八年级数学下册 17 函数及其图像章末检测卷 华东师大版

合集下载

华东师大版八年级数学下册第17章 函数及其图象 单元测试题

华东师大版八年级数学下册第17章 函数及其图象  单元测试题

第17章函数及其图象一、选择题(每小题4分,共32分)1.在平面直角坐标系中,点(2,-3)所在的象限是 ()A.第一象限B.第二象限C.第三象限D.第四象限2.直线y=2x-4与y轴的交点坐标是()A.(4,0)B.(0,4)C.(-4,0)D.(0,-4)3.已知一次函数y=kx+b的图象如图1所示,当y<0时,x的取值范围是()图1A.x>0B.x<1C.0<x<1D.x>14.在平面直角坐标系中,以原点为对称中心,把点A(3,4)逆时针旋转90°,得到的点B的坐标为()A.(4,-3)B.(-4,3)C.(-3,4)D.(-3,-4)5.一次函数y1=ax+b与一次函数y2=-bx-a在同一平面直角坐标系中的图象大致是()图2上和y轴的距离为2的点的坐标为()6.在双曲线y=6xA.(2,3)B.(-2,-3)C.(2,3)或(-2,-3)D.无法确定7.在平面直角坐标系中,已知△ABC为等腰直角三角形,CB=CA=5,点C(0,3),点B 在x轴正半轴上,点A在第三象限,且在反比例函数y=k的图象上,则k的值为x()A.3B.4C.6D.12的图象经过(a,b),(c,d)两点,且b<d<0,则a与c的大小关8.已知反比例函数y=6x系为()A.a>c>0B.a<c<0C.c>a>0D.c<a<0二、填空题(每小题4分,共32分)x+1向上平移3个单位得到的直线的函数表达式是. 9.把直线y=2310.已知函数y=(m-2)x3-m2是反比例函数,则m的值是.的自变量x的取值范围是.11.函数y=√2x+1x-312.一个函数具有下列性质:①图象经过点(-1,2);②当x<0时,函数值y随自变量x的增大而增大.满足上述两条性质的函数表达式可以是.(只要求写一个)13.如图3,长方形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都(x>0)的图象上,则矩形ABCD的周长为.在反比例函数y=6x图314.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之”.图4是两匹马行走路程s(里)关于行走时间t(日)的函数图象,则两图象交点P的坐标是.图415.兴平储运部紧急调拨一批物资,调进物资共需4小时,在调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资s(吨)与时间t(时)之间的函数关系如图5所示,这批物资从开始调进到全部调出需要的时间是小时.图516.如图6,点A的坐标可以看成是方程组的解.图6三、解答题(共36分)17.(10分)如图7,一次函数y=kx+b与反比例函数y=4的图象交于A(m,4),B(2,n)x两点,与坐标轴分别交于M,N两点.(1)求一次函数的表达式;>0中x的取值范围;(2)根据图象直接写出kx+b-4x(3)求△AOB的面积.图718.(12分)某超市预购进A,B两种品牌的T恤共200件,已知两种T恤的进价和售价如下表所示,设购进A种T恤x件,且所购进的两种T恤全部卖出,获得的总利润为W元.品牌进价(元/件)售价(元/件)A 50 80B 40 65(1)求W关于x的函数表达式;(2)如果购进两种T恤的总费用不超过9500元,那么超市如何进货才能获得最大利润?并求出最大利润.(提示:利润=售价-进价)19.(14分)如图9,已知一次函数y=x-2与反比例函数y=kx(x>0)的图象相交于点A(3,m).(1)求k和m的值.(2)连结OA,在x轴的正半轴上是否存在点Q,使△AOQ是等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.图9答案1.D2.D3.B4.B5.D6.C7.A8.D9.y=23x+4 10.-211.x ≥-12且x ≠3 12.y=-2x (答案不唯一) 13.12 14.(32,4800) 15.4.4 16.{y =-x +5,y =2x -117.解:(1)∵点A 在反比例函数y=4x 上,∴4m =4,解得m=1,∴点A 的坐标为(1,4). 又∵点B 也在反比例函数y=4x 上,∴42=n ,解得n=2,∴点B 的坐标为(2,2). 又∵点A ,B 在y=kx+b 的图象上,∴{k +b =4,2k +b =2,解得{k =-2,b =6,∴一次函数的表达式为y=-2x+6.(2)根据图象,得kx+b-4x >0时,x 的取值范围为x<0或1<x<2. (3)∵直线y=-2x+6与x 轴的交点为N ,∴点N 的坐标为(3,0).S △AOB =S △AON -S △BON =12×3×4-12×3×2=3.18.解:(1)设购进A 种T 恤x 件,则购进B 种T 恤(200-x )件.根据题意,得W=(80-50)x+(65-40)(200-x )=30x+5000-25x=5x+5000. (2)∵购进两种T 恤的总费用不超过9500元,∴50x+40(200-x )≤9500,∴x ≤150. ∵W=5x+5000中,k=5>0, ∴W 随x 的增大而增大,∴当x=150时,W的值最大,最大值为5750.200-150=50(件).∴当超市购进A种T恤150件,购进B种T恤50件时,才能获得最大利润,最大利润为5750元.19.解:(1)∵点A(3,m)在直线y=x-2上,∴m=3-2=1,∴点A的坐标是(3,1).∵点A(3,1)在函数y=k(x>0)的图象上,x∴1=k,∴k=3.即k=3,m=1.3,0).(2)存在,Q1(√10,0),Q2(6,0),Q3(53。

