含有理数原理的实际应用题
有理数应用题

1、某商店买进60件羊毛衫,每件进价240元,卖出时每件标价360元,由于销售情况不好,商店决定降价出售,但希望售完后总利润率不低于20%,那么羊毛衫最多降价多少元出售?A. 48元B. 60元C. 72元D. 96元(答案)C2、甲、乙两地相距50km,A骑自行车,B乘汽车,同时从甲城出发去乙城,已知汽车的速度是自行车速度的2.5倍,B中途休息了0.5小时还比A早到2小时,求自行车和汽车的速度。
设自行车的速度是x千米/小时,则下列方程正确的是:A. (50/x) - (50/(2.5x)) = 2.5B. (50/(2.5x)) - (50/x) = 2.5 - 0.5C. (50/x) - (50/(2.5x)) = 2 + 0.5D. (50/x) + 2.5 = 50/(2.5x) + 0.5(答案)C3、某企业前年缴税30万元,今年缴税36.3万元,那么该企业缴税的平均增长率为:A. 10%B. 15%C. 20%D. 22%(答案)A4、一家商店将某件服装按成本价提高30%后,又以8折优惠卖出,结果每件仍获利12元,那么这件商品的成本价为:A. 200元B. 300元C. 400元D. 500元(答案)B5、某车间共有90名工人,每名工人平均每天可加工甲种部件15个或乙种部件8个,应安排加工甲、乙两种部件各多少人,才能使每天加工后每3个甲种部件与2个乙种部件恰好配套?设安排加工甲种部件x人,则下列方程正确的是:A. 15x/8(90-x) = 3/2B. 15x/8(90-x) = 2/3C. 8(90-x)/15x = 3/2D. 8(90-x)/15x = 2/3(答案)B6、某商品的进价为100元,提高40%后标价,则标价为:A. 120元B. 130元C. 140元D. 150元(答案)C7、某工厂计划为地震灾区生产A,B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5m³,一套B型桌椅(一桌三椅)需木料0.7m ³,工厂现有木料302m³。
有理数解决实际问题

有理数解决实际问题在我们的日常生产和生活中,经常遇到一些与经济问题有关的事物,而有理数运算的学习,对我们解决这类问题很有帮助。
现举例说明。
一、缴纳利息税我国自1999年11月1日起征收银行存款利息税,税率为利息的20%,在取款时由银行代为扣缴。
利息税作为个人所得税的一种,与我们每个人都有着密切的联系。
例1某学校陈老师在中国人民银行存入了10000元的一年定期普通存款。
按当时的利息标准,年利率为 2.25%,那么按此标准,他一年后去银行取款,本息一共能得到多少元?解析:10000+10000×2.25(1-20%)=10000+225×80%=10000+180=10180(元)答:陈老师一年后能得到10180元。
二、优惠大酬宾“优惠大酬宾”是一些商场(或超市)经常打出来吸引顾客的一种“招牌”。
到底怎样选择商场购物才更合算,做一个聪明的“上帝”,有理数的运算会帮助我们做出选择。
例2春节前夕,甲、乙两家大型商场同时推出“优惠大酬宾”活动。
在甲商场购买大件家电,不论定价高低,一律优惠10%;在乙商场购买大件家电,1000元以内不优惠,超过1000元的部分优惠20%,小明家准备春节前夕购买一件较为实用的2500元的大冰箱,请问他家到哪个商场购买比较合算?解析:若在甲商场购买这只冰箱则需花费:2500×(1-10%)=2500×90%=2250(元)若在乙商场购买这只冰箱则需花费:1000+(2500-1000)×(1-20%)=1000+1500×80%=2200(元)因为 2250>2200,故小明家到乙商场购买这只冰箱比较合算。
三、股票交易付费股票作为现代经济生活中的新生事物,越来越受到人们的关注,股市甚至被视为经济的晴雨表。
在我国,国家证鉴会规定,每一笔股票买卖交易成交时,双方都要支付成交额的0.35%作为佣金给证券公司或交易所,付成交额的0.3%作为印花税交给国家;每股要付股票面值(我国股票面值均为1元)的0.1%作为过户费;每笔交易付1元委托费、5元通讯费;如果交易不成立,则不收通讯费(也有收的);如果佣金不足10元时,则按10元计算。
有理数的应用题

1、某商店进行促销活动,一种商品原价为100元,现打八折销售,则该商品的现价为:A. 20元B. 50元C. 80元D. 120元(答案)C2、某城市冬季某天的温度是-5℃,中午上升了8℃,则中午的温度是:A. -13℃B. 3℃C. -3℃D. 13℃(答案)B3、某学生参加数学竞赛,共有10道题,每做对一道题得10分,不做或做错扣5分,该学生最后得分为70分,则他做对了:A. 6道题B. 7道题C. 8道题D. 9道题(答案)C4、一潜水艇从海面先下潜20米,然后又上升了15米,此时潜水艇的高度是:A. +5米B. -5米C. +15米D. -20米(答案)B5、某公司去年盈利50万元,今年由于改进技术,盈利比去年增加了20%,则今年盈利为:A. 40万元B. 50万元C. 60万元D. 70万元(答案)C6、小明从家出发,先向正东方向走50米,再向正南方向走30米到达学校,如果以家为坐标原点,正东方向为x轴正方向,正北方向为y轴正方向,则学校的坐标为:A. (50, 30)B. (50, -30)C. (-50, 30)D. (-50, -30)(答案)B7、某股票开盘价为10元,上午11时跌了1.5元,下午收盘时又涨了0.5元,则该股票收盘价为:A. 8元B. 8.5元C. 9元D. 10元(答案)C8、某地区海拔高度为-100米,表示该地区:A. 