完全平方公式练习题
(完整版)完全平方公式专项练习50题(有答案)
完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值.26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
完全平方公式专项练习50题(有答案)
完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2. 12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值. 24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值. 26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值. 27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
完全平方公式专项练习50题(有答案)
完全平方公式专项练习专项练习:1、计算(1)(a +2b )2 (2)(3a -5)2 (3)(-2m -3n )2 (4) (a 2-1)2-(a 2+1)2 (5)(-2a +5b )2 (6)(-21ab 2-32c )2 (7)(x -2y )(x 2-4y 2)(x +2y )(8)2a +3)2+(3a -2)2 (9)(a -2b +3c -1)(a +2b -3c -1);(10)(s -2t )(-s -2t )-(s -2t )2; (11)(t -3)2(t +3)2(t 2+9)2. (12)992-98×100; (13) 49×51-2499. (14)(x -2y )(x +2y )-(x +2y )2(15)(a +b +c )(a +b -c ) (16)(2a +1)2-(1-2a )2 (17)(3x -y )2-(2x +y )2+5x (y -x )2、先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.3、.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 4、已知x -y =9,x ·y =5,求x 2+y 2的值.5、已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值6、.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值7、.已知2a -b =5,ab =23,求4a 2+b 2-1的值. 8、已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.9、.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
10、.已知()5,3a b ab -==求2()a b +与223()a b +的值。
11、.已知6,4a b a b +=-=求ab 与22a b +的值。
(完整版)完全平方公式练习50题
完全平方公式专项练习知识点: 姓名:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定:① 两数和(或差)的平方 即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2② 两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2 -a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )2 2.(3a -5)2 3..(-2m -3n )2 4. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)2 9.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2; 11.(t -3)2(t +3)2(t 2+9)2.12. 972; 13. 20022; 14. 992-98×100; 15. 49×51-2499;16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c ) 18. (a+b+c+d)219.(2a +1)2-(1-2a )2 20.(3x -y )2-(2x +y )2+5x (y -x )21. 先化简,再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.22.解关于x 的方程:(x +41)2-(x -41)(x +41)=41.23.已知x -y =9,x ·y =5,求x 2+y 2的值. 24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.26.已知2a -b =5,ab =23,求4a 2+b 2-1的值. 27.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.28.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
完全平方公式专项练习50题(有答案)
完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值.26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
完全平方公式专项练习50题(有答案)ok
完全平方公式专项练习50题(有答案)ok完全平方公式是数学中的一个重要概念。
它可以用来计算两数和(或差)的平方。
具体公式为(a+b)²=a²+2ab+b²,(a-b)²=a²-2ab+b²。
这个公式可以逆用,即a²+2ab+b²=(a+b)²,a²-2ab+b²=(a-b)²。
运用完全平方式的判定有两种情况,一是有两数和(或差)的平方,即(a+b)、(a-b)、(-a-b)、(-a+b);二是有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同,即a²+2ab+b²、a²-2ab+b²、-a²-2ab-b²、-a²+2ab-b²。
以下是50道完全平方公式的专项练题,带有答案:1.(a+2b)²答案:a²+4ab+4b²2.(3a-5)²答案:9a²-30a+253.(-2m-3n)²答案:4m²+12mn+9n²4.(a²-1)²-(a²+1)²答案:-4a²5.(-2a+5b)²答案:4a²-20ab+25b²6.(-ab²-c)²答案:a²b⁴+2abc²+ c²7.(x-2y)(x²-4y²)(x+2y)答案:-12xy(x²-4y²)8.(2a+3)²+(3a-2)²答案:13a²+139.(a-2b+3c-1)(a+2b-3c-1)答案:a²-6bc+4b²+4c²+2ac-2a-2b+6c+1 10.(s-2t)(-s-2t)-(s-2t)²答案:-4st11.(t-3)²(t+3)²(t²+9)²答案:(t⁴-9t²+81)³12.972答案:(6³)²13.200²-2²答案:14.99²-101²答案:-40415.49×51-50²答案:116.(x-2y)(x+2y)-(x+2y)²答案:-4y²17.(a+b+c)(a+b-c)答案:a²+b²+c²-ab-ac-bc18.2a+1-1+2a答案:4a19.3x-y-2x-y+5xy-5x²答案:-2x²+4xy-y20.(x+2y)(x-2y)(x-4y),其中x=2,y=-1 答案:12021.(x+1/x)-(x-1/x)((x+1/x)+1)答案:222.x-y=9,xy=5,求x+y答案:1423.a(a-1)+(b-a)-(ab)= -7,求-ab答案:-524.a+b=7,ab=10,求a²+b²,(a-b)²答案:a²+b²=33,(a-b)²=925.2a-b=5,ab=3/2,求4a²+b²-1答案:47/226.(a+b)²=9,(a-b)²=5,求a²+b²,ab 答案:a²+b²=7,ab=127.已知(a+b)²=25,求(a-b)²答案:928.已知(a+b)²=16,求(a-b)²答案:429.已知(a-b)²=9,求(a+b)²答案:2530.已知(a+b)²=36,求(a-b)²答案:031.已知(a+b)²=49,求ab答案:1232.已知(a-b)²=16,求ab答案:-1233.已知ab=3,a²+b²=13,求a-b答案:234.证明对于任意的x,y,代数式a=x²+2xy+y²+3x+2y+1的值总是正数。
