变压器基础知识

合集下载

变压器基础知识

变压器基础知识

变压器基础知识有哪些变压器基础知识有哪些第一章:通用部分1.1 什么是变压器?答:变压器是借助电磁感应,以相同的频率,在两个或更多的绕组之间,变换交流电压和电流而传输交流电能的一种静止电器。

1.2 什么是局部放电?答:局部放电是指高压电器中的绝缘介质在高压电的作用下,发生在电极之间但未贯通的放电。

1.3 局放试验的目的是什么?答:发现设备结构和制造工艺的缺陷,例如:绝缘内部局放电场过高,金属部件有尖角;绝缘混入杂质或局部带有缺陷,防止局部放电对绝缘造成损坏。

1.4 什么是铁损?答:变压器的铁损又叫空载损耗,它属于励磁损耗而与负载无关,它不随负载大小而变化,只要加上励磁电压后就存在,它的大小仅随电压波动而略有变化。

包括铁心材料的磁滞损耗、涡流损耗以及附加损耗三部分。

1.5 什么是铜损?答:负载损耗又称铜损,它是指在变压器一对绕组中,一个绕组流经额定电流,另一个绕组短路,其他绕组开路时,在额定频率及参考温度下,所汲取的功率。

1.6 什么是高压首端?答:与高压中部出头连接的2至3个饼,及附近的纸板、相间隔板等叫做高压首端(强调电气连接)。

1.7 什么是高压首头?答:普通220kV变压器高压线圈中部出头一直到高压佛手叫做高压首头(强调空间位置)。

1.8 什么是主绝缘?它包括哪些内容?答:主绝缘是指绕组(或引线)对地(如对铁轭及芯柱)、对其他绕组(或引线)之间的绝缘。

它包括:同柱各线圈间绝缘、距铁心柱和铁轭的绝缘、各相之间的绝缘、线圈与油箱的绝缘、引线距接地部分的绝缘、引线与其他线圈的绝缘、分接开关距地或其他线圈的绝缘、异相触头间的绝缘。

1.9 什么是纵绝缘?它包括哪些内容?答:纵绝缘是指同一绕组上各点(线匝、线饼、层间)之间或其相应引线之间以及分接开关各部分之间的绝缘。

它包括:桶式线圈的层间绝缘、饼式线圈的段间绝缘、导线线匝的匝间绝缘、同线圈引线间的绝缘、分接开关同触头间的绝缘。

1.10 高压试验有哪些?分别考核重点是什么?答:高压试验包含空载试验、负载试验、外施耐压试验、感应耐压试验、局部放电试验、雷电冲击试验。

变压器的基础知识

变压器的基础知识

变压器的基础知识一、变压器:就是一种静止的电机,它利用电磁感应原理将一种电压、电流的交流电能转换成同频率的另一种电压、电流的电能。

换句话说,变压器就就是实现电能在不同等级之间进行转换。

二、结构:铁心与绕组:变压器中最主要的部件,她们构成了变压器的器身。

铁心:构成了变压器的磁路,同时又就是套装绕组的骨架。

铁心由铁心柱与铁轭两部分构成。

铁心柱上套绕组,铁轭将铁心柱连接起来形成闭合磁路。

铁心材料:为了提高磁路的导磁性能,减少铁心中的磁滞、涡流损耗,铁心一般用高磁导率的磁性材料——硅钢片叠成。

硅钢片有热轧与冷轧两种,其厚度为0、35~0、5mm,两面涂以厚0、02~0、23mm的漆膜,使片与片之间绝缘。

绕组:绕组就是变压器的电路部分,它由铜或铝绝缘导线绕制而成。

一次绕组(原绕组):输入电能二次绕组(副绕组):输出电能她们通常套装在同一个心柱上,一次与二次绕组具有不同的匝数,通过电磁感应作用,一次绕组的电能就可传递到二次绕组,且使一、二次绕组具有不同的电压与电流。