比海平面高100米B. 比海平面低100米C. 与海平面相平D. 无法确定(答案)B9、某班级进行数学测试,满分为100分,及格分数为60分,小明得了75分,则小明的成绩:A. 低于及格线B. 刚好及格C. 高于及格线但低于满分D. 满分(答案)C10、某商品原价为a元,第一次降价10%,第二次又降价10%,则两次降价后的价格为:A. 0.8a元B. 0.9a元C. 0.81a元D. 0.99a元(答案)C。
有理数应用题经典30题(学生版)

有理数应用题经典30题(学生版)一、题目:有理数应用题经典30题(学生版)1. 均匀缩小小明购买了一副长方形的相框,长和宽的比例是3:2。
如果将宽缩小10%,那么长也需要缩小多少才能保持原来的比例?解析:设原来宽为x,则长为1.5x。
缩小10%后的宽为0.9x,新的长应为1.5x*0.9=1.35x。
所以,长需要缩小15%。
2. 装满水壶一个16升的水壶和一个9升的水壶都是空的。
现在需要得到恰好4升的水,问如何操作才能实现?解析:首先,将9升水壶装满水,再倒入16升水壶中,此时9升水壶中剩余5升水。
然后,倒空16升水壶,将9升水壶中的5升水倒入16升水壶中。
最后,将9升水壶重新装满水,再倒入16升水壶中,此时16升水壶中已经有4升水。
3. 倒水比例小明用相同的速度向两个相同容积的杯子中倒水,第一个杯子先倒水,第二个杯子稍后开始倒水,小明一直保持恒定的速度进行倒水。
如果要使两个杯子中的水量一直保持比例3:5,那么第二个杯子开始倒水的时间点在第一个杯子开始倒水后的多久?解析:设第一个杯子开始倒水后经过t时间,第二个杯子开始倒水。
根据题意可得:水量比例=倒水时间比例。
即3/(3+t) = 5/t,解方程可得t=5/2,所以第二个杯子开始倒水的时间点在第一个杯子开始倒水后的2.5分钟。
4. 数字排列将1、2、3、4、5、6、7、8、9这九个数字分别填入以下的方框中,使得相邻的两个数字之和为偶数。
每个数字只能使用一次。
□□□□□□□□□解析:填入以下数字即可满足条件:1234567895. 数轴运动一只蚂蚁在数轴上从0点开始向右爬,并且每次只能移动1个单位。
如果这只蚂蚁每次以等概率向左或向右爬,那么在第5次移动后,它距离0点的期望距离是多少?解析:蚂蚁在第1次、第3次、第5次移动时一定是在偶数点上,而第2次、第4次移动时一定是在奇数点上。
所以在第5次移动后,它距离0点的期望距离为0。
6. 周长比较一个矩形的长和宽之比是3:2,另一个矩形的长和宽之比是2:3。
有理数应用题经典例题

有理数应用题经典例题一、温度变化问题1. 例题- 某地一天中午12时的气温是7℃,过5小时气温下降了4℃,又过7小时气温又下降了4℃,第二天0时的气温是多少?2. 解析- 中午12时过5小时后的气温为7 - 4=3℃。
- 再过7小时(此时是第二天0时)后的气温为3-4 = - 1℃。
二、海拔高度问题1. 例题- 某一矿井的示意图如下,以地面为基准,A点的高度是+4.2米,B、C两点的高度分别是 - 15.6米与 - 30.5米。
A点比B点高多少?比C点呢?2. 解析- A点比B点高的高度为A - B=( + 4.2)-(-15.6)=4.2 + 15.6 = 19.8米。
- A点比C点高的高度为A - C=( + 4.2)-(-30.5)=4.2+30.5 = 34.7米。
三、行程问题(正负数表示方向)1. 例题- 一辆汽车沿着一条南北方向的公路来回行驶。
某一天早晨从A地出发,晚上到达B地。
约定向北为正,向南为负,当天记录如下(单位:千米):+18.3, - 9.5,+7.1, - 14, - 6.2,+13, - 6.8, - 8.5。
- (1)B地在A地何处,相距多少千米?- (2)若汽车行驶每千米耗油0.2升,那么这一天共耗油多少升?2. 解析- (1)将所有数相加:( + 18.3)+(-9.5)+( + 7.1)+(-14)+(-6.2)+( + 13)+(-6.8)+(-8.5)- =18.3 - 9.5+7.1 - 14 - 6.2 + 13 - 6.8 - 8.5- =(18.3+7.1 + 13)-(9.5 + 14+6.2+6.8 + 8.5)- =38.4 - 45- =- 6.6千米。
- 所以B地在A地正南方向,相距6.6千米。
- (2)汽车行驶的总路程为|+18.3|+|-9.5|+|+7.1|+|-14|+|-6.2|+|+13|+|-6.8|+|-8.5|- =18.3 + 9.5+7.1+14+6.2 + 13+6.8+8.5- =83.4千米。
有理数应用题

2、下列是我校七年级5名学生的体重情况, 姓名 体重(千克) 体重与平均体 重的差 A 34 -7 B 44 +3 C 45 +4 D E
37 41 -4 0
(2)谁最重?谁最轻? (3)最重的与最轻的相差多少?
