(完整版)高考椭圆题型总结

合集下载

高考椭圆题型总结(最新整理)

高考椭圆题型总结(最新整理)

椭圆题型总结一、椭圆的定义和方程问题(一)定义:PA+PB=2a>2c1.命题甲:动点到两点的距离之和命题乙: 的轨迹P B A ,);,0(2常数>=+a a PB PA P 是以A 、B 为焦点的椭圆,则命题甲是命题乙的 ()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件2.已知、是两个定点,且,若动点满足则动点的轨迹1F 2F 421=F F P 421=+PF PF P 是( )A.椭圆B.圆C.直线D.线段3.已知、是椭圆的两个焦点, 是椭圆上的一个动点,如果延长到,使得1F 2F P P F 1Q ,那么动点的轨迹是( )2PF PQ =Q A.椭圆 B.圆 C.直线 D.点4.已知、是平面内的定点,并且,是内的动点,且1F 2F α)0(221>=c c F F M α,判断动点的轨迹.a MF MF 221=+M 5.椭圆上一点到焦点的距离为2,为的中点,是椭圆的中192522=+y x M 1F N 1MF O 心,则的值是。

ON (二)标准方程求参数范围1.若方程表示椭圆,求k 的范围.(3,4)U (4,5)13522=-+-k y k x 2.( )轴上的椭圆”的表示焦点在”是“方程“y ny mx n m 1022=+>>A.充分而不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.已知方程表示焦点在Y 轴上的椭圆,则实数m 的范围是.112522=-+-m y m x 4.已知方程表示焦点在Y 轴上的椭圆,则实数k 的范围是 .222=+ky x 5.方程所表示的曲线是.231y x -=6.如果方程表示焦点在轴上的椭圆,求实数的取值范围。

222=+ky x y k 7.已知椭圆的一个焦点为,求的值。

06322=-+m y mx )2,0(m 8.已知方程表示焦点在X 轴上的椭圆,则实数k 的范围是.222=+ky x (三)待定系数法求椭圆的标准方程1.根据下列条件求椭圆的标准方程:(1)两个焦点的坐标分别为(0,5)和(0,-5),椭圆上一点到两焦点的距离之和为26;P (2)长轴是短轴的2倍,且过点(2,-6);(3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,求)2,3(),1,6(21--P P 椭圆方程.2.以和为焦点的椭圆经过点点,则该椭圆的方程)0,2(1-F )0,2(2F )2,0(A 为 。

高中数学椭圆题型归类(全)

高中数学椭圆题型归类(全)

高中数学椭圆题型归类目录曲线与方程题型1:曲线的方程的判断题型2:直接法求曲线的方程题型3:定义法求曲线的方程题型4:相关点法求曲线的方程题型5:参数法求曲线的方程题型6:交轨法求曲线的方程椭圆题型1:求轨迹(椭圆)方程题型1.1:定义法求轨迹(椭圆)方程题型1.2:直接法求轨迹(椭圆)方程题型1.3:相关点法求轨迹(椭圆)方程题型1.4:参数法求轨迹(椭圆)方程题型2:求椭圆标准方程题型2.1:已知椭圆上一点及焦点,定义法求椭圆标准方程题型2.2:已知椭圆上两点,待定系数法求椭圆标准方程题型2.3:已知a,b,c关系,方程组法求椭圆标准方程题型3:椭圆的定义题型4:椭圆的对称性题型5:椭圆的离心率题型5.1:求椭圆的离心率题型5.2:求椭圆的离心率取值范围题型6:椭圆的弦中点题型7:椭圆的焦点三角形题型8:椭圆的弦长题型9:椭圆中的三角形面积题型10:直线与椭圆的位置关系题型10.1:直线与椭圆的位置关系题型10.2:椭圆的切线方程题型11:椭圆的求值问题题型12:椭圆中求取值范围问题题型13:椭圆中最值问题题型14:椭圆的定值问题方法是先猜后证。

猜法:取特殊情况或极端情况,此不赘述。

题型14.1:和差相消为定值题型14.2:乘除相约为定值题型14.3:消参数为定值题型15:椭圆的定点问题方法是先猜后证。

猜法:取两种特殊情况或极端情况的交点,或利用对称性判断定点在某直线上,此不赘述。

题型15.1:直线恒过定点题型15.2:曲线恒过定点题型16:证明、探究问题题型1:曲线的方程的判断1.已知曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则“f 1(x 0,y 0)=f 2(x 0,y 0)”是“点M(x 0,y 0)是曲线C 1与C 2的交点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 2.方程|y|-1=表示的曲线是()A.两个半圆B.两个圆C.抛物线D.一个圆 3.方程(x+y-1)=0所表示的曲线是()A.B.C.D.题型2:直接法求曲线的方程1.到(0,2)和(4,-2)距离相等的点的轨迹方程___________2.设动点P 到点F(-1,0)的距离是到直线y=1的距离相等,求点P 的轨迹方程,并判定此轨迹是什么图形.3.动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2||||=PB PA ),求动点P 的轨迹方程?题型3:定义法求曲线的方程1.由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0,,60A B APB ∠=,则动点P 的轨迹方程为.2.过点(-2,0)的直线与圆221x y +=相交于A,B,求弦AB 中点M 的轨迹方程。

高考椭圆题型总结有答案

高考椭圆题型总结有答案

高考椭圆题型总结有答案椭圆题型总结一、椭圆的定义和方程问题一)定义:命题甲:动点P到两点A,B的距离之和PA+PB=2a(a>0,常数)。

命题乙:P的轨迹是以A、B为焦点的椭圆,则命题甲是命题乙的充要条件。

已知F1、F2是两个定点,且F1F2=4,若动点P满足PF1+PF2=4,则动点P的轨迹是椭圆。

已知1、2是椭圆的两个焦点,P是椭圆上的一个动点,如果延长1到P,使得PQ=PF2,那么动点的轨迹是圆。

x^2+y^2=1上一点M到焦点F1的距离为2,N为MF1的中点,椭圆则ON的值是4.O是椭圆的中心,(1,0)是椭圆的左焦点,P在椭圆上运动,定点A(1,1)。

选做:已知F1是椭圆,求|PA|+|PF1|的最小值。

二)标准方程求参数范围试讨论k的取值范围,使方程(5-k)x^2+ky^2-3=0表示圆、椭圆、双曲线。

m>n>0”是“方程mx+ny=1表示焦点在y轴上的椭圆”的充要条件。

若方程xsinα+ycosα=1表示焦点在y轴上的椭圆,α所在的象限是第二象限。

方程x=1-3y所表示的曲线是椭圆的右半部分。

已知方程x+ky=2表示焦点在X轴上的椭圆,则实数k的范围是k>1.1.根据下列条件求椭圆的标准方程:1) 两个焦点的坐标分别为(0,5)和(0,-5),椭圆上一点P到两焦点的距离之和为26;2) 长轴是短轴的2倍,且过点(2,-6);3) 已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1(6,1)、P2(-3,-2)。

二、简单几何性质椭圆的离心率为e=√(1-b^2/a^2),其中a、b分别为长轴和短轴的一半。

椭圆的周长为C=4aE(e),其中E(e)为第二类完全椭圆积分。

椭圆的面积为S=πab。

点M(x,y)满足x2/25+(y+3)2/16=1,求点M的轨迹方程。

2.已知动点P(x,y)过定点A(-3,0),并且在定圆B:(x-3)2+y2=64的内部与其相内切,求动点P的轨迹方程。

高三数学椭圆常考题型

高三数学椭圆常考题型

高三数学椭圆常考题型一、椭圆的基本性质椭圆是一种常见的二次曲线,具有以下基本性质:1. 椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 1 (a > b > 0)。

2. 椭圆的焦点距离为:c = sqrt(a^2 - b^2)。

3. 椭圆的离心率e = c/a,离心率的取值范围是[0,1]。

4. 椭圆的准线方程为:x = ±a^2/c。

二、常考题型及解析1. 椭圆的定义与标准方程【例1】已知椭圆C的中心在原点,焦点在x轴上,离心率为1/2,且椭圆C上一点到两焦点的距离之和为4。

(1) 求椭圆C的标准方程;(2) 若AB是过椭圆C中心的弦,M是AB的中点,且|AB| = 4√5,求线段AB 的长。

【解析】(1) 根据题意,设椭圆C的标准方程为:x^2/a^2 + y^2/b^2 = 1 (a > b > 0)。

由离心率的定义,我们有e = c/a = 1/2。

再根据椭圆的定义,到两焦点的距离之和为4,所以2a = 4,即a = 2。

由离心率的定义和已知条件,我们可以得到b = sqrt(a^2 - c^2) = sqrt(4 - 1) = sqrt3。

所以椭圆C的标准方程为:x^2/4 + y^2/3 = 1。

(2) 设AB的方程为y = kx + t。

代入椭圆方程得到二次方程(3 + 4k^2)x^2 +8ktx + 4t^2 - 12 = 0。

设A(x1,y1),B(x2,y2),则有x1 + x2 = -8kt/(3 + 4k^2),x1x2 = (4t^2 - 12)/(3 + 4k^2)。

由弦长公式得|AB| = sqrt((x1 - x2)^2 + (y1 - y2)^2) = sqrt((1 + k^2)(x1 - x2)^2) = sqrt((1 + k^2)[(x1 + x2)^2 - 4x1x2])。

