南京市钟英中学2015-2016年八年级下期中数学试卷含答案解析
学江苏省南京市秦淮区钟英中学八级下期中数学试卷
2016-2017学年江苏省南京市秦淮区钟英中学八年级(下)期中数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列调查中,适合用普查的是()A.新学期开始,我校调查每一位学生的体重B.调查某品牌电视机的使用寿命C.调查我市中学生的近视率D.调查长江中现有鱼的种类2.(2分)下列图案既是中心对称,又是轴对称的是()A.B.C.D.3.(2分)分式可变形为()A. B.﹣C. D.﹣4.(2分)如图所示,是八年级某班学生是否知道父母生日情况的扇形统计图.其中,A表示仅知道父亲生日的学生;B表示仅知道母亲生日的学生;C表示父母生日都知道的学生;D表示表示父母生日都不知道的学生.则该班40名学生中,知道母亲生日的人数有()A.10 B.12 C.22 D.265.(2分)已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm26.(2分)如图,已知△ABC的面积为24,点D在线段AC上,点F在线段BC 的延长线上,且BF=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A.3 B.4 C.6 D.8二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)为了了解我市6000名学生参加初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,样本容量是.8.(2分)使代数式有意义的x的取值范围是.9.(2分)平行四边形的对角线相等是事件.(填“必然”、“随机”、“不可能”)10.(2分)已知三角形的三条中位线的长度分别为6cm、7cm、11cm,则这个三角形的周长为cm.11.(2分)某市抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下:组别噪声声级分组频数频率144.5﹣﹣59.540.1259.5﹣﹣74.580.2374.5﹣﹣89.5100.25489.5﹣﹣104.5b c5104.5﹣﹣119.560.15合计40 1.00则第四小组的频率c=.12.(2分)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球只有3个红球,若每次将球充分搅匀后,任意摸出一个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为.13.(2分)若分式的值为零,则x=.14.(2分)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件,使ABCD成为菱形(只需添加一个即可)15.(2分)如图,△COD是由△AOB绕点O按顺时针方向旋转40°后得到的图形,点C恰好在边AB上.若∠AOD=100°,则∠D的度数是°.16.(2分)如图,?ABCD与?DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为.三、解答题(本大题共10小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(4分)(1)约分:;(2)约分:.18.(4分)(1)通分:;(2)通分:,.19.(5分)先化简分式,然后在0,1,2三个数值中选择一个合适的a的值代入求值.20.(6分)李老师为了解班里学生的作息时间,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?21.(6分)如图,AD是△ABC的中线.(1)画图:延长AD到E,使ED=AD,连接BE、CE;(2)四边形ABEC是平行四边形吗?证明你的结论.22.(8分)在一个不透明的口袋里装有若干个相同的红球,为了用估计袋中红球的数量,八(1)班学生在数学实验室分组做摸球实验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:摸球的次数s15030060090012001500摸到白球的频数n63a247365484606摸到白球的频率0.4200.4100.4120.4060.403b(1)按表格数据格式,表中的a=;b=;(2)请估计:当次数s很大时,摸到白球的频率将会接近(精确到0.1);(3)请推算:摸到红球的概率是(精确到0.1);(4)试估算:这一个不透明的口袋中红球有只.23.(7分)如图,在正方形网格中,每个小正方形的边长为1个单位长度.平面直角坐标系xOy的原点O在格点上,x轴、y轴都在格线上.线段AB的两个端点也在格点上.(1)若将线段AB绕点O逆时针旋转90°得到线段A1B1,试在图中画出线段A1B1.(2)若线段A2B2与线段A1B1关于y轴对称,请画出线段A2B2.(3)若点P是此平面直角坐标系内的一点,当点A、B1、B2、P四边围成的四边形为平行四边形时,请你直接写出点P的坐标.24.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?25.(10分)如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)当M点在(何处)时,AM+CM的值最小;(2)当AM+EM的值最小时,∠BCM=°.(3)①求证:△AMB≌△ENB;②当M点在何处时,AM+BM+CM的值最小,并说明理由.26.(10分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.2016-2017学年江苏省南京市秦淮区钟英中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列调查中,适合用普查的是()A.新学期开始,我校调查每一位学生的体重B.调查某品牌电视机的使用寿命C.调查我市中学生的近视率D.调查长江中现有鱼的种类【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、新学期开始,我校调查每一位学生的体重适合抽样调查,故A正确;B、调查某品牌电视机的使用寿命,调查具有破坏性,适合抽样调查,故B错误;C、调查我市中学生的近视率适合抽样调查,故C错误;D、调查长江中现有鱼的种类适合抽样调查,故D错误;故选:A.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.(2分)下列图案既是中心对称,又是轴对称的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故本选项错误;B、是轴对称图形,也是中心对称图形.故本选项正确;C、是轴对称图形,不是中心对称图形.故本选项错误;D、不是轴对称图形,也不是中心对称图形.故本选项错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(2分)分式可变形为()A. B.﹣C. D.﹣【分析】根据分式的性质,分子分母都乘以﹣1,分式的值不变,可得答案.【解答】解:分式的分子分母都乘以﹣1,得﹣,故选:D.【点评】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.4.(2分)如图所示,是八年级某班学生是否知道父母生日情况的扇形统计图.其中,A表示仅知道父亲生日的学生;B表示仅知道母亲生日的学生;C表示父母生日都知道的学生;D表示表示父母生日都不知道的学生.则该班40名学生中,知道母亲生日的人数有()A.10 B.12 C.22 D.26【分析】知道母亲生日的包括B、C,即所占比例为25%+30%,则知道母亲生日的人数=40×(25%+30%).【解答】解:知道母亲生日的人数=40×(25%+30%)=22(人).故选:C.【点评】此题主要考查了扇形统计图的应用,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系.5.(2分)已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm2【分析】设菱形的对角线分别为8x和6x,首先求出菱形的边长,然后根据勾股定理求出x的值,最后根据菱形的面积公式求出面积的值.【解答】解:设菱形的对角线分别为8x和6x,已知菱形的周长为20cm,故菱形的边长为5cm,根据菱形的性质可知,菱形的对角线互相垂直平分,即可知(4x)2+(3x)2=25,解得x=1,故菱形的对角线分别为8cm和6cm,所以菱形的面积=×8×6=24cm2,故选B.【点评】本题主要考查菱形的性质的知识点,解答本题的关键是掌握菱形的对角线互相垂直平分,此题比较简单.6.(2分)如图,已知△ABC的面积为24,点D在线段AC上,点F在线段BC 的延长线上,且BF=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A.3 B.4 C.6 D.8【分析】连接EC,过A作AM∥BC交FE的延长线于M,求出平行四边形ACFM,根据等底等高的三角形面积相等得出△BDE的面积和△CDE的面积相等,△ADE 的面积和△AME的面积相等,推出阴影部分的面积等于平行四边形ACFM的面积的一半,求出CF×h CF的值即可.【解答】解:连接EC,过A作AM∥BC交FE的延长线于M,∵四边形CDEF是平行四边形,∴DE∥CF,EF∥CD,∴AM∥DE∥CF,AC∥FM,∴四边形ACFM是平行四边形,∵△BDE边DE上的高和△CDE的边DE上的高相同,∴△BDE的面积和△CDE的面积相等,同理△ADE的面积和△AME的面积相等,即阴影部分的面积等于平行四边形ACFM的面积的一半,是×CF×h CF,∵△ABC的面积是24,BC=3CF∴BC×h BC=×3CF×h CF=24,∴CF×h CF=16,∴阴影部分的面积是×16=8,故选:D.【点评】本题考查了平行四边形的性质和判定,三角形的面积的应用,主要考查学生的推理能力和转化能力,题目比较好,但是有一定的难度.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)为了了解我市6000名学生参加初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,样本容量是200.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:样本容量是200.故答案为:200.【点评】本题考查的是确定总体、个体和样本.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”8.(2分)使代数式有意义的x的取值范围是x≠2.【分析】分式有意义的条件:分母不等于0.【解答】解:要使代数式有意义,则x﹣2≠0,x≠2.故答案为x≠2.【点评】本题主要考查分式有意义的条件:分母不为0.9.(2分)平行四边形的对角线相等是随机事件.(填“必然”、“随机”、“不可能”)【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:平行四边形的对角线相等是随机事件,故答案为:随机.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10.(2分)已知三角形的三条中位线的长度分别为6cm、7cm、11cm,则这个三角形的周长为38cm.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出三角形的三条边,然后根据周长的定义列式计算即可得解.【解答】解:∵三角形的三条中位线的长度分别为6cm、7cm、11cm,∴这个三角形的三条边分别为12cm,14cm,22cm,∴这个三角形的周长=12+14+22=38cm.故答案为:38.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,是基础题,熟记定理是解题的关键.11.(2分)某市抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下:组别噪声声级分组频数频率144.5﹣﹣59.540.1259.5﹣﹣74.580.2374.5﹣﹣89.5100.25489.5﹣﹣104.5b c5104.5﹣﹣119.560.15合计40 1.00则第四小组的频率c=0.3.【分析】根据所有小组频率的和为1直接求解.【解答】解:∵所有小组频数之和为1,∴c=1﹣0.1﹣0.2﹣0.25﹣0.15=0.3,故答案为:0.3.【点评】考查了频数分布表,解题的关键是了解所有小组频率的和为1,比较简单.12.(2分)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球只有3个红球,若每次将球充分搅匀后,任意摸出一个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为15.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,×100%=20%,解得,a=15.故答案为15.【点评】此题是利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.13.(2分)若分式的值为零,则x=﹣3.【分析】先根据分式的值为0的条件列出关于x的不等式组,求出x的值即可.【解答】解:∵分式的值为零,∴,解得x=﹣3.故答案为:﹣3.【点评】本题考查的是分式的值为0的条件,在解答此类问题时要注意“分母不为零”这个条件不能少.14.(2分)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件OA=OC,使ABCD成为菱形(只需添加一个即可)【分析】可以添加条件OA=OC,根据对角线互相垂直平分的四边形是菱形可判定出结论.【解答】解:OA=OC,∵OB=OD,OA=OC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,故答案为:OA=OC.【点评】此题主要考查了菱形的判定,关键是掌握菱形的判定定理.15.(2分)如图,△COD是由△AOB绕点O按顺时针方向旋转40°后得到的图形,点C恰好在边AB上.若∠AOD=100°,则∠D的度数是50°.【分析】已知△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,可得△COD≌△AOB,旋转角为40°,而点C恰好在AB上,可得△AOC为等腰三角形,可结合三角形的内角和定理求∠B的度数.【解答】解:根据旋转性质得△COD≌△AOB,∴CO=AO,∠D=∠B由旋转角为40°,∴∠AOC=∠BOD=40°,∴∠OAC=(180°﹣∠AOC)÷2=70°,∴∠BOC=∠AOD﹣∠AOC﹣∠BOD=20°,∴∠AOB=∠AOC+∠BOC=60°,在△AOB中,由内角和定理得∠B=180°﹣∠OAC﹣∠AOB=180°﹣70°﹣60°=50°.∴∠D=∠B=50°故答案为50.【点评】此题是旋转的性质题,主要考查了旋转变化前后,对应角相等,同时充分用三角形的内角和定理,等腰三角形的性质,解本题的关键是用等腰三角形的性质求角的度数.16.(2分)如图,?ABCD与?DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为25°.【分析】由,?ABCD与?DCFE的周长相等,可得到AD=DE即△ADE是等腰三角形,再由且∠BAD=60°,∠F=110°,即可求出∠DAE的度数.【解答】解:∵?ABCD与?DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=60°,∠F=110°,∴∠ADC=120°,∠CDE═∠F=110°,∴∠ADE=360°﹣120°﹣110°=130°,∴∠DAE==25°,故答案为:25°.【点评】本题考查了平行四边形的性质:平行四边形的对边相等、平行四边形的对角相等以及邻角互补和等腰三角形的判定和性质、三角形的内角和定理.三、解答题(本大题共10小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(4分)(1)约分:;(2)约分:.【分析】(1)分子、分母约去公因式即可;(2)分子、分母因式分解后约分即可;【解答】解:(1)=;(2)==.【点评】本题考查约分,解题的关键是先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.18.(4分)(1)通分:;(2)通分:,.【分析】找出最简公分母,根据分式的通分法则计算即可.【解答】解:(1)=,=;(2)=,=.【点评】本题考查的是分式的通分、约分,掌握分式的基本性质是解题的关键.19.(5分)先化简分式,然后在0,1,2三个数值中选择一个合适的a的值代入求值.【分析】根据完全平方公式和平方差公式可以化简题目中的式子,然后在0,1,2三个数值中选择一个使得原分式有意义的值代入即可解答本题.【解答】解:==,当a=1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.(6分)李老师为了解班里学生的作息时间,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?【分析】(1)总体所调查对象的全体,由此确定调查的总体;(2)由于已知总人数,利用总人数减去其他四个小组的人数即可得到30﹣40分钟小组的人数,然后即可补全频数分布直方图;(3)用30分钟以上的人数除以总人数50即可得到在30分钟以上(含30分钟)的人数占全班人数的百分比.【解答】解:(1)∵总体所调查对象的全体,∴“班上50名学生上学路上花费的时间”是总体;(2)如图所示:(3)依题意得在30分钟以上(含30分钟)的人数为5人,∴(4+1)÷50=10%,∴该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是10%.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(6分)如图,AD是△ABC的中线.(1)画图:延长AD到E,使ED=AD,连接BE、CE;(2)四边形ABEC是平行四边形吗?证明你的结论.【分析】(1)根据题目要求作图即可;(2)根据作图及题目条件,利用平行四边形的判定方法可证得结论.【解答】解:(1)如图所示;(2)四边形ABEC是平行四边形,理由:∵AD是△ABC的中线,∴BD=CD,∵ED=AD,∴四边形ABEC是平行四边形.【点评】本题主要考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.22.(8分)在一个不透明的口袋里装有若干个相同的红球,为了用估计袋中红球的数量,八(1)班学生在数学实验室分组做摸球实验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:摸球的次数s15030060090012001500摸到白球的频数n63a247365484606摸到白球的频率0.4200.4100.4120.4060.403b(1)按表格数据格式,表中的a=123;b=0.404;(2)请估计:当次数s很大时,摸到白球的频率将会接近0.4(精确到0.1);(3)请推算:摸到红球的概率是0.6(精确到0.1);(4)试估算:这一个不透明的口袋中红球有15只.【分析】(1)根据频率=频数÷样本总数分别求得a、b的值即可;(2)从表中的统计数据可知,摸到白球的频率稳定在0.4左右;(3)摸到红球的概率为1﹣0.4=0.6;(4)根据红球的概率公式得到相应方程求解即可;【解答】解:(1)a=300×0.41=123,b=606÷1500=0.404;(2)当次数s很大时,摸到白球的频率将会接近0.40;(3)摸到红球的概率是1﹣0.4=0.6;(4)设红球有x个,根据题意得:=0.6,解得:x=15;故答案为:123,0.404;0.4;0.6;15.【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.组成整体的几部分的概率之和为1.23.(7分)如图,在正方形网格中,每个小正方形的边长为1个单位长度.平面直角坐标系xOy的原点O在格点上,x轴、y轴都在格线上.线段AB的两个端点也在格点上.(1)若将线段AB绕点O逆时针旋转90°得到线段A1B1,试在图中画出线段A1B1.(2)若线段A2B2与线段A1B1关于y轴对称,请画出线段A2B2.(3)若点P是此平面直角坐标系内的一点,当点A、B1、B2、P四边围成的四边形为平行四边形时,请你直接写出点P的坐标.【分析】(1)利用网格特点和旋转性质画出点A、B的对应点A1、B1即可;(2)根据关于y轴对称的点的坐标特征写出A2和B2的坐标,然后描点即可;(3)利用平行四边形的判定方法,分类讨论:当AB2为对角线可得到点P1;当AB1为对角线可得到点P2;当B1B2为对角线可得到点P3,然后写出对应的P点坐标.【解答】解:(1)如图,线段A1B1为所作;(2)如图,线段A2B2为所作;(3)点P的坐标为(﹣4,﹣1)或(4,﹣1)或(0,5).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.24.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?【分析】(1)先由对角线互相平分证明四边形ABCD是平行四边形,再由对角互补得出∠ABC=90°,即可得出结论;(2)先求出∠FDC=36°,再求出∠DCO=54°,然后求出∠ODC=54°,即可求出∠BDF.【解答】(1)证明:∵AO=CO,BO=DO∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=54°∴∠BDF=∠ODC﹣∠FDC=18°.【点评】本题考查了矩形的判定与性质、平行四边形的判定、等腰三角形的判定与性质;熟练掌握矩形的判定与性质,并能进行推理计算是解决问题的关键.25.(10分)如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)当M点在M点落在BD的中点时(何处)时,AM+CM的值最小;(2)当AM+EM的值最小时,∠BCM=15°.(3)①求证:△AMB≌△ENB;②当M点在何处时,AM+BM+CM的值最小,并说明理由.【分析】(1)根据“两点之间线段最短”,可得,当M点落在BD的中点时,AM+CM 的值最小;(2)根据轴对称的性质和等腰三角形的性质即可得到结论;(3)根据等边三角形的性质和全等三角形的判定和性质即可得到结论;②根据“两点之间线段最短”,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长【解答】解:(1)当M点落在BD的中点时,A、M、C三点共线,AM+CM的值最小;故答案为:M点落在BD的中点时;(1)AC、BD交点(2)如图,连接CE交BD于M,此时AM+EM的值最小,∵∠ABE=60°,∠ABC=90°,∴∠CBE=150°,∵BE=BC,∴∠BCM=∠BEC=15°,故答案为:15;(3)①∵△ABE是等边三角形,∴BA=BE,∠ABE=60°,∵∠MBN=60°,∴∠MBN﹣∠ABN=∠ABE﹣∠ABN,即∠BMA=∠NBE,在△AMB与△ENB中,,∴△AMB≌△ENB(SAS);②如图,连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,理由如下:连接MN,由(1)知,△AMB≌△ENB,∴AM=EN,∵∠MBN=60°,MB=NB,∴△BMN是等边三角形,∴BM=MN,∴AM+BM+CM=EN+MN+CM,根据“两点之间线段最短”,得EN+MN+CM=EC最短,∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长;【点评】本题考查了正方形的性质,全等三角形的判定与性质,等边三角形的判定与性质,两点之间线段最短,(3)从两点之间线段最短考虑求解是解题的关键.26.(10分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.【分析】(1)先证明四边形AFCE为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;根据勾股定理即可求得AF的长;(2)①分情况讨论可知,当P点在BF上、Q点在ED上时,才能构成平行四边。
2015下期中初二答案
2015-2016学年第一学期期中考试初二数学参考答案及评分标准一、选择题:本题共15小题,每小题3分,共45分.1-5:BDCCB 6-10:DB BAA 11-15:AD AC B二、填空题:本题共5小题,每小题4分,共20分.16、3 17、 一 18、5,35,-5 19、-3 20、2三、解答题21、解:原式=1332---= 32-- …………………………………………………………………………3分22.解:图略 ……………………………………………………………………………………5分 B 1的坐标(-6,2) ……………………………………………………………………8分23、解:△BCD 是等腰三角形理由:由AB=AC 得∠ABC=∠ACB ,因为BD 平分∠ABC ,所以∠DBC=12∠ABC , 因为同理∠DCB=12∠ACB , 所以∠DCB=∠DBC ,所以DB=DC ,即△BCD 是等腰三角形24、解:图略……………………………………………………………………………………5分 D 点三种情况:(﹣2,0);(4,0);(0,﹣4); ………………………………………8分25、解:过点C 作CD ⊥AB ,垂足为D.∵∠CAB=120°,∴∠CAD=60°,又∵CD ⊥AB ,∴∠ADC=90°,∴∠ACD=30°,∵AC=30 m ,∴AD=15 m.根据勾股定理得CD=223015153-=(m),在Rt △BDC 中,BD=2270(153)-=65(m),∴AB=BD-AD=50(m).答:A ,B 两个凉亭之间的距离是50 m.26.解:(1)被开方数扩大或缩小102n 倍,非负数的算术平方根就相应的扩大或缩小10n 倍;或者说成被开方数的小数点向左(或向右)移动2n 位,算术平方根的小数点就向左(或向右)移动n 位;…………………………………………………………………………………5分(2)0206.0≈0.1435; 206≈14.35;20600≈143.5……………………………8分27.解:分三类情况:(1)如图1所示,原来的花圃为Rt △ABC ,其中BC =6m ,AC =8m ,∠ACB =90°.由勾股定理易知AB =10m ,将△ABC 沿直线AC 翻折180°后,得等腰三角形ABD ,此时,AD =10m ,CD =6m .故扩建后的等腰三角形花圃的周长为12+10+10=32(m ).(2)如图2,因为BC =6m ,CD =4m ,所以BD =AB =10m ,在Rt △ACD 中,由勾股定理得AD =2284 =45,此时,扩建后的等腰三角形花圃的周长为45+10+10=20+45(m ).(3)如图3,设△ABD 中DA =DB ,再设CD =x m ,则DA =(x +6)m ,在Rt △ACD 中,由勾股定理得x 2+82=(x +6)2,解得x =37, ∴扩建后等腰三角形花圃的周长=10+2(x +6)=380(m ). 图1668D CB A 图2486BC AD 图3x +6x 68B C D A。
2015-2016学年南京XX学校八年级下期中数学试卷含答案解析
