有理数典型应用题

合集下载

含有理数原理的实际应用题

含有理数原理的实际应用题

含有理数原理的实际应用题题目一:购物计算假设你去超市购物,购买了以下商品:•牛奶:14元•面包:6元•鸡蛋:12元请计算你购买这些商品的总价格。

解答:不难发现,购物的总价格等于各种商品的价格之和。

我们可以用数学中的加法来表示这个关系。

所以,购物的总价格 = 牛奶的价格 + 面包的价格 + 鸡蛋的价格将每个商品的价格代入公式:购物的总价格 = 14元 + 6元 + 12元 = 32元所以,购买这些商品的总价格是32元。

题目二:温度转换假设现在的室外温度是摄氏30度,要将它转换为华氏温度,请计算。

解答:温度的转换关系有一个转换公式,我们可以使用这个公式来计算。

华氏温度 = 摄氏温度 × 1.8 + 32将摄氏30度代入公式进行计算:华氏温度 = 30 × 1.8 + 32 = 86所以,将摄氏30度转换为华氏温度是86度。

题目三:速度计算假设一辆汽车以每小时60公里的速度行驶,经过3个小时,它行驶了多远?请计算。

解答:速度的计算公式是:距离 = 速度 × 时间将题目中给出的速度和时间代入公式进行计算:距离 = 60公里/小时 × 3小时 = 180公里所以,经过3个小时,汽车行驶了180公里。

题目四:货币兑换假设你去国外旅行,想要将100美元兑换为人民币,汇率是1美元兑换为6.5人民币,请计算你可以得到多少人民币。

解答:货币兑换的计算公式是:兑换获得的货币 = 要兑换的货币 × 汇率将题目中给出的数据代入公式进行计算:兑换获得的人民币 = 100美元 × 6.5人民币/美元 = 650人民币所以,你可以得到650人民币。

题目五:面积计算假设一个正方形的边长是5米,求其面积。

请计算。

解答:正方形的面积计算公式是:面积 = 边长²将题目中给出的边长代入公式进行计算:面积 = 5米 × 5米 = 25平方米所以,这个正方形的面积是25平方米。

有理数应用题经典30题(学生版)

有理数应用题经典30题(学生版)

有理数应用题经典30题(学生版)一、题目:有理数应用题经典30题(学生版)1. 均匀缩小小明购买了一副长方形的相框,长和宽的比例是3:2。

如果将宽缩小10%,那么长也需要缩小多少才能保持原来的比例?解析:设原来宽为x,则长为1.5x。

缩小10%后的宽为0.9x,新的长应为1.5x*0.9=1.35x。

所以,长需要缩小15%。

2. 装满水壶一个16升的水壶和一个9升的水壶都是空的。

现在需要得到恰好4升的水,问如何操作才能实现?解析:首先,将9升水壶装满水,再倒入16升水壶中,此时9升水壶中剩余5升水。

然后,倒空16升水壶,将9升水壶中的5升水倒入16升水壶中。

最后,将9升水壶重新装满水,再倒入16升水壶中,此时16升水壶中已经有4升水。

3. 倒水比例小明用相同的速度向两个相同容积的杯子中倒水,第一个杯子先倒水,第二个杯子稍后开始倒水,小明一直保持恒定的速度进行倒水。

如果要使两个杯子中的水量一直保持比例3:5,那么第二个杯子开始倒水的时间点在第一个杯子开始倒水后的多久?解析:设第一个杯子开始倒水后经过t时间,第二个杯子开始倒水。

根据题意可得:水量比例=倒水时间比例。

即3/(3+t) = 5/t,解方程可得t=5/2,所以第二个杯子开始倒水的时间点在第一个杯子开始倒水后的2.5分钟。

4. 数字排列将1、2、3、4、5、6、7、8、9这九个数字分别填入以下的方框中,使得相邻的两个数字之和为偶数。

每个数字只能使用一次。

□□□□□□□□□解析:填入以下数字即可满足条件:1234567895. 数轴运动一只蚂蚁在数轴上从0点开始向右爬,并且每次只能移动1个单位。

如果这只蚂蚁每次以等概率向左或向右爬,那么在第5次移动后,它距离0点的期望距离是多少?解析:蚂蚁在第1次、第3次、第5次移动时一定是在偶数点上,而第2次、第4次移动时一定是在奇数点上。

所以在第5次移动后,它距离0点的期望距离为0。

6. 周长比较一个矩形的长和宽之比是3:2,另一个矩形的长和宽之比是2:3。

有理数应用题经典例题

有理数应用题经典例题

有理数应用题经典例题一、温度变化问题1. 例题- 某地一天中午12时的气温是7℃,过5小时气温下降了4℃,又过7小时气温又下降了4℃,第二天0时的气温是多少?2. 解析- 中午12时过5小时后的气温为7 - 4=3℃。

- 再过7小时(此时是第二天0时)后的气温为3-4 = - 1℃。

二、海拔高度问题1. 例题- 某一矿井的示意图如下,以地面为基准,A点的高度是+4.2米,B、C两点的高度分别是 - 15.6米与 - 30.5米。

A点比B点高多少?比C点呢?2. 解析- A点比B点高的高度为A - B=( + 4.2)-(-15.6)=4.2 + 15.6 = 19.8米。

- A点比C点高的高度为A - C=( + 4.2)-(-30.5)=4.2+30.5 = 34.7米。

三、行程问题(正负数表示方向)1. 例题- 一辆汽车沿着一条南北方向的公路来回行驶。

某一天早晨从A地出发,晚上到达B地。

约定向北为正,向南为负,当天记录如下(单位:千米):+18.3, - 9.5,+7.1, - 14, - 6.2,+13, - 6.8, - 8.5。

- (1)B地在A地何处,相距多少千米?- (2)若汽车行驶每千米耗油0.2升,那么这一天共耗油多少升?2. 解析- (1)将所有数相加:( + 18.3)+(-9.5)+( + 7.1)+(-14)+(-6.2)+( + 13)+(-6.8)+(-8.5)- =18.3 - 9.5+7.1 - 14 - 6.2 + 13 - 6.8 - 8.5- =(18.3+7.1 + 13)-(9.5 + 14+6.2+6.8 + 8.5)- =38.4 - 45- =- 6.6千米。

- 所以B地在A地正南方向,相距6.6千米。

- (2)汽车行驶的总路程为|+18.3|+|-9.5|+|+7.1|+|-14|+|-6.2|+|+13|+|-6.8|+|-8.5|- =18.3 + 9.5+7.1+14+6.2 + 13+6.8+8.5- =83.4千米。

