初三数学期中试卷及答案
初三数学期中考试试卷及答案

初三数学期中考试试卷及答案第一卷:选择题(共80分)一、选择题(每小题1分,共40分)1. 下列各组函数中,相等的是()a) y = x^2 - 2x + 1,y = (x - 1)^2b) y = |2x - 1|,y = -(2x - 1)c) y = |2x - 1|,y = 2|x| - 1d) y = 2|x + 1|,y = -2|x + 1|2. 单项式 2x^3 y z^2 的次数是()a) 2 b) 3 c) 4 d) 53. 若 a:b = 7:5,b:c = 4:3,求 a:b:c =a) 7:5:3 b) 7:4:5 c) 7:10:12 d) 28:20:154. 圆心坐标为 (-4, 2),半径为 5 的圆方程是()a) (x + 4)^2 + (y - 2)^2 = 5^2b) (x - 4)^2 + (y + 2)^2 = 5^2c) (x + 4)^2 + (y + 2)^2 = 5^2d) (x - 4)^2 + (y - 2)^2 = 5^2...第二卷:非选择题(共70分)五、计算题(共30分)1. 化简:(3a^2b)^3 / (6a^5b^2) =2. 解方程:4x - 5 = 3x + 73. 已知图中三角形 ABC,其中∠B = 90°,AC = 8cm,BC = 6cm。
求 sin A 和 cos C 的值。
...八、解答题(共20分)1. 某商店购进一批相同的商品,第一天卖出了商品总数的 1/4,第二天又卖出了剩余商品总数的1/3 ,已知最后剩下的商品总数是60 件,求原先购进的商品总数。
2. 一辆汽车从 A 地开往 B 地,全程 300 km,开了 4 个小时到达终点。
第二天,汽车原路返回,回到 A 地用了 6 个小时。
求汽车在去程和返程时的平均速度。
...第三卷:答题卡(共10分)请将你的答案填写在答题卡上。
注意事项:1. 请认真核对试卷上的题号和试卷形式,确保填涂无误。
2023-2024学年全国初三上数学人教版期中考试试卷(含答案解析)

专业课原理概述部分一、选择题:5道(每题1分,共5分)1. 下列哪个选项不属于《论语》中的思想?()A. 孝道B. 忠诚C. 仁爱D. 勤奋2. 《诗经》是我国最早的诗歌总集,其内容分为三部分,下列哪一项不属于这三部分?()A. 风诗B. 雅诗C. 颂诗D. 赋诗3. 下列哪个选项是《离骚》的作者?()A. 屈原B. 宋玉C. 李白D. 杜甫4. 下列哪个选项是《史记》的作者?()A. 司马迁B. 司马光C. 司马相如D. 司马炎5. 下列哪个选项是《资治通鉴》的作者?()A. 司马迁B. 司马光C. 司马相如D. 司马炎二、判断题5道(每题1分,共5分)1. 《论语》是孔子及其弟子的言论汇编,由孔子弟子及再传弟子编写而成。
()2. 《诗经》是我国最早的诗歌总集,共有305篇,分为风、雅、颂三部分。
()3. 《离骚》是屈原的代表作,被誉为中国古代浪漫主义诗歌的代表作。
()4. 《史记》是西汉史学家司马迁所著,是我国第一部纪传体通史。
()5. 《资治通鉴》是北宋史学家司马光所著,是我国第一部编年体通史。
()三、填空题5道(每题1分,共5分)1. 《论语》中,孔子曰:“学而时习之,不亦说乎?有朋自远方来,不亦乐乎?人不知而不愠,不亦君子乎?”这句话表达了孔子的______思想。
2. 《诗经》中的“风”是指______地区的民歌,具有浓厚的地方特色。
3. 《离骚》是屈原创作的长篇政治抒情诗,表达了诗人对楚国命运的深切忧虑和对理想的执着追求,被誉为中国古代浪漫主义诗歌的______。
4. 《史记》全书共130篇,包括12本纪、30世家、70列传、10表、8书,其中本纪、世家、列传是按______体例编写的。
5. 《资治通鉴》是北宋史学家司马光主编的一部多卷本编年体史书,记载了从______到______共1362年间的历史。
四、简答题5道(每题2分,共10分)1. 简述《论语》的主要思想内容。
2. 简述《诗经》的艺术特色。
九年级期中数学试卷及答案

九年级期中数学试卷及答案(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1.若a>b,则下列哪个选项一定成立?A.ac>bcB.a+c>b+cC.ac>bcD.a/c>b/c(c≠0)答案:A2.下列哪个是无理数?A.√9B.√16C.√3D.π答案:C3.若x^25x+6=0,则x的值为?A.2或3B.1或6C.-2或-3D.-1或-6答案:A4.下列哪个函数是增函数?A.y=-2x+3B.y=x^2C.y=1/xD.y=-x^2答案:A5.若一个等腰三角形的底边长为8,腰长为10,则该三角形的周长为?A.26B.28C.30D.32答案:C6.下列哪个图形不是正多边形?A.矩形B.菱形C.正五边形D.正六边形答案:A7.若一个数的算术平方根是3,则该数为?A.9B.6C.12D.18答案:A二、判断题(每题1分,共20分)8.若a>b,则ac>bc。
(c>0)答案:错误9.两个无理数的和一定是无理数。
答案:错误10.两个等腰三角形的面积相等,则它们的周长也相等。
答案:错误11.若一个数的平方是正数,则该数一定是正数。
答案:错误12.任何两个奇数之和都是偶数。
答案:正确13.任何两个负数相乘都是正数。
答案:正确14.若一个数的立方是负数,则该数一定是负数。
答案:正确三、填空题(每空1分,共10分)15.若a=3,b=-2,则a+b=___________,ab=___________。
答案:1516.若x^25x+6=0,则x的值为___________或___________。
答案:2317.若一个等腰三角形的底边长为8,腰长为10,则该三角形的周长为___________。
答案:2818.若一个数的算术平方根是3,则该数为___________。
答案:919.两个等腰三角形的面积相等,则它们的周长也相等。
(判断对错)答案:错误四、简答题(每题10分,共10分)20.请简述勾股定理的内容。
2024年北京二中初三(上)期中数学试题及答案

2024北京二中初三(上)期中数 学考查目标1.知识:人教版九年级上册《一元二次方程》、《二次函数》、《旋转》、《圆》的全部内容.2.能力:数学运算能力,逻辑推理能力,阅读理解能力,实际应用能力,数形结合能力,分类讨论能力.一、选择题(以下每题只有一个....正确的选项,每小题2分,共16分) 1.数学世界奇妙无穷,其中曲线是微分几何的研究对象之一,下列平面直角坐标系中的数学曲线既是轴对称图形,又是中心对称图形的是( )A. B.C. D. 2.抛物线()2225y x =−−−的顶点坐标是( )A.()2,5−B.()2,5C.()2,5−−D.()2,5−3.若关于x 的方程2210ax ax −+=的一个根是1−,则a 的值是( )A.1B.1−C.13− D.3−4.下表是用计算器探索函数253y x x =+−时所得的数值:x 0 0.25 0.5 0.75 1y 3− 1.69− 0.25− 1.31 3则方程2530x x +−=的一个解x 的取值范围为( )A.00.25x <<B.0.250.5x <<C.0.50.75x <<D.0.751x << 5.已知圆锥的底面半径为3cm ,母线长为6cm ,则圆锥的侧面积是( )A.218cm πB.227cm πC.218cmD.227cm 6.如图,将ABC △绕点C 顺时针旋转90°得到EDC △.若点A ,D ,E 在同一条直线上,30ACB ∠=°,则ADC ∠的度数是( )A.60°B.65°C.70°D.75°7.在一次聚会上,每两个人之间都互相赠送了一份礼物,若一共送出了90份礼物,则参加聚会的人有( )A.9人B.10人C.11人D.12人8.如图,等边ABC △的边长为2,点O 是ABC △的中心,120FOG ∠=°绕点O 旋转FOG ∠,分别交线段AB ,BC 于D ,E 两点,连接DE ,给出下列四个结论:①OD OE =; ②DOE △的面积等于BDE △的面积;③四边形DBEO 的面积始终保持不变; ④BDE △的周长的最小值为3.上述结论中,所有正确结论的序号是( )A.①③B.①②④ C .②③④ D .①③④第Ⅱ卷(非选择题共84分)二、填空题(共16分,每题2分)9.点()1,2−关于原点对称的点坐标是______.10.写出一个开口向上,并且与y 轴交于点()0,1的抛物线的解析式______.11.已知关于x 的一元二次方程220x x a −−=有两个相等的实数根,则a 的值是______.12.把抛物线21y x =−向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为______.13.