2016-2017年最新人教版八年级数学上册八上数学15.1分式

合集下载

最新人教版八年级数学上册《15.1.1 从分数到分式》优质教学课件

最新人教版八年级数学上册《15.1.1 从分数到分式》优质教学课件

分数线
分母



分数:分子、分母都为
数字
分式:分子、分母都为
整式,且分母中必须含
有字母;分子中可以不
含字母
探究新知
素养考点 1 分式的识别
例 指出下列代数式中,哪些是整式,哪些是分式?
x 2x 1 1
x 1 x 2 a 2 2ab b 2
,
, (a b),
,
,
2 3x 2

x
探究新知
说一说 请大家观察式子
请大家观察式子
S
V
和 S
a

,有什么特点?
,有什么特点?
它们与分数有什么相同点和不同点?
相同点
都具有分数的形式
不同点(观察分母)
分母中有字母
探究新知
分式概念
一般地,如果A、B都表示整式,且B中含有字母,那
么称
为分式.其中A叫做分式的分子,B为分式的分母.
注意:分式是不同于整式的另一类式子,且分母中含有字母是分式的一大特点.
33
V
的圆柱形容器中,水面高度为____.
S
S
V
探究新知
3. 一艘轮船在静水中的最大航速是20千米/时,它沿江以最
大船速顺流航行100千米所用时间,与以最大航速逆流航行
60千米所用的时间相等.江水的流速是多少?
如果设江水的流速为v千米/时.
最大船速顺流航行
100千米所用时间
=

以最大航速逆流航行
60千米所用的时间
义的条件
B=0
分式的值
为0的条件
B≠0,A=0
你还有什么疑惑?
请与同伴交流!

人教版八年级上册 15.1从分数到分式 说课讲稿

人教版八年级上册  15.1从分数到分式 说课讲稿

15.1 分式 (1) 《从分数到分式》说课稿一、教材分析1.地位和作用“从分数到分式”是人教版九年制义务教育课本中八年级第一学期第十五章的第一节内容,是中学知识体系的重要组成部分。

分式的概念与整式是紧密相联的,是前面知识的延伸,同时也是对前面知识的进一步运用和巩固。

学生掌握了分式的意义后,为进一步学习分式、函数、方程等知识作好铺垫;本节课的主要内容是分式的概念,分式有意义、无意义、值为零的条件,是以分数为基础,类比引出分式的概念,把学生从对式的认识从整式扩展到有理式。

学好本章不仅能提高学生的运算能力、运算速度,还有助于培养学生的观察、类比归纳能力,并让学生体会从具体到抽象、从特殊到一般的认知规律;让学生在自主探索的学习过程中享受成功的喜悦,形成良好的学习氛围,提高学生学习数学的兴趣。

2.学情分析我任教班级学生基础不是很扎实,学习能力不够高.通过分数的学习,学生可能会用分数的定义去理解分式.但是在分式中,它的分母不是具体的数,而是含有字母的整式。

为了让学生能切实掌握所学知识,提高学生的能力,在教学中对于教材中的例题和练习题,作了适当的延伸拓展和变式处理。

3.教学目标(1) 知识目标:理解分式的概念,并能判断一个有理式是不是分式。

(2) 技能目标:掌握“如果分式的分母的值为零,则分式没有意义”;“如果分式的分子为零,而分母不为零时,分式的值为零”,会推断分式的分母中所含字母的取值范围。

(3) 能力目标:学习观察类比和转化的思想方法,培养学生分析、归纳、概括的能力。

(4) 情感目标:通过类比学习分式的的意义,培养学生认识事物之间普遍联系的辩证唯物主义观点,并在探索学习的过程中体会成功的喜悦,从而提高学生学习数学的兴趣。

4.教学重点与难点本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点(1)重点:分式的意义;分式有意义的条件;(2)难点:分式无意义、分式的值为零的条件。

二、教学方法与学法本节课运用启发类比的教学方法,带着学生去发现和探究新知识,教师在实施教学的过程中注意学生的观察能力和语言表达能力以及类比归纳能力的培养,通过不断的实践和认识,循序渐进的让学生全面地掌握分式的意义,分式有意义、无意义、值为零的条件,使学生体会到新旧知识间的联系,树立学习数学的信心。

八年级数学上册15.1分式教案新人教版(new)

八年级数学上册15.1分式教案新人教版(new)

15.1分式15。

1.1从分数到分式教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件。

重点难点1.重点:理解分式有意义的条件,分式的值为零的条件。

2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件。

一、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,a s ,33200,sv 。

2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程。

设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v +20100小时,逆流航行60千米所用时间v -2060小时,所以v +20100=v-2060. 3。

以上的式子v +20100,v -2060,a s ,sv ,有什么共同点?它们与分数有什么相同点和不同点? 二、例题讲解 P128例1。

当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x 的取值范围。

[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念。

(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:错误!分母不能为零;错误! 1-m m32+-m m 112+-m m分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解。

[答案] (1)m=0 (2)m=2 (3)m=1三、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3。

最新人教版八年级数学上册《15.1.2 分式的基本性质》优质教学课件

最新人教版八年级数学上册《15.1.2 分式的基本性质》优质教学课件

x 1
4 x3
解:(3)最简公分母是 12x 3 .
x 1 (x 1) 6 x
6 x(x 1)


,
2
2
3
2 x
2 x 6 x
12 x
4
4 ( 4 x 2) 16 x 2


,
2
3
3x
3 x ( 4 x ) 12 x
x 1 (x 1)( 3) (
(2)所乘(或除以)的必须是同一个整式;
(3)所乘(或除以)的整式应该不等于零.
探究新知
素养考点 1
分式的基本性质的应用
例 下列等式成立吗?右边是怎样从左边得到的?
解: (1)成立.
(2) 成立.
因为
因为
所以
所以
巩固练习
下列变形是否正确?如果正确,说出是如何变形的?如
果不正确,说明理由.
x
1

(1)
分式的分子与分母乘(或除以)同一个不等于0的整
式,分式的值不变.
探究新知
追问1 如何用式子表示分式的基本性质?
A
A C A
A C

,

(C 0)
.
B
B C B
B C
其中A,B,C 是整式.
探究新知
追问2 应用分式的基本性质时需要注意什么?
(1)分子、分母应同时做乘、除法中的同一种运算;
,
B. 3a 2b3 与 3a 2b 2c 通分后为 2 3
3a b c 3a 2 b 3 c
1
C. m +n 与
1
m–n
的最简公分母为m2-n2

数学人教版八年级上册15.1.1从分数到分式教案

数学人教版八年级上册15.1.1从分数到分式教案
实践活动和小组讨论环节,学生们表现出较高的热情。他们积极参与讨论,互相交流想法,共同解决问题。这使我意识到,小组合作学习不仅能提高学生的团队协作能力,还能激发他们的思维,促进对知识的深入理解。
然而,我也发现了一些不足之处。在实践活动过程中,部分学生对于如何将实际问题转化为分式模型感到困惑。这说明我在教学中需要更多关注学生的问题解决能力,培养他们从实际问题中提炼数学模型的能力。
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《从分数到分式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过分母为零的情况?”(如:在平均分配物品时,若物品总数为零,该如何表示每个人得到的数量?)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分式的奥秘。
本节课将结合实际例题,让学生在实际操作中掌握分式的概念和性质,为后续学习分式的运算打下基础。
二、核心素养目标
1.培养学生的逻辑推理能力:通过从分数到分式的过渡,引导学生理解分式概念的内涵和外延,培养学生的抽象逻辑思维,提高其逻辑推理能力。
2.增强学生的数学运算能力:让学生掌握分式的性质,并运用这些性质简化分式,解决实际问题,提高学生的数学运算能力。
数学人教版八年级上册15.1.1从分数到分式教案
一、教学内容
本节课选自数学人教版八年级上册第15章《分式》中的第1节“从分数到分式”。教学内容主要包括以下两部分:
1.分式的概念:通过回顾分数的定义,引导学生理解分式的概念,即分母不为零的表达式称为分式。列举一些具体实例,让学生观察并总结分式的特点。
2.分式的性质:探讨分式的分子、分母与分式值之间的关系,引入分式的基本性质,如分子分母同乘(除)一个非零数,分式的值不变。结合实际例题,让学生运用这些性质简化分式,并解决相关问题。同时,强调分母不为零的重要性。

人教版八年级数学上册15.1.1《从分数到分式》教学设计

人教版八年级数学上册15.1.1《从分数到分式》教学设计

人教版八年级数学上册15.1.1《从分数到分式》教学设计一. 教材分析人教版八年级数学上册15.1.1《从分数到分式》是分式单元的第一节内容,主要介绍了分数与分式的关系,分式的概念以及分式的基本性质。

本节内容是学生学习更高级数学的基础,对于学生理解数学的抽象概念具有重要意义。

二. 学情分析八年级的学生已经掌握了分数的基本知识,对于分数的加减乘除运算也已经熟练掌握。

但是,学生对于分数背后的数学原理可能理解不够深入,对于数学的抽象概念还处于逐步理解的过程中。

三. 教学目标1.了解分数与分式的关系,理解分式的概念。

2.掌握分式的基本性质,能够进行简单的分式运算。

3.培养学生的抽象思维能力,提高学生解决问题的能力。

四. 教学重难点1.分式概念的理解。

2.分式基本性质的掌握。

3.分式运算的熟练运用。

五. 教学方法采用问题驱动法,通过引导学生思考分数与分式的关系,激发学生的学习兴趣,培养学生独立思考的能力。

同时,运用案例分析法,通过具体的例子让学生理解分式的概念和性质。

六. 教学准备1.准备相关的分数和分式的案例。

2.准备分式运算的练习题。

3.准备PPT,用于辅助教学。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾分数的知识,激发学生的学习兴趣。