行程问题:
1. 某一出租车一天下午以A地为出发地,在东西方向 营运,向东为正,向西为负,依先后次序记录如下: (单位:km)
2、-3、-5、+7、-6、-2、+8
(1)将最后一名乘客送到目的地,出租车离A地多 远?在学校的什么方向?
(2)若每千米的价格为2.4元,司机一个下午的营 业额是多少? (3)出租车离A点最远的距离是多少?
2、某产品的标准质量是100kg,现抽查6袋该 产品,超出记为“+”,不足记为“-”,(单 位:kg)
-3,+2,+4,-1,-3.5,+2.6
哪袋与标准偏差最大? 质量最重与最轻的相差多少?
3、某食品抽查20袋样品,超过或不足的部分分别 用正、负数来表示,记录如下表:
与标准质量的差值/g 袋数 -5 -2 1 4 0 3 1 4 3 5 6 3
练习:李老师在学校西面的南北路上从某点A
出发来回检查学生的植树情况,设定向北的路程 记为正数,向南的路程记为负数,所行路程依次 为(单位:百米)
+12,-l0,+10,-8,-6,-5, -3
(1)千米? (2)李老师离开出发点A最远时有多少千米?
1、这批样品的总质量比总的标准质量多还是 少? 多或少几克? 2、若每袋标准质量为450克,则抽样检测的 总质量是多少?
练习:今抽查10袋盐,每袋盐的标准质量是100克,
超出部分记为正,不足记为负,统计成下表: 与标准质量的差值/g 袋数 +1 1 -0.5 4 0 3 1.5 4 3 5
有理数专项训练(实际应用)(人教版)(含答案)

有理数专项训练(实际应用)(人教版)一、单选题(共8道,每道12分)1.某潜水艇停在海面下500米处,先下降200米,又上升130米,这时潜水艇停在海面下( )米处.A.430B.530C.570D.470答案:C解题思路:记上升为“+”,下降为“-”,把海面记为0米,则海面下500米为-500米,下降200米为-200米,上升130米为+130米,由题意得,(-500)+(-200)+130=-570(米),即这时潜水艇停在海面下570米处.故选C.试题难度:三颗星知识点:有理数加减混合运算的实际应用2.某超市去年四个季度的盈亏情况如下(盈余为正,亏损为负):128.5万元,-140万元,-95.5万元,280万元,那么这个超市去年总的盈亏情况是( )A.盈余644万元B.亏本173万元C.盈余173万元D.亏本64万元答案:C解题思路:要计算超市去年总的盈亏情况,只需把四个季度的盈余和亏损加到一起,然后看是正的还是负的即可,正的表示盈余,负的表示亏损.128.5+(-140)+(-95.5)+280=173(万元),所以这个超市去年盈余173万元.故选C.试题难度:三颗星知识点:有理数加减混合运算的实际应用3.一种大米的质量标识为“25±0.25kg”,则下列哪种质量的大米是合格的?( )A.25.30 kgB.24.70kgC.25.51 kgD.24.80 kg答案:D解题思路:一种大米的质量标识为“25±0.25kg”,说明大米质量在24.75kg和25.25kg之间都属于合格,因此选项中只有24.80 kg合格.故选D.试题难度:三颗星知识点:有理数加减混合运算的实际应用4.某部队新兵入伍时,对新兵进行“引体向上”测试,为方便记录,以50次为标准,超过50次的部分用正数表示,不足50次的部分用负数表示.第二小队10名新兵的成绩记录如下:3,-5,0,8,7,-1,10,1,-4,5.则第二小队的平均成绩为( )次.A.2.4B.51.4C.52D.52.4答案:D解题思路:由题意,以50次为标准,正数表示比50次多的次数,负数表示比50次少的次数.则平均成绩=标准数+记录成绩的平均数,所以第二小队的平均成绩为50+[3+(-5)+0+8+7+(-1) +10+1+(-4)+5]÷10=52.4(次)故选D.试题难度:三颗星知识点:有理数加减混合运算的实际应用5.某中学七(1)班学生的平均身高是160cm.下表给出了该班6名学生的身高情况(单位:cm):则这6名学生中最高的与最矮的身高相差( )A.4 cmB.6 cmC.9 cmD.11 cm答案:D解题思路:由题意得,以平均身高160cm为基准,身高与平均身高的差值=身高-平均身高,小彬的身高与平均身高的差值为+2,那么小彬的身高为160+2=162(cm);小亮的身高为154cm,那么小亮的身高与平均身高的差值为154-160=-6(cm);小颖的身高与平均身高的差值为+3,那么小颖的身高为160+3=163(cm);小山的身高为165cm,那么小山的身高与平均身高的差值为165-160=+5(cm).把表格补充完整:所以这6名学生中最高的与最矮的身高相差165-154=11(cm).故选D.试题难度:三颗星知识点:有理数加减混合运算的实际应用6.某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(超产记为正数,减产记为负数):则下列说法正确的是( )A.本周生产了2079辆摩托车B.本周总产量与计划量相比,增加了21辆C.产量最多的一天比产量最少的一天多生产了32辆D.本周周二产量最高答案:A解题思路:每天的计划生产量为300辆,且“+”表示比计划量多生产的辆数,“-”表示比计划量少生产的辆数.