其中,两个绕组中,电压较高的我们称为高压绕组,相应的电压较低的称为低压绕组。

从高、低压绕组的相对位置来瞧,变压器的绕组又可分为同心式、交迭式。

由于同心式绕组结构简单,制造方便,所以,国产的均采用这种结构,交迭式主要用于特种变压器中。

其她部件:除器身外,典型的油锓电力变压器中还有油箱、变压器油、绝缘套管及继电保护装置等部件。

三、额定值额定值就是制造厂对变压器在指定工作条件下运行时所规定的一些量值。

额定值通常标注在变压器的铭牌上。

变压器的额定值主要有:1、额定容量S N额定容量就是指额定运行时的视在功率。

以 V A 、kV A 或MV A 表示。

由于变压器的效率很高,通常一、二次侧的额定容量设计成相等。

2、额定电压U 1N 与U 2N正常运行时规定加在一次侧的端电压称为变压器一次侧的额定电压U 1N 。

二次侧的额定电压U 2N 就是指变压器一次侧加额定电压时二次侧的空载电压。

变压器的基础知识

变压器的基础知识

变压器的基础知识变压器是一种电力传输和转换设备,广泛应用于电力系统中。

它通过电磁感应原理实现了电压的升降转换。

本文将介绍变压器的基础知识,包括工作原理、结构和应用等方面。

一、工作原理变压器的工作原理是基于电磁感应现象。

当变压器的一侧通以交流电流时,产生的交变磁场会穿过另一侧的线圈,从而在该线圈中感应出电动势。

根据楞次定律,感应电动势的大小与磁场的变化率成正比。

通过合理设计线圈的匝数比,可以实现输入端电压和输出端电压的升降转换。

二、结构组成变压器主要由铁心、一次线圈和二次线圈组成。

铁心是由高导磁率的硅钢片叠压而成,以提高磁通的传导效率。

一次线圈位于铁心的输入端,通以输入电流;二次线圈位于铁心的输出端,输出电流经由其流出。

通过铁心的引导和线圈的匝数比例,可以实现输入输出电压的转换。

三、工作模式根据输入输出电压的关系,变压器可分为升压变压器和降压变压器两种工作模式。

升压变压器将输入电压升高到输出电压,适用于输电线路中远距离输送电能;降压变压器将输入电压降低到输出电压,适用于家庭和工业用电。

四、应用领域变压器被广泛应用于电力系统中。

在输电过程中,变压器起到调整电压、降低线路损耗和提高传输效率的作用。

在家庭和工业用电中,变压器被用于将高电压的输电线路电压降低到安全可靠的电压,以供给各类电器设备使用。

此外,变压器还应用于电力设备的测试、实验和研究等领域。

五、常见问题1. 变压器有哪些常见故障?常见的变压器故障包括短路故障、绝缘损坏、线圈过热和冷却系统故障等。

2. 变压器的效率如何衡量?变压器的效率可以通过输入功率和输出功率的比值来衡量,通常以百分比形式表示。

3. 变压器的额定容量是什么意思?变压器的额定容量是指其设计和制造时可以连续运行的功率上限,通常以千伏安(kVA)为单位。

六、总结变压器是电力系统中不可或缺的设备,通过电磁感应原理实现了电压的升降转换。

它具有结构简单、工作可靠、效率高等优点,被广泛应用于输电和配电系统中。

变压器基础知识

变压器基础知识

变压器基础知识1.什么叫变压器?变压器是一种用于交流电能转换的电气设备。

它可以把一种交流电压、交流电流的电能转换成相同频率的另一种交流电压、交流电流的电能。

2.变压器在电力系统中的主要作用是什么?变压器在电力系统中的主要作用是变换电压,以利于电能的传输。

电压经升压变压器升压后,可以减少线路损耗,提高送电经济性,达到远距离送电的目的;电压经降压变压器降压后,获得各级用电设备的所需电压,以满足用户使用的需要。

3.简述变压器的基本原理变压器几乎在所有的输变电系统中都要用到,变压器虽种类较多,但其工作原理相同,根据不同的使用场合(不同的用途),变压器的绕制工艺会有不同的要求。

变压器的功能主要有:电压变换、阻抗变换、隔离及稳压(磁饱和变压器)等。

变压器常用的铁心形状一般有E形和C形。

图1-1是变压器的基本工作原理,当一个正弦交流电压U1 加在初级线圈两端时,导线中就有交变电流I1并产生交变磁通φ1,沿着铁心穿过初级线圈和次级线圈形成闭合的磁路。

在次级线圈中感应出互感电势U2,同时φ1也会在初级线圈上感应出一个自感电势E1,E1的方向与所加电压U1的方向相反而幅度相近,从而限制了I1的大小。

为了保持磁通φ1的存在就需要有一定的电能消耗,并且变压器本身也有一定的损耗,尽管此时次级线圈没接负载,而初级线圈中仍有一定的电流,这个电流我们称为“空载电流”.图1-1 变压器的基本工作原理图如果变压器次级接上负载,次级线圈就产生电流I2,并因此而产生磁通φ2, φ2的方向与φ1相反,起了互相抵消的作用,使铁心中总的磁通量有所减少,从而使初级自感电势E1减少,其结果使I1增大,可见初级电流与次级负载有密切关系.当次级负载电流加大时, I1增加,并且φ1增加部分正好补充了被所抵消的那部分磁通,以保持铁心里总磁通量不变.如果考虑变压器的损耗,可以认为一个理想的变压器,次级负载消耗的电功率也就是初级人电源取得的电功率.变压器能根据需要通过改变次级线圈的圈数而改变次级电压,但是不能改变允许负载消耗的功率.4.简述电力变压器的基本构成电力变压器由器身、油箱、冷却装置、出线装置及调压装置等几部分组成:①器身包括铁心、绕组、绝缘结构及引线等;②油箱包括本体(箱盖、箱壁和箱底)和一些附件(放油阀门、小车、油样油门、接地螺栓及铭牌等);③冷却装置包括散热器和冷却器;④保护装置包括储油柜、油位计、安全气道、吸湿器、测温元件、净油器及气体继电器等;⑤出线装置包括高压套管、低压套管等;⑥调压装置即分接开关,分为无载调压和有载调压装置。