2015-2016学年南京XX学校八年级下期中数学试卷含答案解析一、选择题:(本大题共6小题,每小题2分,共计12分)1.为了了解某校八年级1 000名学生的身高,从中抽取了50名学生并对他们的身高进行统计分析,在这个问题中,总体是指()A.1 000名学生B.被抽取的50名学生C.1 000名学生的身高D.被抽取的50名学生的身高2.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个 B.2个 C.3个 D.4个3.“十次投掷一枚硬币,十次正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件4.若已知分式的值为0,则m的值为()A.±2 B.2 C.0 D.﹣25.代数式,,,中分式有()A.4个 B.3个 C.2个 D.1个6.如图,长方形ABCD中,M为CD中点,今以B、M为圆心,分别以BC长、MC长为半径画弧,两弧相交于P点.若∠PBC=70°,则∠MPC的度数为何?()A.20 B.35 C.40 D.55二、填空题:(本大题共10小题,每小题2分,共计20分)7.3个人站成一排,其中小亮“站在中间”的可能性小亮“站在两边”的可能.(填“大于”、“等于”或“小于”)8.分式与的最简公分母是.9.如图,D、E、F分别是△ABC各边的中点,AH是高,如果ED=5cm,那么HF的长为.10.如图是一枚图钉被抛起后钉尖触地频率和抛掷次数变化趋势图,则一枚图钉被抛起后钉尖触地的概率估计值是.11.为鼓励学生课外阅读,某校制定了“阅读奖励方案”.方案公布后,随机征求了100名学生的意见,并对持“赞成”、“反对”、“弃权”三种意见的人数进行统计,绘制成如图所示的扇形图,则赞成该方案所对应扇形的圆心角的度数为°.12.已知菱形ABCD的两条对角线AC,BD长分别为6cm、8cm,且AE⊥BC,这个菱形的面积S= cm2,AE=cm.13.若x﹣=,则x2+=.14.分式方程的解题步骤是:(1)去分母(2)去括号(3)移项(4)合并同类项(5)“系数化为1”(6)验根,其中可能产生增根的步骤是,产生增根的原因是.15.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF的度数=度.16.如图,是两种品牌的方便面销售增长率折线统计图,则AA牌方便面2003年的销售量2002年的销售量,2002年BB牌方便面的销售量AA牌方便面的销售量(填“高于”“低于”“不一定高于”)三、解答题:(本大题共10小题,共计68分)17.化简:(1)﹣(2)÷(x+2﹣).18.如图,△A1B1C1由△ABC绕某点旋转而成,请你用尺规作图,找出旋转中心O,并用量角器度量出旋转的大小(完成填空).旋转角(∠)是度.19.解方程: +=2.20.如图,在平行四边形ABCD中,点E、F分别在AD、BC边上,且AE=CF,AF与BE交于G,CE与DF交于H.求证:四边形EGFH是平行四边形.21.2015年3月30日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表分数段频数频率50~60160.0860~70400.270~80500.2580~90m0.3590~10024n(1)这次抽取了名学生的竞赛成绩进行统计,其中:m=,n=;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?22.为了改善生态环境,防止水土流失,某村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵树是原计划的倍,结果提前4天完成任务,原计划每天种树多少棵?23.在正方形ABCD中,E是CD上一点,AF⊥AE交CB的延长线于点F,连接DF,分别交AE、AB于点G、P.已知∠BAF=∠BFD.(1)图中存在直角三角形全等,找出其中的一对,并加以证明;(2)证明四边形APED是矩形.24.(1)当整数x为何整数时,分式的值也是整数?(2)化简代数式﹣÷,并直接写出x为何整数时,该代数式的值也为整数.25.观察下列方程以及解的特征:①x+=2+的解为x1=2;②x+=3+的解为x1=3;③x+=4+的解为x1=4;…(1)猜想关于x方程x+=m+的解,并利用“方程解的概念”进行验证;(2)利用(1)结论解分式方程:①y3+=②x+=.26.已知:如图1,点P在线段AB上(AP>PB),C、D、E分别是AP、PB、AB的中点,正方形CPFG和正方形PDHK在直线AB同侧.(1)求证:GC=ED(2)求证:△EHG是等腰直角三角形;(3)若将图1中的射线PB连同正方形PDHK绕点P顺时针旋转一个角度后,其它已知条件不变,如图2,判断△EHG还是等腰直角三角形吗?若是,给予证明;若不是,请说明理由.2015-2016学年江苏省南京XX学校八年级(下)期中数学试卷参考答案与试题解析一、选择题:(本大题共6小题,每小题2分,共计12分)1.为了了解某校八年级1 000名学生的身高,从中抽取了50名学生并对他们的身高进行统计分析,在这个问题中,总体是指()A.1 000名学生B.被抽取的50名学生C.1 000名学生的身高D.被抽取的50名学生的身高【考点】总体、个体、样本、样本容量.【分析】根据总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目,可得答案.【解答】解:某校八年级1 000名学生的身高,从中抽取了50名学生并对他们的身高进行统计分析,在这个问题中,总体是指八年级1 000名学生的身高,故选:C.2.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个 B.2个 C.3个 D.4个【考点】中心对称图形.【分析】根据中心对称的概念对各图形分析判断即可得解.【解答】解:第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.故选:B.3.“十次投掷一枚硬币,十次正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件【考点】随机事件.【分析】根据随机事件的概念可知是随机事件.【解答】解:“十次投掷一枚硬币,十次正面朝上”可能发生,这一事件是随机事件,故选:B.4.若已知分式的值为0,则m的值为()A.±2 B.2 C.0 D.﹣2【考点】分式的值为零的条件.【分析】根据分式的值为零的条件即可求出m的值.【解答】解:由题意可知:,解得:m=﹣2故选(D)5.代数式,,,中分式有()A.4个 B.3个 C.2个 D.1个【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:分式有:,共有2个.故选C.6.如图,长方形ABCD中,M为CD中点,今以B、M为圆心,分别以BC长、MC长为半径画弧,两弧相交于P点.若∠PBC=70°,则∠MPC的度数为何?()A.20 B.35 C.40 D.55【考点】矩形的性质;等腰三角形的性质.【分析】根据等腰三角形两底角相等求出∠BCP,然后求出∠MCP,再根据等边对等角求解即可.【解答】解:∵以B、M为圆心,分别以BC长、MC长为半径的两弧相交于P点,∴BP=BC,MP=MC,∵∠PBC=70°,∴∠BCP===55°,在长方形ABCD中,∠BCD=90°,∴∠MCP=90°﹣∠BCP=90°﹣55°=35°,∴∠MPC=∠MCP=35°.故选:B.二、填空题:(本大题共10小题,每小题2分,共计20分)7.3个人站成一排,其中小亮“站在中间”的可能性小于小亮“站在两边”的可能.(填“大于”、“等于”或“小于”)【考点】可能性的大小.【分析】要求“小亮站在正中间”与“小亮站在两端”这两个事件发生的可能性的大小,只需求出各自所占的比例大小即可得到相应的可能性,比较即可.【解答】解:3个人站成一排,小亮站在那个位置都有可能,“小亮站在正中间”的可能性为,“小亮站在两端”的可能性有,故小亮“站在中间”的可能性<小亮“站在两边”的可能,故答案为:小于.8.分式与的最简公分母是12a2bc.【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式与的分母分别是4ac、6a2b,故最简公分母是12a2bc.故答案为12a2bc.9.如图,D、E、F分别是△ABC各边的中点,AH是高,如果ED=5cm,那么HF的长为5cm.【考点】三角形中位线定理;直角三角形斜边上的中线.【分析】由三角形中位线定理和直角三角形的性质可知,DE=AC=HF.【解答】解:∵点E,D分别是AB,BC的中点,∴DE是三角形ABC的中位线,有DE=AC,∵AH⊥BC,点F是AC的中点,∴HF是Rt△AHC中斜边AC上的中线,有HF=AC,∴FH=DE=5cm.故答案为:5cm.10.如图是一枚图钉被抛起后钉尖触地频率和抛掷次数变化趋势图,则一枚图钉被抛起后钉尖触地的概率估计值是0.46.【考点】利用频率估计概率.【分析】从频率分布直方图上可以看出,数值都集中在46.0%,所以可看出一枚图钉被抛起后钉尖触地的概率估计值.【解答】解:∵从一枚图钉被抛起后钉尖触地频率随抛掷次数变化趋势图可看出数据都集中在46.0%附近.∴一枚图钉被抛起后钉尖触地的概率估计值是0.46.故答案为:0.46.11.为鼓励学生课外阅读,某校制定了“阅读奖励方案”.方案公布后,随机征求了100名学生的意见,并对持“赞成”、“反对”、“弃权”三种意见的人数进行统计,绘制成如图所示的扇形图,则赞成该方案所对应扇形的圆心角的度数为252°.【考点】扇形统计图.【分析】利用360°乘以对应的比例即可求解.【解答】解:表示赞成的百分比是1﹣10%﹣20%=70%,则赞成该方案所对应扇形的圆心角的度数为:360°×70%=252°.故答案是:252.12.已知菱形ABCD的两条对角线AC,BD长分别为6cm、8cm,且AE⊥BC,这个菱形的面积S= 24cm2,AE=cm.【考点】菱形的性质.【分析】根据菱形的性质可得AO=AC=3cm,BO=BD=4cm,且AO⊥BO,利用勾股定理可计算出AB长,然后利用菱形的面积公式可得S=AC×BD,进而可得答案,再利用面积计算出AE即可.【解答】解:根据题意,设对角线AC、BD相交于O,∵四边形ABCD是菱形,∴AO=AC=3cm,BO=BD=4cm,且AO⊥BO,∴AB==5cm,∵菱形对角线相互垂直,∴菱形面积是S=AC×BD=24cm,∴菱形的高是AE=cm.故答案为:24,.13.若x﹣=,则x2+=.【考点】完全平方公式.【分析】把已知条件两边平方,然后根据完全平方公式展开整理即可得解.【解答】解:∵x﹣=,∴(x﹣)2=,即x2﹣2+=,∴x2+=.故答案为:.14.分式方程的解题步骤是:(1)去分母(2)去括号(3)移项(4)合并同类项(5)“系数化为1”(6)验根,其中可能产生增根的步骤是(1),产生增根的原因是(1).【考点】分式方程的增根.【分析】根据分式方程的解题步骤,可得出方程两边都乘以最简公分母时,未考虑是否为0,则产生增根,故得出答案.【解答】解:可能产生增根的步骤是(1),产生增根的原因是(1),故答案为(1),(1).15.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF的度数=60度.【考点】线段垂直平分线的性质;菱形的性质.【分析】根据菱形的性质求出∠ADC=100°,再根据垂直平分线的性质得出AF=DF,从而计算出∠CDF的值.【解答】解:连接BD,BF∵∠BAD=80°∴∠ADC=100°又∵EF垂直平分AB,AC垂直平分BD∴AF=BF,BF=DF∴AF=DF∴∠FAD=∠FDA=40°∴∠CDF=100°﹣40°=60°.故答案为:60.16.如图,是两种品牌的方便面销售增长率折线统计图,则AA牌方便面2003年的销售量低于2002年的销售量,2002年BB牌方便面的销售量高于AA牌方便面的销售量(填“高于”“低于”“不一定高于”)【考点】折线统计图.【分析】根据折线统计图可以直接解答本题.【解答】解:由折线统计图可得,AA牌方便面2003年的销售量低于2002年的销售量,2002年BB牌方便面的销售量高于AA牌方便面的销售量,故答案为:低于,高于.三、解答题:(本大题共10小题,共计68分)17.化简:(1)﹣(2)÷(x+2﹣).【考点】分式的混合运算.【分析】(1)首先通分,然后利用同分母的分式加法法则求解;(2)首先对括号内的分式进行通分相加,然后把除法转化为乘法,然后进行约分即可.【解答】解:(1)原式=+===1;(2)原式=÷=÷=•=.18.如图,△A1B1C1由△ABC绕某点旋转而成,请你用尺规作图,找出旋转中心O,并用量角器度量出旋转的大小(完成填空).旋转角(∠COC1)是90度.【考点】作图﹣旋转变换.【分析】(1)利用旋转的性质,连接AA1,CC1,作它们的垂直平分线,则它们的交点为旋转中心O;(2)利用旋转的性质得到∠COC1为旋转角,然后测得∠COC1即可.【解答】解:如图,点O为所作.∠COC1为旋转角,测得∠COC1=90°.故答案为COC1,90.19.解方程: +=2.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+9﹣12x+21=6x﹣18,移项合并得:﹣16x=﹣48,解得:x=3.20.如图,在平行四边形ABCD中,点E、F分别在AD、BC边上,且AE=CF,AF与BE交于G,CE与DF交于H.求证:四边形EGFH是平行四边形.【考点】平行四边形的判定与性质.【分析】先证明四边形AFCE是平行四边形,得AF∥EC,再证明四边形EBFD是平行四边形,得∠EBF=∠EDF,易证明△BGF≌△HED,则GF=EH,根据一组对边平行且相等的四边形是平行四边得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AE∥FC,∵AE=FC,∴四边形AFCE是平行四边形,∴AF∥EC,∵AD=BC,AE=FC,∴ED=BF,∵ED∥BF,∴四边形EBFD是平行四边形,∴∠EBF=∠EDF,∵AF∥EC,AD∥BC,∴∠AFB=∠ECB,∠ECB=∠CED,∴∠AFB=∠CED,在△BGF和△DHE中,∵,∴△BGF≌△HED(ASA),∴GF=EH,∴四边形EGFH是平行四边形.21.2015年3月30日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表分数段频数频率50~60160.0860~70400.270~80500.2580~90m0.3590~10024n(1)这次抽取了200名学生的竞赛成绩进行统计,其中:m=70,n=0.12;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)用第一个分数段的频数除以它的频率可得到调查的总人数,然后用总人数成以0.35得到m的值,用24除以总人数可得到n的值;(2)利用80﹣90的频数为70可补全频数分布直方图;(3)估计样本估计总体,用1500乘以前面两分数段的频率之和可估计出该校安全意识不强的学生数.【解答】解:(1)16÷0.08=200,m=200×0.35=70,n=24÷200=0.12;故答案为200,70;0.12;(2)如图,(3)1500×(0.08+0.2)=420,所以该校安全意识不强的学生约有420人.22.为了改善生态环境,防止水土流失,某村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵树是原计划的倍,结果提前4天完成任务,原计划每天种树多少棵?【考点】分式方程的应用.【分析】设原计划每天种树x棵,则实际每天种树为x棵,根据实际比原计划提前4天完成任务,列方程求解.【解答】解:设原计划每天种树x棵,则实际每天种树为x棵,由题意得,﹣=4,解得:x=60,经检验,x=60是原方程的解,且符合题意.答:原计划每天种树60棵.23.在正方形ABCD中,E是CD上一点,AF⊥AE交CB的延长线于点F,连接DF,分别交AE、AB于点G、P.已知∠BAF=∠BFD.(1)图中存在直角三角形全等,找出其中的一对,并加以证明;(2)证明四边形APED是矩形.【考点】正方形的性质;直角三角形全等的判定;矩形的判定.【分析】(1)证得AE=AF,则可证明以上两条线段所在的三角形全等即可;(2)利用正方形的性质以及垂直定义得出∠1=∠3=∠4=∠5,进而利用全等三角形的判定与性质得出AP=DE,进而利用平行四边形的判定以及矩形的判定得出即可.【解答】证明:(1)△ADE≌△ABF;∵四边形ABCD是正方形,∴∠ADE=∠ABC=∠DAB=90°,AD=AB,AD∥BC,AB∥CD,∵AF⊥AE,∴∠EAF=90°,∴∠DAE=∠BAF,在△ADE和△ABF中,,∴△ADE≌△ABF(ASA);(2)∵AF⊥AE,∴∠1+∠2=90°,∵∠2+∠3=90°,∴∠1=∠3,∵AD∥FC,∴∠4=∠5,∵∠1=∠5,∴∠1=∠3=∠4=∠5,在△ADE和△DAP中,,∴△ADE≌△DAP(ASA),∴AP=DE,又∵AP∥DE,∴四边形APED是平行四边形,∵∠PAD=90°,∴平行四边形APED是矩形.24.(1)当整数x为何整数时,分式的值也是整数?(2)化简代数式﹣÷,并直接写出x为何整数时,该代数式的值也为整数.【考点】分式的混合运算;分式的值.【分析】(1)根据题意可以得到当整数x为何整数时,分式的值也是整数;(2)先化简题目中的代数式,可以发现与(1)的关系,从而可以解答本题.【解答】解:(1)若分式的值也是整数,则x+1=±1或x+1=±2,解得,x1=0,x2=﹣2,x3=1,x4=﹣3,即当x为0、﹣2、1或3时,分式的值也是整数;(2)﹣÷===,由(1)知当x为0、﹣2、1或3时,分式的值也是整数,故当x为0、﹣2、1或3时,代数式﹣÷的值也是整数.25.观察下列方程以及解的特征:①x+=2+的解为x1=2;②x+=3+的解为x1=3;③x+=4+的解为x1=4;…(1)猜想关于x方程x+=m+的解,并利用“方程解的概念”进行验证;(2)利用(1)结论解分式方程:①y3+=②x+=.【考点】解分式方程.【分析】(1)根据题意可得方程x+=m+的解为x1=m,x2=,代入检验即可得;(2)①根据y3+=8+可得y3=8,=,可得答案;②令4x﹣8=t,则x=,原方程变形为+2+=,即+=a+,得出=a,即t=2a,得出2x﹣4=2a,解之可得.【解答】解:(1)关于x方程x+=m+的解为x1=m,x2=,验证:当x=m时,左边=m+=右边,∴x=m是该分式方程的解;当x=时,左边=+=+m=右边,∴x=是该分式方程的解;(2)①∵y3+=8+,∴y3=8,=,∴y=2;②令4x﹣8=t,则x=,∴原方程变形为+2+=,+=,+=,即+=a+,则=a,或=,∴t=2a,即4x﹣8=2a,解得:x==.26.已知:如图1,点P在线段AB上(AP>PB),C、D、E分别是AP、PB、AB的中点,正方形CPFG和正方形PDHK在直线AB同侧.(1)求证:GC=ED(2)求证:△EHG是等腰直角三角形;(3)若将图1中的射线PB连同正方形PDHK绕点P顺时针旋转一个角度后,其它已知条件不变,如图2,判断△EHG还是等腰直角三角形吗?若是,给予证明;若不是,请说明理由.【考点】四边形综合题.【分析】(1)由先根据C、D、E分别是AP、PB、AB的中点,易证得CE=DP,继而可证得CP=DE,然后由四边形CPFG和四边形PDHK都是正方形,证得结论;(2)由四边形CPFG和四边形PDHK都是正方形,易得CE=DP=DH,CG=CP=DE,∠GCE=∠EDH=90°,然后由全等三角形的判定定理求出△CEG≌△DHE,由直角三角形的两锐角互补即可解答;(3)连接CE、ED,根据三角形中位线定理及直角三角形的性质可得▱CEDP,再由CE=DP=DH,CG=CP=DE,∠GCE=∠EDH=90°可求出△CEG≌△DHE,再通过等量代换即可解答.【解答】(1)证明:∵C、D、E分别是AP、PB、AB的中点,∴CE=AE﹣AC=AB﹣AP=(AB﹣AP)=BP=DP,∴CE+EP=DP+EP,即CP=DE,∵四边形CPFG和四边形PDHK都是正方形,∴CP=CG,∴GC=ED;(2)证明:∵四边形CPFG和四边形PDHK都是正方形,∴CE=DP=DH,CG=CP=DE,∠GCE=∠EDH=90°,∴在△CEG和△DHE中,,∴△CEG≌△DHE(SAS).∴EG=HE,∠EGC=∠HED而∠EGC+∠CEG=90°,∴∠HED+∠CEG=90°.∴∠GEH=90°.又∵EG=HE,∴△EHG是等腰直角三角形.(3)解:△EHG还是等腰直角三角形.理由如下:连接CE、ED,∵点C、D、E分别是AP、PB及AB的中点,∴CE∥PB,DE∥AP,∴四边形CEDP是平行四边形,∴∠PCE=∠PDE.∴∠GCE=∠EDH,∵CE=BP=DP=DH,CG=CP=AP=DE,∴在△CEG和△DHE中,,∴△CEG≌△DHE(SAS),∴EG=HE,∠EGC=∠HED.如图,设EG和CP相交于M,则∠GEH=∠GED﹣∠HED=∠GMP﹣∠EGC=∠GCM=90°,∴△EHG是等腰直角三角形.2017年5月8日。
2015-2016学年南京市外国语学校八下期中数学试卷
2015-2016学年南京市外国语学校八下期中数学试卷一、选择题(共10小题;共50分)1. 下列图形中,既是轴对称图形又是中心对称图形的是A. B.C. D.2. 下列分式中是最简分式的是A. B. C. D.3. 下列各式从左到右的变形正确的是A. B.C. D.4. 在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是A. 随着抛掷次数的增加,正面向上的频率越来越小B. 当抛掷的次数很大时,正面向上的次数一定占总抛掷次数的C. 不同次数的试验,正面向上的频率可能会不相同D. 连续抛掷次硬币都是正面向上,第次抛掷出现正面向上的概率小于5. 某商场去年月的商品销售总额一共是万元,图①表示的是其中每个月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,下列说法不正确的是A. 月份商场服装部的销售额是万元B. 月份商场服装部的销售额比月份减少了C. 月份商场的商品销售额是万元D. 月份商场服装部的销售额比月份减少了6. 已知四边形是平行四边形,再从①,②,③,④四个条件中,选两个作为补充条件后,使得四边形是正方形,现有下列四种选法,其中错误的是A. 选①②B. 选②③C. 选①③D. 选②④7. 已知矩形的周长为,两条对角线,相交于点,过点作的垂线,分别交两边,于,(不与顶点重合),则以下关于与判断完全正确的一项为A. 与的周长都等于,但面积不一定相等B. 与全等,且周长都为C. 与全等,且周长都为D. 与全等,但它们的周长和面积都不能确定8. 如图,在平行四边形中,,,,分别是各边的中点,在下列四个图形中,阴影部分的面积与其他三个阴影部分面积不相等的是A. B.C. D.9. A,B两地相距千米,两辆汽车均从A开往B,大汽车比小汽车早出发小时,小汽车比大汽车早到分钟,已知小汽车与大汽车的速度之比为,若小汽车的速度为千米/小时,则可列方程为A. B.C. D.10. 如图,在平面直角坐标系中,将平行四边形放置在第一象限,且轴,直线从原点出发沿轴正方向平移,在平移过程中直线被平行四边形截得的线段长度与直线在轴上平移的距离的函数图象如图所示,则平行四边形的面积为A. B. C. D.二、填空题(共12小题;共60分)11. 当时,分式有意义;当时,分式值为.12. 若,则;若,则.13. 请写出一个同时满足下列条件的分式:()分式的值不可能为;()分式有意义时,的取值范围是;()当时,分式的值为.你所写的分式为.14. 不改变分式的值,将分式的分子、分母的各项系数都化为整数,且分子与分母首项都不含“”号:.15. ,,的最简公分母是.16. 当时,关于的方程的根为.17. 若分式方程有增根,则的值是.18. 不透明口袋里有红球个、绿球个和黄球若干个,它们除颜色外都相同,任意摸出一个球是绿色的概率是.()口袋里黄球有个;()任意摸出一个球是红色的概率是.19. 几名同学租一辆面包车前去旅游,面包车的租价为元,出发时又增加了两名同学,结果每个同学比原来少摊了元钱车费.设两名同学来之前共有名同学,则根据题意可列方程.20. 如图,四边形是菱形,是两条对角线的交点,过点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为和时,则阴影部分的面积为.21. 如图,在中,,以斜边为边向外作正方形,且正方形对角线交于点,连接,已知,的长为.22. 观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于的方程(为正整数)的根,你的答案是:.三、解答题(共8小题;共104分)23. 计算:(1);(2).24. 解方程:(1);(2).25. 先化简,再从中选取一个你喜欢的整数的值代入求值.26. 为了解某校八年级学生每天干家务活的平均时间,小颖同学在该校八年级每班随机调查了名学生,统计这些学生年月每天干家务活的平均时间(单位:),绘制成如下统计表(其中 A 表示;B 表示;C 表示,时间取整数):干家务活平均时间频数百分比合计(1)统计表中的;;.(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示.(3)该校八年级共有名学生,求每天干家务活的平均时间在的学生人数.27. 如图,在四边形中,对角线,相交于点,,,且.(1)求证:四边形是矩形.(2)若,,则的度数是多少?28. 如图,在和中,,,,不动,将绕点旋转,连接,,为的中点,连接.(1)如图①,当时,求证:;(2)当时,()的结论是否成立?请结合图②说明理由.29. 一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需天,甲工程队单独工作天后,乙工程队参与合做,两队又共同工作了天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了天完成,乙做另一部分用了天完成,其中,均为正整数,且,,求甲、乙两队各做了多少天? 30. 如图,在中,,,,点从点出发沿方向以的速度向点匀速运动,同时点从点出发沿方向以的速度向点匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点,运动的时间是.过点作于点,连接,.(1)求证:;(2)四边形能够成为菱形吗?如果能,求出相应的值;如果不能,请说明理由;(3)当为何值时,为直角三角形?请说明理由.答案第一部分1. B 【解析】A、是轴对称图形,但不是中心对称图形,故 A 错误;B、是轴对称图形,也是中心对称图形,故 B 正确;C、是中心对称图形,但不是轴对称图形,故 C 错误;D、是轴对称图形,但不是中心对称图形,故 D 错误.2. A 【解析】A、的分子、分母都不能再分解,且不能约分,是最简分式;B、;C、;D、.3. C4. C5. D6. D 【解析】A.由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形是正方形,正确,故本选项不符合题意;B.由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形是正方形,错误,故本选项符合题意;C.由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形是正方形,正确,故本选项不符合题意;D.由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形是正方形,正确,故本选项不符合题意.7. B 【解析】易证,垂直平分,所以.所以.8. B 9. A 10. C第二部分11. ,12. ,13. (答案不唯一)14.15.16.17.18. ,19.20.21.【解析】如图,过点作,过点作,垂足分别为点,.四边形为正方形,,,.,,.在和中,,,,,,.又,四边形为矩形,,,,为等腰直角三角形,,,,则.22. 或【解析】变形为解为或第三部分原式23. (1)原式(2)24. (1)解得:经检验是增根,分式方程无解.(2)方程整理得:即解得:经检验是分式方程的解.25. 原式,,,,,取,原式.26. (1);;(2)选择“百分比”.根据题意画图如下;(3)根据题意得:(名).答:大约有名学生每天干家务活的平均时间是.27. (1),,四边形是平行四边形,,,,四边形是矩形.(2),,,,,四边形是矩形,,,.28. (1),,,在与中,,,,在中,为的中点,,.(2)成立,证明:如图,延长交于,在上截取,,,,,在与中,,,,,,,,,.29. (1)设乙工程队单独完成这项工作需要天,根据题意得:解得:经检验,是原方程的解,且符合题意.答:乙工程队单独完成这项工作需要天.(2)根据题意得:,整理得:.,均为正整数,且,,,且为的倍数,,,.答:甲队做了天,乙队做了天.30. (1)在中,,,.由题意得:,,在中,,,.(2),,,,四边形是平行四边形,当时,四边形是菱形,即,解得:.即当时,平行四边形是菱形.(3)当时,是直角三角形;当时,是直角三角形.理由如下:当时,.,,,,,,,当时,.当时,,四边形是平行四边形,,,是直角三角形,,,,,,,,解得.综上所述,当或时,是直角三角形.第11页(共11 页)。
2014-2015年江苏省南京市钟英中学八年级(下)期中数学试卷(解析版)
三、计算与求解(每小题 8 分,共 16 分) 17. (8 分)化简: (1) (1+ (2) )÷ . .
第 3 页(共 23 页)
18. (4 分)解分式方程: 19. (4 分)先化简,再求值: (1﹣ 1=0. 四、动手操作(共 6 分)
. )÷ ﹣ ,其中 x 满足 x2﹣x﹣
20. (6 分)平面直角坐标系中,有一 Rt△ABC,且 A(﹣1,3) ,B(﹣3,﹣1) , C(﹣3,3) ,已知△A1AC1 是由△ABC 旋转得到的. (1)请写出旋转中心的坐标是 ,旋转角是 度;
23. (6 分)甲、乙两商场自行定价销售某一商品. (1)甲商场将该商品提价 15%后的售价为 1.15 元,则该商品在甲商场的原价为 元; (2)乙商场将该商品提价 20%后,用 6 元钱购买该商品的件数比没提价前少买 1 件,求该商品在乙商场的原价是多少? 24. (6 分)如图,在一张矩形纸片 ABCD 中,AB=4,BC=8,点 E,F 分别在 AD, BC 上, 将纸片 ABCD 沿直线 EF 折叠,使点 C 与点 A 重合,点 D 落在点 G 处, 求线段 BF 的长.
2014-2015 学年江苏省南京市钟英中学八年级(下)期中数学试 卷
一、选择题(每题有且仅有一个正确答案,每题 2 分,共 12 分) 1. (2 分)使分式 A.x≤3 2. (2 分)分式 A. 有意义的 x 的取值范围是( B.x≥3 C.x≠3 ) D. ) D.x=3
与下列分式相等的是( B. C.
15. (2 分)若关于 x 的分式方程
无解,则 m 的值是
.