由题意,和本周总的计划量相比,多生产的摩托车辆数为(-5)+7+(-3)+4+10+(-9)+(-25)=-21(辆),即本周的实际生产量比计划量少了21辆,所以本周的实际生产量为300×7+(-21)=2079(辆),则A选项正确,B选项错误;由题意可得:产量最多的一天是周五,产量最少的一天是周日,最多的一天比最少的一天多生产10-(-25)=35(辆),所以C选项和D选项错误.故选A.试题难度:三颗星知识点:有理数加减混合运算的实际应用7.去年7月份小明到银行新开一个账户,存入1500元,以后每月根据收支情况存入一笔钱,下表为小明从8月份到12月份的存款情况:则截止到去年12月份,存折上共有( )A.1750元B.1250元C.9550元D.9750元答案:C解题思路:由题意,7月份存款1500元,且每月存入账户的钱数是与上一月相比,则8月份存款1500+(-100)=1400(元);9月份存款1400+(-200)=1200(元);10月份存款1200+500=1700(元);11月份存款1700+300=2000(元);12月份存款2000+(-250)=1750(元).1500+1400+1200+1700+2000+1750=9550(元).所以,截止到去年12月份,存折上共有9550元.故选C.试题难度:三颗星知识点:有理数加减混合运算的实际应用8.下表为国外几个城市与北京的时差(甲城市与乙城市的时差为两城市同一时刻的时数之差,例如,当北京时间为12:00时,东京时间为13:00,巴黎时间为5:00,那么东京与北京的时差为13-12=+1(h),巴黎与北京的时差为5-12=-7(h)):则北京10月1日10时时,伦敦的时间是( )A.10月1日18时B.10月1日2时C.9月30日2时D.10月2日18时答案:B解题思路:由题意,伦敦与北京的时差为-8时,说明同一时刻伦敦时间与北京之间的差为-8时,即伦敦时间-北京时间=-8.当北京10月1日10时时,伦敦时间-10=-8,则伦敦时间为10+(-8)=2(时),因为0< 2 < 24,所以此时伦敦时间为10月1日2时.故选B.试题难度:三颗星知识点:有理数加减混合运算的实际应用。
有理数应用题30题有答案

. .. .有理数应用题专项练习30题(有答案)1.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)A处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油a升,这一天上午共耗油多少升?2.某工厂生产一批零件,根据要求,圆柱体的径可以有0.03毫米的误差,抽查5个零件,超过规定径的记作正数,不足的记作负数,检查结果如下:+0.025,﹣0.035,+0.016,﹣0.010,+0.041(1)指出哪些产品合乎要求?(2)指出合乎要求的产品中哪个质量好一些?3.某奶粉每袋的标准质量为454克,在质量检测中,若超出标准质量2克,记作为+2克,若质量低于3克以上的,则这袋奶粉为不合格,现在抽取10袋样品进行质量检测,结果如下(单位:克).袋号 1 2 3 4 5 6 7 8 9 10记作﹣2 0 3 ﹣4 ﹣3 ﹣5 +4 +4 ﹣6 ﹣3(1)这10袋奶粉中有哪几袋不合格?(2)质量最多的是哪袋?它的实际质量是多少?(3)质量最少的是哪袋?它的实际质量是多少?4.蜗牛从某点0开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):+4,﹣3,+10,﹣9,﹣6,+12,﹣10.①求蜗牛最后的位置在点0的哪个方向,距离多远?②在爬行过程中,如果每爬1厘米奖励一粒芝麻,则蜗牛一共得到多少粒芝麻?③蜗牛离开出发点0最远时是多少厘米?5.某巡警车在一条南北大道上巡逻,某天巡警车从岗亭A处出发,规定向北方向为正,当天行驶纪录如下(单位:千米)-10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2(1)最终巡警车是否回到岗亭A处?若没有,在岗亭何方,距岗亭多远?(2)摩托车行驶1千米耗油0.2升,油箱有油10升,够不够?若不够,途中还需补充多少升油?6.某市公交公司在一条自西向东的道路旁边设置了人民公园、新华书店、实验学校、科技馆、花园小区站点,相邻两个站点之间的距离依次为3km、1.5km、2km、3.5km.如果以新华书店为原点,规定向东的方向为正,向西的方向为负,设图上1cm长的线段表示实际距离1km.请画出数轴,将五个站点在数轴上表示出来.7.生活与应用:在一条笔直的东西走向的马路上,有少年宫、学校、超市、医院四家公共场所.已知少年宫在学校东300米,超市在学校西200米,医院在学校东500米.(1)你能利用所学过的数轴知识描述它们的位置吗?(2)小明放学后要去医院看望生病住院的奶奶,他从学校出发向西走了200米,又向西走了﹣700米,你说他能到医院吗?8.红中学位于东西方向的一条路上,一天我们学校的老师出校门去家访,他先向西走100米到聪聪家,再向东走150米到青青家,再向西走200米到刚刚家,请问:(1)如果把这条路看作一条数轴,以向东为正方向,以校门口为原点,请你在这条数轴上标出聪聪家与青青家的大概位置(数轴上一格表示50米).