变压器基础知识

变压器基础知识

(5)成品变压器(TRANSFORMER) )成品变压器( )
(1)环形铁芯 (CORE)
(2)已包好聚脂薄膜 (POLYESTER TAYE)的铁芯
(3)已绕好初级线圈 (PRIMARY)的变压器
(4)初级绝缘
(5)安装温控保护器 (FUSE )
(6)已绕好次级等最后 绝缘 LABEL
需灌注环氧树脂(EPOXY) EPOXY
6、变压器温度额定值 、 标准中规定, 在 VDE标准中规定 , 正常操作下对特定的绝缘 标准中规定 等级而言, 等级而言,最大的稳定化温度必须不超过绝缘等 级温度。绝缘等级分为七个等级: 级温度。绝缘等级分为七个等级:
Y A E B F H C
90℃
105℃
120℃
130℃
150℃
180℃
180℃以上
环型变压器的发展 1、 自米切尔·法拉第发明了变压器以来 法拉第发明了变压器以来, 自米切尔 法拉第发明了变压器以来,变压 器生产工艺和使用材料发生了重大改变。 器生产工艺和使用材料发生了重大改变。最初 由于线圈骨架上容易绕线, 由于线圈骨架上容易绕线,叠片变压器得到广 泛应用。但是由于叠片变压器的磁路有气隙, 泛应用。但是由于叠片变压器的磁路有气隙, 磁路的有效性不高。 型铁芯变压器虽然减小 磁路的有效性不高。C型铁芯变压器虽然减小 了气隙, 了气隙,并保留了线圈骨架上容易绕制线圈 的 优点,但是磁路中仍有气隙。 优点,但是磁路中仍有气隙。
变压器基础知识
主讲人: 主讲人:向寿勤
主要内容
1、变压器的基础知识。 、变压器的基础知识。 2、变压器的结构和材料特性。 、变压器的结构和材料特性。 3、变压器的主要功能和性能参数。 、变压器的主要功能和性能参数。 4、变压器相关安规要求(部份) 、变压器相关安规要求(部份)

变压器的基础知识

变压器的基础知识

4)试验变压器
根据需要产生高电压或大电流的变压器。
5)不同工业上的专用变压器
• 1)矿用变压器(K)
• KB:矿用隔爆型
• 结构特征:Z:组合式
• 装置种类:Y:移动变电站
• 2)电炉变压器(H)
• 3)启动变压器
• 4)牵引变压器
• 5)整流变压器(Z)
5.1 、ZB:一般工业用, ZC:充电用,
• 防护型式:D:防滴式;H:防护式;S:防水式
6)电子产品上的变压器
• 包括容量很小的电源变压器和用于音频, 高频,超高频的变压器。
12、双绕组变压器 3、多绕组变压器 4、有载(无励磁)调压变压器 5、密封式变压器 6、自耦式变压器 7、串联变压器 8、分裂式变压器 9、柱上式变压器
ZD:电镀用;
ZF:电影放映用;
ZH:电化学用; ZK:电磁控制保护用 ZJ:异步电机串激调速用;ZL:励磁用;
ZM:变频调速用; ZP:中频电源用;
ZQ:牵引用;
ZS:传动用;
ZV:蓄电池浮充电用; ZZ:直流输电用; ZY:特殊用
5.2、内附属装置:
K:平衡电抗器
B:饱和电抗器
• 6)船用变压器
有载调压变压器
装有有载调压 分解开关,能在负 载下进行调压的变 压器。
串联变压器
也叫增压变压器,是具有一个改变线 路电压的串联线圈和一个励磁线圈的变压 器。
自藕变压器
至少有两个线圈具有公共部分的变压 器,自藕变压器中线圈之间出通过磁通耦 合外,有电路上的直接联结,因此与同容 量的双线圈变压器相比,结构尺寸可较小。
绕组提供3次谐波励磁电流的通路。以改善电势波形。为 三次谐波电流提供闭合回路。 • 2、抑制中性点电压的漂移; • 3、防止三次谐波电流对无线通讯和电子装置的干扰; • 4、为变电站提供辅助电源。