华东师大版八年级数学下册第17章《函数及其图象》单元测试一及答案解析

华东师大版八年级数学下册第17章《函数及其图象》单元测试一及答案解析

八年级数学下册第17章《函数及其图象》单元测试一一、选择(每小题3分,共24分)1.下列各点中,在第二象限的点是()(A)(5,3).(B)(5,﹣3).(C)(﹣5,3).(D)(﹣5,﹣3).2.根据下列所示的程序计算y的值,若输入的x值为﹣3,则输出的结果为()(A)5.(B)﹣1.(C)﹣5.(D)1.3.如图,李老师早晨出门去锻炼,一段时间内沿⊙M的半圆形M→A→C→B→M路径匀速慢跑,那么李老师离出发点M的距离与时间x之间的函数关系的大致图象是()(A).(B).(C).(D).4.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()(A).(B).(C).(D).5.下列描述一次函数y=﹣2x+5的图象及性质错误的是()(A)y随x的增大而减小.(B)直线经过第一、二、四象限.(C)当x>0时y<5.(D)直线与x轴交点坐标是(0,5).6.小颖画了一个函数y=﹣1的图象如图,那么关于x的分式方程=1的解是()(A)x=1.(B)x=2.(C)x=3.(D)x=4.=4,则k的值为7.反比例函数y=(x>0)的图象经过△OAB的顶点A,已知AO=AB,S△OAB()(A)2.(B)4.(C)6.(D)8.8.如图,直线y1=kx+b过点A(0,2)且与直线y2=mx交于点P(﹣1,﹣m),则关于x的不等式组mx>kx+b>mx﹣2的解集为()(A)x<﹣1.(B)﹣2<x<0.(C)﹣2<x<﹣1.(D)x<﹣2.二、填空(每小题3分,共24分)9.函数中,自变量x的取值范围是.10.平面直角坐标系内,点M(a+3,a﹣2)在y轴上,则点M的坐标是.11.某快递公司收费标准的部分数据如图所示(其中t表示邮件的质量,P表示每件快递费).依次规律,质量为3.2千克的邮件快递费为元.12.过点P(8,2)且与直线y=x+1平行的一次函数表达式为.13.若两个函数的图象关于y轴对称,我们定义这两个函数是互为“镜面”函数;请写出函数的镜面函数.14.若函数y=的图象在第二、四象限,则函数y=kx﹣1的图象经过第象限.15.如图,直线AB经过点A(0,2)、B(1,0).将直线AB向左平移与x轴、y轴分别交于点C、D.若DB=DC,则直线CD的函数关系式是.16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过A、B两点,A、B两点的横坐标分别为1和4,直线AB与y轴所夹锐角为45°.则k=.三、解答(6个小题,共52分)17.(8分)已知y=y1﹣y2,y1与x成反比例,y2与(x﹣2)成正比例,并且当x=3时,y=5,当x=1时,y=﹣1;(1)求y与x之间的函数关系式.(2)当x=时,求y的值.18.(8分)某机动车出发前油箱内有油42L,行驶若干小时后,在途中加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的函数关系如图所示,根据如图回答问题:(1)机动车行驶几小时后加油?加了多少油?(2)试求加油前油箱余油量Q与行驶时间t之间的关系式;(3)如果加油站离目的地还有230km,车速为40km/h,要到达目的地,油箱中的油是否够用?请说明理由.19.(8分)已知直线y1=﹣x+1与y2=2x﹣2交于点P,它们与y轴分别交于点A、B.(1)同一坐标系中画出这两个函数的图象;(2)求出这两个函数图象的交点坐标;(3)观察图象,当x取什么范围时,y1>y2?(4)求△ABP的面积.20.(8分)如图,点A(m,m+1),B(m+3,m﹣1)为第一象限内的点,并且都在反比例函数y=(k≠0)的图象上,直线AB与y轴交于点C.(1)求m,k值;(2)求△BOC的面积.21.(10分)如图,已知在平面直角坐标系xOy中,O是坐标原点,双曲线y1=mx与直线y2=﹣x+b交于A,D两点,直线y2=﹣x+b交x轴于点C,交y轴于点B,点B的坐标为(0,3),S△AOB=S△DOC=3.(1)求m和b的值;(2)求y1>y2时x的取值范围.22.(10分)虽然近几年无锡市政府加大了太湖水治污力度,但由于大规模、高强度的经济活动和日益增加的污染负荷,使部分太湖水域水质恶化,富营养化不断加剧.为了保护水资源,我市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:月用水量(吨)单价(元/吨)不大于10吨部分 1.5大于10吨不大于m吨部分(20≤m≤50)2大于m吨部分3(1)若某用户六月份用水量为18吨,求其应缴纳的水费;(2)记该用户六月份用水量为x吨,缴纳水费为y元,试列出y关于x的函数关系式;(3)若该用户六月份用水量为40吨,缴纳水费y元的取值范围为70≤y≤90,试求m的取值范围.参考答案一、1.C 2.B 3.D 4.B 5.D 6.C7.B8.C二、9.x≤510.(0,﹣5)11.4712.y=x﹣613.y=﹣14.二、三、四15.y=﹣2x﹣216.4三、17.解:(1)解:设y1=,y2=b(x﹣2),∵y=y1﹣y2,∴y=﹣b(x﹣2),把x=3,y=5和x=1,y=﹣1代入得:,解得:a=3,b=﹣4,∴y与x之间的函数关系式是:y=+4x﹣8;(2)把x=代入y=+4x﹣8中得:y=6+2﹣8=0.18.解:(1)由横坐标看出,5小时后加油,由纵坐标看出,加了36﹣12=24(L)油(2)设表达式为Q=kt+b,将(0,42),(5,12)代入函数表达式,得,解得642 tb=-⎧⎨=⎩.∴函数表达式为Q=42﹣6t(3)够用,理由如下:36L的油还可以行驶6小时,∵车速为40km/h,∴36L的油可以行驶240千米,240>230.故油够用.19.解:(1)∵当x=0时,y1=1.y1=0时,x=1.∴直线y1=﹣x+1经过点(0,1),(1,0).同理,y2=2x﹣2经过点(0,﹣2),(1,0).则其图象如图所示:;(2)由(1)中的两直线图象知,这两个函数图象的交点坐标是(1,0);(3)由(1)中的两直线图象知,当<1时,y1>y2;(4)∵A(0,1),P(1,0).B(0,﹣2),∴AB=3,OP=1,∴△ABP的面积是:AB•OP=×3×1=.20.解:(1)∵点A(m,m+1),B(m+3,m﹣1)都在反比例函数y=(k≠0)的图象上,∴k=m(m+1)=(m+3)(m﹣1),解得m=3,k=12;(2)∵m=3,∴A(3,4),B(6,2).设直线AB的表达式为y=ax+b,,解得,∴直线AB的表达式为y=﹣x+6,∴C(0,6),∴△BOC的面积=×6×6=18.21.解:(1)∵点B在直线y2=﹣x+b上,∴b=3,∴y2=﹣x+3,设A点的坐标为(x,n),∵S△AOB=3,∴|x|=3,x<0,∴x=﹣2,n=﹣(﹣2)+3=5,∴A(﹣2,5),∵y1=mx过点A,∴m=(﹣2)×5=﹣10,所以,m=﹣10,b=3,(2)∵y2=﹣x+3,易得C点坐标为(3,0),同(1)可得,D点坐标为(5,﹣2),由图象可知,当y1>y2时,﹣2<x<0或x>522.解:(1)∵18<m,∴此时前面10吨每吨收1.5元,后面8吨每吨收2元,10×1.5+(18﹣10)×2=31,(2)①当x≤10时,y=1.5x,②当10<x≤m时,y=10×1.5+(x﹣10)×2=2x﹣5,华东师大版八年级数学下册第17章《函数及其图象》单元测试一及答案解析③当x>m时,y=10×1.5+(m﹣10)×2+(x﹣m)×3=3x﹣m﹣5,∴(3)∵10≤x≤50,∴当用水量为40吨时就有可能是按照第二和第三两种方式收费,①当40≤m≤50时,此时选择第二种方案,费用=2×40﹣5=75,符合题意,②当10≤m<40时,此时选择第三种方案,费用=3x﹣m﹣5,则:70≤3x﹣m﹣5≤90,∴25≤m≤45,∴此状况下25≤m<40,综合①、②可得m的取值范围为:25≤m≤50.11。

