完全一样),那么小鸟停在深色方格中的概率是 ▲ .14. 如图,在ΔABC 中,M 、N 分别是AB 、AC 的中点,且∠A +∠B ﹦120°,则∠ANM ﹦ ▲ .15. 为了能有效地使用电力资源,我市供电部门鼓励居民使用“峰谷”电:每天8:00至21:00用电每千瓦时0.55元(“峰电”价),每天21:00至次日8:00每千瓦时0.30元(“谷电”价).王老师家使用“峰谷”电后,一月份用电量为300千瓦时,付电费115元,则王老师家该月使用“峰电” ▲ 千瓦时.16.如图,在平面直角坐标系中,矩形OABC 的两边分别在x 轴和y轴上,OA =10cm ,OC =6cm .P 是线段OA 上的动点,从O 点出发,以1cm /s 的速度沿OA 方向作匀速运动,点Q 在线段AB上. 已知A 、Q 两点间距离是O 、P 两点间距离的a 倍,若用(a ,t )表示经过时间t (s )时,△OCP 、△PAQ 和△CBQ 中有两个三角形全等.请写出(a ,t )的所有可能情况▲ .三、解答题 (本题有8小题,共66分) 17.(本题6分) (1)计算 ︒---30tan 3)14.3(270π ;(2)解方程:1321x x =+. 18.(本题6分)如图,在△ABC 中,DF ∥AB ,DE ∥BC ,连接BD .(1) 求证:△DEB ≌△BFD ;(2) 若点D 是AC 边的中点,当△ABC 满足条件▲ 时,四边形DEBF 为菱形.x y O A.x y O B. x y O C. x y O D. A M NB C第14题19.(本题6分)如图,在等腰直角三角形OAB 中,∠OAB =90°,B 点在第一象限,A 点坐标为(1,0).(1)作△OCD ,使它与△OAB 关于y 轴对称,则D 点的坐标为 ▲ ;(2)在(1)的基础上,若将△OCD 向上平移k (k >0)个单位至△D C O '''(如图乙),已知反比例函数xy 3-=的图像经过点D ',求k 的值.20.(本题8分)如图,已知AB 是⊙O 的直径,点C 在⊙O 上,且13AB =,5BC =.(1)求sin BAC ∠的值;(2)如果OD AC ⊥,垂足为D ,求AD 的长;(3)求图中阴影部分的面积(精确到0.1).21.(本题8分)如图,有一座大桥是靠抛物线型的拱形支撑的,它的桥面处于拱形中部(金华市区的双龙大桥就是这种模型).已知桥面在拱形之间的宽度CD 为40m ,桥面CD 离拱形支撑的最高点O 的距离为10m ,且在正常水位时水面宽度AB 为48m .(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)现有一辆载有救援物质的货车正以40h km /的速度必需经过此桥匀速开往乙地.当货车行驶到甲地时接到紧急通知:前方连降暴雨,造成水位以每小时0.3m 的速度持续上涨(接到通知时水位已经比正常水位高出2m 了,当水位到达桥面CD 的高度时,禁止车辆通行).已知甲地距离此桥360km (桥长忽略不计),请问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度不得低于多少h km /?22.(本题10分)2008年5月12日,四川汶川发生特大地震灾难,造成数万人遇难,数十万人受伤, 还有数万人失踪. 灾难发生后,社会各界纷纷捐款捐物支援灾区人民. 如图(1)是根据我区某中学学生捐款情况制成的条形图,图(2)是该中学学生人数分布统计表.(1) 该校共有学生 ▲ 人;(2) 该校学生平均每人捐款 ▲ 元(精确到0.01元);(3) 在得知灾区急需帐篷后,学校立即用全校师生的捐款到当地的一家帐篷厂采购了300顶小帐篷,130顶大帐篷。
江苏省东台市2017-2018学年上学期期末考试九年级数学试题(原卷版)
2017-2018学年九年级数学上学期期末考试题一、选择题(本大题共8小题,每小题3分,共24分)1. 将抛物线y=x2向右平移1个单位长度,再向上平移2个单位长度所得的抛物线解析式为()A. y=(x﹣1)2+2B. y=(x+1)2+2C. y=(x﹣1)2﹣2D. y=(x+1)2﹣22. 若圆的一条弦把圆分成度数之比为1:3的两条弧,则该弦所对的圆周角等于()A. 45°B. 90°C. 90°或270°D. 45°或135°3. 下列四个命题:①垂直于弦的直径平分弦以及弦所对的两条弧;②在同圆或等圆中,相等的弦所对的圆周角相等;③三角形有且只有一个外接圆;④矩形一定有一个外接圆;⑤三角形的外心到三角形三边的距离相等。
其中真命题的个数有()A. 4个B. 3个C. 2个D. 1个4. 已知二次函数y=ax2﹣bx﹣2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为()A. 或1B. 或1C. 或D. 或5. 下列方程中,是一元二次方程的是()A. y= x2﹣3B. 2(x+1)=3C. x2+3x﹣1=x2+1D. x2=26. 有15位同学参加智力竞赛,已知他们的得分互不相同,取8位同学进入决赛,小明同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这15位同学的分数的( )A. 平均数B. 众数C. 中位数D. 最高分数7. 一个袋中有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率是( )A. B. C. D.8. 已知圆锥的底面半径为6,母线长为8,圆锥的侧面积为()A. 60B. 48C. 60πD. 48π二、填空题 (本大题共10小题,每小题3分,共30分)9. 二次函数图象的顶点坐标是_________.10. 已知实数m是关于x的方程x2-3x-1=0的一根,则代数式m2-3m +5值为_______.11. 数据0,1,1,x,3,4的极差是6,则这组数据的x是________.12. 在比例尺为1:38000的扬州旅游地图上,某条道路的长为6cm,则这条道路的实际长度为______km.13. AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为___________....14. 若、、为二次函数的图象上的三个点,则请你用“<”连接得_________________.15. 如图,AB,AC分别是⊙O的直径和弦,于点D,连结BD、BC,,,则BD=___________.16. 如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是_____________.17. 若二次函数y=ax2+bx+c的图象如图所示,则不等式a(x﹣2)2+b(x﹣2)+c<0的解集为______.18. 如图,在平面直角坐标系中,已知点A(0,1)、点B(0,1+t)、C(0,1﹣t)(t>0),点P在以D(3,3)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则t的最小值是_______________.三、解答题(共10题,共96分)19. (本题8分)(1)解方程;(2)已知a:b:c=3:2:5.求的值.20. (本题8分)射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次平均成绩中位数甲10 8 9 8 10 9 9 ①乙10 7 10 10 9 8 ②9.5(1)完成表中填空①;②;(2)请计算甲六次测试成绩的方差;(3)若乙六次测试成绩方差为,你认为推荐谁参加比赛更合适,请说明理由.21. (本题8分)甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)若由甲挑一名选手打第一场比赛,选中乙的概率是多少?(直接写出答案)(2)任选两名同学打第一场,请用树状图或列表法求恰好选中甲、乙两位同学的概率。
2009年江苏省中考数学试题
( a C) 。
3 如 图 1数轴上 A、 . , B两点 分别对 应实数 o b 、. 则 下列结论正确 的是 (
( a+b A) >0
) .
( )b 0 Ba >
() C 中位数
() D 方差
( 0一b 0 C) >
曰
( ) 口 —Il 0 D II > b
A
7 如 图 4 给 出 下 列 4组 条 件 : . ,
@A B=D B E A D E,C= F.C= F;
B =DE, B = E, BC =EF; . b 一1 0 1 0
③ B= E, C:E C= F; B F,
1. 3 4 若 a 一a一 0,0 +2 6 = 2= 贝 8— a 5 .