如图,某品牌扫地机器人的形状是“莱洛三角形”,它的三“边”分别是以等边三角形的三个顶点为圆心,边长为半径的三段圆弧,若该等边三角形的边长为3,则这个“莱洛三角形”的周长是______.14.已知二次函数21y x x =−−,当x m <时,y 随x 的增大而减小,则m 的取值范围是______.15.如图,P A ,PB 分别切O 于A ,B 两点,40P ∠=°,点C 是O 上一点,则ACB ∠的度数为______.16.2024年4月1日,北京二中喜迎300年华诞,小元和小聪两名同学合作制作四个主题为“春”“夏”“秋”“冬”的书签,为校庆献礼,每个书签都先由小元进行绘画,然后再由小聪题字,两位同学完成每个书签各自的工序需要的时间(单位:分钟)如下表所示:______分钟;(2)若想用最短的时间完成这四个书签的制作,制作的顺序应该是______.三、解答题(共68分,其中第17—22题每题5分,第23—26题每题6分,第27—28题每题7分)17.解方程:2280x x −−=.18.如图,在平面直角坐标系中,ABC △三个顶点的坐标分别为()4,4A ,()2,3B ,()5,2C .(1)①以点B 为旋转中心,画出将ABC △按顺时针方向旋转90°后的11A BC △;②以原点O 为旋转中心,画出将ABC △按逆时针方向旋转180°后的222A B C △;(2)在(1)的条件下,222A B C △可以由11A BC △绕某点按顺时针方向旋转得到,则该点坐标为______,旋转角的度数为______.(3)ABC △的外接圆半径长______.19.如图1所示,圆形拱门屏风是中国古代家庭中常见的装饰隔断,既美观又实用,彰显出中国元素的韵味.图2是一款拱门的示意图,其中拱门最下端18AB =分米,C 为AB 中点,D 为拱门最高点,圆心O 在线段CD 上,27CD =分米,求拱门所在圆半径的长.图1 图220.下面是小宁设计的“作三角形的高”的尺规作图过程.已知:ABC △.求作:AD BC ⊥,垂足为D .作法:如图所示,①分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于P ,Q 两点; ②作直线PQ ,交AC 于点O ;③以点O 为圆心,OA 长为半径作圆,交线段BC 于点D (点D 不与点C 重合),连接AD .所以线段AD 就是所求作的高.根据小宁设计的尺规作图过程,解决问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:AP CP =,AQ =___①___,∴点P 、Q 都在线段AC 的垂直平分线上,∴直线PQ 为线段AC 的垂直平分线,∴O 为AC 中点.∵AC 为直径,O 与线段BC 交于点D ,∵∠ADC=___②___°.(___③___)(填推理的依据)AD BC ∴⊥.21.第十七届北京国际茶业及茶艺博览会于2024年9月6日至9日在北京全国农业展览馆举办,展览馆工作人员利用一边靠墙(墙长26米)的空旷场地为提前到场的观众设立面积为300平方米的封闭型长方形等候区,如图,为了方便观众进出,在两边空出两个宽各为1米的出入口,共用去隔栏绳48米.请问,工作人员围成的这个长方形的相邻两边长分别是多少米?22.已知二次函数()20y ax bx c a =++≠的y 与x 的部分对应值如表: x … 3− 1− 1 3 …y … 3− 0 1 0 …(1)求这个二次函数表达式;(2)在平面直角坐标系中画出这个函数图象;(3)当x 的取值范围为______时,3y >−.23.已知关于x 的一元二次方程()2430x m x m +−+−=. (1)求证:该方程总有两个实数根;(2)若该方程只有一个实数根为负数,求m 的取值范围.24.如图,AB 为O 的直径,C 为O 上一点,D 是弧BC 的中点,过点D 作AC 的垂线,交AC 的延长线于点E ,连接AD .(1)求证:DE 是O 的切线;(2)连接CD ,若30CDA ∠=°,2AC =,求CE 的长.25.2024年巴黎奥运会8月6日单人10米决赛中,全红婵以425.60分的总分夺得金牌,陈芋汐获得银牌,在精彩的比赛过程中,全红婵选择了一个极,具难度的207C (向后翻腾三周半抱膝),如图2所示,建立平面直角坐标系xOy ,如果她从点A 起跳后的运动路线可以看作抛物线的一部分,从起跳到入水的过程中,她的竖直高度y (单位:米)与水平距离x (单位:米)近似满足二次函数关系.图1 图2(1)在平时训练完成一次跳水动作时,全红婵的水平距离x 与竖直高度y 的几组数据如下表: 水平距离x /m 3 h 4 4.5竖直高度y /m 10 11.25 10 6.25根据表中数据,直接写出h 的值为______,满足的二次函数关系式为:______;(2)在(1)的条件下,记全红婵训练时入水点的水平距离为1d ;比赛当天的某一次跳水中,全红婵的竖直高度y 与水平距离x 近似满足二次函数关系:254068y x x =−+−,记比赛当天入水点的水平距离为2d ,判断1d 与2d 的大小关系,并说明理由.26.在平面直角坐标系xOy 中,抛物线()()22130y ax a x a =−++>的对称轴为直线x t =. (1)t =______(用含a 的式子表示);(2)已知点12,y a ⎛⎫− ⎪⎝⎭,25,y a ⎛⎫ ⎪⎝⎭在抛物线上,若12y y =,求出a 的值; (3)已知点()12,y −,()21,y ,334,y a ⎛⎫+⎪⎝⎭在抛物线上,比较1y ,2y ,3y 的大小,并说明理由. 27.如图,ABC △中,ACB α∠=,AC BC =,点D 在AB 上(不与A ,B 重合),取AD 的中点F ,连结CD ,CF ,将线段CD 绕点C 顺时针旋转180α−°得到线段CE ,连结AE ,BE .(1)依题意,请补全图形;(2)判断BE 与CF 的数量关系,并证明;(3)当90α=°,4AC BC ==时,设BE 与CF 相交于点H ,则点D 在AB 上运动的过程中,线段AH 的最小值为______.28.在平面直角坐标系xOy 中,设O 的半径为r ,对于O 外一点P ,给出如下定义:若O 上存在点M ,使点P 绕点M 逆时针旋转120°后的对应点Q 落在O 的内部或O 上,则称点P 是点M 关于O 的“逆转点”.备用图(1)如图,当1r =,()1,0M 时,①点()2,1A −,3,22B ⎛ ⎝⎭,()3,0C 中,点______是点M 关于O 的“逆转点”; ②若点P 是点M 关于O 的“逆转点”,则点P 的横坐标的最大值是______;(2)当r =P 是直线3y =+P 的横坐标为t ,当点P 是点M 关于O 的“逆转点”时,求出t 的取值范围.北京二中教育集团2024—2025学年度第一学期初三数学期中考试参考答案一、选择题(共16分,每小题2分)1-5.BACCA 6-8.DBD二、填空题(共16分,每小题2分)9. (1,-2) 10.例如21y x =+ 11.-1 12.2(1)2y x =++ 13.3π 14.12m ≤ 15.70︒或110︒ 16.35,夏秋春冬三、解答题(共68分,其中第17-22题每题5分,第23-26题每题6分, 第27-28题每题7分)17.解:(4)(2)0x x -+= ………………………………………… 3分 ∴1242x x ==-, ………………………………………… 5分18.(1)略 ………………………………………… 2分(2)(-3,2),90° ………………………………………… 4分 (3)102 ………………………………………… 5分19.解:连接AO ,CD 过圆心,C 为AB 的中点,CD AB ∴⊥, ……………………… 1分18AB =,C 为AB 的中点,9AC BC ∴==, ……………………… 2分设圆的半径为x 分米,则OA OD x ==分米,27CD =,27OC x ∴=-,在Rt OAC ∆中,222AC OC OA +=, …………………………………… 3分 2229(27)x x ∴+-=,15x ∴=(分米), …………………………………… 4分 答:拱门所在圆的半径是15分米. ………………………………… 5分 20.(1)图略 ………………………………………………… 1分 (2)①CQ ………………………………………………… 2分②90°………………………………………………… 3分 ③直径所对的圆周角是直角 ……………………………… 5分21.解:设封闭型长方形等候区的边AB 为x 米, …………… 1分由题意得,x(48−2x +2)=300, …………… 2分 整理得,x 2−25x +150=0,解得x 1=10,x 2=15, …………… 3分 当x =10时,BC =30>26;当x =15时,BC =20<26, ∴x =10不合题意,应舍去. …………… 4分 答:封闭型长方形等候区的边AB 为15米,BC 为20米. …… 5分22.