有理数应用题30题(有答案).docx

有理数应用题30题(有答案).docx

有理数应用题专项练习30 题(有答案)1.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在 A 处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣ 4, +3 ,﹣ 7, +4,﹣ 8, +2,﹣ 1.(1) A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶 1 千米耗油 a 升,这一天上午共耗油多少升?2.某工厂生产一批零件,根据要求,圆柱体的内径可以有0.03 毫米的误差,抽查 5 个零件,超过规定内径的记作正数,不足的记作负数,检查结果如下:+0.025 ,﹣ 0.035, +0.016 ,﹣ 0.010, +0.041(1)指出哪些产品合乎要求?(2)指出合乎要求的产品中哪个质量好一些?3.某奶粉每袋的标准质量为454 克,在质量检测中,若超出标准质量 2 克,记作为 +2 克,若质量低于 3 克以上的,则这袋奶粉为不合格,现在抽取10 袋样品进行质量检测,结果如下(单位:克).袋号12345678910记作﹣ 203﹣ 4﹣ 3﹣5+4+4﹣ 6﹣3(1)这 10 袋奶粉中有哪几袋不合格?(2)质量最多的是哪袋?它的实际质量是多少?(3)质量最少的是哪袋?它的实际质量是多少?4.蜗牛从某点 0 开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米): +4,﹣ 3, +10 ,﹣ 9,﹣ 6, +12 ,﹣ 10.①求蜗牛最后的位置在点0 的哪个方向,距离多远?②在爬行过程中,如果每爬 1 厘米奖励一粒芝麻,则蜗牛一共得到多少粒芝麻?③蜗牛离开出发点0 最远时是多少厘米?5.某巡警车在一条南北大道上巡逻,某天巡警车从岗亭 A 处出发,规定向北方向为正,当天行驶纪录如下(单位:千米)-10,﹣ 9, +7,﹣ 15,+6,﹣ 5,+4,﹣ 2(1)最终巡警车是否回到岗亭A 处?若没有,在岗亭何方,距岗亭多远?(2)摩托车行驶 1 千米耗油 0.2 升,油箱有油 10 升,够不够?若不够,途中还需补充多少升油?6.某市公交公司在一条自西向东的道路旁边设置了人民公园、新华书店、实验学校、科技馆、花园小区站点,相邻两个站点之间的距离依次为 3km、 1.5km 、 2km 、3.5km .如果以新华书店为原点,规定向东的方向为正,向西的方向为负,设图上 1cm 长的线段表示实际距离 1km .请画出数轴,将五个站点在数轴上表示出来.7.生活与应用:在一条笔直的东西走向的马路上,有少年宫、学校、超市、医院四家公共场所.已知少年宫在学校东在学校西200 米,医院在学校东500 米.( 1)你能利用所学过的数轴知识描述它们的位置吗?( 2)小明放学后要去医院看望生病住院的奶奶,他从学校出发向西走了200 米,又向西走了﹣医院吗?300 米,超市700 米,你说他能到8.东方红中学位于东西方向的一条路上,一天我们学校的李老师出校门去家访,他先向西走100 米到聪聪家,再向东走 150 米到青青家,再向西走200 米到刚刚家,请问:( 1)如果把这条路看作一条数轴,以向东为正方向,以校门口为原点,请你在这条数轴上标出聪聪家与青青家的大概位置(数轴上一格表示50 米).(2)聪聪家与刚刚家相距多远?(3)聪聪家向西 20 米所表示的数是多少?(4)你认为可用什么办法求数轴上两点之间的距离?9.小明到坐落在东西走向的大街上的文具店、书店、花店和玩具店购物,规定向东走为正.已知小明从书店购书后,走了100m 到达玩具店,再走﹣65m 到达花店,又继续走了﹣70m 到达文具店,最后走了10m 到达公交车站.(1)书店距花店有多远?(2)公交车站在书店的什么位置?(3)若小明在四个店各逗留 10min ,他的步行速度大约是每分钟 35m,小明从书店购书一直到公交车站一共用了多少时间?10.王老师到坐落在东西走向的阜城大街上的文具店、书店、花店和玩具店购物,规定向东为正.已知王老师从书店购书后,走了110m 到达玩具店,再走﹣75m 到达花店,又继续走了﹣50m 到达文具店,最后走了25m 到达公交车站牌.(1)书店距花店有多远?(2)公交车站牌在书店的什么位置?(3)若王老师在四个店各逗留 10min ,他的步行速度大约是每分钟 26m,王老师从书店购书一直到公交车站一共用了多少时间?11.已知蜗牛从 A 点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作始到结束爬行的各段路程(单位:cm)依次为: +7,﹣ 5,﹣ 10,﹣ 8, +9,﹣ 6,+12 , +4“﹣”,从开(1)若 A 点在数轴上表示的数为﹣ 3,则蜗牛停在数轴上何处,请通过计算加以说明;(2)若蜗牛的爬行速度为每秒,请问蜗牛一共爬行了多少秒?12.上午 8 点,某人驾驶一辆汽车从 A 地出发,向东记为正,向西记为负.记录前 4 次行驶过程如下:﹣+25 公里,﹣ 20 公里, +30 公里,若要汽车最后回到 A 地,则最后一次如何行驶?已知汽车行驶的速度为小时,在这期间他办事花去 2 小时,问他回到 A 地的时间.15 公里,55 千米 /13.有一只小虫从某点出发,在一条直线上爬行,若规定向右爬行的路程记为正,向左爬行的路程记为负,小虫爬行各段路程依次记为(单位:厘米):﹣ 5,﹣ 4,+10 ,﹣ 3, +8.(1)小虫最后离出发点多少厘米?(2)如果小虫在爬行过程中,每爬行一厘米就得到一粒芝麻,问小虫最终一共可得到多少粒芝麻?( 3)若小虫爬行的速度始终不变,并且爬完这段路程用了 6 分钟,求小虫的爬行速度是多少?14.一个小虫从点 O 出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程为负数,爬行的路程依次为(单位:厘米):+5,﹣ 3,+10 ,﹣ 8,﹣ 6, +12,﹣ 10.( 1)小虫最后是否能回到出发点O?( 2)小虫离开出发点O 最远时是多少厘米?(直接写出结果即可.)( 3)在爬行过程中,如果每爬 1 厘米奖励两粒芝麻,则小虫共可得多少粒芝麻?15.体育课全班女生进行了百米测验,达标成绩为18 秒,下面是第一小组8 名女生的成绩记录,其中“+”表示成绩大于 18 秒,“﹣”表示成绩小于18 秒.﹣ 1+0.80﹣ 1.2﹣0.10+0.5﹣ 0.6这组女生的达标率为多少平均成绩为多少秒?16.体育课上对七年级( 1)班的 8 名女生做仰卧起坐测试,若以 16 次为达标,超过的次数用正数表示,不足的次数用负数表示.现成绩抄录如下:+2, +2,﹣ 2, +3, +1,﹣ 1, 0, +1 .问:(1)有几人达标?(2)平均每人做几次?17.一振子从一点 A 开始左右来回振动8 次,如果规定向右为正,向左为负,这8 次振动记录为(单位mm):+10,﹣ 9,+8,﹣ 6,+7.5 ,﹣ 6, +8,﹣ 7.( 1)求停止时所在位置距 A 点何方向,有多远?( 2)如果每毫米需时0.02 秒,则共用多少秒?18.出租车司机小李某天下午营运全是在东西走向的人民大道进行的.如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米)+15,﹣ 3,+14 ,﹣ 11, +10,﹣ 12, +4,﹣ 15, +16,﹣ 18(1)将最后一名乘客送到目的地时,小李距下午出发地点的距离是多少千米?(2)若汽车耗油量为 a 公升 /千米,这天下午汽车共耗油多少公升?19.某储蓄所,某日办理了 7 项储蓄业务:取出 9.5 万元,存入 5 万元,取出8 万元,存入12 万元,存入23 万元,取出 10.25 万元,取出 2 万元,求储蓄所该日现金增加多少万元?20.小明去一水库进行水位变化的实地测量,他取警戒线作为0m,记录了这个水库一周内的水位变化情况(测量前一天的水位达到警戒水位,单位:m,正号表示水位比前一天上升,负号表示比前一天下降星期一二三四五六日水位变化( m)+0.15﹣0.2+0.13﹣0.1+0.14﹣0.25+0.16(1)这一周内,哪一天水库的水位最高?哪一天的水位最低?最高水位比最低水位高多少?(2)与测量前一天比,一周内水库水位是上升了还是下降了?21.在一次食品安检中,抽查某企业10 袋奶粉,每袋取出100 克,检测每 100 克奶粉蛋白质含量与规定每100 克含量(蛋白质)比较,不足为负,超过为正,记录如下:(注:规定每100g 奶粉蛋白质含量为15g)﹣ 3,﹣ 4,﹣ 5, +1,+3 , +2,0,﹣ 1.5, +1, +2.5( 1)求平均每 100 克奶粉含蛋白质为多少?( 2)每 100 克奶粉含蛋白质不少于14 克为合格,求合格率为多少?22.某中学定于11 月举行运动会,组委会在修整跑道时,工作人员从甲处开工,规定向南为正,向北为负,从开工处甲处到收工处乙处所走的路程为:+10 ,﹣ 3, +4,﹣ 2, +13 ,﹣ 8,﹣ 7,﹣ 5,﹣ 2,(单位:米)(1)甲处与乙处相距多远?(2)工作人员离开甲处最远是多少米?(3)工作人员共修跑道多少米?23.为了保护广大消费者的利益,最近工商管理人员在一家面粉店总抽查了20 袋面粉,称得它们的重量如下(单位:千克):25、 25、 24、 24、 23、 24、 24、25、 26、25、 23、23、 24、 25、 25、 24、 24、 26、 26、 25.请你计算这20 袋面粉的总重量和每袋的平均重量,你能找出比较简单的计算方法吗?请你试试,根据你的计算结果,你对这次检查情况有什么看法?(每袋面粉的标准重量为:25 千克)24.每袋大米的标准重量为50 千克, 10 袋大米称重记录如图所示.(1)与标准重量比较, 10 袋大米总计超过多少千克或不足多少千克?(2) 10 袋大米的总重量是多少千克?25.体育课上,全班男同学进行了100 米测验,达标成绩为示成绩大于15 秒.﹣ 0.8 +1﹣ 1.2 0﹣0.7 +0.6﹣0.4﹣0.115 秒,下表是某小组8 名男生的成绩测试记录,其中“+“表问:( 1)这个小组男生的达标率为多少?()( 2)这个小组男生的平均成绩是多少秒?26.在体育课上,赵老师对七年级 1 班的部分男生进行了引体向上的测试,该项目的标准为不低于7 个.现在赵老师以能做7 个引体向上为标准,超过的次数用正数表示,不足的次数用负数表示,其中8 名男生的成绩记录如下:3﹣204﹣1﹣301(1) 8 名男生有百分之几达到标准?(2)他们共做了多少个引体向上?27.公路养护小组乘车沿南北公路巡视维护,某天早晨从 A 地出发,晚上最后到达天的行驶记录如下(单位:千米): +18,﹣ 9, +7,﹣ 14,+15 ,﹣ 6,﹣ 8,问 B 若汽车行驶每千米耗油 a 升,求该天共耗油多少升?B地在地,约定向北为正方向,当A 地何方,相距多少千米?,28.某辆出租车一天下午以公园为出发地在东西方向行驶,向东走为正,向西走为负,行车里程(单位:公里)依先后次序记录如下: +9、﹣ 3、﹣ 5、+6、﹣ 7、 +10 、﹣ 6、﹣ 4、 +4、﹣ 3、 +7 ( 1)将最后一名乘客送到目的地时,出租车离公园多远?在公园的什么方向?( 2)若出租车每公里耗油量为 0.1 升,则这辆出租车每天下午耗油多少升?29. 10 盒火柴如果以每盒 100 根为标准,超过的根数记作正数,不足的根数记作负数,每盒数据记录如下:+3,+2, 0,﹣ 1,﹣ 2,﹣ 3, +3,﹣ 2,﹣ 2,﹣ 1, 10 盒火柴共有多少根?30.某登山队 5 名队员以二号高地为基地,开始向海拔距二号高地500 米的顶峰冲击,设他们向上走为正,行程记录如下(单位:米): +150 ,﹣ 32,﹣ 43, +205,﹣ 30, +25,﹣ 20,﹣ 5, +30,﹣ 25,+75 .( 1)他们最终有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?( 2)登山时, 5 名队员在进行全程中都使用了氧气,且每人每米要消耗氧气0.04 升.他们共使用了氧气多少升?参考答案:1.( 1)∵+5﹣ 4+3﹣ 7+4 ﹣ 8+2﹣ 1= ﹣ 6,又∵规定向北方向为正,∴ A处在岗亭的南方,距离岗亭 6 千米.(2)∵ |+5|+|﹣4|+|+3|+|﹣ 7|+|+4|+|﹣ 8|+|+2|+|﹣ 1|=34,又∵摩托车每行驶 1 千米耗油 a 升,∴这一天上午共耗油 34a 升.2.依据题意产品允许的误差为±0.03,即( +0.03﹣﹣ 0.03)之间.故:( 1)第一、三、四个产品符合要求,即(+0.025, +0.016,﹣ 0.010).( 2)其中第四个零件(﹣ 0.010)误差最小,所以第四个质量好些3.( 1) 4 号袋低于标准质量 4 克, 6 号袋低于标准质量 5 克, 9 号袋低于标准质量 6 克,质量都低于 3 克以上,故 4、 6、 9 号袋不合格;( 2)表中标注 +4 克的,超过标准质量 4 克,超过准质量最多,是7, 8 号袋,它的实际质量是454+4=458 克;( 3)表中标注﹣ 6 的,低于标准质量 6 克,低于准质量最多,是9 号袋,它的实际质量是454﹣ 6=448 克4.①( +4)+(﹣ 3)+( +10) +(﹣ 9)+(﹣ 6)+( +12) +(﹣ 10),=(﹣ 3)+(﹣ 9)+(﹣ 6)+( +4)+( +12 )+( +10 )+(﹣ 10)=(﹣ 18) +( +16 )+0= ﹣ 2(厘米),所以蜗牛最后的位置在点0 西侧,距离点0 为 2 厘米;② |+4|+|﹣ 3|+|+10|+|﹣ 9|+|﹣ 6|+|+12|+|﹣10|=4+3+10+9+6+12+10=54 (厘米),所以蜗牛一共得到54 料芝麻;③如图所示,最远时为11 厘米.5.( 1)﹣ 10﹣ 9+7 ﹣15+6﹣ 5+4﹣ 2=﹣ 24,即可得最终巡警车在岗亭 A 处南方 24 千米处.( 2)行驶路程 =10+9+7+15+6+5+4+2=58千米,需要油量 =58×0.2=11.6 升,故油不够,需要补充 1.6 升6.解:数轴如图所示:7.( 1)( 2)(﹣ 200) +700=500 米,则他在医院的东500 米,他能到医院8.( 1)依题意可知图为:(2)∵ |﹣ 100﹣(﹣ 150) |=50(m),∴聪聪家与刚刚家相距50 米.(3)聪聪家向东 20 米所表示的数是﹣ 100+20= ﹣80.(4)求数轴上两点间的距离可用右边的点表示的数减去左边的点表示的数9.如图所示:( 1)书店距花店35 米;( 2)公交车站在书店的西边25 米处;( 3)小明所走的总路程:100+|﹣ 65|+|﹣ 70|+10=245(米),245÷35=7(分钟),7+4×10=47(分钟),答:小明从书店购书一直到公交车站一共用了47 分钟.10.如图所示:( 1)书店距花店35 米;(2)公交车站牌在书店的东边10 米处;(3)王老师所走的总路程: 110+|﹣ 75|+|﹣ 50|+25=260(米),260÷26=10(分钟), 10+4×10=50 (分钟).答:王老师从书店购书一直到公交车站一共用了50 分钟.11.(1)依题意得﹣3+(+7) +(﹣ 5) +(﹣ 10) +(﹣ 8) +(+9) +(﹣ 6) +( +12) +( +4) =0,∴ 蜗牛停在数轴上的原点;( 2)( |+7|+|﹣ 5|+|﹣ 10|+|﹣ 8|+|+9|+|+12|+|+4|+|﹣ 6|)÷ =122cm .∴蜗牛一共爬行了122 秒12.由题意得:﹣15+25﹣ 20+30=﹣ 20,∵向东记为正,向西记为负,∴ ﹣20表示向西行驶20 公里;汽车共行驶15+25+20+30+20=110 公里,用时为:110÷55=2,∴共用时 2+2=4 小时,故回到 A 地的时间为8+4=12 点13.( 1)(﹣ 5) +(﹣ 4) +10+(﹣ 3)+8=[ (﹣ 5) +(﹣ 4) +(﹣ 3) ]+ ( 10+8) =﹣12+18=6(厘米).答:小虫最后离出发点 6 厘米.( 2) | ﹣ 5|+| ﹣ 4|+|10|+|﹣3|+|8|=30.答:小虫最终一共可得到30 粒芝麻.( 3)由( 2)知:小虫共爬行了30 厘米,故其爬行速度为:30÷ 6=5(厘米 / 分钟).答:小虫的爬行速度为 5 厘米 / 分钟14.( 1)∵( +5 ) +(﹣ 3) +(+10 ) +(﹣ 8) +(﹣ 6) +(+12 ) +(﹣ 10) =5﹣ 3+10﹣8﹣ 6+12﹣10, =5+10+12 ﹣3﹣ 8﹣ 6﹣10=27 ﹣27=0 ,∴ 小虫最后可以回到出发点;(2) +5+ (﹣ 3) =2,(+5) +(﹣ 3) +( +10) =12,(+5) +(﹣ 3) +( +10) +(﹣ 8) =4,(+5) +(﹣ 3) +( +10) +(﹣ 8) +(﹣ 6) =﹣ 2,(+5) +(﹣ 3) +( +10) +(﹣ 8) +(﹣ 6) +12=10;所以,小虫离开出发点O 最远时是12 厘米;(3)( |+5|+|﹣ 3|+|+10|+|﹣ 8|+|﹣ 6|+|+12|+|﹣ 10|)×2=( 5+3+10+8+6+12+10 )×2=54×2=108,所以小虫共可得108 粒芝麻15.由题意可知,达标的人数为 6 人,所以达标率6÷8×100%=75% .平均成绩为:18+=18+(﹣ 0.2) =17.8 (秒)161166(2)八名女生所做的总次数是:( 16+2)+(16+2 )+( 16﹣2)+( 16+3)+(16+1)+( 16﹣1)+16+( 16+1 )=134,所以平均次数是=16.7517.( 1)根据题意可得:向右为正,向左为负,由8 次振动记录可得:10﹣9+8 ﹣ 6+7.5﹣ 6+8 ﹣ 7=5.5,故停止时所在位置在 A 点右边 5.5mm 处;( 2)一振子从一点 A 开始左右来回振动8 次,共 10+9+8+6+7.5+6+8+7=61.5mm .如果每毫米需时0.02 秒,故共用61.5×0.02=1.23 秒18.( 1)( +15) +(﹣ 3) +( +14) +(﹣ 11) +( +10) +(﹣ 12)+( +4)+(﹣ 15)+( +16 )+(﹣ 18) =0 千米;(2)|+15|+|﹣ 3|+|+14|+|﹣ 11|+|+10|+|﹣ 12|+|+4|+|﹣ 15|+|+16|+|﹣ 18|=15+3+14+11+10+12+4+15+16+18=118 (千米),则耗油 118×a=118a 公升.答:将最后一名乘客送到目的地时,小李距下午出发地点的距离是0 千米;若汽车耗油量为 a 公升 / 千米,这天下午汽车共耗油118a 公升19.根据题意可设:存入为“+”,取出为“﹣”;则储蓄所该日现金增加量等于(﹣9.5) +( +5)+(﹣ 8)+( 12)+( +23 )+(﹣ 10.25) +(﹣ 2) =+10.25 万元.故储蓄所该日现金增加10.25 万元20.( 1)本周水位依次为0.15m,﹣ 0.05m, 0.08m,﹣ 0.02m, 0.12m,﹣ 0.13m, 0.03m.故星期一水库的水位最高,星期六水库的水位最低.最高水位比最低水位高0.15m+0.25m=0.4m .(2)上升了,上升了 0.15﹣ 0.2+0.13 ﹣ 0.1+0.14﹣ 0.25+0.16=0.18m21.( 1)+15=14.6 ( g);( 2)其中﹣3,﹣ 4,﹣ 5,﹣ 1.5为不合格,那么合格的有 6 个,合格率为=60%22.( 1) 10﹣ 3+4 ﹣2+13﹣ 8﹣7﹣ 5﹣ 2=10+4+13 ﹣3﹣ 2﹣8﹣ 7﹣ 5﹣ 2=27﹣ 27=0(米),∴甲处与乙处相距0 米,即在原处.( 2)工作人员离开甲处的距离依次为:10, 7, 11, 9,22, 14,7, 2, 0(米),∴工作人员离开甲处最远是22 米.( 3) 10+3+4+2+13+8+7+5+2=54 (米),∴工作人员共修跑道54 米23.以 25 千克为标准重量,超过25 千克记为正数,不足25 千克记为负数.25× 20+[0+0+(﹣1)+(﹣1)+(﹣2)+(﹣1)+(﹣1)+0+1+0+(﹣2)+(﹣2)+(﹣1)+(﹣1)+1+1+0]=490(千克), 490÷ 20=24.5 (千克).答:总重量为490kg,平均重量24.5kg .在今后的抽查中,应严格把关,保护广大消费者的利益24.( 1)与标准重量比较,10 袋大米总计超过1+1+1.5 ﹣ 1+1.2+1.3 ﹣1.3﹣ 1.2+1.8+1.1=5.4 千克;( 2) 10 袋大米的总重量是50×10+5.4=505.4 千克25.( 1)成绩记为正数的不达标,只有 2 人不达标, 6 人达标.这个小组男生的达标率=6÷8=75% ;( 2)﹣ 0.8+1 ﹣ 1.2+0﹣ 0.7+0.6﹣ 0.4﹣0.1=﹣ 1.615﹣1.6÷8=14.8 秒答:( 1)这个小组男生的达标率为75%.( 2)这个小组男生的平均成绩是14.8 秒26.( 1)∵8 名男生有5 个人达到标准,即5÷8×100%=62.5% , 8 名男生有62.5%达到标准;( 2) 10+5+7+11+6+4+7+8=58 或 3﹣ 2+0+4﹣ 1﹣ 3+0+1=2 , 7×8+2=58 ,他们共做了58 个引体向上27.( 1)约定向北为正方向,则向南为负方向,当天的行驶记录相加就是车的现在位置,18﹣ 9+7 ﹣14+15 ﹣ 6﹣ 8=3(千米),故 B 地在 A 地北方 3 千米处.( 2)要求该天共耗油多少升要先求该车走了多少路然后×a,即(18+9+7+14+15+6+8)×a=77a(升),故该天共耗油77a 升28.( 1)( +9) +(﹣ 3) +(﹣ 5) +( +6) +(﹣ 7) +( +10) +(﹣ 6) +(﹣ 4) +( +4)+(﹣ 3)+( +7)=9﹣ 3﹣5+6 ﹣ 7+10﹣ 6﹣ 4+4﹣ 3+7=9+10 ﹣ 3﹣5﹣ 3=8 ,∴将最后一名乘客送到目的地时,出租车离公园8 公里,在公园的东方8 公里处.( 2) |+9|+|﹣ 3|+|﹣5|+|+6|+|﹣ 7|+|+10|+|﹣ 6|+|﹣ 4|+|+4|+|﹣ 3|+|+7=9+3+5+6+7+10+6+4+4+3+7=64 ,∵ 64×0.1=6.4 (升),∴这辆出租车每天下午耗油 6.4 升29.先求超过的根数:( +3 ) +( +2) +0+(﹣ 1)+(﹣ 2) +(﹣ 3) +( +3) +(﹣ 2) +(﹣ 2) +(﹣ 1) =﹣ 3;则 10 盒火柴的总数量为:100×10﹣ 3=997 (根).答: 10 盒火柴共有997 根30.( 1)根据题意得:150﹣32﹣ 43+205 ﹣ 30+25﹣ 20﹣ 5+30+75 ﹣ 25=330 米, 500﹣ 330=170 米.(2)根据题意得: 150+32+43+205+30+25+20+5+30+75+25=640 米, 640×0.04×5=128 升.答:( 1)他们没能最终登上顶峰,离顶峰害有170 米;( 2)他们共使用了氧气128 升。