I 镇I 图县 I 市l 口城
.. ... .. .. . . . .
_ J _
1. 5 如图 5 一个 圆形转盘被等 分成五个扇形 区 , 域, 上面分别标有 数字 1 2 3 4 5 转 盘指针的位置 … 、 , 固定 , 转动转盘后任 其 自由停 止 , 转动转 盘一次 , 当 转 盘停止转动 时 , 记指 针指 向标 有偶 数所在 区域 的 概率 为 P( 偶数 ) 指 针指 向标 有奇数所 在 区域的概 , 率为 P 奇数 ) 则 P( ( , 偶数 ) — ( — 填“>” “<” 或
第 个 :一 + ( ) 2数÷ ( )+ ・ t -
第 个 数 :1
一
( ) ・ + ;
个 矩 形 , 么 , 面 那 下
的平移方法 中, 正确的是 (
) .
( )+ ) ( ・ +
2009年江苏省初中毕业升学联考数学试卷
2009年江苏省初中毕业升学联考数学试卷一、选择题1.(★★★★★)下列运算正确的是()A.x2+x3=x5B.(x+y)2=x2+y2C.(2xy2)3=6x3y6D.-(x-y)=-x+y2.(★★★★)下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个3.(★★★★)已知α为锐角,且sinα= ,则α的度数为()A.30oB.45o C.60o D.75o4.(★★★★)某人承包1125平方米的铺地砖任务,计划在一定的时间内完成,按计划工作3天后,提高了工作效率,使每天铺地砖的面积为原计划1.5倍,结果提前4天完成了任务,则原计划每天铺()A.70平方米B.65平方米C.75平方米D.85平方米5.(★★★)如图,一座堤坝的横截面是梯形,根据图中给出的数据,则坝底宽BC为()(精确到0.1m,参加数据:)A.20mB.22.9mC.24m D.25.1m6.(★★★)一个几何体是由一些大小相同的小正方块摆成的,其主视图与俯视图如图所示,则组成这个几何体的小正方块最多有()A.7个B.6个C.5个D.4个7.(★★★★)如图是一次函数y=kx+b与反比例函数y= 的图象,则关于x的方程-kx=b的解是()A.x1=1,x2=2B.x1=-1,x2=-2C.x1=1,x2=-2D.x1=-1,x2=28.(★★)抛物线y=ax 2+2ax+a 2+2的一部分如图所示,那么该抛物线在y 轴右侧与x轴交点的坐标是()A.(,0)B.(1,0)C.(2,0)D.(3,0)二、填空题9.(★★★★)-4的相反数是 4 ,49的算术平方根是 7 ,的倒数是 -.10.(★★★★)2009年3月10日,国家统计局公布的数据显示,今年2月份是我国居民消费价格(CPI)同比下降1.6%,这是我国CPI六年来首次出现负增长.其中“1.6%”这个数据可用科学记数法表示为 1.6X10 -2.-211.(★★★★)在函数y= 中,自变量x的取值范围是 x≥-3 .12.(★★★)分解因式:2a 3-2ab 2= 2a(a+b)(a-b).13.(★★★★)质检部门对甲、乙两工厂生产的同样产品抽样调查,计算出甲厂的样本方差为0.99,乙厂的样本方差为1.02,那么,由此可以推断出生产此类产品,质量比较稳定的是甲厂(填写“甲”或者“乙”).14.(★★★)已知圆锥的底面周长为6πcm,母线长为6cm,则侧面积为 18π cm 2.15.(★★★★)相交两圆的半径分别为5和3,请你写出一个符合条件的圆心距为 4(只要大于2,而小于8即可).16.(★★★)反比例函数的图象在第一、三象限;当x=3时,y= 2 ;y=-2时,x= -3 .17.(★★★)如图(1)是四边形纸片ABCD,其中∠B=120o,∠D=50度.若将其右下角向内折出△PCR,恰使CP∥AB,RC∥AD,如图(2)所示,则∠C= 95 度.18.(★★★)如图,在平面直角坐标系中,点A、B、C的坐标分别是A(-2,5),B(-3,-1),C(1,-1),在第一象限内找一点D,使四边形ABCD是平行四边形,那么点D的坐标是(2,5).三、解答题19.(★★★★)(1)计算:;(2)解不等式组.20.(★★★★)先化简÷,再求值.(其中P是满足-3<P<3的整数)21.(★★★)如图△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB(1)求证:四边形EFCD是菱形;(2)设CD=4,求D、F两点间的距离.22.(★★★)如图是单位长度等于1的网格,点A、B、C都在格点上;(1)画出将图△ABC绕点A逆时针旋转90o的△AB′C′,(其中B、C对应点分别是B′、C′);(2)求点B运动过程中所经过的弧长;(3)求边BC运动过程中所扫过的区域的面积.23.(★★★)如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,过P点作⊙O的切线,切点为C,连接AC.(1)若∠CPA=30o,求PC的长;(2)若点P在AB的延长线上运动,∠CPA的平分线交AC于点M,你认为∠CMP的大小是否发生变化?若变化,请说明理由;若不变化,求出∠CMP的大小.24.(★★)我国政府规定:从2008年6月1日起限制使用塑料袋.5月的某一天,小明和小刚在本市的A、B、C三家大型超市就市民对“限塑令”的态度进行了一次随机调查.结果如下面的图表:(1)此次共调查了多少人?(2)请将图表补充完整;(3)用你所学过的统计知识来说明哪个超市的调查结果更能反映消费者的态度?25.(★★)一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店日净收入.(日净收入=每天的销售额一套餐成本-每天固定支出)(1)求y与x的函数关系式;(2)若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元;(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?26.(★★★)操作:正方体涂色:如图,用白萝卜做成一个正方体,并把正方体表面涂成灰颜色.探究:把正方体的棱三等分,然后沿等分线把正方体切开,得到27块小正方体.(1)①两面涂色的小正方体有 12 个;若把正方体的棱n(n≥2的整数)等分,然后沿等分线把正方体切开,得到若干个小正方体,其中两面涂色的小正方体有 12(n-2)个.②若把上述小正方体表面各面无涂色、一面涂色、两面涂色、三面涂色分别记作:0,1,2,3,请写出这27个数据的众数是 2 .应用:(2)①小明从上述的27块萝卜中任取一块,求只有两面涂色的概率.②小明和弟弟在做游戏,规则是:从上述的27块萝卜中任取一块,若他有奇数个面涂色时,小明赢;否则弟弟赢,你认为这样的游戏规则公平吗?为什么?27.(★★★)已知,如图,抛物线经过原点O和点B(m,-3),它的对称轴x=-2与x轴交于点A,直线y=-2x+1与抛物线交于点B,且与y轴、直线x=-2分别交于点D、C.(1)求m的值及抛物线的解析式;(2)求证:①AC=AB,②BD=CD;(3)除B点外,直线y=-2x+1与抛物线有无公共点?并说明理由;(4)在抛物线上是否存在一点P,使得PB=PC?若存在,求出P点的坐标;若不存在,请说明理由.28.(★★)如图,在Rt△ABC中,∠C=90o,AB=50,AC=30,D、E、F分别是AC、AB、BC的中点.点P从点D出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,点P、Q同时出发,当点Q运动到点A时停止,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)D、F两点间的距离等于 25 ;(2)以点D为圆心,DC长为半径作圆交DE于M,能否在弧CM上找一点N,使直线QN切⊙D于N ,且四边形CDEF分成面积相等的两部分?若能,求出t的值.若不能,说明理由;(3)作射线QK⊥AB,交折线BC-CA于点G,当t为何值时,点P恰好落在射线QK上;(4)连接PG,当PG∥AB时,直接写出t的值.。
江苏省东台市2014届九年级数学上学期第一次阶段检测试题(含答案)