解:(1)设二次函数的表达式为(1)(3)y a x x =+-,把(1,1)代入得12(2)a =⨯⨯-, 解得14a =-,∴二次函数的表达式为1(1)(3)4y x x =-+-, 即2113424y x x =-++; ……………………………… 2分 (或顶点式:21(1)14y x =--+) (2)如图,……………………………… 3分(3)35x -<< ……………………………… 5分23.(1)证明:由题意得,∆=24-b ac =2(4)41(3)--⨯⨯-m m=244-+m m =2(2)-m ≥0,……………………………… 1分 ∴该方程总有两个实数根. ……………………………… 2分(2)解:2(4)30x m x m +-+-=,解得 1=3-x m ,2=1-x . ……………………………… 3分 ∵只有一个实数根为负数,∴3-m ≥0, ……………………………… 4分 ∴m ≥3. ……………………………… 5分24.(1)证明:连接OD ,D 是BC 的中点,BAD CAD ∴∠=∠,………………… 1分 OA OD =,OAD ODA ∴∠=∠,即BAD ODA ∠=∠,CAD ODA ∴∠=, //OD AE ∴, …………………………………… 2分 DE AC ⊥,∴∠ODE =180°-∠AED =90° DE OD ∴⊥半径,DE ∴是O 的切线; ……………………………… 3分(2)解:连接OC ,CD ,30CDA ∠=︒,223060AOC CDA ∴∠=∠=⨯︒=︒, OA OC =,AOC ∴是等边三角形, AC OA OD ∴==, ∵由(1)可得//OD AC ,∴四边形ACDO 是菱形,2CD AC ∴==,60CDO CAO ∠=∠=︒, DE 是O 的切线,90ODE ∴∠=︒,906030CDE ∴∠=︒-︒=︒, 112CE CD ∴==. ……………………………… 6分 (或连接BC 构造小矩形,酌情给分)25.(1)3.5,25( 3.5)11.25y x =--+; ……………………………… 3分(2)d 1<d 2 ……………………………… 4分25( 3.5)11.25y x =--+,当0y =时:205( 3.5)11.25x =--+, 解得:5x =或2x =(不合题意,舍去); ……………… 5分 15d ∴=米;254068y x x =-+-,当0y =时:2540680x x -+-=, 解得:21545x =+或21545x =-+(不合题意,舍去); ∴2215455d =+>,12d d ∴< ……………………………… 6分26.(1)1a a+ ………………………………1分 (2)∵y 1=y 2∴点(2a -,y 1),(5a,y 2)关于直线x=t 对称 ∴ 5a -1a a +=1a a +-(2a-) ……………………………2分 解得12a = ……………………………3分 (3)111a t a a+==+ ,∵a >0 ∴t >1 ……………………………4分∵(34a +,y 3)关于直线x=t 对称点为(12a--,y 3) ∴1221t a ---<<< ∵当x <t 时,y 随x 的增大而减小 ……………………………5分 ∴y 3>y 1>y 2 ……………………………6分 (或代数法直接做差,对一个给2分)27.(1)………………………………………1分(2)BE =2CF ………………………………………2分 证明:延长EC 至M ,使CM =CE ,连接BM∵F 是AD 的中点∴CF ∥DM ,2CF=DM∵∠ACB =α∴∠BCM =180°-∠ACB=180°-α=∠ECD∴∠BCM +∠BCD =∠ECD +∠BCD即∠DCM=∠ECB∴在△DCM 和△ECB 中CD CE DCM ECB CM CB =⎧⎪∠=∠⎨⎪=⎩∴△DCM ≌△ECB (SAS ) ………………………………… 6分∴BE =DM= 2CF(或倍长中线,第一个全等给1分,倒角给2分,第二个全等给1分)(3)2 ………………………………………8分28.(1)①B ………………………………1分 ②52………………………………3分 (2)如图,点M 关于⊙O 的“逆转点”所形成的区域是圆环,外圆半径为3+……………………………4分直线3y =+y 轴交点M (0,3+……………5分 连接ON ,则ON =OM ,且∠MON =120° ……………………6分 作NH ⊥x 轴于点H ,则∠NOH =30°故N x=3322+-=-∴32+-≤t ≤0 ………………………………7分。
2024-2025学年北京四中初三上学期期中数学试题及答案

数学试卷班级__________ 姓名__________学号__________ 成绩__________一、选择题 (共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.下面四个标志中是中心对称图形的是( ).A .B .C .D .2.方程220x x -=的根是( ). A .0x =B .2x =C .0x =或2x =D .0x =或2x =-3.若1(3,)A y -,2(2,)B y -,3(3,)C y 为二次函数21y x =+()图象上的三点,则1y ,2y ,3y 的大小关系是( ). A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<4.二次函数(5)(7)y x x =-+的图象的对称轴是(). A .直线1x =- B .直线1x =C .直线2x =D .直线6x =5.如图,AB 为O 直径,点C 、D 在O 上,如果70ABC ∠=︒,那么D ∠的度数为( ).A .20︒B .30︒C .35︒D .70︒6.2024年北京第一季度GDP 约为1.058万亿元,第三季度GDP 约为1.167万亿元,设2024年北京平均每季度GDP 增长率为x ,则可列关于x 的方程为( ). A .21.058(1) 1.167x -= B .1.058(12) 1.167x +=C .21.058(1) 1.167x +=D .21.167(1)1.058x -=7.如图是一个钟表表盘,连接整点2时与整点10时 的B 、D 两点并延长,交过整点8时的切线于点P ,若切线长2PC =,则表盘的半径长为( ).A .3B. C . D.A8.某农场用篱笆围成饲养室,一面靠现有墙(墙足够长),已知计划中的篱笆(不包括门)总长为12m ,现有四种方案(如图)中面积最大的方案为( ). A 方案为一个封闭的矩形B 方案为一个等边三角形,并留一处1m 宽的门C 方案为一个矩形,中间用一道垂直于墙的篱笆隔开,并在如图所示的三处各留1m 宽的门D 方案为一个矩形,中间用一道平行于墙的篱笆隔开,并在如图所示的四处各留1m 宽的门A. B.C. D.二、填空题(共16分,每题2分)9.在平面直角坐标系xOy 中,将抛物线23y x =向上平移1个单位,得到的抛物线表达式为 .10.如图,四边形ABCD 内接于O ,E 为BC 延长线上一点,50A ∠=︒,则DCE ∠的度数为 .11.抛物线256y x x =-+与y 轴的交点的坐标是 .12.如图,PA 、PB 分别切O 于A 、B 两点,点C 为AB 上一点,过点C 作O 的切线分别交PA 、PB 于M 、N 两点,若△PMN 的周长为10,则切线长PA 等于 .第10题图 第12题图13.已知22310a a -+=,则代数式2(3)(3)a a a -++的值为 .14.“青山绿水,畅享生活”,人们经常将圆柱形竹筒改造成生活用具,图1所示是一个竹筒水容器,图2为该竹筒水容器的截面.已知截面的半径为10cm ,开口AB 宽为12cm ,这个水容器所能装水的最大深度....是 cm .图1 图2 第15题图15.二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(1,0)-, 对称轴为直线2x =,抛物线与y 轴交点在(0,1)A 和(0,2)B 之间(不与A 、B 重合).下列结论:①0abc >; ②93a c b +>; ③40a b +=; ④当0y >时,15x -<<; ⑤a 的取值范围为2155a -<<-. 其中正确结论有 .(填序号)16.如图,在直角三角形ABC 中,∠A =90°,D 是AC 上一点,BD =10, AB =CD ,则BC 的最大值为 .三、解答题(共68分,第17题8分,第18、21、25题每题4分,第19、23、24题每题5分,第20、26题6分,第22、27、28题每题7分)17.解下列方程:(1)23610x x -+=; (2)2(3)3x x x -=-.18.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为(1,1)A -,(3,1)B -,(1,4)C -.