例如:“你们知道分数是什么吗?分数有什么特点?”2.呈现(10分钟)通过PPT展示分数与分式的关系,引导学生思考并总结出分式的概念。

例如:“分数可以表示一个数与另一个数的比,那么分式可以表示什么呢?”3.操练(10分钟)让学生通过PPT上的例子,练习分式的基本性质。

例如:“请同学们观察这个例子,分式的分子和分母同时乘以一个数,分式的值会发生什么变化?”4.巩固(10分钟)让学生进行分式运算的练习,巩固所学知识。

例如:“请同学们完成这个分式的运算,并解释你的思路。

”5.拓展(10分钟)引导学生思考分式在实际生活中的应用,拓展学生的知识视野。

例如:“你们能想到分式在实际生活中有哪些应用吗?”6.小结(5分钟)对本节课的主要内容进行总结,让学生明确学习重点。

八年级数学上册15.1《分式》分式的变号法则是什么素材新人教版

八年级数学上册15.1《分式》分式的变号法则是什么素材新人教版

分式的变号法则是什么?难易度:★★★★关键词:变号法则答案:对于分式中的分子、分母与分式本身的符号,改变其中的任何两个,分式的值不变;改变其中任何一个或三个,分式成为原分式的相反数。

【举一反三】典例:不改变分式的值,使下列分式的分子和分母前不含“—"号(1)(2)(3)思路导引:(1)同时改变分子和分式本身的符号;(2)改变分子和分母的符号;(3)同时改变分母和分式本身的符号.标准答案:(1);(2);(3)尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。

This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be someunsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。

人教版数学八年级上册教学设计15.1《分式》

人教版数学八年级上册教学设计15.1《分式》

人教版数学八年级上册教学设计15.1《分式》一. 教材分析人教版数学八年级上册第15.1节《分式》是初中数学的重要内容,主要让学生了解分式的概念、性质和分式的运算。

本节内容为后续的分式方程和不等式的学习打下基础。

教材通过丰富的实例引入分式,让学生在具体的情境中感受分式的意义,进而总结出分式的概念。

本节课的内容包括分式的定义、分式的基本性质、分式的运算以及分式的化简。

二. 学情分析八年级的学生已经掌握了实数、代数式的相关知识,具备了一定的逻辑思维能力和抽象思维能力。

但是,对于分式的理解还需要通过具体的实例来帮助学生建立直观的认识。

学生在学习过程中可能对分式的运算规则和分式的化简部分存在一定的困难,因此需要教师在教学过程中进行详细的讲解和引导。

三. 教学目标1.知识与技能:让学生掌握分式的概念、性质和分式的运算方法,能够正确进行分式的化简。

2.过程与方法:通过实例引入分式,让学生在具体的情境中感受分式的意义,培养学生的抽象思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生能够自主探究、合作交流。

四. 教学重难点1.重点:分式的概念、性质和分式的运算。

2.难点:分式的化简以及分式运算的灵活运用。

五. 教学方法1.情境教学法:通过具体的实例引入分式,让学生在实际情境中感受分式的意义。

2.启发式教学法:引导学生主动探究分式的性质和运算规律,培养学生的抽象思维能力。

3.小组合作学习:学生进行小组讨论,培养学生的团队合作精神,提高学生的交流能力。

六. 教学准备1.准备相关的实例和图片,用于引入分式和解释分式的概念。

2.准备分式的运算练习题,用于巩固学生的运算能力。

3.准备分式的化简示例,用于引导学生掌握分式的化简方法。

七. 教学过程1.导入(5分钟)利用实例引入分式,如“一块土地的长是宽的2倍,若长方形土地的面积为36平方米,求这块土地的宽是多少米?”让学生在具体的情境中感受分式的意义。

新人教版 数学 八年级上册 第十五章 分式 15.1.1从分数到分式1教案2

新人教版 数学 八年级上册 第十五章 分式 15.1.1从分数到分式1教案2

15.1.1 从分数到分式课标依据1、借助现实情境了解分式,进一步理解用字母表示数的意义。

2、能分析简单问题中的数量关系,并用代数式(分式)表示。

一、教材分析“从分数到分式”是人教版九年制义务教育课本中八年级上第十五章的第一节内容,是中学知识体系的重要组成部分。

分式的概念与整式是紧密相联的,是前面知识的延伸,同时也是对前面知识的进一步运用和巩固。

学生掌握了分式的意义后,为进一步学习分式、函数、方程等知识作好铺垫;本节课的主要内容是分式的概念,分式有意义、无意义、值为零的条件,是以分数为基础,类比引出分式的概念,把学生从对式的认识从整式扩展到有理式。

学好本章不仅能提高学生的运算能力、运算速度,还有助于培养学生的观察、类比归纳能力,并让学生体会从具体到抽象、从特殊到一般的认知规律;让学生在自主探索的学习过程中享受成功的喜悦,形成良好的学习氛围,提高学生学习数学的兴趣。

从分数有意义到分式有意义,从判断分母是否为0到求解分母何时值为0,并将此规律应用于求解最简单的分式方程(分式值为0),既是知识的同化迁移,也包括了调整和重组的因素.这部分内容是本课的教学难点.二、学情分析我校是农村初中,学习基础有较大的差异,大部分学生数学基础比较薄弱,对数学学习感觉很困难,导致学习兴趣低下。

为了激发学生的学习数学的兴趣,平时我在课堂上鼓励学生积极发言、小组讨论、合作探究等多种形式调动学生学习的积极性。

三、教学目标知识与技能1.理解分式的概念,会辨别分式与整式.2.会求分式有意义时的字母满足的条件,并能求出分式值为零的这一特殊情况时字母满足的条件.过程与方法能用分式表示现实情境中的数量关系,体会分式是表示现实世界中一类量的数学模型,进一步发展符号感,通过类比分数研究分式的教学,引导学生运用类比转化的思想方法研究解决问题.情感态度与价值观通过生活中的实例让学生体验发现身边的数学,激发学生对数学的学习兴趣,进一步引导探究,培养学生严谨创新的思维能力.四、教学重点难点教学重点准确理解分式的概念;教学难点会求分式有意义时的字母满足的条件,并能求出分式值为零的这一特殊情况时字母满足的条件.五、教法学法本节课运用启发类比的教学方法,通过不断的实践和认识,循序渐进的让学生全面地掌握分式的意义,分式有意义、无意义、值为零的条件,使学生体会到新旧知识间的联系,树立学习数学的信心。

八年级数学上册15-1分式15-1-2分式的基本性质第1课时分式的基本性质与约分习题新版新人教版

八年级数学上册15-1分式15-1-2分式的基本性质第1课时分式的基本性质与约分习题新版新人教版

D. 无法确定
1
2
3
4
5
6
7
8
9
10
11
12
13
14
10. 利用分式的基本性质把下列各式的分子、分母中各项的
系数都变为整数.
(1)











解:(1)原式=
(2)
.+.
.
−.
解:(2)原式=
1
2





+
.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
(3)在下列三个整式中,任意选择2个式子构造分式,分
别作为分子、分母,要求构造的分式是“和谐分
式”,写出所有的结果.
m2- n2; m2+2 mn + n2; m - n .
解:(3)∵ m2- n2=( m + n )( m - n ), m2+2 mn + n2

+
(+)
+



.(选择一个即可)

− +
(−)
−+
1
2
3
4
5
6
7
8
9
10
11
12
13
14
13. 若2 x - y +4 z =0,4 x +3 y -2 z =0,则
值为



1
++
+ +
.