A B OCD东台市2013—2014学年度第一学期阶段检测九年级数学试题(考试形式:闭卷,考试时间:120分钟,满分150分)一、选择题(下列各题所给答案中,只有一个答案是正确的. 请把你认为正确的选项序号填1A .x ≠2 B.x ≥2 C.x ≤2 D.全体实数 2的值A .在2到3之间B .在3到4之间C .在4到5之间D .在5到6之间 3.等腰三角形的两边长是2和5,它的周长是A.9B.12C.9或12D.7 4.下列一元二次方程的解有两个不相等的实数根的是( )A .0852=--x x B .04322=++x xC .0962=+-x x D. 0852=+-x x5.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为A.200(1+x)2=1000 B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=10006.如图,在等腰梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O . 下列结论不一定正确.....的是 A .AC =BD B .∠OBC =∠OCB C .S △AOB =S △COD D .∠BCD=∠BDC 7. 已知关于x 是方程032)1(22=-+++-m m x x m 的一个根为0,则m 的值为A . 1B . -3C . 1或-3D .以上都不对 8.如图,在△ABC 中,∠ACB =90º,AC >BC ,分别以AB 、BC 、CA 为一边向△ABC 外作正方形ABDE 、BCMN 、CAFG ,连接EF 、GM 、ND ,设△AEF 、△BND 、△CGM 的面积分别为S 1、S 2、S 3,则下列结论正确的是A .S 1=S 2=S 3B .S 1=S 2<S 3C .S 1=S 3<S 2D .S 2=S 3<S 1A B C DEF GS 1 S 2S 3学校_________班级 姓名 考试号_________密 封 线 内 不 要 答 卷………………………………………………装………………订…………………线……………………………………………………二.填空题(每题3分,共30分) 9.方程(x-1)2=0的两根是 .10.已知关于x 的一元二次方程x 2+kx +1 =0有两个相等的实数根,则k = . 11.如图,在△ABC 中,BC =6cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于15cm ,则AC 的长等于12.如图,四边形ABCD 是梯形,BD =AC 且BD⊥AC,若AB =2,CD =4,则S 梯形ABCD = . 13.若梯形的面积为122cm ,高为3cm ,则此梯形的中位线长为 cm .14.如图,一活动菱形衣架中,菱形的边长均为16cm ,若墙上钉子间的距离16cm AB BC ==,则1=∠ 度.15.我市某年6月上旬日最高气温如下表所示:那么这10天的日最高气温的极差是 ℃.16.如图,邻边不等..的矩形花圃ABCD ,它的一边AD 利用已有的围墙,另外三边所围的栅栏的总长度是6m .若矩形的面积为4m 2,则AB 的长度是 m (可利用的围墙长度超过6m ).17.已知实数m 是关于x 的方程x 2-3x-1=0的一根,则代数式2m 2-6m +2值为_____. 18.如图,依次连结第一个矩形各边的中点得到第一个菱形,再依次连结所得菱形各边的中点得到第二个矩形,按照此方法继续下去。
2009年江苏省中考数学试卷(全解全析12)
2009年江苏省中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1、(2010•黄石)﹣2的相反数是()A、﹣2B、﹣C、D、2考点:相反数。
分析:一个数的相反数就是在这个数前面添上“﹣”号.解答:解:﹣2的相反数是2.故选D.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2、(2010•防城港)计算(a2)3的结果是()A、a5B、a6C、a8D、3a2考点:幂的乘方与积的乘方。
分析:根据幂的乘方,底数不变,指数相乘,计算后直接选取答案.解答:解:(a2)3=a6.故选B.点评:本题考查了幂的乘方的性质,熟练掌握性质是解题的关键.3、(2009•江苏)如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A、a+b>0B、ab>0C、a﹣b>0D、|a|﹣|b|>0考点:实数与数轴。
分析:本题要先观察a,b在数轴上的位置,得b<﹣1<0<a<1,然后对四个选项逐一分析.解答:解:A、∵b<﹣1<0<a<1,,∴|b|>|a|,∴a+b<0,故选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,故选项错误;C、∵b<﹣1<0<a<1,∴a﹣b>0,故选项正确;D、∵b<﹣1<0<a<1,∴|a|﹣|b|<0,故选项错误.故选C.点评:本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.4、(2009•江苏)下面四个几何体中,左视图是四边形的几何体共有()A、1个B、2个C、3个D、4个考点:简单几何体的三视图。
分析:四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.解答:解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体,故选B.点评:考查立体图形的左视图,考查学生的观察能力.5、(2009•江苏)如图,在5×5方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是()A、先向下平移3格,再向右平移1格B、先向下平移2格,再向右平移1格C、先向下平移2格,再向右平移2格D、先向下平移3格,再向右平移2格考点:平移的性质。
初中数学江苏省东台市九年级数学下学期期初调研考试考试题
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:-3的绝对值是()A.-3 B.3 C. D.试题2:下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.试题3:下列运算正确的是()A. B.C. D.试题4:如图是一个由3个相同的正方体组成的立体图形,则它的主视图为()评卷人得分A.B. C. D.试题5:下列四个实数中,是无理数的为()A. B. C.-5 D.试题6:人民商场对上周女装的销售情况进行了统计,销售情况如下表所示:颜色黄色绿色白色紫色红色数量(件)100 180 220 80 550经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数 B.中位数 C.众数 D.方差试题7:如图,△ABC的三个顶点分别在直线a、b上,且a∥b,若∠1=120°,∠2=80°,则∠3的度数是()A.40° B.60° C.80° D.120°试题8:如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A2017的坐标是()A.(0,21008) B.(21008,21008)C.(21009,0) D.(21009,-21009)试题9:分解因式:=____________.试题10:函数的自变量x的取值范围是______.试题11:据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示为_______元.试题12:若,则代数式的值为_____.试题13:如图,在□ABCD中,CE⊥AB,E为垂足,若∠A=122°,则∠BCE=______°.试题14:若反比例函数的图象经过点P(-1,4),则它的函数关系式是______.试题15:如图,在△ABC中,AB=6,BC=8,AC=4,D、E、F分别为BC、AC、AB中点,连接DE、FE,则四边形BDEF的周长是______.试题16:已知圆锥的底面半径为3,侧面积为15,则这个圆锥的高为_______.试题17:如图,在平面直角坐标系中,点A、B的坐标分别为(3,2)、(-1,0),若将线段BA绕点B顺时针旋转90°得到线段BA',则点A'的坐标为______.试题18:如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D为边AB上一点,CD绕点D 顺时针旋转90°至DE,CE交AB于点G.已知AD=8,BG=6,点F是AE的中点,连接DF ,求线段DF的长_______.试题19:计算:;试题20:解不等式:3(x-1)>2x+2.试题21:先化简,再求值:,其中.试题22:在一个不透明的口袋中有3个分别标有数字-1、1、2的小球,它们除标的数字不同外无其他区别.(1)随机地从口袋中取出一小球,求取出的小球上标的数字为负数的概率;(2)随机地从口袋中取出一小球,放回后再取出第二个小球,求两次取出的数字的和等于0的概率.试题23:实验初中组织了“英语手抄报”征集活动,现从中随机抽取部分作品,按A、B、C、D四个等级进行评价,并根据统计结果绘制了如下两幅不完整的统计图.(1)抽取了_____份作品;(2)此次抽取的作品中等级为B的作品有______份,并补全条形统计图;(3)若该校共征集到600份作品,请估计等级为A的作品约有多少份?试题24:如图,在Rt△ABC中,∠ACB=90°.(1)利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)①作AC的垂直平分线,交AB于点O,交AC于点D;②以O为圆心,OA为半径作圆,交OD的延长线于点E.