16. (2 分)如图,在 Rt△ABC 中,∠C=90°,AC=BC=6cm,点 P 从点 B 出发,沿 BA 方向以每秒 cm 的速度向终点 A 运动;同时,动点 Q 从点 C 出发沿 CB
南京市XX中学八年级下期中数学试卷及答案-精选
2015-2016学年江苏省南京XX中学八年级(下)期中数学试卷一、选择题.(每题2分,共12分)1.完成下列任务,宜用抽样调查的是()A.调查你班同学的年龄情况B.了解你所在学校男、女生人数C.奥运会上对参赛运动员进行的尿样检查D.考察一批炮弹的杀伤半径2.若把分式中的x、y都扩大3倍,则分式的值()A.扩大3倍B.扩大9倍C.不变D.缩小到原来的3.下列事件是随机事件的是()A.在标准大气压下,温度低于0℃时冰融化B.小明骑车经过某个十字路口时遇到红灯C.地球上海洋面积大于陆地面积D.如果a、b都是实数,那么a+b=b+a4.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A.110°B.80°C.40°D.30°5.调查某小区内30户居民月人均收入情况,制成如下频数分布直方图,且人均收入在1 200~1 240元的频数是()A.12 B.13 C.14 D.156.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°二、填空题.(共10小题,满分20分)7.当x 时,分式有意义.8.已知分式的值为0,那么x的值为.9.分式,的最简公分母是.10.袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红球的可能性(选填“大于”“小于”或“等于”)是白球的可能性.11.化简: = .12.菱形的周长为20cm,较短一条对角线的长是6cm,则这个菱形的另一条对角线长为 cm.13.某中学要了解初二学生的视力情况,在全校初二年级中抽取25名学生进行检测,在这个问题中,样本是.14.直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE= .15.菱形OABC在平面直角坐标系中的位置如图所示.∠AOC=45°,OC=,则点B的坐标为.16.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为.三、解答题(共68分)17.计算:(1)÷(﹣6x2y);(2)•;(3)+(4)﹣.18.某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘,商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:(1)完成上述表格:(2)请估计当n很大时,频率将会接近.假如你去转动转盘一次,你获得“洗衣粉”的概率估计值是.(结果精确到0.1)19.如图,点E是正方形ABCD边BC延长线上的一点,且CE=AC,求∠E的度数.20.先化简(1﹣)÷﹣1,再从﹣2≤x≤2的范围内选取一个合适的整数x代入求值.21.某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目.为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)扇形统计图中“足球”所对应扇形的圆心角为度;(4)该校共有1 200名学生,请估计全校有多少学生喜爱篮球?22.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.23.辨析纠错已知:如图,△ABC中,AD是∠BAC的平分线,DE∥AC,DF∥AB.求证:四边形AEDF是菱形.对于这道题,小明是这样证明的:证明:∵AD平分∠BAC,∴∠1=∠2(角平分线的定义).∵DE∥AC,∴∠2=∠3(两直线平行,内错角相等).∴∠1=∠3(等量代换).∴AE=DE(等角对等边).同理可证:AF=DF,∴四边形AEDF是菱形(菱形定义).老师说小明的证明过程有错误.(1)请你帮小明指出他的错误是什么.(2)请你帮小明做出正确的解答.24.如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC和外角的平分线,BE⊥AE.(1)求证:DA⊥AE;(2)试判断AB与DE是否相等?并证明你的结论.25.我们可以通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例,请补充完整原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.(1)思路梳理∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线.根据,易证△AFG≌,得EF=BE+DF.(2)类比引申如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系时,仍有EF=BE+DF.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.2015-2016学年江苏省南京XX中学八年级(下)期中数学试卷参考答案与试题解析一、选择题.(每题2分,共12分)1.完成下列任务,宜用抽样调查的是()A.调查你班同学的年龄情况B.了解你所在学校男、女生人数C.奥运会上对参赛运动员进行的尿样检查D.考察一批炮弹的杀伤半径【考点】全面调查与抽样调查.【分析】根据抽样调查和全面调查的特点即可作出判断.【解答】解:A、B、C选项中,因涉及人数较少,范围较小,适用普查;D、考察一批炮弹的杀伤半径,调查具有破坏性,所以适用抽样调查,故选:D.2.若把分式中的x、y都扩大3倍,则分式的值()A.扩大3倍B.扩大9倍C.不变D.缩小到原来的【考点】分式的基本性质.【分析】根据分式的分子分母都乘以或除以同一个不为0的数分式的值不变,可得答案.【解答】解:若把分式中的x、y都扩大3倍,则分式的值不变,故选:C.3.下列事件是随机事件的是()A.在标准大气压下,温度低于0℃时冰融化B.小明骑车经过某个十字路口时遇到红灯C.地球上海洋面积大于陆地面积D.如果a、b都是实数,那么a+b=b+a【考点】随机事件.【分析】随机事件就是可能发生,也可能不发生的事件,依据定义即可判断.【解答】解:A、在标准大气压下,温度低于0℃时冰融化是不可能事件,选项不符合题意;B、小明骑车经过某个十字路口时遇到红灯,是随机事件,选项符合题意;C、地球上海洋面积大于陆地面积,是必然事件,选项不符合题意;D、如果a、b都是实数,那么a+b=b+a是必然事件,选项不符合题意.故选B.4.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A.110°B.80°C.40°D.30°【考点】旋转的性质.【分析】首先根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,即可得到∠A′=40°,再有∠B′=110°,利用三角形内角和可得∠A′CB′的度数,进而得到∠ACB的度数,再由条件将△ABC绕着点C顺时针旋转50°后得到△A′B′C′可得∠ACA′=50°,即可得到∠BCA′的度数.【解答】解:根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,∵∠A=40°,∴∠A′=40°,∵∠B′=110°,∴∠A′CB′=180°﹣110°﹣40°=30°,∴∠ACB=30°,∵将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,∴∠ACA′=50°,∴∠BCA′=30°+50°=80°,故选:B.5.调查某小区内30户居民月人均收入情况,制成如下频数分布直方图,且人均收入在1 200~1 240元的频数是()A.12 B.13 C.14 D.15【考点】频数(率)分布直方图.【分析】根据频数分布直方图第三组数据可得.【解答】解:由频数分布直方图知,人均收入在1 200~1 240元的频数是13,故选:B.6.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°【考点】翻折变换(折叠问题);菱形的性质.【分析】连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.【解答】解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故选:B.二、填空题.(共10小题,满分20分)7.当x ≠﹣3 时,分式有意义.【考点】分式有意义的条件.【分析】直接利用分式的定义分析得出答案.【解答】解:∵分式有意义,∴x+3≠0,解得:x≠﹣3.故答案为:≠﹣3.8.已知分式的值为0,那么x的值为 2 .【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x﹣2=0,且x+1≠0,再解可得答案.【解答】解:由题意得:x﹣2=0,且x+1≠0,解得:x=2,故答案为:2.9.分式,的最简公分母是6x3y2z .【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,的分母分别是3xy2、2x3z,故最简公分母是6x3y2z;故答案为6x3y2z.10.袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红球的可能性大于(选填“大于”“小于”或“等于”)是白球的可能性.【考点】可能性的大小.【分析】根据“哪种球的数量大哪种球的可能性就打”直接确定答案即可.【解答】解:∵袋子里有5只红球,3只白球,∴红球的数量大于白球的数量,∴从中任意摸出1只球,是红球的可能性大于白球的可能性.故答案为:大于.11.化简: = .【考点】约分.【分析】直接利用平方差公式将分母分解因式,进而化简即可.【解答】解: ==.故答案为:.12.菱形的周长为20cm,较短一条对角线的长是6cm,则这个菱形的另一条对角线长为8 cm.【考点】菱形的性质.【分析】根据菱形的性质,先求菱形的边长,利用勾股定理求另一条对角线的长度.【解答】解:如图,菱形ABCD中,BD=6,∴AC⊥BD,∵菱形的周长为20,BD=6,∴AB=20÷4=5,BO=3,∴AO==4,∴AC=8.则这个菱形的另一条对角线长为8 cm.故答案为:8.13.某中学要了解初二学生的视力情况,在全校初二年级中抽取25名学生进行检测,在这个问题中,样本是抽取25名学生的视力情况.【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:某中学要了解初二学生的视力情况,在全校初二年级中抽取25名学生进行检测,在这个问题中,样本是抽取25名学生的视力情况,故答案为:抽取25名学生的视力情况.14.直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE= 3 .【考点】三角形中位线定理;矩形的判定与性质.【分析】由三角形中位线定理得到DF=BC;然后根据直角三角形斜边上的中线等于斜边的一半得到AE=BC,则DF=AE.【解答】解:如图,∵在直角△ABC中,∠BAC=90°,D、F分别为AB、AC的中点,∴DF是△ABC的中位线,∴DF=BC.又∵点E是直角△ABC斜边BC的中点,∴AE=BC,∵DF=3,∴DF=AE.故填:3.15.菱形OABC在平面直角坐标系中的位置如图所示.∠AOC=45°,OC=,则点B的坐标为(+1,1).【考点】菱形的性质;坐标与图形性质.【分析】根据菱形的性质,作CD⊥x轴,先利用三角函数求出OD、CD的长度,从而得出C点坐标,然后利用菱形的性质求得点B的坐标.【解答】解:由题意可得OA=OC=,∠AOC=45°,∴CD=0Csin45°=1,OD=OCcos45°=1,点C的坐标为(1,1),则点B的坐标为(+1,1).故答案为:(+1,1).16.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为 2 .【考点】轴对称﹣最短路线问题;等边三角形的性质;正方形的性质.【分析】先求得正方形的边长,依据等边三角形的定义可知BE=AB=2,连结BP,依据正方形的对称性可知PB=PD,则PE+PD=PE+BP.由两点之间线段最短可知:当点B、P、E在一条直线上时,PE+PD有最小值,最小值为BE的长.【解答】解:连结BP.∵ABCD为正方形,面积为4,∴正方形的边长为2.∵△ABE为等边三角形,∴BE=AB=2.∵ABCD为正方形,∴△ABP与△ADP关于AC对称.∴BP=DP.∴PE+PD=PE+BP.由两点之间线段最短可知:当点B、P、E在一条直线上时,PE+PD有最小值,最小值=BE=2.故答案为:2.三、解答题(共68分) 17.计算: (1)÷(﹣6x 2y ); (2)•;(3)+(4)﹣.【考点】分式的混合运算.【分析】(1)根据分式除法法则即可求出答案.(2)先将分子分母进行因式分解,然后利用分式的基本性质即可求出答案 (3)利用分式加减法则即可求出答案(4)根据分式的加减运算法则即可求出答案. 【解答】解:(1)原式=×=﹣(2)原式=×=(3)原式=﹣==a+b (4)原式=﹣=﹣18.某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘,商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:(1)完成上述表格:(2)请估计当n 很大时,频率将会接近 0.6 .假如你去转动转盘一次,你获得“洗衣粉”的概率估计值是 0.6 .(结果精确到0.1)【考点】利用频率估计概率. 【分析】(1)根据频率的定义计算n=298时的频率和频率为0.59时的频数;(2)从表中频率的变化,可得到估计当n 很大时,频率将会接近0.6,然后根据利用频率估计概率得“可乐”的概率约是0.6;【解答】解:(1):(2)估计当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“可乐”的概率约是0.6;故答案为:0.6,472;0.6,0.6.延长线上的一点,且CE=AC ,求∠E 的度数.19.如图,点E是正方形ABCD边BC【考点】正方形的性质;等腰三角形的性质.【分析】根据等边对等角的性质可得∠E=∠CAE,然后根据正方形的对角线平分一组对角以及三角形的一个外角等于与它不相邻的两个内角的和列式求出∠E=22.5°.【解答】解:∵CE=AC,∴∠E=∠CAE,∵AC是正方形ABCD的对角线,∴∠ACB=45°,∴∠E+∠CAE=45°,∴∠E=×45°=22.5°.20.先化简(1﹣)÷﹣1,再从﹣2≤x≤2的范围内选取一个合适的整数x代入求值.【考点】分式的化简求值.【分析】首先对括号内的分式进行通分相减,然后把除法转化为乘法,计算乘法即可化简,最后代入数值计算即可.【解答】解:原式=•﹣1=•﹣1=x﹣1.∵x≠0或1或﹣2或2.且﹣2≤x≤2而x是整数.∴x=﹣1.当x=﹣1时,原式=﹣1﹣1=﹣2.21.某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目.为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)扇形统计图中“足球”所对应扇形的圆心角为108 度;(4)该校共有1 200名学生,请估计全校有多少学生喜爱篮球?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用喜欢跳绳的人数除以其所占的百分比,即可求得被调查的总人数;(2)用总人数乘以足球所占的百分比即可求得喜欢足球的人数,用总数减去其他各小组的人数即可求得喜欢跑步的人数,从而补全条形统计图;(3)用360度乘以样本中喜欢足球人数占总人数的比例;(4)用样本估计总体,即可确定最喜爱篮球的人数.【解答】解:(1)观察条形统计图与扇形统计图可知:喜欢跳绳的有10人,占25%,故总人数有10÷25%=40人;(2)喜欢足球的有40×30%=12人,喜欢跑步的有40﹣10﹣15﹣12=3人,故条形统计图补充为:(3)扇形统计图中“足球”所对应扇形的圆心角为360°×=108°,故答案为:108;(4)全校最喜爱篮球的人数=1200×=450,答:估计全校有450名学生喜爱篮球.22.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.【考点】平行四边形的判定与性质.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【解答】证明:如图,连接BD设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,OA﹣AE=OC﹣CF,∴OE=OF.∴四边形BEDF是平行四边形.23.辨析纠错已知:如图,△ABC中,AD是∠BAC的平分线,DE∥AC,DF∥AB.求证:四边形AEDF是菱形.对于这道题,小明是这样证明的:证明:∵AD平分∠BAC,∴∠1=∠2(角平分线的定义).∵DE∥AC,∴∠2=∠3(两直线平行,内错角相等).∴∠1=∠3(等量代换).∴AE=DE(等角对等边).同理可证:AF=DF,∴四边形AEDF是菱形(菱形定义).老师说小明的证明过程有错误.(1)请你帮小明指出他的错误是什么.(2)请你帮小明做出正确的解答.【考点】菱形的判定.【分析】(1)有一组邻边相等的平行四边形是菱形,即可得出答案;(2)求出四边形是平行四边形,再证出AE=DE即可.【解答】解:(1)小明错用了菱形的定义.(2)改正:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠1=∠2(角平分线的定义).∵DE∥AC,∴∠2=∠3(两直线平行,内错角相等).∴∠1=∠3(等量代换).∴AE=DE,∴平行四边形AEDF是菱形.24.如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC和外角的平分线,BE⊥AE.(1)求证:DA⊥AE;(2)试判断AB与DE是否相等?并证明你的结论.【考点】矩形的判定;角平分线的性质;等腰三角形的性质.【分析】(1)根据角平分线的性质,及∠BAC+∠BAF=180°可求出∠DAE=90°,即DA⊥AE;(2)要证AB=DE,需证四边形AEBD是矩形,由AB=AC,AD为∠BAC的角平分线,可知AD⊥BC,又因为DA⊥AE,BE⊥AE故,所以∠AEB=90°,∠DAE=90°即证四边形AEBD是矩形.【解答】(1)证明:∵AD平分∠BAC,∴∠BAD=∠BAC,又∵AE平分∠BAF,∴∠BAE=∠BAF,∵∠BAC+∠BAF=180°,∴∠BAD+∠BAE=(∠BAC+∠BAF)=×180°=90°,即∠DAE=90°,故DA⊥AE.(2)解:AB=DE.理由是:∵AB=AC,AD平分∠BAC,∴AD⊥BC,故∠ADB=90°∵BE⊥AE,∴∠AEB=90°,∠DAE=90°,故四边形AEBD是矩形.∴AB=DE.25.我们可以通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例,请补充完整原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.(1)思路梳理∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线.根据SAS ,易证△AFG≌△AFG ,得EF=BE+DF.(2)类比引申如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系∠B+∠D=180°时,仍有EF=BE+DF.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.【考点】四边形综合题.【分析】(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,再证明△AFG≌△AFE进而得到EF=FG,即可得EF=BE+DF;(2)∠B+∠D=180°时,EF=BE+DF,与(1)的证法类同;(3)根据△AEC绕点A顺时针旋转90°得到△ABE′,根据旋转的性质,可知△AEC≌△ABE′得到BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,根据Rt△ABC中的,AB=AC得到∠E′BD=90°,所以E′B2+BD2=E′D2,证△AE′D≌△AED,利用DE=DE′得到DE2=BD2+EC2.【解答】解:(1)∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠FAG,∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线,在△AFE和△AFG中,,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF,故答案为:SAS;△AFG;(2)∠B+∠D=180°时,EF=BE+DF;∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠FAG,∵∠ADC+∠B=180°,∴∠FDG=180°,点F、D、G共线,在△AFE和△AFG中,,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF;(3)猜想:DE2=BD2+EC2,证明:连接DE′,根据△AEC绕点A顺时针旋转90°得到△ABE′,∴△AEC≌△ABE′,∴BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,在Rt△ABC中,∵AB=AC,∴∠ABC=∠ACB=45°,∴∠ABC+∠ABE′=90°,即∠E′BD=90°,∴E′B2+BD2=E′D2,又∵∠DAE=45°,∴∠BAD+∠EAC=45°,∴∠E′AB+∠BAD=45°,即∠E′AD=45°,在△AE′D和△AED中,,∴△AE′D≌△AED(SAS),∴DE=DE′,∴DE2=BD2+EC2.2017年5月4日。
人教版江苏省南京市八年级下学期期中数学试卷【解析版】
江苏省南京市钟英中学八年级(下)期中数学试卷一、选择题(每题有且仅有一个正确答案,每题2分,共12分)1.使分式有意义的x的取值范围是( )A.x≤3B.x≥3C.x≠3D.x=32.分式与下列分式相等的是( )A.B.C.D.3.中学生骑电动车上学给交通安全带来隐患,为了解某中学2500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法正确的是( )A.调查方式是普查B.该校只有360个家长持反对态度C.样本是360个家长D.该校约有90%的家长持反对态度4.正方形具有的性质中,菱形不一定具有的性质是( )A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分一组对角5.如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为( )A.45°B.55°C.60°D.75°6.如图,矩形ABCD的面积为10cm2,它的两条对角线交于点O,以AB,AO为两邻边作平行四边形AOC1B,平行四边形AOC1B的对角线交BD于点O1,同样以AB,AO1为两邻边作平行四边形AO1C2B.…,依此类推,则平行四边形AO4C5B的面积为( )[来源:]A.cm2B.cm2C.cm2D.cm2二、填空题(每题2分,共20分)7.当x=__________时,分式的值为零.8.化简:=__________.9.一只不透明的袋子中有1个白球、1个红球和2个黄球,这些球除颜色不同外其它都相同.搅均后从中任意摸出1个球,摸出白球可能性__________摸出黄球可能性.(填“等于”或“小于”或“大于”).10.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加__________条件,才能保证四边形EFGH是矩形.11.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=__________.12.为了解某校九年级女生1分钟仰卧起坐的次数,从中随机抽查了50名女生参加测试,被抽查的女生中有90%的女生次数不小于30次,并绘制成频数分布直方图(如图),那么仰卧起坐的次数在40~45的频率是__________.13.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m﹣2]的一次函数是正比例函数,则关于x的方程的解为__________.14.如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD 的周长是__________.15.若关于x的分式方程无解,则m的值是__________.16.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为正方形,则t的值为__________.三、计算与求解(每小题8分,共16分)17.化简:(1)(1+)÷.(2).18.解分式方程:.19.先化简,再求值:(1﹣)÷﹣,其中x满足x2﹣x﹣1=0.四、动手操作(共6分)20.平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.(1)请写出旋转中心的坐标是__________,旋转角是__________度;(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形.五、解决问题(每题6分,共30分)21.为了解中考体育科目训练情况,改进训练方法,减轻学生负担,某县教育局从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A 级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如图两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是__________;(2)图中∠α的度数是__________,并把图2条形统计图补充完整;(3)全县九年级共有学生8500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为__________.22.如图,在正方形ABCD内有一点P满足AP=AB,PB=PC,连接AC、PD.求证:(1)△APB≌△DPC;(2)∠BAP=2∠PAC.[来源:学科网]23.甲、乙两商场自行定价销售某一商品.(1)甲商场将该商品提价15%后的售价为1.15元,则该商品在甲商场的原价为__________元;(2)乙商场将该商品提价20%后,用6元钱购买该商品的件数比没提价前少买1件,求该商品在乙商场的原价是多少?24.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,使点C与点A重合,点D落在点G处,求线段BF的长.25.甲、乙两个家庭同去一家粮店购买大米两次.两次大米的售价有变化,但两个家庭的购买方式不同,其中甲家庭每次总是买20千克大米,而乙家庭每次用去20元,商店也按价计算卖给乙家庭.设前后两次的米价分别是每千克m元和n元(m>0,n>0,m≠n),请问谁的购买方式合算?六、探究与思考(26题6分,27题10分,共16分)26.邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n次操作后,余下的四边形是菱形,则称原平行四边形为n阶准菱形.例如:如图,▱ABCD 中,若AB=1,BC=2,则▱ABCD为1阶准菱形.(1)邻边长分别为2和3的平行四边形是2阶准菱形吗?说明理由;(2)操作、探究与计算:①已知▱ABCD的邻边长分别为1,a(a>1),且是3阶准菱形,请画出▱ABCD及裁剪线的示意图,并在图形下方写出a的值;②已知▱ABCD的邻边长分别为a,b(a>b),满足a=6b+r,b=5r,请写出▱ABCD是几阶准菱形.27.已知,四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P、G不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.(1)如图1,当点P与点G分别在线段BC与线段AD上时.①求证:DG=2PC;②求证:四边形PEFD是菱形;(2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD 是怎样的特殊四边形,并证明你的猜想.2014-2015学年江苏省南京市钟英中学八年级(下)期中数学试卷一、选择题(每题有且仅有一个正确答案,每题2分,共12分)1.使分式有意义的x的取值范围是( )A.x≤3B.x≥3C.x≠3D.x=3考点:分式有意义的条件.分析:根据分母为零,分式无意义;分母不为零,分式有意义,可得x﹣3≠0,解可得答案.解答:解:由题意得:x﹣3≠0,解得:x≠3.故选:C.点评:此题主要考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.分式与下列分式相等的是( )A.B.C.D.考点:分式的基本性质.分析:分式的分子、分母及本身的符号,任意改变其中的两个,分式的值不变.据此作答.解答:解:原分式=﹣=.故选B.点评:要注意本题中分式的负号的位置不同时,其他系数的符号的变化.3.中学生骑电动车上学给交通安全带来隐患,为了解某中学2500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法正确的是( )A.调查方式是普查B.该校只有360个家长持反对态度C.样本是360个家长D.该校约有90%的家长持反对态度考点:全面调查与抽样调查;总体、个体、样本、样本容量.分析:根据抽查与普查的定义以及用样本估计总体解答即可.解答:解:A.共2500个学生家长,从中随机调查400个家长,调查方式是抽样调查,故本项错误;B.在调查的400个家长中,有360个家长持反对态度,该校只有2500×=2250个家长持反对态度,故本项错误;C.样本是360个家长对“中学生骑电动车上学”的态度,故本项错误;D.该校约有90%的家长持反对态度,本项正确,故选:D.点评:本题考查了抽查与普查的定义以及用样本估计总体,这些是基础知识要熟练掌握.4.正方形具有的性质中,菱形不一定具有的性质是( )A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分一组对角[来源:学。
2015-2016学年度第二学期期中联考测试卷八年级数学参考答案
.405256三、解答题三、解答题 17.(1) 213x x -+£ …………………………………………………………1分231x x -£-………………………………………………………2分 2x -£ ………………………………………………………3分 2x ³-………………………………………………………4分(2)解不等式①得:3-³x …………………………………………………………1分解不等式②得:x < 2…………………………………………………………………………………………………………………………2分 在同一数轴上分别表示出它们的解集为在同一数轴上分别表示出它们的解集为 …………………………3分∴原不等式组的解集是23<£-x …………………………………………4分(3)原式)原式 =()24129x a a --+………………………………………………………2分=()223x a -- …………………………………………………………4分18.原式.原式 =[](1)43(1)x m m --- …………………………………………2分= (1)(73)x m m -- ………………………………………………3分∴当3, 32x m ==时,原式时,原式 =()()3317332´-´-´………………………………………… 4分 =6- ………………………………………5分19.①点B 的坐标是(-4,-3);………1分②画出△O 1A 1B 1, ………1分 点B 1的坐标是(-4,2);………1分 ③画出旋转后的△OA 2B 2,………2分 点B 2的坐标是(3,-4)。
………1分(注:每一个坐标1分,第一个画图1分,第二个画图2分,共6分,能画准确图形,坐标要准确。
)0 1 2 3 4 –1 –2 –3 –4 图7 2015-2016学年度第二学期期中联考测试卷八年级数学 参考答案一、选择题一、选择题DABCA DCCDC BB 二、填空题二、填空题13.()241x -14.6º15.2x <16DECBA20.(1)证明:∵)证明:∵ DE 垂直平分AB ,∠A=30º,∠ABC=60º∴ EA=EB ……………………1分 ∴∠ABE=∠A=30º∴∠EBC=60º —30º30º=30º=30º…………………2分 在△EBC 中,∠C=90º ,∠EBC=30º∴EB=2CE …………………3分 ∵ EA=EB ∴AE=2CE …………………4分 (2)证明:∵∠ABE=∠EBC ∴EB 平分∠ABC ………………………5分 又∵AC ⊥BC ,ED ⊥AB ∴ED=EC ………………………6分 (注:其他正确证法可类似按点给分。
期中考试】___2015-2016年八年级下期中数学试卷含答案解析
期中考试】___2015-2016年八年级下期中数学试卷含答案解析2015-2016学年___八年级(下)期中数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.要使分式的值为 $-\frac{1}{2}$,则 $x$ 的值为()A。
$x=1$。
B。
$x=2$。
C。
$x=-1$。
D。
$x=-2$2.下列说法正确的是()A。
对角线互相垂直的四边形是菱形B。
对角线相等的四边形是矩形C。
三条边相等的四边形是菱形D。
三个角是直角的四边形是矩形3.运用分式的性质,下列计算正确的是()A。
$\frac{3}{4} \div \frac{6}{5} = \frac{5}{8}$。
B。
$\frac{2}{3} \div \frac{1}{4} = \frac{1}{6}$。
C。
$\frac{5}{6} \times \frac{1}{4} = \frac{5}{24}$。
D。
$\frac{2}{3} + \frac{3}{4} = \frac{17}{12}$。
4.一个凸五边形的内角和为()A。
$360^\circ$。
B。
$540^\circ$。
C。
$720^\circ$。
D。
$900^\circ$5.根据下列表格对应值,判断关于 $x$ 的方程$ax^2+bx+c=0$($a\neq 0$)的一个解 $x$ 的取值范围为()begin{array}{|c|c|}hlinex & ax^2+bx+c \\hline1.1 & -0.59 \\hline1.2 & 0.84 \\hline1.3 &2.29 \\hline1.4 & 3.76 \\hlineend{array}A。
$-0.59<x<0.84$。
B。
$1.1<x<1.2$。
【精品】南京市XX中学2015-2016年八年级下期中数学试卷含答案解析