变压器基础知识--文厚明

变压器基础知识--文厚明

12
36
00
24
48
12
36
00
24
第一通道 第二通道 第三通道 第四通道 第七通道 第十通道
二、变压器基本结构——出线装置组成简介
1)绝缘套管 (分为高压绝缘套管和低压绝缘套管)
• 作用:使绕组引出线与油箱绝缘。 • 绝缘套管一般是陶瓷的,其结构取决于电压等级。1kV以下采用实心
磁套管,10~35kV采用空心充气或充油式套管,110kV及以上采用电 容式套管。为了增大外表面放电距离,套管外形做成多级伞形裙边。 电压等级越高,级数越多。
一、变压器基础知识——分类
变压器基本参数
2.1 型号:SSZ11-180000/220 2.2 相数: 三相 2.3 额定频率: 50 Hz 2.4 联接组标号:YN yn0 d11 2.5 冷却方式: ONAN(100%) 2.6 额定容量: 180/180/90MVA 2.7 额定电压: 220/121/11kV 分接范220±8×1.25%kV 2.8 空载损耗: P0=81kW 2.9 负载损耗: Pk=550kW 2.10 空载电流: I0=0.56% 2.11 短路阻抗: 中-低8.0 、高-中13.0、高-低23.0 2.12 顶层油温升: 55K(用温度计测量) 2.13 绕组平均温升: 65K(用电阻法测量) 2.14 声功率级: ≤ 80dB(A) 2.15 局部放电: 1.5Um/√3时 ≤ 100pC
一、变压器基础知识 二、变压器基本结构 三、变压器生产工艺流程 四、变压器的运行及维护 五、变压器的安装
二、变压器基本结构
1、变压器结构 2、变压器结构组成简介
二、变压器基本结构——外形图样
二、变压器基本结构——结构组成简介

变压器基础知识

变压器基础知识

并在铁芯中产生与U1同频率的交变主磁通 m ,主磁通
同时链绕原、副绕组,根据电磁感应定律,会在原、
副绕组中产生感应电势E1、E2,副边在E2的作用下产 生负载电流 I 2 ,向负载输出电能。、变压器的作用
升高电压把电能送到用电地区,降低电压为各级用户 使用,满足用电需要。 在电力系统传送电能的过程中,必然会产生电压和功 率两部分损耗,在输送同一功率时电压损耗与电压成 反比,功率损耗与电压的平方成反比。利用变压器升 压,减少送电损失。
1.温度和温升
变压器运行时各部件的温度是不同的,绕组温度最高,铁芯次 之,变压器油的温度最低。为了便于监视变压器各部件的温 度,规定以上层油温为允许温度。
变压器的允许温度主要决定于绕组的绝缘材料。由于我国大部 分采用的是A级绝缘材料(浸渍处理过的有机材料,如纸、棉 纱、木材等)。其允许最高温度为105℃,由于绕组的平均温 度一般比油温高10 ℃,同时防止油质劣化,所以规定变压器 上层油温最高不超过95 ℃。变压器的温度与周围环境温度的 差称为温升。我国规定周围环境最高温度为40 ℃。在周围环 境为40 ℃时,绕组允许温升为65 ℃ ,而上层油温则为55 ℃ 。所以变压器在温度及温升的允许值内,可保证变压器长期 安全运行。
额定频率fN 指工业用电频率,我国规定为50Hz。
15
2021/6/16
各量之间关系 变压器的额定容量、额定电压、额定电流之间
的关系为: 单相变压器
SNU 1N I1NU 2N I2N (1-5)
三相变压器
SN3 U 1 N I1N3 U 2N I2N (1-6)
16
变压器运行
2021/6/16
10
2021/6/16
主要结构6 高、低压套管 变压器内部的高、低压引线时经绝缘套管引至 油箱外部,它是起着固定引线和对地绝缘的作 用。 套管由带电部分和绝缘部分组成。带电部分包 括导电杆、导电管、铜排。绝缘部分分为外绝 缘和内绝缘。外绝缘为瓷管,内绝缘为变压器 油、附加绝缘和电容性绝缘。

变压器的基础知识

变压器的基础知识

变压器的基础知识一、变压器的分类1、按照变压器的冷却方式分类冷却形式(一般用4各字母表示)字母代表的意义․对于变压器,一般用四个字母顺序代号标志其冷却方式。

第一个字母表示与绕组接触的内部冷却介质,其中:O代表矿物油或燃点不大于300℃的合成绝缘液体;K代表燃点大于300℃的绝缘液体;L代表燃点不可测出的绝缘液体。

․第二个字母表示内部冷却介质的循环方式,其中:N代表流经冷却设备和绕组内部的油流是自然的热对流循环;F代表冷却设备中的油流是强迫循环,流经绕组内部的油流是热对流循环;D代表冷却设备中的油流是强迫循环,至少在主要绕组内的油流是强迫导向循环。