(2)在(1)所作的图形中,解答下列问题.①点B与⊙O的位置关系是______;(直接写出答案)②若DE=2,AC=8,求⊙O的半径.试题25:如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B 两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)试题26:大润发超市在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100件.调查表明:这种商品的售价每上涨1元/件,其销售量就将减少2件.(1)为了实现每天1600元的销售利润,超市应将这种商品的售价定为多少?(2)设每件商品的售价为x元,超市所获利润为y元.①求y与x之间的函数关系式;②物价局规定该商品的售价不能超过40元/件,超市为了获得最大的利润,应将该商品售价定为多少?最大利润是多少?试题27:如图,AB是⊙O的直径,C为⊙O上一点,AD⊥CD,(点D在⊙O外)AC平分∠BAD.(1)求证:CD是⊙O的切线;(2)若DC、AB的延长线相交于点E,且DE=12,AD=9,求BE的长.试题28:(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE,易证△BCE ≌△ACD.则①∠BEC=______°;②线段AD、BE之间的数量关系是______.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AE=15,DE=7,求AB 的长度.(3)探究发现:如图3,P为等边△ABC内一点,且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD的长.试题29:已知:如图1,直线与x轴、y轴分别交于点A、C两点,点B的横坐标为2.(1)求A、C两点的坐标和抛物线的函数关系式;(2)点D是直线AC上方抛物线上任意一点,P为线段AC上一点,且S△PCD=2S△PAD,求点P的坐标;(3)如图2,另有一条直线y=-x与直线AC交于点M ,N为线段OA上一点,∠AMN=∠AOM.点Q为x轴负半轴上一点,且点Q到直线MN和直线MO的距离相等,求点Q的坐标.图1图2试题1答案:B试题2答案: C试题3答案: D试题4答案: A试题5答案: B试题6答案: C试题7答案: A试题8答案: B试题9答案: a (a-4);试题10答案: x≤3;试题11答案:6.8×108;试题12答案: .18;试题13答案:.32;试题14答案:;试题15答案:14;试题16答案:4;试题17答案:(1,-4);试题18答案:.试题19答案:0;试题20答案:x>5试题21答案:解:原式=………………………………………………………………………4分;当x=4时,原式=4…………………………………………………8分试题22答案:解:(1)P(取出负数)=……………………………………………………………4分(2)列表如下:-1 1 2-1 -2 0 11 02 32 134 …………………………………………………………………………………………6分∴P(和等于0)=…………………………………………………………………8分(注:用树状图列举所有结果参照以上相应步骤给分.)试题23答案:解:(1)120 ………………………………………………………………………… 2分(2)48…………………………………………………………………………………… 4分如图所示: (6)分(3)等级为A的作品约有180份.………………………………………………………8分试题24答案:解:(1)如图所示…………………………… 3分(2)①点B在⊙O上……………………………6分②∵OD⊥AC,且点D是AC的中点,AC=4,设⊙O的半径为r,则OA=OE=r,OD=OE-DE=r-2,在Rt△AOD中,∵OA2=AD2+OD2即r2=42+(r-2) 2……………………………8分解得r=5.∴⊙O的半径为5.…………………………………………………………………………10分试题25答案:解:(1)作CH⊥AB于H.在Rt△ACH中,CH=AC•sin∠CAB=AC•sin25°≈10×0.42=4.2千米,AH=AC•cos∠CAB=AC•cos25°≈10×0.91=9.1千米,在Rt△BCH中,BH=CH÷tan∠CBA=4.2÷tan37°≈4.2÷0.75=5.6千米,∴AB=AH+BH=9.1+5.6=14.7千米.故改直的公路AB的长14.7千米;………………………………………………………5分(2)在Rt△BCH中,BC=CH÷sin∠CBA=4.2÷sin37°≈4.2÷0.6=7千米,则AC+BC﹣AB=10+7﹣14.7=2.3千米.答:公路改直后比原来缩短了2.3千米.………………………………………………10分试题26答案:解:(1)设商品的定价为x元,由题意,得(x-20)[100-2(x-30)]=1600,解得:x=40或x=60;答:售价应定为40元或60元.……………………………………………………………3分(2)①y=(x-20)[100-2(x-30)](x≤40),即y=-2x2+200x-3200……………………………………………………………………6分②∵a=-2<0,∴当x==50时,y取最大值;又x≤40,则在x=40时,y取最大值,即y最大值=1600,答:售价为40元/件时,此时利润最大,最大利润为1600元……………………………10分试题27答案:解:(1)证明:连接OC,∵AC平分∠DAB,∴∠DAC=∠CAB,∵OC=OA,∴∠OAC=∠OCA,∴∠DAC=∠OCA,∴OC∥AD,∵AD⊥CD,∴OC⊥CD,∵OC为⊙O半径,∴CD是⊙O的切线.(2)解:在Rt△ADE中,由勾股定理得:AE=,∵OC∥AD,∴△ECO∽△EDA,∴,∴解得:∴BE=AE-2OC=15-,答:BE的长是试题28答案:.解:(1)①120°……………………2分,②AD=BE……………………………4分(2)(3)如下图所示由(2)知△BEC≌△APC,∴BE=AP=5,∠BEC=∠APC=150°,∵∠APD=30°,AP=5,CP=4,DP=8,∠APD=30°,∠EPC=60°,∴∠BED=∠BEC-∠PEC=90°,∠DPC=120°又∵∠DPE=∠DPC+∠EPC=120°+60°=180°,即D、P、E在同一条直线上∴DE=DP+PE=8+4=12,BE=5,∴∴BD的长为13试题29答案:解:(1)A(-8,0)……………………1分,C(0,6).……………………2分………………………………………………………………………4分(2)点P的坐标为(,0)……………………………………………………8分(3)点Q的坐标为(,0)或(,0).………………………………12分。
东台市实验中学2009-2010学年度第二学期期中考试 九年级数学试卷
东台市实验中学2009-2010学年度第二学期期中考试九年级数学试卷亲爱的同学,相信你已学到了不少数学知识,掌握了基本的数学思想方法,能够解决许多数学问题,本试卷将给你一个展示的机会.请别急,放松些,认真审题,从容作答,你一定会取得前所未有的好成绩. 一、选择题(共8小题,每小题分,计24分.每小题只有一个选项是符合题意的) 1.下列运算结果为2m 的式子是( ) A .63m m ÷B .42m m -⋅C .12()m -D .42m m -2.今年我国西南省区遭遇百年不遇严重旱情,国家防总统计显示,截至3月18日,全国耕地受旱面积已达97360000亩,将数据“97360000亩”用科学计数法表示为( ) A. 61036.97⨯亩 B. 310736.9⨯亩 C. 710736.9⨯亩 D. 610736.9⨯亩3.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数有 ( )A .1个B .2个C .3个D .4个4.为了筹备班级初中毕业联欢会,班长对全班同学爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( )A.平均数B.加权平均数C.中位数D.众数 5.分式方程3221+=x x 的解是( ) A .0=x B .1=x C .2=x D .3=x6.如图:用8块相同的长方形地砖拼成一个矩形,则每块地砖的面积是( ) A.200cm 2 B.300cm 2C.600cm 2D.2400cm 27.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶( ) A .0.5m B .0.55m C .0.6m D .2.2m8.在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是 ( )二、填空题(共10小题,每小题3分,计30分) 9.16的算术平方根是 .10.分解因式:29x y y -=______________. 11.如图,反比例函数ky x=的图象在第一象限的点A ,过点A 作AB ⊥x 轴于点B ,AOB △的面积为1,则反比例函数关系式为 .12.如图的围棋盘放在某个平面直角坐标系内,白棋② 的坐标为(7,4)--,白棋④的坐标为(6,8)--,那么黑棋①的坐标应该是______________.13.如图,圆锥的底面半径为6cm ,高为8cm ,那么这个圆锥的侧面积是 cm 2. 14.如图所示的抛物线是二次函数422-++-=a ax x y 的图象,那么a 的值是15. 在⊙0中,弦长为1.8㎝所对的圆周角为300,则⊙0的直径为 。