南京市XX中学2015-2016年八年级下期中数学试卷含答案解析一、选择题.(每题2分,共12分)1.完成下列任务,宜用抽样调查的是()A.调查你班同学的年龄情况B.了解你所在学校男、女生人数C.奥运会上对参赛运动员进行的尿样检查D.考察一批炮弹的杀伤半径2.若把分式中的x、y都扩大3倍,则分式的值()A.扩大3倍B.扩大9倍C.不变D.缩小到原来的3.下列事件是随机事件的是()A.在标准大气压下,温度低于0℃时冰融化B.小明骑车经过某个十字路口时遇到红灯C.地球上海洋面积大于陆地面积D.如果a、b都是实数,那么a+b=b+a4.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A.110°B.80°C.40°D.30°5.调查某小区内30户居民月人均收入情况,制成如下频数分布直方图,且人均收入在1 200~1 240元的频数是()A.12 B.13 C.14 D.156.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°二、填空题.(共10小题,满分20分)7.当x时,分式有意义.8.已知分式的值为0,那么x的值为.9.分式,的最简公分母是.10.袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红球的可能性(选填“大于”“小于”或“等于”)是白球的可能性.11.化简:=.12.菱形的周长为20cm,较短一条对角线的长是6cm,则这个菱形的另一条对角线长为cm.13.某中学要了解初二学生的视力情况,在全校初二年级中抽取25名学生进行检测,在这个问题中,样本是.14.直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE=.15.菱形OABC在平面直角坐标系中的位置如图所示.∠AOC=45°,OC=,则点B的坐标为.16.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC 上有一点P,使PD+PE最小,则这个最小值为.三、解答题(共68分)17.计算:(1)÷(﹣6x2y);(2)•;(3)+(4)﹣.18.某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘,商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:(1)完成上述表格:(2)请估计当n很大时,频率将会接近.假如你去转动转盘一次,你获得“洗衣粉”的概率估计值是.(结果精确到0.1)19.如图,点E是正方形ABCD边BC延长线上的一点,且CE=AC,求∠E的度数.20.先化简(1﹣)÷﹣1,再从﹣2≤x≤2的范围内选取一个合适的整数x代入求值.21.某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目.为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)扇形统计图中“足球”所对应扇形的圆心角为度;(4)该校共有1 200名学生,请估计全校有多少学生喜爱篮球?22.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.23.辨析纠错已知:如图,△ABC中,AD是∠BAC的平分线,DE∥AC,DF∥AB.求证:四边形AEDF是菱形.对于这道题,小明是这样证明的:证明:∵AD平分∠BAC,∴∠1=∠2(角平分线的定义).∵DE∥AC,∴∠2=∠3(两直线平行,内错角相等).∴∠1=∠3(等量代换).∴AE=DE(等角对等边).同理可证:AF=DF,∴四边形AEDF是菱形(菱形定义).老师说小明的证明过程有错误.(1)请你帮小明指出他的错误是什么.(2)请你帮小明做出正确的解答.24.如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC和外角的平分线,BE⊥AE.(1)求证:DA⊥AE;(2)试判断AB与DE是否相等?并证明你的结论.25.我们可以通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例,请补充完整原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.(1)思路梳理∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线.根据,易证△AFG≌,得EF=BE+DF.(2)类比引申如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系时,仍有EF=BE+DF.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.2015-2016学年江苏省南京XX中学八年级(下)期中数学试卷参考答案与试题解析一、选择题.(每题2分,共12分)1.完成下列任务,宜用抽样调查的是()A.调查你班同学的年龄情况B.了解你所在学校男、女生人数C.奥运会上对参赛运动员进行的尿样检查D.考察一批炮弹的杀伤半径【考点】全面调查与抽样调查.【分析】根据抽样调查和全面调查的特点即可作出判断.【解答】解:A、B、C选项中,因涉及人数较少,范围较小,适用普查;D、考察一批炮弹的杀伤半径,调查具有破坏性,所以适用抽样调查,故选:D.2.若把分式中的x、y都扩大3倍,则分式的值()A.扩大3倍B.扩大9倍C.不变D.缩小到原来的【考点】分式的基本性质.【分析】根据分式的分子分母都乘以或除以同一个不为0的数分式的值不变,可得答案.【解答】解:若把分式中的x、y都扩大3倍,则分式的值不变,故选:C.3.下列事件是随机事件的是()A.在标准大气压下,温度低于0℃时冰融化B.小明骑车经过某个十字路口时遇到红灯C.地球上海洋面积大于陆地面积D.如果a、b都是实数,那么a+b=b+a【考点】随机事件.【分析】随机事件就是可能发生,也可能不发生的事件,依据定义即可判断.【解答】解:A、在标准大气压下,温度低于0℃时冰融化是不可能事件,选项不符合题意;B、小明骑车经过某个十字路口时遇到红灯,是随机事件,选项符合题意;C、地球上海洋面积大于陆地面积,是必然事件,选项不符合题意;D、如果a、b都是实数,那么a+b=b+a是必然事件,选项不符合题意.故选B.4.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A.110°B.80°C.40°D.30°【考点】旋转的性质.【分析】首先根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,即可得到∠A′=40°,再有∠B′=110°,利用三角形内角和可得∠A′CB′的度数,进而得到∠ACB的度数,再由条件将△ABC绕着点C顺时针旋转50°后得到△A′B′C′可得∠ACA′=50°,即可得到∠BCA′的度数.【解答】解:根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,∵∠A=40°,∴∠A′=40°,∵∠B′=110°,∴∠A′CB′=180°﹣110°﹣40°=30°,∴∠ACB=30°,∵将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,∴∠ACA′=50°,∴∠BCA′=30°+50°=80°,故选:B.5.调查某小区内30户居民月人均收入情况,制成如下频数分布直方图,且人均收入在1 200~1 240元的频数是()A.12 B.13 C.14 D.15【考点】频数(率)分布直方图.【分析】根据频数分布直方图第三组数据可得.【解答】解:由频数分布直方图知,人均收入在1 200~1 240元的频数是13,故选:B.6.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°【考点】翻折变换(折叠问题);菱形的性质.【分析】连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.【解答】解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故选:B.二、填空题.(共10小题,满分20分)7.当x≠﹣3时,分式有意义.【考点】分式有意义的条件.【分析】直接利用分式的定义分析得出答案.【解答】解:∵分式有意义,∴x+3≠0,解得:x≠﹣3.故答案为:≠﹣3.8.已知分式的值为0,那么x的值为2.【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x﹣2=0,且x+1≠0,再解可得答案.【解答】解:由题意得:x﹣2=0,且x+1≠0,解得:x=2,故答案为:2.9.分式,的最简公分母是6x3y2z.【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,的分母分别是3xy2、2x3z,故最简公分母是6x3y2z;故答案为6x3y2z.10.袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红球的可能性大于(选填“大于”“小于”或“等于”)是白球的可能性.【考点】可能性的大小.【分析】根据“哪种球的数量大哪种球的可能性就打”直接确定答案即可.【解答】解:∵袋子里有5只红球,3只白球,∴红球的数量大于白球的数量,∴从中任意摸出1只球,是红球的可能性大于白球的可能性.故答案为:大于.11.化简:=.【考点】约分.【分析】直接利用平方差公式将分母分解因式,进而化简即可.【解答】解:==.故答案为:.12.菱形的周长为20cm,较短一条对角线的长是6cm,则这个菱形的另一条对角线长为8cm.【考点】菱形的性质.【分析】根据菱形的性质,先求菱形的边长,利用勾股定理求另一条对角线的长度.【解答】解:如图,菱形ABCD中,BD=6,∴AC⊥BD,∵菱形的周长为20,BD=6,∴AB=20÷4=5,BO=3,∴AO==4,∴AC=8.则这个菱形的另一条对角线长为8 cm.故答案为:8.13.某中学要了解初二学生的视力情况,在全校初二年级中抽取25名学生进行检测,在这个问题中,样本是抽取25名学生的视力情况.【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:某中学要了解初二学生的视力情况,在全校初二年级中抽取25名学生进行检测,在这个问题中,样本是抽取25名学生的视力情况,故答案为:抽取25名学生的视力情况.14.直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE=3.【考点】三角形中位线定理;矩形的判定与性质.【分析】由三角形中位线定理得到DF=BC;然后根据直角三角形斜边上的中线等于斜边的一半得到AE=BC,则DF=AE.【解答】解:如图,∵在直角△ABC中,∠BAC=90°,D、F分别为AB、AC的中点,∴DF是△ABC的中位线,∴DF=BC.又∵点E是直角△ABC斜边BC的中点,∴AE=BC,∵DF=3,∴DF=AE.故填:3.15.菱形OABC在平面直角坐标系中的位置如图所示.∠AOC=45°,OC=,则点B的坐标为(+1,1).【考点】菱形的性质;坐标与图形性质.【分析】根据菱形的性质,作CD⊥x轴,先利用三角函数求出OD、CD的长度,从而得出C点坐标,然后利用菱形的性质求得点B的坐标.【解答】解:由题意可得OA=OC=,∠AOC=45°,∴CD=0Csin45°=1,OD=OCcos45°=1,点C的坐标为(1,1),则点B的坐标为(+1,1).故答案为:(+1,1).16.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC 上有一点P,使PD+PE最小,则这个最小值为2.【考点】轴对称﹣最短路线问题;等边三角形的性质;正方形的性质.【分析】先求得正方形的边长,依据等边三角形的定义可知BE=AB=2,连结BP,依据正方形的对称性可知PB=PD,则PE+PD=PE+BP.由两点之间线段最短可知:当点B、P、E在一条直线上时,PE+PD有最小值,最小值为BE的长.【解答】解:连结BP.∵ABCD为正方形,面积为4,∴正方形的边长为2.∵△ABE为等边三角形,∴BE=AB=2.∵ABCD为正方形,∴△ABP与△ADP关于AC对称.∴BP=DP.∴PE+PD=PE+BP.由两点之间线段最短可知:当点B、P、E在一条直线上时,PE+PD有最小值,最小值=BE=2.故答案为:2.三、解答题(共68分)17.计算:(1)÷(﹣6x2y);(2)•;(3)+(4)﹣.【考点】分式的混合运算.【分析】(1)根据分式除法法则即可求出答案.(2)先将分子分母进行因式分解,然后利用分式的基本性质即可求出答案(3)利用分式加减法则即可求出答案(4)根据分式的加减运算法则即可求出答案.【解答】解:(1)原式=×=﹣(2)原式=×=(3)原式=﹣==a+b(4)原式=﹣=﹣18.某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘,商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:(1)完成上述表格:(2)请估计当n很大时,频率将会接近0.6.假如你去转动转盘一次,你获得“洗衣粉”的概率估计值是0.6.(结果精确到0.1)【考点】利用频率估计概率.【分析】(1)根据频率的定义计算n=298时的频率和频率为0.59时的频数;(2)从表中频率的变化,可得到估计当n很大时,频率将会接近0.6,然后根据利用频率估计概率得“可乐”的概率约是0.6;【解答】解:(1):(2)估计当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“可乐”的概率约是0.6;故答案为:0.6,472;0.6,0.6.19.如图,点E是正方形ABCD边BC延长线上的一点,且CE=AC,求∠E的度数.【考点】正方形的性质;等腰三角形的性质.【分析】根据等边对等角的性质可得∠E=∠CAE,然后根据正方形的对角线平分一组对角以及三角形的一个外角等于与它不相邻的两个内角的和列式求出∠E=22.5°.【解答】解:∵CE=AC,∴∠E=∠CAE,∵AC是正方形ABCD的对角线,∴∠ACB=45°,∴∠E+∠CAE=45°,∴∠E=×45°=22.5°.20.先化简(1﹣)÷﹣1,再从﹣2≤x≤2的范围内选取一个合适的整数x代入求值.【考点】分式的化简求值.【分析】首先对括号内的分式进行通分相减,然后把除法转化为乘法,计算乘法即可化简,最后代入数值计算即可.【解答】解:原式=•﹣1=•﹣1=x﹣1.∵x≠0或1或﹣2或2.且﹣2≤x≤2而x是整数.∴x=﹣1.当x=﹣1时,原式=﹣1﹣1=﹣2.21.某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目.为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)扇形统计图中“足球”所对应扇形的圆心角为108度;(4)该校共有1 200名学生,请估计全校有多少学生喜爱篮球?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用喜欢跳绳的人数除以其所占的百分比,即可求得被调查的总人数;(2)用总人数乘以足球所占的百分比即可求得喜欢足球的人数,用总数减去其他各小组的人数即可求得喜欢跑步的人数,从而补全条形统计图;(3)用360度乘以样本中喜欢足球人数占总人数的比例;(4)用样本估计总体,即可确定最喜爱篮球的人数.【解答】解:(1)观察条形统计图与扇形统计图可知:喜欢跳绳的有10人,占25%,故总人数有10÷25%=40人;(2)喜欢足球的有40×30%=12人,喜欢跑步的有40﹣10﹣15﹣12=3人,故条形统计图补充为:(3)扇形统计图中“足球”所对应扇形的圆心角为360°×=108°,故答案为:108;(4)全校最喜爱篮球的人数=1200×=450,答:估计全校有450名学生喜爱篮球.22.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.【考点】平行四边形的判定与性质.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【解答】证明:如图,连接BD设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,OA﹣AE=OC﹣CF,∴OE=OF.∴四边形BEDF是平行四边形.23.辨析纠错已知:如图,△ABC中,AD是∠BAC的平分线,DE∥AC,DF∥AB.求证:四边形AEDF是菱形.对于这道题,小明是这样证明的:证明:∵AD平分∠BAC,∴∠1=∠2(角平分线的定义).∵DE∥AC,∴∠2=∠3(两直线平行,内错角相等).∴∠1=∠3(等量代换).∴AE=DE(等角对等边).同理可证:AF=DF,∴四边形AEDF是菱形(菱形定义).老师说小明的证明过程有错误.(1)请你帮小明指出他的错误是什么.(2)请你帮小明做出正确的解答.【考点】菱形的判定.【分析】(1)有一组邻边相等的平行四边形是菱形,即可得出答案;(2)求出四边形是平行四边形,再证出AE=DE即可.【解答】解:(1)小明错用了菱形的定义.(2)改正:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠1=∠2(角平分线的定义).∵DE∥AC,∴∠2=∠3(两直线平行,内错角相等).∴∠1=∠3(等量代换).∴AE=DE,∴平行四边形AEDF是菱形.24.如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC和外角的平分线,BE⊥AE.(1)求证:DA⊥AE;(2)试判断AB与DE是否相等?并证明你的结论.【考点】矩形的判定;角平分线的性质;等腰三角形的性质.【分析】(1)根据角平分线的性质,及∠BAC+∠BAF=180°可求出∠DAE=90°,即DA⊥AE;(2)要证AB=DE,需证四边形AEBD是矩形,由AB=AC,AD为∠BAC的角平分线,可知AD⊥BC,又因为DA⊥AE,BE⊥AE故,所以∠AEB=90°,∠DAE=90°即证四边形AEBD是矩形.【解答】(1)证明:∵AD平分∠BAC,∴∠BAD=∠BAC,又∵AE平分∠BAF,∴∠BAE=∠BAF,∵∠BAC+∠BAF=180°,∴∠BAD+∠BAE=(∠BAC+∠BAF)=×180°=90°,即∠DAE=90°,故DA⊥AE.(2)解:AB=DE.理由是:∵AB=AC,AD平分∠BAC,∴AD⊥BC,故∠ADB=90°∵BE⊥AE,∴∠AEB=90°,∠DAE=90°,故四边形AEBD是矩形.∴AB=DE.25.我们可以通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例,请补充完整原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.(1)思路梳理∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线.根据SAS,易证△AFG≌△AFG,得EF=BE+DF.(2)类比引申如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系∠B+∠D=180°时,仍有EF=BE+DF.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.【考点】四边形综合题.【分析】(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,再证明△AFG≌△AFE 进而得到EF=FG,即可得EF=BE+DF;(2)∠B+∠D=180°时,EF=BE+DF,与(1)的证法类同;(3)根据△AEC绕点A顺时针旋转90°得到△ABE′,根据旋转的性质,可知△AEC≌△ABE′得到BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,根据Rt△ABC中的,AB=AC得到∠E′BD=90°,所以E′B2+BD2=E′D2,证△AE′D≌△AED,利用DE=DE′得到DE2=BD2+EC2.【解答】解:(1)∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠FAG,∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线,在△AFE和△AFG中,,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF,故答案为:SAS;△AFG;(2)∠B+∠D=180°时,EF=BE+DF;∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠FAG,∵∠ADC+∠B=180°,∴∠FDG=180°,点F、D、G共线,在△AFE和△AFG中,,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF;(3)猜想:DE2=BD2+EC2,证明:连接DE′,根据△AEC绕点A顺时针旋转90°得到△ABE′,∴△AEC≌△ABE′,∴BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,在Rt△ABC中,∵AB=AC,∴∠ABC=∠ACB=45°,∴∠ABC+∠ABE′=90°,即∠E′BD=90°,∴E′B2+BD2=E′D2,又∵∠DAE=45°,∴∠BAD+∠EAC=45°,∴∠E′AB+∠BAD=45°,即∠E′AD=45°,在△AE′D和△AED中,,∴△AE′D≌△AED(SAS),∴DE=DE′,∴DE2=BD2+EC2.2017年5月4日。
南京XX中学2015-2016学年八年级下期中数学试卷(2)含答案解析
南京XX中学2015-2016学年八年级下期中数学试卷(2)含答案解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置上)1.下列图形中,是中心对称但不是轴对称的图形是()A.等边三角形B.正方形C.圆D.平等四边形2.下面有四种说法:①了解某一天出入南京市的人口流量适合用普查方式;②抛掷一个正方体骰子,点数为奇数的概率是③“打开电视机,正在播放关于篮球巨星科比退役的相关新闻”是随机事件.④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.其中正确说法是()A.①②③B.①②④C.②③④D.②④3.下列各式从左到右的变形正确的是()A.=1 B.=C.=x+y D.=4.下列命题中,假命题是()A.对角线互相垂直且相等的四边形是正方形B.对角线相等且互相平分的四边形是矩形C.对角线互相垂直平分的四边形是菱形D.对角线互相平分的四边形是平行四边形5.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率6.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.6种 B.5种 C.4种 D.3种二、填空题(共10小题,每小题2分,共20分.请把答案直接填写在答题纸相应位置上)7.若分式有意义,则x的取值范围是.8.平行四边形ABCD中,∠A比∠B小20°,那么∠C=.9.在一个不透明的口袋里装了2个红球和1个白球,每个球除了颜色外都相同,将球摇匀,据此,请你写出一个发生的可能性小于的随机事件:.10.一个样本的50个数据分别落在5个组内,第1、2、3、4组数据的个数分别是2、8、15、5,则第5组数据的频数为,频率为.11.如图,在矩形ABCD中,对角线AC、BD交于点O,已知∠AOB=60°,AC=8,则BC的长为.12.如图,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,若∠AMF=50°,则∠A=°.13.如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=3,则菱形ABCD的周长是.14.用平行四边形的定义和课本上的三个定理可以判断一个四边形是平行四边形,请探索并写出一个与它们不同的平行四边形的判定方法:.15.若顺次连接四边形各边中点所得到的四边形是矩形,则原四边形必须满足的条件是.16.已知在平面直角坐标系中,点A、B、C、D的坐标依次为(﹣1,0),(m,n),(﹣1,10),(﹣7,p),且p≤n.若以A、B、C、D四个点为顶点的四边形是菱形,则n的值是.三、解答题(本大题共10小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)•(2)﹣﹣3.18.先化简,再求值:÷(﹣1),然后从2,1,﹣1,﹣2中选一个你认为合适的数作为a的值代入求值.19.证明矩形的判定定理:对角线相等的平行四边形是矩形.20.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1(点A的对应点为A1).(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,并根据旋转的性质用符号语言写出2条不同类型的正确结论.21.在平行四边形ABCD中,E、F分别是AB、CD的中点,AF与DE相交于点G,GE与BF相交于点H.(1)求证:四边形EHFG是平行四边形;(2)若四边形EHFG是矩形,则平等四边行ABCD应满足的条件是.(直接写出答案,不需要证明)22.某校有2 000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到如图表(频数分布表中部分划记被墨水盖住):某校100名学生上学方式频数分布表方式划记频数步行正正正15骑车正正正正正29乘公共交通工具正正正正正正30乘私家车其它合计100(1)本次调查的个体是;(2)求频数分布表中,“乘私家车”部分对应的频数;(3)请估计该校2 000名学生中,先把骑车和步行上学的一共有多少人?23.如图,在正方形ABCD,M、N是对角线AC上的两点,且AM=CN,连接DM并延长,交AB 于点F,连接BN并延长,交DC于点E.连接BM、DN.(1)求证:四边形MBND为菱形;(2)求证:△MFB≌△NED.24.浴缸有两个水龙头,一个放热水,一个放冷水,两水龙头放水速度:放热水的是a升/分,放冷水的速度是b升/分,下面有两种放水方式:方式一:先开热水,使热水注满浴缸的一半,后一半容积的水接着开冷水龙头注放.方式二:前一半时间让热水龙头注放,后一半时间让冷水龙头注放.(1)在方式一中:设浴缸容积为V升,则先开热水,热水注满浴缸一半所需的时间为分;(2)两种方式中,哪种方式更节省时间?请说明理由.25.阅读下面的解题过程,然后解题:题目:已知(a、b、c互相不相等),求x+y+z的值.解:设,则x=k(a﹣b),y=k(b﹣c),z=k(c﹣a)于是,x+y+z=k(a﹣b+b ﹣c+c﹣a)=k•0=0,依照上述方法解答下列问题:已知:==(x+y+z≠0),求的值.26.如图①,已知△ABC是等腰三角形,∠BAC=90°,点D是BC的中点,作正方形DEFG,使点A、C分别在DG和DE上,连接AE、BG.(1)试猜想线段BG和AE的关系为;(2)如图②,将正方形DEFG绕点D按逆时针方向旋转α(0°<α≤90°),判断(1)中的结论是否仍然成立,证明你的结论.2015-2016学年江苏省南京八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置上)1.下列图形中,是中心对称但不是轴对称的图形是()A.等边三角形B.正方形C.圆D.平等四边形【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项错误;C、既是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,不是中心对称图形,故此选项正确;故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下面有四种说法:①了解某一天出入南京市的人口流量适合用普查方式;②抛掷一个正方体骰子,点数为奇数的概率是③“打开电视机,正在播放关于篮球巨星科比退役的相关新闻”是随机事件.④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.其中正确说法是()A.①②③B.①②④C.②③④D.②④【考点】X3:概率的意义;V2:全面调查与抽样调查;X1:随机事件.【分析】根据调查方式的选择、必然事件、不可能事件、随机事件的概念分别进行解答即可.【解答】解:①了解某一天出入南京市的人口流量适合用抽样调查的方式,故本选项错误;②抛掷一个正方体骰子,点数为奇数的概率是,正确;③“打开电视机,正在播放关于篮球巨星科比退役的相关新闻”是随机事件,正确;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件,正确;故选C.【点评】此题考查了概率的意义、抽样调查和全面调查和随机事件,不易采集到数据的调查要采用抽样调查的方式;必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.下列各式从左到右的变形正确的是()A.=1 B.=C.=x+y D.=【考点】65:分式的基本性质.【专题】11 :计算题;513:分式.【分析】原式变形变形得到结果,即可作出判断.【解答】解:A、原式==1,正确;B、原式=,错误;C、原式为最简结果,错误;D、原式=,错误,故选A【点评】此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.4.下列命题中,假命题是()A.对角线互相垂直且相等的四边形是正方形B.对角线相等且互相平分的四边形是矩形C.对角线互相垂直平分的四边形是菱形D.对角线互相平分的四边形是平行四边形【考点】O1:命题与定理;L6:平行四边形的判定;L9:菱形的判定;LC:矩形的判定;LF:正方形的判定.【分析】根据平行四边形,矩形,菱形和正方形的对角线矩形判断即可.【解答】解:对角线互相垂直平分且相等的四边形是正方形,所以A为假命题;对角线相等且互相平分的四边形是矩形,所以B为真命题;对角线互相垂直平分的四边形是菱形,所以C为真命题;对角线互相平分的四边形为平行四边形,所以D为真命题.故选A.【点评】本题考查了从对角线来判断特殊四边形的方法:对角线互相平分的四边形为平行四边形;对角线互相垂直平分的四边形为菱形;对角线互相平分且相等的四边形为矩形;对角线互相垂直平分且相等的四边形为正方形.也考查了真命题与假命题的概念.5.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率【考点】X8:利用频率估计概率.【专题】1 :常规题型.【分析】根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答.【解答】解:∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.【点评】本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.6.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.6种 B.5种 C.4种 D.3种【考点】L6:平行四边形的判定.【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【解答】解:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;∴有4种可能使四边形ABCD为平行四边形.故选:C.【点评】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.二、填空题(共10小题,每小题2分,共20分.请把答案直接填写在答题纸相应位置上)7.若分式有意义,则x的取值范围是x≠﹣1.【考点】62:分式有意义的条件.【分析】根据分式有意义的条件可得1+x≠0,再解即可.【解答】解:由题意得:1+x≠0,解得:x≠﹣1,故答案为:x≠﹣1.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.8.平行四边形ABCD中,∠A比∠B小20°,那么∠C=80°.【考点】L5:平行四边形的性质.【专题】11 :计算题.【分析】根据平行四边形的性质分别求出∠A和∠B的度数,然后根据平行四边形对角相等的性质可得∠C=∠A,即可求解.【解答】解:∵四边形ABCD为平行四边形,∴,解得:,∴∠C=∠A=80°.故答案为:80°.【点评】本题考查了平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.9.在一个不透明的口袋里装了2个红球和1个白球,每个球除了颜色外都相同,将球摇匀,据此,请你写出一个发生的可能性小于的随机事件:求摸到白球的概率.【考点】X2:可能性的大小;X1:随机事件.【分析】发生的可能性小于的随机事件就是摸出的球的个数占总数的一半以下,据此求解.【解答】解:一个不透明的口袋里装了2个红球和1个白球,摸到白球的概率为:=<,故答案为:求摸到白球的概率.【点评】本题考查了可能性的大小的知识,解题的关键是能够根据题意确定摸到红球和摸到白球的概率,难度不大.10.一个样本的50个数据分别落在5个组内,第1、2、3、4组数据的个数分别是2、8、15、5,则第5组数据的频数为20,频率为0.4.【考点】V6:频数与频率.【分析】总数减去其它四组的数据就是第5组的频数,用频数除以数据总数就是频率.【解答】解:根据题意可得:第1、2、3、4组数据的个数分别是2、8、15、5,共(2+8+15+5)=30,样本总数为50,故第5小组的频数是50﹣30=20,频率是=0.4.故答案为20,0.4.【点评】本题考查频率、频数的关系:频率=,同时考查频数的定义即样本数据出现的次数.11.如图,在矩形ABCD中,对角线AC、BD交于点O,已知∠AOB=60°,AC=8,则BC的长为4.【考点】LB:矩形的性质.【分析】由矩形的性质可得到OA=OB,于是可证明△ABO为等边三角形,于是可求得AB=4,然后依据勾股定理可求得BC的长.【解答】解:∵四边形ABCD为矩形,∴OA=OB=AC=4.∵OA=OB,∠AOB=60°,∴△OAB为等边三角形.∴AB=4.在Rt△ABC中,BC==4.故答案为:4.【点评】本题主要考查的是矩形的性质、等边三角形的性质和判定、勾股定理的应用,求得AB 的长是解题的关键.12.如图,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,若∠AMF=50°,则∠A=65°.【考点】L5:平行四边形的性质.【分析】由平行四边形与折叠的性质,易得CD∥MN∥AB,然后根据平行线的性质,即可求得∠DMN=∠FMN=∠A,又由平角的定义,根据∠AMF=50°,求得∠DMF的度数,然后可求得∠A 的度数.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,根据折叠的性质可得:MN∥AE,∠FMN=∠DMN,∴AB∥CD∥MN,∴∠DMN=∠FMN=∠A,∵∠AMF=50°,∴∠DMF=180°﹣∠AMF=130°,∴∠FMN=∠DMN=∠A=65°,故答案为:65.【点评】此题考查了平行四边形的性质、平行线的性质与折叠的性质,注意数形结合思想的应用以及折叠中的对应关系,难度适中.13.如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=3,则菱形ABCD的周长是24.【考点】L8:菱形的性质.【分析】根据菱形的性质可得AC⊥BD,AB=BC=CD=AD,再根据直角三角形的性质可得AB=2OP,进而得到AB长,然后可算出菱形ABCD的周长.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∵点P是AB的中点,∴AB=2OP,∵PO=3,∴AB=6,∴菱形ABCD的周长是:4×6=24,故答案为:24【点评】此题主要考查了菱形的性质,关键是掌握菱形的两条对角线互相垂直,四边相等.14.用平行四边形的定义和课本上的三个定理可以判断一个四边形是平行四边形,请探索并写出一个与它们不同的平行四边形的判定方法:答案不唯一,如两组对角分别相等的四边形是平行四边形等.【考点】L6:平行四边形的判定.【专题】26 :开放型.【分析】根据平行四边形的定义以及判定方法得出即可.【解答】解:答案不唯一,如两组对角分别相等的四边形是平行四边形等;理由:∵∠B=∠D,∠A=∠C,∠B+∠C+∠D+∠A=360°,∴∠B+∠C=180°,∠A+∠D=180°,∴AB∥CD,AD∥BC,∴四边行ABCD是平行四边形.故答案为:答案不唯一,如两组对角分别相等的四边形是平行四边形等.【点评】此题主要考查了平行四边形的判定,熟练掌握相关判定定理是解题关键.15.若顺次连接四边形各边中点所得到的四边形是矩形,则原四边形必须满足的条件是对角线互相垂直.【考点】LN:中点四边形;LC:矩形的判定.【分析】根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直.【解答】解:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG,∴四边形EFGH是平行四边形,∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故答案为:对角线互相垂直.【点评】本题主要考查了矩形的性质和三角形中位线定理,解题的关键是构造三角形利用三角形的中位线定理解答.16.已知在平面直角坐标系中,点A、B、C、D的坐标依次为(﹣1,0),(m,n),(﹣1,10),(﹣7,p),且p≤n.若以A、B、C、D四个点为顶点的四边形是菱形,则n的值是2,5,18.【考点】L9:菱形的判定;D5:坐标与图形性质.【分析】利用菱形的性质结合A,C点坐标进而得出符合题意的n的值.【解答】解:如图所示:当C(﹣7,2),C′(﹣7,5)时,都可以得到以A、B、C、D四个点为顶点的四边形是菱形,同理可得:当D(﹣7,8)则对应点C的坐标为;(﹣7,18)可以得到以A、B、C、D四个点为顶点的四边形是菱形,故n的值为:2,5,18.故答案为:2,5,18.【点评】此题主要考查了菱形的判定以及坐标与图形的性质,利用菱形的性质得出C点坐标是解题关键.三、解答题(本大题共10小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)•(2)﹣﹣3.【考点】6C:分式的混合运算.【分析】(1)先约分,再计算即可;(2)化为同分母的分式,再进行相加即可.【解答】解:(1)原式=﹣;(2)原式=﹣﹣===﹣2.【点评】本题考查了分式的混合运算,掌握分式的约分和通分是解此题的关键.18.先化简,再求值:÷(﹣1),然后从2,1,﹣1,﹣2中选一个你认为合适的数作为a的值代入求值.【考点】6D:分式的化简求值.【分析】先算括号里面的,再算除法,最后选出合适的a的值代入进行计算即可.【解答】解:原式=÷=•=﹣,当a=﹣2时,原式=﹣=1.【点评】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.19.证明矩形的判定定理:对角线相等的平行四边形是矩形.【考点】LC:矩形的判定.【分析】由全等三角形的判定定理SSS证得△ABC≌△DCB,则∠ABC=∠DCB=90°,所以“有一内角为直角的平行四边形是矩形”.【解答】已知:四边形ABCD是平行四边形,AC、BD是两条对角线,且AC=BD.求证:平行四边形ABCD是矩形.证明:如图,∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC.在△ABC与△DCB中,,∴△ABC≌△DCB(SSS).∴∠ABC=∠DCB.又∵∠ABC+∠DCB=180°,∴∠ABC=∠DCB=90°,∴平行四边形ABCD是矩形.【点评】本题考查了矩形的判定.此题通过全等三角形的性质得到同旁内角互补,结合平行线的性质证得平行四边形的两个内角为直角.20.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1(点A的对应点为A1).(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,并根据旋转的性质用符号语言写出2条不同类型的正确结论.【考点】R8:作图﹣旋转变换.【分析】(1)连接AA1、BB1,再分别作AA1、BB1中垂线,两中垂线交点即为点O;(2)根据旋转的性质可知,对应角都相等都等于旋转角,对应点到旋转中心距离相等,据此可知.【解答】解:(1)如图,点O即为所求;(2)OA=OA1、∠AOA1=∠BOB1.【点评】本题主要考查旋转变换的作图,熟练掌握旋转变换的性质:①对应点到旋转中心的距离相等(意味着:旋转中心在对应点所连线段的垂直平分线上),②对应点与旋转中心所连线段的夹角等于旋转角,③旋转前、后的图形全等.21.在平行四边形ABCD中,E、F分别是AB、CD的中点,AF与DE相交于点G,GE与BF相交于点H.(1)求证:四边形EHFG是平行四边形;(2)若四边形EHFG是矩形,则平等四边行ABCD应满足的条件是平行四边形ABCD是矩形,并且AB=2AD.(直接写出答案,不需要证明)【考点】LC:矩形的判定;L7:平行四边形的判定与性质.【分析】(1)通过证明两组对边分别平行,可得四边形EHFG是平行四边形;(2)当平行四边形ABCD是矩形,并且AB=2AD时,先证明四边形ADFE是正方形,得出有一个内角等于90°,从而证明菱形EHFG为一个矩形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AE∥CF,AB=CD,∵E是AB中点,F是CD中点,∴AE=CF,∴四边形AECF是平行四边形,∴AF∥CE.同理可得DE∥BF,∴四边形FGEH是平行四边形;(2)解:当平行四边形ABCD是矩形,并且AB=2AD时,平行四边形EHFG是矩形.理由如下:连接EF,如图所示:∵E,F分别为AB,CD的中点,且AB=CD,∴AE=DF,且AE∥DF,∴四边形AEFD为平行四边形,∴AD=EF,又∵AB=2AD,E为AB中点,则AB=2AE,于是有AE=AD=AB,这时,EF=AE=AD=DF=AB,∠EAD=∠FDA=90°,∴四边形ADFE是正方形,∴EG=FG=AF,AF⊥DE,∠EGF=90°,∴此时,平行四边形EHFG是矩形;故答案为:平行四边形ABCD是矩形,并且AB=2AD.【点评】本题考查了平行四边形的判定与性质,矩形的判定,注意找准条件,有一定的难度.22.某校有2 000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到如图表(频数分布表中部分划记被墨水盖住):某校100名学生上学方式频数分布表方式划记频数步行正正正15骑车正正正正正29乘公共交通工具正正正正正正30乘私家车其它合计100(1)本次调查的个体是每名学生的上学方式;(2)求频数分布表中,“乘私家车”部分对应的频数;(3)请估计该校2 000名学生中,先把骑车和步行上学的一共有多少人?【考点】V7:频数(率)分布表;V3:总体、个体、样本、样本容量;V5:用样本估计总体.【分析】(1)每一个调查对象称为个体,据此求解;(2)首先求得私家车部分所占的百分比,然后乘以总人数即可求得对应频数;(3)用学生总数乘以骑车和步行上学所占的百分比的和即可求得人数.【解答】解:(1)本次调查的个体是每名学生的上学方式,故答案为:每名学生的上学方式;(2)由扇形统计图知,“乘私家车”部分对应的百分比为1﹣15%﹣29%﹣30%﹣6%=20%,则“乘私家车”部分对应的频数为100×20%=20;(3)2000×(15%+29%)=880人.答:估计该校2000名学生中,选择骑车和步行上学的一共有880人.【点评】本题考查了频率分布表、用样本估计总体及扇形统计图的知识,解题的关键是能够读懂统计图,并从统计图中整理出进一步解题的有关信息.23.如图,在正方形ABCD,M、N是对角线AC上的两点,且AM=CN,连接DM并延长,交AB 于点F,连接BN并延长,交DC于点E.连接BM、DN.(1)求证:四边形MBND为菱形;(2)求证:△MFB≌△NED.【考点】LE:正方形的性质;KB:全等三角形的判定;LA:菱形的判定与性质.【分析】(1)连接BD交AC于O,先证明四边形BMDN是平行四边形,再根据NM⊥BD即可证明.(2)先证明四边形BFDE是平行四边形,得到∠BFM=∠DEN,再证明BM=DN,∠BMF=∠DNE 即可解决问题.【解答】(1)证明:连接BD交AC于O.∵四边形ABCD是正方形,∴OA=OC,OB=OD,AC⊥BD,∵AM=CN,∴OM=ON,∵OB=OD,∴四边形MBND是平行四边形,∵MN⊥DB,∴四边形MBND是菱形.(2)证明:∵四边形MBND是菱形,∴DM∥NB,BM=DN,∠DMB=∠DNB,∴∠BMF=∠DNE,∵BF∥DE,∴四边形BFDE是平行四边形,∴∠BFM=∠DEN,在△MFB和△NED中,,∴△MFB≌△NED.【点评】本题考查正方形的性质、全等三角形的判定和性质、平行四边形的判定和性质、菱形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题.24.浴缸有两个水龙头,一个放热水,一个放冷水,两水龙头放水速度:放热水的是a升/分,放冷水的速度是b升/分,下面有两种放水方式:方式一:先开热水,使热水注满浴缸的一半,后一半容积的水接着开冷水龙头注放.方式二:前一半时间让热水龙头注放,后一半时间让冷水龙头注放.(1)在方式一中:设浴缸容积为V升,则先开热水,热水注满浴缸一半所需的时间为分;(2)两种方式中,哪种方式更节省时间?请说明理由.【考点】6C:分式的混合运算.【分析】(1)根据题意即可得到结论;(2)首先浴缸容积为V,然后求出方式一和方式二注满时间为t、t′,最后作差比较.【解答】解:(1)先开热水注满浴缸一半所需的时间为分;故答案为:;(2)方式一:设浴缸容积为V,注满时间为t,依题意,得t=+,方式二:同样设浴缸容积为V,注满总时间为t′,依题意得t′a+t′b=V。
2015-2016学年八年级(下)期中数学试卷含答案解析
=﹣4C.