七年级有理数应用题50道

七年级有理数应用题50道

七年级有理数应用题50道一、温度相关(5道)1. 某天,哈尔滨的最高气温是 -12℃,最低气温是 -22℃,这天哈尔滨的温差是多少?解析:温差就是最高气温减去最低气温,即公式。

2. 已知某地区早晨的气温为 -5℃,中午上升了8℃,傍晚又下降了6℃,求傍晚的气温。

解析:早晨气温是 -5℃,中午上升8℃后,气温变为公式,傍晚又下降6℃,则傍晚气温为公式。

3. 若甲地温度为20℃,乙地温度比甲地低15℃,丙地温度比乙地低10℃,求丙地温度。

解析:乙地温度为公式,丙地温度比乙地低10℃,所以丙地温度为公式。

4. 某冷库的温度是零下10℃,下降 -3℃后又下降5℃,此时冷库的温度是多少?解析:零下10℃即 -10℃,下降 -3℃,实际是上升3℃,此时温度为公式,又下降5℃后,温度为公式。

5. 一天中,最高气温是6℃,最低气温是 -10℃,若以0℃为基准,最高气温比最低气温高多少度?解析:以0℃为基准,最高气温6℃比0℃高6℃,最低气温 -10℃比0℃低10℃,所以最高气温比最低气温高公式。

二、海拔高度相关(5道)1. 某山峰的海拔高度为1500米,山脚的海拔高度为 -200米,山峰与山脚的相对高度是多少?解析:相对高度是山峰海拔高度减去山脚海拔高度,即公式米。

2. 甲地海拔高度为 -30米,乙地海拔高度比甲地高20米,丙地海拔高度比乙地低15米,求丙地海拔高度。

解析:乙地海拔高度为公式米,丙地海拔高度为公式米。

3. 飞机在海拔8000米的高空飞行,潜艇在海拔 -500米的海底航行,飞机与潜艇的高度差是多少?解析:高度差为飞机的海拔高度减去潜艇的海拔高度,即公式米。

4. 一座山的山顶海拔为2000米,山腰处的海拔为1200米,山底的海拔为 -300米,山腰与山底的相对高度是多少?解析:相对高度为山腰海拔减去山底海拔,即公式米。

5. 某高原的平均海拔为3000米,某盆地的平均海拔为 -200米,高原比盆地高多少米?解析:高原比盆地高的高度为高原平均海拔减去盆地平均海拔,即公式米。

有理数典型应用题

有理数典型应用题

1、某摩托车厂本周计划每天生产250辆摩托车,实际每天生产量与计划量相比情况如下(增加的辆数为正,减少的辆数为负数)
(1)本周三生产了多少辆摩托车?
(2)本周总生产量与计划生产量相比,是增加了还是减少了?是多少?
(3)产量最多的一天比产量最少的一天多生产了多少辆?
(4)工厂实行每周计件工资制,每生产一辆可得工资40元,每多生产一辆再奖20元,每少生产一辆扣30元,则本周工人可得多少元?
2、某公路养护车沿南北方向公路巡视维修,某天早晨他们从A地出发,晚上最后到达B地,约定向北为正方向,当天
的行驶记录如下(单位:千米):18,-9,+7,-14,-6,+13,-6,-8
问:(1)B地在A地何方?相距多少千米?
(2)若汽车行驶每千米耗油0.5升,求:该天耗油多少升?
3、小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)
根据上表回答问题:
(1)星期二收盘时,该股票每股多少元?
(2)本周内该股票收盘时的最高价,最低价分别是多少?
(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.卖出时还要付成交额的千分之1的手续费,若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?。

有理数应用题30题(含答案)

有理数应用题30题(含答案)