江苏省盐城市东台市第一教研片九年级数学上学期第三次段考试题(含解析) 苏科版-苏科版初中九年级全册数
某某省某某市东台市第一教研片2015届九年级数学上学期第三次段考试题一.选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题纸相应位置上)1.若α,β是方程x2﹣2x﹣3=0的两个实数根,则α2+β2的值为()A.10 B.9 C.7 D.52.小华五次跳远的成绩如下(单位:m):3.9,4.1,3.9,3.8,4.2.关于这组数据,下列说法错误的是()3.期2015届中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差D.众数和中位数4.用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm,底面周长是6πcm,则扇形的半径为()A.3cm B.5cm C.6cm D.8cm5.如图为△ABC的内切圆,点D,E分别为边AB,AC上的点,且DE为⊙I的切线,若△ABC的周长为21,BC边的长为6,则△ADE的周长为()A.15 B.9 C.7.5 D.76.在同一坐标系中,一次函数y=ax+b与二次函数y=bx2+a的图象可能是()A.B. C. D.7.如图,花坛水池中央有一喷泉,水管OP=3m,水从喷头P喷出后呈抛物线状先向上至最高点后落下,若最高点距水面4m,P距抛物线对称轴1m,则为使水不落到池外,水池半径最小为()A.1 B.1.5 C.2 D.38.二次函数y=ax2+bx+c的图象如图所示,以下结论:①a+b+c=0;②4a+b=0;③abc<0;④4ac﹣b2<0,其中正确的有()个.A.1 B.2 C.3 D.4二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题纸相应位置上)9.方程x2﹣4x+3=0的解是.10.已知x1,x2是方程x2﹣2x﹣4=0的两个根,则x1+x2﹣x1x2=.11.数据1,2,3,4,5的方差为.12.小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为.13.如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°,则其侧面积为(结果用含π的式子表示).14.如图,AB是⊙O的切线,切点为B,AO交⊙O于点C,过点C的切线交AB于点D.若AD=2BD,CD=1,则⊙O的半径为.15.四边形ABCD内接于⊙O,CB=CD,∠A=100°,点E在上,则∠E的度数为.16.教练对小明推铅球的录像进行技术分析(如图),发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣x2+x+,由此可知小明铅球推出的距离是m.17.如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣2上运动,当⊙P与x轴相切时,圆心P 的坐标为.18.如图是抛物线拱桥,已知水位在AB位置时,水面宽4米,水面距离桥顶12米,当水位上升达到警戒线CD时水面宽4米,若洪水到来时,水位以每小时0.25米速度上升.水过警戒线后小时淹到拱桥顶.三、解答题(本大题共有10小题,共96分.请在答题纸指定区域内作答b,解答时应写出文字说明、推理过程或演算步骤2)19.解下列方程:(1)(x+2)2=3x+6;(2)x2﹣4x+8=0.20.某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小明已根据成绩表算出了甲成绩的平均数和方差,请你完成下面两个问题.甲、乙两人射箭成绩统计表第1次第 2次第3次第4次第5次甲成绩 9 4 7 4 6乙成绩 7 5 7 m 7(1)求m的值和乙的平均数及方差;(2)请你从平均数和方差的角度分析,谁将被选中.21.商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.22.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2,求BD的长.23.如图,已知MN是⊙O的直径,直线PQ与⊙O相切于P点,NP平分∠MNQ.(1)求证:NQ⊥PQ;(2)若⊙O的半径R=3,∠MNP=30°,求NQ的长.24.已知如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D,(1)用尺规在AB边上作点O,并以点O为圆心作⊙O,使它过A,D两点(不写作法,保留作图痕迹),并判断直线BC与⊙O的位置关系(不需要说明理由).(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=2.求线段BD、BE与劣弧DE所围成的图形的面积.(结果保留根号和π)25.如图,二次函数的图象与x轴相交于A(﹣3,0)、B(1,0)两点,与y轴相交于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)求D点坐标;(2)求二次函数的解析式;(3)根据图象直接写出使一次函数值小于二次函数值的x的取值X围.26.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值X围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值X围.27.国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的X围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=170﹣2x,月产量x(套)与生产总成本y2(万元)存在如图所示的函数关系.(1)直接写出y2与x之间的函数关系式;(2)求月产量x的X围;(3)当月产量x(套)为多少时,这种设备的利润W(万元)最大?最大利润是多少?28.如图,抛物线y=x2﹣x﹣12与x轴交于A、C两点,与y轴交于B点.(1)△AOB的外接圆的面积;(2)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N.①是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由②当点M运动到何处时,△BNA的面积最大?求出此时点M的坐标及△BNA的面积的最大值.某某省某某市东台市第一教研片2015届九年级上学期第三次段考数学试卷参考答案与试题解析一.选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题纸相应位置上)1.若α,β是方程x2﹣2x﹣3=0的两个实数根,则α2+β2的值为()A.10 B.9 C.7 D.5【考点】根与系数的关系.【分析】根据根与系数的关系求得α+β=2,αβ=﹣3,则将所求的代数式变形为(α+β)2﹣2αβ,将其整体代入即可求值.【解答】解:∵α,β是方程x2﹣2x﹣3=0的两个实数根,∴α+β=2,αβ=﹣3,∴α2+β2=(α+β)2﹣2αβ=22﹣2×(﹣3)=10.故选:A.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.2.小华五次跳远的成绩如下(单位:m):3.9,4.1,3.9,3.8,4.2.关于这组数据,下列说法错误的是()【考点】中位数.【专题】应用题.【分析】根据极差,中位数和众数的定义解答.【解答】解:A、极差是4.2﹣3.8=0.4;B、3.9有2个,众数是3.9;C、从高到低排列后,为4.2,4.1,3.9,3.9,3.8.中位数是3.9;D、平均数为(3.9+4.1+3.9+3.8+4.2)÷5=3.98.故选C.【点评】本题考查统计知识中的极差,中位数和众数和平均数的定义.3.期2015届中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差D.众数和中位数【考点】统计量的选择.【分析】根据中位数和众数的定义回答即可.