=×
4.如图,直角三角形的三边长分为 a、b、c,下列各式正确的是(
D. ﹣ = )
A.a2+b2=c2 B.b2+c2=a2 C.c2+a2=b2 D.以上都不对 5.一个直角三角形的两边长分别为 4cm、3cm,则第三条边长为( ) A.5cm B.4cm C. cm D.5cm 或 cm 6.下列各组数中不能作为直角三角形的三边长的是( ) A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,15 7.如图,在▱ABCD中,已知 AD=5cm,AB=3cm,AE平分∠BAD交 BC边于点 E,则 EC等于( )
A.1cm B.2cm C.3cm D. 4cm 8.菱形具有而矩形不具有的性质是( ) A.对角线互相平分 B.四条边都相等 C.对角相等 D.邻角互补 9.两条对角线互相垂直平分且相等的四边形是( ) A.矩形 B.菱形 C.正方形 D.都有可能 10.如图,在矩形 ABCD中,AB=8,BC=4,将矩形沿 AC折叠,点 D 落在点 D′处,则重叠部分△
【解答】解:∵式子
有意义,
∴x﹣5≥0,解得 x≥5.
故选 C. 【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的
关键.
2.下列二次根式中,属于最简二次根式的是( )
A. B.
C. D.
【考点】最简二次根式. 【分析】根据最简二次根式的条件进行判断即可. 【解答】解: = ,被开方数含分母,不是最简二次根式;
2015-2016 学年八年级(下)期中数学试卷 参考答案与试题解析
一、选择题(本题共 10 小题,每小题 3 分,共 30 分)
1.使式子
2016-2017学年江苏省南京市秦淮区钟英中学八年级(下)期中数学试卷
2016-2017学年江苏省南京市秦淮区钟英中学八年级(下)期中数学试卷2016-2017学年江苏省南京市秦淮区钟英中学八年级(下)期中数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列调查中,适合用普查的是()A.新学期开始,我校调查每一位学生的体重B.调查某品牌电视机的使用寿命C.调查我市中学生的近视率D.调查长江中现有鱼的种类2.(2分)下列图案既是中心对称,又是轴对称的是()A.B.C.D.3.(2分)分式可变形为()A.B.﹣C.D.﹣4.(2分)如图所示,是八年级某班学生是否知道父母生日情况的扇形统计图.其中,A表示仅知道父亲生日的学生;B表示仅知道母亲生日的学生;C表示父母生日都知道的学生;D表示表示父母生日都不知道的学生.则该班40名学生中,知道母亲生日的人数有()A.10 B.12 C.22 D.265.(2分)已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm26.(2分)如图,已知△ABC的面积为24,点D在线段AC上,点F在线段BC的延长线上,且BF=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A.3 B.4 C.6 D.8二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)为了了解我市6000名学生参加初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,样本容量是.8.(2分)使代数式有意义的x的取值范围是.9.(2分)平行四边形的对角线相等是事件.(填“必然”、“随机”、“不可能”)10.(2分)已知三角形的三条中位线的长度分别为6cm、7cm、11cm,则这个三角形的周长为cm.11.(2分)某市抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下:组别噪声声级分组频数频率144.5﹣﹣59.540.1259.5﹣﹣74.580.2374.5﹣﹣89.5100.25489.5﹣﹣104.5b c5104.5﹣﹣119.560.15合计40 1.00则第四小组的频率c= .12.(2分)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球只有3个红球,若每次将球充分搅匀后,任意摸出一个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为.13.(2分)若分式的值为零,则x= .14.(2分)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件,使ABCD成为菱形(只需添加一个即可)15.(2分)如图,△COD是由△AOB绕点O按顺时针方向旋转40°后得到的图形,点C恰好在边AB上.若∠AOD=100°,则∠D的度数是°.16.(2分)如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为.三、解答题(本大题共10小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(4分)(1)约分:;(2)约分:.18.(4分)(1)通分:;(2)通分:,.19.(5分)先化简分式,然后在0,1,2三个数值中选择一个合适的a的值代入求值.20.(6分)李老师为了解班里学生的作息时间,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?21.(6分)如图,AD是△ABC的中线.(1)画图:延长AD到E,使ED=AD,连接BE、CE;(2)四边形ABEC是平行四边形吗?证明你的结论.22.(8分)在一个不透明的口袋里装有若干个相同的红球,为了用估计袋中红球的数量,八(1)班学生在数学实验室分组做摸球实验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:摸球的次数s15030060090012001500摸到白球的频数n63a247365484606摸到白球的频率0.4200.4100.4120.4060.403b(1)按表格数据格式,表中的a= ;b= ;(2)请估计:当次数s很大时,摸到白球的频率将会接近(精确到0.1);(3)请推算:摸到红球的概率是(精确到0.1);(4)试估算:这一个不透明的口袋中红球有只.23.(7分)如图,在正方形网格中,每个小正方形的边长为1个单位长度.平面直角坐标系xOy的原点O在格点上,x轴、y轴都在格线上.线段AB的两个端点也在格点上.(1)若将线段AB绕点O逆时针旋转90°得到线段A1B1,试在图中画出线段A1B1.(2)若线段A2B2与线段A1B1关于y轴对称,请画出线段A2B2.(3)若点P是此平面直角坐标系内的一点,当点A、B1、B2、P四边围成的四边形为平行四边形时,请你直接写出点P的坐标.24.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?25.(10分)如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)当M点在(何处)时,AM+CM的值最小;(2)当AM+EM的值最小时,∠BCM= °.(3)①求证:△AMB≌△ENB;②当M点在何处时,AM+BM+CM的值最小,并说明理由.26.(10分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.2016-2017学年江苏省南京市秦淮区钟英中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列调查中,适合用普查的是()A.新学期开始,我校调查每一位学生的体重B.调查某品牌电视机的使用寿命C.调查我市中学生的近视率D.调查长江中现有鱼的种类【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、新学期开始,我校调查每一位学生的体重适合抽样调查,故A 正确;B、调查某品牌电视机的使用寿命,调查具有破坏性,适合抽样调查,故B错误;C、调查我市中学生的近视率适合抽样调查,故C错误;D、调查长江中现有鱼的种类适合抽样调查,故D错误;故选:A.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.(2分)下列图案既是中心对称,又是轴对称的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故本选项错误;B、是轴对称图形,也是中心对称图形.故本选项正确;C、是轴对称图形,不是中心对称图形.故本选项错误;D、不是轴对称图形,也不是中心对称图形.故本选项错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(2分)分式可变形为()A.B.﹣C.D.﹣【分析】根据分式的性质,分子分母都乘以﹣1,分式的值不变,可得答案.【解答】解:分式的分子分母都乘以﹣1,得﹣,故选:D.【点评】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.4.(2分)如图所示,是八年级某班学生是否知道父母生日情况的扇形统计图.其中,A表示仅知道父亲生日的学生;B表示仅知道母亲生日的学生;C表示父母生日都知道的学生;D表示表示父母生日都不知道的学生.则该班40名学生中,知道母亲生日的人数有()A.10 B.12 C.22 D.26【分析】知道母亲生日的包括B、C,即所占比例为25%+30%,则知道母亲生日的人数=40×(25%+30%).【解答】解:知道母亲生日的人数=40×(25%+30%)=22(人).故选:C.【点评】此题主要考查了扇形统计图的应用,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系.5.(2分)已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm2【分析】设菱形的对角线分别为8x和6x,首先求出菱形的边长,然后根据勾股定理求出x的值,最后根据菱形的面积公式求出面积的值.【解答】解:设菱形的对角线分别为8x和6x,已知菱形的周长为20cm,故菱形的边长为5cm,根据菱形的性质可知,菱形的对角线互相垂直平分,即可知(4x)2+(3x)2=25,解得x=1,故菱形的对角线分别为8cm和6cm,所以菱形的面积=×8×6=24cm2,故选B.【点评】本题主要考查菱形的性质的知识点,解答本题的关键是掌握菱形的对角线互相垂直平分,此题比较简单.6.(2分)如图,已知△ABC的面积为24,点D在线段AC上,点F在线段BC的延长线上,且BF=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A.3 B.4 C.6 D.8【分析】连接EC,过A作AM∥BC交FE的延长线于M,求出平行四边形ACFM,根据等底等高的三角形面积相等得出△BDE的面积和△CDE的面积相等,△ADE 的面积和△AME的面积相等,推出阴影部分的面积等于平行四边形ACFM的面积的一半,求出CF×hCF的值即可.【解答】解:连接EC,过A作AM∥BC交FE的延长线于M,∵四边形CDEF是平行四边形,∴DE∥CF,EF∥CD,∴AM∥DE∥CF,AC∥FM,∴四边形ACFM是平行四边形,∵△BDE边DE上的高和△CDE的边DE上的高相同,∴△BDE的面积和△CDE的面积相等,同理△ADE的面积和△AME的面积相等,即阴影部分的面积等于平行四边形ACFM的面积的一半,是×CF×hCF,∵△ABC的面积是24,BC=3CF∴BC×hBC =×3CF×hCF=24,∴CF×hCF=16,∴阴影部分的面积是×16=8,故选:D.【点评】本题考查了平行四边形的性质和判定,三角形的面积的应用,主要考查学生的推理能力和转化能力,题目比较好,但是有一定的难度.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)为了了解我市6000名学生参加初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,样本容量是200 .【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:样本容量是200.故答案为:200.【点评】本题考查的是确定总体、个体和样本.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”8.(2分)使代数式有意义的x的取值范围是x≠2 .【分析】分式有意义的条件:分母不等于0.【解答】解:要使代数式有意义,则x﹣2≠0,x≠2.故答案为x≠2.【点评】本题主要考查分式有意义的条件:分母不为0.9.(2分)平行四边形的对角线相等是随机事件.(填“必然”、“随机”、“不可能”)【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:平行四边形的对角线相等是随机事件,故答案为:随机.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10.(2分)已知三角形的三条中位线的长度分别为6cm、7cm、11cm,则这个三角形的周长为38 cm.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出三角形的三条边,然后根据周长的定义列式计算即可得解.【解答】解:∵三角形的三条中位线的长度分别为6cm、7cm、11cm,∴这个三角形的三条边分别为12cm,14cm,22cm,∴这个三角形的周长=12+14+22=38cm.故答案为:38.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,是基础题,熟记定理是解题的关键.11.(2分)某市抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下:组别噪声声级分组频数频率144.5﹣﹣59.540.1259.5﹣﹣74.580.2374.5﹣﹣89.5100.25489.5﹣﹣104.5b c5104.5﹣﹣119.560.15合计40 1.00则第四小组的频率c= 0.3 .【分析】根据所有小组频率的和为1直接求解.【解答】解:∵所有小组频数之和为1,∴c=1﹣0.1﹣0.2﹣0.25﹣0.15=0.3,故答案为:0.3.【点评】考查了频数分布表,解题的关键是了解所有小组频率的和为1,比较简单.12.(2分)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球只有3个红球,若每次将球充分搅匀后,任意摸出一个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为15 .【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,×100%=20%,解得,a=15.故答案为15.【点评】此题是利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.13.(2分)若分式的值为零,则x= ﹣3 .【分析】先根据分式的值为0的条件列出关于x的不等式组,求出x的值即可.【解答】解:∵分式的值为零,∴,解得x=﹣3.故答案为:﹣3.【点评】本题考查的是分式的值为0的条件,在解答此类问题时要注意“分母不为零”这个条件不能少.14.(2分)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件OA=OC ,使ABCD成为菱形(只需添加一个即可)【分析】可以添加条件OA=OC,根据对角线互相垂直平分的四边形是菱形可判定出结论.【解答】解:OA=OC,∵OB=OD,OA=OC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,故答案为:OA=OC.【点评】此题主要考查了菱形的判定,关键是掌握菱形的判定定理.15.(2分)如图,△COD是由△AOB绕点O按顺时针方向旋转40°后得到的图形,点C恰好在边AB上.若∠AOD=100°,则∠D的度数是50 °.【分析】已知△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,可得△COD≌△AOB,旋转角为40°,而点C恰好在AB上,可得△AOC为等腰三角形,可结合三角形的内角和定理求∠B的度数.【解答】解:根据旋转性质得△COD≌△AOB,∴CO=AO,∠D=∠B由旋转角为40°,∴∠AOC=∠BOD=40°,∴∠OAC=(180°﹣∠AOC)÷2=70°,∴∠BOC=∠AOD﹣∠AOC﹣∠BOD=20°,∴∠AOB=∠AOC+∠BOC=60°,在△AOB中,由内角和定理得∠B=180°﹣∠OAC﹣∠AOB=180°﹣70°﹣60°=50°.∴∠D=∠B=50°故答案为50.【点评】此题是旋转的性质题,主要考查了旋转变化前后,对应角相等,同时充分用三角形的内角和定理,等腰三角形的性质,解本题的关键是用等腰三角形的性质求角的度数.16.(2分)如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为25°.【分析】由,▱ABCD与▱DCFE的周长相等,可得到AD=DE即△ADE是等腰三角形,再由且∠BAD=60°,∠F=110°,即可求出∠DAE的度数.【解答】解:∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=60°,∠F=110°,∴∠ADC=120°,∠CDE═∠F=110°,∴∠ADE=360°﹣120°﹣110°=130°,∴∠DAE==25°,故答案为:25°.【点评】本题考查了平行四边形的性质:平行四边形的对边相等、平行四边形的对角相等以及邻角互补和等腰三角形的判定和性质、三角形的内角和定理.三、解答题(本大题共10小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(4分)(1)约分:;(2)约分:.【分析】(1)分子、分母约去公因式即可;(2)分子、分母因式分解后约分即可;【解答】解:(1)=;(2)==.【点评】本题考查约分,解题的关键是先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.18.(4分)(1)通分:;(2)通分:,.【分析】找出最简公分母,根据分式的通分法则计算即可.【解答】解:(1)=,=;(2)=,=.【点评】本题考查的是分式的通分、约分,掌握分式的基本性质是解题的关键.19.(5分)先化简分式,然后在0,1,2三个数值中选择一个合适的a的值代入求值.【分析】根据完全平方公式和平方差公式可以化简题目中的式子,然后在0,1,2三个数值中选择一个使得原分式有意义的值代入即可解答本题.【解答】解:==,当a=1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.(6分)李老师为了解班里学生的作息时间,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?【分析】(1)总体所调查对象的全体,由此确定调查的总体;(2)由于已知总人数,利用总人数减去其他四个小组的人数即可得到30﹣40分钟小组的人数,然后即可补全频数分布直方图;(3)用30分钟以上的人数除以总人数50即可得到在30分钟以上(含30分钟)的人数占全班人数的百分比.【解答】解:(1)∵总体所调查对象的全体,∴“班上50名学生上学路上花费的时间”是总体;(2)如图所示:(3)依题意得在30分钟以上(含30分钟)的人数为5人,∴(4+1)÷50=10%,∴该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是10%.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(6分)如图,AD是△ABC的中线.(1)画图:延长AD到E,使ED=AD,连接BE、CE;(2)四边形ABEC是平行四边形吗?证明你的结论.【分析】(1)根据题目要求作图即可;(2)根据作图及题目条件,利用平行四边形的判定方法可证得结论.【解答】解:(1)如图所示;(2)四边形ABEC是平行四边形,理由:∵AD是△ABC的中线,∴BD=CD,∵ED=AD,∴四边形ABEC是平行四边形.【点评】本题主要考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.22.(8分)在一个不透明的口袋里装有若干个相同的红球,为了用估计袋中红球的数量,八(1)班学生在数学实验室分组做摸球实验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:摸球的次数s15030060090012001500摸到白球的频数n63a247365484606摸到白球的频率0.4200.4100.4120.4060.403b(1)按表格数据格式,表中的a= 123 ;b= 0.404 ;(2)请估计:当次数s很大时,摸到白球的频率将会接近0.4 (精确到0.1);(3)请推算:摸到红球的概率是0.6 (精确到0.1);(4)试估算:这一个不透明的口袋中红球有15 只.【分析】(1)根据频率=频数÷样本总数分别求得a、b的值即可;(2)从表中的统计数据可知,摸到白球的频率稳定在0.4左右;(3)摸到红球的概率为1﹣0.4=0.6;(4)根据红球的概率公式得到相应方程求解即可;【解答】解:(1)a=300×0.41=123,b=606÷1500=0.404;(2)当次数s很大时,摸到白球的频率将会接近0.40;(3)摸到红球的概率是1﹣0.4=0.6;(4)设红球有x个,根据题意得:=0.6,解得:x=15;故答案为:123,0.404;0.4;0.6;15.【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.组成整体的几部分的概率之和为1.23.(7分)如图,在正方形网格中,每个小正方形的边长为1个单位长度.平面直角坐标系xOy的原点O在格点上,x轴、y轴都在格线上.线段AB的两个端点也在格点上.(1)若将线段AB绕点O逆时针旋转90°得到线段A1B1,试在图中画出线段A1B1.(2)若线段A2B2与线段A1B1关于y轴对称,请画出线段A2B2.(3)若点P是此平面直角坐标系内的一点,当点A、B1、B2、P四边围成的四边形为平行四边形时,请你直接写出点P的坐标.【分析】(1)利用网格特点和旋转性质画出点A、B的对应点A1、B1即可;(2)根据关于y轴对称的点的坐标特征写出A2和B2的坐标,然后描点即可;(3)利用平行四边形的判定方法,分类讨论:当AB2为对角线可得到点P1;当AB1为对角线可得到点P2;当B1B2为对角线可得到点P3,然后写出对应的P点坐标.【解答】解:(1)如图,线段A1B1为所作;(2)如图,线段A2B2为所作;(3)点P的坐标为(﹣4,﹣1)或(4,﹣1)或(0,5).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.24.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?【分析】(1)先由对角线互相平分证明四边形ABCD是平行四边形,再由对角互补得出∠ABC=90°,即可得出结论;(2)先求出∠FDC=36°,再求出∠DCO=54°,然后求出∠ODC=54°,即可求出∠BDF.【解答】(1)证明:∵AO=CO,BO=DO∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=54°∴∠BDF=∠ODC﹣∠FDC=18°.【点评】本题考查了矩形的判定与性质、平行四边形的判定、等腰三角形的判定与性质;熟练掌握矩形的判定与性质,并能进行推理计算是解决问题的关键.25.(10分)如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)当M点在M点落在BD的中点时(何处)时,AM+CM的值最小;(2)当AM+EM的值最小时,∠BCM= 15 °.(3)①求证:△AMB≌△ENB;②当M点在何处时,AM+BM+CM的值最小,并说明理由.【分析】(1)根据“两点之间线段最短”,可得,当M点落在BD的中点时,AM+CM 的值最小;(2)根据轴对称的性质和等腰三角形的性质即可得到结论;(3)根据等边三角形的性质和全等三角形的判定和性质即可得到结论;②根据“两点之间线段最短”,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长【解答】解:(1)当M点落在BD的中点时,A、M、C三点共线,AM+CM的值最小;故答案为:M点落在BD的中点时;(1)AC、BD交点(2)如图,连接CE交BD于M,此时AM+EM的值最小,∵∠ABE=60°,∠ABC=90°,∴∠CBE=150°,∵BE=BC,∴∠BCM=∠BEC=15°,故答案为:15;(3)①∵△ABE是等边三角形,∴BA=BE,∠ABE=60°,∵∠MBN=60°,∴∠MBN﹣∠ABN=∠ABE﹣∠ABN,即∠BMA=∠NBE,在△AMB与△ENB中,,∴△AMB≌△ENB(SAS);②如图,连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,理由如下:连接MN,由(1)知,△AMB≌△ENB,∴AM=EN,∵∠MBN=60°,MB=NB,∴△BMN是等边三角形,∴BM=MN,∴AM+BM+CM=EN+MN+CM,根据“两点之间线段最短”,得EN+MN+CM=EC最短,∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长;【点评】本题考查了正方形的性质,全等三角形的判定与性质,等边三角形的判定与性质,两点之间线段最短,(3)从两点之间线段最短考虑求解是解题的关键.26.(10分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.【分析】(1)先证明四边形AFCE为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;根据勾股定理即可求得AF的长;。
南京XX中学2015-2016学年八年级下期中数学试卷(2)含答案解析
南京XX中学2015-2016学年八年级下期中数学试卷(2)含答案解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置上)1.下列图形中,是中心对称但不是轴对称的图形是()A.等边三角形B.正方形C.圆D.平等四边形2.下面有四种说法:①了解某一天出入南京市的人口流量适合用普查方式;②抛掷一个正方体骰子,点数为奇数的概率是③“打开电视机,正在播放关于篮球巨星科比退役的相关新闻”是随机事件.④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.其中正确说法是()A.①②③B.①②④C.②③④D.②④3.下列各式从左到右的变形正确的是()A.=1 B.=C.=x+y D.=4.下列命题中,假命题是()A.对角线互相垂直且相等的四边形是正方形B.对角线相等且互相平分的四边形是矩形C.对角线互相垂直平分的四边形是菱形D.对角线互相平分的四边形是平行四边形5.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率6.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.6种 B.5种 C.4种 D.3种二、填空题(共10小题,每小题2分,共20分.请把答案直接填写在答题纸相应位置上)7.若分式有意义,则x的取值范围是.8.平行四边形ABCD中,∠A比∠B小20°,那么∠C=.9.在一个不透明的口袋里装了2个红球和1个白球,每个球除了颜色外都相同,将球摇匀,据此,请你写出一个发生的可能性小于的随机事件:.10.一个样本的50个数据分别落在5个组内,第1、2、3、4组数据的个数分别是2、8、15、5,则第5组数据的频数为,频率为.11.如图,在矩形ABCD中,对角线AC、BD交于点O,已知∠AOB=60°,AC=8,则BC 的长为.12.如图,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,若∠AMF=50°,则∠A=°.13.如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=3,则菱形ABCD的周长是.14.用平行四边形的定义和课本上的三个定理可以判断一个四边形是平行四边形,请探索并写出一个与它们不同的平行四边形的判定方法:.15.若顺次连接四边形各边中点所得到的四边形是矩形,则原四边形必须满足的条件是.16.已知在平面直角坐标系中,点A、B、C、D的坐标依次为(﹣1,0),(m,n),(﹣1,10),(﹣7,p),且p≤n.若以A、B、C、D四个点为顶点的四边形是菱形,则n的值是.三、解答题(本大题共10小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)•(2)﹣﹣3.18.先化简,再求值:÷(﹣1),然后从2,1,﹣1,﹣2中选一个你认为合适的数作为a的值代入求值.19.证明矩形的判定定理:对角线相等的平行四边形是矩形.20.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1(点A的对应点为A1).(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,并根据旋转的性质用符号语言写出2条不同类型的正确结论.21.在平行四边形ABCD中,E、F分别是AB、CD的中点,AF与DE相交于点G,GE与BF相交于点H.(1)求证:四边形EHFG是平行四边形;(2)若四边形EHFG是矩形,则平等四边行ABCD应满足的条件是.(直接写出答案,不需要证明)22.某校有2 000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到如图表(频数分布表中部分划记被墨水盖住):某校100名学生上学方式频数分布表(1)本次调查的个体是;(2)求频数分布表中,“乘私家车”部分对应的频数;(3)请估计该校2 000名学生中,先把骑车和步行上学的一共有多少人?23.如图,在正方形ABCD,M、N是对角线AC上的两点,且AM=CN,连接DM并延长,交AB于点F,连接BN并延长,交DC于点E.连接BM、DN.(1)求证:四边形MBND为菱形;(2)求证:△MFB≌△NED.24.浴缸有两个水龙头,一个放热水,一个放冷水,两水龙头放水速度:放热水的是a 升/分,放冷水的速度是b升/分,下面有两种放水方式:方式一:先开热水,使热水注满浴缸的一半,后一半容积的水接着开冷水龙头注放.方式二:前一半时间让热水龙头注放,后一半时间让冷水龙头注放.(1)在方式一中:设浴缸容积为V升,则先开热水,热水注满浴缸一半所需的时间为分;(2)两种方式中,哪种方式更节省时间?请说明理由.25.阅读下面的解题过程,然后解题:题目:已知(a、b、c互相不相等),求x+y+z的值.解:设,则x=k(a﹣b),y=k(b﹣c),z=k(c﹣a)于是,x+y+z=k (a﹣b+b﹣c+c﹣a)=k•0=0,依照上述方法解答下列问题:已知:==(x+y+z≠0),求的值.26.如图①,已知△ABC是等腰三角形,∠BAC=90°,点D是BC的中点,作正方形DEFG,使点A、C分别在DG和DE上,连接AE、BG.(1)试猜想线段BG和AE的关系为;(2)如图②,将正方形DEFG绕点D按逆时针方向旋转α(0°<α≤90°),判断(1)中的结论是否仍然成立,证明你的结论.2015-2016学年江苏省南京八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置上)1.下列图形中,是中心对称但不是轴对称的图形是()A.等边三角形B.正方形C.圆D.平等四边形【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项错误;C、既是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,不是中心对称图形,故此选项正确;故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下面有四种说法:①了解某一天出入南京市的人口流量适合用普查方式;②抛掷一个正方体骰子,点数为奇数的概率是③“打开电视机,正在播放关于篮球巨星科比退役的相关新闻”是随机事件.④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.其中正确说法是()A.①②③B.①②④C.②③④D.②④【考点】X3:概率的意义;V2:全面调查与抽样调查;X1:随机事件.【分析】根据调查方式的选择、必然事件、不可能事件、随机事件的概念分别进行解答即可.【解答】解:①了解某一天出入南京市的人口流量适合用抽样调查的方式,故本选项错误;②抛掷一个正方体骰子,点数为奇数的概率是,正确;③“打开电视机,正在播放关于篮球巨星科比退役的相关新闻”是随机事件,正确;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件,正确;故选C.【点评】此题考查了概率的意义、抽样调查和全面调查和随机事件,不易采集到数据的调查要采用抽样调查的方式;必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.下列各式从左到右的变形正确的是()A.=1 B.=C.=x+y D.=【考点】65:分式的基本性质.【专题】11 :计算题;513:分式.【分析】原式变形变形得到结果,即可作出判断.【解答】解:A、原式==1,正确;B、原式=,错误;C、原式为最简结果,错误;D、原式=,错误,故选A【点评】此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.4.下列命题中,假命题是()A.对角线互相垂直且相等的四边形是正方形B.对角线相等且互相平分的四边形是矩形C.对角线互相垂直平分的四边形是菱形D.对角线互相平分的四边形是平行四边形【考点】O1:命题与定理;L6:平行四边形的判定;L9:菱形的判定;LC:矩形的判定;LF:正方形的判定.【分析】根据平行四边形,矩形,菱形和正方形的对角线矩形判断即可.【解答】解:对角线互相垂直平分且相等的四边形是正方形,所以A为假命题;对角线相等且互相平分的四边形是矩形,所以B为真命题;对角线互相垂直平分的四边形是菱形,所以C为真命题;对角线互相平分的四边形为平行四边形,所以D为真命题.故选A.【点评】本题考查了从对角线来判断特殊四边形的方法:对角线互相平分的四边形为平行四边形;对角线互相垂直平分的四边形为菱形;对角线互相平分且相等的四边形为矩形;对角线互相垂直平分且相等的四边形为正方形.也考查了真命题与假命题的概念.5.