最新人教版八年级数学上册15.1 分式

最新人教版八年级数学上册15.1  分式

第十五章分式教材简介本章包括分式、分式的运算、分式方程三节,主要内容有:分式和最简分式的概念,分式的基本性质,分式的约分和通分,分式的加、减、乘、除运算,整数指数幂的概念和运算性质,分式方程的概念以及可化为一元一次方程的分式方程的解法和应用.教学目标1.以描述实际问题中的数量关系为背景,抽象出分式的概念,体会分式是刻画现实世界中数量关系的一类代数式.2.类比分数的基本性质,了解分式的基本性质,掌握分式的约分和通分法则.3.类比分数的四则运算法则,探究分式的四则运算,掌握这些法则.4.结合分式的运算,将指数的讨论范围从正整数扩大到全体整数,构建和发展相互联系的知识体系.5.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想.课时安排15.1 分式 3课时15.2 分式的运算 6课时15.3 分式方程 3课时小结2课时15.1 分式教学目标1.了解分式的概念,能用分式表示实际问题中的数量关系.2.能确定分式有意义的条件.3.了解分式的基本性质,最简公分母的概念,会确定最简公分母.4.掌握分式的约分,了解最简分式的概念.5.能进行分式的通分,体会数式通性和类比的思想.教学重点与难点分式的性质及约分、通分.课时安排3课时.第1课时教学内容分式的概念.教学过程一、导入新课让学生完成填空:(1)长方形的面积为10 cm 2,长为7 cm ,则宽为 cm ;长方形的面积为S ,长为a ,宽应为 cm .(2)把体积为200 cm 3的水倒入底面积为33 cm 2的圆柱形容器中,水面高度为 cm ;把体积为V 的水倒入底面积为S 的圆柱形容器中,水面高为 cm .二、探究新知1.分式的概念 师生可得到的答案依次是:.33200710SV a S ,,, 上面问题中得到的式子中哪些不是我们学过的整式?它们有什么共同的特征? 学生归纳,教师指出类比分数的形式,可得一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式. 分式BA 中,A 叫做分子,B 叫做分母. 2.分式有意义的条件思考:要使分数有意义,分数中的分母不能为0.要使分式有意义,分式中的分母应满足什么条件?为什么?因为分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B ≠0时,分式BA 才有意义. 例1 下列分式中的字母满足什么条件时分式有意义?(1);x 32 (2);1-x x (3);b 351- (4).yx y x -+ 学生独立思考,完成此题的解答,教师及时点评.3.分式等零的条件下列分式中的x 满足什么条件时,分式的值为零?(1);312++x x (2).12xx - 学生独立思考,完成对上题的解答,教师及时点评.参考答案:(1)无解 (2)x =1±提示:分式的值为0时,必须同时满足两个条件:①分母不能为零;②分子为零,最后求两个条件的公共部分,就是这类题目的解.4.符号的规律思考:不改变分式的值,使下列分式的分子与分母都不含“—”号:(1);b a 2- (2).43nm -- 让学生求出结果,并观察结果,找出规律.提示:一个负号走来走去,两个负号统统枪毙,三个负号留个老弟.答案:(1)b a 2- (2)nm 43 三、课堂小结1.了解分式的概念,能用分式表示实际问题中的数量关系.2.能确定分式有意义、等零、去负号的条件.四、课后作业习题15.1第1、2、3题.第2课时教学内容约分.教学过程一、导入新课 判断:分数32,64,128,2416是否相等并说出判断的理由. 二、探究新知1.分式的基本性质让学生借助由分数的基本性质:一个分数的分子、分母乘(或除以)同一个不为0的数,分数的值不变.猜想分式的基本性质?学生独立思考,教师及时点评,得出分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变.上述的性质可以用式子表示为(),,0≠÷÷=⋅⋅=C CB C A B A C B C A B A 其中A ,B ,C 是整式.判断:下列变形是否正确?如果正确,说出是如何变形的?如果不正确,说明理由.(1);212=x x (2).112+=+x x x x 参考答案:(1)正确.分子分母除以x ;(2)不正确,分子乘x ,而分母没乘x . 提示:(1)分子、分母应同时做乘、除法中的同一种运算;(2)所乘(或除以)的必须是同一个整式.2.约分例2 填空:(1);,)(633)(222y x x xy x yxy x +=+= (2).0)(2)(1222)(,≠=-=b b a a b a ba ab 学生独立思考,完成此题的解答,教师及时点评.让学生观察上例中(1)中的两个分式在变形前后的分子、分母有什么变化?类比分数的相应变形,你能得到什么结论?归纳:像这样,根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分.经过约分后的分式,其分子与分母没有公因式.像这样分子与分母没有公因式的式子,叫做最简分式.教师指导学生完成例3,在此过程中,教师可以进行点评.提示:①找准分子,分母的公因式;②多项式要先分解因式后,再找公因式.三、课堂小结1.了解分式的基本性质,体会类比的思想方法.2.掌握分式的约分,了解最简分式的概念.四、课后作业习题15.1第4题.第3课时教学内容通分.教学过程一、导入新课让学生回忆分数的通分,由分数的通分思考如何对分式通分呢?二、探究新知1.通分类比分数的通分,利用分式的基本性质,让学生填空..0)(2)(1222)(,≠=-=b ba ab a b a ab 括号中应分别填为:a 、2ab -b 2.学生观察解题过程,发现:利用分式的基本性质,将分子和分母同乘适当的整式,不改变分式的值,把ab 1和22a b a -化成分母相同的分式.像这样,根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.2.最简公分母观察并思考上例中的分母,我们知道通分时,首先要分式的分母相同.那么,为通分,要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.根据定义,我们可以得出最简公分母的确定方法:取各分母系数的最小公倍数与各字母因式的最高次幂的乘积(分母是多项式时,先因式分解,再将每一个因式看成一个整体,最后确定最简公分母).3.通分的应用让学生完成例4,学生独立思考,完成此题的解答,教师及时点评.三、课堂小结1.了解最简公分母的概念,会确定最简公分母.2.能进行分式的通分,体会数式通性和类比的思想.四、课后作业习题15.1第4题.。