将已知条件代入得到k 和t 的关系,进一步求出线段AB的长为8sqrt(3-k^2)。

考点38 高中数学-椭圆-考点总结和习题

考点38 高中数学-椭圆-考点总结和习题

考点38椭圆【命题趋势】椭圆是高考考查的重点,难点,可能在小题中出现,也经常出现在高考中的压轴题位置,是高考高分的分水岭.我们复习时必须掌握以下几点:(1)了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用.(2)掌握椭圆的定义、几何图形、标准方程及简单性质.(3)了解椭圆的简单应用.(4)理解数形结合的思想.【重要考向】一、椭圆定义的应用二、求椭圆的标准方程三、椭圆的几何性质及应用四、直线与椭圆的位置关系椭圆定义的应用平面上到两定点12,F F 的距离的和为常数(大于两定点之间的距离)的点P 的轨迹是椭圆.这两个定点叫做椭圆的焦点,两个定点之间的距离叫做椭圆的焦距,记作122F F c =.定义式:12122(2)PF PF a a F F +=>.要注意,该常数必须大于两定点之间的距离,才能构成椭圆.【巧学妙记】1.(2020·深圳实验学校高二月考)在ABC 中,点()2,0A -、点()2,0B ,且||AB 是||AC 和||BC 的等差中项,则点C 的轨迹方程是()A .2211612x y +=B .2211612x y +=(4)x ≠±C .2216460x y +=D .2216460x y +=(8)x ≠±【答案】B 【分析】由A 、B 的坐标求出||AB ,代入2||||||AB AC BC =+,可知点C 的轨迹是以(2,0)A -,(2,0)B 为焦点,半长轴长是8的椭圆,由此求出其轨迹方程.【详解】解: 点(2,0)A -、点(2,0)B ,||4AB ∴=,||AB 是||AC 和||BC 的等差中项,则2||||||8AB AC BC =+=,∴点C 的轨迹是以(2,0)A -,(2,0)B 为焦点,半长轴长是4的椭圆(去掉长轴上的顶点).则4a =,2c =,22212b a c ∴=-=.∴点A 的轨迹方程是:221(4)1612x y x +=≠±故选:B .2.(2021·安徽宿州市·高二期末(理))在ABC 中,已知()3,0B -,()3,0C 且ABC 的周长为16,则顶点A 的轨迹方程是()A .()22102516x y x +=≠B .()22101625x y x +=≠C .()22102516x y y +=≠D .()22101625x y y +=≠【答案】C 【分析】由周长得到106AB AC +=>,利用椭圆定义写出点A 的轨迹方程.【详解】由条件可知16AB AC BC ++=,6BC =,106AB AC ∴+=>,∴点A 是以,B C 为焦点的椭圆,除去左右顶点,并且210,26a c ==,2225,9a c ∴==,225916b =-=∴顶点A 的轨迹方程是()22102516x y y +=≠.故选:C3.(2021·浙江高二期末)已知12,F F 分别为椭圆2221(010)100x y b b +=<<的左、右焦点,P是椭圆上一点.(1)12PF PF +的值为________;(2)若1260F PF ∠=︒,且12F PF △的面积为6433,求b 的值为________.【答案】208【分析】(1)根据椭圆的定义,直接求即可得解;(2)根据焦点三角形的性质,利用面积公式结合余弦定理,即可得解.【详解】(1)由2221(010)100x y b b+=<<知2100,10a a ==,12220PF PF a +==,(2)设12,PF m PF n ==,21222122cos F F m n F F mn P =+-⋅∠,可得2224()343c m n mn a mn =+-=-,所以243b mn =,所以12122133643sin 2433F PF F PF S mn mm b =⋅∠===,所以8b =,故答案为:(1)20;(2)8.求椭圆的标准方程焦点在x 轴上,22221(0)x y a b a b +=>>;焦点在y 轴上,22221(0)y x a b a b+=>>.说明:要注意根据焦点的位置选择椭圆方程的标准形式,知道,,a b c 之间的大小关系和等量关系:222,0,0a c b a b a c -=>>>>.【巧学妙记】4.(2021·四川凉山彝族自治州·高三二模)已知中心在原点,对称轴为坐标轴的椭圆C ,其长轴长为4,焦距为2,则C 的方程为()A .2211612x y +=B .2211612x y +=或2211612y x +=C .22143x y +=D .22143x y +=或22143y x +=【答案】D 【分析】由椭圆中a ,b ,c 的关系求出短半轴长b 的值,再按焦点位置分别写出所求方程.【详解】因椭圆C 中心在原点,其长轴长为4,焦距为2,则2a =,1c =,b ==当椭圆的焦点在x 轴上时,椭圆方程为:22143x y+=,当椭圆的焦点在y 轴上时,椭圆方程为:22143y x+=.故选:D5.(2021·全国高二单元测试)已知椭圆的两个焦点的坐标分别是(0,-3)和(0,3),且椭圆经过点(0,4),则该椭圆的标准方程是()A .221167x y +=B .221167y x +=C .2212516x y +=D .221259y x +=【答案】B 【分析】根据题意设出椭圆的标准方程,由已知可得3c =,由椭圆定义求得a ,由b 2=a 2-c 2,求得b ,即可得出结果.【详解】解:∵椭圆的焦点在y 轴上,∴可设它的标准方程为22221(0)y x a b a b+=>>.∵28,a ==∴a =4,又c =3,∴b 2=a 2-c 2=16-9=7,故所求的椭圆的标准方程为221167y x +=.故选:B .6.(2021·全国高二单元测试)写出适合下列条件的椭圆的标准方程:(1)两个焦点在坐标轴上,且经过A(,-2)和B (-2,1)两点;(2)a =4,c(3)过点P (-3,2),且与椭圆22194x y +=有相同的焦点.【答案】(1)221155x y +=;(2)22116x y +=或22116y x +=;(3)2211510x y +=.【分析】(1)利用待定系数法求得椭圆方程;(2)求得b ,根据焦点所在坐标轴写出椭圆方程;(3)首先求得2c ,然后利用P 点坐标求得22,a b ,由此求得椭圆方程.【详解】(1)设所求椭圆方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),由)2A-和()B -两点在椭圆上可得2222(2)1(11m n m n ⎧⋅+⋅-=⎪⎨⎪⋅-+⋅=⎩,即341121m n m n +=⎧⎨+=⎩,解得11515m n ⎧=⎪⎪⎨⎪=⎪⎩.故所求椭圆的标准方程为221155x y +=.(2)因为a =4,c =所以b 2=a 2-c 2=1,1b =所以当焦点在x 轴上时,椭圆的标准方程是22116x y +=;当焦点在y 轴上时,椭圆的标准方程是22116y x +=.(3)因为所求的椭圆与椭圆22194x y +=的焦点相同,所以其焦点在x 轴上,且c 2=5.设所求椭圆的标准方程为()222210x y a b a b+=>>.因为所求椭圆过点P (-3,2),所以有22941a b +=①又a 2-b 2=c 2=5,②由①②解得a 2=15,b 2=10.故所求椭圆的标准方程为2211510x y +=.椭圆的几何性质及应用i)图形焦点在x 轴上焦点在y 轴上ii)标准方程几何性质范围顶点焦点对称性离心率椭圆22221x y a b +=(0)a b >>x a ≤y b≤(,0)a ±,(0,)b ±(,0)c ±对称轴:x 轴,y 轴,对称中心:原点01e <<,c e a=22221y x a b+=(0)a b>>y a ≤x b≤(0,)a ±,(,0)b ±(0,)c±【巧学妙记】7.(2020·全国高二课时练习)已知椭圆方程为22916144x y +=,则它的长轴长为________,短轴长为________,焦距为________,离心率为______.【答案】8674【分析】将椭圆方程化为标准方程,求出a 、b 、c 的值,即可得出结果.【详解】把椭圆方程化成标准方程为221169x y +=,所以4a =,3b =,c ==所以椭圆的长轴长为8,短轴长为6,焦距为74c e a ==.故答案为:8;6;74.8.(2021·福建龙岩市·高二期末)已知椭圆22212x y a +=的一个焦点为()F ,则这个椭圆的方程是()A .22132x y +=B .22142x y +=C .22152x y +=D .22162x y +=【答案】C 【分析】利用椭圆的简单几何性质求解.【详解】解: 椭圆22212x ya +=的一个焦点为(F ,22b ∴=,c =222325a b c ∴=+=+=,∴椭圆方程为22152x y +=.故选:C .9.(2021·山西高三三模)设椭圆C :22221(0)x y a b a b +=>>的左、右焦点分别为12,F F ,过2F 的直线与C 交于A ,B 两点,若1ABF 为等边三角形,则C 的离心率为()A .3B .2C .3D .12【答案】A 【分析】判断出12AB F F ⊥,利用22ce a=求得离心率.【详解】由于1ABF 为等边三角形,根据椭圆的对称性可知12AB F F ⊥,在12Rt AF F △中,126AF F π∠=,2112::1:2AF AF F F =所以2332123c e a ===+.故选:A直线与椭圆的位关系设直线:0l Ax By C ++=,椭圆22221x y a b+=,把二者方程联立得到方程组,消去()y x 得到一个关于()x y 的方程220(0)ax bx c ay by c ++=++=.0∆>⇔方程有两个不同的实数解,即直线与圆锥曲线有两个交点;0∆=⇔方程有两个相同的实数解,即直线与圆锥曲线有一个交点;0∆<⇔方程无实数解,即直线与圆锥曲线无交点.10.(2021·四川省内江市第六中学高二月考)已知直线:30l x y +-=,椭圆2214x y +=,则直线与椭圆的位置关系是()A .相交B .相切C .相离D .相切或相交【答案】C 【分析】将直线方程和椭圆方程联立,解方程组,由解的个数即可判断直线与椭圆的位置关系【详解】解:由223014x y x y +-=⎧⎪⎨+=⎪⎩,得22(3)14x x +-=,化简得2524320x x -+=,因为2244532640∆=-⨯⨯=-<,所以方程无解,所以直线与椭圆的位置关系是相离,故选:C11.(2020·河南高二月考(理))直线y kx k =-与椭圆22194x y +=的位置关系为()A .相交B .相切C .相离D .不确定【答案】A 【分析】求得直线y kx k =-恒过的定点,判断定点与椭圆的位置关系,由此可得直线y kx k =-与椭圆的位置关系.【详解】直线y kx k =-可化为(1)y k x =-,所以直线恒过点(1,0),又2210194+<,即(1,0)在椭圆的内部,∴直线y kx k =-与椭圆22194x y+=的位置关系为相交.故选:A.12.(2021·莆田第十五中学高二期末)直线0x y m --=与椭圆2219x y +=有且仅有一个公共点,求m 的值.【答案】m =【分析】将直线方程代入椭圆方程,消去x 得到2210290y my m -++=,令0∆=,计算即可求得结果.【详解】解:将直线方程0x y m --=代入椭圆方程2219x y +=,消去x 得到:2210290y my m -++=,令0∆=,即()22441090m m -⨯-=解得m =一、单选题1.已知椭圆C :22195x y +=的左焦点为F ,点M 在椭圆C 上,点N 在圆E :()2221x y -+=上,则MF MN +的最小值为()A .4B .5C .7D .82.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是1F ,2F ,直线y kx =与椭圆C 交于A ,B 两点,113AF BF =,且1260F AF ∠=︒,则椭圆C 的离心率是()A .716B .74C .916D .343.过椭圆C :22221(0)x y a b a b+=>>右焦点F 的直线l :30x y --=交C 于A 、B 两点,P 为AB 的中点,且OP 的斜率为12-,则椭圆C 的方程为()A .22163x y +=B .22175x y +=C .22184x y +=D .22196x y +=4.已知12,F F 是椭圆22143x y +=的左,右焦点,点A 是椭圆上的一个动点,则12AF F △的内切圆的半径的最大值是()A .1B .12C .13D .335.已知椭圆22:1(0)9x y C m m+=>的长轴长与短轴长之差为2,则C 的焦距为()A 7B .5C .27D .25276.椭圆22221(0)x y a b a b +=>>的上、下顶点分别为12,B B ,右顶点为A ,右焦点为F ,12B F B A ⊥,则椭圆的离心率为()A .12B .22C .512-D .512+7.已知A ,B ,C 是椭圆2222Γ:1(0)x y a b a b +=>>上不同的三点,且原点O 是△ABC 的重心,若点C 的坐标为3,22b ⎛⎫ ⎪ ⎪⎝⎭,直线AB 的斜率为33-,则椭圆Γ的离心率为()A .13B .223C .3D .738.已知1F ,2F 是椭圆2222:154x y G +=的两个焦点,过1F 作直线l 交G 于A ,B 两点,若325AB =,则2F AB 的面积为()A .245B .485C .965D .16415二、多选题9.已知椭圆C :22148x y +=内一点M (1,2),直线l 与椭圆C 交于A ,B 两点,且M 为线段AB 的中点,则下列结论正确的是()A.椭圆的焦点坐标为(2,0)、(-2,0)B .椭圆C 的长轴长为C .直线l 的方程为30x y +-=D .433AB =10.嫦娥奔月是中华民族的千年梦想.2020年12月我国嫦娥五号“探月工程”首次实现从月球无人采样返回.某校航天兴趣小组利用计算机模拟“探月工程”,如图,飞行器在环月椭圆轨道近月点制动(俗称“踩刹车”)后,以km/s v 的速度进入距离月球表面km n 的环月圆形轨道(月球的球心为椭圆的一个焦点),环绕周期为s t ,已知远月点到月球表面的最近距离为km m ,则()A .圆形轨道的周长为()2km vt πB .月球半径为km 2vt n π⎛⎫-⎪⎝⎭C .近月点与远月点的距离为kmt m n νπ⎛⎫-+ ⎪⎝⎭D .椭圆轨道的离心率为m nm n-+三、填空题11.写出一个长轴长等于离心率8倍的椭圆标准方程为______.12.已知椭圆()2222:10x y C a b a b+=>>的右焦点为F ,直线2a x =与C 交于A ,B 两点,若120AFB ∠=︒,则椭圆C 的离心率为_______.四、双空题13.椭圆2221x y +=的长轴长为______,焦点坐标是________.五、解答题14.求椭圆9x 2+16y 2=144的长轴长、短轴长、离心率、焦点坐标和顶点坐标.15.已知地球运行的轨道是长半轴长81.5010km a =⨯,离心率0.0192e =的椭圆,且太阳在这个椭圆的一个焦点上,求地球到太阳的最大和最小距离.16.已知椭圆的长轴在x 轴上,长轴长为4,离心率为32,(1)求椭圆的标准方程,并指出它的短轴长和焦距.(2)直线220x y --=与椭圆交于,A B 两点,求,A B 两点的距离.17.地球围绕太阳公转的轨道是一个椭圆,太阳位于该椭圆的一个焦点,每单位时间地球公转扫过椭圆内区域的面积相同.我国古代劳动人民根据长期的生产经验总结创立了二十四节气,将一年(地球围绕太阳公转一周)划分为24个节气,规则是:任意2个相邻节气地球与太阳的连线成15︒.地球在小寒前约三四天到达近日点,在小暑前约三四天到达远日点.(1)从冬至到小寒与从夏至到小暑,哪一段时间更长?并说明理由.(2)以立春为始,排在偶数位的12个节气又称为中气,农历规定没有中气的那个月为闰月.经统计,1931年至2050年间,闰月最多的3个月份是:闰4月7次,闰5月9次,闰6月8次;闰月最少的3个月份是:闰11月1次,闰12月0次,闰1月0次.为什么会出现这种现象?请说明理由一、单选题1.(2021·全国高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A .13B .12C .9D .62.(2021·全国高考真题(理))设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是()A .2,12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .20,2⎛ ⎝⎦D .10,2⎛⎤ ⎥⎝⎦3.(2019·全国高考真题(文))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、多选题4.(2020·海南高考真题)已知曲线22:1C mx ny +=.()A .若m >n >0,则C 是椭圆,其焦点在y 轴上B .若m =n >0,则CC .若mn <0,则C 是双曲线,其渐近线方程为y =D .若m =0,n >0,则C 是两条直线三、双空题5.(2021·浙江高考真题)已知椭圆22221(0)x y a b a b +=>>,焦点1(,0)F c -,2(,0)F c (0)c >,若过1F 的直线和圆22212x c y c ⎛⎫-+= ⎪⎝⎭相切,与椭圆在第一象限交于点P ,且2PF x ⊥轴,则该直线的斜率是___________,椭圆的离心率是___________.四、解答题6.(2021·全国高考真题)已知椭圆C 的方程为22221(0)x y a b a b+=>>,右焦点为F ,且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =.7.(2021·北京高考真题)已知椭圆2222:1(0)x y E a b a b+=>>过点(0,2)A -,以四个顶点围成的四边形面积为(1)求椭圆E 的标准方程;(2)过点P (0,-3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB ,AC 交y =-3于点M 、N ,直线AC 交y =-3于点N ,若|PM |+|PN |≤15,求k 的取值范围.8.(2020·山东高考真题)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点()2,1A .(1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.9.(2020·全国高考真题(文))已知椭圆222:1(05)25x y C m m +=<<的离心率为4,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.10.(2020·全国高考真题(文))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.参考答案跟踪训练1.B 【分析】根据椭圆的定义把求MF MN +的最小值转化为求ME MN -的最大值,利用三角形的两边之差小于第三边即可求得.【详解】易知圆心E 为椭圆的右焦点,且3,2a b c ===,由椭圆的定义知:26MF ME a +==,所以6MF ME =-,所以()66MF MN ME MN ME MN+=-+=--,要求MF MN +的最小值,只需求ME MN -的最大值,显然,,M N E 三点共线时ME MN -取最大值,且最大值为1,所以MF MN +的最小值为615-=.故选:B.2.B 【分析】根据椭圆的对称性可知,21AF BF =,设2AF m =,由113AF BF =以及椭圆定义可得132a AF =,22a AF =,在12AF F △中再根据余弦定理即可得到22744a c =,从而可求出椭圆C 的离心率.【详解】由椭圆的对称性,得21AF BF =.设2AF m =,则13AF m =.由椭圆的定义,知122AF AF a +=,即32m m a +=,解得2a m =,故132aAF =,22a AF =.在12AF F △中,由余弦定理,得122212121222cos F F AF AF A F A F A F F =+∠-,即2222931742442224a a a a a c =+-⨯⨯=,则222716c e a ==,故74e =.故选:B.3.A 【分析】由题意,可得右焦点F 的坐标,联立直线l 与椭圆的方程,利用韦达定理,求出AB 的中点P 的坐标,由直线OP 的斜率可得a ,b 的关系,再由椭圆中a ,b ,c 的关系求出a ,b的值,进而可得椭圆的方程.