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率【考点】X8:利用频率估计概率.【专题】1 :常规题型.【分析】根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答.【解答】解:∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.【点评】本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.6.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.6种 B.5种 C.4种 D.3种【考点】L6:平行四边形的判定.【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【解答】解:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;∴有4种可能使四边形ABCD为平行四边形.故选:C.【点评】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.二、填空题(共10小题,每小题2分,共20分.请把答案直接填写在答题纸相应位置上)7.若分式有意义,则x的取值范围是x≠﹣1.【考点】62:分式有意义的条件.【分析】根据分式有意义的条件可得1+x≠0,再解即可.【解答】解:由题意得:1+x≠0,解得:x≠﹣1,故答案为:x≠﹣1.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.8.平行四边形ABCD中,∠A比∠B小20°,那么∠C=80°.【考点】L5:平行四边形的性质.【专题】11 :计算题.【分析】根据平行四边形的性质分别求出∠A和∠B的度数,然后根据平行四边形对角相等的性质可得∠C=∠A,即可求解.【解答】解:∵四边形ABCD为平行四边形,∴,解得:,∴∠C=∠A=80°.故答案为:80°.【点评】本题考查了平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.9.在一个不透明的口袋里装了2个红球和1个白球,每个球除了颜色外都相同,将球摇匀,据此,请你写出一个发生的可能性小于的随机事件:求摸到白球的概率.【考点】X2:可能性的大小;X1:随机事件.【分析】发生的可能性小于的随机事件就是摸出的球的个数占总数的一半以下,据此求解.【解答】解:一个不透明的口袋里装了2个红球和1个白球,摸到白球的概率为:=<,故答案为:求摸到白球的概率.【点评】本题考查了可能性的大小的知识,解题的关键是能够根据题意确定摸到红球和摸到白球的概率,难度不大.10.一个样本的50个数据分别落在5个组内,第1、2、3、4组数据的个数分别是2、8、15、5,则第5组数据的频数为20,频率为0.4.【考点】V6:频数与频率.【分析】总数减去其它四组的数据就是第5组的频数,用频数除以数据总数就是频率.【解答】解:根据题意可得:第1、2、3、4组数据的个数分别是2、8、15、5,共(2+8+15+5)=30,样本总数为50,故第5小组的频数是50﹣30=20,频率是=0.4.故答案为20,0.4.【点评】本题考查频率、频数的关系:频率=,同时考查频数的定义即样本数据出现的次数.11.如图,在矩形ABCD中,对角线AC、BD交于点O,已知∠AOB=60°,AC=8,则BC的长为4.【考点】LB:矩形的性质.【分析】由矩形的性质可得到OA=OB,于是可证明△ABO为等边三角形,于是可求得AB=4,然后依据勾股定理可求得BC的长.【解答】解:∵四边形ABCD为矩形,∴OA=OB=AC=4.∵OA=OB,∠AOB=60°,∴△OAB为等边三角形.∴AB=4.在Rt△ABC中,BC==4.故答案为:4.【点评】本题主要考查的是矩形的性质、等边三角形的性质和判定、勾股定理的应用,求得AB的长是解题的关键.12.如图,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,若∠AMF=50°,则∠A=65°.【考点】L5:平行四边形的性质.【分析】由平行四边形与折叠的性质,易得CD∥MN∥AB,然后根据平行线的性质,即可求得∠DMN=∠FMN=∠A,又由平角的定义,根据∠AMF=50°,求得∠DMF的度数,然后可求得∠A的度数.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,根据折叠的性质可得:MN∥AE,∠FMN=∠DMN,∴AB∥CD∥MN,∴∠DMN=∠FMN=∠A,∵∠AMF=50°,∴∠DMF=180°﹣∠AMF=130°,∴∠FMN=∠DMN=∠A=65°,故答案为:65.【点评】此题考查了平行四边形的性质、平行线的性质与折叠的性质,注意数形结合思想的应用以及折叠中的对应关系,难度适中.13.如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=3,则菱形ABCD的周长是24.【考点】L8:菱形的性质.【分析】根据菱形的性质可得AC⊥BD,AB=BC=CD=AD,再根据直角三角形的性质可得AB=2OP,进而得到AB长,然后可算出菱形ABCD的周长.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∵点P是AB的中点,∴AB=2OP,∵PO=3,∴AB=6,∴菱形ABCD的周长是:4×6=24,故答案为:24【点评】此题主要考查了菱形的性质,关键是掌握菱形的两条对角线互相垂直,四边相等.14.用平行四边形的定义和课本上的三个定理可以判断一个四边形是平行四边形,请探索并写出一个与它们不同的平行四边形的判定方法:答案不唯一,如两组对角分别相等的四边形是平行四边形等.【考点】L6:平行四边形的判定.【专题】26 :开放型.【分析】根据平行四边形的定义以及判定方法得出即可.【解答】解:答案不唯一,如两组对角分别相等的四边形是平行四边形等;理由:∵∠B=∠D,∠A=∠C,∠B+∠C+∠D+∠A=360°,∴∠B+∠C=180°,∠A+∠D=180°,∴AB∥CD,AD∥BC,∴四边行ABCD是平行四边形.故答案为:答案不唯一,如两组对角分别相等的四边形是平行四边形等.【点评】此题主要考查了平行四边形的判定,熟练掌握相关判定定理是解题关键.15.若顺次连接四边形各边中点所得到的四边形是矩形,则原四边形必须满足的条件是对角线互相垂直.【考点】LN:中点四边形;LC:矩形的判定.【分析】根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直.【解答】解:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG,∴四边形EFGH是平行四边形,∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故答案为:对角线互相垂直.【点评】本题主要考查了矩形的性质和三角形中位线定理,解题的关键是构造三角形利用三角形的中位线定理解答.16.已知在平面直角坐标系中,点A、B、C、D的坐标依次为(﹣1,0),(m,n),(﹣1,10),(﹣7,p),且p≤n.若以A、B、C、D四个点为顶点的四边形是菱形,则n的值是2,5,18.【考点】L9:菱形的判定;D5:坐标与图形性质.【分析】利用菱形的性质结合A,C点坐标进而得出符合题意的n的值.【解答】解:如图所示:当C(﹣7,2),C′(﹣7,5)时,都可以得到以A、B、C、D 四个点为顶点的四边形是菱形,同理可得:当D(﹣7,8)则对应点C的坐标为;(﹣7,18)可以得到以A、B、C、D 四个点为顶点的四边形是菱形,故n的值为:2,5,18.故答案为:2,5,18.【点评】此题主要考查了菱形的判定以及坐标与图形的性质,利用菱形的性质得出C点坐标是解题关键.三、解答题(本大题共10小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)•(2)﹣﹣3.【考点】6C:分式的混合运算.【分析】(1)先约分,再计算即可;(2)化为同分母的分式,再进行相加即可.【解答】解:(1)原式=﹣;(2)原式=﹣﹣===﹣2.【点评】本题考查了分式的混合运算,掌握分式的约分和通分是解此题的关键.18.先化简,再求值:÷(﹣1),然后从2,1,﹣1,﹣2中选一个你认为合适的数作为a的值代入求值.【考点】6D:分式的化简求值.【分析】先算括号里面的,再算除法,最后选出合适的a的值代入进行计算即可.【解答】解:原式=÷=•=﹣,当a=﹣2时,原式=﹣=1.【点评】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.19.证明矩形的判定定理:对角线相等的平行四边形是矩形.【考点】LC:矩形的判定.【分析】由全等三角形的判定定理SSS证得△ABC≌△DCB,则∠ABC=∠DCB=90°,所以“有一内角为直角的平行四边形是矩形”.【解答】已知:四边形ABCD是平行四边形,AC、BD是两条对角线,且AC=BD.求证:平行四边形ABCD是矩形.证明:如图,∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC.在△ABC与△DCB中,,∴△ABC≌△DCB(SSS).∴∠ABC=∠DCB.又∵∠ABC+∠DCB=180°,∴∠ABC=∠DCB=90°,∴平行四边形ABCD是矩形.【点评】本题考查了矩形的判定.此题通过全等三角形的性质得到同旁内角互补,结合平行线的性质证得平行四边形的两个内角为直角.20.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1(点A的对应点为A1).(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,并根据旋转的性质用符号语言写出2条不同类型的正确结论.【考点】R8:作图﹣旋转变换.【分析】(1)连接AA1、BB1,再分别作AA1、BB1中垂线,两中垂线交点即为点O;(2)根据旋转的性质可知,对应角都相等都等于旋转角,对应点到旋转中心距离相等,据此可知.【解答】解:(1)如图,点O即为所求;(2)OA=OA1、∠AOA1=∠BOB1.【点评】本题主要考查旋转变换的作图,熟练掌握旋转变换的性质:①对应点到旋转中心的距离相等(意味着:旋转中心在对应点所连线段的垂直平分线上),②对应点与旋转中心所连线段的夹角等于旋转角,③旋转前、后的图形全等.21.在平行四边形ABCD中,E、F分别是AB、CD的中点,AF与DE相交于点G,GE与BF相交于点H.(1)求证:四边形EHFG是平行四边形;(2)若四边形EHFG是矩形,则平等四边行ABCD应满足的条件是平行四边形ABCD 是矩形,并且AB=2AD.(直接写出答案,不需要证明)【考点】LC:矩形的判定;L7:平行四边形的判定与性质.【分析】(1)通过证明两组对边分别平行,可得四边形EHFG是平行四边形;(2)当平行四边形ABCD是矩形,并且AB=2AD时,先证明四边形ADFE是正方形,得出有一个内角等于90°,从而证明菱形EHFG为一个矩形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AE∥CF,AB=CD,∵E是AB中点,F是CD中点,∴AE=CF,∴四边形AECF是平行四边形,∴AF∥CE.同理可得DE∥BF,∴四边形FGEH是平行四边形;(2)解:当平行四边形ABCD是矩形,并且AB=2AD时,平行四边形EHFG是矩形.理由如下:连接EF,如图所示:∵E,F分别为AB,CD的中点,且AB=CD,∴AE=DF,且AE∥DF,∴四边形AEFD为平行四边形,∴AD=EF,又∵AB=2AD,E为AB中点,则AB=2AE,于是有AE=AD=AB,这时,EF=AE=AD=DF=AB,∠EAD=∠FDA=90°,∴四边形ADFE是正方形,∴EG=FG=AF,AF⊥DE,∠EGF=90°,∴此时,平行四边形EHFG是矩形;故答案为:平行四边形ABCD是矩形,并且AB=2AD.【点评】本题考查了平行四边形的判定与性质,矩形的判定,注意找准条件,有一定的难度.22.某校有2 000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到如图表(频数分布表中部分划记被墨水盖住):某校100名学生上学方式频数分布表(1)本次调查的个体是每名学生的上学方式;(2)求频数分布表中,“乘私家车”部分对应的频数;(3)请估计该校2 000名学生中,先把骑车和步行上学的一共有多少人?【考点】V7:频数(率)分布表;V3:总体、个体、样本、样本容量;V5:用样本估计总体.【分析】(1)每一个调查对象称为个体,据此求解;(2)首先求得私家车部分所占的百分比,然后乘以总人数即可求得对应频数;(3)用学生总数乘以骑车和步行上学所占的百分比的和即可求得人数.【解答】解:(1)本次调查的个体是每名学生的上学方式,故答案为:每名学生的上学方式;(2)由扇形统计图知,“乘私家车”部分对应的百分比为1﹣15%﹣29%﹣30%﹣6%=20%,则“乘私家车”部分对应的频数为100×20%=20;(3)2000×(15%+29%)=880人.答:估计该校2000名学生中,选择骑车和步行上学的一共有880人.【点评】本题考查了频率分布表、用样本估计总体及扇形统计图的知识,解题的关键是能够读懂统计图,并从统计图中整理出进一步解题的有关信息.23.如图,在正方形ABCD,M、N是对角线AC上的两点,且AM=CN,连接DM并延长,交AB于点F,连接BN并延长,交DC于点E.连接BM、DN.(1)求证:四边形MBND为菱形;(2)求证:△MFB≌△NED.【考点】LE:正方形的性质;KB:全等三角形的判定;LA:菱形的判定与性质.【分析】(1)连接BD交AC于O,先证明四边形BMDN是平行四边形,再根据NM⊥BD即可证明.(2)先证明四边形BFDE是平行四边形,得到∠BFM=∠DEN,再证明BM=DN,∠BMF=∠DNE即可解决问题.【解答】(1)证明:连接BD交AC于O.∵四边形ABCD是正方形,∴OA=OC,OB=OD,AC⊥BD,∵AM=CN,∴OM=ON,∵OB=OD,∴四边形MBND是平行四边形,∵MN⊥DB,∴四边形MBND是菱形.(2)证明:∵四边形MBND是菱形,∴DM∥NB,BM=DN,∠DMB=∠DNB,∴∠BMF=∠DNE,∵BF∥DE,∴四边形BFDE是平行四边形,∴∠BFM=∠DEN,在△MFB和△NED中,,∴△MFB≌△NED.【点评】本题考查正方形的性质、全等三角形的判定和性质、平行四边形的判定和性质、菱形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题.24.浴缸有两个水龙头,一个放热水,一个放冷水,两水龙头放水速度:放热水的是a 升/分,放冷水的速度是b升/分,下面有两种放水方式:方式一:先开热水,使热水注满浴缸的一半,后一半容积的水接着开冷水龙头注放.方式二:前一半时间让热水龙头注放,后一半时间让冷水龙头注放.(1)在方式一中:设浴缸容积为V升,则先开热水,热水注满浴缸一半所需的时间为分;(2)两种方式中,哪种方式更节省时间?请说明理由.【考点】6C:分式的混合运算.【分析】(1)根据题意即可得到结论;(2)首先浴缸容积为V,然后求出方式一和方式二注满时间为t、t′,最后作差比较.【解答】解:(1)先开热水注满浴缸一半所需的时间为分;故答案为:;(2)方式一:设浴缸容积为V,注满时间为t,依题意,得t=+,方式二:同样设浴缸容积为V,注满总时间为t′,依题意得t′a+t′b=V所以t′=,故t﹣t′=+﹣==,分类讨论:(Ⅰ)当a=b时,t﹣t′=0,即t=t′(Ⅱ)当a≠b时,>0,即t>t′综上所述:(1)当放热水速度与放冷水速度不相等时,选择方式二节约时间.(2)当两水龙头放水速度相等时,选其中任一方式都可以,因为此时注满水的时间相等.【点评】本题考查的是分式的加减运算,解答认真仔细地阅读、理解是关键.25.阅读下面的解题过程,然后解题:题目:已知(a、b、c互相不相等),求x+y+z的值.解:设,则x=k(a﹣b),y=k(b﹣c),z=k(c﹣a)于是,x+y+z=k (a﹣b+b﹣c+c﹣a)=k•0=0,依照上述方法解答下列问题:已知:==(x+y+z≠0),求的值.【考点】S1:比例的性质.【分析】设===k,根据比例的性质得到x=y=z,计算即可.【解答】解:设===k,则y+z=xk,z+x=yk,x+y=zk,∴2(x+y+z)=k(x+y+z),解得,k=2,∴y+z=2x,z+x=2y,x+y=2z,解得,x=y=z,则=﹣.【点评】本题考查的是比例的性质,正确理解给出的解题过程是解题的关键.26.如图①,已知△ABC是等腰三角形,∠BAC=90°,点D是BC的中点,作正方形DEFG,使点A、C分别在DG和DE上,连接AE、BG.。
南京市XX中学2015-2016年八年级下期中数学试卷含答案解析
2015-2016学年江苏省南京XX中学八年级(下)期中数学试卷一、选择题.(每题2分,共12分)1.完成下列任务,宜用抽样调查的是()A.调查你班同学的年龄情况B.了解你所在学校男、女生人数C.奥运会上对参赛运动员进行的尿样检查D.考察一批炮弹的杀伤半径2.若把分式中的x、y都扩大3倍,则分式的值()A.扩大3倍B.扩大9倍C.不变D.缩小到原来的3.下列事件是随机事件的是()A.在标准大气压下,温度低于0℃时冰融化B.小明骑车经过某个十字路口时遇到红灯C.地球上海洋面积大于陆地面积D.如果a、b都是实数,那么a+b=b+a4.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A.110°B.80°C.40°D.30°5.调查某小区内30户居民月人均收入情况,制成如下频数分布直方图,且人均收入在1 200~1 240元的频数是()A.12 B.13 C.14 D.156.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P 为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°二、填空题.(共10小题,满分20分)7.当x时,分式有意义.8.已知分式的值为0,那么x的值为.9.分式,的最简公分母是.10.袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红球的可能性(选填“大于”“小于”或“等于”)是白球的可能性.11.化简:=.12.菱形的周长为20cm,较短一条对角线的长是6cm,则这个菱形的另一条对角线长为cm.13.某中学要了解初二学生的视力情况,在全校初二年级中抽取25名学生进行检测,在这个问题中,样本是.14.直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE=.15.菱形OABC在平面直角坐标系中的位置如图所示.∠AOC=45°,OC=,则点B的坐标为.16.如图,正方形ABCD 的面积为4,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 最小,则这个最小值为 .三、解答题(共68分) 17.计算: (1)÷(﹣6x 2y ); (2)•;(3)+(4)﹣.18.某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘,商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:(1)完成上述表格:(2)请估计当n 很大时,频率将会接近 .假如你去转动转盘一次,你获得“洗衣粉”的概率估计值是 .(结果精确到0.1)19.如图,点E是正方形ABCD边BC延长线上的一点,且CE=AC,求∠E的度数.20.先化简(1﹣)÷﹣1,再从﹣2≤x≤2的范围内选取一个合适的整数x代入求值.21.某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目.为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)扇形统计图中“足球”所对应扇形的圆心角为度;(4)该校共有1 200名学生,请估计全校有多少学生喜爱篮球?22.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.23.辨析纠错已知:如图,△ABC中,AD是∠BAC的平分线,DE∥AC,DF∥AB.求证:四边形AEDF是菱形.对于这道题,小明是这样证明的:证明:∵AD平分∠BAC,∴∠1=∠2(角平分线的定义).∵DE∥AC,∴∠2=∠3(两直线平行,内错角相等).∴∠1=∠3(等量代换).∴AE=DE(等角对等边).同理可证:AF=DF,∴四边形AEDF是菱形(菱形定义).老师说小明的证明过程有错误.(1)请你帮小明指出他的错误是什么.(2)请你帮小明做出正确的解答.24.如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC和外角的平分线,BE⊥AE.(1)求证:DA⊥AE;(2)试判断AB与DE是否相等?并证明你的结论.25.我们可以通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例,请补充完整原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.(1)思路梳理∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线.根据,易证△AFG≌,得EF=BE+DF.(2)类比引申如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系时,仍有EF=BE+DF.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.2015-2016学年江苏省南京XX中学八年级(下)期中数学试卷参考答案与试题解析一、选择题.(每题2分,共12分)1.完成下列任务,宜用抽样调查的是()A.调查你班同学的年龄情况B.了解你所在学校男、女生人数C.奥运会上对参赛运动员进行的尿样检查D.考察一批炮弹的杀伤半径【考点】全面调查与抽样调查.【分析】根据抽样调查和全面调查的特点即可作出判断.【解答】解:A、B、C选项中,因涉及人数较少,范围较小,适用普查;D、考察一批炮弹的杀伤半径,调查具有破坏性,所以适用抽样调查,故选:D.2.若把分式中的x、y都扩大3倍,则分式的值()A.扩大3倍B.扩大9倍C.不变D.缩小到原来的【考点】分式的基本性质.【分析】根据分式的分子分母都乘以或除以同一个不为0的数分式的值不变,可得答案.【解答】解:若把分式中的x、y都扩大3倍,则分式的值不变,故选:C.3.下列事件是随机事件的是()A.在标准大气压下,温度低于0℃时冰融化B.小明骑车经过某个十字路口时遇到红灯C.地球上海洋面积大于陆地面积D.如果a、b都是实数,那么a+b=b+a【考点】随机事件.【分析】随机事件就是可能发生,也可能不发生的事件,依据定义即可判断.【解答】解:A、在标准大气压下,温度低于0℃时冰融化是不可能事件,选项不符合题意;B、小明骑车经过某个十字路口时遇到红灯,是随机事件,选项符合题意;C、地球上海洋面积大于陆地面积,是必然事件,选项不符合题意;D、如果a、b都是实数,那么a+b=b+a是必然事件,选项不符合题意.故选B.4.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A.110°B.80°C.40°D.30°【考点】旋转的性质.【分析】首先根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,即可得到∠A′=40°,再有∠B′=110°,利用三角形内角和可得∠A′CB′的度数,进而得到∠ACB的度数,再由条件将△ABC绕着点C顺时针旋转50°后得到△A′B′C′可得∠ACA′=50°,即可得到∠BCA′的度数.【解答】解:根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,∵∠A=40°,∴∠A′=40°,∵∠B′=110°,∴∠A′CB′=180°﹣110°﹣40°=30°,∴∠ACB=30°,∵将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,∴∠ACA′=50°,∴∠BCA′=30°+50°=80°,故选:B.5.调查某小区内30户居民月人均收入情况,制成如下频数分布直方图,且人均收入在1 200~1 240元的频数是()A.12 B.13 C.14 D.15【考点】频数(率)分布直方图.【分析】根据频数分布直方图第三组数据可得.【解答】解:由频数分布直方图知,人均收入在1 200~1 240元的频数是13,故选:B.6.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P 为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°【考点】翻折变换(折叠问题);菱形的性质.【分析】连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P 为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.【解答】解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故选:B.二、填空题.(共10小题,满分20分)7.当x≠﹣3时,分式有意义.【考点】分式有意义的条件.【分析】直接利用分式的定义分析得出答案.【解答】解:∵分式有意义,∴x+3≠0,解得:x≠﹣3.故答案为:≠﹣3.8.已知分式的值为0,那么x的值为2.【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x﹣2=0,且x+1≠0,再解可得答案.【解答】解:由题意得:x﹣2=0,且x+1≠0,解得:x=2,故答案为:2.9.分式,的最简公分母是6x3y2z.【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,的分母分别是3xy2、2x3z,故最简公分母是6x3y2z;故答案为6x3y2z.10.袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红球的可能性大于(选填“大于”“小于”或“等于”)是白球的可能性.【考点】可能性的大小.【分析】根据“哪种球的数量大哪种球的可能性就打”直接确定答案即可.【解答】解:∵袋子里有5只红球,3只白球,∴红球的数量大于白球的数量,∴从中任意摸出1只球,是红球的可能性大于白球的可能性.故答案为:大于.11.化简:=.【考点】约分.【分析】直接利用平方差公式将分母分解因式,进而化简即可.【解答】解:==.故答案为:.12.菱形的周长为20cm,较短一条对角线的长是6cm,则这个菱形的另一条对角线长为8cm.【考点】菱形的性质.【分析】根据菱形的性质,先求菱形的边长,利用勾股定理求另一条对角线的长度.【解答】解:如图,菱形ABCD中,BD=6,∴AC⊥BD,∵菱形的周长为20,BD=6,∴AB=20÷4=5,BO=3,∴AO==4,∴AC=8.则这个菱形的另一条对角线长为8 cm.故答案为:8.13.某中学要了解初二学生的视力情况,在全校初二年级中抽取25名学生进行检测,在这个问题中,样本是抽取25名学生的视力情况.【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:某中学要了解初二学生的视力情况,在全校初二年级中抽取25名学生进行检测,在这个问题中,样本是抽取25名学生的视力情况,故答案为:抽取25名学生的视力情况.14.直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE=3.【考点】三角形中位线定理;矩形的判定与性质.【分析】由三角形中位线定理得到DF=BC;然后根据直角三角形斜边上的中线等于斜边的一半得到AE=BC,则DF=AE.【解答】解:如图,∵在直角△ABC中,∠BAC=90°,D、F分别为AB、AC的中点,∴DF是△ABC的中位线,∴DF=BC.又∵点E是直角△ABC斜边BC的中点,∴AE=BC,∵DF=3,∴DF=AE.故填:3.15.菱形OABC在平面直角坐标系中的位置如图所示.∠AOC=45°,OC=,则点B的坐标为(+1,1).【考点】菱形的性质;坐标与图形性质.【分析】根据菱形的性质,作CD⊥x轴,先利用三角函数求出OD、CD的长度,从而得出C点坐标,然后利用菱形的性质求得点B的坐标.【解答】解:由题意可得OA=OC=,∠AOC=45°,∴CD=0Csin45°=1,OD=OCcos45°=1,点C的坐标为(1,1),则点B的坐标为(+1,1).故答案为:(+1,1).16.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为2.【考点】轴对称﹣最短路线问题;等边三角形的性质;正方形的性质.【分析】先求得正方形的边长,依据等边三角形的定义可知BE=AB=2,连结BP,依据正方形的对称性可知PB=PD,则PE+PD=PE+BP.由两点之间线段最短可知:当点B、P、E在一条直线上时,PE+PD有最小值,最小值为BE的长.【解答】解:连结BP.∵ABCD为正方形,面积为4,∴正方形的边长为2.∵△ABE为等边三角形,∴BE=AB=2.∵ABCD为正方形,∴△ABP与△ADP关于AC对称.∴BP=DP.∴PE+PD=PE+BP.由两点之间线段最短可知:当点B、P、E在一条直线上时,PE+PD有最小值,最小值=BE=2.故答案为:2.三、解答题(共68分)17.计算:(1)÷(﹣6x2y);(2)•;(3)+(4)﹣.【考点】分式的混合运算.【分析】(1)根据分式除法法则即可求出答案.(2)先将分子分母进行因式分解,然后利用分式的基本性质即可求出答案(3)利用分式加减法则即可求出答案(4)根据分式的加减运算法则即可求出答案.【解答】解:(1)原式=×=﹣(2)原式=×=(3)原式=﹣==a+b(4)原式=﹣=﹣18.某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘,商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:(1)完成上述表格:(2)请估计当n很大时,频率将会接近0.6.假如你去转动转盘一次,你获得“洗衣粉”的概率估计值是0.6.(结果精确到0.1)【考点】利用频率估计概率.【分析】(1)根据频率的定义计算n=298时的频率和频率为0.59时的频数;(2)从表中频率的变化,可得到估计当n很大时,频率将会接近0.6,然后根据利用频率估计概率得“可乐”的概率约是0.6;【解答】解:(1):(2)估计当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“可乐”的概率约是0.6;故答案为:0.6,472;0.6,0.6.19.如图,点E是正方形ABCD边BC延长线上的一点,且CE=AC,求∠E的度数.【考点】正方形的性质;等腰三角形的性质.【分析】根据等边对等角的性质可得∠E=∠CAE,然后根据正方形的对角线平分一组对角以及三角形的一个外角等于与它不相邻的两个内角的和列式求出∠E=22.5°.【解答】解:∵CE=AC,∴∠E=∠CAE,∵AC是正方形ABCD的对角线,∴∠ACB=45°,∴∠E+∠CAE=45°,∴∠E=×45°=22.5°.20.先化简(1﹣)÷﹣1,再从﹣2≤x≤2的范围内选取一个合适的整数x代入求值.【考点】分式的化简求值.【分析】首先对括号内的分式进行通分相减,然后把除法转化为乘法,计算乘法即可化简,最后代入数值计算即可.【解答】解:原式=•﹣1=•﹣1=x﹣1.∵x≠0或1或﹣2或2.且﹣2≤x≤2而x是整数.∴x=﹣1.当x=﹣1时,原式=﹣1﹣1=﹣2.21.某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目.为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)扇形统计图中“足球”所对应扇形的圆心角为108度;(4)该校共有1 200名学生,请估计全校有多少学生喜爱篮球?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用喜欢跳绳的人数除以其所占的百分比,即可求得被调查的总人数;(2)用总人数乘以足球所占的百分比即可求得喜欢足球的人数,用总数减去其他各小组的人数即可求得喜欢跑步的人数,从而补全条形统计图;(3)用360度乘以样本中喜欢足球人数占总人数的比例;(4)用样本估计总体,即可确定最喜爱篮球的人数.【解答】解:(1)观察条形统计图与扇形统计图可知:喜欢跳绳的有10人,占25%,故总人数有10÷25%=40人;(2)喜欢足球的有40×30%=12人,喜欢跑步的有40﹣10﹣15﹣12=3人,故条形统计图补充为:(3)扇形统计图中“足球”所对应扇形的圆心角为360°×=108°,故答案为:108;(4)全校最喜爱篮球的人数=1200×=450,答:估计全校有450名学生喜爱篮球.22.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.【考点】平行四边形的判定与性质.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【解答】证明:如图,连接BD设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,OA﹣AE=OC﹣CF,∴OE=OF.∴四边形BEDF是平行四边形.23.辨析纠错已知:如图,△ABC中,AD是∠BAC的平分线,DE∥AC,DF∥AB.求证:四边形AEDF是菱形.对于这道题,小明是这样证明的:证明:∵AD平分∠BAC,∴∠1=∠2(角平分线的定义).∵DE∥AC,∴∠2=∠3(两直线平行,内错角相等).∴∠1=∠3(等量代换).∴AE=DE(等角对等边).同理可证:AF=DF,∴四边形AEDF是菱形(菱形定义).老师说小明的证明过程有错误.(1)请你帮小明指出他的错误是什么.(2)请你帮小明做出正确的解答.【考点】菱形的判定.【分析】(1)有一组邻边相等的平行四边形是菱形,即可得出答案;(2)求出四边形是平行四边形,再证出AE=DE即可.【解答】解:(1)小明错用了菱形的定义.(2)改正:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠1=∠2(角平分线的定义).∵DE∥AC,∴∠2=∠3(两直线平行,内错角相等).∴∠1=∠3(等量代换).∴AE=DE,∴平行四边形AEDF是菱形.24.如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC和外角的平分线,BE⊥AE.(1)求证:DA⊥AE;(2)试判断AB与DE是否相等?并证明你的结论.【考点】矩形的判定;角平分线的性质;等腰三角形的性质.【分析】(1)根据角平分线的性质,及∠BAC+∠BAF=180°可求出∠DAE=90°,即DA⊥AE;(2)要证AB=DE,需证四边形AEBD是矩形,由AB=AC,AD为∠BAC的角平分线,可知AD⊥BC,又因为DA⊥AE,BE⊥AE故,所以∠AEB=90°,∠DAE=90°即证四边形AEBD是矩形.【解答】(1)证明:∵AD平分∠BAC,∴∠BAD=∠BAC,又∵AE平分∠BAF,∴∠BAE=∠BAF,∵∠BAC+∠BAF=180°,∴∠BAD+∠BAE=(∠BAC+∠BAF)=×180°=90°,即∠DAE=90°,故DA⊥AE.(2)解:AB=DE.理由是:∵AB=AC,AD平分∠BAC,∴AD⊥BC,故∠ADB=90°∵BE⊥AE,∴∠AEB=90°,∠DAE=90°,故四边形AEBD是矩形.∴AB=DE.25.我们可以通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例,请补充完整原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.(1)思路梳理∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线.根据SAS,易证△AFG≌△AFG,得EF=BE+DF.(2)类比引申如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系∠B+∠D=180°时,仍有EF=BE+DF.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.【考点】四边形综合题.【分析】(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,再证明△AFG≌△AFE进而得到EF=FG,即可得EF=BE+DF;(2)∠B+∠D=180°时,EF=BE+DF,与(1)的证法类同;(3)根据△AEC绕点A顺时针旋转90°得到△ABE′,根据旋转的性质,可知△AEC≌△ABE′得到BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,根据Rt△ABC中的,AB=AC得到∠E′BD=90°,所以E′B2+BD2=E′D2,证△AE′D≌△AED,利用DE=DE′得到DE2=BD2+EC2.【解答】解:(1)∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠FAG,∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线,在△AFE和△AFG中,,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF,故答案为:SAS;△AFG;(2)∠B+∠D=180°时,EF=BE+DF;∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠FAG,∵∠ADC+∠B=180°,∴∠FDG=180°,点F、D、G共线,在△AFE和△AFG中,,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF;(3)猜想:DE2=BD2+EC2,证明:连接DE′,根据△AEC绕点A顺时针旋转90°得到△ABE′,∴△AEC≌△ABE′,∴BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,在Rt△ABC中,∵AB=AC,∴∠ABC=∠ACB=45°,∴∠ABC+∠ABE′=90°,即∠E′BD=90°,∴E′B2+BD2=E′D2,又∵∠DAE=45°,∴∠BAD+∠EAC=45°,∴∠E′AB+∠BAD=45°,即∠E′AD=45°,在△AE′D和△AED中,,∴△AE′D≌△AED(SAS),∴DE=DE′,∴DE2=BD2+EC2.2017年5月4日。