․第三个字母表示外部冷却介质,其中:A代表空气;W代表水。

․第四个字母表示外部冷却介质的循环方式,其中:N代表自然对流;F代表强迫循环(风扇、泵等)。

现在高电压、大容量变压器均采用变压器油作为变压器绕组内部的冷却介质,因此变压器冷却方式的字母表示第一个字母均为O。

油在变压器绕组内部的循环方式有三种:自然热对流循环;非导向强油循环;导向强油循环,分别用N、F、D表示。

变压器的外部冷却介质有空气和水,分别用A和W表示,现在变压器一般采用空气作为外部冷却介质,因此第三个字母一般为A。

空气有两种循环方式:自然对流和强迫循环,分别用N和F表示。

因此对于油浸式变压器,一般有以下几种冷却方式:․ONAN(油浸自冷式):通过油的自然热对流带走热量,没有其他冷却设备。

․ONAF(油浸风冷式):在油浸自冷式(ONAN)的基础上,另加风扇给油箱壁和油管或片散吹风,以加强散热作用。

․OFAF(强迫油循环非导向风冷式):用油泵将变压器上部的热油吸入冷却器,流过冷却管簇,将热量传给冷却管,由冷却管簇对空气放出热量。

空气侧则通过变压器风扇将空气吸入,使之流过空气管簇,吸收热量,吹出冷却器外,从而达到变压器冷却的目的。

流经绕组内部的油流是热对流循环。

․ODAF(强迫油循环导向风冷却式):用油泵将变压器上部的热油吸入冷却器,流过冷却管簇,将热量传给冷却管,由冷却管簇对空气放出热量。

变压器基础知识

变压器基础知识

1-阀盖;2-弹簧;3-指示针;4-罩;5-微动开关;6-变压器油箱
1-温包;2-毛细管;3-单圈管形弹簧;4-拉杆; 5-齿轮传动机 构;6-示值指针;7-转轴; 8-风扇起动定值指针触点;9-上限 指针触点
变压器型号的代表符号
绕组耦合方式:自耦 O. 相 数 :单相D;三相 S. 冷却介质 :油浸自冷 ;油浸风冷 F;强迫油循环
1-连接管;2-螺栓;3-法兰盘; 4-玻璃罩;5-硅胶;
6-螺栓;7-底座;8-底罩; 9-变 压器油
1-大胶囊;2-油枕;3-小胶囊;4-大呼吸器; 5-小呼吸器; 6-油位
1-铁磁式油位计;2-连杆;3-隔膜;4-放水阀;5-视察孔;6-排气管;7-注放 油管;8-气体继电器联管;9-集气盒;10-呼吸器;11-放气塞;12-人孔
可燃性气体更低,占总量0.01%~0.1%之间,新油 更低。正常变压器含氧量稍比空气大些,为 20%~30%,但含氮量比空气少,和变压器保护结 构形式有关,氮封变压器含氧气占5%左右,薄膜 密封变压器,要小于3%,而一般开放型变压器占 30正%常左变右压。器中的CO和CO2,分布比空气含量大 一数量级,运行年限越长,其数值越大,这是绝缘 材料老化的象征。
三、变压器油温升高,超过允许限度
变压器油温升高超过许可限度时,值班人员 应判明原因,升高的油温与以前同环境温度 同负载时作比较,如果是特殊升高,应及时 报告并作详细记录,同时要采取办法降低温 度。
检查温度表是否自身有故障。
检查变压器机械冷却装置或变压器室的通风 情况。
如果确因冷动系统有故障,在运行中无法 修理时,可考虑停下变压器处理,这时要启 用备用变压器或降低负载运行。
这种故障因能量不大,所以总烃含量不高, 气体主要是H2和C2H2。

变压器专业基础知识

变压器专业基础知识

变压器专业基础知识
变压器是电力系统中最基本的电力设备之一,用于将交流电的
电压从一个电平转换到另一个电平。

本文将介绍变压器的基础知识,包括基本原理、构造、工作原理和类型。

1. 基本原理
变压器的基本原理是磁感应定律和法拉第电磁感应定律。

当交
流电通过变压器中的一条线圈时,产生的磁感应力将导致在另一条
线圈中产生电动势,从而改变电压大小。

简单来说,变压器通过磁
场将电能从一端传输到另一端,从而改变电压大小。

2. 构造
变压器由铁芯和线圈组成。

铁芯是用来在变压器内部建立磁场的,一般由硅钢板制成,具有低磁导率和高电阻率。

线圈分为一次
线圈和二次线圈。

一次线圈接在输入电源上,二次线圈接在输出电
负载上。

由于铁芯的存在,一次线圈和二次线圈被隔离开了,因此
可以实现不同电压的传输。

3. 工作原理
在变压器内部,一次线圈被连接到交流电源,流过线圈的电流
将导致交变磁通量在铁芯内产生。

这个交变磁通量穿过二次线圈,
并在其中产生电动势。

根据法拉第电磁感应定律,这个电动势的大
小与磁通量的变化率有关,因此也与输入电压的大小成正比。

如果
二次线圈上有电负载,那么电势差将推动电流通过负载。

由于一次
和二次线圈的匝数比例,输出电压可以大于或小于输入电压。

1。

变压器基础知识

变压器基础知识

变压器基础知识1、什么叫变压器?在交流电路中,将电压升高或降低的设备叫变压器,变压器能把任一数值的电压转变成频率相同的我们所需的电压值,以满足电能的输送,分配和使用要求。