【详解】解:直线:0l x y --=中,令0y =,可得x =F 0),设1(A x ,1)y ,2(B x ,2)y ,则A ,B 的中点1212,22x x y y P ++⎛⎫⎪⎝⎭,联立222201x y x y ab ⎧-=⎪⎨+=⎪⎩,整理得2222222()30a b y y b a b +++-=,所以2122223b y y a b +=-+,212122223x x y y a b +=+++,所以21221212OP y y b k x x a +==-=-+,所以222a b =,又222a b c =+,23c =,所以26a =,23b =,所以椭圆的方程为22163x y +=,故选:A .【点睛】关键点点睛:本题解题的关键是联立直线和椭圆的方程,然后利用韦达定理求出12y y +,12x x +,进而根据12OP k =-由两点间的斜率公式得a ,b 的关系.4.D利用椭圆的定义即可求解.【详解】设12AF F △的内切圆的半径为r ,由22143x y +=,则2a =,b =1c ==所以1224AF AF a +==,1222F F c ==,由12121211112222A F F r AF r AF r F F y ++=,即()121211222A r F F AF AF y ++=⨯,即3A r y =,若12AF F △的内切圆的半径最大,即A y 最大,又A y ≤≤所以max 33r =.故选:D 5.D 【分析】分椭圆的焦点在x 轴上和在y 轴上分别得出,a b ,根据条件先求出m ,再求焦距.【详解】当C 焦点在x 轴上,此时3,a b ==62-=,解得4m =此时焦距为2c ==当C 的焦点在y 轴上,此时3a b ==,则62=,解得16m =此时C 的焦距为=.故选:D .6.C 【分析】求出椭圆的焦点坐标,顶点坐标,利用垂直关系列出方程,转化求解即可.解:椭圆22221(0)x y a b a b+=>>的上、下顶点分别为12(0,),(0,)B b B b -,右顶点为A (a ,0),右焦点为F (c ,0),12BF B A ⊥,可得b bc a-⋅=﹣1,22a cac -=1,解得e =12-.故选:C.7.B 【分析】根据椭圆的第三定义22OC AB b k k a⋅=-,可求得,a b 的关系,进而求得离心率;【详解】设AB 的中点D ,因为原点O 是△ABC 的重心,所以,,C O D 三点共线,所以OD OC k k =,由于22223133OC AB b b b k k a a a ⎛⎫⋅=-⇒-=-⇒= ⎪ ⎪⎝⎭,所以223e =,故选:B.8.C 【分析】判断出AB x ⊥轴,直接由三角形面积公式计算即可.【详解】由2222:154x y G +=知2222543c =-=,所以1(3,0)F -,把3x =-代入椭圆方程可得42425y =,故165y =±,又325AB =,所以AB x ⊥轴,则2113296||22255F AB AB d c ==⨯⨯=△S ,故选:C 9.BCD 【分析】根据椭圆方程可直接判断A 、B 的正误,设直线l 为(2)1x k y =-+,11(,)A x y ,22(,)B x y ,且124y y +=,联立椭圆方程应用韦达定理即可求k 值,写出直线方程,进而应用弦长公式可求AB ,即可判断C 、D 的正误.【详解】A :由椭圆方程知:其焦点坐标为(0,2)±,错误;B :28a =,即椭圆C 的长轴长为2a =,正确;C :由题意,可设直线l 为(2)1x k y =-+,11(,)A x y ,22(,)B x y ,则124y y +=,联立椭圆方程并整理得:222(21)4(12)8860k y k k y k k ++-+--=,M 为椭圆内一点则0∆>,∴1224(21)421k k y y k -+==+,可得1k =-,即直线l 为30x y +-=,正确;D :由C 知:124y y +=,12103y y =,则433AB ==,正确.故选:BCD.10.BC 【分析】根据题意结合椭圆定义和性质分别求出各量即可判断.【详解】由题,以km/s v 的速度进入距离月球表面km n 的环月圆形轨道,环绕周期为s t ,则可得环绕的圆形轨道周长为vt km ,半径为2vtπkm ,故A 错误;则月球半径为km 2vt n π⎛⎫-⎪⎝⎭,故B 正确;则近月点与远月点的距离为km t m n νπ⎛⎫+- ⎪⎝⎭,故C 正确;设椭圆方程为22221x y a b +=,则,m R a c n R a c +=++=-(R 为月球的半径),22,2a m n R c m n ∴=++=-,故离心率为+2m nm n R-+,故D 错误.故选:BC.【点睛】本题考查椭圆的应用,解题的关键是正确理解椭圆的定义.11.22143x y +=(答案不唯一)【分析】不妨设椭圆的焦点在x 轴上,标准方程为()222210x ya b a b+=>>,进而根据题意得24a c =,再令1c =即可得到一个满足条件的椭圆方程.【详解】不妨设椭圆的焦点在x 轴上,椭圆的标准方程为()222210x ya b a b+=>>因为长轴长等于离心率8倍,故28ca a=,即24a c =不妨令1c =,则224,3a b ==,所以满足条件的一个椭圆方程为22143x y +=.故答案为:22143x y +=(答案不唯一)【点睛】本题解题的关键在于再求解之前,需要考虑椭圆焦点所在轴,进而设出椭圆的标准方程,根据题意求解.12.45【分析】先不妨设A的坐标,22a ⎛⎫ ⎪ ⎪⎝⎭,再求出F 到直线2ax =的距离为2a c -,利用等腰三角形的性质,列出31202tan 22a c ==-,解出即可.【详解】根据题意,把2a x =代入22221x y a b +=中,得2y =±,不妨设A3,22a ⎛⎫⎪ ⎪⎝⎭,且(),0F c ,则F 到直线2ax =的距离为2a c -,由120AFB ∠=︒,得31202tan22a c ==-,则2b a c =-,平方计算得45c a =.故答案为:45.【点睛】思路点睛:1.不妨设A 的坐标3,22a ⎛⎫ ⎪⎪⎝⎭,再求出F 到直线2ax =的距离为2a c -,2.AFB △为等腰三角形,且120AFB ∠=︒,列出1202tan 22a c ==-,解出45c a =.13.220,2⎛⎫± ⎪ ⎪⎝⎭【分析】将椭圆化为标准方程可得22112x y +=,从而可求出,,a b c 的值,进而可求出椭圆的长轴长及焦点坐标.【详解】由题意,椭圆方程可化为22112x y +=,则2211,2a b ==,所以22211122c a b =-=-=,即221,,22a b c ===,故椭圆的长轴长为22a =,焦点坐标为220,,0,22⎛⎫⎛- ⎪ ⎪ ⎝⎭⎝⎭.故答案为:2;20,2⎛⎫± ⎪ ⎪⎝⎭.14.长轴长和短轴长分别是8和6,离心率74,焦点坐标分别是(,0),,0),顶点坐标分别是(-4,0),(4,0),(0,-3),(0,3).【分析】化方程为标准方程,得,a b ,再求得c 后可得结论.【详解】把已知方程化成标准方程为221169x y +=,所以a =4,b =3,c,所以椭圆的长轴长和短轴长分别是2a =8和2b =6;离心率e =74c a =;两个焦点坐标分别是(,0),,0);四个顶点坐标分别是(-4,0),(4,0),(0,-3),(0,3).15.1.5288×108km ,1.4712×108km【分析】根据地球到太阳的最大距离是a +c ,最小距离是a ﹣c ,即可求得结论.【详解】∵椭圆的长半轴长约为a =1.5×108km ,离心率e =0.0192,∴半焦距约为c ae ==2.88×106km ,∴地球到太阳的最大距离是1.5×108+2.88×106=1.5288×108km ,最小距离是1.5×108﹣2.88×106=1.4712×108km .16.(1)2214x y +=,短轴长为2,焦距为(2.【分析】(1)由长轴得a ,再由离心率求得c ,从而可得b 后可得椭圆方程;(2)直线方程与椭圆方程联立方程组求得交点坐标后可得距离.【详解】(1)由已知:2a =,32c a =,故c =1b =,则椭圆的方程为:2214x y +=,所以椭圆的短轴长为2,焦距为.(2)联立2222014x y x y --=⎧⎪⎨+=⎪⎩,解得1101x y =⎧⎨=-⎩,2220x y =⎧⎨=⎩,所以(0,1)A -,(2,0)B ,故||AB =17.(1)从夏至到小暑的时间长,理由见解析;(2)答案见解析.【分析】(1)小寒(最接近近日点),夏至,小暑(最接近远日点)四个节气时地球所在的位置,每单位时间地球公转扫过椭圆内区域的面积相同,则在远日点转过相同的角度面积较大,得出答案.(2)由(1)知,远日点附近两个相邻节气之间的时间间隔长于近日点附近两个相邻节气之间的时间间隔,从而得出近日点和远日点附近农历一个月内含中气的概率的大小,得出答案.【详解】(1)如图所示,太阳处于地球公转椭圆轨道的一个焦点F ,A ,B ,C ,D 分别为冬至,小寒(最接近近日点),夏至,小暑(最接近远日点)四个节气时地球所在的位置,则FB FA FC FD <<<,因此椭圆轨道内椭圆扇形FCD 的面积大于椭圆扇形FAB 的面积,根据“每单位时间地球公转扫过椭圆内区域的面积相同”可知从夏至到小暑的时间长于从冬至到小寒的时间.(2)农历从朔日到下一个朔日前一日为一个月,大约是月亮围绕太阳地球转一周的时间(约29天半).由(1)知,远日点附近两个相邻节气之间的时间间隔长于近日点附近两个相邻节气之间的时间间隔,所以远日点附近农历一个月内不含中气的概率较高,出现闰月较多;而近日点附近农历一个月内不含中气的概率较低,出现闰月较少.真题再现1.C 【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤=⎪⎝⎭(当且仅当123MF MF ==时,等号成立).故选:C .【点睛】椭圆上的点与椭圆的两焦点的距离问题,常常从椭圆的定义入手,注意基本不等式得灵活运用,或者记住定理:两正数,和一定相等时及最大,积一定,相等时和最小,也可快速求解.2.C 【分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可.【详解】设()00,P x y ,由()0,B b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32b b c-≤-,即22b c ≥时,22max 4PB b =,即max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即202e <≤;当32b b c ->-,即22b c <时,42222maxb PB a bc =++,即422224b a b b c++≤,化简得,()2220cb-≤,显然该不等式不成立.故选:C .【点睛】本题解题关键是如何求出PB 的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.3.B 【分析】由已知可设2F B n =,则212,3AF n BF AB n ===,得12AF n =,在1AF B △中求得11cos 3F AB ∠=,再在12AF F △中,由余弦定理得32n =,从而可求解.【详解】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得2n =.22224,,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得2n =.22224,,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.4.ACD 【分析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n+=,因为0m n >>,所以11m n<,即曲线C 表示焦点在y 轴上的椭圆,故A 正确;对于B ,若0m n =>,则221mx ny +=可化为221x y n+=,此时曲线C表示圆心在原点,半径为n的圆,故B 不正确;对于C ,若0mn <,则221mx ny +=可化为22111x y m n+=,此时曲线C 表示双曲线,由220mx ny +=可得y =,故C 正确;对于D ,若0,0m n =>,则221mx ny +=可化为21y n=,y n=±,此时曲线C 表示平行于x 轴的两条直线,故D 正确;故选:ACD.【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.5.25555【分析】不妨假设2c =,根据图形可知,122sin 3PF F ∠=,再根据同角三角函数基本关系即可求出12tan k PF F =∠=;再根据椭圆的定义求出a ,即可求得离心率.【详解】如图所示:不妨假设2c =,设切点为B ,12112sin sin 3AB PF F BF A F A∠=∠==,12tan PF F ∠==所以255k =,由21212,24PF k F F c F F ===,所以2855PF =,21255PF =,于是122PF a PF +==,即a =,所以5c e a ===.故答案为:5;5.6.(1)2213x y +=;(2)证明见解析.【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN =充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k =+,联立直线与椭22413k=+1k =±,即可得解.【详解】(1)由题意,椭圆半焦距c =且63c e a ==,所以a =又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意;当直线MN 的斜率存在时,设()()1122,,,M x y N x y ,必要性:若M ,N ,F三点共线,可设直线(:MN y k x =即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以1212,324x x x x +=⋅=,所以MN ==所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=,由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=,所以2121222633,1313kb b x x x x k k-+=-⋅=++,所以MN==213k=+=化简得()22310k-=,所以1k=±,所以1kb=⎧⎪⎨=⎪⎩或1kb=-⎧⎪⎨=⎪⎩,所以直线:MN y x=或y x=-,所以直线MN过点F,M,N,F三点共线,充分性成立;所以M,N,F三点共线的充要条件是||MN=.【点睛】关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.7.(1)22154x y+=;(2)[3,1)(1,3]--⋃.【分析】(1)根据椭圆所过的点及四个顶点围成的四边形的面积可求,a b,从而可求椭圆的标准方程.(2)设()()1122,,,B x yC x y,求出直线,AB AC的方程后可得,M N的横坐标,从而可得PM PN+,联立直线BC的方程和椭圆的方程,结合韦达定理化简PM PN+,从而可求k的范围,注意判别式的要求.【详解】(1)因为椭圆过()0,2A-,故2b=,因为四个顶点围成的四边形的面积为1222a b⨯⨯=,即a=,故椭圆的标准方程为:22154x y+=.(2)设()()1122,,,B x y C x y ,因为直线BC 的斜率存在,故120x x ≠,故直线112:2y AB y x x +=-,令3y =-,则112M x x y =-+,同理222N xx y =-+.直线:3BC y kx =-,由2234520y kx x y =-⎧⎨+=⎩可得()224530250k x kx +-+=,故()22900100450k k ∆=-+>,解得1k <-或1k >.又1212223025,4545k x x x x k k+==++,故120x x >,所以0M N x x >又1212=22M N x xPM PN x x y y +=++++()()2212121222212121222503024545=5253011114545k kkx x x x x x k k kk k kx kx k x x k x x k k --++++===---++-+++故515k ≤即3k ≤,综上,31k -≤<-或13k <≤.8.(1)22163x y +=;(2)详见解析.【分析】(1)由题意得到关于,,a b c 的方程组,求解方程组即可确定椭圆方程.(2)设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+,联立直线方程与椭圆方程,根据已知条件,已得到,m k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置.【详解】(1)由题意可得:222222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)设点()()1122,,,M x y N x y ,若直线MN 斜率存在时,设直线MN 的方程为:y kx m =+,代入椭圆方程消去y 并整理得:()22212k4260xkmx m +++-=,可得122412km x x k +=-+,21222612m x x k-=+,因为AM AN ⊥,所以·0AM AN =,即()()()()121222110x x y y --+--=,根据1122,kx m y kx m y =+=+,代入整理可得:()()()()22121212140x x km k x x km ++--++-+=,所以()()()22222264k 121401212m km km k m k k -⎛⎫++---+-+= ⎪++⎝⎭,整理化简得()()231210k m k m +++-=,因为2,1A ()不在直线MN 上,所以210k m +-≠,故23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭()1k ≠,所以直线过定点直线过定点21,33P ⎛⎫-⎪⎝⎭.当直线MN 的斜率不存在时,可得()11,N x y -,由·0AM AN =得:()()()()111122110x x y y --+---=,得()1221210x y -+-=,结合2211163x y +=可得:2113840x x -+=,解得:123x =或22x =(舍).此时直线MN 过点21,33P ⎛⎫-⎪⎝⎭.令Q 为AP 的中点,即41,33Q ⎛⎫ ⎪⎝⎭,若D 与P 不重合,则由题设知AP 是Rt ADP 的斜边,故12223DQ AP ==,若D 与P 重合,则12DQ AP =,故存在点41,33Q ⎛⎫⎪⎝⎭,使得DQ 为定值.【点睛】关键点点睛:本题的关键点是利用AM AN ⊥得·0AM AN =,转化为坐标运算,需要设直线MN 的方程,点()()1122,,,M x y N x y ,因此需要讨论斜率存在与不存在两种情况,当直线MN 斜率存在时,设直线MN 的方程为:y kx m =+,与椭圆方程联立消去y 可12x x +,12x x 代入·0AM AN =即可,当直线MN 的斜率不存在时,可得()11,N x y -,利用坐标运算以及三角形的性质即可证明,本题易忽略斜率不存在的情况,属于难题.9.(1)221612525x y +=;(2)52.【分析】(1)因为222:1(05)25x y C m m+=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积.【详解】(1) 222:1(05)25x y C m m +=<<∴5a =,b m =,根据离心率4c e a ====,解得54m =或54m =-(舍),∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=;(2)不妨设P ,Q 在x 轴上方点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N根据题意画出图形,如图||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又 90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,。