有理数应用题专项练习30题(有答案)1.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)A处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油a升,这一天上午共耗油多少升?2.某工厂生产一批零件,根据要求,圆柱体的内径可以有0.03毫米的误差,抽查5个零件,超过规定内径的记作正数,不足的记作负数,检查结果如下:+0.025,﹣0.035,+0.016,﹣0.010,+0.041(1)指出哪些产品合乎要求?(2)指出合乎要求的产品中哪个质量好一些?3.某奶粉每袋的标准质量为454克,在质量检测中,若超出标准质量2克,记作为+2克,若质量低于3克以上的,则这袋奶粉为不合格,现在抽取10袋样品进行质量检测,结果如下(单位:克).袋号 1 2 3 4 5 6 7 8 9 10记作﹣2 0 3 ﹣4 ﹣3 ﹣5 +4 +4 ﹣6 ﹣3(1)这10袋奶粉中有哪几袋不合格?(2)质量最多的是哪袋?它的实际质量是多少?(3)质量最少的是哪袋?它的实际质量是多少?4.蜗牛从某点0开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):+4,﹣3,+10,﹣9,﹣6,+12,﹣10.①求蜗牛最后的位置在点0的哪个方向,距离多远?②在爬行过程中,如果每爬1厘米奖励一粒芝麻,则蜗牛一共得到多少粒芝麻?③蜗牛离开出发点0最远时是多少厘米?5.某巡警车在一条南北大道上巡逻,某天巡警车从岗亭A处出发,规定向北方向为正,当天行驶纪录如下(单位:千米)-10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2(1)最终巡警车是否回到岗亭A处?若没有,在岗亭何方,距岗亭多远?(2)摩托车行驶1千米耗油0.2升,油箱有油10升,够不够?若不够,途中还需补充多少升油?6.某市公交公司在一条自西向东的道路旁边设置了人民公园、新华书店、实验学校、科技馆、花园小区站点,相邻两个站点之间的距离依次为3km、1.5km、2km、3.5km.如果以新华书店为原点,规定向东的方向为正,向西的方向为负,设图上1cm长的线段表示实际距离1km.请画出数轴,将五个站点在数轴上表示出来.7.生活与应用:在一条笔直的东西走向的马路上,有少年宫、学校、超市、医院四家公共场所.已知少年宫在学校东300米,超市在学校西200米,医院在学校东500米.(1)你能利用所学过的数轴知识描述它们的位置吗?(2)小明放学后要去医院看望生病住院的奶奶,他从学校出发向西走了200米,又向西走了﹣700米,你说他能到医院吗?8.东方红中学位于东西方向的一条路上,一天我们学校的李老师出校门去家访,他先向西走100米到聪聪家,再向东走150米到青青家,再向西走200米到刚刚家,请问:(1)如果把这条路看作一条数轴,以向东为正方向,以校门口为原点,请你在这条数轴上标出聪聪家与青青家的(2)聪聪家与刚刚家相距多远?(3)聪聪家向西20米所表示的数是多少?(4)你认为可用什么办法求数轴上两点之间的距离?9.小明到坐落在东西走向的大街上的文具店、书店、花店和玩具店购物,规定向东走为正.已知小明从书店购书后,走了100m到达玩具店,再走﹣65m到达花店,又继续走了﹣70m到达文具店,最后走了10m到达公交车站.(1)书店距花店有多远?(2)公交车站在书店的什么位置?(3)若小明在四个店各逗留10min,他的步行速度大约是每分钟35m,小明从书店购书一直到公交车站一共用了多少时间?10.王老师到坐落在东西走向的阜城大街上的文具店、书店、花店和玩具店购物,规定向东为正.已知王老师从书店购书后,走了110m到达玩具店,再走﹣75m到达花店,又继续走了﹣50m到达文具店,最后走了25m到达公交车站牌.(1)书店距花店有多远?(2)公交车站牌在书店的什么位置?(3)若王老师在四个店各逗留10min,他的步行速度大约是每分钟26m,王老师从书店购书一直到公交车站一共用了多少时间?11.已知蜗牛从A点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作“﹣”,从开始到结束爬行的各段路程(单位:cm)依次为:+7,﹣5,﹣10,﹣8,+9,﹣6,+12,+4(1)若A点在数轴上表示的数为﹣3,则蜗牛停在数轴上何处,请通过计算加以说明;(2)若蜗牛的爬行速度为每秒,请问蜗牛一共爬行了多少秒?12.上午8点,某人驾驶一辆汽车从A地出发,向东记为正,向西记为负.记录前4次行驶过程如下:﹣15公里,+25公里,﹣20公里,+30公里,若要汽车最后回到A地,则最后一次如何行驶?已知汽车行驶的速度为55千米/小时,在这期间他办事花去2小时,问他回到A地的时间.13.有一只小虫从某点出发,在一条直线上爬行,若规定向右爬行的路程记为正,向左爬行的路程记为负,小虫爬行各段路程依次记为(单位:厘米):﹣5,﹣4,+10,﹣3,+8.(1)小虫最后离出发点多少厘米?(2)如果小虫在爬行过程中,每爬行一厘米就得到一粒芝麻,问小虫最终一共可得到多少粒芝麻?(3)若小虫爬行的速度始终不变,并且爬完这段路程用了6分钟,求小虫的爬行速度是多少?14.一个小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程为负数,爬行的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)小虫最后是否能回到出发点O?(2)小虫离开出发点O最远时是多少厘米?(直接写出结果即可.)(3)在爬行过程中,如果每爬1厘米奖励两粒芝麻,则小虫共可得多少粒芝麻?15.体育课全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒.﹣1 +0.8 0 ﹣1.2 ﹣0.1 0 +0.5 ﹣0.6这组女生的达标率为多少平均成绩为多少秒?16.体育课上对七年级(1)班的8名女生做仰卧起坐测试,若以16次为达标,超过的次数用正数表示,不足的次数用负数表示.现成绩抄录如下:+2,+2,﹣2,+3,+1,﹣1,0,+1.问:(1)有几人达标?(2)平均每人做几次?17.一振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位mm):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求停止时所在位置距A点何方向,有多远?(2)如果每毫米需时0.02秒,则共用多少秒?18.出租车司机小李某天下午营运全是在东西走向的人民大道进行的.如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米)+15,﹣3,+14,﹣11,+10,﹣12,+4,﹣15,+16,﹣18(1)将最后一名乘客送到目的地时,小李距下午出发地点的距离是多少千米?(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?19.某储蓄所,某日办理了7项储蓄业务:取出9.5万元,存入5万元,取出8万元,存入12万元,存入23万元,取出10.25万元,取出2万元,求储蓄所该日现金增加多少万元?20.小明去一水库进行水位变化的实地测量,他取警戒线作为0m,记录了这个水库一周内的水位变化情况(测量前一天的水位达到警戒水位,单位:m,正号表示水位比前一天上升,负号表示比前一天下降星期一二三四五六日水位变化(m)+0.15 ﹣0.2 +0.13 ﹣0.1 +0.14 ﹣0.25 +0.16(1)这一周内,哪一天水库的水位最高?哪一天的水位最低?最高水位比最低水位高多少?(2)与测量前一天比,一周内水库水位是上升了还是下降了?21.在一次食品安检中,抽查某企业10袋奶粉,每袋取出100克,检测每100克奶粉蛋白质含量与规定每100克含量(蛋白质)比较,不足为负,超过为正,记录如下:(注:规定每100g奶粉蛋白质含量为15g)﹣3,﹣4,﹣5,+1,+3,+2,0,﹣1.5,+1,+2.5(1)求平均每100克奶粉含蛋白质为多少?(2)每100克奶粉含蛋白质不少于14克为合格,求合格率为多少?22.某中学定于11月举行运动会,组委会在修整跑道时,工作人员从甲处开工,规定向南为正,向北为负,从开工处甲处到收工处乙处所走的路程为:+10,﹣3,+4,﹣2,+13,﹣8,﹣7,﹣5,﹣2,(单位:米)(1)甲处与乙处相距多远?(2)工作人员离开甲处最远是多少米?(3)工作人员共修跑道多少米?23.为了保护广大消费者的利益,最近工商管理人员在一家面粉店总抽查了20袋面粉,称得它们的重量如下(单位:千克):25、25、24、24、23、24、24、25、26、25、23、23、24、25、25、24、24、26、26、25.请你计算这20袋面粉的总重量和每袋的平均重量,你能找出比较简单的计算方法吗?请你试试,根据你的计算结果,你对这次检查情况有什么看法?(每袋面粉的标准重量为:25千克)24.每袋大米的标准重量为50千克,10袋大米称重记录如图所示.(1)与标准重量比较,10袋大米总计超过多少千克或不足多少千克?(2)10袋大米的总重量是多少千克?25.体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩测试记录,其中“+“表示成绩大于15秒.﹣0.8 +1 ﹣1.20 ﹣0.7+0.6 ﹣0.4﹣0.1问:(1)这个小组男生的达标率为多少?()(2)这个小组男生的平均成绩是多少秒?26.在体育课上,赵老师对七年级1班的部分男生进行了引体向上的测试,该项目的标准为不低于7个.现在赵老师以能做7个引体向上为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩记录如下:3 ﹣2 0 4 ﹣1 ﹣3 0 1 (1)8名男生有百分之几达到标准?(2)他们共做了多少个引体向上?27.公路养护小组乘车沿南北公路巡视维护,某天早晨从A地出发,晚上最后到达B地,约定向北为正方向,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣14,+15,﹣6,﹣8,问B地在A地何方,相距多少千米?若汽车行驶每千米耗油a升,求该天共耗油多少升?28.某辆出租车一天下午以公园为出发地在东西方向行驶,向东走为正,向西走为负,行车里程(单位:公里),依先后次序记录如下:+9、﹣3、﹣5、+6、﹣7、+10、﹣6、﹣4、+4、﹣3、+7(1)将最后一名乘客送到目的地时,出租车离公园多远?在公园的什么方向?(2)若出租车每公里耗油量为0.1升,则这辆出租车每天下午耗油多少升?29.10盒火柴如果以每盒100根为标准,超过的根数记作正数,不足的根数记作负数,每盒数据记录如下:+3,+2,0,﹣1,﹣2,﹣3,+3,﹣2,﹣2,﹣1,10盒火柴共有多少根?30.某登山队5名队员以二号高地为基地,开始向海拔距二号高地500米的顶峰冲击,设他们向上走为正,行程记录如下(单位:米):+150,﹣32,﹣43,+205,﹣30,+25,﹣20,﹣5,+30,﹣25,+75.(1)他们最终有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?(2)登山时,5名队员在进行全程中都使用了氧气,且每人每米要消耗氧气0.04升.他们共使用了氧气多少升?有理数应用题30题参考答案:1.(1)∵+5﹣4+3﹣7+4﹣8+2﹣1=﹣6,又∵规定向北方向为正,∴A处在岗亭的南方,距离岗亭6千米.(2)∵|+5|+|﹣4|+|+3|+|﹣7|+|+4|+|﹣8|+|+2|+|﹣1|=34,又∵摩托车每行驶1千米耗油a升,∴这一天上午共耗油34a升.2.依据题意产品允许的误差为±0.03,即(+0.03﹣﹣0.03)之间.故:(1)第一、三、四个产品符合要求,即(+0.025,+0.016,﹣0.010).(2)其中第四个零件(﹣0.010)误差最小,所以第四个质量好些3.(1)4号袋低于标准质量4克,6号袋低于标准质量5克,9号袋低于标准质量6克,质量都低于3克以上,故4、6、9号袋不合格;(2)表中标注+4克的,超过标准质量4克,超过准质量最多,是7,8号袋,它的实际质量是454+4=458克;(3)表中标注﹣6的,低于标准质量6克,低于准质量最多,是9号袋,它的实际质量是454﹣6=448克4.①(+4)+(﹣3)+(+10)+(﹣9)+(﹣6)+(+12)+(﹣10),=(﹣3)+(﹣9)+(﹣6)+(+4)+(+12)+(+10)+(﹣10)=(﹣18)+(+16)+0=﹣2(厘米),所以蜗牛最后的位置在点0西侧,距离点0为2厘米;5.(1)﹣10﹣9+7﹣15+6﹣5+4﹣2=﹣24,即可得最终巡警车在岗亭A处南方24千米处.(2)行驶路程=10+9+7+15+6+5+4+2=58千米,需要油量=58×0.2=11.6升,故油不够,需要补充1.6升6.解:数轴如图所示:7.(1)(2)(﹣200)+700=500米,则他在医院的东500米,他能到医院8.(1)依题意可知图为:(2)∵|﹣100﹣(﹣150)|=50(m),∴聪聪家与刚刚家相距50米.(3)聪聪家向东20米所表示的数是﹣100+20=﹣80.(4)求数轴上两点间的距离可用右边的点表示的数减去左边的点表示的数9.如图所示:(1)书店距花店35米;(2)公交车站在书店的西边25米处;(3)小明所走的总路程:100+|﹣65|+|﹣70|+10=245(米),245÷35=7(分钟),7+4×10=47(分钟),答:小明从书店购书一直到公交车站一共用了47分钟.10.如图所示:(1)书店距花店35米;(2)公交车站牌在书店的东边10米处;(3)王老师所走的总路程:110+|﹣75|+|﹣50|+25=260(米),11.(1)依题意得﹣3+(+7)+(﹣5)+(﹣10)+(﹣8)+(+9)+(﹣6)+(+12)+(+4)=0,∴蜗牛停在数轴上的原点;(2)(|+7|+|﹣5|+|﹣10|+|﹣8|+|+9|+|+12|+|+4|+|﹣6|)÷=122cm.∴蜗牛一共爬行了122秒12.由题意得:﹣15+25﹣20+30=﹣20,∵向东记为正,向西记为负,∴﹣20表示向西行驶20公里;汽车共行驶15+25+20+30+20=110公里,用时为:110÷55=2,∴共用时2+2=4小时,故回到A地的时间为8+4=12点13.(1)(﹣5)+(﹣4)+10+(﹣3)+8=[(﹣5)+(﹣4)+(﹣3)]+(10+8)=﹣12+18=6(厘米).答:小虫最后离出发点6厘米.(2)|﹣5|+|﹣4|+|10|+|﹣3|+|8|=30.答:小虫最终一共可得到30粒芝麻.(3)由(2)知:小虫共爬行了30厘米,故其爬行速度为:30÷6=5(厘米/分钟).答:小虫的爬行速度为5厘米/分钟14.(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=5﹣3+10﹣8﹣6+12﹣10,=5+10+12﹣3﹣8﹣6﹣10=27﹣27=0,∴小虫最后可以回到出发点;(2)+5+(﹣3)=2,(+5)+(﹣3)+(+10)=12,(+5)+(﹣3)+(+10)+(﹣8)=4,(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)=﹣2,(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+12=10;所以,小虫离开出发点O最远时是12厘米;(3)(|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|)×2=(5+3+10+8+6+12+10)×2=54×2=108,所以小虫共可得108粒芝麻15.由题意可知,达标的人数为6人,所以达标率6÷8×100%=75%.平均成绩为:18+=18+(﹣0.2)=17.8(秒)16.(1)∵16次为达标,超过的次数用正数表示,∴达标的人数6人.(2)八名女生所做的总次数是:(16+2)+(16+2)+(16﹣2)+(16+3)+(16+1)+(16﹣1)+16+(16+1)=134,所以平均次数是=16.7517.(1)根据题意可得:向右为正,向左为负,由8次振动记录可得:10﹣9+8﹣6+7.5﹣6+8﹣7=5.5,故停止时所在位置在A点右边5.5mm处;(2)一振子从一点A开始左右来回振动8次,共10+9+8+6+7.5+6+8+7=61.5mm.如果每毫米需时0.02秒,故共用61.5×0.02=1.23秒18.(1)(+15)+(﹣3)+(+14)+(﹣11)+(+10)+(﹣12)+(+4)+(﹣15)+(+16)+(﹣18)=0千米;(2)|+15|+|﹣3|+|+14|+|﹣11|+|+10|+|﹣12|+|+4|+|﹣15|+|+16|+|﹣18|=15+3+14+11+10+12+4+15+16+18=118(千米),则耗油118×a=118a公升.答:将最后一名乘客送到目的地时,小李距下午出发地点的距离是0千米;若汽车耗油量为a公升/千米,这天下午汽车共耗油118a公升19.根据题意可设:存入为“+”,取出为“﹣”;则储蓄所该日现金增加量等于(﹣9.5)+(+5)+(﹣8)+(12)+(+23)+(﹣10.25)+(﹣2)=+10.25万元.故储蓄所该日现金增加10.25万元20.(1)本周水位依次为0.15m,﹣0.05m,0.08m,﹣0.02m,0.12m,﹣0.13m,0.03m.故星期一水库的水位最高,星期六水库的水位最低.最高水位比最低水位高0.15m+0.25m=0.4m.(2)上升了,上升了0.15﹣0.2+0.13﹣0.1+0.14﹣0.25+0.16=0.18m21.(1)+15=14.6(g);(2)其中﹣3,﹣4,﹣5,﹣1.5为不合格,那么合格的有6个,合格率为=60%22.(1)10﹣3+4﹣2+13﹣8﹣7﹣5﹣2=10+4+13﹣3﹣2﹣8﹣7﹣5﹣2=27﹣27=0(米),∴甲处与乙处相距0米,即在原处.(2)工作人员离开甲处的距离依次为:10,7,11,9,22,14,7,2,0(米),∴工作人员离开甲处最远是22米.(3)10+3+4+2+13+8+7+5+2=54(米),∴工作人员共修跑道54米23.以25千克为标准重量,超过25千克记为正数,不足25千克记为负数.25×20+[0+0+(﹣1)+(﹣1)+(﹣2)+(﹣1)+(﹣1)+0+1+0+(﹣2)+(﹣2)+(﹣1)+(﹣1)+1+1+0]=490 (千克),490÷20=24.5(千克).答:总重量为490kg,平均重量24.5kg.在今后的抽查中,应严格把关,保护广大消费者的利益24.(1)与标准重量比较,10袋大米总计超过1+1+1.5﹣1+1.2+1.3﹣1.3﹣1.2+1.8+1.1=5.4千克;(2)10袋大米的总重量是50×10+5.4=505.4千克25.(1)成绩记为正数的不达标,只有2人不达标,6人达标.这个小组男生的达标率=6÷8=75%;(2)﹣0.8+1﹣1.2+0﹣0.7+0.6﹣0.4﹣0.1=﹣1.6 15﹣1.6÷8=14.8秒答:(1)这个小组男生的达标率为75%.(2)这个小组男生的平均成绩是14.8秒26.(1)∵8名男生有5个人达到标准,即5÷8×100%=62.5%,8名男生有62.5%达到标准;(2)10+5+7+11+6+4+7+8=58或3﹣2+0+4﹣1﹣3+0+1=2,7×8+2=58,他们共做了58个引体向上27.(1)约定向北为正方向,则向南为负方向,当天的行驶记录相加就是车的现在位置,18﹣9+7﹣14+15﹣6﹣8=3 (千米),故B地在A地北方3千米处.(2)要求该天共耗油多少升要先求该车走了多少路然后×a,即(18+9+7+14+15+6+8)×a=77a(升),故该天共耗油77a升28.(1)(+9)+(﹣3)+(﹣5)+(+6)+(﹣7)+(+10)+(﹣6)+(﹣4)+(+4)+(﹣3)+(+7)=9﹣3﹣5+6﹣7+10﹣6﹣4+4﹣3+7=9+10﹣3﹣5﹣3=8,∴将最后一名乘客送到目的地时,出租车离公园8公里,在公园的东方8公里处.(2)|+9|+|﹣3|+|﹣5|+|+6|+|﹣7|+|+10|+|﹣6|+|﹣4|+|+4|+|﹣3|+|+7=9+3+5+6+7+10+6+4+4+3+7=64,∵64×0.1=6.4(升),∴这辆出租车每天下午耗油6.4升29.先求超过的根数:(+3)+(+2)+0+(﹣1)+(﹣2)+(﹣3)+(+3)+(﹣2)+(﹣2)+(﹣1)=﹣3;则10盒火柴的总数量为:100×10﹣3=997(根).答:10盒火柴共有997根30.(1)根据题意得:150﹣32﹣43+205﹣30+25﹣20﹣5+30+75﹣25=330米,500﹣330=170米.(2)根据题意得:150+32+43+205+30+25+20+5+30+75+25=640米,640×0.04×5=128升.答:(1)他们没能最终登上顶峰,离顶峰害有170米;(2)他们共使用了氧气128升。