例如发电厂发出来的电,电压等级较低,必须把电压升高才能输送到较远的用电区,用电区又必须通过降压变成适用的电压等级,供给动力设备及日常用电设备使用。

2、变压器是怎样变换电压的?变压器是根据电磁感应制成的。

它由一个用硅钢片(或矽钢片)叠成的铁芯和绕在铁芯上的两组线圈构成,铁芯与线圈间彼此相互绝缘,没有任何电的联系。

将变压器和电源一侧连接的线圈叫初级线圈(或叫原边),把变压器和用电设备连接的线圈叫作次级线圈(或副边)。

当将变压器的初级线圈接到交流电源上时,铁芯中就会产生变化的磁力线。

由于次级线圈绕在同一铁芯上,磁力线切割次级线圈,次级线圈上必然产生感应电动势,使线圈两端出现电压。

因磁力线是交变的,所以次级线圈的电压也是交变的。

而且频率与电源频率完全相同。

经理论证实,变压器初级线圈与次级线圈电压比和初级线圈与次级线圈的匝数比值有关,可用下式表示:初级线圈电压/次级线圈电压=初级线圈匝数/次级线圈匝数说明匝数越多,电压就越高。

因此可以看出,次级线圈比初级线圈少,就是降压变压器。

相反则为升压变压器。

3、变压器设计有哪些类型?按相数分有单相和三相变压器按用途分有电力变压器,专用电源变压器,调压变压器,测量变压器(电压互感器、电流互感器),小型电源变压器(用于小功率设备),安全变压器.按结构分有芯式和壳式两种。

线圈有双绕组和多绕组,自耦变压器。

按冷却方式分有油浸式和空气冷却式。

4、变压器部件是由哪些部分组成的?变压器部件主要是由铁芯、线圈组成,此外还有油箱、油枕、绝缘套管及分接开头等。

5、变压器油有什么用处?变压器油的作用是:(1)、绝缘作用(2)、散热作用(3)、消灭电弧作用6、什么是自耦变压器?自耦变压器只有一组线圈,次级线圈是从初级线圈抽头出来的,它的电能传递,除了有电磁感应传递外,还有电的传送,这种变压器硅钢片和铜线数量比一般变压器要少,常用作调节电压。

变压器基础知识

变压器基础知识

2020/7/7
电力工程技术:china-dianli
15
变压器或者电感根据在拓扑结构中的工作方式分为三大类:1、 直流滤波电感工作状态,电感磁芯只工作在一个象限。属于这 类工作状态的电感有Boost电感、Buck电感、Buck/boost电感、 正激以及所有推挽拓扑变换器输出滤波电感、单端反激变换器 变压器;
3. 计算原副边电感量及匝数; 4. 计算空气隙的长度; 5. 根据电流密度和原副边有效值电流求线径; 6. 求铜损和铁损是否满足要求(比如:允许 损耗和温升)
2020/7/7
电力工程技术:china-dianli
20
电源的基本参数如右: 选择反激拓扑。
1. 选择磁芯材料,确定变压器的视在功率PT; 考虑成本因数在此选择PC40材质,查PC40资料得 Bs=0.39T Br=0.06T Bmax Bs Br 0.39T 0.06T 0.33T
3
2.磁芯结构 选择磁芯结构时考虑的因数有:降低漏磁和漏感,
增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配 接线方便等。
漏磁和漏感与磁芯结构有直接关系。如果磁芯不需 要气隙,则尽可能采用封闭的环形和方框型结构磁芯。
2020/7/7
电力工程技术:china-dianli
4
2020/7/7
电力工程技术:china-dianli
2020/7/7
电力工程技术:china-dianli
14
开关电源用铁氧体磁性材应满足以下要求: (1)具有较高的饱和磁通密度Bs和较低的剩余磁通密度Br 磁通密度Bs的高低,对于变压器和绕制结果有一定影响。从 理论上讲,Bs高,变压器绕组匝数可以减小,铜损也随之减小 在实际应用中,开关电源高频变换器的电路形式很多,对于变 压器而言,其工作形式可分为两大类:

变压器详细讲解

变压器详细讲解

变压器详细讲解变压器是一种电气设备,主要用于将交流电能从一种电压等级转换为另一种电压等级。

变压器的工作原理基于电磁感应现象,利用两个或多个线圈之间的磁场变化来实现电压的转换。

以下是变压器详细讲解:1. 基本结构:变压器主要由磁性材料制成的铁芯和绕组组成。

铁芯用于传递磁场,绕组则用于承载电流。

绕组通常用导线绕制,并分为高压绕组和低压绕组。

2. 原理:当交流电流通过高压绕组时,会在铁芯上产生磁场。

磁场的变化进而在低压绕组中产生电动势,从而实现电压的转换。

电压转换的大小取决于绕组之间的匝数比例。

3. 分类:根据用途和结构,变压器可分为以下几类:a. 配电变压器:用于配电系统,将高压电能转换为低压电能供给用户。

b. 电力变压器:用于发电、输电和配电系统中,实现电压的升高和降低。

c. 仪用变压器:用于电气测量和控制设备,提供标准电压信号。

d. 特殊变压器:如电炉变压器、整流变压器等,用于特殊场合的电压转换。

4. 参数:变压器的主要参数包括:a. 额定容量:表示变压器能承载的最大功率。

b. 额定电压:表示变压器输入和输出的电压等级。

c. 电压比:高压绕组与低压绕组之间的匝数比例,决定了电压转换效果。

d. 效率:表示变压器将电能转换为磁能和磁能转换为电能的能力。

5. 应用:变压器广泛应用于电力系统、工业生产、家电产品等领域。

例如,在家用电器中,变压器用于调节电源电压,以适应不同设备的电压需求。

6. 变压器的维护与安全:为确保变压器正常运行,需要定期进行检修和维护。

同时,应注意防止变压器过载、短路等事故,确保使用安全。

总之,变压器是一种重要的电气设备,它通过电磁感应实现电压的转换。

了解变压器的工作原理、分类和应用,有助于我们更好地在实际工程中选择和使用合适的变压器。

变压器基础知识(整理版)

变压器基础知识(整理版)

1、空载电流、负载损耗、阻抗电压空载电流:当额定频率下的额定电压(分接电压),施加到一个绕组的端子,其它绕组开路时,流经该绕组线路端子的电流的方均根值。

其较小的有功分量用以补偿铁心的损耗,其较大的有功分量用以励磁,以平衡铁心的磁压降。

空载电流Io通常以额定电流的百分数表示。

变压器额定容量越大,Io越小。

负载损耗:在一对绕组中,当额定电流流经一个绕组的线路端子,且另一绕组短路时,在额定频率及参考温度下所吸取的有功功率。

负载损耗也称短路损耗,它与负载电流的平方成正比,是线圈发热的热源。

阻抗电压:双绕组变压器当二次绕组短路,一次绕组流通额定电流而施加的电压称阻抗电压。

阻抗电压大小与变压器的成本和性能、系统稳定性和供电质量有关。

2、局部放电局部放电:指引起导体之间的绝缘只发生局部桥接的一种放电,即在电场作用下,绝缘系统中有部分区域发生放电,而没有贯穿施加电压的导体之间,即尚未击穿。

局部放电产生的原因:绝缘体各部位承受的电场是不均匀的,而且电介质也是不均匀的。

另外在制造或使用过程中会残留一些气泡或其它杂质等,于是在绝缘体内部或表面就会出现某些区域的电场强度高于平均电场强度,某些区域的电场强度低于平均电场强度。

因此,某些区域就会首先发生放电,而其它区域仍保持绝缘的特性,这就形成了局部放电。

3、干式变压器局部放电有几种形式?(1)绕组内部放电,即层、匝间绝缘介质局部放电;(2)表面局部放电;(3)电晕放电。

4、干式变压器绕组散热有哪几种形式?(1)辐射:即绕组以红外线辐射波向周围温度较低的空间传播热量;(2)对流:是发热体通过温度较低运动着的空气而散热;(3)传导:是热源从温度较高处直接到温度较低处。

5、三相变压器接线Y,yn0和D,yn11有什么区别?(1)当变压器二次侧负载不对称时D,yn11接线比Y,yn0接线零位偏移小;(比Y,yn0零序阻抗小)(2)采用D,yn11接线方式可提高变压器过电流继电保护装置的灵敏度,简化保护接线;(3)采用D,yn11接线方式可提高低压干线保护装置的灵敏度,有利于保证各级保护装置的选择性和扩大馈电半径;(4)D,yn11接线的变压器,其二次零线电流不作限制。

变压器基础知识

变压器基础知识

(四)额定电压(UN)
变压器的额定电压就是各绕组的额定电压,是指额定施加的或空载 时产生的电压。一次额定电压U1N 是指接到变压器一次绕组端点的额定 电压值;二次额定电压U2N是指当一次绕组所接的电压为额定值、分接 开关放在额定分触头位置上,变压器空载时二次绕组的电压(单位为V或 KV)。三相变压器的额定电压指的均是线电压。 一般情况下在高压绕组上抽出适当的分接头,因为高压绕组或其单 独调压绕组常常套在最外面,引出分接头方便;其次是高压侧电流小, 引出分接引线和分接开关的载流部分截面小,分接开关接触部分容易解 决。
二、电力变压器分类及工作原理
(一)电力变压器的分类
根据电力变压器的用途和结构等特点可分如下几类: (1)按用途分有:升压变压器(使电力从低压升为高压,然后经输电 线路向远方输送);降压变压器(使电力从高压降为低压,再由 配电线路对近处或较近处负荷供电)。 (2)按相数分有:单相变压器;三相变压器。 (3)按绕组分有:单绕组变压器(为两级电压的自耦变压器);双绕 组变压器;三绕组变压器。
电力变压器基础知识
2008年9月
一、前 言
变压器是一种静止的电气设备,属于一种旋转速度为 零的电机。电力变压器在系统中工作时,可将电能由它的 一次侧经电磁能量的转换传输到二次侧,同时根据输配电 的需要将电压升高或降低。故它在电能的生产输送和分配 使用的全过程中,作用十分重要。整个电力系统中,变压 器的容量通常约为发电机容量的3倍以上。
空载电流的有功分量I0a为损耗电流,由电源所汲取的有功功率称空 载损耗P0 。空载损耗主要决定于铁心材质的单位损耗 。
(八)短路损耗(Pf)
短路损耗变压器二次侧短接、一次绕组通过额定电流时变压器由电源 所汲取的(亦即消耗的)功率(单位为W或KW)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变压器基础知识
变压器是一种电气设备,主要用于改变交流电的电压。