椭圆中6种常考基础题型(解析版)--2024高考数学常考题型精华版

椭圆中6种常考基础题型(解析版)--2024高考数学常考题型精华版

第19讲椭圆中6种常考基础题型【考点分析】考点一:椭圆的通径过椭圆的焦点与椭圆的长轴垂直的直线被椭圆所截得的线段称为椭圆的通径,其长为22b a.考点二:椭圆中有关三角形的周长问题图一图二如图一所示:21F PF ∆的周长为c a 22+如图一所示:ABC ∆的周长为a 4考点三:椭圆上一点的有关最值①椭圆上到中心距离最小的点是短轴的两个端点,到中心距离最大的点是长轴的两个端点.②椭圆上到焦点距离最大和最小的点是长轴的两个端点.距离的最大值为a c +,距离的最小值为a c -.考点四:椭圆的离心率椭圆的离心率()10<<=e a c e ,222222221ab a b a ac e -=-==考点五:椭圆焦点三角形的面积为2tan2S b θ=⋅(θ为焦距对应的张角)考点六:中点弦问题(点差法)中点弦问题:若椭圆与直线l 交于AB 两点,M 为AB 中点,且AB k 与OM k 斜率存在时,则22ab K k OM AB -=⋅;(焦点在x 轴上时),当焦点在y 轴上时,22ba K k OMAB -=⋅若AB 过椭圆的中心,P 为椭圆上异于AB 任意一点,22ab K k PB P A -=⋅(焦点在x 轴上时),当焦点在y 轴上时,22ba K k PBP A -=⋅【题型目录】题型一:椭圆的定义有关题型题型二:椭圆的标准方程题型三:椭圆的离心率题型四:椭圆中焦点三角形面积题型五:椭圆中中点弦问题题型六:椭圆中的最值问题【典型例题】题型一:椭圆的定义有关题型【例1】已知△ABC 的周长为10,且顶点()2,0B -,()2,0C ,则顶点A 的轨迹方程是()A .221(0)95x y y +=≠B .221(0)59x y y +=≠C .221(0)64x y y +=≠D .221(0)46x y y +=≠【答案】A【解析】∵△ABC 的周长为10,顶点()2,0B -,()2,0C ,∴=4BC ,+=10464AB AC -=>,∴点A 到两个定点的距离之和等于定值,∴点A 的轨迹是椭圆,∵3,2a c ==,∴2945b =-=,又因为,,A B C 三点构成三角形,∴椭圆的方程是()221095x y y +=≠.故选:A .【例2】如果点(),M x y =M 的轨迹是().A .不存在B .椭圆C .线段D .双曲线【答案】B=(),M x y 到点(0,3),(0,3)-的距离之和为3(3)6--=<M 的轨迹是椭圆,故选:B【例3】设1F ,2F 分别为椭圆2214x y +=的左、右焦点,点P 在椭圆上,且1223PF PF += ,则12F PF ∠=()A .6πB .4πC .3πD .2π【答案】D【解析】因32221==+PO PF PF ,所以213OF OF PO ===,所以︒=∠9021PF F 【例4】1F 、2F 是椭圆22:1259x yC +=的左、右焦点,点P 在椭圆C 上,1||6PF =,过1F 作12F PF ∠的角平分线的垂线,垂足为M ,则||OM 的长为()A .1B .2C .3D .4【答案】C【详解】如图,直线1F M 与直线2PF 相交于点N ,由于PM 是12F PF ∠的平分线,且PM ⊥1F N ,所以三角形1F PN 是等腰三角形,所以1PF PN =,点M 为1F N 中点,因为O 为12F F 的中点,所以OM 是三角形12F F N 的中位线,所以212OM F N =,其中212112226F N PF PF PF a PF =-=-=-,因61=PF ,所以62=N F ,所以3=OM ,所以选C【例5】已知椭圆22:12516x y C +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN +=()A .10B .15C .20D .25【答案】C【解析】设MN 的中点为G ,椭圆的左右焦点分别为21,F F ,则G 为MN 的中点,1F 为MA 的中点,所以12GF AN =,同理22GF BN =,所以()204221==+=+a GF GF BN AN【例6】方程x 2+ky 2=2表示焦点在x 轴上的椭圆的一个充分但不必要条件是()A .0k >B .12k <<C .1k >D .01k <<【答案】B【解析】方程x 2+ky 2=2可变形为:22122x y k+=,表示焦点在x 轴上的椭圆,则有:202k<<,解得k 1>.易知当12k <<时,k 1>,当k 1>时未必有12k <<,所以12k <<是k 1>的充分但不必要条件.故选B.【例7】点1F ,2F 为椭圆C :22143x y+=的两个焦点,点P 为椭圆C 内部的动点,则12PF F △周长的取值范围为()A .()2,6B .[)4,6C .()4,6D .[)4,8【答案】C【解析】由椭圆C :22143x y +=,得:2,1a c ==,当点P 在椭圆上时,12PF F △周长最大,为226a c +=,当点P 在x 轴上时,去最小值,为44c =,又因点P 为椭圆C 内部的动点,所以12PF F △周长的取值范围为()4,6.故选:C.【例8】椭圆22193x y +=的左、右焦点分别为1F ,2F ,点P 在椭圆上,如果1PF 的中点在y 轴上,那么1||PF 是2||PF 的()A .7倍B .6倍C .5倍D .4倍【答案】C【解析】由题意知:212F F PF ⊥,所以13322===a b PF ,因6221==+a PF PF ,所以51=PF ,所以521=PF PF【题型专练】1.已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是()A .2213620x y +=(x≠0)B .2212036x y +=(x≠0)C .221620x y +=(x≠0)D .221206x y +=(x≠0)【答案】B【解析】∵△ABC 的周长为20,顶点B (0,﹣4),C (0,4),∴BC =8,AB +AC =20﹣8=12,∵12>8∴点A 到两个定点的距离之和等于定值,∴点A 的轨迹是椭圆,∵a =6,c =4∴b 2=20,∴椭圆的方程是()22102036x y x +=≠故选B .2.焦点在x 轴上的椭圆222125x y a +=焦距为8,两个焦点为12,F F ,弦AB 过点1F ,则2ABF ∆的周长为()A .20B .28C .D .【答案】D【解析】由题意知252=b ,因为222c b a +=,所以16252+=a ,解得41=a ,所以2ABF ∆的周长为4144=a ,故选:D3.(2021新高考1卷)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A.13B.12C.9D.6【答案】C【解析】因2121262MF MF a MF MF ⋅≥==+,所以921≤⋅MF MF 4.已知椭圆22192x y +=的左、右焦点分别为12,F F ,点M 在椭圆上,若1||4MF =,则12F MF ∠=()A .30°B .60︒C .120︒D .150︒【答案】C 【解析】【分析】根据椭圆方程求得12F F =1226MF MF a +==,求得1||4MF =,所以22MF =,在12F MF △中,再由余弦定理列出方程,求得121cos 2F MF ∠=-,即可求解.【详解】解:由题意,椭圆方程22192x y +=,可得3,a b c ===所以焦点12(F F ,又由椭圆的定义,可得1226MF MF a +==,因为1||4MF =,所以22MF =,在12F MF △中,由余弦定理可得222121212122cos F F MF MF MF MF F MF =+-∠,所以2221242242cos F MF =+-⨯⨯∠,解得121cos 2F MF ∠=-,又由12(0,180)F MF ∠∈,所以12120F MF ∠= .故选:C .5.设1F ,2F 为椭圆22194x y +=的两个焦点,点P 在椭圆上,若线段1PF 的中点在y 轴上,则21PF PF 的值为()A .513B .45C .27D .49【答案】C 【解析】【分析】由中位线定理以及椭圆方程得出243PF =,再由椭圆的定义得出1PF ,再求21PF PF 的值.【详解】由椭圆的定义可知,1226PF PF a +==,由中位线定理可知,212PF F F ⊥,将x =22194x y+=中,解得43y =±,即243PF =,1414633PF =-=,故214323147PF PF =⨯=故选:C6.已知曲线22:1C mx ny +=A .若0m n >>,则C 是椭圆,其焦点在y 轴上B .若0m n >>,则C 是椭圆,其焦点在x 轴上C .若0m n =>,则CD .若0m =,0n >,则C 是两条直线【答案】AD【解析】由题意得:11122=+ny m x ,所以当0>>n m ,则nm 110<<,所以表示焦点在y 轴上的椭圆,所以A 对,B 错,当0>=n m 时,曲线C 为ny x 122=+,所以表示圆,半径为n 1,当0,0>=n m 时,曲线C 为ny 12=,所以n y 1±=,所以表示两条直线,故选:AD7.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是()AB.CD.【答案】C 【解析】【分析】设线段2PF 的中点为M ,连接1PF 、1MF ,利用圆的几何性质可得出12F M PF ⊥,求得11222PF F F c ===,利用椭圆的定义可求得2PF ,可判断出12PF F △的形状,即可得解.【详解】在椭圆22143x y +=中,2a =,b =,1c =,设线段2PF 的中点为M ,连接1PF 、1MF ,则12F F 为圆O 的一条直径,则12F M PF ⊥,因为M 为2PF 的中点,则11222PF F F c ===,则2122PF a PF =-=,所以,12PF F △为等边三角形,由图可知,直线2PF 的倾斜角为3π.故选:C.8.在平面直角坐标系xOy 中,若△ABC 的顶点(0,2)A -和(0,2)C ,顶点B 在椭圆181222=+xy 上,则sin sin sin A C B +的值是()AB .2C .D .4【答案】A 【解析】【分析】由题设易知,A C 为椭圆的两个焦点,结合椭圆定义及焦点三角形性质有||||2AB CB a +=,||2AC c =,最后应用正弦定理的边角关系即可求目标式的值.【详解】由题设知:,A C 为椭圆的两个焦点,而B 在椭圆上,所以||||2AB CB a +==||24AC c ==,由正弦定理边角关系知:|||||sin sin sin |A A CB CB A BC +=+故选:A9.已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A .13B .12C .9D .6【答案】C【解析】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立).故选:C .10.已知椭圆22143x y +=的左、右焦点分别为1F 、2F ,点P 在椭圆上且在x 轴的下方,若线段2PF 的中点在以原点O 为圆心,2OF 为半径的圆上,则直线2PF 的倾斜角为()A .6πB .4πC .3πD .23π【答案】C 【解析】【分析】设线段2PF 的中点为M ,连接1PF 、1MF ,利用圆的几何性质可得出12F M PF ⊥,求得11222PF F F c ===,利用椭圆的定义可求得2PF ,可判断出12PF F △的形状,即可得解.【详解】在椭圆22143x y +=中,2a =,b =,1c =,设线段2PF 的中点为M ,连接1PF 、1MF ,则12F F 为圆O 的一条直径,则12F M PF ⊥,因为M 为2PF 的中点,则11222PF F F c ===,则2122PF a PF =-=,所以,12PF F △为等边三角形,由图可知,直线2PF 的倾斜角为3π.故选:C.11.已知A 为椭圆2212516x y +=上一点,F 为椭圆一焦点,AF 的中点为P ,O 为坐标原点,若2OP =则AF =()A .8B .6C .4D .2【答案】B【解析】不妨设椭圆2212516x y +=左焦点为F ,右焦点为E ,因为AE 的中点为P ,EF 的中点为O ,所以24AE OP ==,又由210AE AF a +==,可得1046AF =-=.故选:B .12.已知椭圆C :22194x y +=的左右焦点分别是12,F F ,过2F 的直线与椭圆C 交于A ,B 两点,且118AF BF +=,则AB =()A .4B .6C .8D .10【答案】A【解析】由椭圆22:194x y C +=知:a =3,由椭圆的定义得:121226,26AF AF a BF BF a +==+==,所以11412AF BF AB a ++==,又因为118AF BF +=,所以AB 4=,故选:A题型二:椭圆的标准方程【例1】已知椭圆E :()222210x y a b a b+=>>右焦点为),其上下顶点分别为1C ,2C ,点()1,0A ,12AC AC ⊥,则该椭圆的标准方程为()A .22134x y +=B .22143x y +=C .2213y x +=D .2213x y +=【例2】已知椭圆C :()222210x y a b a b+=>>,椭圆C 的一顶点为A ,两个焦点为1F ,2F ,12AF F △焦距为2,过1F ,且垂直于2AF 的直线与椭圆C 交于D ,E 两点,则ADE ∆的周长是()A .B .8C .D .16【例3】如图,已知椭圆C 的中心为原点O ,(F -为椭圆C 的左焦点,P 为椭圆C 上一点,满足||||OP OF =,且||4PF =,则椭圆C 的方程为()A .221255x y +=B .2214525x y +=C .2213010x y +=D .2213616x y +=故选:D【例4】阿基米德(公元前287年—公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴与短半轴的乘积.若椭圆C 的对称轴为坐标轴,焦点在y 轴上,且椭圆C 的离心率为53,面积为12π,则椭圆C 的方程为()A .221188x y +=B .22198y x +=C .221188y x +=D .22184y x +=【例5】过椭圆C :()222210x y a b a b +=>>右焦点F 的直线l :20x y --=交C 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12-,则椭圆C 的方程为()A .22184x y +=B .22195x y +=C .22173x y +=D .221106x y +=【例6】已知12,F F 分别是椭圆221(0)x y a b a b +=>>的左、右焦点,A ,B 分别为椭圆的上,下顶点,过椭圆的右焦点2F 的直线交椭圆于C ,D 两点,1FCD 的周长为8,且直线AC ,BC 的斜率之积为14-,则椭圆的方程为()A .2212x y +=B .22132x y +=C .2214x y +=D .22143x y +=【例7】已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过F 2的直线与C 交于A ,B 两点.若22||3||AF F B =,15||4||AB BF =,则C 的方程为()A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【题型专练】1.已知1F 、2F 是椭圆C :22221x ya b+=()0a b >>的左、右焦点,A 为椭圆的上顶点,B 在x 轴上,20AB AF ⋅= 且122AF AB AF =+.若坐标原点O 到直线AB 的距离为3,则椭圆C 的方程为()A .2214x y +=B .22143x y +=C .221169x y +=D .2211612x y +=1612故选:D2.已知椭圆()2222:10x y C a b a b +=>>,其左、右焦点分别为1F ,2F ,离心率为12,点P 为该椭圆上一点,且满足12π3F PF ∠=,若12F PF △的内切圆的面积为π,则该椭圆的方程为()A .221129x y +=B .2211612x y +=C .2212418x y +=D .2213224x y +=3.已知椭圆的两个焦点为1(F ,2F ,M 是椭圆上一点,若12MF MF ⊥,128MF MF ⋅=,则该椭圆的方程是()A .22172x y +=B .22127x y +=C .22194x y +=D .22149x y +=4.已知1(1,0)F -,2(1,0)F 是椭圆C 的两个焦点,过2F 且垂直于x 轴的直线交椭圆C 于A ,B 两点,3AB =,则椭圆C 的标准方程为()A .2213y x +=B .2213x y +=C .22143x y +=D .22132x y +=方法二:由题意,设椭圆C 的标准方程为所以a =2或12a =-(舍去),所以2a 故椭圆C 的标准方程为22143x y +=.故选:C.5.已知椭圆C :()222210x y a b a b+=>>的右焦点为),右顶点为A ,O 为坐标原点,过OA 的中点且与坐标轴垂直的直线交椭圆C 于M ,N 两点,若四边形OMAN 是正方形,则C 的方程为()A .2213x y +=B .22153x y +=C .22175x y +=D.22197x y +=6.已知椭圆22:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -=与椭圆C 相交于不同的两点,A B ,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为()A .2213x y +=B .22142x y +=C .22153x y +=D .22163x y +=7.阿基米德既是古希腊著名的物理学家,也是著名的数学家,他利用“逼近”的方法得到椭圆的面积除以圆周率π等于椭圆的长半轴长与短半轴长的乘积.