【人教版】2017年秋八上数学:第15章《分式》全章教案

【人教版】2017年秋八上数学:第15章《分式》全章教案

2017年八年级数学上册第十五章 分式15.1 分 式 15.1.1 从分数到分式1.以描述实际问题中的数量关系为背景抽象出分式的概念,建立数学模型,并理解分式的概念.2.能够通过分式的定义理解和掌握分式有意义的条件.重点理解分式有意义的条件及分式的值为零的条件. 难点能熟练地求出分式有意义的条件及分式的值为零的条件.一、复习引入1.什么是整式?什么是单项式?什么是多项式? 2.判断下列各式中,哪些是整式?哪些不是整式?①8m +n 3;②1+x +y 2;③a 2b +ab 23;④a +b 2;⑤2x 2+2x +1;⑥3a 2+b 2;⑦3x 2-42x .二、探究新知 1.分式的定义(1)学生看教材的问题:一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行90千米所用时间,与以最大航速逆流航行60千米所用的时间相等,江水的流速为多少?分析:设江水的流速为v 千米/时.轮船顺流航行90千米所用的时间为9030+v 小时,逆流航行60千米所用时间为6030-v 小时,所以9030+v =6030-v.(2)学生完成教材第127页“思考”中的题.观察:以上的式子9030+v ,6030-v ,S a ,Vs ,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是AB (即A÷B)的形式.分数的分子A 与分母B 都是整数,而这些式子中的A ,B 都是整式,并且B 中都含有字母.归纳:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式.巩固练习:教材第129页练习第2题.2.自学教材第128页思考:要使分式有意义,分式中的分母应满足什么条件?分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B ≠0时,分式AB才有意义. 学生自学例1.例1 下列分式中的字母满足什么条件时分式有意义?(1)23x ;(2)x x -1;(3)15-3b ;(4)x +y x -y. 解:(1)要使分式23x 有意义,则分母3x ≠0,即x ≠0;(2)要使分式xx -1有意义,则分母x -1≠0,即x ≠1;(3)要使分式15-3b 有意义,则分母5-3b ≠0,即b ≠53;(4)要使分式x +yx -y有意义,则分母x -y ≠0,即x ≠y.思考:如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗? 巩固练习:教材第129页练习第3题.3.补充例题:当m 为何值时,分式的值为0? (1)mm -1;(2)m -2m +3;(3)m 2-1m +1. 思考:当分式为0时,分式的分子、分母各满足什么条件?分析:分式的值为0时,必须同时满足两个条件:(1)分母不能为零;(2)分子为零. 答案:(1)m =0;(2)m =2;(3)m =1. 三、归纳总结 1.分式的概念.2.分式的分母不为0时,分式有意义;分式的分母为0时,分式无意义. 3.分式的值为零的条件:(1)分母不能为零;(2)分子为零. 四、布置作业教材第133页习题15.1第2,3题.在引入分式这个概念之前先复习分数的概念,通过类比来自主探究分式的概念,分式有意义的条件,分式值为零的条件,从而更好更快地掌握这些知识点,同时也培养学生利用类比转化的数学思想方法解决问题的能力.15.1.2 分式的基本性质(2课时)第1课时 分式的基本性质1.了解分式的基本性质,灵活运用分式的基本性质进行分式的变形. 2.会用分式的基本性质求分式变形中的符号法则.重点理解并掌握分式的基本性质. 难点灵活运用分式的基本性质进行分式变形.一、类比引新 1.计算:(1)56×215;(2)45÷815. 思考:在运算过程中运用了什么性质?教师出示问题.学生独立计算后回答:运用了分数的基本性质. 2.你能说出分数的基本性质吗?分数的分子与分母都乘(或除以)同一个不为零的数,分数的值不变. 3.尝试用字母表示分数的基本性质:小组讨论交流如何用字母表示分数的基本性质,然后写出分数的基本性质的字母表达式. a b =a·c b·c ,a b =a÷cb÷c.(其中a ,b ,c 是实数,且c ≠0) 二、探究新知1.分式与分数也有类似的性质,你能说出分式的基本性质吗?分式的基本性质:分式的分子与分母乘(或除以)同一个不为零的整式,分式的值不变. 你能用式子表示这个性质吗?A B =A·C B·C ,A B =A÷C B÷C .(其中A ,B ,C 是整式,且C ≠0) 如x 2x =12,b a =aba2,你还能举几个例子吗? 回顾分数的基本性质,让学生类比写出分式的基本性质,这是从具体到抽象的过程. 学生尝试着用式子表示分式的性质,加强对学生的抽象表达能力的培养. 2.想一想下列等式成立吗?为什么? -a -b =a b ;-a b =a -b=-a b .教师出示问题.学生小组讨论、交流、总结.例1 不改变分式的值,使下列分式的分子与分母都不含“-”号: (1)-2a -3a;(2)-3x 2y ;(3)--x 2y .例2 不改变分式的值,使下列分式的分子与分母的最高次项的系数都化为正数: (1)x +1-2x -1;(2)2-x -x 2+3;(3)-x -1x +1. 引导学生在完成习题的基础上进行归纳,使学生掌握分式的变号法则. 例3 填空:(1)x 3xy =( )y ,3x 2+3xy6x 2=x +y ( ); (2)1ab =( )a 2b ,2a -b a 2=( )a 2b.(b ≠0) 解:(1)因为x 3xy 的分母xy 除以x 才能化为y ,为保证分式的值不变,根据分式的基本性质,分子也需除以x ,即x 3xy =x 3÷x xy ÷x =x 2y. 同样地,因为3x 2+3xy6x2的分子3x 2+3xy 除以3x 才能化为x +y ,所以分母也需除以3x ,即3x 2+3xy 6x 2=(3x 2+3xy )÷(3x )6x 2÷(3x )=x +y2x . 所以,括号中应分别填入x 2和2x.(2)因为1ab 的分母ab 乘a 才能化为a 2b ,为保证分式的值不变,根据分式的基本性质,分子也需乘a ,即1ab =1·a ab·a =a a 2b. 同样地,因为2a -ba 2的分母a 2乘b 才能化为a 2b ,所以分子也需乘b ,即2a -b a 2=(2a -b )·b a 2·b=2ab -b 2a 2b . 所以,括号中应分别填a 和2ab -b 2.在解决例题1,2的第(2)小题时,教师可以引导学生观察等式两边的分母发生的变化,再思考分式的分子如何变化;在解决例2的第(1)小题时,教师引导学生观察等式两边的分子发生的变化,再思考分式的分母随之应该如何变化.三、课堂小结1.分式的基本性质是什么? 2.分式的变号法则是什么?3.如何利用分式的基本性质进行分式的变形? 学生在教师的引导下整理知识、理顺思维. 四、布置作业教材第133页习题15.1第4,5题.通过算数中分数的基本性质,用类比的方法给出分式的基本性质,学生接受起来并不感到困难,但要重点强调分子分母同乘(或除)的整式不能为零,让学生养成严谨的态度和习惯.第2课时 分式的约分、通分1.类比分数的约分、通分,理解分式约分、通分的意义,理解最简公分母的概念. 2.类比分数的约分、通分,掌握分式约分、通分的方法与步骤.重点运用分式的基本性质正确地进行分式的约分与通分. 难点通分时最简分分母的确定;运用通分法则将分式进行变形.一、类比引新1.在计算56×215时,我们采用了“约分”的方法,分数的约分约去的是什么?分式a 2+ab a 2b ,a +bab相等吗?为什么?利用分式的基本性质,分式a 2+aba 2b 约去分子与分母的公因式a ,并不改变分式的值,可以得到a +b ab.教师点拨:分式a 2+ab a 2b 可以化为a +bab ,我们把这样的分式变形叫做__分式的约分__.2.怎样计算45+67?怎样把45,67通分?类似的,你能把分式a b ,cd变成同分母的分式吗?利用分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,我们把这样的分式变形叫做__分式的通分__.二、探究新知1.约分:(1)-25a 2bc 315ab 2c ;(2)x 2-9x 2+6x +9;(3)6x 2-12xy +6y 23x -3y.分析:为约分,要先找出分子和分母的公因式. 解:(1)-25a 2bc 315ab 2c =-5abc ·5ac 25abc ·3b =-5ac 23b ;(2)x 2-9x 2+6x +9=(x +3)(x -3)(x +3)2=x -3x +3; (3)6x 2-12xy +6y 23x -3y =6(x -y )23(x -y )=2(x -y ).若分子和分母都是多项式,则往往需要把分子、分母分解因式(即化成乘积的形式),然后才能进行约分.约分后,分子与分母没有公因式,我们把这样的分式称为__最简分式__.(不能再化简的分式)2.练习:约分:2ax 2y 3axy 2;-2a (a +b )3b (a +b );(a -x )2(x -a )3;x 2-4xy +2y ;m 2-3m 9-m 2;992-198.学生先独立完成,再小组交流,集体订正.3.讨论:分式12x 3y 2z ,14x 2y 3,16xy4的最简公分母是什么?提出最简公分母概念.一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.学生讨论、小组交流、总结得出求最简公分母的步骤: (1)系数取各分式的分母中系数最小公倍数; (2)各分式的分母中所有字母或因式都要取到; (3)相同字母(或因式)的幂取指数最大的;(4)所得的系数的最小公倍数与各字母(或因式)的最高次幂的积(其中系数都取正数)即为最简公分母.4.通分:(1)32a 2b 与a -b ab 2c ;(2)2x x -5与3xx +5 .分析:为通分,要先确定各分式的公分母.解:(1)最简公分母是2a 2b 2c . 32a 2b =3·bc 2a 2b ·bc =3bc2a 2b 2c , a -b ab 2c =(a -b )·2a ab 2c ·2a =2a 2-2ab2a 2b 2c . (2)最简公分母是(x -5)(x +5). 2xx -5=2x (x +5)(x -5)(x +5)=2x 2+10x x 2-25, 3x x +5=3x (x -5)(x +5)(x -5)=3x 2-15x x 2-25. 5.练习: 通分:(1)13x 2与512xy ;(2)1x 2+x 与1x 2-x ;(3)1(2-x )2与xx 2-4. 教师引导:通分的关键是先确定最简公分母;如果分式的分母是多项式则应先将分母分解因式,再按上述的方法确定分式的最简公分母.学生板演并互批及时纠错.6.思考:分数和分式在约分和通分的做法上有什么共同点?这些做法的根据是什么? 教师让学生讨论、交流,师生共同作以小结. 三、课堂小结1.什么是分式的约分? 怎样进行分式的约分? 什么是最简分式?2.什么是分式的通分? 怎样进行分式的通分? 什么是最简公分母?3.本节课你还有哪些疑惑? 四、布置作业教材第133页习题15.1第6,7题.本节课是在学习了分式的基本性质后学的,重点是运用分式的基本性质正确的约分和通分,约分时要注意一定要约成最简分式,熟练运用因式分解;通分时要将分式变形后再确定最简公分母.15.2 分式的运算 15.2.1 分式的乘除(2课时) 第1课时 分式的乘除法1.理解并掌握分式的乘除法则.2.运用法则进行运算,能解决一些与分式有关的实际问题.重点掌握分式的乘除运算.难点分子、分母为多项式的分式乘除法运算.一、复习导入1.分数的乘除法的法则是什么? 2.计算:35×1512;35÷152.由分数的运算法则知35×1512=3×155×12;35÷152=35×215=3×25×15.3.什么是倒数?我们在小学学习了分数的乘除法,对于分式如何进行计算呢?这就是我们这节要学习的内容.二、探究新知问题1:一个水平放置的长方体容器,其容积为V ,底面的长为a ,宽为b 时,当容器的水占容积的mn时,水面的高度是多少?问题2:大拖拉机m 天耕地a hm 2,小拖拉机n 天耕地b hm 2,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?问题1求容积的高V ab ·m n ,问题2求大拖拉机的工作效率是小拖拉机的工作效率的a m ÷bn 倍.根据上面的计算,请同学们总结一下对分式的乘除法的法则是什么?分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. a b ·c d =a·c b·d ;a b ÷c d =a b ·d c =a·d b·c . 三、举例分析 例1 计算:(1)4x 3y ·y 2x 3;(2)ab 32c 2÷-5a 2b 24cd. 分析:这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,再计算结果.解:(1)4x 3y ·y 2x 3=4xy 6x 3y =23x2;(2)ab 32c 2÷-5a 2b 24cd =ab 32c 2·4cd -5a 2b 2=-4ab 3cd 10a 2b 2c 2=-2bd 5ac . 例2 计算: (1)a 2-4a +4a 2-2a +1·a -1a 2-4; (2)149-m 2÷1m 2-7m. 分析:这两题是分子与分母是多项式的情况,首先要因式分解,然后运用法则. 解:(1)原式(a -2)2(a -1)2·a -1(a +2)(a -2)=a -2(a -1)(a +2);(2)原式1(7-m )(7+m )÷1m (m -7)=1(7-m )(7+m )·m (m -7)1=-m m +7.例3 “丰收1号”小麦试验田边长为a 米(a >1)的正方形去掉一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a -1)米的正方形,两块试验田的小麦都收获了500千克.(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍? 分析:本题的实质是分式的乘除法的运用. 解:(1)略.(2)500(a -1)2÷500a 2-1=500(a -1)2·a 2-1500=a +1a -1. “丰收2号”小麦的单位面积产量是“丰收1号”小麦的单位面积产量的a +1a -1倍.四、随堂练习1.计算:(1)c 2ab ·a 2b 2c ;(2)-n 22m ·4m 25n 3;(3)y 7x ÷(-2x );(4)-8xy÷2y5x ;(5)-a 2-4a 2-2a +1·a 2-1a 2+4a +4;(6)y 2-6y +9y +2÷(3-y).答案:(1)abc ;(2)-2m 5n ;(3)-y14;(4)-20x 2;(5)-(a +1)(a -2)(a -1)(a +2);(6)3-y y +2.2.教材第137页练习1,2,3题.五、课堂小结(1)分式的乘除法法则;(2)运用法则时注意符号的变化; (3)因式分解在分式乘除法中的应用;(4)步骤要完整,结果要最简.最后结果中的分子、分母既可保持乘积的形式,也可以写成一个多项式,如(a -1)2a 或a 2-2a +1a.六、布置作业教材第146页习题15.2第1,2题.本节课从两个具有实际背景的问题出发,使学生在解决问题的过程中认识到分式的乘除法是由实际需要产生的,进而激发他们学习的兴趣,接着,从分数的乘除法则的角度引导学生通过观察、探究、归纳总结出分式的乘法法则.有利于学生接受新知识,而且能体现由数到式的发展过程.第2课时 分式的乘方及乘方与乘除的混合运算1.进一步熟练分式的乘除法法则,会进行分式的乘、除法的混合运算.2.理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算.重点分式的乘方运算,分式的乘除法、乘方混合运算.难点分式的乘除法、乘方混合运算,以及分式乘法、除法、乘方运算中符号的确定.一、复习引入1.分式的乘除法法则.分式的乘法法则:分式乘分式,用分子的积作为积的分子,用分母的积作为积的分母. 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 2.乘方的意义:a n =a·a·a·…·a(n 为正整数). 二、探究新知例1(教材例4) 计算2x 5x -3÷325x 2-9·x5x +3.解:2x 5x -3÷325x 2-9·x 5x +3=2x 5x -3·25x 2-93·x 5x +3(先把除法统一成乘法运算)=2x 23.(约分到最简公式) 分式乘除运算的一般步骤: (1)先把除法统一成乘法运算;(2)分子、分母中能分解因式的多项式分解因式; (3)确定分式的符号,然后约分;(4)结果应是最简分式.1.由整式的乘方引出分式的乘方,并由特殊到一般地引导学生进行归纳. (1)(a b )2=a b ·a b =a 2b2; ↑ ↑由乘方的意义 由分式的乘法法则 (2)同理: (a b )3=a b ·a b ·a b =a 3b3; (a b )n =a b ·a b ·…·a b n 个=a ·a ·…·an 个b ·b ·…·bn 个 =a n b n . 2.