将△ABC 绕着点B 顺时针旋转90︒后得到△11A BC , (1)请在图中画出△11A BC ; (2)线段BC 旋转过程中所扫过的面积是 (结果保留π).19.如图,D 是等边三角形ABC 内一点,将线段AD 绕点A 顺时针旋转60︒,得到线段AE ,连接CD ,BE . (1)求证:△AEB ≌△ADC ; (2)连接DE ,若96ADC ∠=︒,求BED ∠的度数. 20.已知关于x 的一元二次方程22(8)40x k x k +--=.(1)求证:该方程总有两个实数根;(2)若该方程有一个根小于3,求k 的取值范围. 21.已知:如图O 及O 外一点P .求作:直线PB ,使PB 与O 相切于点B .李华同学经过探索,想出了两种作法.具体如下(已知点B 是直线OP 上方一点):A ,A 交O 于点B ,则直线PB 是O 的切O 于点M ;②以点的长为半径作弧,交直线,交O 于点B PB 是O 的切线. 证明:如图1,连接OB , A 直径,90PBO =︒.( OB . OB 是O 的半径,∴直线PB 是O 的切线.请仔细阅读,并完成相应的任务.(1)“作法一”中的“依据”是指 ; (2)请写出“作法二”的证明过程.NQ M P22.在平面直角坐标系xOy 中,二次函数2y x bx c =++的图象经过(0,2)A -,(2,0)B 两点.(1)求这个二次函数的解析式;(2)填写表格并在给出的平面直角坐标系中画出这个函数的图象;(3)若一次函数y mx n =+的图象也 经过A ,B 两点,结合图象,直接写出 不等式2x bx c mx n ++<+的解集.23.如图,在Rt △ABC 中,90C ∠=︒,BE 平分ABC ∠交AC于点E ,点D 在AB 上,DE EB ⊥. (1)求证:AC 是△BDE 的外接圆的切线;(2)若2AD =,AE =,求EC 的长.24.如图1所示的某种发石车是古代一种远程攻击的武器.将发石车置于山坡底部O 处,以点O 为原点,水平方向为x 轴方向,建立如图2所示的平面直角坐标系,将发射出去的石块当作一个点看,其飞行路线可以近似看作抛物线2(20)y a x k =-+的一部分,山坡OA 上有一堵防御墙,其竖直截面为ABCD ,墙宽2BC =米,BC 与x 轴平行,点B 与点O 的水平距离为28米,竖直距离为6米.若发射石块在空中飞行的最大高度为10米. (1)求抛物线的解析式;(2)试通过计算说明石块能否飞越防御墙.25.如图1,线段AB 及一定点C ,P 是线段AB 上一动点,作直线CP ,过点A 作AQ CP ⊥于点Q ,已知7AB =cm ,设A 、P 两点间的距离为x cm ,A 、Q 两点间的距离为1y cm ,P 、Q 两点间的距离为2y cm .小明根据学习函数的经验,分别对函数1y 、2y 随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程:第一步:按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y 、2y 与x 的几组对应值.1(,)x y ,2(,)x y ,并画出函数1y 、2y 的图象. 解决问题:(1)在给出的平面直角坐标系中(图2)补全函数2y 的图象;(2)结合函数图象,解决问题:当△APQ 中有一个角为30︒时,AP 的长度约为 cm .图1图226.在平面直角坐标系xOy 中,已知抛物线224(0)y ax a x a =-≠. (1)当1a =时,求抛物线的顶点坐标;(2)已知1(M x ,1)y 和2(N x ,2)y 是抛物线上的两点.若对于15x a =,256x ,都有12y y <,求a 的取值范围.27.已知,如图,在△ABC 中,∠ACB =90°,∠ABC =45°,点D 在BC 的延长线上,点E 在CB 的延长线上,DC =BE ,连接AE ,过C 作CF ⊥AE 于F ,CF 交AB 于G ,连接DG . (1)求证:∠AEB =∠ACF ;(2)用等式表示CG ,DG 和AE 的数量关系,并证明.28. 对于平面直角坐标系xOy 内的直线l 和点P ,若点A 关于l 作轴对称变换得到点1A ,点1A 关于点P 作中心对称变换得到点2A ,我们则称点2A 为点A 关于直线l 和点P 的“正对称点”. 已知B (-1,0),C (2,0),(1)写出B 关于y 轴和点C 的“正对称点”的坐标________;(2)已知点1C (2,m )(102m ),存在过原点O 的直线1l ,使得点B 关于直线1l 和点1C 的“正对称点”在直线2l :y =x+b 上,求b 的取值范围;(3)已知点H 是直线x =1上的一点,且点H 的纵坐标小于0,C (3,0),E 点在以C 为圆心1为半径的圆上,对于直线x =6上的点F (6,h ),以F 为圆心,1为直径作圆F ,若圆F 上存在点B 关于直线OH 和点E 的“正对称点”,直接写出h 的取值范围.备用图数学参考答案一、选择题1.D 2.C 3.B 4.A 5.A 6.C 7.B 8.C二、填空题9. 231y x =+ 10. 50° 11.(0,6) 12.5 13.8 14.18 15.③④⑤16. 5+ 补充说明:T15只有一个正确答案得1分,有错误答案不得分。
2024-2025学年江苏省宿迁市如东实验中学、崇文中学、洋河中学等校九年级期中数学试卷(含答案)

2024-2025学年江苏省宿迁市如东实验中学、崇文中学、洋河中学等校九年级(上)期中数学试卷一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.一元二次方程x2−4=0的解是( )A. −2B. 2C. ±2D. ±22.已知⊙O的半径为5,OA=6,则点A在( )A. ⊙O内B. ⊙O上C. ⊙O外D. 无法确定3.已知一组数据4,6,8,7,5,则这组数据的中位数是( )A. 6B. 6.5C. 7D. 54.已知△ABC∽△DEF,△ABC与△DEF面积之比为1:4.若BC=1,则EF的长是( )A. 2B. 2C. 4D. 165.如图,AB是⊙O的直径,点C、D在⊙O上,且∠BDC=20°,则∠ABC的度数是( )A. 20°B. 50°C. 70°D. 80°6.如图,在平面直角坐标系中,△ABC与△A′B′C′是位似图形,位似中心为点O.若点A(−3,1)的对应点为A′(−6,2),则点B(−2,4)的对应点B′的坐标为( )A. (−4,8)B. (8,−4)C. (−8,4)D. (4,−8)7.如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为( )A. 1732B. 12C. 1736D. 17388.如图,过△ABC内任一点P,作DE//BC,GF//AC,KH//AB,则DEBC +GFAC+KHAB=( )A. 1B. 43C. 2D. 83二、填空题:本题共10小题,每小题3分,共30分。
9.若ab =35,则a+2bb的值为______.10.如图,点P是线段AB的黄金分割点(AP>PB),如果AB=10,那么AP的长为______.11.若关于x的方程mx2−4x+3=0是一元二次方程,则m的取值范围是______.12.已知圆锥的底面半径为4cm,母线长为5cm,则圆锥的侧面积为______cm2.13.小明参加“强国有我”主题演讲比赛,其演讲形象、内容、效果三项的成绩分别是70分、90分、80分.若将三项得分依次按2:4:4的比例确定最终成绩,则小明的最终比赛成绩为______分.14.《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点A,B,Q在同一水平线上,∠ABC和∠AQP均为直角,AP与BC相交于点D.测得AB=40cm,BD=20cm,AQ=12m,则树高PQ=______m.15.如图,α是正十边形两条对角线的夹角,则α的度数是______°16.已知m,n是x2−4x+3=0的两个根,则m2−3m+n=______.17.如图所示的曲边三角形可按下述方法作出:作等边三角形ABC;分别以点A,B,C为圆心,以AB的长为半径作BC,AC,AB.三段弧所围成的图形就是一个曲边三角形,如果一个曲边三角形的周长为2π,那么这个曲边三角形的面积是______.18.如图,矩形ABCD中,P为AB上一动点(P与A、B不重合),将△BPC沿CP翻折至△B1PC,B1P与AD相交于点E,CB1与AD相交于点F,连接BB1交AD于Q,若EQ=8,QF=5,BC=30,则折痕CP的长为______.三、解答题:本题共10小题,共80分。
2024年最新人教版初三数学(上册)期中试卷及答案(各版本)