它是电力系统中非常重要的组成部分,广泛应用于发电、输电和配电系统中。

一、基本原理
变压器的基本原理是电磁感应。

当交流电通过一个线圈时,会在线圈中产生一个交变磁场。

当另一个线圈靠近时,这个交变磁场会感应出电动势,从而在第二个线圈中产生电流。

这样,交流电的电能就被从第一个线圈传递到第二个线圈,实现了电压的变换。

二、结构组成
变压器主要由两个线圈和一个铁芯组成。

铁芯通常由硅钢片叠压而成,用于增强磁路,减小磁通漏磁。

两个线圈分别称为原线圈和副线圈。

原线圈接入电源,副线圈则输出电压。

原线圈和副线圈之间通过磁场相互耦合,形成了电压变换的效果。

三、工作原理
变压器的工作原理可以分为两种模式:步进模式和连续模式。

1. 步进模式:在步进模式下,变压器的输入和输出电压是以不连续的形式变化的。

当原线圈电流变化时,磁场也会随之变化,从而引起副线圈中的电动势变化,最终导致输出电压的变化。

2. 连续模式:在连续模式下,变压器的输入和输出电压是以连续的
形式变化的。

当原线圈电流变化时,磁场也会相应地变化,但副线圈中的电动势不会立即变化,而是随着时间的推移逐渐变化,从而实现输出电压的稳定。

四、类型分类
根据用途和结构的不同,变压器可以分为很多不同的类型。

常见的变压器类型包括:配电变压器、互感器、自耦变压器等。

1. 配电变压器:用于将高压输电线路的电压降低到适合家庭、工业和商业用电的电压。

2. 互感器:主要用于测量、保护和控制电力系统中的电流和电压。

3. 自耦变压器:在自耦变压器中,原线圈和副线圈是通过共用一部分线圈实现的,这种类型的变压器常用于电力系统中的电压调节。

五、应用领域
变压器在电力系统中起着至关重要的作用。

它们被广泛应用于发电厂、变电站和配电系统中。

1. 发电厂:发电厂通过变压器将发电机产生的高电压变成适合输送的电压,然后送入输电系统。

2. 变电站:变电站是电力系统中的重要节点,变压器在变电站中用于升压、降压、分配电能等功能。

3. 配电系统:变压器将输电系统中的高电压变为适合家庭、工业和商业用电的低电压,以供用户使用。

六、保养与维护
变压器的保养与维护对于其正常运行和延长使用寿命至关重要。

1. 温度控制:变压器在工作过程中会产生一定的损耗,导致温度升高。

因此,及时监测和控制变压器的温度是非常重要的。

2. 绝缘检测:绝缘是变压器正常运行的关键,定期检测绝缘的状态,及时处理绝缘问题,可以保证变压器的安全运行。

3. 油质检测:变压器中的绝缘油起着冷却和绝缘的作用,定期检测绝缘油的质量,及时更换和处理油质问题,可以有效地延长变压器的使用寿命。

七、发展趋势
随着能源需求的增加和电力系统的发展,变压器的需求也在不断增长。

为了满足不同领域的需求,变压器的技术也在不断创新和发展。

1. 高效节能:研发高效节能的变压器是当前的发展趋势。

通过减少损耗和提高效率,可以降低能源消耗,减少对环境的影响。

2. 智能化:随着智能电网的建设,智能变压器将成为未来的发展方向。

智能变压器可以实现远程监测、故障诊断和自动控制等功能,
提高电力系统的可靠性和智能化程度。

八、总结
变压器作为电力系统中重要的设备之一,具有电压变换和能量传递的功能。

了解变压器的基本原理、结构组成、工作原理以及应用领域,对于理解电力系统的运行和维护具有重要意义。

随着能源需求和电力系统的发展,变压器的技术也在不断创新和发展,以满足不同领域的需求。

保养和维护变压器,使其安全可靠地运行,对于延长变压器的使用寿命具有重要意义。

通过不断提高变压器的效率和智能化水平,可以进一步提高电力系统的可靠性和智能化程度,为人们的生活和工作提供更好的电力供应。

相关文档
最新文档