华东师大版八年级数学下册第17章函数及其图象单元测试卷.doc

华东师大版八年级数学下册第17章函数及其图象单元测试卷.doc

华东师大版八年级数学下册第17 章函数及其图象测试卷题号一二三总分得分一、选择题(共10 小题,每小题 4 分,满分40 分)1.点( 4,﹣ 2)在一个正比例函数的图象上,则它的表达式为()A. y=﹣ 2x B.y=2x C.y 1 x D.y 1 x2 22.与 M ( 0, -2)关于 x 轴对称的点的坐标为()A.( 0, 2)B.( 0,﹣ 2)C.( 2,0)D.(﹣ 2, 0)3.如图,直线 y= ax+b( a≠ 0)过点 A( 0, 4),AB=5,则方程ax+b=0 的解是()A. x=﹣ 3 B. x= 4 C. x=4D. x=3 3 44.若一次函数 y= kx+b( k≠0)的图象不经过第二象限,则k, b 满足()A. k> 0, b< 0 B. k> 0, b> 0 C. k< 0, b> 0 D. k< 0,b <05.在反比例函数y=﹣2019 图象上有三个点 A( x1 1 22 3 3),若1 2 x , y )、 B( x , y )、 C( x , y x < 0<x< x3,则下列结论正确的是()A. y3< y2< y1 B. y1< y3< y2 C. y2< y3< y1 D.y3< y1< y26.已知反比例函数y=1,下列结论中不正确的是()xA.其图象经过点( 1, 1)B.其图象分别位于第一、第三象限C.当 x> 0 时, y 随 x 的增大而减小D.当 x> 1 时, y> 17.在同一段沿海大通道上,甲、乙车两车相向而行,乙先出发,图中的折线段表示甲、乙两车之间的距离 y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为小时B.甲的速度是80 千米 / 小时C.甲出发小时后两车相遇D.甲用小时走完这段路程8.如图,在正方形ABCD边上有一动点M,它从点 B 出发沿在B→ C→ D → A 路径匀速运动到点A,设△ ABM 的面积为y, M 点的运动时间为x,则y 关于x 的函数图象大致为()9.如图,点 A ,B 在双曲线 y =6( x > 0)上,点 C 在双曲线 y = 2( x >0)上,xx若 AC ∥ y 轴, BC ∥ x 轴,且 ∠ABC=45°,则 AC 等于( )A . 2B . 2 2C .4D . 3 210.如图,在反比例函数y =m( m < 0)图象上有 A 、B 、 C 三点,作直线 l ,x使 A 、 B 、C 到直线 l 的距离之比为 4: 2: 2,则满足条件的直线 l 共有( )A . 4 条B .3 条C . 2 条D . 1 条二、填空题(共 6 小题,每小题 4 分,满分 24 分)2 的图象上,则 mn =.11.已知点 P ( m , n )在反比例函数 yx12.若反比例函数 y = 42k的图象位于第二、 四象限,则 k 的取值范围是.x13.甲、乙两人分别从 A , B 两地相向而行,他们距 B 地的距离 s ( km )与时间 t ( h )的关系如图所示,那么乙用了小时到达 A 地.14.如图,函数 y = kx+b 的图象与 x 轴, y 轴分别交于A (﹣ 2, 0),B ( 0, 1)两点,此函数的图象与函数y = x ﹣1 的图象交于点 C ,则 OC=.15.如图,菱形 ABCD 的边 AD 在 x 轴上,边 BC 的中点 E 在 y 轴上,反比例函数 y =2 3的图象经过顶点 B ,则菱形 ABCD 面积为.x16.在平面直角坐标系 xOy 中,对于不在坐标轴上的任意一点 P (x , y ),我们把点 P ′1 , 1称为点 P 的“倒影点” ,直线 y =﹣ x+1 上有两点 A , B ,它们的倒影点 A ′,x yB ′均在反比例函数 y =m的图象上.若 AB =2019 2 ,则 m =.x三、解答题(共 9 小题,满分 86 分)17.(满分 8 分)如图,已知一次函数y = kx+b 的图象经过 A ( 1,6), B (-3, -2)两点.求该一次函数的解析式 .18.(满分 8 分)在平面直角坐标系中,反比例函数y ky= x+2 图象的( k≠ 0)图象与一次函数x一个交点为P,且点 P 的横坐标为 -3,求该反比例函数的解析式.19.(满分8 分)已知一次函数y= kx+m 和反比例函数y k 1的图象交于点(, -4).试判断 P x 2( 2,﹣ 5)是否在一次函数y=kx+m 的图象上,并说明原因.20.(满分 8 分)中学生网络安全知识竞赛中有100 题测试题,某同学上网准备后开始作答.设平均答题速度为v(单位:题 / 时),答完这些试题所需的时间为t (单位:时).(1)求 v 关于 t 的函数表达式.(2)若要求不超过 50 分钟答完这些题目,那么平均每小时至少要答题多少题21.(满分 8 分)“电动汽车,绿色出行”,越来越多的人选择电动车上下班或外出旅游.假期,小丹相约朋友到郊外游玩,她从家出发小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到家里电话,快速返回家中.