分式乘方法则: 分式:(a b )n =a nbn .(n 为正整数)文字叙述:分式乘方是把分子、分母分别乘方.3.目前为止,正整数指数幂的运算法则都有什么? (1)a n ·a n =a m +n ;(2)a m ÷a n =a m -n ; (3)(a m )n =a mn ;(4)(ab)n =a n b n ;(5)(a b )n =a n b n . 三、举例分析 例2 计算: (1)(-2a 2b 3c )2;(2)(a 2b -cd 3)3÷2a d 3·(c 2a )2. (3)(-x 2y )2·(-y 2x )3÷(-y x )4;(4)a 2-b 2a 2+b 2÷(a -b a +b)2. 解:(1)原式=(-2a 2b )2(3c )2=4a 4b 29c 2;(2)原式=a 6b 3-c 3d 9·d 32a ·c 24a 2=-a 3b 38cd 6;(3)原式=x 4y 2·(-y 6x 3)·x 4y4=-x 5;(4)原式=(a +b )(a -b )a 2+b 2·(a +b )2(a -b )2=(a +b )3(a -b )(a 2+b 2).学生板演、纠错并及时总结做题方法及应注意的地方:①对于乘、除和乘方的混合运算,应注意运算顺序,但在做乘方运算的同时,可将除变乘;②做乘方运算要先确定符号.例3 计算: (1)b 3n -1c 2a 2n 1·a 2n -1b3n 2;(2)(xy -x 2)÷x 2-2xy +y 2xy ·x -y x2;(3)(a 2-b 2ab )2÷(a -b a)2.解:(1)原式=b 3n -2·b ·c 2a 2n -1·a 2·a 2n -1b3n -2=bc 2a 2;(2)原式=-x (x -y )1·xy(x -y )2·x -y x 2=-y ;(3)原式=(a +b )2(a -b )2a 2b 2·a 2(a -b )2=a 2+2ab +b 2b 2.本例题是本节课运算题目的拓展,对于(1)指数为字母,不过方法不变;(2)(3)是较复杂的乘除乘方混合运算,要进一步让学生熟悉运算顺序,注意做题步骤.四、巩固练习教材第139页练习第1,2题. 五、课堂小结1.分式的乘方法则. 2.运算中的注意事项. 六、布置作业教材第146页习题15.2第3题.分式的乘方运算这一课的教学先让学生回忆以前学过的分数的乘方的运算方法,然后采用类比的方法让学生得出分式的乘方法则.在讲解例题和练习时充分调动学生的积极性,使大家都参与进来,提高学习效率.15.2.2 分式的加减(2课时)第1课时 分式的加减理解并掌握分式的加减法则,并会运用它们进行分式的加减运算.重点运用分式的加减运算法则进行运算. 难点异分母分式的加减运算.一、复习提问 1.什么叫通分?2.通分的关键是什么? 3.什么叫最简公分母?4.通分的作用是什么?(引出新课) 二、探究新知1.出示教材第139页问题3和问题4. 教材第140页“思考”.分式的加减法与分数的加减法类似,它们的实质相同.观察下列分数加减运算的式子:15+25=35,15-25=-15,12+13=36+26=56,12-13=36-26=16.你能将它们推广,得出分式的加减法法则吗?教师提出问题,让学生列出算式,得到分式的加减法法则. 学生讨论:组内交流,教师点拨. 2.同分母的分式加减法.公式:a c ±b c =a±b c.文字叙述:同分母的分式相加减,分母不变,把分子相加减.3.异分母的分式加减法. 分式:a b ±c d =ad bd ±bc bd =ad±bcbd.文字叙述:异分母的分式相加减,先通分,变为同分母的分式,然后再加减. 三、典型例题例1(教材例6) 计算:(1)5x +3y x 2-y 2-2x x 2-y 2;(2)12p +3q +12p -3q . 解:(1)5x +3y x 2-y 2-2x x 2-y2=5x +3y -2x x 2-y 2=3x +3y x 2-y 2=3x -y ; (2)12p +3q +12p -3q=2p -3q (2p +3q )(2p -3q )+2p +3q(2p +3q )(2p -3q )=2p -3q +2p +3q (2p +3q )(2p -3q )=4p4p 2-9q 2.小结:(1)注意分数线有括号的作用,分子相加减时,要注意添括号. (2)把分子相加减后,如果所得结果不是最简分式,要约分. 例2 计算: m +2n n -m +n m -n -2mn -m. 分析:(1)分母是否相同?(2)如何把分母化为相同的?(3)注意符号问题. 解:原式=m +2n n -m -n n -m -2mn -m=m +2n -n -2m n -m=n -m n -m=1.四、课堂练习1.教材第141页练习1,2题. 2.计算:(1)56ab -23ac +34abc ;(2)12m 2-9+23-m ; (3)a +2-42-a ;(4)a 2-b 2ab -ab -b 2ab -ab 2.五、课堂小结1.同分母分式相加减,分母不变,只需将分子作加减运算,但注意每个分子是个整体,要适时添上括号.2.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.3.异分母分式的加减运算,首先观察每个公式是否为最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.4.作为最后结果,如果是分式则应该是最简分式.六、布置作业教材第146页习题15.2第4,5题.从直观的分数加减运算开始,先介绍同分母分式的加减运算的具体方法,通过类比的思想方法,由数的运算引出式的运算规律,体现了数学知识间具体与抽象、从特殊到一般的内在联系.而后,利用同样的类比方法,安排学习异分母的分式加减运算,这样由简到繁、由易到难,符合学生认知的发展规律,有助于知识的层层落实与掌握.第2课时 分式的混合运算1.明确分式混合运算的顺序,熟练地进行分式的混合运算. 2.能灵活运用运算律简便运算.重点熟练地进行分式的混合运算. 难点熟练地进行分式的混合运算.一、复习引入回忆:我们已经学习了分式的哪些运算? 1.分式的乘除运算主要是通过( )进行的,分式的加减运算主要是通过( )进行的.2.分数的混合运算法则是( ),类似的,分式的混合运算法则是先算( ),再算( ),最后算( ),有括号的先算( )里面的.二、探究新知 1.典型例题 例1 计算:(x +2x -2+4x 2-4x +4)÷x x -2. 分析:应先算括号里的. 例2 计算:x +2y +4y 2x -2y -4x 2yx 2-4y 2.分析:(1)本题应采用逐步通分的方法依次进行; (2)x +2y 可以看作x +2y1.例3 计算:12x -1x +y ·(x +y 2x-x -y). 分析:本题可用分配律简便计算.例4 [1(a +b )2-1(a -b )2]÷(1a +b -1a -b).分析:可先把被除式利用平方差公式分解因式后再约分. 例5(教材例7) 计算(2a b )2·1a -b -a b ÷b4.解:(2a b )2·1a -b -a b ÷b4=4a 2b 2·1a -b -a b ·4b=4a 2b 2(a -b )-4a b 2=4a 2b 2(a -b )-4a (a -b )b 2(a -b ) =4a 2-4a 2+4ab b 2(a -b )=4ab b 2(a -b )=4aab -b 2. 点拨:式与数有相同的混合运算顺序:先乘方,再乘除,然后加减. 例6(教材例8) 计算: (1)(m +2+52-m )·2m -43-m; (2)(x +2x 2-2x -x -1x 2-4x +4)÷x -4x .解:(1)(m +2+52-m )·2m -43-m=(m +2)(2-m )+52-m ·2m -43-m=9-m 22-m ·2(m -2)3-m =(3-m )(3+m )2-m ·-2(2-m )3-m=-2(m +3);(2)(x +2x 2-2x -x -1x 2-4x +4)÷x -4x=[x +2x (x -2)-x -1(x -2)2]·xx -4 =(x +2)(x -2)-(x -1)x x (x -2)2·xx -4=x 2-4-x 2+x(x -2)2(x -4) =1(x -2)2.分式的加、减、乘、除混合运算要注意以下几点:(1)一般按分式的运算顺序法则进行计算,但恰当地使用运算律会使运算简便.(2)要随时注意分子、分母可进行因式分解的式子,以备约分或通分时用,可避免运算烦琐.(3)注意括号的“添”或“去”、“变大”与“变小”. (4)结果要化为最简分式.强化练习,引导学生及时纠正在例题中出现的错误,进一步提高运算能力.三、巩固练习 1.(1)x 2x -1-x -1;(2)(1-2x +1)2÷x -1x +1;(3)2ab (a -b )(a -c )+2bc (a -b )(c -a ); (4)(1x -y +1x +y )÷xy x 2-y 2.2.教材第142页第1,2题.四、课堂小结1.分式的混合运算法则是先算( ),再算( ),最后算( ),有括号先算( )里的.2.一些题应用运算律、公式能简便运算.五、布置作业1.教材第146页习题15.2第6题.2.先化简再求值1x +1-1x 2-1·x 2-2x +1x +1,其中x =2-1.分式的混合运算是分式这一章的重点和难点,涉及到因式分解和通分这两个较难的知识点,可根据学生的具体情况,适当增加例题、习题,让学生熟练掌握分式的运算法则并提高运算能力.15.2.3 整数指数幂1.知道负整数指数幂a -n =1a n .(a ≠0,n 是正整数)2.掌握整数指数幂的运算性质.3.会用科学记数法表示绝对值小于1的数.重点掌握整数指数幂的运算性质,会有科学记数法表示绝对值小于1的数. 难点负整数指数幂的性质的理解和应用.一、复习引入1.回忆正整数指数幂的运算性质:(1)同底数的幂的乘法:a m ·a n =a m +n (m ,n 是正整数); (2)幂的乘方:(a m )n =a mn (m ,n 是正整数);(3)积的乘方:(ab)n =a n b n (n 是正整数);(4)同底数的幂的除法:a m ÷a n =a m -n (a ≠0,m ,n 是正整数,m >n); (5)分式的乘方:(a b )n =a nb n (n 是正整数).2.回忆0指数幂的规定,即当a ≠0时,a 0=1. 二、探究新知(一)1.计算当a ≠0时,a 3÷a 5=a 3a 5=a 3a 3·a 2=1a2,再假设正整数指数幂的运算性质a m ÷a n=a m -n (a ≠0,m ,n 是正整数,m >n)中的m >n 这个条件去掉,那么a 3÷a 5=a 3-5=a -2.于是得到a -2=1a2(a ≠0).总结:负整数指数幂的运算性质:一般的,我们规定:当n 是正整数时,a -n =1a n (a ≠0).2.练习巩固:填空:(1)-22=________, (2)(-2)2=________, (3)(-2)0=________, (4)20=________,(5)2-3=________, (5)(-2)-3=________. 3.例1 (教材例9) 计算:(1)a -2÷a 5;(2)(b 3a2)-2;(3)(a -1b 2)3;(4)a -2b 2·(a 2b -2)-3.解:(1)a -2÷a 5=a-2-5=a -7=1a7;(2)(b 3a 2)-2=b -6a-4=a 4b -6=a 4b 6;(3)(a -1b 2)3=a -3b 6=b 6a3;(4)a -2b 2·(a 2b -2)-3=a -2b 2·a -6b 6=a -8b 8=b 8a8.[分析] 本例题是应用推广后的整数指数幂的运算性质进行计算,与用正整数指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.4.练习:计算:(1)(x 3y -2)2;(2)x 2y -2·(x -2y)3;(3)(3x 2y -2)2÷(x -2y)3.5.例2 判断下列等式是否正确?(1)a m ÷a n =a m ·a -n ;(2)(a b)n =a n b -n .[分析] 类比负数的引入使减法转化为加法,得到负指数幂的引入可以使除法转化为幂的乘法这个结论,从而使分式的运算与整式的运算统一起来,然后再判断等式是否正确.(二)1.用科学记数法表示值较小的数因为0.1=110=10-1;0.01=________=________;0.001=________=________……所以0.000 025=2.5×0.000 01=2.5×10-5. 我们可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表示成a ×10-n的形式,其中n 是正整数,1≤|a|<10.2.例3(教材例10) 纳米是非常小的长度单位,1纳米=10-9米,把1纳米的物体放到乒乓球上,就如同把乒乓球放到地球上.1立方毫米的空间可以放多少个1立方纳米的物体?(物体之间的间隙忽略不计)[分析] 这是一个介绍纳米的应用题,是应用科学记数法表示小于1的数. 3.用科学记数法表示下列各数:0.00 04,-0.034,0.000 000 45,0.003 009. 4.计算:(1)(3×10-8)×(4×103);(2)(2×10-3)2÷(10-3)3. 三、课堂小结1.引进了零指数幂和负整数幂,指数的范围扩大到了全体整数,幂的性质仍然成立. 2.科学记数法不仅可以表示一个值大于10的数,也可以表示一些绝对值较小的数,在应用中,要注意a 必须满足1≤|a|<10,其中n 是正整数.四、布置作业教材第147页习题15.2第7,8,9题.本节课教学的主要内容是整数指数幂,将以前所学的有关知识进行了扩充.在本节的教学设计上,教师重点挖掘学生的潜在能力,让学生在课堂上通过观察、验证、探究等活动,加深对新知识的理解.15.3 分式方程(2课时) 第1课时 分式方程的解法1.理解分式方程的意义.2.理解解分式方程的基本思路和解法.3.理解解分式方程时可能无解的原因,并掌握解分式方程的验根方法.重点解分式方程的基本思路和解法. 难点理解解分式方程时可能无解的原因.一、复习引入问题:一艘轮船在静水中的最大航速为30 km /h ,它以最大航速沿江顺流航行90 km 所用时间,与以最大航速逆流航行60 km 所用的时间相等,江水的流速为多少?[分析]设江水的流速为x 千米/时,根据题意,得9030+v =6030-v.① 方程①有何特点?[概括]方程①中含有分式,并且分母中含有未知数,像这样的方程叫做分式方程. 提问:你还能举出一个分式方程的例子吗? 辨析:判断下列各式哪个是分式方程.(1)x +y =5;(2)x +25=2y -z 3;(3)1x ;(4)y x +5=0;(5)1x +2x =5.根据定义可得:(1)(2)是整式方程,(3)是分式,(4)(5)是分式方程. 二、探究新知1.思考:怎样解分式方程呢?为了解决本问题,请同学们先思考并回答以下问题:(1)回顾一下解一元一次方程时是怎么去分母的,从中能否得到一点启发? (2)有没有办法可以去掉分式方程的分母把它转化为整式方程呢? [可先放手让学生自主探索,合作学习并进行总结]方程①可以解答如下:方程两边同乘以(30+v)(30-v),约去分母,得90(30-v)=60(30+v). 解这个整式方程,得v =6.所以江水的流度为6千米/时.[概括]上述解分式方程的过程,实质上是将方程的两边乘以同一个整式,约去分母,把分式方程转化为整式方程来解.所乘的整式通常取方程中出现的各分式的最简公分母.2.例1 解方程:1x -5=10x 2-25.②解:方程两边同乘(x 2-25),约去分母,得x +5=10. 解这个整式方程,得x =5.事实上,当x =5时,原分式方程左边和右边的分母(x -5)与(x 2-25)都是0,方程中出现的两个分式都没有意义,因此,x =5不是分式方程的根,应当舍去,所以原分式方程无解.解分式方程的步骤:在将分式方程变形为整式方程时,方程两边同乘一个含未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种根通常称为增根.因此,在解分式方程时必须进行检验.3.那么,可能产生“增根”的原因在哪里呢?解分式方程去分母时,方程两边要乘同一个含未知数的式子(最简公分母).方程①两边乘(30+v)(30-v),得到整式方程,它的解v =6.当v =6时,(30+v)(30-v)≠0,这就是说,去分母时,①两边乘了同一个不为0的式子,因此所得整式方程的解与①的解相同.方程②两边乘(x -5)(x +5),得到整式方程,它的解x =5.当x =5时,(x -5)(x +5)=0,这就是说,去分母时,②两边乘了同一个等于0的式子,这时所得整式方程的解使②出现分母为0的现象,因此这样的解不是②的解.4.验根的方法: 解分式方程进行检验的关键是看所求得的整式方程的根是否使原分式方程中的分式的分母为零.有时为了简便起见,也可将它代入所乘的整式(即最简公分母),看它的值是否为零.如果为零,即为增根.如例1中的x =5,代入x 2-25=0,可知x =5是原分式方程的增根.三、举例分析 例2(教材例1) 解方程2x -3=3x. 解:方程两边乘x(x -3),得2x =3x -9. 解得x =9.检验:当x =9时,x(x -3)≠0. 所以,原分式方程的解为x =9. 例3(教材例2) 解方程x x -1-1=3(x -1)(x +2). 解:方程两边乘(x -1)(x +2),得 x(x +2)-(x -1)(x +2)=3.。