【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选:D.【点评】本题考查了众数及中位数的定义,属于统计基础知识,难度较小.4.用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm,底面周长是6πcm,则扇形的半径为()A.3cm B.5cm C.6cm D.8cm【考点】圆锥的计算.【分析】首先根据圆锥的底面周长求得圆锥的底面半径,然后根据勾股定理求得圆锥的母线长就是扇形的半径.【解答】解:∵底面周长是6πcm,∴底面的半径为3cm,∵圆锥的高为4cm,∴圆锥的母线长为:=5∴扇形的半径为5cm,故选B.【点评】本题考查了圆锥的计算,解题的关键是了解圆锥的母线、高及底面半径围成一个直角三角形.5.如图为△ABC的内切圆,点D,E分别为边AB,AC上的点,且DE为⊙I的切线,若△ABC的周长为21,BC边的长为6,则△ADE的周长为()A.15 B.9 C.7.5 D.7【考点】三角形的内切圆与内心.【专题】综合题;压轴题.【分析】根据三角形内切圆的性质及切线长定理可得DM=DP,BN=BM,=CQ,EQ=EP,则BM+CQ=6,所以△ADE的周长=AD+DE+AE=AD+AE+DM+EQ,代入求出即可.【解答】解:∵△ABC的周长为21,BC=6,∴AC+AB=21﹣6=15,设⊙I与△ABC的三边AB、BC、AC的切点为M、N、Q,切DE为P,∵DM=DP,BN=BM,=CQ,EQ=EP,∴BM+CQ=BN+=BC=6,∴△ADE的周长=AD+DE+AE=AD+AE+DP+PE=AD+DM+AE+EQ=AB﹣BM+AC﹣CQ=AC+AB﹣(BM+CQ)=15﹣6=9,故选B.【点评】此题充分利用圆的切线的性质,及圆切线长定理.6.在同一坐标系中,一次函数y=ax+b与二次函数y=bx2+a的图象可能是()A.B. C. D.【考点】二次函数的图象;一次函数的图象.【分析】本题可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数y=bx2+a的图象相比较看是否一致.【解答】解:A、由抛物线可知,图象与y轴交在负半轴a<0,由直线可知,图象过一,三象限,a >0,故此选项错误;B、由抛物线可知,图象与y轴交在正半轴a>0,二次项系数b为负数,与一次函数y=ax+b中b>0矛盾,故此选项错误;C、由抛物线可知,图象与y轴交在负半轴a<0,由直线可知,图象过二,四象限a<0,故此选项正确;D、由直线可知,图象与y轴交于负半轴,b<0,由抛物线可知,开口向上,b>0矛盾,故此选项错误;故选C.【点评】此题考查了抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法,难度适中.7.如图,花坛水池中央有一喷泉,水管OP=3m,水从喷头P喷出后呈抛物线状先向上至最高点后落下,若最高点距水面4m,P距抛物线对称轴1m,则为使水不落到池外,水池半径最小为()A.1 B.1.5 C.2 D.3【考点】二次函数的应用.【分析】首先建立坐标系,然后利用待定系数法求得函数的解析式,然后令y=0,即可求解.【解答】解:如图建立坐标系.抛物线的顶点坐标是(1,4),设抛物线的解析式是y=a(x﹣1)2+4,把(0,3)代入解析式得:a+4=3,解得:a=﹣1.则抛物线的解析式是:y=﹣(x﹣1)2+4.当y=0时,﹣(x﹣1)2+4=0,解得:x1=3,x2=﹣1(舍去).则水池的最小半径是3米.故选D.【点评】本题考查了二次函数的应用,待定系数法求函数的解析式是本题的关键.8.二次函数y=ax2+bx+c的图象如图所示,以下结论:①a+b+c=0;②4a+b=0;③abc<0;④4ac﹣b2<0,其中正确的有()个.A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【专题】数形结合.【分析】利用x=1时,函数值为正数可对①进行判断;利用抛物线与x轴的交点坐标和抛物线的对称性得到抛物线的对称轴为直线x=﹣=2,则可对②进行判断;利用抛物线开口方向得a>0,利用对称轴在y轴的右侧得b<0;利用抛物线与y轴的交点在x轴下方得c<0,于是可对③进行判断;根据抛物线与x轴的交点个数可对④进行判断.【解答】解:∵当x=1时,y=0,∴a+b+c=0,所以①正确;∵抛物线与x轴的交点坐标为(1,0)和(3,0),∴抛物线的对称轴为直线x=﹣=2,∴4a+b=0,所以②正确;∵抛物线开口向上,∴a>0,∵对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,所以abc>0,所以③错误;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,即4ac﹣b2<0,所以④正确.故选C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题纸相应位置上)9.方程x2﹣4x+3=0的解是x1=1,x2=3 .【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】利用因式分解法解方程.【解答】解:(x﹣1)(x﹣3)=0,x﹣1=0或x﹣3=0,所以x1=1,x2=3.故答案为【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).10.已知x1,x2是方程x2﹣2x﹣4=0的两个根,则x1+x2﹣x1x2= 6 .【考点】根与系数的关系.【专题】计算题.【分析】根据根与系数的关系得到x1+x2=2,x1x2=﹣4,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=2,x1x2=﹣4,所以x1+x2﹣x1x2=2﹣(﹣4)=6.故答案为6.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.11.数据1,2,3,4,5的方差为 2 .【考点】方差.【专题】计算题.【分析】根据方差的公式计算.方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:数据1,2,3,4,5的平均数为(1+2+3+4+5)=3,故其方差S2=[(3﹣3)2+(1﹣3)2+(2﹣3)2+(4﹣3)2+(5﹣3)2]=2.故填2.【点评】本题考查方差的定义.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为π.【考点】几何概率;三角形的内切圆与内心.【分析】针扎到内切圆区域的概率就是内切圆的面积与正三角形面积的比.【解答】解:∵如图所示的正三角形,∴∠CAB=60°,设三角形的边长是a,∴AB=a,∵⊙O是内切圆,∴∠OAB=30°,∠OBA=90°,∴BO=tan30°AB=a,则正三角形的面积是a2,而圆的半径是a,面积是a2,因此概率是a2÷a2=π.故答案为:π.【点评】此题主要考查了几何概率的求法,用到的知识点为:边长为a的正三角形的面积为:a2;求三角形内切圆的半径应构造特殊的直角三角形求解.13.如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°,则其侧面积为300π(结果用含π的式子表示).【考点】圆锥的计算.【分析】根据底面周长可求得底面半径,进而可求得底面积,根据扇形的弧长=圆锥的底面周长可得到母线长,进而求得侧面积.【解答】解:由题意知;20π=∴R=30,∵2πr=20π,∴r=10.S圆锥侧=lR=×20π×30=300π.故答案为:300π.【点评】本题考查了圆锥的计算,解决本题的关键是根据底面周长得到圆锥的底面半径和母线长.14.如图,AB是⊙O的切线,切点为B,AO交⊙O于点C,过点C的切线交AB于点D.若AD=2BD,CD=1,则⊙O的半径为.【考点】切线的性质.【分析】连接OB,则可知DC=BD=1,则AD=2,在△ACD中可求得AC=,设半径为r,则AO=r+,在Rt△AOB中由勾股定理可得OA2=OB2+AB2,代入求r即可.【解答】解:连接OB,∵AB、CD都是⊙O的切线,∴∠OBA=90°,且DC=BD=1,∴AD=2BD=2,∴AB=2+1=3,在Rt△ACD中,可求得AC=,设半径为r,则OA=r+,在Rt△ABO中,由勾股定理可得:OA2=OB2+AB2,即(r+)2=r2+32,解得r=,故答案为:.【点评】本题主要考查切线的性质,掌握连接圆心和切点是常用的辅助线是解题的关键,注意方程思想的应用.15.四边形ABCD内接于⊙O,CB=CD,∠A=100°,点E在上,则∠E的度数为50°.【考点】圆内接四边形的性质.【分析】连接BD,先根据∠A=100°求出∠BCD的度数,再由CB=CD求出∠DBC的度数,根据圆周角定理即可得出结论.【解答】解:∵四边形ABCD内接于⊙O,∠A=100°,∴∠BCD=180°﹣100°=80°.