小丹从家出发到返回家中,行进路程y(km)随时间 x( h )变化的函数图象大致如图所示.(1) m=;(2)当≤ x≤3 时,求出路程y( km)关于时间x( h)的函数解析式;22.(满分 10 分)如图,已知菱形ABCD的对称中心是坐标原点O,四个顶点都在坐标轴上,反比例函数y=m (m≠0)的图象与AD 边交于E( t,1),F(-1, 2)两点.x 3( 1)求 m,t 的值;( 2)求菱形ABCD的面积.23.(满分 10 分)如图,点 A ( 0,4),点 B( 3,0),点 C( 8,0 )双曲线k yx与直线BD 交于点 D、点E 且AD=CD ,4 AD325.(满分 14 分)已知直线y3x 3 y与x轴、y轴分别交于B、 C 两点,将△ BOC沿 y 轴翻折使得 B 点落在 x 轴上点 A 处,将△ BCA 沿直线 AC 翻折得△ ACD.(1)如图 1,求点 D 的坐标;(2)如图 2,点 P 为△ ACD 内一点,连接 AP、 BP, BP 与 AC 交于点 G,点 F 在线段 BP 上,连接FC,将FC绕点F 逆时针旋转60°,点C落在PA上点E 处,求∠APB 的度数;(3)如图3,在(2)的条件下,若∠AFE= 30°,AF=m 时,求EF 的长(用含字母m 的代数式表示).参考答案一、选择题1. C. 2. A. 3. A. 4. A 5. C. 6. D. 7. D. 8. B. 9.B. 10. A.二、填空题11. 2 . 12. k> 2 . 13. 10 . 14. 5 . 15.2 3.16.1.1019090三、解答题17.解:∵一次函数过A(1, 6), B(﹣ 3,﹣ 2)两点,k b6,∴,3k b 2k 2,解得:,b 4∴一次函数的解析式为y= 2x+4.18.解:∵把 x = -3 代入 y = x+2 得: y = -1,即 P 点的坐标是( -3, -1),把 P 点的坐标代入k 得: k =3 ,yx3即反比例函数的解析式是y .k1 x经过( , -4),19.解:∵ y2 x∴2= k .∵y = kx+m 经过(1, -4),2∴ -4= -1+m ,∴ m =﹣ 3.∴一次函数的解析式为: y = 2x ﹣3.当 x = 2 时, y =2x ﹣ 3= 2× 2﹣ 3=﹣ 1.∴点 P ( 2,﹣ 5 )不该在一次函数图象上.20.解:( 1)由题意可得: 100= vt ,则 v100 ;t(2)∵不超过 50 分钟答完这些题目,∴t ≤ 5,6则 v ≥ 120,答:平均每小时至少要答 120 题.21.解:( 1) m=30( 2)当≤ x ≤ 3 时,设 y =kx+b ,把(, 30) ,( 3,0)代入解得 k=-60,b = 180,∴ y = -60x+180,22.解:( 1)∵点 F (﹣ 1,2)在 y =m上,x∴m =﹣ 2,2 ∴反比例函数的解析式为 y = ,x∵E ( t , 1 )在 y =2上,3x∴t =﹣ 6.(2 )由 E ,F 坐标可得直线 EF 的解析式,然后求出 A ,D 两点坐标,进而得出 OA=7 , OD= 7,∴1 7 983S=4××7=23323.解:( 1)∵点 A ( 0, 4),点 B (3, 0), C ( 8,0)∴OA =4, OB = 3,OC=8由勾股定理得: AB =5,过 D 作 DF ⊥ x 轴于 F ,则∠ AOB =∠ DFC =90°, ∵AD ∥ x 轴,∴AO = DF = 4,设 AD=x ,则 CD=x ,CF=8-x .∴ 42 (8 x)2x 2 .解得: x=5. ∴ D ( 5,4),∴ k=5× 4=20.(2)设直线 BD 的解析式为 y =ax+b ,把 B ( 3,0), D ( 5, 4)代入得:3a b 0,5a b 4 ,解得: a = 2, b =﹣ 6,∴直线 BD 的解析式是 y = 2x ﹣ 6; 由( 1)知: m = 20, ∴y =20,xy20 x 1 5,x 22,x ,解方程组得:4, y 210.y 2 x y 16∵D 点的坐标为( 5,4 ),∴E 点的坐标为(﹣ 2,﹣ 10), ∵BC = 5,∴△ CDE 的面积 S = S △CDB +S △CBE =15 41 5 10 35 .2224.解:( 1)是;(2)如图,过点 A 作直线 l 的对称点 A ′,连接 A ′ B ′,交直线 l 于点 P ,作BH⊥ l 于点 H.设点 A 到直线 l 的距离为 m,∵点A 和 A′关于直线 l 对称,∴A′(2+2m, 2),又 B( -2,-2).∴直线 A′ B 的解析式为:y 2x2m.∴当 x=a=m+2 时,y=b=42 m2m.m 2∴a b=4 .(3) D(1,-1) .25.解:( 1)D(-2, 3 )(2)如图 2 中,连接 CE.∵OA=OB, CO⊥AB,∴AC= BC= 2,∴AB= BC= AC,∴△ ABC是等边三角形,∴∠ ACB= 60°,∵∠ EFC= 60°, EF=CF.∴△ EFC是等边三角形.∴∠ ECF= 60°.∴∠ ECA=∠ FCB,又 CE=CF,CA=CB,∴△ ACE≌△ BCF,∴∠ CAE=∠ CBF,又∠ AGP=∠ BGC.∴∠ APB=∠ ACB=60°.(3) EF=4m2.。