(2)聪聪家与刚刚家相距多远?(3)聪聪家向西20米所表示的数是多少?(4)你认为可用什么办法求数轴上两点之间的距离?9.小明到坐落在东西走向的大街上的文具店、书店、花店和玩具店购物,规定向东走为正.已知小明从书店购书后,走了100m到达玩具店,再走﹣65m到达花店,又继续走了﹣70m到达文具店,最后走了10m到达公交车站.(1)书店距花店有多远?(2)公交车站在书店的什么位置?(3)若小明在四个店各逗留10min,他的步行速度大约是每分钟35m,小明从书店购书一直到公交车站一共用了多少时间?10.王老师到坐落在东西走向的阜城大街上的文具店、书店、花店和玩具店购物,规定向东为正.已知王老师从书店购书后,走了110m到达玩具店,再走﹣75m到达花店,又继续走了﹣50m到达文具店,最后走了25m到达公交车站牌.(1)书店距花店有多远?(2)公交车站牌在书店的什么位置?(3)若王老师在四个店各逗留10min,他的步行速度大约是每分钟26m,王老师从书店购书一直到公交车站一共用了多少时间?11.已知蜗牛从A点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作“﹣”,从开始到结束爬行的各段路程(单位:cm)依次为:+7,﹣5,﹣10,﹣8,+9,﹣6,+12,+4(1)若A点在数轴上表示的数为﹣3,则蜗牛停在数轴上何处,请通过计算加以说明;(2)若蜗牛的爬行速度为每秒,请问蜗牛一共爬行了多少秒?12.上午8点,某人驾驶一辆汽车从A地出发,向东记为正,向西记为负.记录前4次行驶过程如下:﹣15公里,+25公里,﹣20公里,+30公里,若要汽车最后回到A地,则最后一次如何行驶?已知汽车行驶的速度为55千米/小时,在这期间他办事花去2小时,问他回到A地的时间.13.有一只小虫从某点出发,在一条直线上爬行,若规定向右爬行的路程记为正,向左爬行的路程记为负,小虫爬行各段路程依次记为(单位:厘米):﹣5,﹣4,+10,﹣3,+8.(1)小虫最后离出发点多少厘米?(2)如果小虫在爬行过程中,每爬行一厘米就得到一粒芝麻,问小虫最终一共可得到多少粒芝麻?(3)若小虫爬行的速度始终不变,并且爬完这段路程用了6分钟,求小虫的爬行速度是多少?14.一个小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程为负数,爬行的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)小虫最后是否能回到出发点O?(2)小虫离开出发点O最远时是多少厘米?(直接写出结果即可.)(3)在爬行过程中,如果每爬1厘米奖励两粒芝麻,则小虫共可得多少粒芝麻?15.体育课全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒.﹣1 +0.8 0 ﹣1.2 ﹣0.1 0 +0.5 ﹣0.6这组女生的达标率为多少平均成绩为多少秒?16.体育课上对七年级(1)班的8名女生做仰卧起坐测试,若以16次为达标,超过的次数用正数表示,不足的次数用负数表示.现成绩抄录如下:+2,+2,﹣2,+3,+1,﹣1,0,+1.问:(1)有几人达标?(2)平均每人做几次?17.一振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位mm):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求停止时所在位置距A点何方向,有多远?(2)如果每毫米需时0.02秒,则共用多少秒?18.出租车司机小某天下午营运全是在东西走向的人民大道进行的.如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米)+15,﹣3,+14,﹣11,+10,﹣12,+4,﹣15,+16,﹣18(1)将最后一名乘客送到目的地时,小距下午出发地点的距离是多少千米?(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?19.某储蓄所,某日办理了7项储蓄业务:取出9.5万元,存入5万元,取出8万元,存入12万元,存入23万元,取出10.25万元,取出2万元,求储蓄所该日现金增加多少万元?20.小明去一水库进行水位变化的实地测量,他取警戒线作为0m,记录了这个水库一周的水位变化情况(测量前一天的水位达到警戒水位,单位:m,正号表示水位比前一天上升,负号表示比前一天下降星期一二三四五六日水位变化(m)+0.15 ﹣0.2 +0.13 ﹣0.1 +0.14 ﹣0.25 +0.16(1)这一周,哪一库的水位最高?哪一天的水位最低?最高水位比最低水位高多少?(2)与测量前一天比,一周水库水位是上升了还是下降了?21.在一次食品安检中,抽查某企业10袋奶粉,每袋取出100克,检测每100克奶粉蛋白质含量与规定每100克含量(蛋白质)比较,不足为负,超过为正,记录如下:(注:规定每100g奶粉蛋白质含量为15g)﹣3,﹣4,﹣5,+1,+3,+2,0,﹣1.5,+1,+2.5(1)求平均每100克奶粉含蛋白质为多少?