∵CB=CD,∴∠DBC==50°,∴∠E=∠DBC=50°.故答案为:50°.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.16.教练对小明推铅球的录像进行技术分析(如图),发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣x2+x+,由此可知小明铅球推出的距离是10 m.【考点】二次函数的应用.【分析】当y=0时代入解析式y=﹣x2+x+,求出x的值就可以求出结论.【解答】解:由题意,得当y=0时,0=﹣x2+x+,解得:x1=10,x2=﹣2(舍去).故答案为:10.【点评】本题考查了由函数值求自变量的值的运用,二次函数的解析式的运用,一元二次方程的解法的运用,解答时由二次函数的解析式建立方程是关键.17.如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣2上运动,当⊙P与x轴相切时,圆心P的坐标为(2,2)或(﹣2,2)或(0,﹣2).【考点】二次函数综合题.【分析】根据⊙P的半径为2,以及⊙P与x轴相切,即可得出y=2,求出x的值即可得出答案.【解答】解:∵⊙P的半径为2,圆心P在抛物线y=x2﹣2上运动,∴当⊙P与x轴相切时,假设切点为A,∴PA=2,∴|x2﹣2|=2即x2﹣2=2,或x2﹣2=﹣2,解得x=±2,或x=0,∴P点的坐标为:(2,2)或(﹣2,2)或(0,﹣2).故答案为:(2,2)或(﹣2,2)或(0,﹣2).【点评】此题主要考查了图象上点的性质以及切线的性质,根据题意得出y=2,求出x的值是解决问题的关键.18.如图是抛物线拱桥,已知水位在AB位置时,水面宽4米,水面距离桥顶12米,当水位上升达到警戒线CD时水面宽4米,若洪水到来时,水位以每小时0.25米速度上升.水过警戒线后24 小时淹到拱桥顶.【考点】二次函数的应用.【分析】以拱桥最高点为坐标原点,建立直角坐标系,设y=ax2,求得a,求D点的纵坐标,由t=可得时间.【解答】解:以拱桥最高点为坐标原点,建立直角坐标系,设y=ax2,∵AB=4,故B点坐标(2,﹣12),∴﹣12=24a,∴a=﹣,∴y=﹣x2,由题意得 C(﹣2,y1) D(2,y2)将D(2,y2)代入,得y2=﹣6∴t==24,故水过警戒线后24小时淹到拱桥顶.故答案为:24.【点评】本题主要考查二次函数的应用,运用二次函数解决实际问题,解题的关键是从实际问题中抽象出二次函数模型,运用了数学建模的数学思想.三、解答题(本大题共有10小题,共96分.请在答题纸指定区域内作答b,解答时应写出文字说明、推理过程或演算步骤2)19.解下列方程:(1)(x+2)2=3x+6;(2)x2﹣4x+8=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【专题】计算题.【分析】(1)先变形得到(x+2)2﹣3(x+2)=0,然后利用因式分解法解方程;(2)利用配方法解方程.【解答】解:(1)(x+2)2﹣3(x+2)=0,(x+2)(x+2﹣3)=0,x+2=0或x+2﹣3=0,所以x1=﹣2,x2=1;(2)(x﹣2)2=0,所以x1=x2=2.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.20.某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小明已根据成绩表算出了甲成绩的平均数和方差,请你完成下面两个问题.甲、乙两人射箭成绩统计表第1次第 2次第3次第4次第5次甲成绩 9 4 7 4 6乙成绩 7 5 7 m 7(1)求m的值和乙的平均数及方差;(2)请你从平均数和方差的角度分析,谁将被选中.【考点】方差;算术平均数.【分析】(1)根据他们的总成绩相同,得出m=30﹣7﹣7﹣5﹣7=4,进而得出乙的平均数=30÷5=6;进一步求得乙的方差;(2)因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中.【解答】解:(1)由题意得:甲的总成绩是:9+4+7+4+6=30,则m=30﹣7﹣7﹣5﹣7=4,=30÷5=6,S2乙=[(7﹣6)2+(5﹣6)2+(7﹣6)2+(4﹣6)2+(7﹣6)2]=1.6.(2)因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣,)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.21.商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.【考点】列表法与树状图法;概率公式.【分析】(1)由商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他恰好买到雪碧和奶汁的情况,再利用概率公式即可求得答案.【解答】解:(1)∵商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同,∴他去买一瓶饮料,则他买到奶汁的概率是:;故答案为:;(2)画树状图得:∵共有12种等可能的结果,他恰好买到雪碧和奶汁的有2种情况,∴他恰好买到雪碧和奶汁的概率为:=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2,求BD的长.【考点】切线的性质.【专题】几何综合题.【分析】(1)根据等腰三角形性质和三角形外角性质求出∠COD=2∠A,求出∠D=∠COD,根据切线性质求出∠OCD=90°,即可求出答案;(2)求出OC=CD=2,根据勾股定理求出BD即可.【解答】解:(1)∵OA=OC,∴∠A=∠ACO,∴∠COD=∠A+∠ACO=2∠A,∵∠D=2∠A,∴∠D=∠COD,∵PD切⊙O于C,∴∠OCD=90°,∴∠D=∠COD=45°;(2)∵∠D=∠COD,CD=2,∴OC=OB=CD=2,在Rt△OCD中,由勾股定理得:22+22=(2+BD)2,解得:BD=2﹣2.【点评】本题考查了切线的性质,勾股定理,等腰三角形性质,三角形的外角性质的应用,主要考查学生的推理能力.23.如图,已知MN是⊙O的直径,直线PQ与⊙O相切于P点,NP平分∠MNQ.(1)求证:NQ⊥PQ;(2)若⊙O的半径R=3,∠MNP=30°,求NQ的长.【考点】切线的性质.【专题】证明题.【分析】(1)连结OP,如图,由NP平分∠MNQ得到∠1=∠3,加上∠1=∠2,则∠2=∠3,于是可判断OP∥NQ,再根据切线的性质得OP⊥PQ,所以NQ⊥PQ;(2)连结MP,如图,根据圆周角定理,由MN是⊙O的直径,得到∠MPN=90°,在Rt△MPN中利用余弦的定义计算出PN=3,然后在Rt△PNQ中,再次根据余弦的定义可计算出NQ.【解答】(1)证明:连结OP,如图,∵NP平分∠MNQ,∴∠1=∠3,∵OP=ON,∴∠1=∠2,∴∠2=∠3,∴OP∥NQ,∵直线PQ与⊙O相切于P点,∴OP⊥PQ,∴NQ⊥PQ;(2)解:连结MP,如图,∵MN是⊙O的直径,∴∠MPN=90°,在Rt△MPN中,∵cos∠MNP=,∴PN=6cos30°=6×=3,∵∠3=∠1=30°,在Rt△PNQ中,∠3=∠1=30°,∵cos∠3=,∴NQ=3cos30°=3×=.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和相似三角形的判定与性质.24.已知如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D,(1)用尺规在AB边上作点O,并以点O为圆心作⊙O,使它过A,D两点(不写作法,保留作图痕迹),并判断直线BC与⊙O的位置关系(不需要说明理由).(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=2.求线段BD、BE与劣弧DE所围成的图形的面积.(结果保留根号和π)【考点】作图—复杂作图;直线与圆的位置关系;扇形面积的计算.【分析】(1)根据题意得:O点应该是AD垂直平分线与AB的交点;由∠BAC的角平分线AD交BC边于D,与圆的性质可证得AC∥OD,又由∠C=90°,则问题得证;(2)设⊙O的半径为r.则在Rt△OBD中,利用勾股定理列出关于r的方程,通过解方程即可求得r的值;然后根据扇形面积公式和三角形面积的计算可以求得“线段BD、BE与劣弧DE所围成的图形面积为:S△ODB﹣S扇形ODE=2﹣π”.【解答】解:(1)如图:连接OD,∵OA=OD,∴∠OAD=∠ADO,∵∠BAC的角平分线AD交BC边于D,∴∠CAD=∠OAD,∴∠CAD=∠ADO,∴AC∥OD,∵∠C=90°,∴∠ODB=90°,∴OD⊥BC,即直线BC与⊙O的切线,∴直线BC与⊙O的位置关系为相切;(2)设⊙O的半径为r,则OB=6﹣r,又∵BD=2,在Rt△OBD中,OD2+BD2=OB2,即r2+(2)2=(6﹣r)2,解得r=2,OB=6﹣r=4,∴∠DOB=60°,∴S扇形ODE==π,S△ODB=OD•BD=×2×2=2,∴线段BD、BE与劣弧DE所围成的图形面积为:S△ODB﹣S扇形ODE=2﹣π.