华东师大版八年级数学下册《第17章函数及其图像》单元测试卷-带有答案

华东师大版八年级数学下册《第17章函数及其图像》单元测试卷-带有答案

华东师大版八年级数学下册《第17章函数及其图像》单元测试卷-带有答案一、单选题1.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S (千米)与离家的时间t (分钟)之间的函数关系的是( )A .B .C .D .2.已知函数 225y x =-,不在该函数图象上的点是( )A .(3,4)B .(4,-3)C .(4,3)D .(-3,4)3.下列关系式中,y 不是x 的函数的是( )A .2x y =B .22y x =C .(0)y x x =D .||(0)y x x =4.如果点A 在直线y=x-1上,则A 点的坐标可以是( )A .(-1,0)B .(0,1)C .(1,-1)D .(1,0)5.若一次函数的y =kx+b (k <0)图象上有两点A (﹣2,y 1)、B (1,y 2),则下列y 大小关系正确的是( )A .y 1<y 2B .y 1>y 2C .y 1≤y 2D .y 1≥y 26.下列函数中,当x <0时y 随x 的增大而增大的是( )A .y=﹣3x+4B .1243y x =-- C .2y x =- D .23y x= 7.如图60MAN ∠=︒ ,点B 在射线 AN 上, 2AB =点P 在射线 AM 上运动(点P 不与点A 重合),连接 BP ,以点B 为圆心, BP 为半径作弧交射线 AN 于点Q ,连接 PQ .若AP x PQ y ==, ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .8.已知点()2A m -,,点()31B m +,,且直线AB x 轴,则m 的值为( ) A .1- B .1 C .3- D .39.当5x =时一次函数2y x k =+和3y kx =-4的值相同,则k 和y 的值分别为( )A .1,11B .19-,C .5,15D .3,3 10.关于反比例函数y=4x的图象,下列说法正确的是( ) A .必经过点(1,1) B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称 二、填空题11.已知2()1f x x =-,那么(1)f -的值是 . 12.如图所示,一次函数y=kx+b (k≠0)与反比例函数y= m x (m≠0)的图象交于A 、B 两点,则关于x 的不等式kx+b < m x的解集为 .13.已知点 ()21A -,在正比例函数的图象上,则这个函数的解析式为 . 14.一次函数y=kx+b 的图象如图所示,则关于x 的方程4kx+4b=0的解为 ;方程kx+b+3=5的解为15.在平面直角坐标系中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:“水平底” a :任意两点横坐标差的最大值,“铅垂高” h :任意两点纵坐标的最大值,则“矩面积” S ah = .例如:三点坐标分别为A (1,2)、B (-3,1)、C (2,-2),则“水平底” a =5,“铅垂高” h =4,“矩面积”S=20.若D (1,2)、E (-2,1),F (0,t )三点的“矩面积”S=15,则的 t 值为 .三、解答题16.如图,直线PA 是一次函数y=x+1的图象,直线PB 是一次函数y=﹣2x+2的图象.(1)求A 、B 、P 三点的坐标;(2)求四边形PQOB 的面积.17.乐乐从家出发骑自行车去上学,当他以往常的速度骑了一段路后,突然想起要买文具,于是又折回到刚经过的文具店,买到文具后继续骑车去学校.如图是他本次上学所用的时间与离家的距离之间的关系图.根据图中提供的信息,解答下列问题:(1)乐乐在文具店停留了 分钟,文具店到学校的距离是 米;(2)在整个上学途中,哪个时间段乐乐骑车速度最快?最快的速度是多少?(3)如果乐乐不买文具,以往常的速度去学校,需要多长时间?18.2017年5月31日,昌平区举办了首届初二年级学生“数学古文化阅读展示”活动,为表彰在本次活动中表现优秀的学生,老师决定在6月1日购买笔袋或彩色铅笔作为奖品. 已知1个笔袋、2筒彩色铅笔原价共需44元;2个笔袋、3筒彩色铅笔原价共需73元.(1)每个笔袋、每筒彩色铅笔原价各多少元?(2)时逢“儿童节”,商店举行“优惠促销”活动,具体办法如下:笔袋“九折”优惠;彩色铅笔不超过10筒不优惠,超出10筒的部分“八折”优惠. 若买x 个笔袋需要y 1元,买x 筒彩色铅笔需要y 2元. 请用含x 的代数式表示y 1、y 2;(3)若在(2)的条件下购买同一种奖品95件,请你分析买哪种奖品省钱.19.国际上广泛使用“身体体重指数(BMI )”作为判断人体健康状况的一个指标:这个指数B 等于人体的体重G (kg )除以人体的身高h (m )的平方所得的商,即B =2G h .身体体重指数范围身体属型 B <18不健康瘦弱 18≤B <20偏瘦 20≤B <25正常 25≤B <30超重 B ≥30 不健康肥胖(1)上表是国内健康组织提供的参考标准,若林老师体重G =81kg ,身高h =1.80m ,请问他的体型属于哪一种,请说明理由.(2)赵老师的身高为1.6m ,那么他的体重在什么范围内时体型属于正常?四、综合题20.2022年翻开序章,冬奥集结号已经吹响,冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”深受广大人民的喜爱.2021年十一月初,奥林匹克官方旗舰店上架了“冰墩墩”和“雪容融”这两款毛绒玩具,当月售出了“冰墩墩”200个和“雪容融”100个,销售总额为32000元.十二月售出了“冰墩墩”300个和“雪容融”200个,销售总额为52000元.(1)求“冰墩墩”和“雪容融”的销售单价;(2)已知“冰墩墩”和“雪容融”的成本分别为90元/个和60元/个.进入2022年一月后,这两款毛绒玩具持续热销,于是旗舰店再购进了这两款毛绒玩具共600个,其中“雪容融”的数量不超过“冰墩墩”数量的2倍,且购进总价不超过43200元.为回馈新老客户,旗舰店决定对“冰墩墩”降价10%后再销售,若一月份购进的这两款毛绒玩具全部售出,则“冰墩墩”购进多少个时该旗舰店当月销售利润最大,并求出最大利润.21.阅读下列材料:现给如下定义:以x 为自变量的函数用y=f (x )表示,对于自变量x 取值范围内的一切值,总有f (﹣x )=f (x )成立,则称函数y=f (x )为偶函数.用上述定义,我们来证明函数f (x )=x 2+1是偶函数.证明:∵f (﹣x )=(﹣x )2+1=x 2+1=f (x )∴f (x )是偶函数.根据以上材料,解答下面的问题:已知函数 ()1(0)212x a f x x x ⎛⎫=+≠ ⎪-⎝⎭(1)若f (x )是偶函数,且 ()312f = ,求f (﹣1); (2)若a=1,求证:f (x )是偶函数.22.如图,函数y 1=﹣x+4的图象与函数y 2= k x(x >0)的图象交于A (a ,1)、B (1,b )两点.(1)求k 的值;(2)利用图象分别写出当x >1时①y 1和y 2的取值范围;②y 1和y 2的大小关系.23.如图,一次函数()20y kx k =+≠的图象与反比例函数()00m y m x x=≠>,的图象交于点()2A n ,,与y 轴交于点B ,与x 轴交于点()40C -,.(1)求k 与m 的值;(2)点P 是x 轴正半轴上一点,若BP BC =,求PAB 的面积.24.如图,在平面直角坐标系 xoy 中,函数 (0)k y x x=< 的图象经过点(-6,1),直线 y mx m =+ 与y 轴交于点(0,-2).(1)求k ,m 的值;(2)过第二象限的点P(n ,-2n)作平行于x 轴的直线,交直线y =mx+m 于点A ,交函数(0)k y x x=< 的图象于点B. ①当n =-1时判断线段PA 与PB 的数量关系,并说明理由;②若PB≥2PA ,结合函数的图象,直接写出n 的取值范围.答案解析部分1.【答案】C【解析】【解答】∵小李距家3千米,∴离家的距离随着时间的增大而增大.∵途中在文具店买了一些学习用品,∴中间有一段离家的距离不再增加,综合以上C 符合.故答案为:C.【分析】根据小李距家3千米,路程随着时间的增大而增大即可确定合适的函数图象。

华东师大版八年级数学下册《第17章函数及其图形》单元检测卷(附带答案)

华东师大版八年级数学下册《第17章函数及其图形》单元检测卷(附带答案)