(2)每100克奶粉含蛋白质不少于14克为合格,求合格率为多少?22.某中学定于11月举行运动会,组委会在修整跑道时,工作人员从甲处开工,规定向南为正,向北为负,从开工处甲处到收工处乙处所走的路程为:+10,﹣3,+4,﹣2,+13,﹣8,﹣7,﹣5,﹣2,(单位:米)(1)甲处与乙处相距多远?(2)工作人员离开甲处最远是多少米?(3)工作人员共修跑道多少米?23.为了保护广大消费者的利益,最近工商管理人员在一家面粉店总抽查了20袋面粉,称得它们的重量如下(单位:千克):25、25、24、24、23、24、24、25、26、25、23、23、24、25、25、24、24、26、26、25.请你计算这20袋面粉的总重量和每袋的平均重量,你能找出比较简单的计算方法吗?请你试试,根据你的计算结果,你对这次检查情况有什么看法?(每袋面粉的标准重量为:25千克)24.每袋大米的标准重量为50千克,10袋大米称重记录如图所示.(1)与标准重量比较,10袋大米总计超过多少千克或不足多少千克?(2)10袋大米的总重量是多少千克?25.体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩测试记录,其中“+“表示成绩大于15秒.﹣0.8 +1 ﹣1.20 ﹣0.7+0.6﹣0.4﹣0.1问:(1)这个小组男生的达标率为多少?()(2)这个小组男生的平均成绩是多少秒?26.在体育课上,老师对七年级1班的部分男生进行了引体向上的测试,该项目的标准为不低于7个.现在老师以能做7个引体向上为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩记录如下:3 ﹣2 04 ﹣1 ﹣3 0 1 (1)8名男生有百分之几达到标准?(2)他们共做了多少个引体向上?27.公路养护小组乘车沿南北公路巡视维护,某天早晨从A地出发,晚上最后到达B地,约定向北为正方向,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣14,+15,﹣6,﹣8,问B地在A地何方,相距多少千米?若汽车行驶每千米耗油a升,求该天共耗油多少升?28.某辆出租车一天下午以公园为出发地在东西方向行驶,向东走为正,向西走为负,行车里程(单位:公里),依先后次序记录如下:+9、﹣3、﹣5、+6、﹣7、+10、﹣6、﹣4、+4、﹣3、+7(1)将最后一名乘客送到目的地时,出租车离公园多远?在公园的什么方向?(2)若出租车每公里耗油量为0.1升,则这辆出租车每天下午耗油多少升?29.10盒火柴如果以每盒100根为标准,超过的根数记作正数,不足的根数记作负数,每盒数据记录如下:+3,+2,0,﹣1,﹣2,﹣3,+3,﹣2,﹣2,﹣1,10盒火柴共有多少根?30.某登山队5名队员以二号高地为基地,开始向海拔距二号高地500米的顶峰冲击,设他们向上走为正,行程记录如下(单位:米):+150,﹣32,﹣43,+205,﹣30,+25,﹣20,﹣5,+30,﹣25,+75.(1)他们最终有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?(2)登山时,5名队员在进行全程中都使用了氧气,且每人每米要消耗氧气0.04升.他们共使用了氧气多少升?有理数应用题30题参考答案:1.(1)∵+5﹣4+3﹣7+4﹣8+2﹣1=﹣6,又∵规定向北方向为正,∴A处在岗亭的南方,距离岗亭6千米.(2)∵|+5|+|﹣4|+|+3|+|﹣7|+|+4|+|﹣8|+|+2|+|﹣1|=34,又∵摩托车每行驶1千米耗油a升,∴这一天上午共耗油34a升.2.依据题意产品允许的误差为±0.03,即(+0.03﹣﹣0.03)之间.故:(1)第一、三、四个产品符合要求,即(+0.025,+0.016,﹣0.010).(2)其中第四个零件(﹣0.010)误差最小,所以第四个质量好些3.(1)4号袋低于标准质量4克,6号袋低于标准质量5克,9号袋低于标准质量6克,质量都低于3克以上,故4、6、9号袋不合格;(2)表中标注+4克的,超过标准质量4克,超过准质量最多,是7,8号袋,它的实际质量是454+4=458克;(3)表中标注﹣6的,低于标准质量6克,低于准质量最多,是9号袋,它的实际质量是454﹣6=448克4.①(+4)+(﹣3)+(+10)+(﹣9)+(﹣6)+(+12)+(﹣10),=(﹣3)+(﹣9)+(﹣6)+(+4)+(+12)+(+10)+(﹣10)=(﹣18)+(+16)+0=﹣2(厘米),所以蜗牛最后的位置在点0西侧,距离点0为2厘米;②|+4|+|﹣3|+|+10|+|﹣9|+|﹣6|+|+12|+|﹣10|=4+3+10+9+6+12+10=54(厘米),所以蜗牛一共得到54料芝麻;③如图所示,最远时为11厘米.5.(1)﹣10﹣9+7﹣15+6﹣5+4﹣2=﹣24,即可得最终巡警车在岗亭A处南方24千米处.(2)行驶路程=10+9+7+15+6+5+4+2=58千米,需要油量=58×0.2=11.6升,故油不够,需要补充1.6升6.解:数轴如图所示:7.(1)(2)(﹣200)+700=500米,则他在医院的东500米,他能到医院8.