若椭圆C :()222210x y a b a b+=>>的左,右焦点分别是1F ,2F ,P 是C 上一点,213PF PF =,123F PF π∠=,C 的面积为12π,则C 的标准方程为()A .221364x y +=B .22112x y +=C .221169x y +=D .22143x y +=8.已知椭圆C :22=1x y a b+(a >b >0)的左、右焦点分别为F 1,F 2,左、右顶点分别为M ,N ,过F 2的直线l 交C 于A ,B 两点(异于M 、N ),△AF 1B 的周长为AM 与AN 的斜率之积为-23,则椭圆C的标准方程为()A .22=134y x +B .22=134x y +C .22=13x y +D .22=132x y +9.已知椭圆C 的焦点为()11,0F -,()21,0F ,过2F 的直线交于C 与A ,B ,若222AF F B =,1AB BF =,则C 的方程为()A .2212x y +=B .22132x y +=C .22143x y +=D .22198x y +=1F 题型三:椭圆的离心率【例1】已知1F ,2F 为椭圆22221x ya b+=(a >b >0)的左、右焦点,以原点O 为圆心,半焦距为半径的圆与椭圆相交于四个点,设位于y 轴右侧的两个交点为A ,B ,若1ABF 为等边三角形,则椭圆的离心率为()A1B 1C .12D 又1290F AF ∠=,∴21,3AF c AF c ==,∴32c c a +=,可得2331c a ==+故选:B .【例2】已知椭圆C :()21024b b+=<<的左焦点为1F ,直线()0y kx k =≠与C 交于点M ,N .若1120MF N ︒∠=,1183MF NF ⋅=,则椭圆C 的离心率为()A .12B .22C D 因为O 为12,MN F F 的中点,所以四边形所以12MF NF =,12NF MF =,由椭圆的定义可得:又因为1183MF NF ⋅=,所以1MF 【例3】已知椭圆()22:10x y C a b a b+=>>上存在两点,M N 关于直线3310--=x y 对称,且线段MN 中点的纵坐标为53,则椭圆C 的离心率是()A B C .23D【例4】已知椭圆C :221a b+=()0a b >>的左右焦点分别为1F ,2F ,过点2F 做倾斜角为6π的直线与椭圆相交于A ,B 两点,若222,AF F B =,则椭圆C 的离心率e 为()AB .34C .35D【例5】设B 是椭圆()22:10C a b a b+=>>的上顶点,若C 上的任意一点P 都满足2PB b ≤,则C 的离心率的取值范围是()A .,12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .2⎛ ⎝⎦D .10,2⎛⎤⎝⎦【例6】12,F F 是椭圆C 的两个焦点,P 是椭圆C 上异于顶点的一点,I 是12PF F △的内切圆圆心,若12PF F △的面积等于12IF F △的面积的3倍,则椭圆C 的离心率为()A .13B .12C .2D .2a b如图,设()()()12,,,0,,0,P m n F c F c ∴-三角形由椭圆的定义可得22l a c=+122222PF F S cn cnr l a c a c∴===++ ,又2121113,2322P I F F F F cn S S c n a =∴⨯⨯=⨯⨯ 故选:B【例7】用平面截圆柱面,当圆柱的轴与α所成角为锐角时,圆柱面的截线是一个椭圆.著名数学家Dandelin 创立的双球实验证明了上述结论.如图所示,将两个大小相同的球嵌入圆柱内,使它们分别位于α的上方和下方,并且与圆柱面和α均相切.给出下列三个结论:①两个球与α的切点是所得椭圆的两个焦点;②椭圆的短轴长与嵌入圆柱的球的直径相等;③当圆柱的轴与α所成的角由小变大时,所得椭圆的离心率也由小变大.其中,所有正确结论的序号是()A .①B .②③C .①②D .①③【答案】C【分析】根据切线长定理可以证明椭圆上任意一点到12,F F 的距离之和为定值,即12,F F 是焦点再运用勾股定理证明短轴长,最后构造三角形,运用三角函数表示离心率即可.【详解】如图:在椭圆上任意一点P 作平行于12O O 的直线,与球1O 交于F 点,与球2O 交于E 点,则PE ,2PF 是过点P 作球2O 的两条公切线,2PE PF =,同理1PF PF =,是椭圆的焦点;①正确;【例8】国家体育场“鸟巢”的钢结构鸟瞰图如图1所示,内外两圈的钢骨架是离心率相同的椭圆;某校体育馆的钢结构与“鸟巢”相同,其平面图如图2所示,若由外层椭圆长轴一端点A 和短轴一端点B 分别向内层椭圆引切线AC ,BD ,且两切线斜率之积等于34-,则椭圆的离心率为()A .34B .58C .12D .4【题型专练】1.直线:l y =与椭圆2222:1x y C a b+=交于,P Q 两点,F 是椭圆C 的右焦点,且0PF QF ⋅= ,则椭圆的离心率为()A .4-B .3C 1D .2【详解】的左焦点为F ',由对称性可知:四边形PF QF '为平行四边形,PF QF '∴=2PF PF QF a '=+=;2.设12,F F 分别是椭圆221x ya b+=的左、右焦点,若椭圆上存在点A ,使12120F AF ∠=︒且123AF AF =,则椭圆的离心率为()AB C D3.设椭圆22:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,点M ,N 在C 上(M 位于第-象限),且点M ,N 关于原点O 对称,若1222||,F F MN MF ==,则C 的离心率为()A .4B .37C .12D .377122a +故选:B4.如图,直径为4的球放地面上,球上方有一点光源P ,则球在地面上的投影为以球与地面切点F 为一个焦点的椭圆,已知是12A A 椭圆的长轴,1PA 垂直于地面且与球相切,16PA =,则椭圆的离心率为()A .12B .23C .13D .2【答案】A【分析】根据给定条件,结合球的性质作出截面12PA A ,再结合三角形内切圆性质求出12A A 长即可作答.【详解】依题意,平面12PA A 截球O 得球面大圆,如图,12Rt PA A 是球O 大圆的外切三角形,其中112,PA A A 切圆O 于点E ,F ,=5.如图圆柱12O O 的底面半径为1,母线长为6,以上下底面为大圆的半球在圆柱12O O 内部,现用一垂直于轴截面ABB A ''的平面α去截圆柱12O O ,且与上下两半球相切,求截得的圆锥曲线的离心率为()A .3B .3C D .3半径为1,12O O 平面α与底面夹角余弦值为圆柱的底面半径为1,∴又 椭圆所在平面与圆柱底面所成角余弦值为以G 为原点建立上图所示平面直角坐标系,12,332FH a EF a ∴===,则椭圆标准方程为2222c a b =-=,故离心率故选:A.6.已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,P 为坐标平面上一点,且满足120PF PF ⋅=的点P 均在椭圆C 的内部,则椭圆C 的离心率的取值范围为()A .2⎛ ⎝⎭B .10,2⎛⎫⎪⎝⎭C .,12⎛⎫ ⎪ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭7.已知点A ,P ,Q 为椭圆C :()222210x y a b a b +=>>上不重合的三点,且点P ,Q 关于原点对称,若12AP AQ k k ⋅=-,则椭圆C 的离心率为()A .2B C D8.已知椭圆22:1(0)x yC a ba b+=>>的一个焦点为F,椭圆C上存在点P,使得PF OP⊥,则椭圆C的离心率取值范围是()A.2⎛⎝⎦B.,12⎫⎪⎪⎣⎭C.10,2⎛⎤⎥⎝⎦D.1,12⎡⎫⎪⎢⎣⎭故选:B题型四:椭圆中焦点三角形面积【例1】已知椭圆()222210+=>>x y C a b a b:的左、右焦点分别为1F ,2F ,P 为C 上一点,12π3F PF ∠=,若12F PF △的面积为C 的短袖长为()A .3B .4C .5D .6【例2】(2021年全国高考甲卷数学(理)试题)已知12,F F 为椭圆C :221164x y+=的两个焦点,P ,Q为C 上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________.【答案】8【解析】因为,P Q 为C 上关于坐标原点对称的两点,且12||||PQ F F =,所以四边形12PFQF 为矩形,设12||,||PF m PF n ==,则228,48m n m n +=+=,所以22264()2482m n m mn n mn =+=++=+,8mn =,即四边形12PFQF 面积等于8.故答案为:8.【题型专练】1.设P 为椭圆221259x y +=上一点,1,F 2F 为左右焦点,若1260F PF ︒∠=,则P 点的纵坐标为()A.4B.4±C.4D.4±【答案】B 【分析】根据椭圆中焦点三角形的面积公式2tan 2S b θ=求解即可.【详解】由题知12609tan2F PF S ︒=⨯= 设P 点的纵坐标为h则12421F F h h ⋅⋅=±⇒=.故选:B2.已知()()1200F c F c -,,,是椭圆E 的两个焦点,P 是E 上的一点,若120PF PF ⋅=,且122=△PF F S c ,则E 的离心率为()ABC .2D 3.已知P 是椭圆221259x y +=上的点,1F 、2F 分别是椭圆的左、右焦点,若1212PF PF PF PF ⋅=⋅ 12,则12F PF △的面积为()A.B.CD .9题型五:椭圆中中点弦问题【例1】已知椭圆C :22221x y a b+=(0a b >>)的长轴为4,直线230x y +-=与椭圆C 相交于A 、B 两点,若线段AB 的中点为(1,1)M ,则椭圆C 的方程为()A .221168x y +=B .22142x y +=C .2211612x y +=D .22143x y +=【例2】平行四边形ABCD 内接于椭圆221x y a b +=()0a b >>,椭圆的离心率为2,直线AB 的斜率为1,则直线AD 的斜率为()A .1-4B .1-2C .2D .-1设E 为AD 中点,由于O 为BD 中点,所以因为1133(,),(,)A x y D x y 在椭圆上,【例3】椭圆2294144x y +=内有一点(2,3)P ,过点P 的弦恰好以P 为中点,那么这条弦所在的直线方程为()A .23120x y +-=B .32120x y +-=C .941440x y +-=D .491440x y +-=【例4】已知椭圆E :143+=上有三点A ,B ,C ,线段AB ,BC ,AC 的中点分别为D ,E ,F ,O为坐标原点,直线OD ,OE ,OF 的斜率都存在,分别记为1k ,2k ,3k ,且123k k k ++=直线AB ,BC ,AC 的斜率都存在,分别记为AB k ,BC k ,AC k ,则111AB BC ACk k k ++=()AB .C .-D .1-【例5】离心率为2的椭圆()222210x y a b a b +=>>与直线y kx =的两个交点分别为A ,B ,P 是椭圆不同于A 、B 、P 的一点,且PA 、PB 的倾斜角分别为α,β,若120αβ+=︒,则()cos αβ-=()A .16-B .13-C .13D .16【例6】(2022·全国·高考真题)已知直线l 与椭圆22163x y +=在第一象限交于A ,B 两点,l 与x 轴,y 轴分别交于M ,N 两点,且||||,||MA NB MN ==l 的方程为___________.【例7】(2022·全国甲(理)T10)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为()A.32B.22C.12D.13【答案】A 【解析】【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b+=,将1y 用1x 表示,整理,再结合离心率公式即可得解.【详解】解:(),0A a -,设()11,P x y ,则()11,Q x y -,则1111,AP AQ y y k k x a x a==+-+,故21112211114AP AQy y y k k x a x a x a ⋅=⋅==+-+-+,又2211221x y a b +=,则()2221212b a x y a -=,所以()2221222114b a x a x a -=-+,即2214b a =,所以椭圆C的离心率2c e a ===.故选:A.【例8】椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为B ,F 为椭圆的右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率的最大值为__________.【答案】63【解析】因为,B A 关于原点对称,所以B 也在椭圆上,设左焦点为F ',根据椭圆的定义:||2AF AF a '+=,因为||BF AF'=,所以||||2AF BF a +=,O 是直角三角形ABF 斜边的中点,所以||2,||2sin ,||2cos AB c AF c BF c αα===,所以2(sin cos )2c a αα+=,所以11sin cos 4c a πααα==+⎛⎫+ ⎪⎝⎭,由于,124ππα⎡⎤∈⎢⎥⎣⎦,所以当12πα=时,离心率的最大值为63,故答案为63.【题型专练】1.已知椭圆()222210x y a b a b+=>>,()0,2P ,()0,2Q -过点P 的直线1l 与椭圆交于A ,B ,过点Q 的直线2l 与椭圆交于C ,D ,且满足12l l ∕∕,设AB 和CD 的中点分别为M ,N ,若四边形PMQN 为矩形,且面积为则该椭圆的离心率为()A .13B .23C.3D .32.椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是()A .1324⎡⎤⎢⎥⎣⎦,B .3384⎡⎤⎢⎥⎣⎦,C .112⎡⎤⎢⎥⎣⎦D .314⎡⎤⎢⎥⎣⎦,【答案】B【详解】由题意,椭圆C :22143x y +=的左、右顶点分别为12(2,0),(2,0)A A -,设00(,)P x y ,则()2200344y x =-,又由1220002200034PA PA y y y k k x a x a x a ⋅=⨯=-+--,可得1234PA PA k k -=,因为[]12,1PA k ∈--,即23421PA k --≤≤-,可得23384PA k ≤≤,所以直线2PA 斜率的取值范围33,84⎡⎤⎢⎥⎣⎦.故选:B3.已知椭圆22:184x y C +=,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M ,则OM 的斜率与直线l 的斜率的乘积()A .1-B .1C .12D .12-【答案】D,进而联立方程求解中点4.点A ,B 在椭圆2212x y +=上,点11,2M ⎛⎫ ⎪⎝⎭,2OA OB OM +=,则直线AB 的方程是()A .12y x =-B .522y x =-+C .32y x =-+D .322y x =-5.已知椭圆143x y +=上有三个点A 、B 、C ,AB ,BC ,AC 的中点分别为D 、E 、F ,AB ,BC ,AC 的斜率都存在且不为0,若34OD OE OF k k k ++=-(O 为坐标原点),则111AB BC ACk k k ++=()A .1B .-1C .34-D .34【答案】A的斜率转化为6.直线:20l x y-=经过椭圆22+1(0)x y a ba b=>>的左焦点F,且与椭圆交于,A B两点,若M为线段AB中点,||||MF OM=,则椭圆的标准方程为()A.22+163x y=B.22+185x y=C.2214x y+=D.22+1129x y=7.已知三角形ABC 的三个顶点都在椭圆:143x y +=上,设它的三条边AB ,BC ,AC 的中点分别为D ,E ,M ,且三条边所在线的斜率分别为1k ,2k ,3k ,且1k ,2k ,3k 均不为0.O 为坐标原点,若直线OD ,OE ,OM 的斜率之和为1.则123111k k k ++=()A .43-B .3-C .1813-D .32-8.已知过点()1,1M 的直线l 与椭圆22184x y +=交于,A B 两点,且满足,AM BM =则直线l 的方程为()A .30x y -+=B .230x y +-=C .2230x y -+=D .230x y +-=题型六:椭圆中的最值问题【例1】已知椭圆()2222:10y x C a b a b+=>>的上、下焦点分别是1F ,2F ,点P 在椭圆C 上则下列结论正确的是()A .12PF PF ⋅有最大值无最小值B .12PF PF ⋅无最大值有最小值C .12PF PF ⋅既有最大值也有最小值D .12PF PF ⋅既无最大值也无最小值【例2】若点O 和点F 分别为椭圆()222210x y a b a b+=>>的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅的最大值为()A .()a a c +B .()b a c +C .()a a c -D .()b ac -【例3】已知点P 是椭圆4x +2y =1上的动点(点P 不在坐标轴上),12F F 、为椭圆的左,右焦点,O 为坐标原点;若M 是12F PF ∠的角平分线上的一点,且1F M 丄MP ,则丨OM 丨的取值范围为()A .(0B .(0,2)C .(l ,2)D .2)【答案】A=因为1F M MP ⊥,因为PM 为12F PF ∠的角平分线,所以,PN 因为O 为12F F 的中点,所以,212OM F N =设点00(,)P x y ,由已知可得2a =,1b =,c 则022x -<<且00x ≠,且有220114y x =-,()2221000032331PF x y x x =++=+++-【例4】已知点P 在椭圆193x y +=上运动,点Q 在圆22(1)8x y -+=上运动,则PQ 的最小值为()A .2B .2C .24-D .4【答案】D【分析】先求出点P 到圆心(1,0)A 的距离的最小值,然后减去圆的半径可得答案。