华东师大版八年级数学下册《第17章函数及其图形》单元检测卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题(本大题共12小题,每小题3分,共36分)1.若点()12,y -,()21,y 和()33,y 在反比例函数22k y x+=的图像上,则1y ,2y 和3y 的大小关系是( ) A .123y y y >> B .321y y y >> C .132y y y >> D .231y y y >>2.下列函数中,正比例函数有( ).(1)2y x =-(2)y x =3)1y x =-(4)2v =5)213y x =-(6)2y r π=(7)22y x = A .1个 B .2个 C .3个 D .4个3.如图,在平面直角坐标系中,矩形OABC 的面积为6,点A ,C 分别在x 轴,y 轴上,点B 在第三象限,对角线,OB AC 交于点D ,若反比例函数(0)k y x x=<的图象经过点D ,则k 的值为( )A .32-B .32C .3-D .34.一次函数2y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .(3,4)-B .(1,2)--C .(3,3)D .(3,2)5.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是( )A .函数解析式为13I R =B .蓄电池的电压是18VC .当10A I ≤时 3.6R ≥ΩD .当6R =Ω时4A I = 6.如果当0x >时,反比例函数(0)k y k x =≠的函数值随x 的增大而增大,那么一次函数123y kx k =-的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限7.已知蓄电池的电压为定值.使用电池时,电流I (A )与电阻R (Ω)是反比例函数关系,图象如图所示.如果以此蓄电池为电源的电器的限制电流不能超过3A ,那么电器的可变电阻R (Ω)应控制在( )A .R≥1B .0<R≤2C .R≥2D .0<R≤18.如图①,在矩形ABCD 中,动点P 从A 出发,以恒定的速度,沿A B C D A →→→→方向运动到点A 处停止.设点P 运动的路程为x .PAB 面积为y ,若y 与x 的函数图象如图①所示,则矩形ABCD 的面积为( )A .36B .54C .72D .819.如图,在平面直角坐标系中,一次函数y =kx +b (k ≠0)和y =mx +n (m ≠0)相交于点(2,﹣1),则关于x ,y 的方程组kx y b mx n y =-⎧⎨+=⎩的解是( )A .12x y =-⎧⎨=⎩B .21x y =⎧⎨=-⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=⎩10.如图,在平面直角坐标系中,点P 是反比例函数y=(x >0)图象上的一点,分别过点P 作PA①x 轴于点A ,PB①y 轴于点B .若四边形OAPB 的面积为3,则k 的值为( )A .3B .﹣3C .32D .﹣3211.已知ΔABC 各顶点坐标为()()()1,1,4,11,3A B C ,,若反比例函数()0k y k x =≠的图象与ABC 有交点,则k 的最大值为( )A .5B .12124C .4D .1212512.如图,在长方形ABCD 中,动点P 从A 出发,以一定的速度,沿A B C D A →→→→方向运动到点A 处停止(提示:当点P 在AB 上运动时,点P 到DC 的距离始终等于AD 和BC ).设点P 运动的路程为x ,PCD 的面积为y ,如果y 与x 之间的关系如图所示,那么长方形ABCD 的面积为( )A .6B .9C .15D .18二、填空题(本大题共8小题,每小题3分,共24分)13.某水果店以2.5元/kg 的价格批发了 k g x 苹果,以4元/kg 的价格销售,销售这 k g x 苹果的总利润为y (元),则y 与x 的函数关系式为14.一直线y=-5x -m 过点A (x 1,-2)和P(x 2,4),则x 1,x 2大小关系为 ;15.科学研究发现,空气含氧量y (克/立方米)与海拔高度x (米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2100米的地方,空气含氧量约为229克/立方米.已知某山的海拔高度为1200米,该山山顶处的空气含氧量约为 克/立方米.16.在平面直角坐标系中111,4P ⎛⎫ ⎪⎝⎭ ()22,1P 393,4P ⎛⎫ ⎪⎝⎭ ()44,4P 5255,4P ⎛⎫ ⎪⎝⎭…按照此规律排列下去,点10P 的坐标为 .17.如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,若正方形的边长是2,则图中阴影部分的面积等于 .18.如图,图中的折线OABC 反映了圆圆从家到学校所走的路程()m S 与时间()min t 的函数关系,其中,OA 所在直线的表达式为()110y k x k =≠,BC 所在直线的表达式为()220y k x b k =+≠,则21k k -= .19.如图,A 为反比例函数k y x=上一动点,C 为OA 中点,过点C 作CB x ∥轴,交反比例函数于点B ,连接AB ,若三角形ABC 面积为1.8,则k =20.如图,在平面直角坐标系中,直线y=﹣kx+m与双曲线y=(x>0)交于A、B两点,点A的横坐标为1,点B的横坐标为4,则不等式﹣kx+m>的解集为.三、解答题(本大题共5小题,每小题8分,共40分)21.已知y是关于x的一次函数,如表列出了部分对应值:x⋯2-1-01b⋯y⋯8-a2-14⋯(1)求此一次函数的表达式;(2)求a,b的值.22.星期五小颖放学步行从学校回家,当她走了一段路后,想起要去买彩笔做画报,于是原路返回到刚经过的文具用品店.买到彩笔后继续往家走,如图是她离家的距离与所用时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小颖家与学校的距离是米;(2)小颖本次从学校回家的整个过程中,走的路程是多少米?(3)买到彩笔后,小颖从文具用品店回到家步行的速度是多少米/分?23.请你用学习“一次函数”中积累的经验和方法研究函数2y x =-的图像和性质,并解决问题.(1)①当2x =时2y x =-=______;①当2x >时2y x =-=______;①当2x <时2y x =-=______;显然,①和①均为某个一次函数的一部分.(2)在平面直角坐标系xOy 中,作函数2y x =-的图像.(3)结合图像,不等式24x -<的解集为______.24.在平面直角坐标系中,点()0,A m 和(),0C n .(1)若m ,n 满足24212m n m n -=⎧⎨+=⎩. ①直接写出m =______,n =______.①如图1,D 为点A 上方一点,连接CD ,在y 轴右侧作等腰Rt BDC ∆,=90BDC ∠︒连接BA 并延长交x 轴于点E ,当点A 上方运动时,求ACE ∆的面积;(2)如图2,若m n =,点D 在边OA 上,且11AD =,G 为OC 上一点,且8OG =,连接CD ,过点G 作CD 的垂线交CD 于点F ,交AC 于点H .连接DH ,当ADH ODC ∠=∠,求点D 的坐标.25.定义:如图1,点M 、N 把线段AB 分割成AM 、MN 和BN ,若以AM 、MN 、BN 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股点.(1)已知点M 、N 是线段AB 的勾股点,若AM=1,MN=2,求BN 的长;(2)如图2,点P (a ,b )是反比例函数y=2x(x >0)上的动点,直线y=﹣x +2与坐标轴分别交于A 、B 两点,过点P 分别向x 、y 轴作垂线,垂足为C 、D ,且交线段AB 于E 、F .证明:E 、F 是线段AB 的勾股点;(3)如图3,已知一次函数y=﹣x +3与坐标轴交于A 、B 两点,与二次函数y=x 2﹣4x +m 交于C 、D 两点,若C 、D 是线段AB 的勾股点,求m 的值.参考答案:1.D2.C3.B4.A5.C6.B7.C8.C9.B10.A11.B12.D13. 1.5y x =14.12x x >15.25916.()10,2517.118.5019. 4.8-20.14x <<21.(1)32y x =-;(2)5a =- 2b =. 22.(1)2600(2)3400米(3)90米/分23.(1)0,2x 2x - (2)略;(3)26x -<<. 24.(1)①4m n ==;①16;(2)()0,3.25.(1(2)11;(3。

华东师大版八年级下册数学第17章 函数及其图像 单元测试卷(Word版,含答案)

华东师大版八年级下册数学第17章 函数及其图像 单元测试卷(Word版,含答案)