2024年最新人教版初三数学(上册)期中试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最大的数是()A. 3B. 0C. 1D. 22. 一个等边三角形的周长是15cm,那么它的边长是()A. 3cmB. 5cmC. 7.5cmD. 10cm3. 下列哪一个数是有理数()A. √3B. πC. 1/2D. √14. 下列哪一个图形是正方体()A. 长方体B. 球体C. 圆柱体D. 正方体5. 下列哪一个数是无理数()A. 1/3B. √4C. 0.333D. √2二、判断题5道(每题1分,共5分)1. 任何两个实数的和都是实数。
()2. 任何两个实数的积都是实数。
()3. 0是正数。
()4. 1是质数。
()5. 任何两个奇数的和都是偶数。
()三、填空题5道(每题1分,共5分)1. 一个等差数列的第1项是1,公差是2,第10项是______。
2. 一个等比数列的第1项是2,公比是3,第4项是______。
3. 下列数列的前5项是2, 4, 8, 16, 32,下一个数是______。
4. 下列数列的前5项是1, 3, 5, 7, 9,下一个数是______。
5. 下列数列的前5项是1, 4, 9, 16, 25,下一个数是______。
四、简答题5道(每题2分,共10分)1. 解释什么是等差数列?2. 解释什么是等比数列?3. 解释什么是无理数?4. 解释什么是函数?5. 解释什么是几何图形?五、应用题:5道(每题2分,共10分)1. 一个等差数列的第1项是3,公差是2,求第10项。
2. 一个等比数列的第1项是2,公比是3,求第6项。
3. 下列数列的前5项是2, 4, 8, 16, 32,求下一个数。
4. 下列数列的前5项是1, 3, 5, 7, 9,求下一个数。
5. 下列数列的前5项是1, 4, 9, 16, 25,求下一个数。
六、分析题:2道(每题5分,共10分)1. 给出一个等差数列的前5项,然后给出一个等比数列的前5项,比较它们的特点。
九年级数学上册期中考试试卷及答案

九年级数学上册期中考试试卷及答案(试卷满分:150分;考试时间:120分钟)一.选择题(共10小题,每小题4分,共40分)1.﹣2023的绝对值是()A.﹣2023B.12023C.﹣12023D.20232.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.3.2023年10月1日,国庆假期第一天,天下第一泉(济南趵突泉)风景区接待游客超过291200人次.将数字291200用科学记数法表示应为()A.2912×102B.29.12×104C.2.912×105D.2.912×1064.在数8,﹣0.5,﹣|﹣2|,0,(﹣3)2,﹣12中,负数的个数是()A.2B.3C.4D.55.计算机层析成像(CT)技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.6.下列各式正确的是()A.﹣(x+6)=﹣x﹣6B.﹣y2﹣y2=0C.9a2b﹣9ab2=0D.a+a2=a37.下列说法中正确的是()A.﹣的系数是﹣5B.单项式x的系数为1,次数为0C.﹣22xyz2的次数是6D.xy+x﹣1是二次三项式8.若代数式2x2﹣x+3的值是4,则代数式﹣4x2+2x+5的值是()A.2 B.3 C.7 D.109.有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a>bC.ab>0D.﹣a>c①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2022次“F”运算的结果是()A.1B.4C.2020D.42020二.填空题(共6小题,每小题4分,24分共)11.比较大小:﹣7﹣5.12.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为.13.如图,是正方体的一种表面展开图,各面都标有数字,则数字为﹣4的面与它对面的数字之和是.14.若代数式﹣2x3y b与2x a y2的和为0,则b﹣a=.15.用符号(a,b)表示a、b两数中较小的一个数,用符号[a,b]表示a、b两数中较大的一个数,计算[﹣2,1]﹣(﹣1,﹣2.5)=.16.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=22,a7=2002,a95=﹣2023,且满足任意相邻三个数的和为同一个常数,则a1+a2+a3+…+a98+a99+a100的值为.三.解答题(共7小题)17.(12分)(1)(﹣12)﹣5+(﹣14)﹣(﹣39)(2)(﹣+﹣)×(﹣24)(3)(﹣)÷+(﹣)÷(﹣15)(4)﹣14﹣×[2﹣(﹣3)2]18.(6分)(1)把下列各数:,|﹣4|在数轴上表示出来;(2)将上列各数用“<”号从小到大连接.19.(6分)化简.(1)(6m﹣5n)﹣(7m﹣8n)(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y)20.(8分)先化简,再求值:﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b),其中a=﹣1,b=.21.(6分)如图,是一些棱长为2cm的小立方块组成的几何体.(1)请在上面方格纸中分别画出从左面、上面看到的这个几何体的形状图.(2)该几何体的体积是.22.(8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣(2x2﹣2x+1)=﹣x2﹣4x﹣3,则所捂住的多项式是____.(1)求所捂的二次三项式;(2)当x=﹣2时,求所捂二次三项式的值.23.(12分)校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在A处.规定以主席台为原点,以向东的方向为正方向,步行记录如下(单位:米):+10,﹣8,+6,﹣13,+7,﹣12,+2,﹣2(1)小明离主席台最远是米;(2)以主席台为原点,用1个单位长度表示1m,请在数轴上表示点A;(3)在主席台东边5米处是仲裁处,小明经过仲裁处次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?24.(10分)书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为26cm、宽为18.5cm、厚为1cm,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去x cm;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含x的代数式表示)(2)若封面和封底沿虚线各折进去2cm,剪掉阴影部分后,包书纸的面积是多少?25.(12分)探索规律.(1)观察上面的图,发现:图①空白部分小正方形的个数是22﹣12=2+1;图②空白部分小正方形的个数是42﹣32=4+3;图③空白部分小正方形的个数是52﹣42=+.(2)像这样继续排列下去,你会发现一些有趣的规律,﹣n2=+.(3)运用规律计算:(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012.26.(12分)已知|a+30|+(c﹣20)2=0,在数轴上点A表示的数是a,点C表示的数是c,A,C两点之间的距离AC=|a﹣c|.(1)直接写出a、c的值,a=,c=;(2)若数轴上有一点D满足CD=3AD,且点D在A,C之间,则D点表示的数为;(3)点M从原点O出发在O,A之间以v1的速度沿数轴负方向运动,点N从点C出发在O,C之间以v2的速度沿数轴负方向运动,运动时间为t,点Q为O,N之间一点,且QN=AN,若M,N运动过程中MQ的值固定不变,求的值.参考答案一.选择题(共10小题)1.﹣2023的绝对值是()A.﹣2023B.C.D.2023【分析】一个数在数轴上对应的点到原点的距离即为这个数的绝对值,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,据此即可求得答案.【解答】解:|﹣2023|=2023故选:D.【点评】本题考查绝对值的定义及绝对值的性质,此为基础且重要知识点,必须熟练掌握.2.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.【分析】根据每一个几何体的特征判断即可.【解答】解:A、将所示图形绕直线旋转一周,可以得到圆柱,故A符合题意;B、将所示图形绕直线旋转一周,可以得到球体,故B不符合题意;C、将所示图形绕直线旋转一周,可以得到圆锥,故C不符合题意;D.将所示图形绕直线旋转一周,可以得到圆台,故D不符合题意;故选:A.