初一上册有理数应用题

初一上册有理数应用题

初一上册有理数应用题可以参考以下题目:
1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元,优惠价是多少元?
2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,问顾客每件衣服可获多少元利润?
3. 某公司今年十月份的销售额是100万元,比去年同期的销售额增长了10%,问去年同期的销售额是多少万元?
4. 一个果园里有三种树,其中苹果树有x棵,梨树有y棵,桃树有z棵。

今年梨树的树苗不够,所以桃树就种了5棵。

问:今年果园共有多少棵树?
5. 某工厂去年总产值是m万元,今年总产值比去年增长了10%,那么今年的总产值是多少万元?
6. 某城市去年工业总产值是n万元,今年工业总产值比去年增长了10%,那么今年的工业总产值是多少万元?
7. 某班共有学生x人,其中男生人数占总人数的35%,女生人数占总人数的65%。

问:男生人数是多少人?
8. 一个长方形的长是x厘米,宽是y厘米,如果长方形的长增加了2厘米,那么长方形的面积是多少厘米²?
9. 某校七年级共有学生x人,其中男生人数占总人数的45%,女生人数占总人数的55%。

问:女生人数是多少人?
10. 某校八年级共有学生x人,其中女生人数占总人数的45%,男生人数占总人数的55%。

问:男生人数是多少人?。

有理数应用题

有理数应用题

有理数应用题有理数是数学中的一类数,包括整数、分数和小数。

它们都可以表示为有限或无限循环的数字。

有理数在实际生活中有很多应用,比如计算、测量和建模等。

在本文中,我们将讨论一些关于有理数的应用题。

1. 银行储蓄小明在银行存入了1000元,年利率为5%。

每年他都会向银行存入相同数额的钱。

在5年后,他的存款总额是多少?解析:我们可以将小明每年存入的钱表示为有理数。

由于他每年存入相同数额的钱,所以这个有理数是一个循环小数。

假设每年存入的金额为x 元,那么:第一年:1000 + 0.05x第二年:(1000 + 0.05x) + 0.05x = 1000 + 0.1x第三年:(1000 + 0.1x) + 0.05x = 1000 + 0.15x第四年:(1000 + 0.15x) + 0.05x = 1000 + 0.2x第五年:(1000 + 0.2x) + 0.05x = 1000 + 0.25x所以,5年后小明的存款总额为1000 + 0.25x元。

2. 温度计一支温度计的刻度范围是-20℃到40℃。

如果当前的温度是-10℃,那么与正零度相差多少?解析:温度的正负可以用有理数来表示,其中负数表示低于零度的温度,正数表示高于零度的温度。

刻度范围是-20℃到40℃,所以与正零度相差的温度范围是-20℃到0℃,也就是20℃。

因此,当前温度是-10℃,与正零度相差20℃。

3. 旅行小王乘坐出租车去旅行,起步价是10元,每公里收费2元。

如果他乘坐了15公里的距离,他需要支付多少钱?解析:乘车费用可以用有理数来表示。

起步价是10元,表示为有理数+10。

每公里收费2元,表示为有理数+2x(x为乘坐的公里数)。

小王乘坐了15公里的距离,所以需要支付的费用为(+10)+2x15=(+10)+30=40元。

4. 面积计算某个方形地块的边长是3.5米。

求这个地块的面积。

解析:方形地块的面积可以用有理数来表示。

边长是3.5米,所以地块的面积为3.5乘以3.5,即3.5²。

有理数应用题专题练习题

有理数应用题专题练习题

有理数应用题专题练习题
题目一
某城市的气温由负10度逐渐升高,每小时上升2度。

请问经
过多少小时气温会升到0度?
解析
设经过x个小时,气温上升到0度。

根据题意,气温每小时上
升2度,可以列出方程:-10 + 2x = 0。

解这个方程可以得到x的值,即经过多少小时气温会升到0度。

答案
经过5个小时,气温会升到0度。

题目二
一辆汽车从A地出发,以60公里/小时的速度向B地行驶,行驶了3小时后又返回A地,每小时的速度为80公里/小时。

请问整个行程的平均速度是多少?
解析
设整个行程的平均速度为v,根据题意可列出方程:3 * 60 + 3 * 80 = 2v * 3。

解这个方程可以得到v的值,即整个行程的平均速度。

答案
整个行程的平均速度为70公里/小时。

题目三
甲乙两个人同时从同一地点出发,甲以每小时5公里的速度向东行驶,乙以每小时4公里的速度向西行驶。

已知两人相遇后共行驶了8小时,求他们相遇时距离出发地点的距离是多少?
解析
设两人相遇时距离出发地点的距离为d,根据题意可列出方程:5t + 4t = d。

解这个方程可以得到d的值,即两人相遇时距离出发地点的距离。

答案
两人相遇时距离出发地点的距离为72公里。

有理数运算应用题

有理数运算应用题

有理数运算应用题1、妈妈买回3千克菜花,她付出5元,找回了0.5元,每千克菜花多少元?2、五一班图书有故事书50本,是艺术类书的2倍还多4本,艺术类的书有多少本?3、一块三角形地,面积是280平方米,底是80米,高是多少米?4、一块梯形的面积是450平方米,高30米,上底是15米,下底是多少米?5、山坡上有羊80只,其中白羊是黑羊的4倍,山坡上黑羊、白羊各多少只?6、商店里卖出两筐柑橘,第一筐重26千克,第二筐重29千克,第二筐比第一筐多卖了9元钱,平均每千克柑橘多少元?7、一块梯形麦田,面积是540平方米,高18米,上底是20米,下底是多少米?8、甲乙两车从相距750千米的两地同时开出,相向而行,5小时相遇,甲车每小时行80千米,乙车每小时行多少千米?9、两辆汽车同时从同地开出,行驶4.5小时后,甲车落在乙车的后面13.5千米,已知甲车每小时行35千米,乙车每小时行多少千米?10、加工一批零件,甲乙合作5小时完成,甲独做9形式完成。