2023八年级数学上册第十五章分式15.1分式15.1.2分式的基本性质教案(新版)新人教版

2023八年级数学上册第十五章分式15.1分式15.1.2分式的基本性质教案(新版)新人教版
- 分式的分子与分母同乘以或同除以同一个不为零的数,分式的值不变。
- 分式的分子与分母同时乘以或除以同一个数,分式的值也不变。
3. 分式的运算
- 加减法:XXX
- 乘除法:XXX
4. 分式的应用
- 实际问题:XXX
- 解题步骤:XXX
5. 总结
- 分式的概念和性质
- 分式的运算方法
- 分式的应用实例
2. 调整教学方法:采用多种教学方法,如案例教学、小组讨论、实验法等,提高学生的学习兴趣和参与度。
3. 多元化评价:采用多元化评价方式,如过程性评价、学生互评、自我评价等,全面了解学生的学习情况,促进学生的全面发展。
八、板书设计
1. 分式的概念
- 分子:XXX
- 分母:XXX
- 分式:XXX
2. 分式的基本性质
强调分式的重点和难点,帮助学生形成完整的知识体系。
(四)巩固练习(预计用时:5分钟)
随堂练习:
随堂练习题,让学生在课堂上完成,检查学生对分式知识的掌握情况。
鼓励学生相互讨论、互相帮助,共同解决分式问题。
错题订正:
针对学生在随堂练习中出现的错误,进行及时订正和讲解。
引导学生分析错误原因,避免类似错误再次发生。
学生预习:
发放预习材料,引导学生提前了解分式的学习内容,标记出有疑问或不懂的地方。
设计预习问题,激发学生思考,为课堂学习分式内容做好准备。
教师备课:
深入研究教材,明确分式教学目标和分式重难点。
准备教学用具和多媒体资源,确保分式教学过程的顺利进行。
设计课堂互动环节,提高学生学习分式的积极性。
(二)课堂导入(预计用时:3分钟)
(五)拓展延伸(预计用时:3分钟)

人教版八年级数学上册教学设计15.1 分式

人教版八年级数学上册教学设计15.1  分式

人教版八年级数学上册教学设计15.1 分式一. 教材分析人教版八年级数学上册第15.1节“分式”是学生在掌握了实数、代数式等基础知识后,进一步学习数学的重要内容。

分式是数学中基本的代数表达式,它在生活中、物理、化学等学科中都有广泛的应用。

本节内容主要介绍分式的概念、性质和运算,为学生今后学习函数、方程等知识打下基础。

二. 学情分析八年级的学生已经具备了一定的代数基础,能够进行简单的代数运算。

但是,对于分式的概念和性质,学生可能还比较陌生,需要通过具体的例子和练习来逐步理解和掌握。

同时,学生可能对分式的运算规则感到困惑,需要通过大量的练习来熟练运用。

三. 教学目标1.理解分式的概念,掌握分式的性质。

2.学会分式的基本运算,能够熟练进行分式的化简和求值。

3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.分式的概念和性质。

2.分式的运算规则。

五. 教学方法采用讲授法、例题演示法、练习法、小组合作法等教学方法。

通过生动的例子和丰富的练习,让学生理解和掌握分式的概念和性质,熟练运用分式的运算规则。

六. 教学准备1.教学PPT。

2.例题和练习题。

3.学生分组合作的学习材料。

七. 教学过程1.导入(5分钟)通过一个实际问题引入分式的概念,如“某班级有男生和女生共60人,其中男生是女生的2倍,求男生和女生各有多少人?”让学生思考和讨论,引出分式的定义。