华东师大版八年级下册数学第17章函数及其图像单元测试卷一、选择题(本大题共10个小题,每题3分,共30分)中,自变量x的取值范围是() 1.函数y=xx+3A.x>-3B.x≠0C.x>-3且x≠0D.x≠-32.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度(℃)-20-100102030声速(m/s)318324330336342348下列说法错误的是() A.在这个变化中,自变量是温度,因变量是声速 B.温度越高,声速越快C.当空气温度为20 ℃时,声音5 s可以传播1 740 mD.温度每升高10 ℃,声速增加6 m/s3.若点M(1-2m,m-1)关于y轴的对称点在第四象限,则m的取值范围在数轴上表示正确的是()A B C D4.若m是负整数,且一次函数y=(m+2)x-4的图象不经过第二象限,则m可能是()A.-3B.-2C.-1D.-4,当1<x<3时,y的取值范围是() 5.已知反比例函数y=-6xA.0<y<1B.1<y<2C.-2<y<-1D.-6<y<-26.如果点A(x1,y1)和点B(x2,y2)是直线y=-kx+b上的两点,且当x1<x2时,y1 <y2,那么函数y=k x的图象位于()A.第一、四象限B.第二、四象限C.第三、四象限D.第一、三象限7.一次函数y1=k1x+b和反比例函数y2=k2x(k1·k2≠0)的图象如图所示.若y1>y2,则x的取值范围是()A.-2<x<0或x>1B.-2<x<1C.x<-2或x>1D.x<-2或0<x<1第7题图第8题图第9题图8.如图,一次函数y=kx+b(k,b为常数,且k≠0)的图象与x轴交于点A(3,0),若正比例函数y=mx(m为常数,且m≠0)的图象与一次函数的图象相交于点P,且点P的横坐标为1,则关于x的不等式(k-m)x+b<0的解集为( ) A.x<1 B.x>1 C.x<3 D.x>3(x>0)的图象经过直角边AC的中点D, 9.如图,Rt△AOC的直角边OC在x轴上,∠ACO=90°,反比例函数y=kx且S△AOC=3,则k的值为()A.2B.3C.4D.610.甲、乙两名同学进行登山比赛,甲同学和乙同学沿相同的路线同时在早上8:00从山脚出发前往山顶,甲同学到达山顶后休息1 h,沿原路以6 km/h的速度下山.在这一过程中,甲、乙两名同学各自行进的路程s (km)随所用时间t (h)变化的图象如图所示.根据图中提供的信息得出以下四个结论:①甲同学从山脚到达山顶的路程为12 km;②乙同学登山共用4 h;③甲同学在14:00返回山脚;④甲同学返回山脚过程中与乙同学相遇时,乙同学距登到山顶还有1.4 km的路程.其中正确的个数是()A.1B.2C.3D.4二、填空题(本大题共5个小题,每题3分,共15分)11.平面直角坐标系中,点P(3,-4)到x轴的距离是.12.已知直线l经过点A(0,1),B(-2,0),若将这条直线向下平移,恰好经过原点,则平移后的直线的函数表达式为.。

华东师大版八年级下册数学第17章函数和图象单元测试(含)

华东师大版八年级下册数学第17章函数和图象单元测试(含)

第 17 章 函数及其图象单元测试一.1.函数 y =x 232x 的自 量取 范 是 ( )1xA. - 2≤ x ≤ 2B.x ≥- 2 且 x ≠ 1 C.x >- 2 D. - 2≤ x ≤ 2 且 x ≠ 12. 已知反比率函数 y= ( b 常数且不0 )的 象在二、四象限, 一次函数y=x+b 的象不 第几象限()A .一B.二 C .三D .四3. 已知一次函数 yaxb的 象 第一、二、 四象限, 且与 x 交于点 ( 2,0), 关于x的不等式a( x1) b 0的解集 ( )A . x <- 1B . x > - 1C . x >1D . x < 14. 如 所示,双曲yk(k 0) 矩形 OABC 的 BC 的中点 E ,交 AB 于点 D .若梯形xODBC 的面 3, 双曲 的分析式 ( ).A . y12 3 6B . yC . yD . yxxxx5. 已知点 M ( a , b) , M 作 MHx 于 H ,并延 到 N ,使 NH MH ,且N 点坐 ( 2 ,3) , a b () .A . 0B . 1C .— 1D .— 56. 在平面直角坐 系中, 我 把横、 坐 都是整数的点叫做整点,且 定,正方形的内部 不包含 界上的点. 察如 所示的中心在原点, 一 平行于 x 的正方形:1 的正 方形内部有一个整点,2 的正方形内部有 1 个整点,3 的正方形内部有9 个整点⋯⋯,8 的正方形内部的整点的个数() .A .64 B.49C.36D.257. 正比率函数y1=k 1x 的图象与反比率函数y2=的图象订交于A, B 两点,此中点 B 的横坐标为﹣ 2,当 y1< y2时, x 的取值范围是()A. x<﹣ 2 或 x> 2B.x<﹣2或0<x<2C.﹣ 2< x< 0 或 0<x< 2 D .﹣ 2< x<0 或 x> 28. 如图,点按→→→的序次在边长为 1 的正方形边上运动,是边上的中点 . 设点经过的行程为自变量,△的面积为,则函数的大体图像是().二. 填空题9.假如点 A(0 , 1) , B(3 , 1) ,点C在y轴上,且△ABC的面积是5,则C点坐标____.610.已知点 A 在双曲线y上,且OC=3,AC=2,过A作AC⊥ x轴于C,OA的垂直均分x线交 OC于 B.(1)则△ AOC的面积=,(2)△ ABC的周长为11.如图,点A 在双曲线上,点B 在双曲线y=上,且AB ∥x 轴, C 、 D在x 轴上,若四边形ABCD 为长方形,则它的面积为.12. 如图,直线 y kx b 经过 A ( 2,1),B (- 1,- 2)两点,则不等式1x kx b 2的解集为 __________.213.已知一次函数的图象与轴的交点的横坐标等于2,则的取值范围是 ________.14. 以下函数:①;②;③;④ ;⑤中,一次函数是 ________,正比率函数有 ________. ( 填序号 )15. 为了增强公民的节水意识,某市拟定了以下用水收费标准:每户每个月的用水不超出10吨时,水价为每吨 1.2 元;超出 10 吨时,超出部分按每吨1.8 元收费,该市某户居民 5月份用水 x 吨( x > 10) , 应交水费 y 元,则 y关于 x 的关系式 ___________.16. 小李以每千克 0.8 元的价钱从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜以后,余下的每千克降价 0.4 元,所有售完;销售金额与卖瓜千克数之间的关系以以下图,那么小李赚了 ______元.三. 解答题17. 如图,在平面直角坐标系xOy 中,一次函数y= ﹣ax+b 的图象与反比率函数y=的图象订交于点A(﹣ 4,﹣ 2), B(m, 4),与 y 轴订交于点C.(1)求反比率函数和一次函数的表达式;(2)求点 C 的坐标及△ AOB的面积.18. 以以下图,在平面直角坐标系中,直线4y x 4分别交 x 轴、y轴于点A B3、,将△AOB绕点 O顺时针旋转90°后获得△A OB.(1)求直线(2)若直线A B 的分析式;A B 与直线 l 订交于点C,求△ A BC 的面积.19.在平面直角坐标系中,一动点 P(x、y)从 M( 1, 0)出发,沿由 A(- 1, 1), B(-1,- 1), C( 1,- 1), D( 1, 1)四点构成的正方形边线(如图①)按必定方向运动。

华师大版数学八年级下册 第17 章函数及其图象 单元测试卷(含答案)

华师大版数学八年级下册 第17 章函数及其图象 单元测试卷(含答案)