南京市钟英中学八年级下期中数学试卷及答案
2015-2016学年江苏省南京市钟英中学八年级(下)期中数学试卷一、选择题(本大题共8小题,每小题2分,共16分.)1.完成下列任务,宜用抽样调查的是()A.调查八年级(下)数学书的排版正确率B.了解你所在学校男、女生人数C.调查学生对校足球队的喜欢情况D.奥运会上对获奖运动员进行的尿样检查2.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个3.下列说法正确的是()A.一个不透明的袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是B.一次摸奖活动的中奖率是l%,那么摸100次奖必然会中一次奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.在367人中至少有两个人的生日相同4.下列运算中,错误的是()A.B.C.D.5.已知某班有40名学生,将他们的身高分成4组,在160~165cm区间的有8名学生,那么这个小组的频率为()A.0.20 B.0.15 C.0.01 D.0.256.如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=22°,则∠PFE的度数是()A.15°B.20°C.22°D.44°7.如图,▱ABCD的对角线BD=6cm,若将▱ABCD绕其对称中心O旋转180°,则点D在旋转过程中所经过的路径长为()A.3π cm B.6π cm C.π cm D.2π cm8.如图,在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去….四边形A2nB2nC2nD2n的周长是()A.B.C.D.二、填空题(本大题共10小题,每小题2分,共20分.)9.若一个分式含有字母m,且当m=5时,它的值为1,则这个分式可以是.(写出一个..即可)10.某饮料销售公司对今年前三个月每月销售总量进行统计,为了更清楚地看出销售总量的总趋势是上升还是下降,应选用统计图来描述数据.11.已知x=﹣2时,分式无意义;x=4时,分式的值为0,则a+b= .12.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是事件.(填“随机”或者“确定”)13.已知a,b可以取﹣2,﹣1,1,2中任意一个值(a≠b),则直线y=ax+b的图象经过第四象限的概率是.14.如图,在Rt△ABC中,∠ACB=90°,∠A=24°,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,旋转角为°.15.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=40°,∠F=130°,则∠DAE的度数为.16.如图,矩形OBCD的顶点C的坐标为(2,3),则BD= .17.以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB的取值范围是.18.四边形ABCD是正方形,点E是直线AB上的一动点,且△AEC是以AC为腰的等腰三角形,则∠BCE的度数为.三、解答题(本大题共9小题,共64分.请在答题纸指定区域内作答,解答时应根据需要,写出文字说明、证明过程或演算步骤.)19.将下列分式约分(1)(2)(3)(4).20.先化简,再求值:,其中x=﹣1,y=.21.学校开展课外体育活动,决定开设A:篮球、B:足球、C:跳绳、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如图(1)、图(2)所示的统计图,请你结合图中信息解答下列问题.(1)这次被调查的学生共有人;(2)请把条形统计图补充完整;(3)若该校有学生1200人,请根据样本估计全校最喜欢跳绳的学生人数约是多少?22.某班“红领巾义卖”活动中设立了一个可以自由转动的转盘.规定:顾客购物20元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖落在“书画作品”区域的频率a= ;b= ;(2)请估计当n很大时,频率将会接近,假如你去转动该转盘一次,你获得“书画作品”的概率约是;(结果全部精确到0.1)(3)如果要使获得“手工作品”的可能性大于获得“书画作品”的可能性,则表示“手工作品”区域的扇形的圆心角至少还要增加是多少度?23.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,图①、图②、图③均为顶点都在格点上的三角形(每个小方格的顶点叫格点),(1)在图1中,图①经过一次变换(填“平移”或“旋转”或“轴对称”)可以得到图②;(2)在图1中,图③是可以由图②经过一次旋转变换得到的,其旋转中心是点(填“A”或“B”或“C”);(3)在图2中画出图①绕点A顺时针旋转90°后的图④.24.如图,在平行四边形DEBF中,对角线EF、BD 相较于点O,若A、C是直线EF上的两个动点,分别从点E、F出发以1cm/s的相同速度向远离点O的方向运动.(1)在运动过程中,四边形DABC是平行四边形吗?说明理由;(2)若BD=16cm,EF=12cm,再过几秒,以点D、A、B、C为顶点的四边形是矩形?25.如图,在△ABC中,D为BC边上的一动点(D点不与B、C两点重合).DE∥AC交AB于E 点,DF∥AB交AC于F点.(1)下列条件中:①AB=AC;②AD是△ABC的中线;③AD是△ABC的角平分线;④AD是△ABC 的高,请选择一个△ABC满足的条件,使得四边形AEDF为菱形,并证明;答:我选择.(填序号)(2)在(1)选择的条件下,△ABC再满足条件:,四边形AEDF即成为正方形.26.我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质;类比分数的运算法则,我们得到了分式的运算法则,等等.小学里,把分子比分母小的分数叫做真分数.类似地,我们把分子整式的次数小于分母整式的次数的分式称为真分式;反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式,如: ==+=1+;==+=2+(﹣).(1)下列分式中,属于真分式的是: (填序号);①②③④(2)将假分式化成整式与真分式的和的形式为: = + ,若假分式的值为正整数,则整数a 的值为 ;(3)将假分式化成整式与真分式的和的形式:= .27.(1)如图1,已知矩形ABCD 中,点E 是BC 上的一动点,过点E 作EF ⊥BD 于点F ,EG ⊥AC 于点G ,CH ⊥BD 于点H ,试证明CH=EF+EG ;(2)若点E 在BC 的延长线上,如图2,过点E 作EF ⊥BD 于点F ,EG ⊥AC 的延长线于点G ,CH ⊥BD 于点H ,则EF 、EG 、CH 三者之间具有怎样的数量关系,直接写出你的猜想;(3)如图3,BD 是正方形ABCD 的对角线,L 在BD 上,且BL=BC ,连接CL ,点E 是CL 上任一点,EF ⊥BD 于点F ,EG ⊥BC 于点G ,猜想EF 、EG 、BD 之间具有怎样的数量关系,直接写出你的猜想;(4)观察图1、图2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF 、EG 、CH 这样的线段的关系,并满足(1)或(2)的结论,写出相关题设的条件和结论.2015-2016学年江苏省南京市钟英中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分.)1.完成下列任务,宜用抽样调查的是()A.调查八年级(下)数学书的排版正确率B.了解你所在学校男、女生人数C.调查学生对校足球队的喜欢情况D.奥运会上对获奖运动员进行的尿样检查【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、调查八年级(下)数学书的排版正确率是事关重大的调查适合普查,故A 不符合题意;B、了解你所在学校男、女生人数适合普查,故B不符合题意;C、调查学生对校足球队的喜欢情况适合抽样调查,故C符合题意;D、奥运会上对获奖运动员进行的尿样检查适合普查,故D不符合题意;故选:C.2.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个是中心对称图形,也是轴对称图形;第二个不是中心对称图形,是轴对称图形;第三个不是中心对称图形,是轴对称图形;第四个既是中心对称图形又是轴对称图形.综上可得,共有2个符合题意.故选C.3.下列说法正确的是()A.一个不透明的袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是B.一次摸奖活动的中奖率是l%,那么摸100次奖必然会中一次奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.在367人中至少有两个人的生日相同【考点】概率公式.【分析】根据概率的意义和随机事件的定义对各选项分析判断后利用排除法求解.【解答】解:A、一个不透明的袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是,故本选项错误;B、一次摸奖活动的中奖率是1%,摸100次奖也不一定会中奖,故本选项错误;C、一副扑克牌中,随意抽取一张是红桃K,这是随机事件,故本选项错误;D、一年有365天或366天,所以在367人中至少有两个人的生日相同正确,故本选项正确;故选D.4.下列运算中,错误的是()A.B.C.D.【考点】分式的基本性质.【分析】分式的基本性质是分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.据此作答.【解答】解:A、分式的分子、分母同时乘以同一个非0的数c,分式的值不变,故A正确;B、分式的分子、分母同时除以同一个非0的式子(a+b),分式的值不变,故B正确;C、分式的分子、分母同时乘以10,分式的值不变,故C正确;D、=,故D错误.故选D.5.已知某班有40名学生,将他们的身高分成4组,在160~165cm区间的有8名学生,那么这个小组的频率为()A.0.20 B.0.15 C.0.01 D.0.25【考点】频数与频率.【分析】根据频率、频数的关系:频率=,即可解决.【解答】解:这个小组的频率为=0.20.故选A.6.如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=22°,则∠PFE的度数是()A.15°B.20°C.22°D.44°【考点】多边形内角与外角;等腰三角形的性质.【分析】根据中位线定理和已知,证明△EPF是等腰三角形,由等腰三角形的性质即可得出答案.【解答】解:∵在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,∴FP,PE分别是△CDB与△DAB的中位线,∴PF=BC,PE=AD,∵AD=BC,故△EPF 是等腰三角形. ∵∠PEF=22°,∴∠PEF=∠PFE=22°. 故选:C .7.如图,▱ABCD 的对角线BD=6cm ,若将▱ABCD 绕其对称中心O 旋转180°,则点D 在旋转过程中所经过的路径长为( )A .3π cmB .6π cmC .π cmD .2π cm【考点】轨迹;平行四边形的性质;旋转的性质.【分析】利用平行四边形的性质得到OB=OD=3,再利用旋转的性质得到点D 在旋转过程中所经过的路径为以O 点为圆心,OD 为半径,圆心角为180的弧,然后根据弧长公式计算即可.【解答】解:∵四边形ABCD 为平行四边形, ∴OB=OD=3,∵▱ABCD 绕其对称中心O 旋转180°,∴点D 在旋转过程中所经过的路径为以O 点为圆心,OD 为半径,圆心角为180的弧,∴点D 在旋转过程中所经过的路径长==3π(cm ).故选A .8.如图,在菱形ABCD 中,边长为10,∠A=60°.顺次连结菱形ABCD 各边中点,可得四边形A 1B 1C 1D 1;顺次连结四边形A 1B 1C 1D 1各边中点,可得四边形A 2B 2C 2D 2;顺次连结四边形A 2B 2C 2D 2各边中点,可得四边形A 3B 3C 3D 3;按此规律继续下去….四边形A 2n B 2n C 2n D 2n 的周长是( )A .B .C .D .【考点】中点四边形.【分析】根据题意求出菱形ABCD 的周长,根据中点四边形的性质得到A 2n B 2n C 2n D 2n 是菱形,根据题意总结规律得到答案.【解答】解:根据中点四边形的性质可知,A 1B 1C 1D 1、A 3B 3C 3D 3…是矩形, A 2B 2C 2D 2、A 4B 4C 4D 4…是菱形,∵菱形ABCD 的周长是10×4=40,∴菱形A 2B 2C 2D 2的周长是40×,菱形A 4B 4C 4D 4的周长是40×,…则四边形A 2n B 2n C 2n D 2n 的周长是40×=,二、填空题(本大题共10小题,每小题2分,共20分.)9.若一个分式含有字母m,且当m=5时,它的值为1,则这个分式可以是.(写出一.个.即可)【考点】分式的值.【分析】根据分式的定义写出一个符合条件的分式即可,答案不唯一.【解答】解:一个分式含有字母m,且当m=5时,它的值为1,则这个分式可以是,故答案为.10.某饮料销售公司对今年前三个月每月销售总量进行统计,为了更清楚地看出销售总量的总趋势是上升还是下降,应选用折线统计图来描述数据.【考点】统计图的选择.【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【解答】解:为了更清楚地看出销售总量的总趋势是上升还是下降,应选用折线统计图来描述数据,故答案为:折线.11.已知x=﹣2时,分式无意义;x=4时,分式的值为0,则a+b= 6 .【考点】分式的值为零的条件;分式有意义的条件.【分析】根据分母为零分式无意义,分子为零且分母不等于零分式的值为零,可得答案.【解答】解:由题意,得﹣2+a=0,4﹣b=0,解得a=2,b=4.a+b=2+4=6,故答案为:6.12.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是随机事件.(填“随机”或者“确定”)【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是随机事件,故答案为:随机.13.已知a,b可以取﹣2,﹣1,1,2中任意一个值(a≠b),则直线y=ax+b的图象经过第四象限的概率是.【考点】概率公式;一次函数图象与系数的关系.【分析】列表得出所有等可能的结果数,找出a为正数与b为负数,即为直线y=ax+b经过第四象限的情况数,即可求出所求的概率.∴直线y=ax+b的图象经过第四象限的概率是=,故答案为:.14.如图,在Rt△ABC中,∠ACB=90°,∠A=24°,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,旋转角为48 °.【考点】旋转的性质.【分析】根据直角三角形两锐角互余求出∠B,再根据旋转的性质可得BC=CD,然后根据等腰三角形两底角相等求出∠BCD,然后根据对应边BC、CD的夹角即为旋转角解答.【解答】解:∵∠ACB=90°,∠A=24°,∴∠B=90°﹣24°=66°,∵△ABC绕点C按顺时针方向旋转后得到△EDC,点D在AB边上,∴BC=CD,∠BCD=180°﹣66°×2=48°,∴旋转角为48°.故答案为:48.15.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=40°,∠F=130°,则∠DAE的度数为45°.【考点】平行四边形的性质.【分析】由▱ABCD与▱DCFE的周长相等,可得到AD=DE即△ADE是等腰三角形,再由且∠BAD=40°,∠F=130°,即可求出∠DAE的度数.【解答】解:∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=40°,∠F=130°,∴∠ADC=140°,∠CDE═∠F=130°,∴∠ADE=360°﹣140°﹣130°=90°,∴∠DAE=÷2=45°,故答案为:45°.16.如图,矩形OBCD的顶点C的坐标为(2,3),则BD= .【考点】矩形的性质;坐标与图形性质.【分析】连接OC,因为四边形OBCD是矩形,所以OC=BD,C的坐标为(2,3),就可求出OC 的长度,那么就可求出BD的长度.【解答】解:连接OC,如图所示:根据勾股定理得:OC==,∵四边形OBCD是矩形,∴BD=OC=;故答案为:.17.以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB的取值范围是≤AB≤2 .【考点】正方形的性质.【分析】先证明△AOE≌△DOF,进而得到OE=OF,此为解决该题的关键性结论;求出OE的范围,借助勾股定理即可解决问题.【解答】解:如图所示:∵四边形CDEF是正方形,∴∠OCD=∠ODB=45°,∠COD=90°,OC=OD,∵AO⊥OB,∴∠AOB=90°,∴∠COA+∠AOD=90°,∠AOD+∠DOB=90°,∴∠COA=∠DOB,在△COA和△DOB中,,∴△COA≌△DOB(ASA),∴OA=OB,设OA=OB=a,∵∠AOB=90°,∴△AOB是等腰直角三角形,由勾股定理得:AB2=OA2+OB2=2a2,由题意可得:1≤a≤,∴≤AB≤2,故答案为≤AB≤2.18.四边形ABCD是正方形,点E是直线AB上的一动点,且△AEC是以AC为腰的等腰三角形,则∠BCE的度数为22.5°或45°.【考点】正方形的性质;等腰三角形的性质.【分析】由于没有说明△AEC的顶点,所以分情况进行讨论.【解答】解:当AC=AE时,此时点E在BA的延长线上,∴∠EAC=135°,∴∠BEC=22.5°,当AC=CE时,此时点E在AB的延长线上,∴∠EAC=∠CEA=45°,∴∠BCE=45°,故答案为:22.5°或45°三、解答题(本大题共9小题,共64分.请在答题纸指定区域内作答,解答时应根据需要,写出文字说明、证明过程或演算步骤.)19.将下列分式约分(1)(2)(3)(4).【考点】约分.【分析】(1)直接找出分子与分母中公共因式约分即可;(2)首先将分子分解因式,进而约分即可;(3)首先将分子与分母分解因式,进而约分即可;(4)首先将分母分解因式,进而约分即可.【解答】解:(1)原式=﹣=﹣;(2)原式==2b;(3)原式==;(4)原式==﹣.20.先化简,再求值:,其中x=﹣1,y=.【考点】分式的化简求值.【分析】先化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:====﹣,当x=﹣1,y=时,原式=.21.学校开展课外体育活动,决定开设A:篮球、B:足球、C:跳绳、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如图(1)、图(2)所示的统计图,请你结合图中信息解答下列问题.(1)这次被调查的学生共有200 人;(2)请把条形统计图补充完整;(3)若该校有学生1200人,请根据样本估计全校最喜欢跳绳的学生人数约是多少?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)设次被调查的学生共有x人,根据A活动项目可知,×100%=,解方程即可.(2)C活动项目人数=200﹣20﹣80﹣40=60人,补充条形图即可.(3)用样本估计总体的思想解决问题即可.【解答】解:(1)设次被调查的学生共有x人,根据A活动项目可知,×100%=,解得x=200,故答案为200.(2)C活动项目人数=200﹣20﹣80﹣40=60人,所以补充的条形图如图所示,(3)样本中喜欢跳绳的学生人数占=30%,∴全校最喜欢跳绳的学生人数约是1200×30%=360.答:估计该校最喜欢跳绳的学生约360人.22.某班“红领巾义卖”活动中设立了一个可以自由转动的转盘.规定:顾客购物20元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖落在“书画作品”区域的频率(1)完成上述表格:a= 295 ;b= 0.745 ;(2)请估计当n很大时,频率将会接近0.6 ,假如你去转动该转盘一次,你获得“书画作品”的概率约是0.6 ;(结果全部精确到0.1)(3)如果要使获得“手工作品”的可能性大于获得“书画作品”的可能性,则表示“手工作品”区域的扇形的圆心角至少还要增加是多少度?【考点】利用频率估计概率;扇形统计图;可能性的大小.【分析】(1)根据表格中的数据可以求得a和b的值;(2)根据表格中的数据可以估计频率是多少以及转动该转盘一次,获得“书画作品”的概率;(3)根据扇形统计图和表格中的数据可以估计表示“手工作品”区域的扇形的圆心角至少还要增加的度数.【解答】解:(1)由题意可得,a=500×0.59=295,b=298÷400=0.745,故答案为:295,0.745;(2)由表格中的数据可得,当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“书画作品”的概率约是0.6,故答案为:0.6,0.6;(3)由题意可得,要使获得“手工作品”的可能性大于获得“书画作品”的可能性,则表示“手工作品”区域的扇形的圆心角至少还要增加:360°×0.5﹣360°×0.4=36°,即要使获得“手工作品”的可能性大于获得“书画作品”的可能性,则表示“手工作品”区域的扇形的圆心角至少还要增加36度.23.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,图①、图②、图③均为顶点都在格点上的三角形(每个小方格的顶点叫格点),(1)在图1中,图①经过一次平移变换(填“平移”或“旋转”或“轴对称”)可以得到图②;(2)在图1中,图③是可以由图②经过一次旋转变换得到的,其旋转中心是点 A (填“A”或“B”或“C”);(3)在图2中画出图①绕点A顺时针旋转90°后的图④.【考点】几何变换的类型;旋转的性质.【分析】(1)根据平移的定义可知图①向右上平移可以得到图②;(2)将图形②绕着点A旋转后能与图形③重合,可知旋转中心;(3)以A为旋转中心,顺时针旋转90°得到关键顶点的对应点连接即可.【解答】解:(1)图①经过一次平移变换可以得到图②;(2)图③是可以由图②经过一次旋转变换得到的,其旋转中心是点A;(3)如图.24.如图,在平行四边形DEBF中,对角线EF、BD 相较于点O,若A、C是直线EF上的两个动点,分别从点E、F出发以1cm/s的相同速度向远离点O的方向运动.(1)在运动过程中,四边形DABC是平行四边形吗?说明理由;(2)若BD=16cm,EF=12cm,再过几秒,以点D、A、B、C为顶点的四边形是矩形?【考点】矩形的判定;平行四边形的判定与性质.【分析】(1)结论:四边形DABC是平行四边形.只要证明OB=OD,OA=OC即可.(2)当BD=AC时,平行四边形ABCD是矩形,由此求出时间即可.【解答】解:(1)结论:四边形DABC是平行四边形.理由:根据题意得AE=CF∵四边形DEBF是平行四边形∴OD=OB,OE=OF,又∵AE=CF,∴OA=OC,∴四边形DABC是平行四边形.(2)∵(16﹣12)÷(1+1)=2s,∴AC=12+4=16=BD,又∵四边形DABC是平行四边形,∴四边形DABC是矩形.∴再过2秒,以点D、A、B、C为顶点的四边形是矩形.25.如图,在△ABC中,D为BC边上的一动点(D点不与B、C两点重合).DE∥AC交AB于E 点,DF∥AB交AC于F点.(1)下列条件中:①AB=AC;②AD是△ABC的中线;③AD是△ABC的角平分线;④AD是△ABC 的高,请选择一个△ABC满足的条件,使得四边形AEDF为菱形,并证明;答:我选择③.(填序号)(2)在(1)选择的条件下,△ABC再满足条件:∠BAD=90°,四边形AEDF即成为正方形.【考点】正方形的判定;菱形的判定.【分析】(1)根据题意和图形和容易判断题目中的哪个条件满足条件,然后针对选择的条件给出证明即可;(2)根据有一个角是直角的菱形是正方形,即可解答本题.【解答】解:(1)我选择:③,故答案为:③,证明:∵DE∥AC,DF∥AB∴四边形AEDF为平行四边形,∵AD是△ABC的角平分线∴∠BAD=∠DAC,∵DE∥AC,∴∠DAC=∠ADE,∴∠BAD=∠ADE,∴EA=ED,∴平行四边形AEDF是菱形;(2)在(1)选择的条件下,△ABC再满足条件∠BAD=90°,故答案:∠BAD=90°,理由:由(1)知,四边形AEDF为菱形,∴当∠BAD=90°,四边形AEDF即成为正方形(有一个角是直角的菱形是正方形).26.我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质;类比分数的运算法则,我们得到了分式的运算法则,等等.小学里,把分子比分母小的分数叫做真分数.类似地,我们把分子整式的次数小于分母整式的次数的分式称为真分式;反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式,如: ==+=1+;==+=2+(﹣).(1)下列分式中,属于真分式的是:③(填序号);①②③④(2)将假分式化成整式与真分式的和的形式为: = 2 + ,若假分式的值为正整数,则整数a的值为﹣2、1或3 ;(3)将假分式化成整式与真分式的和的形式: = a+1+.【考点】分式的混合运算.【分析】(1)根据题意可以判断题目中的式子哪些是真分式,哪些是假分式;(2)根据题意可以将题目中的式子写出整式与真分式的和的形式;(3)根据题意可以将题目中的式子化简变为整式与真分式的和的形式.【解答】解:(1)根据题意可得,、、都是假分式,是真分式,故答案为:③;(2)由题意可得,=,若假分式的值为正整数,则或2a﹣1=1或2a﹣1=5,解得,a=﹣2或a=1或a=3,故答案为:2、,﹣2、1或3;(3)=,故答案为:a+1+.27.(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD于点H,试证明CH=EF+EG;(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连接CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;(4)观察图1、图2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF、EG、CH这样的线段的关系,并满足(1)或(2)的结论,写出相关题设的条件和结论.【考点】矩形的性质;全等三角形的判定与性质;等腰三角形的性质;正方形的性质.【分析】(1)要证明CH=EF+EG,首先要想到能否把线段CH分成两条线段而加以证明,就自然的想到添加辅助线,若作CE⊥NH于N,可得矩形EFHN,很明显只需证明EG=CN,最后根据AAS可求证△EGC≌△CNE得出结论.(2)过C点作CO⊥EF于O,可得矩形HCOF,因为HC=FO,所以只需证明EO=EG,最后根据AAS可求证△COE≌△CGE得出猜想.(3)连接AC,过E作EG作EH⊥AC于H,交BD于O,可得矩形FOHE,很明显只需证明EG=CH,最后根据AAS可求证△CHE≌△EGC得出猜想.(4)点P是等腰三角形底边所在直线上的任意一点,点P到两腰的距离的和(或差)等于这个等腰三角形腰上的高,很显然过C作CE⊥PF于E,可得矩形GCEF,而且AAS可求证△CEP≌△CNP,故CG=PF﹣PN.【解答】(1)证明:过E点作EN⊥CH于N.∵EF⊥BD,CH⊥BD,∴四边形EFHN是矩形.∴EF=NH,FH∥EN.∴∠DBC=∠NEC.∵四边形ABCD是矩形,∴AC=BD,且互相平分∴∠DBC=∠ACB∴∠NEC=∠ACB∵EG⊥AC,EN⊥CH,∴∠EGC=∠CNE=90°,又∵EC=CE,∴△EGC≌△CNE.∴EG=CN∴CH=CN+NH=EG+EF;(2)解:猜想CH=EF﹣EG;(3)解:EF+EG=BD;(4)解:点P是等腰三角形底边所在直线上的任意一点,点P到两腰的距离的和(或差)等于这个等腰三角形腰上的高.如图①,有CG=PF﹣PN.。
2015-2016第二学期南京联合体八年级数学期中试卷(含答案)