已知甲每小时比乙多加工2个零件,这批零件共有多少个?11、体育场买来16个篮球和12个足球,共付出760元。

已知篮球与足球的单价比是5:6,体育场买篮球和足球各付出多少元12、某商店购进一批皮凉鞋,每双售出价比购进价多15%。

如果全部卖出,则可获利120元;如果只卖80双,则差64元才够成本。

皮凉鞋的购进价每双多少元?13、张师傅要利用两张铁皮(见下图)做一个圆柱体,选用其中一张剪出两个底面,然后用另一张做侧面。

要求做成的圆柱的体积尽可能大,那么张师傅做成的这个圆柱体的表面积是多少?体积是多少?(不考虑接缝,pi;取⒊14)14、甲从东城走向西城,每时走5千米,乙从西城走向东城,每时走4千米,如果乙比甲早1时出发,那么两人恰好在两城中间地方相遇,问东西两城的距离是多少千米?15、某经营公司有两个仓库储存彩电,甲乙两仓库储存之比为7∶3,如果从甲仓库调出30台到乙仓库,那么甲、乙两仓库之比为3∶2,问这两个仓库原来储存电视机共多少台?16、一列快车由甲城开到乙城需要10时,一列慢车从乙城开到甲城需要15时,两车同时从两城相对开出,相遇时快车比慢车多行120 千米,两城相距多少千米?17、拖拉机5台24天耕地12000亩,问18天耕完54000亩,需增加拖拉机多少台?18、一块边长84米的正方形蕉园,蕉树的株距是2米,行距是8米,如果每棵蕉树收蕉果65千克,每千克0.45元,这个蕉园一年可收入多少元?19、东风牌货车的运输率是拖拉机的2.5倍,大型集装车的运输率是东风牌货车的3倍,现有一堆货物,用东风车运,要6小时,如果改用拖拉机运一半,再用大型集装车运另一半,一共要用多少小时?20、甲乙两人卖鸡蛋,甲的鸡蛋比乙多10个,可是全部卖出后的收入都是15元,如果甲的鸡蛋按乙的价格出售可卖18元,那么甲、乙各有多少个鸡蛋?实数的性质实数的故事专题推荐:北京精锐教育初中一对一辅导专题。

七年级上册有理数应用题

七年级上册有理数应用题

七年级上册有理数应用题
一、有理数加减法应用题
1. 题目
某冷库的温度是零下10℃,下降 -3℃后又下降5℃,两次变化后冷库的温度是多少?
解析
零下10℃记为 10℃。

下降 -3℃,这里的“下降 -3℃”实际是温度上升3℃,此时温度变为 -10+3 = -7℃。

然后又下降5℃,那么最终温度为 -7 5=-12℃。

2. 题目
小明在一条东西向的跑道上,先走了20米,又走了 -30米,此时他在原来位置的哪个方向,距离原来位置多少米?
解析
把向东走记为正方向。

先走了20米,即 +20米。

又走了 -30米,这里的“ -30米”表示向西走30米。

那么小明的位置变化为 +20+( -30)=20 30=-10米。

所以小明在原来位置的西方,距离原来位置10米。

二、有理数乘除法应用题
1. 题目
某商场去年亏损10万元,今年盈利12万元,若盈利记为正,亏损记为负,该商场这两年的盈亏情况如何表示?这两年总的盈亏是多少万元?
解析
去年亏损10万元,记为 -10万元。

今年盈利12万元,记为+12万元。

这两年总的盈亏情况为(-10)+12 = 2万元。

所以这两年总的是盈利2万元。

2. 题目
已知一个数的倒数是 -2,另一个数是公式,求这两个数的商。

解析
因为一个数的倒数是 -2,那么这个数是公式。

求公式与公式的商,即公式。

有理数应用题

有理数应用题

有理数应用题1、某水泥厂仓库6天内进出水泥的吨数如下:+50、-45、-33、+48、-49、-36.经过这6天,仓库里的水泥减少了多少吨?答案是-65吨。

如果仓库里还存200吨水泥,那么6天前,仓库里存有水泥265吨。

如果进出仓库的水泥装卸费都是每吨5元,那么这6天要付130元装卸费。

2、某高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下:+17,-9,+7,-15,-3,+11,-6,-8,+5,+6.养护小组最后到达的地方在出发点的南方,距出发点24千米。

养护过程中,最远处离出发点17千米。

若汽车耗油量为0.5升/千米,则这次养护共耗油105升。

3、某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入。

如表是某周的生产情况:星期一+5,星期二-2,星期三-4,星期四+13,星期五-10,星期六+16,星期日-9.根据记录可知前三天共生产了9辆自行车;产量最多的一天比产量最少的一天多生产了23辆自行车;该厂工人这一周的工资总额是元。

4、10袋小麦以每袋150千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:+2,-3,+5,-6,+1,+4,-2,-7,+3,-1.与标准质量相比较,这10袋小麦总计不足6千克,总质量是1500千克。

5、某儿童服装店老板以32元的价格买进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表:售出件数7,售价(元)+2,6,+2,3,+1,54,-1,5,-2.该服装店售完这30件连衣裙后,赚了174元。

6、在刚刚过去的国庆假期中,全国高速公路免费通行,各地景区游人如织。

在昆明世博园景区游客甚至“攻陷”了售票处,10月1日的游客人数约为5万人,接下来的六天中,每天的游客人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):+3万,-1.5万,+2.8万,-2.2万,+1.6万,-1.8万。

有理数加减法应用题

有理数加减法应用题

有理数加减法应用题一、有理数加减法应用题(一)温度相关1. 某天早晨的气温是5℃,中午上升了8℃,中午的气温是多少摄氏度?解析:5 + 8 = 3(℃),中午的气温是3℃。

2. 某天的最高气温是10℃,最低气温是3℃,这一天的温差是多少?解析:10 (3) = 10 + 3 = 13(℃),这一天的温差是13℃。

(二)盈利亏损3. 某商店上月盈利 2500 元,本月亏损 500 元,该商店两个月总的盈利或亏损情况如何?解析:2500 + (500) = 2000(元),两个月总的盈利 2000 元。

4. 某公司第一季度盈利 15 万元,第二季度亏损 8 万元,第三季度亏损 3 万元,该公司前三季度总的盈利情况如何?解析:15 + (8) + (3) = 15 8 3 = 4(万元),前三季度总的盈利 4 万元。

(三)海拔高度5. 甲地海拔为 100 米,乙地比甲地高 50 米,乙地的海拔是多少米?解析:100 + 50 = 50(米),乙地的海拔是 50 米。

6. 某山峰比海平面高 1536 米,记作 +1536 米,某盆地比海平面低 100 米,记作 100 米,山峰比盆地高多少米?解析:1536 (100) = 1536 + 100 = 1636(米),山峰比盆地高1636 米。

(四)行程问题7. 小明从家出发,先走了 3 千米,又后退了 2 千米,此时小明离家多远?解析:3 + (2) = 1(千米),此时小明离家 1 千米。

8. 一辆汽车从 A 地出发,先向东行驶 15 千米,再向西行驶 25 千米,此时汽车在 A 地的什么方向,距离 A 地多远?解析:15 + (25) = 10(千米),此时汽车在 A 地的西方,距离A 地 10 千米。

(五)库存变化9. 仓库里原有货物 50 吨,运出 18 吨,又运进 12 吨,现在仓库里有货物多少吨?解析:50 18 + 12 = 44(吨),现在仓库里有货物 44 吨。

有理数的应用题

有理数的应用题

1、某商店进行促销活动,一种商品原价为100元,现打八折销售,则该商品的现价为:A. 20元B. 50元C. 80元D. 120元(答案)C2、某城市冬季某天的温度是-5℃,中午上升了8℃,则中午的温度是:A. -13℃B. 3℃C. -3℃D. 13℃(答案)B3、某学生参加数学竞赛,共有10道题,每做对一道题得10分,不做或做错扣5分,该学生最后得分为70分,则他做对了:A. 6道题B. 7道题C. 8道题D. 9道题(答案)C4、一潜水艇从海面先下潜20米,然后又上升了15米,此时潜水艇的高度是:A. +5米B. -5米C. +15米D. -20米(答案)B5、某公司去年盈利50万元,今年由于改进技术,盈利比去年增加了20%,则今年盈利为:A. 40万元B. 50万元C. 60万元D. 70万元(答案)C6、小明从家出发,先向正东方向走50米,再向正南方向走30米到达学校,如果以家为坐标原点,正东方向为x轴正方向,正北方向为y轴正方向,则学校的坐标为:A. (50, 30)B. (50, -30)C. (-50, 30)D. (-50, -30)(答案)B7、某股票开盘价为10元,上午11时跌了1.5元,下午收盘时又涨了0.5元,则该股票收盘价为:A. 8元B. 8.5元C. 9元D. 10元(答案)C8、某地区海拔高度为-100米,表示该地区:A. 比海平面高100米B. 比海平面低100米C. 与海平面相平D. 无法确定(答案)B9、某班级进行数学测试,满分为100分,及格分数为60分,小明得了75分,则小明的成绩:A. 低于及格线B. 刚好及格C. 高于及格线但低于满分D. 满分(答案)C10、某商品原价为a元,第一次降价10%,第二次又降价10%,则两次降价后的价格为:A. 0.8a元B. 0.9a元C. 0.81a元D. 0.99a元(答案)C。

有理数应用题

有理数应用题

2、下列是我校七年级5名学生的体重情况, 姓名 体重(千克) 体重与平均体 重的差 A 34 -7 B 44 +3 C 45 +4 D E
37 41 -4 0
(2)谁最重?谁最轻? (3)最重的与最轻的相差多少?
行程问题:
1. 某一出租车一天下午以A地为出发地,在东西方向 营运,向东为正,向西为负,依先后次序记录如下: (单位:km)
2、-3、-5、+7、-6、-2、+8
(1)将最后一名乘客送到目的地,出租车离A地多 远?在学校的什么方向?
(2)若每千米的价格为2.4元,司机一个下午的营 业额是多少? (3)出租车离A点最远的距离是多少?
2、某产品的标准质量是100kg,现抽查6袋该 产品,超出记为“+”,不足记为“-”,(单 位:kg)
-3,+2,+4,-1,-3.5,+2.6
哪袋与标准偏差最大? 质量最重与最轻的相差多少?
3、某食品抽查20袋样品,超过或不足的部分分别 用正、负数来表示,记录如下表:
与标准质量的差值/g 袋数 -5 -2 1 4 0 3 1 4 3 5 6 3
练习:李老师在学校西面的南北路上从某点A
出发来回检查学生的植树情况,设定向北的路程 记为正数,向南的路程记为负数,所行路程依次 为(单位:百米)
+12,-l0,+10,-8,-6,-5, -3
(1)千米? (2)李老师离开出发点A最远时有多少千米?
1、这批样品的总质量比总的标准质量多还是 少? 多或少几克? 2、若每袋标准质量为450克,则抽样检测的 总质量是多少?
练习:今抽查10袋盐,每袋盐的标准质量是100克,
超出部分记为正,不足记为负,统计成下表: 与标准质量的差值/g 袋数 +1 1 -0.5 4 0 3 1.5 4 3 5