【点评】本题考查了点、线、面、体,熟练掌握每一个几何体的特征是解题的关键.3.2023年10月1日,国庆假期第一天,天下第一泉(济南趵突泉)风景区接待游客超过291200人次.将数字291200A.2912×102B.29.12×104C.2.912×105D.2.912×106【分析】科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正整数,当原数绝对值小于1时,n是负整数;由此进行求解即可得到答案.【解答】解:291200=2.912×105.故选:C.【点评】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.4.在数8,﹣0.5,﹣|﹣2|,0,(﹣3)2,﹣12中,负数的个数是()A.2B.3C.4D.5【分析】根据绝对值、有理数的乘方、负数解决此题.【解答】解:∵8>0,﹣0.5<0,﹣|﹣2|=﹣2<0,0,(﹣3)2=9>0,﹣12=﹣1<0∴负数有﹣0.5,﹣|﹣2|,﹣12,共3个.故选:B.【点评】本题主要考查绝对值、有理数的乘方、负数,熟练掌握绝对值、有理数的乘方、负数是解决本题的关键.5.计算机层析成像(CT)技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.【分析】根据用一个平行于圆锥底面的平面截圆锥,截面的形状是圆即可得出答案.【解答】解:用一个平行于圆锥底面的平面截圆锥,截面的形状是圆故选:B.【点评】本题考查了截一个几何体,掌握用一个平行于圆锥底面的平面截圆锥,截面的形状是圆是解题的关键.6.下列各式正确的是()A.﹣(x+6)=﹣x﹣6B.﹣y2﹣y2=0C.9a2b﹣9ab2=0D.a+a2=a3【分析】A.根据去括号法则,去掉括号,进行判断即可;B.根据合并同类项法则,进行合并,然后判断;C,D选项均观察各个加数是不是同类项,能否合并,进行判断即可.【解答】解:A.∵﹣(x+6)=﹣x﹣6,∴此选项计算正确,故符合题意;B.∵﹣y2﹣y2=﹣2y2,∴此选项计算错误,故不符合题意;D.∵a和a2不是同类项,不能合并,∴此选项计算错误,故不符合题意;故选:A.【点评】本题主要考查了整式的加减运算,解题关键是熟练掌握去括号法则和合并同类项法则.7.下列说法中正确的是()A.﹣的系数是﹣5B.单项式x的系数为1,次数为0C.﹣22xyz2的次数是6D.xy+x﹣1是二次三项式【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【解答】解:A、﹣的系数是﹣,此选项错误;B、单项式x的系数为1,次数为1,此选项错误;C、﹣22xyz2的次数是4,此选项错误;D、xy+x﹣1是二次三项式,此选项正确;故选:D.【点评】此题主要考查了单项式,关键是掌握单项式的系数、次数的定义,以及多项式的次数的计算方法.8.若代数式2x2﹣x+3的值是4,则代数式﹣4x2+2x+5的值是()A.2B.3C.7D.10【分析】由代数式2x2﹣x+3的值是4,可得2x2﹣x=1,再将﹣4x2+2x+5转化为﹣2(2x2﹣x)+5,再整体代入计算即可.【解答】解:∵2x2﹣x+3的值是4,即2x2﹣x+3=4∴2x2﹣x=1∴﹣4x2+2x+5=﹣2(2x2﹣x)+5=﹣2×1+5=﹣2+5=3故选:B.【点评】本题考查代数式求值,将﹣4x2+2x+5转化为﹣2(2x2﹣x)+5是正确解答的关键.9.有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a>b C.ab>0D.﹣a>c【分析】根据数轴上点的位置,先确定a、b、c对应点的数,再逐个判断得结论.【解答】解:A、由数轴知:﹣4<a<﹣3,故选项A错误;B、由数轴知,a<b,故选项B错误;C、因为a<0,b>0,所以ab<0,故选项C错误;D、因为﹣4<a<﹣3,所以3<﹣a<4,因为2<c<3,所以﹣a>c,故选项D正确.故选:D.【点评】本题考查了数轴及有理数乘法的符号法则.认真分析数轴得到有用信息是解决本题的关键.10.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2022次“F”运算的结果是()A.1B.4C.2020D.42020【分析】通过计算可知从第4次开始,运算结果1,4循环出现,则第2022次“F”运算的结果与第1次运算结果相同,再求解即可.【解答】解:当n=13时第1次运算结果为13×3+1=40第2次运算结果为=5第3次运算结果为5×3+1=16第4次运算结果为=1第5次运算结果为1×3+1=4第6次运算结果为=1第7次运算结果为1×3+1=4……∴从第4次开始,运算结果1,4循环出现∵(2022﹣3)÷2=1009 (1)∴第2022次“F”运算的结果是1故选:A.二.填空题(共6小题)11.比较大小:﹣7 <﹣5.【分析】根据两个负数,绝对值大的其值反而小判断即可.【解答】解:∵|﹣7|=7,|﹣5|=5而7>5∴﹣7<﹣5.故答案为<.【点评】本题考查了有理数大小比较,关键是掌握有理数大小比较法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.12.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.【分析】根据正数与负数的意义可直接求解.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故答案为零下3℃.【点评】本题主要考查正数与负数,理解正数与负数的意义是解题的关键.13.如图,是正方体的一种表面展开图,各面都标有数字,则数字为﹣4的面与它对面的数字之和是﹣7.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面,判断即可.【解答】解:由图可知:﹣4与﹣3相对∴﹣4+(﹣3)=﹣7故答案为:﹣7.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.14.若代数式﹣2x3y b与2x a y2的和为0,则b﹣a=﹣1.【分析】根据同类项的定义判断出a,b的值,可得结论.【解答】解:由题意a=3,b=2∴b﹣a=2﹣3=﹣1.故答案为:﹣1.【点评】本题考查整式的加减,解题的关键是理解题意,灵活运用所学知识解决问题.1,﹣2.5)= 3.5.【分析】根据定义,所求式子可化为1﹣(﹣2.5),再求值即可.【解答】解:[﹣2,1]﹣(﹣1,﹣2.5)=1﹣(﹣2.5)=1+2.5=3.5故答案为:3.5.【点评】本题考查有理数的加减法,熟练掌握有理数的加减法运算,会比较有理数的大小,弄清定义是解题的关键.16.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=22,a7=2002,a95=﹣2023,且满足任意相邻三个数的和为同一个常数,则a1+a2+a3+…+a98+a99+a100的值为2035.【分析】根据题中所给“任意相邻三个数的和为同一个常数”可求出这一列数,进而可解决问题.【解答】解:由题知因为这列数中任意相邻三个数的和为同一个常数所以a1+a2+a3=a2+a3+a4则a1=a4.同理可得a1=a4=a7=…=a100a2=a5=a8=…=a98a3=a6=a9=…=a99所以这列数按2002,﹣2023,22循环出现.又因为100÷3=33余1且2002+(﹣2023)+22=1所以a1+a2+a3+…+a98+a99+a100=1×33+2002=2035.故答案为:2035.【点评】本题考查数字变化的规律,能根据题意得出这列数按2002,﹣2023,22循环出现是解题的关键.三.解答题(共7小题)17.(1)(﹣12)﹣5+(﹣14)﹣(﹣39);(2)(﹣+﹣)×(﹣24);(3)(﹣)÷+(﹣)÷(﹣15);(4)﹣14﹣×[2﹣(﹣3)2].【分析】(1)先把减法转化为加法,再根据加法法则计算即可;(2)根据乘法分配律计算即可;(3)先算除法,再算加法即可;(4)先算乘方和括号内的式子,再算括号外的乘法,最后算减法即可.【解答】解:(1)(﹣12)﹣5+(﹣14)﹣(﹣39)=(﹣12)+(﹣5)+(﹣14)+39=8;(2)(﹣+﹣)×(﹣24)=﹣×(﹣24)+×(﹣24)﹣×(﹣24)=20+(﹣9)+6=17;(3)(﹣)÷+(﹣)÷(﹣15)=(﹣)×9+(﹣)×(﹣)=﹣24+=﹣23;(4)﹣14﹣×[2﹣(﹣3)2]=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.18.(1)把下列各数:,|﹣4|在数轴上表示出来;(2)将上列各数用“<”号从小到大连接.【分析】(1)在数轴上准确找到各数对应的点,即可解答;(2)利用(1)的结论,即可解答.【解答】解:(1)如图:(2)由(1)可得:.