2. 呈现(15分钟)讲解分式的概念,通过PPT 展示分式的基本性质,如分式的分子、分母、分式的值等。

同时,给出一些分式的例子,让学生理解和掌握分式的概念和性质。

3.操练(15分钟)让学生进行分式的化简和求值的练习,如“化简分式2x 3x+5”,“求分式x−1x+2的值,当x =3时”。

通过这些练习,让学生熟练运用分式的性质和运算规则。

4. 巩固(10分钟)让学生分组合作,解决一些实际问题,如“某商品的原价是120元,打八折后的价格是多少?”让学生运用分式进行计算和解决实际问题,提高学生的应用能力。

人教版数学八年级上册 15.1.1:从分数到分式-说课教案设计

人教版数学八年级上册 15.1.1:从分数到分式-说课教案设计

15.1.1 从分数到分式教学设计一、教材地位作用“从分数到分式”是人教版八年级上第十五章第一节内容,是中学知识体系的重要主成部分。

本节课的内容是分式的定义、分式有无意义的条件、分式值为零的条件。

它是以分数知识为基础,类比归纳出分式的概念,把学生对“式”的认识由整式扩充到有理式。

学号本节知识是进一步学习分式、函数、方程等知识做好铺垫。

二、教学目标1.知识与技能了解分式的概念,能求出分式有无意义的条件、分式值为零的条件。

2.过程与方法通过对分数与分式的类比,学生亲身经历探究整式到分式的过程,初步学会用类比转化的思想方法研究数学问题3.情感态度价值观通过探究分式的概念,让学生体会生生交流合作的作用,体会数学的应用价值。

三、教学重难点重点:分式的概念及分式有无意义的条件、分式值为零的条件。

难点:分式值为零的条件四、教法学法教法:利用导学案引导发现教学法学法:自主探索、交流发现五、教学过程(一)章前简介设计意图:通过章前简介、与分数的类比,让学生对分式的整章知识体系有大致了解,在学习方法学习思路既有熟悉感又有新鲜感,从而激发学生学习的欲望、并有战胜它值信心决心。

(二)展示学习目标设计意图:明确学习目标,并为之努力。

(三)展示学生课前学习情况(学生展示)设计意图:培养学生自主学习的习惯,并在解决第3题时引出课题:(四)普读求是探究(一):分式的概念1.一艘轮船在静水中的航速为30km/h,顺流航行90km所用时间,与逆流航行60km所用时间相等,求江水的平均流速。

设江水的平均流速xkm/h,则顺流航行90km所用的时间为h;逆流航行60km所用时间为 h;依题意所列方程为。

2.长方形的面积为10 cm2,长为7cm,宽应为cm;长方形的面积为s cm2,长为a cm,宽应为cm;3.把200cm3的水倒入底面积为33cm2的圆柱形容器中,水面高度为cm;把体积为 V cm3的水倒入底面积为(a + b) cm2的圆柱形容器中,水面高度为cm;4.某班有n个同学,数学月考总分为4320分,则人均分为分;从以上得到式子中,有什么发现?能你类比分数给出分式的定义?分式的概念:。

人教版八年级数学上册15.1从分数到分式优秀教学案例

人教版八年级数学上册15.1从分数到分式优秀教学案例
5.作业小结:教师设计具有挑战性的作业题目,巩固本节课所学的知识。同时,教师及时批改作业,给予学生评价和反馈,帮助学生调整学习方法,提高学习效果。
本节课的案例亮点体现了以学生为中心的教学理念,注重培养学生的自主学习能力、团队协作能力和解决问题的能力。同时,教师关注学生的个体差异,给予每个学生公正、客观的评价,激发学生的学习动力。这种教学方法不仅有助于提高学生的学习成绩,还能培养学生的综合素质,符合教育现代化的要求。
二、教学目标
(一)知识与技能
1.让学生理解分式的概念,掌握分式的基本性质和运算方法。
2.培养学生运用分式解决实际问题的能力,提高学生的数学应用意识。
3.引导学生了解分式在生活中的应用,拓宽学生的知识视野,提高学生的学习兴趣。
4.通过对分式的学习,培养学生逻辑思维能力、创新能力和团队协作能力。
(二)过程与方法
1.采用案例教学法,让学生在具体的情境中感受和理解分式的概念和运算方法。
2.运用探究式学习法,引导学生主动发现分式的规律,提高学生的自主学习能力。
3.利用小组讨论法,培养学生的团队协作精神,提高学生的沟通能力。
4.设计具有挑战性的数学问题,激发学生的思考,培养学生解决问题的能力。
(三)情感态度与价值观
3.采用多元化评价方式,既要关注学生的知识与技能掌握情况,也要关注学生在过程中表现出的态度、情感和价值观。
4.教师要关注学生的个体差异,给予每个学生公正、客观的评价,激发学生的学习动力。
四、教学内容与过程
(一)导入新课
1.利用生活实例引入分式的概念,如计时、购物等,让学生感受分式在生活中的应用。
2.展示分式的数学问题,引发学生的思考,激发学生的学习兴趣。
3.回顾已学的分数知识,为学生学习分式打下基础。

新人教版八年级数学上册第十五章分式15.1.1从分数到分式同步精练新版

新人教版八年级数学上册第十五章分式15.1.1从分数到分式同步精练新版

15.1.1 从分数到分式1.一般地,如果a ,b 表示两个整式,并且b 中__含有字母__,那么式子ab 叫做__分式__,其中a 叫做分式的__分子__,b 叫做分式的__分母__.2.(1)当x __≠1__时,分式x -2x -1有意义;(2)当x __=1__时,分式1x -1无意义. 3.分式xx +1的值是零,则x =__0__.■易错点睛■【教材变式】(P134第13题改)如果分式|a|-1a -1的值为0,求a 的值.【解】a =-1.【点睛】分式的值为0,则分子为0,同时分母不能为0,解答时应考虑分式有意义.知识点一 分式的定义1.(2016·眉山改)在式子①2x ;②x +y 5;③12-a ;④x π+1;⑤1+1m 中,是分式的有(导学号:58024295)(B)A .2个B .3个C .4个D .5个知识点二 分式有意义的条件2.分式3x -3有意义,则x 应该满足的条件是( C)A .x >3B .x <3C .x ≠3D .x ≠-33.若分式xx +1无意义,则x 的值是(C )A .0B .1C .-1D .±14.(2016·娄底改)使分式x -32x -1有意义的x 的取值范围是x ≠12.5.【教材变式】(P129第3题改)x 取何值时,下列分式有意义?(导学号:58024296) (1)1x ; 【解题过程】 解:x ≠0; (2)x +2x -1; 【解题过程】 解:x ≠1; (3)3x2-1; 【解题过程】 解:x ≠±1; (4)3+x |x|+1. 【解题过程】 解:全体实数. 知识点三 分式的值6.若分式x -3x +4的值为0,则x 的值是(A)A .x =3B .x =0C .x =-3D .x =-47.已知a =1,b =2,则aba -b的值是(D) A.12 B .-12C .2D .-2 8.【教材变式】(P134第13题改)分式x2-4x +2的值为0,则x 的取值是(C)A .x =-2B .x =±2C .x =2D .x =09.当__x >5__时,分式1x -5的值为正数.10.利用下面三个整式中的两个,写出一个分式,当x =5时,分式的值为0,且x =6时,分式无意义.(导学号:58024297)①x +5;②x -5;③x 2-36. 【解题过程】 解:x -5x2-36.11.(2016·重庆改)当x 为任意实数时,下列分式一定有意义的是(C) A.x x +1 B.4x C.x -1x2+1D.x x2-112.(1)当m =__3__时,分式|m|-3m +3的值为零;(2)若1|x|-2无意义,则x 的值是__±2__.13.若分式x +1x2-y2无意义,x 和y 应满足的条件是__x =±y __.(导学号:58024298)14.x 取何值时,下列分式的值是零. (1)x2-1(x +1)(x +2); 【解题过程】 解:x =1; (2)|x|-2(x +1)(x +2). 【解题过程】 解:x =2.15.已知x =1时,分式x +2bx -a 无意义,x =4时,分式的值为0,求a +b 的值.(导学号:58024299)【解题过程】解:1-a =0,a =1,4+2b =0,b =-2,a +b =-1.16.已知分式x -12-x ,x 满足什么条件时:(导学号:58024300)(1)分式的值是零; (2)分式无意义; (3)分式的值是正数. 【解题过程】解:(1)x=1;(2)x=2;(3)1<x<2.。

人教版初中数学课标版八年级上册 第十五章 15.1 分式 教案

人教版初中数学课标版八年级上册 第十五章 15.1 分式 教案

5x 7,
a b ,1 1 ,
3
a
3x2 1,
2, 4 , 3 .
7 5b c
x2 xy y2 , 2x 1
设置小试牛刀这一 环节,意在及时巩固刚 刚学会的新知识,进行 概念的辨析,能区分整 式与分式.
2.请你说出一个式子,让你的同桌判断是整式还是分式?
提炼方法 探究二
提炼方法
归纳小结:1、判断时,注意含有 的式子, 是常数.
学思想
学习效果.
教师引导 课堂小结
1、分式的概念; 2、分式有意义的条件; 3、分式值为零的条件; 4、数学思想方法:类比思想、从特殊到一般、从一般到特殊、转化 思想.
小结本节课所学知 识,引导学生建构自己 的学习框架,升华认识.
第5页/共8页
布置作业
1、书本 P133 习题 15.1 1,2,3 2、《优化设计》课时作业
第1页/共8页
的变式将本节课的三个知识点串起来,让学生对这节课的知识框架有一个清晰的认识,注重配合充足的练习题巩固新 知,鼓励学生参与合作交流,培养学生良好的观察能力、归纳总结能力以及沟通表达能力. 五、教学重点及难点
重点:了解分式的概念,能识别整式、分式; 难点:会判断分式中的字母满足什么条件时分式有意义.
同时,让学生对所 列式子分类,有助于学 生理解分式与分数、分 式与整式的区别和联系.
子中含有分母;
生 2: 5 , S 为一类,式子分母中不含有字母, S , x2 4 为一类,
33
a x2
式子分母中含有字母.
5S 33
x2 4 S x2 a
形成概念
师:像第一个圈中的式子,我们称他们为整式,分母中都不含有字
通过给分式中的字 母赋值,让学生体会分 式比分数更具有一般 性,从分式到分数,体 现了从一般到特殊的应 用过程.同时让学生发现 分母为 0 的情况,通过 与分数类比,得出分式 有意义的条件,渗透类 比的数学思想.