有理数应用题30题有答案

有理数应用题30题有答案

. .. .有理数应用题专项练习30题(有答案)1.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)A处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油a升,这一天上午共耗油多少升?2.某工厂生产一批零件,根据要求,圆柱体的径可以有0.03毫米的误差,抽查5个零件,超过规定径的记作正数,不足的记作负数,检查结果如下:+0.025,﹣0.035,+0.016,﹣0.010,+0.041(1)指出哪些产品合乎要求?(2)指出合乎要求的产品中哪个质量好一些?3.某奶粉每袋的标准质量为454克,在质量检测中,若超出标准质量2克,记作为+2克,若质量低于3克以上的,则这袋奶粉为不合格,现在抽取10袋样品进行质量检测,结果如下(单位:克).袋号 1 2 3 4 5 6 7 8 9 10记作﹣2 0 3 ﹣4 ﹣3 ﹣5 +4 +4 ﹣6 ﹣3(1)这10袋奶粉中有哪几袋不合格?(2)质量最多的是哪袋?它的实际质量是多少?(3)质量最少的是哪袋?它的实际质量是多少?4.蜗牛从某点0开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):+4,﹣3,+10,﹣9,﹣6,+12,﹣10.①求蜗牛最后的位置在点0的哪个方向,距离多远?②在爬行过程中,如果每爬1厘米奖励一粒芝麻,则蜗牛一共得到多少粒芝麻?③蜗牛离开出发点0最远时是多少厘米?5.某巡警车在一条南北大道上巡逻,某天巡警车从岗亭A处出发,规定向北方向为正,当天行驶纪录如下(单位:千米)-10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2(1)最终巡警车是否回到岗亭A处?若没有,在岗亭何方,距岗亭多远?(2)摩托车行驶1千米耗油0.2升,油箱有油10升,够不够?若不够,途中还需补充多少升油?6.某市公交公司在一条自西向东的道路旁边设置了人民公园、新华书店、实验学校、科技馆、花园小区站点,相邻两个站点之间的距离依次为3km、1.5km、2km、3.5km.如果以新华书店为原点,规定向东的方向为正,向西的方向为负,设图上1cm长的线段表示实际距离1km.请画出数轴,将五个站点在数轴上表示出来.7.生活与应用:在一条笔直的东西走向的马路上,有少年宫、学校、超市、医院四家公共场所.已知少年宫在学校东300米,超市在学校西200米,医院在学校东500米.(1)你能利用所学过的数轴知识描述它们的位置吗?(2)小明放学后要去医院看望生病住院的奶奶,他从学校出发向西走了200米,又向西走了﹣700米,你说他能到医院吗?8.红中学位于东西方向的一条路上,一天我们学校的老师出校门去家访,他先向西走100米到聪聪家,再向东走150米到青青家,再向西走200米到刚刚家,请问:(1)如果把这条路看作一条数轴,以向东为正方向,以校门口为原点,请你在这条数轴上标出聪聪家与青青家的大概位置(数轴上一格表示50米).(2)聪聪家与刚刚家相距多远?(3)聪聪家向西20米所表示的数是多少?(4)你认为可用什么办法求数轴上两点之间的距离?9.小明到坐落在东西走向的大街上的文具店、书店、花店和玩具店购物,规定向东走为正.已知小明从书店购书后,走了100m到达玩具店,再走﹣65m到达花店,又继续走了﹣70m到达文具店,最后走了10m到达公交车站.(1)书店距花店有多远?(2)公交车站在书店的什么位置?(3)若小明在四个店各逗留10min,他的步行速度大约是每分钟35m,小明从书店购书一直到公交车站一共用了多少时间?10.王老师到坐落在东西走向的阜城大街上的文具店、书店、花店和玩具店购物,规定向东为正.已知王老师从书店购书后,走了110m到达玩具店,再走﹣75m到达花店,又继续走了﹣50m到达文具店,最后走了25m到达公交车站牌.(1)书店距花店有多远?(2)公交车站牌在书店的什么位置?(3)若王老师在四个店各逗留10min,他的步行速度大约是每分钟26m,王老师从书店购书一直到公交车站一共用了多少时间?11.已知蜗牛从A点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作“﹣”,从开始到结束爬行的各段路程(单位:cm)依次为:+7,﹣5,﹣10,﹣8,+9,﹣6,+12,+4(1)若A点在数轴上表示的数为﹣3,则蜗牛停在数轴上何处,请通过计算加以说明;(2)若蜗牛的爬行速度为每秒,请问蜗牛一共爬行了多少秒?12.上午8点,某人驾驶一辆汽车从A地出发,向东记为正,向西记为负.记录前4次行驶过程如下:﹣15公里,+25公里,﹣20公里,+30公里,若要汽车最后回到A地,则最后一次如何行驶?已知汽车行驶的速度为55千米/小时,在这期间他办事花去2小时,问他回到A地的时间.13.有一只小虫从某点出发,在一条直线上爬行,若规定向右爬行的路程记为正,向左爬行的路程记为负,小虫爬行各段路程依次记为(单位:厘米):﹣5,﹣4,+10,﹣3,+8.(1)小虫最后离出发点多少厘米?(2)如果小虫在爬行过程中,每爬行一厘米就得到一粒芝麻,问小虫最终一共可得到多少粒芝麻?(3)若小虫爬行的速度始终不变,并且爬完这段路程用了6分钟,求小虫的爬行速度是多少?14.一个小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程为负数,爬行的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)小虫最后是否能回到出发点O?(2)小虫离开出发点O最远时是多少厘米?(直接写出结果即可.)(3)在爬行过程中,如果每爬1厘米奖励两粒芝麻,则小虫共可得多少粒芝麻?15.体育课全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒.﹣1 +0.8 0 ﹣1.2 ﹣0.1 0 +0.5 ﹣0.6这组女生的达标率为多少平均成绩为多少秒?16.体育课上对七年级(1)班的8名女生做仰卧起坐测试,若以16次为达标,超过的次数用正数表示,不足的次数用负数表示.现成绩抄录如下:+2,+2,﹣2,+3,+1,﹣1,0,+1.问:(1)有几人达标?(2)平均每人做几次?17.一振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位mm):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求停止时所在位置距A点何方向,有多远?(2)如果每毫米需时0.02秒,则共用多少秒?18.出租车司机小某天下午营运全是在东西走向的人民大道进行的.如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米)+15,﹣3,+14,﹣11,+10,﹣12,+4,﹣15,+16,﹣18(1)将最后一名乘客送到目的地时,小距下午出发地点的距离是多少千米?(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?19.某储蓄所,某日办理了7项储蓄业务:取出9.5万元,存入5万元,取出8万元,存入12万元,存入23万元,取出10.25万元,取出2万元,求储蓄所该日现金增加多少万元?20.小明去一水库进行水位变化的实地测量,他取警戒线作为0m,记录了这个水库一周的水位变化情况(测量前一天的水位达到警戒水位,单位:m,正号表示水位比前一天上升,负号表示比前一天下降星期一二三四五六日水位变化(m)+0.15 ﹣0.2 +0.13 ﹣0.1 +0.14 ﹣0.25 +0.16(1)这一周,哪一库的水位最高?哪一天的水位最低?最高水位比最低水位高多少?(2)与测量前一天比,一周水库水位是上升了还是下降了?21.在一次食品安检中,抽查某企业10袋奶粉,每袋取出100克,检测每100克奶粉蛋白质含量与规定每100克含量(蛋白质)比较,不足为负,超过为正,记录如下:(注:规定每100g奶粉蛋白质含量为15g)﹣3,﹣4,﹣5,+1,+3,+2,0,﹣1.5,+1,+2.5(1)求平均每100克奶粉含蛋白质为多少?(2)每100克奶粉含蛋白质不少于14克为合格,求合格率为多少?22.某中学定于11月举行运动会,组委会在修整跑道时,工作人员从甲处开工,规定向南为正,向北为负,从开工处甲处到收工处乙处所走的路程为:+10,﹣3,+4,﹣2,+13,﹣8,﹣7,﹣5,﹣2,(单位:米)(1)甲处与乙处相距多远?(2)工作人员离开甲处最远是多少米?(3)工作人员共修跑道多少米?23.为了保护广大消费者的利益,最近工商管理人员在一家面粉店总抽查了20袋面粉,称得它们的重量如下(单位:千克):25、25、24、24、23、24、24、25、26、25、23、23、24、25、25、24、24、26、26、25.请你计算这20袋面粉的总重量和每袋的平均重量,你能找出比较简单的计算方法吗?请你试试,根据你的计算结果,你对这次检查情况有什么看法?(每袋面粉的标准重量为:25千克)24.每袋大米的标准重量为50千克,10袋大米称重记录如图所示.(1)与标准重量比较,10袋大米总计超过多少千克或不足多少千克?(2)10袋大米的总重量是多少千克?25.体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩测试记录,其中“+“表示成绩大于15秒.﹣0.8 +1 ﹣1.20 ﹣0.7+0.6﹣0.4﹣0.1问:(1)这个小组男生的达标率为多少?()(2)这个小组男生的平均成绩是多少秒?26.在体育课上,老师对七年级1班的部分男生进行了引体向上的测试,该项目的标准为不低于7个.现在老师以能做7个引体向上为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩记录如下:3 ﹣2 04 ﹣1 ﹣3 0 1 (1)8名男生有百分之几达到标准?(2)他们共做了多少个引体向上?27.公路养护小组乘车沿南北公路巡视维护,某天早晨从A地出发,晚上最后到达B地,约定向北为正方向,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣14,+15,﹣6,﹣8,问B地在A地何方,相距多少千米?若汽车行驶每千米耗油a升,求该天共耗油多少升?28.某辆出租车一天下午以公园为出发地在东西方向行驶,向东走为正,向西走为负,行车里程(单位:公里),依先后次序记录如下:+9、﹣3、﹣5、+6、﹣7、+10、﹣6、﹣4、+4、﹣3、+7(1)将最后一名乘客送到目的地时,出租车离公园多远?在公园的什么方向?(2)若出租车每公里耗油量为0.1升,则这辆出租车每天下午耗油多少升?29.10盒火柴如果以每盒100根为标准,超过的根数记作正数,不足的根数记作负数,每盒数据记录如下:+3,+2,0,﹣1,﹣2,﹣3,+3,﹣2,﹣2,﹣1,10盒火柴共有多少根?30.某登山队5名队员以二号高地为基地,开始向海拔距二号高地500米的顶峰冲击,设他们向上走为正,行程记录如下(单位:米):+150,﹣32,﹣43,+205,﹣30,+25,﹣20,﹣5,+30,﹣25,+75.(1)他们最终有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?(2)登山时,5名队员在进行全程中都使用了氧气,且每人每米要消耗氧气0.04升.他们共使用了氧气多少升?有理数应用题30题参考答案:1.(1)∵+5﹣4+3﹣7+4﹣8+2﹣1=﹣6,又∵规定向北方向为正,∴A处在岗亭的南方,距离岗亭6千米.(2)∵|+5|+|﹣4|+|+3|+|﹣7|+|+4|+|﹣8|+|+2|+|﹣1|=34,又∵摩托车每行驶1千米耗油a升,∴这一天上午共耗油34a升.2.依据题意产品允许的误差为±0.03,即(+0.03﹣﹣0.03)之间.故:(1)第一、三、四个产品符合要求,即(+0.025,+0.016,﹣0.010).(2)其中第四个零件(﹣0.010)误差最小,所以第四个质量好些3.(1)4号袋低于标准质量4克,6号袋低于标准质量5克,9号袋低于标准质量6克,质量都低于3克以上,故4、6、9号袋不合格;(2)表中标注+4克的,超过标准质量4克,超过准质量最多,是7,8号袋,它的实际质量是454+4=458克;(3)表中标注﹣6的,低于标准质量6克,低于准质量最多,是9号袋,它的实际质量是454﹣6=448克4.①(+4)+(﹣3)+(+10)+(﹣9)+(﹣6)+(+12)+(﹣10),=(﹣3)+(﹣9)+(﹣6)+(+4)+(+12)+(+10)+(﹣10)=(﹣18)+(+16)+0=﹣2(厘米),所以蜗牛最后的位置在点0西侧,距离点0为2厘米;②|+4|+|﹣3|+|+10|+|﹣9|+|﹣6|+|+12|+|﹣10|=4+3+10+9+6+12+10=54(厘米),所以蜗牛一共得到54料芝麻;③如图所示,最远时为11厘米.5.(1)﹣10﹣9+7﹣15+6﹣5+4﹣2=﹣24,即可得最终巡警车在岗亭A处南方24千米处.(2)行驶路程=10+9+7+15+6+5+4+2=58千米,需要油量=58×0.2=11.6升,故油不够,需要补充1.6升6.解:数轴如图所示:7.(1)(2)(﹣200)+700=500米,则他在医院的东500米,他能到医院8.(1)依题意可知图为:(2)∵|﹣100﹣(﹣150)|=50(m),∴聪聪家与刚刚家相距50米.(3)聪聪家向东20米所表示的数是﹣100+20=﹣80.(4)求数轴上两点间的距离可用右边的点表示的数减去左边的点表示的数9.如图所示:(1)书店距花店35米;(2)公交车站在书店的西边25米处;(3)小明所走的总路程:100+|﹣65|+|﹣70|+10=245(米),245÷35=7(分钟),7+4×10=47(分钟),答:小明从书店购书一直到公交车站一共用了47分钟.10.如图所示:(1)书店距花店35米;(2)公交车站牌在书店的东边10米处;(3)王老师所走的总路程:110+|﹣75|+|﹣50|+25=260(米),260÷26=10(分钟),10+4×10=50(分钟).答:王老师从书店购书一直到公交车站一共用了50分钟.11.(1)依题意得﹣3+(+7)+(﹣5)+(﹣10)+(﹣8)+(+9)+(﹣6)+(+12)+(+4)=0,∴蜗牛停在数轴上的原点;(2)(|+7|+|﹣5|+|﹣10|+|﹣8|+|+9|+|+12|+|+4|+|﹣6|)÷=122cm.∴蜗牛一共爬行了122秒12.由题意得:﹣15+25﹣20+30=﹣20,∵向东记为正,向西记为负,∴﹣20表示向西行驶20公里;汽车共行驶15+25+20+30+20=110公里,用时为:110÷55=2,∴共用时2+2=4小时,故回到A地的时间为8+4=12点13.(1)(﹣5)+(﹣4)+10+(﹣3)+8=[(﹣5)+(﹣4)+(﹣3)]+(10+8)=﹣12+18=6(厘米).答:小虫最后离出发点6厘米.(2)|﹣5|+|﹣4|+|10|+|﹣3|+|8|=30.答:小虫最终一共可得到30粒芝麻.(3)由(2)知:小虫共爬行了30厘米,故其爬行速度为:30÷6=5(厘米/分钟).答:小虫的爬行速度为5厘米/分钟14.(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=5﹣3+10﹣8﹣6+12﹣10,=5+10+12﹣3﹣8﹣6﹣10=27﹣27=0,∴小虫最后可以回到出发点;(2)+5+(﹣3)=2,(+5)+(﹣3)+(+10)=12,(+5)+(﹣3)+(+10)+(﹣8)=4,(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)=﹣2,(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+12=10;所以,小虫离开出发点O最远时是12厘米;(3)(|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|)×2=(5+3+10+8+6+12+10)×2=54×2=108,所以小虫共可得108粒芝麻15.由题意可知,达标的人数为6人,所以达标率6÷8×100%=75%.平均成绩为:18+=18+(﹣0.2)=17.8(秒)16.(1)∵16次为达标,超过的次数用正数表示,∴达标的人数6人.(2)八名女生所做的总次数是:(16+2)+(16+2)+(16﹣2)+(16+3)+(16+1)+(16﹣1)+16+(16+1)=134,所以平均次数是=16.7517.(1)根据题意可得:向右为正,向左为负,由8次振动记录可得:10﹣9+8﹣6+7.5﹣6+8﹣7=5.5,故停止时所在位置在A点右边5.5mm处;(2)一振子从一点A开始左右来回振动8次,共10+9+8+6+7.5+6+8+7=61.5mm.如果每毫米需时0.02秒,故共用61.5×0.02=1.23秒18.(1)(+15)+(﹣3)+(+14)+(﹣11)+(+10)+(﹣12)+(+4)+(﹣15)+(+16)+(﹣18)=0千米;(2)|+15|+|﹣3|+|+14|+|﹣11|+|+10|+|﹣12|+|+4|+|﹣15|+|+16|+|﹣18|=15+3+14+11+10+12+4+15+16+18=118(千米),则耗油118×a=118a公升.答:将最后一名乘客送到目的地时,小距下午出发地点的距离是0千米;若汽车耗油量为a公升/千米,这天下午汽车共耗油118a公升19.根据题意可设:存入为“+”,取出为“﹣”;则储蓄所该日现金增加量等于(﹣9.5)+(+5)+(﹣8)+(12)+(+23)+(﹣10.25)+(﹣2)=+10.25万元.故储蓄所该日现金增加10.25万元20.(1)本周水位依次为0.15m,﹣0.05m,0.08m,﹣0.02m,0.12m,﹣0.13m,0.03m.故星期一水库的水位最高,星期六水库的水位最低.最高水位比最低水位高0.15m+0.25m=0.4m.(2)上升了,上升了0.15﹣0.2+0.13﹣0.1+0.14﹣0.25+0.16=0.18m21.(1)+15=14.6(g);(2)其中﹣3,﹣4,﹣5,﹣1.5为不合格,那么合格的有6个,合格率为=60%22.(1)10﹣3+4﹣2+13﹣8﹣7﹣5﹣2=10+4+13﹣3﹣2﹣8﹣7﹣5﹣2=27﹣27=0(米),∴甲处与乙处相距0米,即在原处.(2)工作人员离开甲处的距离依次为:10,7,11,9,22,14,7,2,0(米),∴工作人员离开甲处最远是22米.(3)10+3+4+2+13+8+7+5+2=54(米),∴工作人员共修跑道54米23.以25千克为标准重量,超过25千克记为正数,不足25千克记为负数.25×20+[0+0+(﹣1)+(﹣1)+(﹣2)+(﹣1)+(﹣1)+0+1+0+(﹣2)+(﹣2)+(﹣1)+(﹣1)+1+1+0]=490 (千克),490÷20=24.5(千克).答:总重量为490kg,平均重量24.5kg.在今后的抽查中,应严格把关,保护广大消费者的利益24.(1)与标准重量比较,10袋大米总计超过1+1+1.5﹣1+1.2+1.3﹣1.3﹣1.2+1.8+1.1=5.4千克;(2)10袋大米的总重量是50×10+5.4=505.4千克25.(1)成绩记为正数的不达标,只有2人不达标,6人达标.这个小组男生的达标率=6÷8=75%;(2)﹣0.8+1﹣1.2+0﹣0.7+0.6﹣0.4﹣0.1=﹣1.6 15﹣1.6÷8=14.8秒答:(1)这个小组男生的达标率为75%.(2)这个小组男生的平均成绩是14.8秒26.(1)∵8名男生有5个人达到标准,即5÷8×100%=62.5%,8名男生有62.5%达到标准;(2)10+5+7+11+6+4+7+8=58或3﹣2+0+4﹣1﹣3+0+1=2,7×8+2=58,他们共做了58个引体向上27.(1)约定向北为正方向,则向南为负方向,当天的行驶记录相加就是车的现在位置,18﹣9+7﹣14+15﹣6﹣8=3(千米),故B地在A地北方3千米处.(2)要求该天共耗油多少升要先求该车走了多少路然后×a,即(18+9+7+14+15+6+8)×a=77a(升),故该天共耗油77a升28.(1)(+9)+(﹣3)+(﹣5)+(+6)+(﹣7)+(+10)+(﹣6)+(﹣4)+(+4)+(﹣3)+(+7)=9﹣3﹣5+6﹣7+10﹣6﹣4+4﹣3+7=9+10﹣3﹣5﹣3=8,∴将最后一名乘客送到目的地时,出租车离公园8公里,在公园的8公里处.(2)|+9|+|﹣3|+|﹣5|+|+6|+|﹣7|+|+10|+|﹣6|+|﹣4|+|+4|+|﹣3|+|+7=9+3+5+6+7+10+6+4+4+3+7=64,∵64×0.1=6.4(升),∴这辆出租车每天下午耗油6.4升29.先求超过的根数:(+3)+(+2)+0+(﹣1)+(﹣2)+(﹣3)+(+3)+(﹣2)+(﹣2)+(﹣1)=﹣3;则10盒火柴的总数量为:100×10﹣3=997(根).答:10盒火柴共有997根30.(1)根据题意得:150﹣32﹣43+205﹣30+25﹣20﹣5+30+75﹣25=330米,500﹣330=170米.(2)根据题意得:150+32+43+205+30+25+20+5+30+75+25=640米,640×0.04×5=128升.答:(1)他们没能最终登上顶峰,离顶峰害有170米;(2)他们共使用了氧气128升。