2015-2016学年度第二学期期中学情试卷八年级数学(考试时间100分钟,试卷总分100分)一、选择题(每小题2分,共12分)1.下列汽车标志中,不是中心对称图形的是(▲)A B C D2 .“三次投掷一枚硬币,三次正面朝上”这一事件是(▲)A.必然事件B.随机事件C.不可能事件D.确定事件3 .甲校女生占全校总人数的54%,乙校女生占全校总人数的50%,则女生人数(▲)A.甲校多于乙校B.甲校少于乙校C.不能确定D.两校一样多4)A.4B.14C.13和15D.25 .如图,在周长为10m的长方形窗户上钉一块宽为1m的长方形遮阳布,使透光部分正好是一正方形,则钉好后透光面积为(▲ )A.4m2 B.9m2 C.16m2 D.25m26 .如图,中,点B E、F分别在边BC、BA上,OE=25,若∠EOF=45°,则F▲)B C. 2 D.5-1二、填空题(本大题共1020分)7 .一个袋中装有6个红球,5个黄球,3个白球,每个球除颜色外都相同,任意摸出一球,摸到▲球的可能性最大.8 .在菱形ABCD中,对角线AC=6,BD=8,则菱形ABCD的周长是▲.9 .事件A发生的概率为120,大量重复做这种试验,事件A平均每100次发生的次数是▲.10.在平面直角坐标系中,已知三点O(0,0),A(1,-2),B(3,1),若以A、B、C、O为顶点的四边形是平行四边形,则C点不可能...在第▲象限.11.从1984年起,我国参加了多届夏季奥运会,取得了骄人的成绩.如图是根据第23届至30届夏季奥运会我国获得的金牌数绘制的折线统计图,观察统计图可得:与上一届相比增长量最大的是第▲届夏季奥运会.12200支,那么售出奶13120E,CF平分BCD∠交AD于F,若3=AB,15BC向正方形内作等边EBC∆,则∠AEB= ▲ °.金牌数/枚(第11题)(第12题)(第13题)(第5题)ABCD30°30° (第17题)16.如图,在△ABC 中,AB =2,AC=2,∠BAC =105°,△ABD 、△ACE 、△BCF 都是等边三角形,则四边形AEFD 的面积为 ▲ .三、解答题(本大题共11小题,共68分)17.(6分)将两块全等的含30°角的三角尺按如图的方式摆放在一起.求证:四边形ABCD 是平行四边形. 18.(6分)王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是▲ ;(精确到0.01) (2)估算袋中白球的个数.19.(6分)学校准备购买一批课外读物.学校就“我最喜爱的课外读物”从“文学”“艺术”“科普”和“其他”四个类别进行了抽样调查(每位同学只选一类),根据调查结果绘制的两幅不完整的统计图如下:(1(220.(6如图,已知∠AOB AOB 的平分线. 21.(6分)如图,已知矩形ABCD 的周长为20,AB =4,点E 在BC 上,点F 在CD 上,且AE ⊥EF ,AE =EF .求CF 的长. 22.(6分)证明:三角形中位线定理.已知:如图,DE 是△ABC 的中位线. 求证: ▲ .证明: 23.(6分)4月22日是世界地球日,为了让学生增强环保意识,了解环保知识,某中学政教处举行了一次八年级“环保知识竞赛”,共有900名学生参加了这次活动,为了了解该次竞赛成绩情况,从中抽取了部分学生的成绩(满分100分,得分均为正整数)进行统计,请你根据下面还未完成的频数分布表和频数分布直方图,解答下列问题:(第19题)(第16题)ABCDEFAB O E F (第20题) A BCD EF (第21题)A B CDE (第22题) (第14题) (第15题)(3)总体是 ▲ . 24.(8分)如图,△ABC 中,AB =AC ,E 、F 分别是BC 、AC 的中点,以AC 为斜边作Rt △ADC .(1)求证:FE =FD ;(2)若∠CAD =∠CAB =24°,求∠EDF 的度数.25.(8分)如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BD 相交于点O ,与BC 相交于点N ,连接BM ,DN . (1)求证:四边形BMDN 是菱形.(2)若AB =4cm ,AD =8cm ,求菱形BMDN 的面积.26.(10分)阅读下列材料:如图(1),在四边形ABCD 中,若AB =AD ,BC =CD ,则把这样的四边形称之为筝形.(1)写出筝形的两个性质(定义除外).① ▲ ;② ▲ . (2)如图(2),在平行四边形ABCD 中,点E 、F 分别在BC 、CD 上,且AE =AF ,∠AEC =∠AFC .求证:四边形AECF 是筝形. (3)如图(3),在筝形ABCD 中,AB =AD =26,BC =DC =25,AC =17,求筝形ABCD 的面积. 八年级数学参考答案及评分标准 说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每题2分,共12分)二、填空题 (每小题2分,共20分)7.红 8.20 9.5 10.二 11.29 12.150 13.30 14.1 15. 75 16.2 三、解答题 (共68分)17.证明:∵△ABD ≌△CDB ,∴AB =CD ,AD =BC ,…………………………………………………………4分 ∴四边形ABCD 是平行四边形.……………………………………………… 6分 18.解:(1)0.251;0.25.…………………………………………………………………4分 (2)1÷0.25=4,4-1=3.答:袋中白球的个数可能是3个.…………………6分19.解:(1)40,60;…………………………………………………………………………4分(2)艺术类读物所在扇形的圆心角是:40200×360°=72°.……………………6分20.略……………………………………………………………………………………………6分 21.解:∵四边形ABCD 是矩形,∴∠B =∠C =90°,∵EF ⊥AE ,∴∠AEF =90°,∴∠AEB +∠BAE =90°,∠AEB +∠CEF =90°,AB C DO1)ABC D E F (图2) AB C D(图3) (第24题) A B C D E F N M O D C B A∴∠BAE =∠CEF ,∴△ABE ≌△ECF ,……………………………………………4分 ∴AB =CE =4,∵矩形的周长为20,∴BC =6,…………………………………5分 ∴CF =BE =BC ﹣CE =BC ﹣AB =2.………………………………………………6分22.求证:DE ∥BC ,DE =12BC .……………………………………………………………1分证明:如图,延长DE 到F ,使FE =DE ,连接CF ,…………………………………2分 在△ADE 和△CFE 中, ⎩⎪⎨⎪⎧AE =EC ,∠AED =∠CEF ,DE =EF .∴△ADE ≌△CFE (SAS ),…………………………………4分∴∠A =∠ECF ,AD =CF ,∴CF ∥AB ,又∵AD =BD ,∴CF =BD ,∴四边形BCFD 是平行四边形,…………………………………………5分 ∴DE ∥BC ,DE =12BC .…………………………………………………………………6分23.(1)12,0.24………………………………………………………………………… 2分(2)略;………………………………………………………………………………… 4分 (3)总体是900名学生该次竞赛的成绩的全体.…………………………………… 6分 24.(1)证明:∵E 、F 分别是BC 、AC 的中点,∴FE =12AB .………………………1分∵F 是AC 的中点,∠ADC =90°,∴FD =12AC .……………………………………… 2分∵AB =AC ,∴FE =FD .……………………………………………………………… 3分 (2)解:∵E 、F 分别是BC 、AC 的中点,∴FE ∥AB , ∴∠EFC =∠BAC =24°.………………………………………………………………4分 ∵F 是AC 的中点,∠ADC =90°,∴FD =AF . ∴∠ADF =∠DAF =24°.∴∠DFC =48°.……………………………………………6分 ∴∠EFD =72°.……………………………………………………………………………7分 ∵FE =FD ,∴∠FED =∠EDF =54°.…………………………………………………8分 25.(8分) 证明:(1)∵四边形ABCD 是矩形,∴AD ∥BC ∴∠BNO =∠DMO ,∠NBO =∠MDO . ∵MN 是BD 的中垂线, ∴OB =OD ,BD ⊥MN .∴△BNO ≌△DMO (AAS ) ∴ON =OM .∴四边形BMDN 的对角线互相平分. ∴四边形BMDN 是平行四边形. ∵BD ⊥MN∴平行四边形BMDN 是菱形.…………………………………………………………….4分 (2)∵四边形BMDN 是菱形,∴MB =MD . 设MD 长为x cm ,则MB =DM =x cm ,AM =8-x . ∵四边形ABCD 是矩形,∴∠A =90︒在Rt △AMB 中,222BM AM AB =+,即22284x x =+(-),解得:x =5 菱形的面积=20 2cm ………………………………………………………..…………….8分 26.(1)略……………………………………………………………2分AB C DE(第22题)F(2)证明:∵四边形ABCD是平行四边形,∴∠B=∠D.∵∠AEC=∠AFC,∠AEC+∠AEB=∠AFC+∠AFD=180°,∴∠AEB=∠AFD.∵AE=AF,∴△AEB≌△AFD(AAS).……………………………………………………4分∴AB=AD,BE=DF.∴平行四边形ABCD是菱形.…………………………………5分∴BC=DC,∴EC=FC,∴四边形AECF是筝形.………………………………………6分(3)∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC.∴S△ABC≌S△ADC.过点B作BH⊥AC,垂足为H.在Rt△ABH中,BH2=AB 2-AH 2=262-AH 2.在Rt△CBH中,BH2=CB 2-CH 2=252-(17-AH) 2.∴262-AH 2=252-(17-AH) 2,……………………………………………………………8分∴AH=10.∴BH=24.………………………………………………………………9分∴S△ABC=12×17×24=204.∴筝形ABCD的面积为408.………………………………10分ABCD(图3)H。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京市钟英中学2015-2016年八年级下期中数学试卷含答案解析一、选择题(本大题共8小题,每小题2分,共16分.)1.完成下列任务,宜用抽样调查的是()A.调查八年级(下)数学书的排版正确率B.了解你所在学校男、女生人数C.调查学生对校足球队的喜欢情况D.奥运会上对获奖运动员进行的尿样检查2.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个 B.3个 C.2个 D.1个3.下列说法正确的是()A.一个不透明的袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是B.一次摸奖活动的中奖率是l%,那么摸100次奖必然会中一次奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.在367人中至少有两个人的生日相同4.下列运算中,错误的是()A.B.C.D.5.已知某班有40名学生,将他们的身高分成4组,在160~165cm区间的有8名学生,那么这个小组的频率为()A.0.20 B.0.15 C.0.01 D.0.256.如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=22°,则∠PFE的度数是()A.15°B.20°C.22°D.44°7.如图,▱ABCD的对角线BD=6cm,若将▱ABCD绕其对称中心O旋转180°,则点D在旋转过程中所经过的路径长为()A.3π cm B.6π cm C.π cm D.2π cm8.如图,在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去….四边形A2n B2n C2n D2n的周长是()A.B.C.D.二、填空题(本大题共10小题,每小题2分,共20分.)9.若一个分式含有字母m,且当m=5时,它的值为1,则这个分式可以是.(写出一个..即可)10.某饮料销售公司对今年前三个月每月销售总量进行统计,为了更清楚地看出销售总量的总趋势是上升还是下降,应选用统计图来描述数据.11.已知x=﹣2时,分式无意义;x=4时,分式的值为0,则a+b=.12.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是事件.(填“随机”或者“确定”)13.已知a,b可以取﹣2,﹣1,1,2中任意一个值(a≠b),则直线y=ax+b的图象经过第四象限的概率是.14.如图,在Rt△ABC中,∠ACB=90°,∠A=24°,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,旋转角为°.15.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=40°,∠F=130°,则∠DAE的度数为.16.如图,矩形OBCD的顶点C的坐标为(2,3),则BD=.17.以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB的取值范围是.18.四边形ABCD是正方形,点E是直线AB上的一动点,且△AEC是以AC为腰的等腰三角形,则∠BCE的度数为.三、解答题(本大题共9小题,共64分.请在答题纸指定区域内作答,解答时应根据需要,写出文字说明、证明过程或演算步骤.)19.将下列分式约分(1)(2)(3)(4).20.先化简,再求值:,其中x=﹣1,y=.21.学校开展课外体育活动,决定开设A:篮球、B:足球、C:跳绳、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如图(1)、图(2)所示的统计图,请你结合图中信息解答下列问题.(1)这次被调查的学生共有人;(2)请把条形统计图补充完整;(3)若该校有学生1200人,请根据样本估计全校最喜欢跳绳的学生人数约是多少?22.某班“红领巾义卖”活动中设立了一个可以自由转动的转盘.规定:顾客购物20元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:(1)完成上述表格:a=;b=;(2)请估计当n很大时,频率将会接近,假如你去转动该转盘一次,你获得“书画作品”的概率约是;(结果全部精确到0.1)(3)如果要使获得“手工作品”的可能性大于获得“书画作品”的可能性,则表示“手工作品”区域的扇形的圆心角至少还要增加是多少度?23.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,图①、图②、图③均为顶点都在格点上的三角形(每个小方格的顶点叫格点),(1)在图1中,图①经过一次变换(填“平移”或“旋转”或“轴对称”)可以得到图②;(2)在图1中,图③是可以由图②经过一次旋转变换得到的,其旋转中心是点(填“A”或“B”或“C”);(3)在图2中画出图①绕点A顺时针旋转90°后的图④.24.如图,在平行四边形DEBF中,对角线EF、BD 相较于点O,若A、C是直线EF上的两个动点,分别从点E、F出发以1cm/s的相同速度向远离点O的方向运动.(1)在运动过程中,四边形DABC是平行四边形吗?说明理由;(2)若BD=16cm,EF=12cm,再过几秒,以点D、A、B、C为顶点的四边形是矩形?25.如图,在△ABC中,D为BC边上的一动点(D点不与B、C两点重合).DE∥AC交AB于E 点,DF∥AB交AC于F点.(1)下列条件中:①AB=AC;②AD是△ABC的中线;③AD是△ABC的角平分线;④AD是△ABC 的高,请选择一个△ABC满足的条件,使得四边形AEDF为菱形,并证明;答:我选择.(填序号)(2)在(1)选择的条件下,△ABC再满足条件:,四边形AEDF即成为正方形.26.我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质;类比分数的运算法则,我们得到了分式的运算法则,等等.小学里,把分子比分母小的分数叫做真分数.类似地,我们把分子整式的次数小于分母整式的次数的分式称为真分式;反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式,如:==+=1+;==+=2+(﹣).(1)下列分式中,属于真分式的是:(填序号);①②③④(2)将假分式化成整式与真分式的和的形式为:=+ ,若假分式的值为正整数,则整数a的值为;(3)将假分式化成整式与真分式的和的形式:=.27.(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC 于点G,CH⊥BD于点H,试证明CH=EF+EG;(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH ⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连接CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;(4)观察图1、图2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF、EG、CH这样的线段的关系,并满足(1)或(2)的结论,写出相关题设的条件和结论.2015-2016学年江苏省南京市钟英中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分.)1.完成下列任务,宜用抽样调查的是()A.调查八年级(下)数学书的排版正确率B.了解你所在学校男、女生人数C.调查学生对校足球队的喜欢情况D.奥运会上对获奖运动员进行的尿样检查【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、调查八年级(下)数学书的排版正确率是事关重大的调查适合普查,故A不符合题意;B、了解你所在学校男、女生人数适合普查,故B不符合题意;C、调查学生对校足球队的喜欢情况适合抽样调查,故C符合题意;D、奥运会上对获奖运动员进行的尿样检查适合普查,故D不符合题意;故选:C.2.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个 B.3个 C.2个 D.1个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个是中心对称图形,也是轴对称图形;第二个不是中心对称图形,是轴对称图形;第三个不是中心对称图形,是轴对称图形;第四个既是中心对称图形又是轴对称图形.综上可得,共有2个符合题意.故选C.3.下列说法正确的是()A.一个不透明的袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是B.一次摸奖活动的中奖率是l%,那么摸100次奖必然会中一次奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.在367人中至少有两个人的生日相同【考点】概率公式.【分析】根据概率的意义和随机事件的定义对各选项分析判断后利用排除法求解.【解答】解:A、一个不透明的袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是,故本选项错误;B、一次摸奖活动的中奖率是1%,摸100次奖也不一定会中奖,故本选项错误;C、一副扑克牌中,随意抽取一张是红桃K,这是随机事件,故本选项错误;D、一年有365天或366天,所以在367人中至少有两个人的生日相同正确,故本选项正确;故选D.4.下列运算中,错误的是()A.B.C.D.【考点】分式的基本性质.【分析】分式的基本性质是分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.据此作答.【解答】解:A、分式的分子、分母同时乘以同一个非0的数c,分式的值不变,故A正确;B、分式的分子、分母同时除以同一个非0的式子(a+b),分式的值不变,故B正确;C、分式的分子、分母同时乘以10,分式的值不变,故C正确;D、=,故D错误.故选D.5.已知某班有40名学生,将他们的身高分成4组,在160~165cm区间的有8名学生,那么这个小组的频率为()A.0.20 B.0.15 C.0.01 D.0.25【考点】频数与频率.【分析】根据频率、频数的关系:频率=,即可解决.【解答】解:这个小组的频率为=0.20.故选A.6.如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=22°,则∠PFE的度数是()A.15°B.20°C.22°D.44°【考点】多边形内角与外角;等腰三角形的性质.【分析】根据中位线定理和已知,证明△EPF是等腰三角形,由等腰三角形的性质即可得出答案.【解答】解:∵在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,∴FP,PE分别是△CDB与△DAB的中位线,∴PF=BC,PE=AD,∵AD=BC,∴PF=PE,故△EPF是等腰三角形.∵∠PEF=22°,∴∠PEF=∠PFE=22°.故选:C.7.如图,▱ABCD的对角线BD=6cm,若将▱ABCD绕其对称中心O旋转180°,则点D在旋转过程中所经过的路径长为()A.3π cm B.6π cm C.π cm D.2π cm【考点】轨迹;平行四边形的性质;旋转的性质.【分析】利用平行四边形的性质得到OB=OD=3,再利用旋转的性质得到点D在旋转过程中所经过的路径为以O点为圆心,OD为半径,圆心角为180的弧,然后根据弧长公式计算即可.【解答】解:∵四边形ABCD为平行四边形,∴OB=OD=3,∵▱ABCD绕其对称中心O旋转180°,∴点D在旋转过程中所经过的路径为以O点为圆心,OD为半径,圆心角为180的弧,∴点D在旋转过程中所经过的路径长==3π(cm).故选A.8.如图,在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去….四边形A2n B2n C2n D2n的周长是()A.B.C.D.【考点】中点四边形.【分析】根据题意求出菱形ABCD的周长,根据中点四边形的性质得到A2n B2n C2n D2n是菱形,根据题意总结规律得到答案.【解答】解:根据中点四边形的性质可知,A1B1C1D1、A3B3C3D3…是矩形,A2B2C2D2、A4B4C4D4…是菱形,∵菱形ABCD的周长是10×4=40,∴菱形A2B2C2D2的周长是40×,菱形A4B4C4D4的周长是40×,…则四边形A2n B2n C2n D2n的周长是40×=,故选:B.二、填空题(本大题共10小题,每小题2分,共20分.)9.若一个分式含有字母m,且当m=5时,它的值为1,则这个分式可以是.(写出一个..即可)【考点】分式的值.【分析】根据分式的定义写出一个符合条件的分式即可,答案不唯一.【解答】解:一个分式含有字母m,且当m=5时,它的值为1,则这个分式可以是,故答案为.10.某饮料销售公司对今年前三个月每月销售总量进行统计,为了更清楚地看出销售总量的总趋势是上升还是下降,应选用折线统计图来描述数据.【考点】统计图的选择.【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【解答】解:为了更清楚地看出销售总量的总趋势是上升还是下降,应选用折线统计图来描述数据,故答案为:折线.11.已知x=﹣2时,分式无意义;x=4时,分式的值为0,则a+b=6.【考点】分式的值为零的条件;分式有意义的条件.【分析】根据分母为零分式无意义,分子为零且分母不等于零分式的值为零,可得答案.【解答】解:由题意,得﹣2+a=0,4﹣b=0,解得a=2,b=4.a+b=2+4=6,故答案为:6.12.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是随机事件.(填“随机”或者“确定”)【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是随机事件,故答案为:随机.13.已知a,b可以取﹣2,﹣1,1,2中任意一个值(a≠b),则直线y=ax+b的图象经过第四象限的概率是.【考点】概率公式;一次函数图象与系数的关系.【分析】列表得出所有等可能的结果数,找出a为正数与b为负数,即为直线y=ax+b经过第四象限的情况数,即可求出所求的概率.【解答】解:列表如下:所有等可能的情况数有12种,其中直线y=ax+b经过第四象限情况数有4种,∴直线y=ax+b的图象经过第四象限的概率是=,故答案为:.14.如图,在Rt△ABC中,∠ACB=90°,∠A=24°,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,旋转角为48°.【考点】旋转的性质.【分析】根据直角三角形两锐角互余求出∠B,再根据旋转的性质可得BC=CD,然后根据等腰三角形两底角相等求出∠BCD,然后根据对应边BC、CD的夹角即为旋转角解答.【解答】解:∵∠ACB=90°,∠A=24°,∴∠B=90°﹣24°=66°,∵△ABC绕点C按顺时针方向旋转后得到△EDC,点D在AB边上,∴BC=CD,∠BCD=180°﹣66°×2=48°,∴旋转角为48°.故答案为:48.15.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=40°,∠F=130°,则∠DAE的度数为45°.【考点】平行四边形的性质.【分析】由▱ABCD与▱DCFE的周长相等,可得到AD=DE即△ADE是等腰三角形,再由且∠BAD=40°,∠F=130°,即可求出∠DAE的度数.【解答】解:∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=40°,∠F=130°,∴∠ADC=140°,∠CDE═∠F=130°,∴∠ADE=360°﹣140°﹣130°=90°,∴∠DAE=÷2=45°,故答案为:45°.16.如图,矩形OBCD的顶点C的坐标为(2,3),则BD=.【考点】矩形的性质;坐标与图形性质.【分析】连接OC,因为四边形OBCD是矩形,所以OC=BD,C的坐标为(2,3),就可求出OC 的长度,那么就可求出BD的长度.【解答】解:连接OC,如图所示:根据勾股定理得:OC==,∵四边形OBCD是矩形,∴BD=OC=;故答案为:.17.以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB的取值范围是≤AB≤2.【考点】正方形的性质.【分析】先证明△AOE≌△DOF,进而得到OE=OF,此为解决该题的关键性结论;求出OE的范围,借助勾股定理即可解决问题.【解答】解:如图所示:∵四边形CDEF是正方形,∴∠OCD=∠ODB=45°,∠COD=90°,OC=OD,∵AO⊥OB,∴∠AOB=90°,∴∠COA+∠AOD=90°,∠AOD+∠DOB=90°,∴∠COA=∠DOB,在△COA和△DOB中,,∴△COA≌△DOB(ASA),∴OA=OB,设OA=OB=a,∵∠AOB=90°,∴△AOB是等腰直角三角形,由勾股定理得:AB2=OA2+OB2=2a2,由题意可得:1≤a≤,∴≤AB≤2,故答案为≤AB≤2.18.四边形ABCD是正方形,点E是直线AB上的一动点,且△AEC是以AC为腰的等腰三角形,则∠BCE的度数为22.5°或45°.【考点】正方形的性质;等腰三角形的性质.【分析】由于没有说明△AEC的顶点,所以分情况进行讨论.【解答】解:当AC=AE时,此时点E在BA的延长线上,∴∠EAC=135°,∴∠BEC=22.5°,当AC=CE时,此时点E在AB的延长线上,∴∠EAC=∠CEA=45°,∴∠BCE=45°,故答案为:22.5°或45°三、解答题(本大题共9小题,共64分.请在答题纸指定区域内作答,解答时应根据需要,写出文字说明、证明过程或演算步骤.)19.将下列分式约分(1)(2)(3)(4).【考点】约分.【分析】(1)直接找出分子与分母中公共因式约分即可;(2)首先将分子分解因式,进而约分即可;(3)首先将分子与分母分解因式,进而约分即可;(4)首先将分母分解因式,进而约分即可.【解答】解:(1)原式=﹣=﹣;(2)原式==2b;(3)原式==;(4)原式==﹣.20.先化简,再求值:,其中x=﹣1,y=.【考点】分式的化简求值.【分析】先化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:====﹣,当x=﹣1,y=时,原式=.21.学校开展课外体育活动,决定开设A:篮球、B:足球、C:跳绳、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如图(1)、图(2)所示的统计图,请你结合图中信息解答下列问题.(1)这次被调查的学生共有200人;(2)请把条形统计图补充完整;(3)若该校有学生1200人,请根据样本估计全校最喜欢跳绳的学生人数约是多少?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)设次被调查的学生共有x人,根据A活动项目可知,×100%=,解方程即可.(2)C活动项目人数=200﹣20﹣80﹣40=60人,补充条形图即可.(3)用样本估计总体的思想解决问题即可.【解答】解:(1)设次被调查的学生共有x人,根据A活动项目可知,×100%=,解得x=200,故答案为200.(2)C活动项目人数=200﹣20﹣80﹣40=60人,所以补充的条形图如图所示,(3)样本中喜欢跳绳的学生人数占=30%,∴全校最喜欢跳绳的学生人数约是1200×30%=360.答:估计该校最喜欢跳绳的学生约360人.22.某班“红领巾义卖”活动中设立了一个可以自由转动的转盘.规定:顾客购物20元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:(1)完成上述表格:a=295;b=0.745;(2)请估计当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“书画作品”的概率约是0.6;(结果全部精确到0.1)(3)如果要使获得“手工作品”的可能性大于获得“书画作品”的可能性,则表示“手工作品”区域的扇形的圆心角至少还要增加是多少度?【考点】利用频率估计概率;扇形统计图;可能性的大小.【分析】(1)根据表格中的数据可以求得a和b的值;(2)根据表格中的数据可以估计频率是多少以及转动该转盘一次,获得“书画作品”的概率;(3)根据扇形统计图和表格中的数据可以估计表示“手工作品”区域的扇形的圆心角至少还要增加的度数.【解答】解:(1)由题意可得,a=500×0.59=295,b=298÷400=0.745,故答案为:295,0.745;(2)由表格中的数据可得,当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“书画作品”的概率约是0.6,故答案为:0.6,0.6;(3)由题意可得,要使获得“手工作品”的可能性大于获得“书画作品”的可能性,则表示“手工作品”区域的扇形的圆心角至少还要增加:360°×0.5﹣360°×0.4=36°,即要使获得“手工作品”的可能性大于获得“书画作品”的可能性,则表示“手工作品”区域的扇形的圆心角至少还要增加36度.23.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,图①、图②、图③均为顶点都在格点上的三角形(每个小方格的顶点叫格点),(1)在图1中,图①经过一次平移变换(填“平移”或“旋转”或“轴对称”)可以得到图②;(2)在图1中,图③是可以由图②经过一次旋转变换得到的,其旋转中心是点A(填“A”或“B”或“C”);(3)在图2中画出图①绕点A顺时针旋转90°后的图④.【考点】几何变换的类型;旋转的性质.【分析】(1)根据平移的定义可知图①向右上平移可以得到图②;(2)将图形②绕着点A旋转后能与图形③重合,可知旋转中心;(3)以A为旋转中心,顺时针旋转90°得到关键顶点的对应点连接即可.【解答】解:(1)图①经过一次平移变换可以得到图②;(2)图③是可以由图②经过一次旋转变换得到的,其旋转中心是点A;(3)如图.24.如图,在平行四边形DEBF中,对角线EF、BD 相较于点O,若A、C是直线EF上的两个动点,分别从点E、F出发以1cm/s的相同速度向远离点O的方向运动.(1)在运动过程中,四边形DABC是平行四边形吗?说明理由;(2)若BD=16cm,EF=12cm,再过几秒,以点D、A、B、C为顶点的四边形是矩形?【考点】矩形的判定;平行四边形的判定与性质.【分析】(1)结论:四边形DABC是平行四边形.只要证明OB=OD,OA=OC即可.(2)当BD=AC时,平行四边形ABCD是矩形,由此求出时间即可.【解答】解:(1)结论:四边形DABC是平行四边形.理由:根据题意得AE=CF∵四边形DEBF是平行四边形∴OD=OB,OE=OF,又∵AE=CF,∴OA=OC,∴四边形DABC是平行四边形.(2)∵(16﹣12)÷(1+1)=2s,∴AC=12+4=16=BD,又∵四边形DABC是平行四边形,∴四边形DABC是矩形.∴再过2秒,以点D、A、B、C为顶点的四边形是矩形.25.如图,在△ABC中,D为BC边上的一动点(D点不与B、C两点重合).DE∥AC交AB于E 点,DF∥AB交AC于F点.(1)下列条件中:①AB=AC;②AD是△ABC的中线;③AD是△ABC的角平分线;④AD是△ABC 的高,请选择一个△ABC满足的条件,使得四边形AEDF为菱形,并证明;答:我选择③.(填序号)(2)在(1)选择的条件下,△ABC再满足条件:∠BAD=90°,四边形AEDF即成为正方形.【考点】正方形的判定;菱形的判定.【分析】(1)根据题意和图形和容易判断题目中的哪个条件满足条件,然后针对选择的条件给出证明即可;(2)根据有一个角是直角的菱形是正方形,即可解答本题.【解答】解:(1)我选择:③,故答案为:③,证明:∵DE∥AC,DF∥AB∴四边形AEDF为平行四边形,∵AD是△ABC的角平分线∴∠BAD=∠DAC,∵DE∥AC,∴∠DAC=∠ADE,∴∠BAD=∠ADE,∴EA=ED,∴平行四边形AEDF是菱形;(2)在(1)选择的条件下,△ABC再满足条件∠BAD=90°,故答案:∠BAD=90°,理由:由(1)知,四边形AEDF为菱形,∴当∠BAD=90°,四边形AEDF即成为正方形(有一个角是直角的菱形是正方形).26.我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质;类比分数的运算法则,我们得到了分式的运算法则,等等.小学里,把分子比分母小的分数叫做真分数.类似地,我们把分子整式的次数小于分母整式的次数的分式称为真分式;反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式,如:==+=1+;==+=2+(﹣).(1)下列分式中,属于真分式的是:③(填序号);①②③④(2)将假分式化成整式与真分式的和的形式为:=2+ ,若假分式的值为正整数,则整数a的值为﹣2、1或3;(3)将假分式化成整式与真分式的和的形式:=a+1+.【考点】分式的混合运算.【分析】(1)根据题意可以判断题目中的式子哪些是真分式,哪些是假分式;(2)根据题意可以将题目中的式子写出整式与真分式的和的形式;(3)根据题意可以将题目中的式子化简变为整式与真分式的和的形式.【解答】解:(1)根据题意可得,、、都是假分式,是真分式,故答案为:③;(2)由题意可得,=,若假分式的值为正整数,则或2a﹣1=1或2a﹣1=5,解得,a=﹣2或a=1或a=3,故答案为:2、,﹣2、1或3;(3)=,故答案为:a+1+.27.(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC 于点G,CH⊥BD于点H,试证明CH=EF+EG;(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH ⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连接CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;(4)观察图1、图2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF、EG、CH这样的线段的关系,并满足(1)或(2)的结论,写出相关题设的条件和结论.【考点】矩形的性质;全等三角形的判定与性质;等腰三角形的性质;正方形的性质.【分析】(1)要证明CH=EF+EG,首先要想到能否把线段CH分成两条线段而加以证明,就自然的想到添加辅助线,若作CE⊥NH于N,可得矩形EFHN,很明显只需证明EG=CN,最后根据AAS 可求证△EGC≌△CNE得出结论.(2)过C点作CO⊥EF于O,可得矩形HCOF,因为HC=FO,所以只需证明EO=EG,最后根据AAS可求证△COE≌△CGE得出猜想.(3)连接AC,过E作EG作EH⊥AC于H,交BD于O,可得矩形FOHE,很明显只需证明EG=CH,最后根据AAS可求证△CHE≌△EGC得出猜想.(4)点P是等腰三角形底边所在直线上的任意一点,点P到两腰的距离的和(或差)等于这个等腰三角形腰上的高,很显然过C作CE⊥PF于E,可得矩形GCEF,而且AAS可求证△CEP≌△CNP,故CG=PF﹣PN.【解答】(1)证明:过E点作EN⊥CH于N.∵EF⊥BD,CH⊥BD,∴四边形EFHN是矩形.∴EF=NH,FH∥EN.∴∠DBC=∠NEC.∵四边形ABCD是矩形,∴AC=BD,且互相平分。