高中数学-椭圆常考题型汇总及练习

高中数学-椭圆常考题型汇总及练习

高中数学-椭圆常考题型汇总及练习高中数学-椭圆常考题型汇总及练第一部分:复运用的知识一)椭圆几何性质椭圆的第一定义是:平面内与两定点F1、F2距离和等于常数(大于F1F2)的点的轨迹叫做椭圆。

两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距(2c)。

椭圆的几何性质以x^2/a^2 + y^2/b^2 = 1为例:范围由标准方程可知,椭圆上点的坐标(x,y)都适合不等式2≤x^2/a^2 + y^2/b^2 ≤1,即abx≤a,y≤b。

这说明椭圆位于直线x=±a和y=±b所围成的矩形里(封闭曲线)。

该性质主要用于求最值、轨迹检验等问题。

椭圆还有以下对称性:关于原点、x轴、y轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。

椭圆的顶点(椭圆和它的对称轴的交点)有四个:A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b)。

长轴为A1A2,长度为2a;短轴为B1B2,长度为2b。

椭圆的离心率e有以下几个性质:(1)椭圆焦距与长轴的比e=c/a,其中c为焦距;(2)a^2=b^2+c^2,即a是长半轴长,b是短半轴长;(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关。

当e接近于1时,椭圆越扁;当e接近于0时,椭圆越接近圆。

椭圆还有通径(过椭圆的焦点且垂直于长轴的弦)和焦点三角形等性质。

二)运用的知识点及公式在解题过程中,我们需要掌握以下知识点和公式:1、两条直线.2、XXX定理:若一元二次方程ax^2+bx+c=0(a≠0)有两个不同的根x1,x2,则2bc/(a(x1+x2))=-1,x1+x2=-b/a。

1.中点坐标公式:对于点A(x1,y1)和点B(x2,y2),它们的中点坐标为(x,y),其中x=(x1+x2)/2,y=(y1+y2)/2.2.弦长公式:如果点A(x1,y1)和点B(x2,y2)在直线y=kx+b(k≠0)上,则y1=kx1+b,y2=kx2+b。

圆锥曲线:有关椭圆的小题总结 高考数学

圆锥曲线:有关椭圆的小题总结 高考数学

m足∠ = ∘ ,则



≥ = ,




【解析】由题意得: +
=


,所以当>>,则< < ,所


以表示焦点在轴上的椭圆,所以对,错,当 = >时,曲线


+
= ,所以表示圆,半径为 ,当 = , >时,曲线为





= ,所以 = ± ,所以表示两条直线,故选:




以只要求∠ 为直角时点横坐标的值,因为 = ,所以当
∠ 为直角时,点在圆 + = 上,解方程组:
得: =

±
,

所以点 横坐标的取值范围是:



+ =

�� +



<<
.