有理数应用题专题练习题

有理数应用题专题练习题

有理数应用题专题练习题题目1某商店原价为200元的商品正在打折,打折力度是商品原价的20%,现在购买该商品需要支付的金额是多少?题目2小明花了120元买了一本书,打折后实际支付的金额是原价的80%,这本书原价多少元?题目3小明有1000元钱,他花了80%的钱买了一件商品后,还剩下多少钱?题目4小红和小明共同购买了一件原价为500元的商品,他们分别支付了一定金额后还剩下100元,小红支付的金额是原价的50%,小明支付的金额是原价的40%,他们各自支付了多少钱?题目5小王从某商店购买了一件原价为600元的商品,商店开展了一项活动,如果购买该商品可以获赠3张价值100元的代金券,小王使用了这3张代金券购买了另一件原价为400元的商品,他最终支付了多少钱?题目6小李和小刚一起购买了一款游戏,原价为480元,商家为鼓励购买,推出了一项优惠活动,如果购买两个游戏可以打8折,并赠送一款价值100元的游戏,小李和小刚各自需要支付多少钱?题目7小明从某网店购买了一件原价为800元的衣服,使用了一张抵用券后,最终支付了600元,这张抵用券的面值是多少元?题目8小红从商店购买了两件商品,第一件的原价为400元,第二件的原价为600元。

小红只支付了总价值800元的钱,商家给了她多少折扣?题目9小杨需要支付2000元的商品,但他只有1500元,商家同意给予小杨一定的折扣,以使他能买到商品,如果最低折扣为3折,请问小杨最多能支付多少钱?题目10某商店正在举办促销活动,所有商品打5折。

小张从该商店购买了一件原价为800元的衬衫,他最终需要支付多少钱?答案1. 打折力度为20%,需要支付的金额为:200 * (1 - 0.2) = 160元。

2. 实际支付的金额为80%,原价为:120 / 0.8 = 150元。

3. 花了80%的钱购买商品后,还剩下:1000 * (1 - 0.8) = 200元。

4. 小红支付的金额为原价的50%,为:500 * 0.5 = 250元,小明支付的金额为原价的40%,为:500 * 0.4 = 200元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、自行车厂一周计划生产560辆自行车,平均每天生产80辆,由于各种原因实际每天生产量与计划量相比有出入。

下表是某周的生产情况(超产为正,减产为负,单位:辆)
(1)根据记录可知前三天共生产多少辆;
(2)产量最多的一天比产量最少的一天多生产多少辆;
(3)本周总生产量与计划相比较,是增加还是减少?
(4)该厂实行计件工资制,每生产一辆车30元,超额部分每辆再奖5元,少生产一辆倒扣5元,那么该厂工人这一周的工资总额是多少元?
2、甲一周的收支情况表,收入为正,支出为负,(单位:元)
(1)本周末,甲有多少节余?
(2)找这个情况估计,甲一月(按30天算)能有多少节余?
(3)按以上支出水平,甲一月(按30天算)至少有多少收入才能维持正常开支?
3、出租车司机小李某天下午的营运线路是东西走向解放路上进行的,如果规定向东方向为正,他这天下午行程如下(单位:千米):+15,—3,+14,—11,+10,—12,+4,—16,+13,—18 (1)将最后一名乘客送达目的地时,小李在出发点的哪个方向?距离出发点是多少千米?
(2)若汽车耗油量为0.5升/千米,这天下午汽车共耗油多少升?
4、小红爸爸上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况。

每股涨跌是比前一天(单位:元)
(1)你认为星期四收盘时,每股是多少?
(2)本周内每股最高是多少?最低是多少元?
(3)如果小红的爸爸周五将股票全部卖出,买时需付15
0。

%的手续费,卖时需付0。

15%的手续费和0.1%的交易税,那小红爸爸的收益如何?
5、某一食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:
(1)这批样品的平均质量比标准质量多还是少?多或少几克?
(2)若标准质量为450克,则抽样检测的总质量是多少?。

相关文档
最新文档