【点评】本题考查了有理数的大小比较,数轴,绝对值,准确熟练地在数轴上找到各数对应的点是解题的关键.19.化简.(1)(6m﹣5n)﹣(7m﹣8n);(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y);【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可;【解答】解:(1)(6m﹣5n)﹣(7m﹣8n)=6m﹣5n﹣7m+8n=﹣m+3n;(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y)=15x2y﹣5xy2+4xy2﹣8x2y=7x2y﹣xy2;20.先化简,再求值:﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b),其中a=﹣1,b=.﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b)=﹣a2b﹣8ab2﹣a2b﹣10ab2+2a2b=﹣18ab2当a=﹣1,b=时原式=﹣18×(﹣1)×()2=2.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.如图,是一些棱长为2cm的小立方块组成的几何体.(1)请在上面方格纸中分别画出从左面、上面看到的这个几何体的形状图.(2)该几何体的体积是48cm3.【分析】(1)根据三视图的定义画图即可.(2)用1个小立方块的体积乘以小方块的个数即可.【解答】解:(1)如图所示.(2)该几何体的体积是23×6=48(cm3).故答案为:48cm3.【点评】本题考查作图﹣三视图,解题的关键是理解三视图的定义,难度不大.22.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣(2x2﹣2x+1)=﹣x2﹣4x﹣3,则所捂住的多项式是____.(1)求所捂的二次三项式;(2)当x=﹣2时,求所捂二次三项式的值.【分析】(1)根据题意可知:所捂的二次三项式是:(﹣x2﹣4x﹣3)+(2x2﹣2x+1),然后计算即可;(2)将x=﹣2代入(1)中的结果计算即可.【解答】解:(1)由题意可得所捂的二次三项式是:(﹣x2﹣4x﹣3)+(2x2﹣2x+1)=﹣x2﹣4x﹣3+2x2﹣2x+1=x2﹣6x﹣2;(2)当x=﹣2时,x2﹣6x﹣2=(﹣2)2﹣6×(﹣2)﹣2=4+12﹣2=14.【点评】本题考查整式的加减、代数式求值,解答本题的关键是明确去括号法则和合并同类项的方法.23.校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在A处.规定以主席台为原点,以向东的方向为正方向,步行记录如下(单位:米):+10,﹣8,+6,﹣13,+7,﹣12,+2,﹣2(1)小明离主席台最远是10米;(2)以主席台为原点,用1个单位长度表示1m,请在数轴上表示点A;(3)在主席台东边5米处是仲裁处,小明经过仲裁处4次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?【分析】(1)分别求出小明每次运动后的位置,即可得到答案;(2)结合(1),在数轴上标出最后位置即可;(3)由运动过程可求出经过仲裁处的次数;(4)根据每步行1米消耗0.04卡路里列式计算即可.【解答】解:(1)∵+10﹣8=2;2+6=8;8﹣13=﹣5;﹣5+7=2,2﹣12=﹣10;﹣10+2=﹣8;﹣8﹣2=﹣10;∴小明离主席台最远是10米;故答案为:10;(2)如图所示,点A即为所求;(3)从主席台出发,+10经过仲裁处,由+10到﹣8经过仲裁处,﹣8到+6经过仲裁处,+6到﹣13经过仲裁处∴经过仲裁处4次;故答案为:4;(4)(10+8+6+13+7+12+2+2)×0.04=60×0.04=2.4(卡路里)答:小明在拍照过程中步行消耗2.4卡路里.【点评】本题考查有理数混合运算,解题的关键是读懂题意,理解小明的运动过程.24.书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为26cm、宽为18.5cm、厚为1cm,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去x cm;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含x的代数式表示)(2)若封面和封底沿虚线各折进去2cm,剪掉阴影部分后,包书纸的面积是多少?【分析】(1)由题意列式计算即可;(2)当x=2cm时,求出包书纸长和宽,即可解决问题.【解答】解:(1)小海所用包书纸的周长为:2(18.5×2+1+2x)+2(26+2x)=2(38+2x)+2(26+2x)=(8x+128)cm答:小海所用包书纸的周长为(8x+128)cm;(2)当x=2cm时,包书纸长为:18.5×2+1+2×2=42(cm)包书纸宽为:26+2×2=30(cm)∴包书纸的面积=42×30﹣2×2×4﹣2×1×2=1240(cm2)答:包书纸的面积为1240cm2.【点评】本题考查了矩形的性质以及列代数式,熟练掌握矩形的性质是解题的关键.25.探索规律.(1)观察上面的图,发现:图①空白部分小正方形的个数是22﹣12=2+1;图②空白部分小正方形的个数是42﹣32=4+3;图③空白部分小正方形的个数是52﹣42=5+4.(2)像这样继续排列下去,你会发现一些有趣的规律,(n+1)2﹣n2=n+1+n.(3)运用规律计算:(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012.【分析】(1)根据所给的等式的形式进行求解即可;(2)根据(1)进行总结,从而可求解;(3)利用(2)中的规律进行求解即可.【解答】解:(1)由题意得:图③空白部分小正方形的个数是52﹣42=5+4故答案为:5,4;(2)(n+1)2﹣n2=n+1+n故答案为:(n+1)2,n+1,n;(3)(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012=(2024+2023+2022+2021+2020+2019+2018+…+2+1)÷1012=[(2024+1)+(2023+2)+(2022+3)+…+(1013+1012)]÷1012=2025×1012÷1012=2025.【点评】本题主要考查数字的变化规律,解答的关键是由所给的等式总结出存在的规律.26.已知|a +30|+(c ﹣20)2=0,在数轴上点A 表示的数是a ,点C 表示的数是c ,A ,C 两点之间的距离AC =|a ﹣c |.(1)直接写出a 、c 的值,a = ﹣30 ,c = 20 ;(2)若数轴上有一点D 满足CD =3AD ,且点D 在A ,C 之间,则D点表示的数为 ﹣ ; (3)点M 从原点O 出发在O ,A 之间以v 1的速度沿数轴负方向运动,点N 从点C 出发在O ,C 之间以v 2的速度沿数轴负方向运动,运动时间为t ,点Q 为O ,N 之间一点,且QN =AN ,若M ,N 运动过程中MQ 的值固定不变,求的值.【分析】(1)根据绝对值和平方的非负性求解即可;(2)根据两点间距离公式求解即可;(3)写出MQ 距离的代数式,根据MQ 距离不变,得出v 1,v 2的比值即可.【解答】解:(1)∵|a +30|≥0,(c ﹣20)2≥0,|a +30|+(c ﹣20)2=0∴|a +30|=0,(c ﹣20)2=0∴a =﹣30,c =20故答案为:﹣30,20.(2)设D 点表示的数为x则有:20﹣x =3{x ﹣(﹣30)}解得:x =﹣故答案为:﹣.(3)OM 的长度为:v 1t ,CN 的长度为v 2t∴AM =﹣v 1t ﹣(﹣30)=﹣v 1t +30,AN =20+20﹣v 2t =50﹣v 2t∵QN =AN∴AQ =AN =(50﹣v 2t )∴MQ =AQ ﹣AM =(50﹣v 2t )﹣(﹣v 1t +30)=+(v 1﹣v 2)t∵MQ 的长度不随t 的变化而变化∴v 1﹣v 2=0 ∴=.【点评】本题主要考查了数轴,确定MQ 长度不变的条件是本题解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5题图 第6题图初三上册数学期中试题附参考答案(考试时间:120分钟,满分:150分)一、选择题(共6小题,每小题3分,满分18分) 1.方程220x x -=的根是( )A.2x =B.0x =C.12x =-,20x =;D.12x =,20x = 2.已知⊙O 的半径为3cm ,点P 在⊙O 内,则OP 不可能等于( )A.1cmB.2cmC.2cmD.3cm 3. 如图,在△ABC 中,M 、N 分别是边AB 、AC 的中点,则△AMN 的面积与四边形MBCN 的面积比为( ). A .12 B .13 C .14 D .23错误!未找到引用源。