(1)依题意可知图为:(2)∵|﹣100﹣(﹣150)|=50(m),∴聪聪家与刚刚家相距50米.(3)聪聪家向东20米所表示的数是﹣100+20=﹣80.(4)求数轴上两点间的距离可用右边的点表示的数减去左边的点表示的数9.如图所示:(1)书店距花店35米;(2)公交车站在书店的西边25米处;(3)小明所走的总路程:100+|﹣65|+|﹣70|+10=245(米),245÷35=7(分钟),7+4×10=47(分钟),答:小明从书店购书一直到公交车站一共用了47分钟.10.如图所示:(1)书店距花店35米;(2)公交车站牌在书店的东边10米处;(3)王老师所走的总路程:110+|﹣75|+|﹣50|+25=260(米),260÷26=10(分钟),10+4×10=50(分钟).答:王老师从书店购书一直到公交车站一共用了50分钟.11.(1)依题意得﹣3+(+7)+(﹣5)+(﹣10)+(﹣8)+(+9)+(﹣6)+(+12)+(+4)=0,∴蜗牛停在数轴上的原点;(2)(|+7|+|﹣5|+|﹣10|+|﹣8|+|+9|+|+12|+|+4|+|﹣6|)÷=122cm.∴蜗牛一共爬行了122秒12.由题意得:﹣15+25﹣20+30=﹣20,∵向东记为正,向西记为负,∴﹣20表示向西行驶20公里;汽车共行驶15+25+20+30+20=110公里,用时为:110÷55=2,∴共用时2+2=4小时,故回到A地的时间为8+4=12点13.(1)(﹣5)+(﹣4)+10+(﹣3)+8=[(﹣5)+(﹣4)+(﹣3)]+(10+8)=﹣12+18=6(厘米).答:小虫最后离出发点6厘米.(2)|﹣5|+|﹣4|+|10|+|﹣3|+|8|=30.答:小虫最终一共可得到30粒芝麻.(3)由(2)知:小虫共爬行了30厘米,故其爬行速度为:30÷6=5(厘米/分钟).答:小虫的爬行速度为5厘米/分钟14.(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=5﹣3+10﹣8﹣6+12﹣10,=5+10+12﹣3﹣8﹣6﹣10=27﹣27=0,∴小虫最后可以回到出发点;(2)+5+(﹣3)=2,(+5)+(﹣3)+(+10)=12,(+5)+(﹣3)+(+10)+(﹣8)=4,(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)=﹣2,(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+12=10;所以,小虫离开出发点O最远时是12厘米;(3)(|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|)×2=(5+3+10+8+6+12+10)×2=54×2=108,所以小虫共可得108粒芝麻15.由题意可知,达标的人数为6人,所以达标率6÷8×100%=75%.平均成绩为:18+=18+(﹣0.2)=17.8(秒)16.(1)∵16次为达标,超过的次数用正数表示,∴达标的人数6人.(2)八名女生所做的总次数是:(16+2)+(16+2)+(16﹣2)+(16+3)+(16+1)+(16﹣1)+16+(16+1)=134,所以平均次数是=16.7517.(1)根据题意可得:向右为正,向左为负,由8次振动记录可得:10﹣9+8﹣6+7.5﹣6+8﹣7=5.5,故停止时所在位置在A点右边5.5mm处;(2)一振子从一点A开始左右来回振动8次,共10+9+8+6+7.5+6+8+7=61.5mm.如果每毫米需时0.02秒,故共用61.5×0.02=1.23秒18.(1)(+15)+(﹣3)+(+14)+(﹣11)+(+10)+(﹣12)+(+4)+(﹣15)+(+16)+(﹣18)=0千米;(2)|+15|+|﹣3|+|+14|+|﹣11|+|+10|+|﹣12|+|+4|+|﹣15|+|+16|+|﹣18|=15+3+14+11+10+12+4+15+16+18=118(千米),则耗油118×a=118a公升.答:将最后一名乘客送到目的地时,小距下午出发地点的距离是0千米;若汽车耗油量为a公升/千米,这天下午汽车共耗油118a公升19.根据题意可设:存入为“+”,取出为“﹣”;则储蓄所该日现金增加量等于(﹣9.5)+(+5)+(﹣8)+(12)+(+23)+(﹣10.25)+(﹣2)=+10.25万元.故储蓄所该日现金增加10.25万元20.(1)本周水位依次为0.15m,﹣0.05m,0.08m,﹣0.02m,0.12m,﹣0.13m,0.03m.故星期一水库的水位最高,星期六水库的水位最低.最高水位比最低水位高0.15m+0.25m=0.4m.(2)上升了,上升了0.15﹣0.2+0.13﹣0.1+0.14﹣0.25+0.16=0.18m21.(1)+15=14.6(g);(2)其中﹣3,﹣4,﹣5,﹣1.5为不合格,那么合格的有6个,合格率为=60%22.(1)10﹣3+4﹣2+13﹣8﹣7﹣5﹣2=10+4+13﹣3﹣2﹣8﹣7﹣5﹣2=27﹣27=0(米),∴甲处与乙处相距0米,即在原处.