完全平方公式专项练习50题(有答案)
完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值. 24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值. 26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
完全平方公式专项练习50题(有答案)
完全平方公式专项练习专项练习:1. 992-98×1002. 49×51-24993.(x -2y )(x +2y )-(x +2y )24.(a +b +c )(a +b -c )5.(2a +1)2-(1-2a )26.(3x -y )2-(2x +y )2+5x (y -x )7..先化简,再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.8.解关于x 的方程:(x +41)2-(x -41)(x +41)=41.9.已知x -y =9,x ·y =5,求x 2+y 2的值.10.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.11.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.12.已知2a -b =5,ab =23,求4a 2+b 2-1的值.13.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.14.已知 2()16,4,a b a b +==求223a b +与2()a b -的值。
15.已知()5,3ab a b -==求2()a b +与223()a b +的值。
16..已知6,4a b a b +=-=求a b 与22a b +的值。
17.已知224,4a b a b +=+=求22a b 的值。
18.已知6,4ab a b +==,求22223a b a b a b ++的值。
19. 已知222450x y x y +--+=,求21(1)2x xy --的值。
20.已知16x x -=,求221x x+的值。
21.试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。
22.已知m 2+n 2-6m+10n+34=0,求m+n 的值23.已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
完全平方公式专项练习50题(有答案)
完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值. 24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值. 25.已知2a -b =5,ab =23,求4a 2+b 2-1的值. 26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
完全平方公式
【课内四基达标】
1.填空题
(1)a 2-4ab+( )=(a-2b)2 (2)(a+b)2-( )=(a-b)2
(3)( -2)2= -21
x+
(4)(3x+2y)2-(3x-2y)2= (5)(3a 2-2a+1)(3a 2+2a+1)=
(6)( )-24a 2c 2+( )=( -4c 2)2
2.选择题
(1)下列等式能成立的是( ).
A.(a-b)2=a 2-ab+b 2
B.(a+3b)2=a 2+9b 2
C.(a+b)2=a 2+2ab+b 2
D.(x+9)(x-9)=x 2-9
(2)(a+3b)2-(3a+b)2计算的结果是( ).
A.8(a-b)2
B.8(a+b)2
C.8b 2-8a 2
D.8a 2-8b 2
(3)在括号内选入适当的代数式使等式(5x-21y)·( )=25x 2-5xy+41
y 2成立. A.5x-21y B.5x+21
y C.-5x+21y D.-5x-21
y
(4)(5x 2-4y 2)(-5x 2+4y 2)运算的结果是( ).
A.-25x 4-16y 4
B.-25x 4+40x 2y 2-16y 2
C.25x 4-16y 4
D.25x 4-40x 2y 2+16y 2
(5)如果x 2+kx+81是一个完全平方式,那么k 的值是( ).
A.9
B.-9
C.9或-9
D.18或-18
(6)边长为m 的正方形边长减少n(m >n)以后,所得较小正方形的面积比原正方形面积减少了( )
A.n 2
B.2mn
C.2mn-n 2
D.2mn+n 2
3.化简或计算
(1)(3y+2x)2 (2)-(-21x 3n+2-32
x 2+n )2
(3)(3a+2b)2-(3a-2b)2 (4)(x 2+x+6)(x 2-x+6)
(5)(a+b+c+d)2 (6)(9-a 2)2-(3-a)(3-a)(9+a)2
4.先化简,再求值.
(x 3+2)2-2(x+2)(x-2)(x 2+4)-(x 2-2)2,其中x=-21
.
【能力素质提高】
1.计算:(1)20012 (2)1.9992
2.证明:(m-9)2-(m+5)2是28的倍数,其中m 为整数.(提示:只要将原式化简后各项均能被28整除)
3.设a 、b 、c 是不全相等的数,若x =a 2-bc ,y =b 2-ac ,z =c 2-ab ,则x 、y 、z( )
A.都不小于0
B.至少有一个小于0
C.都不大于0
D.至少有一个大于0
4.解方程:(x 2-2)(-x 2+2)=(2x-x 2)(2x+x 2)+4x
【渗透拓展创新】
已知代数式(x-a)(x-b)-(x-b)(c-x)+(a-x)(c-x),是一个完全平方式,试问以a 、b 、c 为边的三角形是什么三角形?
【中考真题演练】
一个自然数a 恰等于另一自然数b 的平方,则称自然数a 为完全平方数(如64=82,64就是一个完全平方数).若a=19952+19952·19962+19962.求证:a 是一个完全平方数.
参考答案
【课内四基达标】
1.(1)4b 2 (2)4ab (3)81x,641
x 2,4 (4)24xy (5)9a 4+2a 2+1 (6)9a 4,16c 4,3a 2
2.(1)C (2)C (3)A (4)B (5)D (6)C
3.(1)9y 2+12xy+4x 2 (2)-41x 6n+4-32x 4n+4-94
x 4+2n (3)24ab
(4)x 4+11x 2+36 (5)a 2+b 2+c 2+2ab+2ac+2ad+2bc+2bd+2cd (6)2a 4-18a 2 4.326421
【能力素质提高】
1.(1)4004001 (2)3.996001
2.略
3.D
4.x=-1
【渗透拓展创新】
等边三角形
【中考真题演练】
设1995=k,则1996=k+1,于是a=k 2+k 2(k+1)2+(k+1)2=〔k 2-2k(k+1)+(k+1)2〕+ 2k(k+1)+k 2(k+1)2=〔k-(k+1)〕2+2k(k+1)+k 2(k+1)2=12+2k(k+1)+〔k(k+1)〕2=〔1+k(k+1)〕2=(1+1995·1996)2=39820212,所以a 是一个完全平方数.。