第17 章测试卷(时间:90分钟满分:120分)题号一二三总分得分一、选择题(本大题共12小题,每小题3分,满分36分)1.小军用50元钱买单价为8元的笔记本,他剩余的钱数Q(元)与他买这种笔记本的本数x之间的关系式为Q=50-8x,则下列说法正确的是( )A. Q和x是变量B. Q是自变量C.50和x是常量D. x是Q的函数中,自变量x的取值范围是( )2.函数y=√x2A. x>0B. x≥0C. x<0D. x≤03.下面说法错误的是( )A.点(0,-2)在 y轴的负半轴上B.点(3,2)与(3,-2)关于x轴对称C.点(-4,-3)关于原点的对称点是(4,3)D.点(−√2,−√3)在第二象限(其中k是不等于0的常数)在同一平面直角坐标系中的大致图4.如图,函数y=k(x-10)和函数y=kx象可能为( )A.①③B.①④C.②③D.②④5.下列图形中,阴影部分的面积相等的是( )A.①②B.②③C.③④D.①④6.在直角坐标系中,若一点的纵横坐标都是整数,则称该点为整点.设k为整数,当直线y=x-2与y =kx+k的交点为整点时,k的值可以取( )A.4个B.5个C.6个D.7个7.已知一次函数y=x+2与y=-2+x,下面说法正确的是( )A.两直线交于点(1,0)B.两直线之间的距离为4个单位C.两直线与x轴的夹角都是30°D.两条已知直线与直线y=x都平行的图象如图所示,当y₁<y₂时,x的8.一次函数y₁=ax+b与反比例函数y2=kx取值范围是( )A. x<2B. x>5C.2<x<5D.0<x<2或x>59.已知关于x、y的函数y=(m+3)x m2−10是反比例函数,则m的值为( )A.3B. -3C.±3D.010.已知A,B 两地相距3千米,小黄从A 地到B 地,平均速度为4千米/时,若用x表示行走的时间(时),y表示余下的路程(千米),则y关于x的函数表达式是( )A. y=4x(x≥0)B.y=4x−3(x≥34)C. y=3-4x(x≥0)D.y=3−4x(0≤x≤34)11.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1 200 N和0.5m,则动力 F(单位:N)关于动力臂l(单位:m)的函数表达式正确的是( )A.F=1200l B.F=600lC.F=500lD.F=0.5l12.A、B两点在一次函数图象上的位置如图所示,两点的坐标分别为.A(x+a,y+b),B(x,y),下列结论正确的是( )A. a>0B. a<0C. b=0D. ab<0二、填空题(本大题共6个小题,每小题3分,满分18分)13.在平面直角坐标系中,若点M(1,3)与点 N(x,3)的距离是8,则x的值是 .14.一次函数y=kx+1的图象经过点(1,2),反比例函数.y=kx 的图象经过点(m,12),则m= .15.如果函数y=kx的图象经过点(1,-1),则函数y=kx-2的图象不经过第象限.16.如图,A,C分别是正比例函数y=x的图象与反比例函数.y=4x的图象的交点,过点A 作AD⊥x 轴于点D,过点C作CB⊥x轴于点B,则四边形ABCD 的面积为 .17.如图,过x轴正半轴上的任意一点P 作y轴的平行线交反比例函数y=2x 和y=−4x的图象于A,B两点,C是y轴上任意一点,则△ABC的面积为 .18.如图,点A,C在反比例函数y=ax 的图象上,点B,D在反比例函数y=bx的图象上,a>b>0,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=34,CD=32,,AB 与CD 间的距离为6,则a-b的值是.三、解答题(本大题有6个小题,满分66分)19.(12分)已知一次函数y=2x+4.(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴的交点B 的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出当y<0时,x的取值范围.x−3.20.(10分)已知一次函数y=32(1)请在如图所示的平面直角坐标系中画出此函数的图象;(2)求出此函数的图象与坐标轴围成的三角形的面积.21.(12分)如图,已知A(n,-2),B(1,4)是一次函数.y=kx+b的图象和反比例函数y=m的图象的两个交点,直线AB 与y轴交于点C.x(1)求反比例函数和一次函数的表达式;(2)求△AOC的面积.22.(10分)如图,在平面直角坐标系xOy中,一次函数.y=−ax+b的图象与反比例的图象相交于点A(-4,-2),B(m,4),与y轴相交于点C.函数y=kx(1)求反比例函数和一次函数的表达式;(2)求点 C的坐标及△AOB的面积.23.(10分)某市出租车计费标准如下:行驶路程不超过3千米时,收费8元;行驶路程超过3千米的部分,按每千米1.6 元计费.(1)求出租车收费y(元)与行驶路程x(千米)之间的函数关系式;(2)若某人一次乘出租车时,付出了车费14.4元,求他这次乘坐了多少千米的路程.24.(12 分)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35 千瓦时时汽车已行驶的路程;当(0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.第17 章测试卷1. A2. B3. D4. C5. C6. A7. D8. D9. A10. D 11. B 12. B 13.9或一7 14.2 15.一 16.8 17.3 18.319.解(1)当x=0时,y=4;当y=0时,x=-2.图象如图所示.(2)由(1)知,A(-2,0)、B(0,4).(3)S AOB=12×2×4=4.(4)当y<0时,x的取值范围为x<-2.20.解(1)函数图象如图所示:(2)函数的图象与坐标轴围成的三角形的面积为12×2×3=3.21.解(1)将B(1,4)的坐标代入y=mx 中,得m=4,所以y=4x.将A(n,-2)的坐标代入y=4x中,得n=-2.将A(-2,-2),B(1,4)的坐标分别代入y=kx+b中,得{−2k+b=−2,k+b=4,解得{k=2,b=2.所以y=2x+2.(2)对于y=2x+2,令x=0,则y=2,所以OC=2,所以S AOC=12×2×2=2.22.解(1)∵点A(-4,-2)在反比例函数y=kx的图象上,∴k=-4×(-2)=8,∴反比例函数的表达式为y=8x.∵点B(m,4)在反比例函数y=8x的图象上,∴4m=8,解得m=2,∴点B(2,4).将A(-4,-2),B(2,4)代入y=-ax+b,得{−2=4a+b,4=−2a+b,解得{a=−1,b=2.∴一次函数的表达式为y=x+2.(2)令x=0,则y=x+2=2,∴点C的坐标为(0,2),∴S XOB=12OC⋅(x B−x A)=12×2×[2−(−4)]=6.23.解(1)∵当0<x≤3时,y=8,又∵当x>3时,行驶路程超过3千米的部分是((x−3)千米,∴y=8+1.6(x−3),综上:出租车收费y(元)与行驶路程x(千米)的函数关系式是y={8(0<x≤3),1.6x+3.2(x⟩3).(2)∵14.4元>8元,∴乘车路程超过3千米,由(1)得:1.6x+3.2=14.4,解得x=7.答:当付车费14.4元时,乘车路程为7千米.24.解(1)由图象可知,蓄电池剩余电量为 35 千瓦时时汽车已行驶了 150千米.1千瓦时的电量汽车能行驶的路程为15060−35=6(千米).(2)设y=kx+b(k≠0),把点(150,35),(200,10)代入,得{150k+b=35,200k+b=10,cot2+cot=−0.5,b=110,∴y=−0.5x+110.当x=180时,y=−0.5×180+110=20.答:当150≤x≤200时,y关于x 的函数表达式为.y=−0.5x+110,当汽车已行驶180 千米时,蓄电池的剩余电量为20千瓦时.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档