4.已知,△ABC 中,∠C=90°,31cos =A ,则sinA=( ) A .13B .23C .322 D .225.如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为2540m ,求道路的宽. 如果设小路宽为xm ,根据题意,所列方程正确的是( ) A .(20-x )(32-x )= 540 B .(20-x )(32-x )=100 C .(20+x )(32-x )=540 D .(20+x )(32-x )= 5406.如图,边长为1的正方形ABCD 中,点E 在CB 延长线上,连接ED 交AB 于点F ,AF =x (0.2≤ x ≤ 0.8),EC =y .则在下面函数图象中,大致能反映y 与x 之闻函数关系的是( )二、填空题(共10小题,每小题3分,满分30分)第3题图AB C 第16题图 7.正十边形的对称轴的条数为____ _ .8.如图,PA 、PB 分别与⊙O 相切于点A 、B ,连接AB.∠APB=60°,AB=5, 则PA 的长是 .9.已知5)2(=+x x ,则100422-+x x 的值为 .10.如图是三角尺在灯泡O 的照射下在墙上形成的影子.现测得OA=20 cm ,OA ′=50 cm ,则这个三角尺的周长与它在墙上形成的影子的周长之比是_________.11.如图,AB 是⊙O 的直径,BD ,CD 分别是过⊙O 上点B ,C 的切线,且∠BDC=110°.连接AC ,则∠A 的度数是 °.12.如图,点A 、B 、C 、D 为⊙O 上的点,∠ABC=90°,若AD=8,tan ∠DBC=43.则DC= . 13.将半径为2cm ,圆心角为120°的扇形围成一个圆锥的侧面,这个圆锥的底面半径 为 cm .14.△ADE 中,AD =AE ,C 为DE 延长线上一点,B 为ED 延长线上一点,∠DAE =40°, 当∠BAC = °时,△BDA ∽△AEC.15.如图,线段AB =1,点P 1是线段AB 的黄金分割点(AP 1<BP 1),点P 2是线段AP 1的黄金分割点(AP 2<P 1P 2),点P 3是线段AP 2的黄金 分割点(AP 3<P 2P 3),…,依次类推, 则线段AP 2014的长度是_______.16.如图,在5×5的正方形网格中(每个小正方形 的边长为1),规定三角形的顶点是网格的交点 的三角形叫格点三角形.若格点三角形DEF ∆ 和ABC ∆相似(这里全等除外),DEF ∆与 ABC ∆的相似比为k ,则满足条件的k 的值为_______________.三、解答题(共10小题,满分102分)C O A BD 第12题图 第14题图第15题图 第8题图 O P AB 第10题图第11题图17.(12分) 用适当的方法解下列方程(1)0142=-+x x . (2)2(3)2(3)x x -=-18.(10分)如图,O 为原点,B ,C 两点坐标分别为(3,-1)(2,1)(1)以O 为位似中心在y 轴左侧将△OBC 放大为原来的两倍,并画出图形; (2)分别写出B ,C 两点的对应点B ’,C ’的坐标;(3)已知点M 为△OBC 内部一点,且OM=7,点M 在△OB ’C ’内的对应点为M ’, 求OM ’的长(4)若点I 为△OBC 的内心,则∠OIB= 度.19.(8分)“埃博拉”病毒是一种能引起人类和灵长类动物产生“出血热”的烈性传染病毒,传染性极强.一日本人在非洲旅游时不慎感染了“埃博拉”病毒,经过两轮传染后,共有64人受到感染. (1)问每轮传染中平均一个人传染了几个人? (2)如果不及时控制,第三轮将又有多少人被传染?20.(8分)已知关于x 的一元二次方程x 2 + mx +n+1=0的一根为2. (1)求n 关于m 的关系式.(3分)(2)试说明:关于y 的一元二次方程y 2 +my+n=0总有两个不相等的实数根.(5分)21.(8分)如图所示在□ABCD 中,E 是CD 于点F ,DE =21CD.(1)求证:△ABF ∽△CEB ;(2)若△DEF 面积为2,求□ABCD 的面积.22.(10分)如图,⊙O 的半径为4,B 是⊙O 外一点,连接OB ,且OB=6,延长BO 交⊙O第18题图FBACD 第21题图于点A ,点D 为⊙O 上一点,过点A 作直线BD 的垂线,垂足为C ,AD 平分∠BAC . (1)求证:BC 是⊙O 的切线;(2)求AC 的长.23.(10分)如图,小华在晚上由路灯A 走向路灯B .当他走到点P 时,发现他身后影子的顶部刚好接触到路灯A 的底部;当他向前再步行12 m 到达点Q 时,发现他身前影子的顶部刚好接触到路灯B 的底部.已知小华的身高是1.6 m ,两个路灯的高度都是9.6 m ,且AP=QB .(1)求两个路灯之间的距离.(2)当小华走到路灯B 的底部时,他在路灯A 下的影长是多少?24. (12分) 正方形OCED 与扇形OAB 有公共顶点O ,分别以OA ,0B 所在直线为x 轴、 y 轴建立平面直角坐标系.如图所示,正方形两个顶点C 、D 分别在x 轴、y 轴正半轴上移动,设OC =x ,OA =3,(1)当x =1时,正方形与扇形不重合的面积是 ;此时直线CD 对应的函数关系式是 ;(2)当直线CD 与扇形OAB 相切时.求直线CD 对应的函数关系式;(3)当正方形有顶点恰好落在弧AB 上时,求正方形与扇形不重合的面积.第22题图 第23题图xyBAE D CO第24题图初三数学期中考试答题纸一、选择题(本题共6小题,每小题3分,共18分) 二、填空题(本大题共10小题,每小题3分,共30分)7. 8. 9. 10. 11. 12. 13. 14. 15. 16.三、解答题(本大题共10小题,共102分) 17.解下列方程(12分)(1)0142=-+x x . (2)2(3)2(3)x x -=-18. (10分)(4)若点I 为△OBC 的内心,则∠OIB= 度.19. (8分)题号 1 2 3 4 5 6 答案班级 姓名 考试号 考场号 密封线内不要答题 …………………………………………装………………………………订……………………………………线………………………………………………20. (8分)21. (8分)22. (10分)23. (10分)FE BACD第21题图第22题图第23题图26.(12分)(1)问题背景: 如图1,Rt△ABC中,∠BAC=90°,AB=AC,∠ABC的平分线交直线AC于D,过点C作CE⊥BD,交直线BD于E.请探究线段BD与CE的数量关系.(事实上,我们可以延长CE与直线BA相交,通过三角形的全等等知识解决问题.)结论:线段BD与CE的数量关系是_________(请直接写出结论);(2)类比探索: 在(1)中,如果把BD改为∠ABC的外角∠ABF的平分线,其他条件均不变(如图2),(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由;(3)拓展延伸:在(2)中,如果AB≠AC,且AB=nAC(0<n<1),其他条件均不变(如图3),请你直接写出BD与CE的数量关系.结论:BD=_________CE(用含n的代数式表示).初三数学期中参考答案以及评分标准DDBCAC7.10 8. 5 9.﹣90 10.2:5 11.35 12.6 13.3214. 110° 15.2014)253(- 16.k 的值为10,5,2,2 (少1个扣1分,不倒扣) 17.(1)52±- (6分) (2)3,1 (6分)18.(1)画图 (2分) (2)B ’(-6,2),C ’(-4,-2) 各2分 (3)72 (2分) (4)135° (2分)19.(1)每轮传染中平均一个人传染了7个人;(5分)(2)64×7=448(人).(3分) 20.(1)n=-2m-5 (4分)(2)△=n m 42-=)52(42---m m =2082++m m =04)4(2>++m (4分)21.(1)略 (3分)(2)24 (5分) 22.(1)略 (5分)(2)AC=.(5分)24. (1)419-π(2分), y=-x+1(2分)(2)相切时, 23+-=x y (4分) (3)①如图,当正方形有顶点恰好落在AB 上时,不重合部分面积为2949-π (2分)②当点C ,D 分别与A ,B 重合时,不重合部分面积为499π- (2分)25. (1) ②. (4分)(2) c=a, b=2a,∴x 2-2x ﹣1=0, 解得262±=x (4分) (3) ①b=3(2分),②a=c=2, 2x 2-3x -2=0,可得方程的另一个根为x=2. (2分) 26.(1)BD=2CE . (4分)(2)结论BD=2CE 仍然成立.延长CE 、AB 交于点G .(5分) (3)2n .(3分)。