【点评】此题考查了切线的判定与性质以及扇形面积与三角形面积的求解方法等知识.此题综合性很强,解题的关键是注意数形结合思想的应用.25.如图,二次函数的图象与x轴相交于A(﹣3,0)、B(1,0)两点,与y轴相交于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)求D点坐标;(2)求二次函数的解析式;(3)根据图象直接写出使一次函数值小于二次函数值的x的取值X围.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式;二次函数与不等式(组).【分析】(1)利用点C、D是二次函数图象上的一对对称点,可得出D点的坐标;(2)设该抛物线的解析式为y=a(x+3)(x﹣1)(a≠0),然后将点C的坐标代入来求a的值;(3)在坐标系中利用x取相同值,比较出对应值的大小,从而确定,两函数的大小关系.【解答】解:(1)∵抛物线的对称轴是x=﹣1,而C、D关于直线x=﹣1对称,∴D(﹣2,3);(2)设该抛物线的解析式为y=a(x+3)(x﹣1)(a≠0),把C(0,3)代入,得3=a(0+3)(0﹣1),解得 a=﹣1,所以该抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3,即y=﹣x2﹣2x+3;(3)根据图象知,一次函数值小于二次函数值的x的取值X围是:﹣2<x<1.【点评】此题主要考查了抛物线与x轴的交点,二次函数的对称性,以及待定系数法求二次函数解析式和利用自变量的取值X围确定函数值大小关系,题目难度不大,非常典型.26.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值X围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;。
江苏省东台市九年级数学第三次模拟试题-人教版初中九年级全册数学试题
某某省东台市2017届九年级数学第三次模拟试题注意事项:1、本试卷总分为150分,考试时间为120分钟,考试形式为闭卷。
2、本试卷所有试题的答案必须填写在规定的位置,否则答题无效。
3、答题前务必将自己的学校、班级、某某、考试号等信息填写在答题纸规定的位置。
一、选择题(本大题共有6小题,每小题3分,共18分) A.2B.21C.-21D.不存在 将达到7490000人,这个数据用科学计数法表示为 A.×107B.7.49×106C.74.9×106D.0.749×107A.30B.12C.8D.214.如图四个图形中,是中心对称图形的为A. B. C. D.5.如图,若锐角△ABC 内接于⊙O 外(与点C 在AB 同侧),则下列三个结论:①sin ∠C >sin ∠D ;②cos ∠C >cos ∠D ;③tan ∠C >tan ∠D 中,正确的结论为A.①②B.②③C.①②③D.①③6. 已知二次函数y =ax 2+bx +c ,且a>b>c ,a +b +c =0,有以下四个命题,则一定正确命题的序号是①x=1是二次方程ax 2+bx +c=0的一个实数根; ②二次函数y =ax 2+bx +c 的开口向下;③二次函数y =ax 2+bx +c 的对称轴在y 轴的左侧;④不等式4a+2b+c>0一定成立. A.①② B.①③ C.①④ D.③④二、填空题(本大题共有10小题,每小题3分,共30分。
不需要写出解答过程,请把答案直接写在答题卡相应位置)33-+x x 的值为零,则x 的值为 8.分解因式:a 2-4=9.已知反比例函数的图像经过点(m,6)和(-2,3),则m 的值为2-3b=5,则6b-2a 2=2017=11.已知扇形AOB 的半径为4cm ,圆心角∠AOB 的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为cm12.某二次函数的图像的坐标(4,-1),且它的形状、开口方向与抛物线y=-x 2相同,则这个二次函数的解析式为2+2(k+1)x+k-1=0有两个实数根,则k 的取值X 围是14.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF=4,BC=10,CD=6,则tanC= 15. 如图,点A 是双曲线y=38在第一象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为斜边作等腰Rt△ABC,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为________△ABC 中,∠C=90°,AC=6,BC=8,点E 是BC 边上的动点,连接AE ,过点E 作AE 的垂线交AB 边于点F ,则AF 的最小值为第14题第15题三、解答题(本大题共11小题,共102分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学调研试题参考答案
一、(每题3分)1.A 2.A 3.C 4.B 5. D 6. B 7. D 8. B
二、(每题3分)
9. 1.6264×103 10.a (1+a)(1-a) 11. x≠1 12. 8π 13.2 5
14. 8
三、19. 解:原式=126
3
--⋅………6分
= -1 ………8分
20.解;化简得: a-4, ………3分
解不等式组得:
1
3
2
a
-≤<,其整数解为0,1,2, ………6分
但a不能为0或2,所以a=1, ………7分代入计算得原式的值为-3 ………8分
21. 解:(1)作图略,………2分
E1(_0_,__9_),F1(_-3__,__1__) ………4分
沿x轴向左平移5个单位………5分(2)作图略………8分
22. 解:水面高度:4cm ………3分
点P到上底面的距离为6cm ………4分
点P与水面之间的距离为6cm ………8分四、23. 解:(1)填图略………2分
(2)___36___,___30___ ………5分
(3)145台………8分
24. 解:(1)列表或画树状图略………3分
P(a-b的值大于0)=5
9
………5分;
(2)不公平, 得分规则可修改为: a-b的值大于0时,李明得5分;否则王亮得4分,得分多者获胜. ………8分
25.解: (1)
2
3
y x
=,
24
y
x
=………4分
(2)令224
3
x
x
=,得6
x=,药物经6min燃尽………7分
(3) 在
24
y
x
=中令 1.6
y=,得15
x=,经15min ………10分
26.解:(1)连接AP,由AB为直径证得AP⊥BD ,而BP=PD,则AB=AD得证………4分
(2)连接AC,则由△ADE∽△QBE得AD:BQ=AE:EQ =2:1,则BQ:BC=1:2,Q为BC中点,由AB为直径证得AQ⊥BC ,而BQ=CQ,所以AC=AB,△ABC为正三角形,
又AQ=6,则………10分
27.(1)由A (12,0a
--)代入y=-a x+1得a =-1 ………2分 可求得直线解析式为y=x+1
抛物线的解析式为y=-x 2+2x+3 ………5分
(2)存在. ………7分
若OM=ON,又CM=CN,则直线OC 为线段MN 的中垂线
即直线OC ⊥直线l
可求得直线OC 的解析式为y=-x ………9分
令-x=-x 2+2x+3,解得x=32
可得 C 1(3322-2(3322
--) ………12分 28.解:(1)①取BD 中点P ,连接PM ,PA ,利用圆的定义可证; ………2分
②由①得∠OAN=∠MAD=∠MBD=45°,得ON=OA ; ………4分
(2)①当0<x ≤3时,过M 作ME ⊥x 轴于E ,MF ⊥直线AB 于F ,
则△MDE ≌△MBF ,得DE=BF=1
2x -,ME=AE=32
x - S △MDN = S △ADN - S △MDN =224
x x -++ =2119()4216
x -
-+ ………5分 当x=12时,S △MDN 最大为916 ………6分 ②当3<x ≤4时,过M 作ME ⊥x 轴于E ,MF ⊥y 轴于F ,延长AB 交MF 于H ,
同上可求得S △MDN =264
x x +-=21125()4216x +- ……7分 故当x=4时,S △MDN 最大为72
; ………8分 (3)当0<x ≤3时,显然不存在;当3<x ≤4时,假设存在,则MN 2=MD 2+DN 2,
而MN=(3)2
x +,MD 2=2213()()22x x --+,DN 2=x 2+4,
解得(
故存在,0) ………12分
各相关初中:
初三考试第12题,“底面半径为4,母线长2”改成“底面半径为2,母线长4”敬请注意。