=
试卷讲评课件
【例3】已知椭圆
x2
上任意一点,则当点Q为椭圆短轴的端点时,∠AQB最大.
试卷讲评课件
【证明】如图,设 , ≤ <, < ≤ ,过点作
⊥ ,垂足为,则 = + , = − , = ,所以
∠ =
∠ =
+
,∠

=


迹E的方程为

+


=

所以动圆C的圆心轨迹E的方程为

+


=



+


=
试卷讲评课件
x2
练习3.已知A、B分别为椭圆E: 2

完整版)椭圆大题题型汇总例题+练习

完整版)椭圆大题题型汇总例题+练习

完整版)椭圆大题题型汇总例题+练习解决直线和圆锥曲线的位置关系的步骤如下:1.判断直线的斜率是否存在,如果存在,求出斜率。

2.联立直线和曲线的方程组。

3.讨论一元二次方程的情况。

4.计算一元二次方程的判别式。

5.运用韦达定理、同类坐标变换等技巧。

6.计算弦长、中点、垂直、角度、向量、面积、范围等。

在解题过程中需要掌握中点坐标公式和弦长公式,同时还需要了解两条直线垂直的判定方法和XXX定理的应用。

常见的题型包括数形结合确定直线和圆锥曲线的位置关系以及弦的垂直平分线问题。

对于后者,需要掌握垂直和平分的相关知识。

举例来说,对于题型一,可以给定一个点T和一条直线l,要求找到与曲线N相交的点A、B,并判断是否存在一点E使得三角形ABE是等边三角形。

对于题型二,可以给定一个椭圆和一些已知点,要求求出过这些点且与给定直线相切的圆的方程。

在解题过程中,需要注意排除格式错误和明显有问题的段落,同时对每段话进行小幅度的改写,使其更加通顺和易懂。

练1:Ⅰ)椭圆C的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。

Ⅱ)设直线 $l:y=kx+m(k\neq0)$ 与椭圆C交于不同的两点M、N,线段MN的垂直平分线过定点G$(x_G,y_G)$。

根据对称性可知,$G$ 在$x$轴上,即$y_G=0$。

由于线段MN的垂直平分线过点$G$,所以$G$ 是线段MN的中点。

又因为MN是直线$l$的斜率为$k$的两点之间的线段,所以MN的中点的横坐标为$-\frac{m}{k}$。

因此,$x_G=-\frac{m}{k}$。

又因为$M$、$N$ 在椭圆上,所以它们满足椭圆的方程,代入直线方程可得关于$k$的二次方程。

由于线段MN不垂直于$x$轴,所以$k\neq0$。

根据二次方程的判别式,当判别式大于等于$0$时,线段MN存在,$k$的取值范围为$\left(-\infty,-\frac{a}{b}\right)\cup\left(\frac{a}{b},+\infty\right)$。

高中数学椭圆常见题型总结

高中数学椭圆常见题型总结

P
的轨迹方程。
8、已知动圆 C过点 A( 2,0) ,且与圆 C2 : ( x 2)2 y2 64 相内切,则动圆圆心的轨迹方
程为

9、已知椭圆的焦点在 y 轴上,焦距等于 4,并且经过点 P(2, 2 6) ,则椭圆方程为

10、已知中心在原点,两坐标轴为对称轴的椭圆过点
标准方程为

A( 3 , 5) , B( 3, 5) ,则该椭圆的 22
(C ) 16(2 3)
(D ) 16(2- 3)
x2 3、 P 是椭圆
25
y2 1 上的一点, F1 和 F2 为左右焦点,若
9
F1PF2 60 。
(1)求 F1PF2 的面积;( 2)求点 P 的坐标。
焦半径问题
x2
1椭圆
12
y2 3
1的左右焦点分别为 F1 、 F2 ,点 P 在椭圆上,如果线段 PF1 的中点在 y
轴上,那么 PF1 是的 PF2 的
倍;
椭圆的中点弦问题
例 1、已知椭圆 ax 2 by2 1(a b 0) 与直线 x y 1 0 相交于 A 、 B 两点, C 是 AB
的中点,若 AB 2 2 , OC 的斜率为 2 ,求椭圆方程。 2
高中数学
1、直线 l 交椭圆 x2 y 2 1于 A、 B 两点, AB 中点的坐标是 (2,1) ,则直线 l 的方程为 16 12
1 k2 x1 x2
1 k 2 (x1 x2) 2 4x1x2
3 、椭圆的中点弦:
x2 y2 设 A(x1, y1), B( x2 , y2 ) 是椭圆 a2 b2 1(a b 0) 上不同两点,
M ( x0, y0 ) 是线段 AB 的中点,可运用 点差法 可得直线 AB 斜率,且 kAB

高中数学椭圆,知识题型总结

高中数学椭圆,知识题型总结

陈氏优学教学课题椭圆知识点一:椭圆的定义平面内一个动点到两个定点、的距离之和等于常数(),这个动点的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:假设,那么动点的轨迹为线段;假设,那么动点的轨迹无图形.讲练结合一.椭圆的定义1.假设ABC ∆的两个顶点()()4,0,4,0A B -,ABC ∆的周长为18,那么顶点C 的轨迹方程是 知识点二:椭圆的标准方程1.当焦点在轴上时,椭圆的标准方程:,其中;2.当焦点在轴上时,椭圆的标准方程:,其中;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有和;3.椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为,;当焦点在轴上时,椭圆的焦点坐标为,。

讲练结合二.利用标准方程确定参数1.椭圆2214x y m+=的焦距为2,那么m = 。

2.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。

知识点三:椭圆的简单几何性质椭圆的的简单几何性质〔1〕对称性对于椭圆标准方程,把x换成―x,或把y换成―y,或把x、y同时换成―x、―y,方程都不变,所以椭圆是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

〔2〕范围椭圆上所有的点都位于直线x=±a和y=±b所围成的矩形内,所以椭圆上点的坐标满足|x|≤a,|y|≤b。

〔3〕顶点①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

②椭圆〔a>b>0〕与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为A1〔―a,0〕,A 2〔a,0〕,B1〔0,―b〕,B2〔0,b〕。

③线段A1A2,B1B2分别叫做椭圆的长轴和短轴,|A1A2|=2a,|B1B2|=2b。

a和b分别叫做椭圆的长半轴长和短半轴长。

〔4〕离心率①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e表示,记作。

高中数学椭圆总结(全)

高中数学椭圆总结(全)

椭圆一.知识清单 1.椭圆的两种定义:①平面内与两定点F 1,F 2的距离的和等于定长()2122F F a a >的动点P 的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。

其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。

②平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M={P|e dPF =,0<e <1的常数}。

(1=e 为抛物线;1>e 为双曲线)(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化,定点为焦点,定直线为准线).2 标准方程:(1)焦点在x 轴上,中心在原点:12222=+by a x (a >b >0);焦点F 1(-c ,0), F 2(c ,0)。

其中22b a c -=(一个Rt 三角形)(2)焦点在y 轴上,中心在原点:12222=+bx a y (a >b >0);焦点F 1(0,-c ),F 2(0,c )。

其中22b a c -=注意:①在两种标准方程中,总有a >b >0,22b a c -=并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A <B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。

3 参数方程:焦点在x 轴,⎩⎨⎧==θθsin cos b y a x (θ为参数)4 一般方程:)0,0(122>>=+B A By Ax5.性质:对于焦点在x 轴上,中心在原点:12222=+by a x (a >b >0)有以下性质:坐标系下的性质:① 范围:|x|≤a ,|y|≤b ;② 对称性:对称轴方程为x=0,y=0,对称中心为O (0,0);③ 顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ),长轴|A 1A 2|=2a ,短轴|B 1B 2|=2b ;(a 半长轴长,b 半短轴长);④椭圆的准线方程:对于12222=+by a x ,左准线c a x l 21:-=;右准线c x l 22:= 对于12222=+bx a y ,下准线c a y l 21:-=;上准线c y l 22:=焦点到准线的距离cb c c a c c a p 2222=-=-=(焦参数) 椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称⑤焦半径公式:P (x 0,y 0)为椭圆上任一点。

椭圆常考题型汇总及练习

椭圆常考题型汇总及练习

椭圆常考题型汇总及练习 第一部分:复习运用的知识(一)椭圆几何性质椭圆第一定义:平面内与两定点21F F 、距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆.两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2. 椭圆的几何性质:以()012222>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,12222≤≤by a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题.2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。

3. 顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、--4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长.5. 离心率(1)椭圆焦距与长轴的比ace =,()10,0<<∴>>e c a (2)22F OB Rt ∆,2222222OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆。

6.通径(过椭圆的焦点且垂直于长轴的弦),ab 22.7.设21F F 、为椭圆的两个焦点,P 为椭圆上一点,当21F F P 、、三点不在同一直线上时,21F F P 、、构成了一个三角形——焦点三角形. 依椭圆的定义知:c F F a PF PF 2,22121==+.(二)运用的知识点及公式1、两条直线111222:,:l y k x b l y k x b =+=+垂直:则121k k =-;两条直线垂直,则直线所在的向量120v v =2、韦达定理:若一元二次方程20(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a+=-=。

高中数学椭圆题型完美归纳(经典)

高中数学椭圆题型完美归纳(经典)

椭圆题型归纳、知识总结1.椭圆的定义 :把平面内与两个定点 F 1,F 2 的距离之和等于常数(大于 F 1F 2 )的点的轨迹叫做椭圆 .这两个定点叫做焦点,两焦点的距离叫做焦距 (设为 2c ) .焦点在坐标轴上的椭圆标准方程有两种情形,可设方程为 mx 2 ny 2 1(m 0,n 0) 不必考虑焦点位置,求出方程。

3. 范围. 椭圆位于直线 x =±a 和 y =± b 围成的矩形里. |x|≤a ,|y|≤b .4. 椭圆的对称性椭圆是关于 y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心.5. 顶点椭圆有四个顶点: A 1(-a, 0)、A 2(a, 0)、B 1(0, -b )、B 2(0, b ). 线段A 1A 2、B 1B 2 分别叫做椭圆的长轴和短轴 .。