2016秋人教版八年级数学上15.1分式教案

2016秋人教版八年级数学上15.1分式教案

分母为零时,分式无意义.
针对训练: 见《学生用书》相应部分
四、总结梳理,内化目标
1.知识小结—— (1) 学习了分式, 知道了分式与分数的区别. (2) 知道了分式有意义和值
为零的条件.
2.思想方法小结——类比、转化等数学思想.
五、达标检测,反思目标
2 x+y
1
x
1.下列各式① x,② 5 ,③ 2- a,④ π - 1中,是分式的有 ( C)
15 . 1 分 式 第 1 课时 从分数到分式
教学目标
1.了解分式的概念,知道分式与整式的区别和联系.
2.了解分式有意义的含义,会根据具体的分式求出分式有意义时字母所满足的条件.
3.理解分式的值为零、为正、为负时,分子分母应具备的条件.
教学重点
分式的意义.
教学难点
准确理解分式的意义,明确分母不得为零.
x=-
. 2
1 解:当 x=- 2
1
(- 2+8)
原式=
1
=- 15
2×4- 1
● 布置作业,巩固目标教学难点 1.上交作业 课本第 133 页 1- 3. 2.课后作业 见《学生用书》 .
|x| - 1 4.如果分式 x2+ x-2的值为 0,那么 x 的值是 __- 1__.
5.当 x 取何值时,下列分式有意义?
3x- 6 (1) 2x+ 5;
5x
(2)
x2

. 9
5 解: ( 1) 2x+5≠0 ∴x≠- 2
(
2)
x
2

9≠0
∴x≠±3
x+ 8
1
6.求分式 2x 2- 1的值,其中
教学设计 一师一优课 一课一名师 ( 设计者:

人教版八年级数学上册15.1.2《分式的基本性质》教学设计

人教版八年级数学上册15.1.2《分式的基本性质》教学设计

人教版八年级数学上册15.1.2《分式的基本性质》教学设计一. 教材分析人教版八年级数学上册15.1.2《分式的基本性质》是分式部分的重要内容,主要让学生了解分式的基本性质,包括分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变;分式的分子、分母都加(或减)同一个整式,分式的值也加(或减)同一个整式;分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变。

这些性质为后续分式的运算提供了重要的理论基础。

二. 学情分析八年级的学生已经学习了有理数的运算,对运算规律有一定的了解,但分式作为新的运算对象,其性质和运算规律与有理数有很大差异,需要学生在已有的知识基础上进行适当的延伸和拓展。

同时,学生可能对分式的实际应用场景还不够清晰,需要在教学过程中加以引导。

三. 教学目标1.理解分式的基本性质,并能灵活运用。

2.掌握分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变的规律。

3.掌握分式的分子、分母都加(或减)同一个整式,分式的值也加(或减)同一个整式的规律。

4.能运用分式的基本性质解决实际问题。

四. 教学重难点1.重点:分式的基本性质。

2.难点:分式的实际应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。

通过设置问题引导学生思考,通过案例让学生理解分式的基本性质,通过小组合作让学生互相讨论、交流,提高解决问题的能力。

六. 教学准备1.PPT课件。

2.相关案例和练习题。

3.小组合作学习材料。

七. 教学过程1.导入(5分钟)利用PPT课件,展示分式的实际应用场景,如分数的简化、化学方程式的计算等,引出分式的基本性质。

2.呈现(10分钟)通过PPT课件,展示分式的基本性质,包括:a.分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变。

b.分式的分子、分母都加(或减)同一个整式,分式的值也加(或减)同一个整式。

同时,结合案例进行讲解,让学生理解并掌握这些性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
33cm²的圆柱形容器中,水面高度为
200 __3__3_cm;把体积为V的水倒入底面积为S
v 的圆柱形容器中,水面高度为___s___;
S
V
请大家观察式子 S 、 v 、 100 、 60 , 有什么特点? a s 20 v 20 v
他们与分数有什么相同点和不同点?
相同点
不同点 (观察分母)
x2 y x y
中的x和y都扩大
为原来的100倍,那么分式的值不变 . (填“不变”或“改变” )
(10)如果把分式 2xy中的x和y都扩大为原 x y
来的100倍,那么分式的值 改变 .(填
“不变”或“改变是” 原)来的100倍
2100x100 y
100x100 y
200xy x y
(11)如果把分式 x y 中的x和y都扩大为原 xy
分式的值不变.(符号语言见书27页)
当x为何值时,下列分式有意义?

2 x 2
x 12 ⑵ x2 2
当x≠2且x≠-2

x3
2x 3 ⑷
3x 5 x 1
当x为何值时,分式: x2 x
当x≠-1且x≠2 (x 1)( x 2)
⑴有意义 ⑵无意义 ⑶值为零 当x=-1或x=2 当x=0

16ab 24a 2
(12)若整数m使 6 为正整数, 1 m
则m的值为 0,1,2,5
(13)下列各式与x y 相等的是(C) x y
A. (x y) 5 (x y) 5
B. 2x y 2x y
C. (x y)2 (x y) (x y)(x y)
x2 y2 D. x2 y2
谢谢!

2b
3a

3x x y
9x(x y)
3(x+y)2
3x 2 xy ⑶ 9x 2 6xy
y2
3x
9x-3y
(1)8a≠0
(2)3(x+y)≠0
(3)
3x2 xy 9x2 6xy
y2
x(3x
3x - y
y)
2
x 3x (3)3x-y≠0,3≠0 3x y 9x 3y
已知分式 x2 4 x2
(2) 当x=-3时,分式的值是多少?
解:(1)依题意得
x2-4=0 X-2≠0
(2)当x=-3时,
x2 4
∴ x = -2
x2 4
答:当x=-2时分式
x2
的值为零。
x2
(3)2 4 32
1
已知分式 x2 4 x2
当分子等于零而分母不 等于零时,分式的值为零
(1) 当x为何值时,分式的值为零?
3x2 1
注意兀是常数,而不是字母
分式:
1、分式 A 的分母有什么条件限制?
当 当BB=≠00时时,B,分分式式BABA有无意意义义。。
2、当
A B
=0时分子和分母应满足什么条
作 业
件?(即分式为0的条件)

当A=0而 B≠0时,分式 A的值为零。 一
B

3、分式的基本性质:分式的分子与分母
都乘(或除以)同一个不等于0的整式,
(1) 当x为何值时,分式无意义? (2) 当x为何值时,分式的值为零?
解:(1)当x+2=0,即x=-2时,分式无意义。
(2)当 x2-4=0 x+2≠0
解得x=2
所以当x=2时,分式的值为零.
已知分式 x2 4 x2
当分子等于零而分母不 等于零时,分式的值为零
(1) 当x为何值时,分式的值为零?
(2) 当x=-3时,分式的值是多少?
(2)当x=-3时, x2 4
x2
(x 2)(x 2) x 2 x2 3 2
1
(1)小亮说,分式 1 与 y 相等,他说得
对吗?根据是什么?2xb xy2
(2)小红说,分式 等于 ,你认为她
说得对吗?为什么?ab a
解:(1)对,根据分式的基本性 质,题目隐含条件x≠0且y ≠0 (2)对,题目隐含条件a≠0且b ≠0,
(5)当x
__2__
时,
分式
3 (x
2x 2)2
无意义.
再 展
(6)当x、y满足关系_x____y_时,
分式 x y 无意义. x y
锋 芒
(7)当x
__1___时,分式
| x | 1 x2 3x
2
的值等于0.
(8)当x为任__何__值_时,
分式
|x x2
| 1 1
有意义
(9)如果把分式
来的100倍,那么分式的值 改变 .(填 “不变”或“改变” )
100x100 y xy
100x100 y 100xy
101是原
来 的 倍
(12)分式 x 2 的各种说法中, x
错误的是(B)
A、当x=0时,分式无意义 B、当x>-2时,分式的值为负数 C、当x<-2时,分式的值为正数 D、当x=-2时,分式的值为0
15.1 分 式
问题 :一艘轮船在静水中的航速是20千米/时, 它沿江顺流航行100千米所用时间,与逆流航行 60千米所用的时间相等.水流速度是多少?
解:设水流速度为v千米/时,依题意得
100 60 20 v 20 v
思考填空
S
1.;长方形的面积为S,长为a,宽应为______;
a
S
?
a
2.把体积为200cm³的水倒入底面积为
都具有分数的形式 分母中有字母
分式定义
一般地,如果A、B都表示整式,且B
A 中含有字母,那么称 B 为分式。其中A叫 做分式的分子,B为分式的分母。
判断:下面的式子哪些是分式?
2 bs
4 5b c
3000 2
300 a
5 5x 7
VS S 32
x2 xy y2 2x 1
2x2 1 5
2b
把分式 的分子、分母都除以b, b
ab 2 ≠0,得到 a (口答29页4题)
牛 (1)当x ___0__时,分式 2 有意义. 3x
刀 (2)当x ___1__时,分式 x 有意义. x 1
小 (3)当b
___53__时, 分式
5
1 3b
有意义.
试 (4)当x 1
时,
分式
x
1 2
1
有意义.
相关文档
最新文档