(2)工作人员离开甲处的距离依次为:10,7,11,9,22,14,7,2,0(米),∴工作人员离开甲处最远是22米.(3)10+3+4+2+13+8+7+5+2=54(米),∴工作人员共修跑道54米23.以25千克为标准重量,超过25千克记为正数,不足25千克记为负数.25×20+[0+0+(﹣1)+(﹣1)+(﹣2)+(﹣1)+(﹣1)+0+1+0+(﹣2)+(﹣2)+(﹣1)+(﹣1)+1+1+0]=490 (千克),490÷20=24.5(千克).答:总重量为490kg,平均重量24.5kg.在今后的抽查中,应严格把关,保护广大消费者的利益24.(1)与标准重量比较,10袋大米总计超过1+1+1.5﹣1+1.2+1.3﹣1.3﹣1.2+1.8+1.1=5.4千克;(2)10袋大米的总重量是50×10+5.4=505.4千克25.(1)成绩记为正数的不达标,只有2人不达标,6人达标.这个小组男生的达标率=6÷8=75%;(2)﹣0.8+1﹣1.2+0﹣0.7+0.6﹣0.4﹣0.1=﹣1.6 15﹣1.6÷8=14.8秒答:(1)这个小组男生的达标率为75%.(2)这个小组男生的平均成绩是14.8秒26.(1)∵8名男生有5个人达到标准,即5÷8×100%=62.5%,8名男生有62.5%达到标准;(2)10+5+7+11+6+4+7+8=58或3﹣2+0+4﹣1﹣3+0+1=2,7×8+2=58,他们共做了58个引体向上27.(1)约定向北为正方向,则向南为负方向,当天的行驶记录相加就是车的现在位置,18﹣9+7﹣14+15﹣6﹣8=3(千米),故B地在A地北方3千米处.(2)要求该天共耗油多少升要先求该车走了多少路然后×a,即(18+9+7+14+15+6+8)×a=77a(升),故该天共耗油77a升28.(1)(+9)+(﹣3)+(﹣5)+(+6)+(﹣7)+(+10)+(﹣6)+(﹣4)+(+4)+(﹣3)+(+7)=9﹣3﹣5+6﹣7+10﹣6﹣4+4﹣3+7=9+10﹣3﹣5﹣3=8,∴将最后一名乘客送到目的地时,出租车离公园8公里,在公园的8公里处.(2)|+9|+|﹣3|+|﹣5|+|+6|+|﹣7|+|+10|+|﹣6|+|﹣4|+|+4|+|﹣3|+|+7=9+3+5+6+7+10+6+4+4+3+7=64,∵64×0.1=6.4(升),∴这辆出租车每天下午耗油6.4升29.先求超过的根数:(+3)+(+2)+0+(﹣1)+(﹣2)+(﹣3)+(+3)+(﹣2)+(﹣2)+(﹣1)=﹣3;则10盒火柴的总数量为:100×10﹣3=997(根).答:10盒火柴共有997根30.(1)根据题意得:150﹣32﹣43+205﹣30+25﹣20﹣5+30+75﹣25=330米,500﹣330=170米.(2)根据题意得:150+32+43+205+30+25+20+5+30+75+25=640米,640×0.04×5=128升.答:(1)他们没能最终登上顶峰,离顶峰害有170米;(2)他们共使用了氧气128升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含有理数原理的实际应用题
题目一:购物计算
假设你去超市购物,购买了以下商品:
•牛奶:14元
•面包:6元
•鸡蛋:12元
请计算你购买这些商品的总价格。
解答:
不难发现,购物的总价格等于各种商品的价格之和。
我们可以用数学中的加法来表示这个关系。
所以,购物的总价格 = 牛奶的价格 + 面包的价格 + 鸡蛋的价格
将每个商品的价格代入公式:
购物的总价格 = 14元 + 6元 + 12元 = 32元
所以,购买这些商品的总价格是32元。
题目二:温度转换
假设现在的室外温度是摄氏30度,要将它转换为华氏温度,请计算。
解答:
温度的转换关系有一个转换公式,我们可以使用这个公式来计算。
华氏温度 = 摄氏温度 × 1.8 + 32
将摄氏30度代入公式进行计算:
华氏温度 = 30 × 1.8 + 32 = 86
所以,将摄氏30度转换为华氏温度是86度。
题目三:速度计算
假设一辆汽车以每小时60公里的速度行驶,经过3个小时,它行驶了多远?请计算。
解答:
速度的计算公式是:距离 = 速度 × 时间
将题目中给出的速度和时间代入公式进行计算:
距离 = 60公里/小时 × 3小时 = 180公里
所以,经过3个小时,汽车行驶了180公里。
题目四:货币兑换
假设你去国外旅行,想要将100美元兑换为人民币,汇率是1美元兑换为6.5
人民币,请计算你可以得到多少人民币。
解答:
货币兑换的计算公式是:兑换获得的货币 = 要兑换的货币 × 汇率
将题目中给出的数据代入公式进行计算:
兑换获得的人民币 = 100美元 × 6.5人民币/美元 = 650人民币
所以,你可以得到650人民币。
题目五:面积计算
假设一个正方形的边长是5米,求其面积。
请计算。
解答:
正方形的面积计算公式是:面积 = 边长²
将题目中给出的边长代入公式进行计算:
面积 = 5米 × 5米 = 25平方米
所以,这个正方形的面积是25平方米。
以上是含有理数原理的实际应用题的解答,通过对简单应用题的解答,我们可
以更加深入理解和掌握理数原理在实际生活中的应用。
希望这些题目对您有所帮助!。