2.椭圆的标准方程:2 2长轴的长等于2a. 短轴的长等于2b.|B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a .在 Rt △OB 2F 2 中,|OF 2|2=|B 2F 2|2-|OB 2|2,即 c 2=a 2-b 2.2y2 1 (a >b >0) 的左右焦点分别为 F 1,F 2,点 P 为椭圆上任意一点b 2 b 2,即K AB a考点一 定义及其应用例 1. 已知一个动圆与圆 C :(x 4)2 y 2 100 相内切,且过点 A(4,0) ,求这个动圆 圆心M 的轨迹方程;例 2. 如果方程 x 2 (y m)2 x 2 (y m)2 m 1表示椭圆,则 m 的取值范围F 1PF 2,则椭圆的焦点角形的面积为 S F 1PF2b 2 tan .228. 椭圆 x 2 a 2y 2 1(a >b >0)的焦半径公式 |MF 1 | a ex 0 , |MF 2 | a ex 0 b( F 1( c,0) , F 2(c,0) M (x 0,y 0)). x 2 9. AB 是椭圆x 2ab 21的不平行于对称轴的弦 ,M (x 0, y 0)为 AB 的中点,则b 2 x 0 2a y 01)a27. 椭圆 x 2a 2是例 3. 过椭圆 9x 2 4y 2 1的一个焦点 F 1的直线与椭圆相交于 A, B 两点,则 A,B 两点与椭圆的另一个焦点 F 2构成的 ABF 2 的周长等于;例 4. 设圆 (x 1)2 y 2 25的圆心为 C , A(1,0)是圆内一定点, Q 为圆周上任意一 点,线 段 AQ 的垂直 平分线与 CQ 的连线交 于点 M ,则点 M 的轨迹方 程考点二 椭圆的方程例 1. 已知椭圆以坐标轴为对称轴,且长轴是短轴的 圆的方程;例 2. 已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 2( 3, 2) ,求椭圆的方程;3 倍,并且过点 P(3,0) ,求椭P 1( 6,1) 、例 3. 求经过点(2, 3)且与椭圆9x2 4y2 36 有共同焦点的椭圆方程;2 2 2 2注:与椭圆x2y2 1共焦点的椭圆可设其方程为2x2y1(k b2) ;a b a k b k例 1. 在ABC中,A,B,C 所对的三边分别为a,b,c ,且B( 1,0), C (1,0) ,求满足b a c且b,a,c 成等差数列时顶点 A 的轨迹;2例 2. 已知x轴上一定点A(1,0) ,Q为椭圆y2 1上任一点,求AQ 的中点M 的4轨迹方程;例 3. 设动直线 l 垂直于 x 轴,且与椭圆 x 2 2y 2 4交于 A, B 两点,点 P 是直线 l 上 满足 PA PB 1的点,求点 P 的轨迹方程;例 4. 中心在原点,一焦点为 F(0, 50) 的椭圆被直线 y 3x 2截得的弦的中点的横 坐标为 1 ,求此椭圆的方程;2考点三 焦点三角形问题x 2 y 2 5例1. 已知椭圆1x 6 2y 5 1上一点 P 的纵坐标为 53 ,椭圆的上下两个焦点分别为 F 2、F 1,求 PF 1 、 PF 2 及 cos F 1PF 2;考点四椭圆的几何性质2例 1. 已知P 是椭圆x2a2y2 1上的点,的纵坐标为5,F1、F2分别为椭圆的两个b2 31 2焦点,椭圆的半焦距为c,则PF1 PF2 的最大值与最小值之差为22 例 2. 椭圆x2y2 1 (a a2b2b 0)的四个顶点为A,B,C,D ,若四边形ABCD的内切圆恰好过焦点,则椭圆的离心率为考点五求范围例 1. 方程2x2m2y(m 1)21表示准线平行于x轴的椭圆,求实数m 的取值范围;例 3. 若椭圆2xk11 的离心率为1,则k22例 4. 若P 为椭圆x2a2yb2 1(a b 0) 上一点,F1 、F2 为其两个焦点,且PF1F2 150,PF2F1 750,则椭圆的离心率为考点六. 椭圆的第二定义的应用例 1. 方程 2 (x 1)2(y 1)2x y 2 所表示的曲线是例 2. 求经过点M (1,2),以y轴为准线,离心率为1的椭圆的左顶点的轨迹方程;222 例 3. 椭圆x y25 9 1上有一点P,它到左准线的距离等于52,那么P到右焦点的距离为2 例 4 .已知椭圆x42y3 1,能否在此椭圆位于y轴左侧的部分上找到一点M ,使它到左准线的距离为它到两焦点F1, F2距离的等比中项,若能找到,求出该点的坐标,若不能找到,请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆题型总结一、 椭圆的定义和方程问题 (一) 定义:PA+PB=2a>2c1. 命题甲:动点P 到两点B A ,的距离之和);,0(2常数>=+a a PB PA 命题乙: P 的轨迹是以A 、B 为焦点的椭圆,则命题甲是命题乙的 ( )A 。

充分不必要条件 B.必要不充分条件 C 。

充要条件 D.既不充分又不必要条件2. 已知1F 、2F 是两个定点,且421=F F ,若动点P 满足421=+PF PF 则动点P 的轨迹是( )A 。

椭圆 B.圆 C.直线 D.线段3. 已知1F 、2F是椭圆的两个焦点, P 是椭圆上的一个动点,如果延长P F 1到Q ,使得2PF PQ =,那么动点Q的轨迹是( )A.椭圆B.圆C.直线D.点4. 已知1F 、2F 是平面α内的定点,并且)0(221>=c c F F ,M 是α内的动点,且a MF MF 221=+,判断动点M 的轨迹。

5. 椭圆192522=+y x 上一点M 到焦点1F 的距离为2,N 为1MF 的中点,O 是椭圆的中心,则ON 的值是 。

(二) 标准方程求参数范围1. 若方程13522=-+-k y k x 表示椭圆,求k 的范围。

(3,4)U(4,5) 2.轴上的椭圆”的表示焦点在”是“方程“y ny mx n m 1022=+>>( ) A.充分而不必要条件 B 。

必要不充分条件 C 。

充要条件 D 。

既不充分又不必要条件3. 已知方程112522=-+-m y m x 表示焦点在Y 轴上的椭圆,则实数m 的范围是 。

4. 已知方程222=+ky x 表示焦点在Y 轴上的椭圆,则实数k 的范围是 . 5. 方程231y x -=所表示的曲线是 .6. 如果方程222=+ky x 表示焦点在y 轴上的椭圆,求实数k 的取值范围. 7. 已知椭圆06322=-+m y mx 的一个焦点为)2,0(,求m 的值。

8. 已知方程222=+ky x 表示焦点在X 轴上的椭圆,则实数k 的范围是 .(三) 待定系数法求椭圆的标准方程1. 根据下列条件求椭圆的标准方程:(1)两个焦点的坐标分别为(0,5)和(0,-5),椭圆上一点P 到两焦点的距离之和为26; (2)长轴是短轴的2倍,且过点(2,-6);(3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点)2,3(),1,6(21--P P ,求椭圆方程。

2. 以)0,2(1-F 和)0,2(2F 为焦点的椭圆经过点)2,0(A 点,则该椭圆的方程为 。

3. 如果椭圆:k y x =+224上两点间的最大距离为8,则k 的值为 .4. 已知中心在原点的椭圆C 的两个焦点和椭圆3694:222=+y x C 的两个焦点一个正方形的四个顶点,且椭圆C 过点A (2,-3),求椭圆C 的方程。

5. 已知P 点在坐标轴为对称轴的椭圆上,点P 到两焦点的距离为354和352,过点P 作长轴的垂线恰过椭圆的一个焦点,求椭圆方程。

6. 求适合下列条件的椭圆的标准方程 (1) 长轴长是短轴长的2倍,且过点)6,2(-;(2) 在x 轴上的一个焦点与短轴两端点的连线互相垂直,且焦距为6。

(四) 与椭圆相关的轨迹方程1. 已知动圆P 过定点)0,3(-A ,并且在定圆64)3(:22=+-y x B 的内部与其相内切,求动圆圆心P 的轨迹方程。

2. 一动圆与定圆032422=-++y y x 内切且过定点)2,0(A ,求动圆圆心P 的轨迹方程.3. 已知圆4)3(:221=++y x C ,圆100)3(:222=+-y x C ,动圆P 与1C 外切,与2C 内切,求动圆圆心P 的轨迹方程.4.已知)0,21(-A ,B 是圆4)21(:22=+-y x F (F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为5. 已知ABC ∆三边AB 、BC 、AC 的长成等差数列,且,CA AB >点B 、C 的坐标)0,1(-、)0,1(,求点A 的轨迹方程.6. 一条线段AB 的长为a 2,两端点分别在x 轴、y 轴上滑动 ,点M 在线段AB 上,且2:1:=MB AM ,求点M 的轨迹方程。

7. 已知椭圆的焦点坐标是)25,0(±,直线023:=--y x l 被椭圆截得线段中点的横坐标为21,求椭圆方程. 8. 若ABC ∆的两个顶点坐标分别是)6,0(B 和)6,0(-C ,另两边AB 、AC 的斜率的乘积是94-,顶点A 的轨迹方程为 .9. P 是椭圆12222=+by a x 上的任意一点,1F 、2F 是它的两个焦点,O 为坐标原点,,求动点的轨迹方程。

10. 已知圆922=+y x ,从这个圆上任意一点P 向x 轴引垂线段'PP ,垂足为'P ,点M 在'PP 上,并且,求点的轨迹.11. 已知圆122=+y x ,从这个圆上任意一点向轴引垂线段,则线段的中点的轨迹方程是 。

12. 已知,,的周长为6,则的顶点C 的轨迹方程是。

13. 已知椭圆1452222=+y x ,A 、B 分别是长轴的左右两个端点,P 为椭圆上一个动点,求AP 中点的轨迹方程。

14.(五) 焦点三角形4a1. 已知1F 、2F 为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于A 、B 两点。

若1222=+B F A F ,则=AB .2. 已知1F 、2F 为椭圆192522=+y x 的两个焦点,过2F 且斜率不为0的直线交椭圆于A 、B 两点,则1ABF ∆的周长是 。

3. 已知C AB ∆的顶点B 、C 在椭圆1322=+y x 上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则C AB ∆的周长为 。

(六) 焦点三角形的面积:1. 设M 是椭圆1162522=+y x 上的一点,1F 、2F 为焦点,621π=∠MF F ,求21MF F ∆的面积.2. 已知点P 是椭圆1422=+y x 上的一点,1F 、2F 为焦点,021=•PF PF ,求点P 到x 轴的距离。

3. 已知点P 是椭圆192522=+y x 上的一点,1F 、2F 21=PF PF ,则21F PF ∆的面积为 .4. 椭圆1422=+y x 的两个焦点为1F 、2F ,过1F 作垂直于x 轴的直线与椭圆相交,一个交点为P ,则= .5. 已知AB 为经过椭圆的中心的弦,为椭圆的右焦点,则的面积的最大值为 。

(七) 焦点三角形1. 设椭圆14922=+y x 的两焦点分别为1F 和2F ,P 为椭圆上一点,求21PF PF •的最大值,并求此时P 点的坐标。

2. 椭圆12922=+y x 的焦点为1F 、2F ,点P 在椭圆上,若41=PF ,则=2PF;=∠21PF F 。

3. 椭圆14922=+y x 的焦点为1F 、2F ,P 为其上一动点,当21PF F ∠为钝角时,点P 的横坐标的取值范围为 .4. P 为椭圆1162522=+y x 上一点,1F 、2F 分别是椭圆的左、右焦点.(1)若1PF 的中点是M ,求证:1215PF MO -=;(2)若︒=∠6021PF F ,求21PF PF •的值。

(八) 中心不在原点的椭圆1. 椭圆的中心为点)0,1(-E ,它的一个焦点为)0,3(-F ,相应于焦点F 的准线方程为27-=x ,则这个椭圆的方程是 。

二、 椭圆的简单几何性质(一) 已知a、b、c 、e、ca 2求椭圆方程1. 求下列椭圆的标准方程(1)32,8==e c ; (2)35=e ,一条准线方程为3=x .2. 椭圆过(3,0)点,离心率为36=e ,求椭圆的标准方程。

3. 椭圆短轴的一个端点到一个焦点的距离为5,焦点到椭圆中心的距离为3,则椭圆的标准方程为? 4. 椭圆的对称轴为坐标轴,离心率为22,两准线间的距离为4,则此椭圆的方程为? 5. 根据下列条件,写出椭圆的标准方程:(1) 椭圆的焦点为)0,1(1-F 、)0,1(2F ,其中一条准线方程是4-=x ;(2) 椭圆的中心在原点,焦点在y 轴上,焦距为34,并且椭圆和直线016372=-+y x 恰有一个公共点; (3) 椭圆的对称轴为坐标轴上,短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆的最近距离是3。

6. 已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别为21F F 、,离心率为22,右准线方程为2=x 。

求椭圆的方程.答案:1222=+y x 7. 根据下列条件求椭圆的方程:(1) 两准线间的距离为5518,焦距为52;答案:14922=+y x 或19422=+y x (2) 和椭圆1202422=+y x 共准线,且离心率为21; (3) 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点煌距离分别为354和352,过P 作长轴的垂线恰好过椭圆的一个焦点。

(二) 根据椭圆方程研究其性质1. 已知椭圆)0()3(22>=++m m y m x 的离心率为23=e ,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标。

2. 已知椭圆的长轴长是6,焦距是24,那么中心在原点,长轴所在直线与y 轴重合的椭圆的准线方程是 .3. 椭圆81922=+y x 的长轴长为 ,短轴长为 ,焦点坐标为 ,顶点坐标为 ,离心率为 ,准线方程为 。

(三) 求离心率1. 过椭圆)0(12222>>=+b a by a x 的左焦点1F 作x 轴的垂线交椭圆于点P ,F2为右焦点,若︒=∠6021PF F ,则椭圆的离心率为( )2. 在平面直角坐标系中,椭圆)0(12222>>=+b a by a x 的焦距为2,以O 圆心,a 为半径作圆,过点)0,(2c a 作圆的两切线互相垂直,则离心率e = .3. 若椭圆的两个焦点把长轴分成三等份,则椭圆的离心率为?4. 椭圆的短轴为AB ,它的一个焦点为F1,则满足1ABF ∆为等边三角形的椭圆的离心率是?5. 设椭圆)0(12222>>=+b a by a x 的右焦点为1F ,右准线为1l ,若过1F 且垂直于x 轴的弦的长等于点1F 到1l 的距离,则椭圆的离心率是 。

答案:216. 已知点),0(b A ,B 为椭圆)0(12222>>=+b a by a x 的左准线与x 轴的交点,若线段AB 的中点C 在椭圆上,则该椭圆的离心率为 。

答案:33(四) 第二定义1. 设椭圆)1(112222>=-+m m y m x 上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 点到右准线的距离为 2 .(五) 参数方程 (六) 椭圆系1.椭圆192522=+y x 与)90(125922<<=-+-k ky k x 的关系为( ) A .相同的焦点 B 。

相关文档
最新文档