反比例函数和面积法-模板

合集下载

中考数学考点系统复习 第三章 函数 方法技巧突破(一) 反比例函数中的面积问题

中考数学考点系统复习 第三章 函数 方法技巧突破(一) 反比例函数中的面积问题

S 阴影=|k1|-|k2|
图形
S =S -S 阴影 △AOB △AOD 结论 1 1
=2|k1|-2|k2|
S =S -S 阴影 △COB △OCD 11
=2|k1|-2|k2|
图形
过点 D 作 DF⊥x 轴于点
结论
S 阴影=S 矩形 -S -S = OABC △OCD △OAE |k1|-|k2|
【模型示例】
图形
结论
S 四边形 PMON=|k|
S =S 四边形 ABCD
四边形 PQMD
2.(2021·荆州)如图,过反比例函数 y=kx(k>0,x>0) 图象上的四点 P1,P2,P3,P4 分别作 x 轴的垂线,垂足 分别为 A1,A2,A3,A4,再过 P1,P2,P3,P4 分别作 y 轴, P1A1,P2A2,P3A3 的垂线,构造了四个相邻的矩形.若这四个矩形的面积从 左到右依次为 S1,S2,S3,S4,OA1=A1A2=A2A3=A3A4,则 S1 与 S4 的数量关 系为 S1=S1=44SS44.
x 轴于点 B,连接 BC,则△ABC 的面积等于
A.8
B.6 C.4 D.2
( C)
模型四:两点两垂线 【模型特征】
反比例函数与正比例函数图象的交点及由交点向坐标轴所作两条垂 线围成的图形面积等于 2|k|.
【模型示例】
图形
结论
S△APP′=2|k| S 四边形 ANBM=2|k|
4.(2021·南京)如图,正比例函数 y=kx 与函数 y=6x的图象交于 A,B 两点,BC∥x 轴,AC∥y 轴,则 S△ABC=1 12 2.
A.4
B.6
C.8
D.12
( C)

反比例函数中的面积问题(共26张PPT)

反比例函数中的面积问题(共26张PPT)

课后精练
解:(1)如图,过点 D 作 DH⊥x 轴于点 H, ∵直线 AB 的解析式为 y=-2x+4,∴B 点坐标为(0,4), A 点坐标为(2,0). ∵∠OAB+∠DAH=90°,∠ADH+∠DAH=90°, ∴∠BAO=∠ADH. 又∵∠BOA=∠AHD,∴△AOB∽△DHA. ∴ADOH=ABOH=AADB=12.∴D2H=A4H=12,解得 DH=4,AH=8. ∴D(10,4),则 k=10×4=40. 故答案为:40.
③若 M 点的横坐标为 1,△OAM 为等边三角形,则 k=2+ 3;
7.如图,函数 y=kx(k 为常数,k>0)的图象与过原点的 O 的直线 相交于 A,B 两点,点 M 是第一象限内双曲线上的动点(点 M 在点 A 的左侧),直线 AM 分别交 x 轴,y 轴于 C,D 两点,连接 BM 分别 交 x 轴,y 轴于点 E,F.现有以下四个结论:
课后精练
∵D(10,4),∴D′(10,-4). 设直线 CD′的解析式为 y=ax+d, 则180a+a+dd==8- ,4,解得da==-566. , 故直线 CD′的解析式为 y=-6x+56. 当 y=0 时,x=238,故 P 点坐标为238,0. 延长 CD 交 x 轴于 Q,此时|QC-QD|的值最大, ∵CD∥AB,D(10,4),∴直线 CD 的解析式为 y=-2x+24. ∴Q(12,0).∴PQ=12-238=83. 故 P 点坐标为238,0,Q 点坐标为(12,0),线段 PQ 的长为83.
专题2 反比例函数中的面积问题
考点解读
反比例函数中的面积类问题是最能体现数形结合思想 方法的一类问题,几何中的函数问题使图形性质代数 化,函数中的几何问题使代数知识图形化,利用“数”

【初中数学】反比例函数策略三——面积问题与面积法

【初中数学】反比例函数策略三——面积问题与面积法

【初中数学】反比例函数策略三——面积问题与面积法反比例函数策略(三)——面积问题与面积法王桥这一篇文章早都该写了。

因忙于修订《春季攻势》,今天略得小闲,续写《反比例函数策略(三)——面积问题与面积法。

在《沙场秋点兵》曾经有专门一讲,是讲述“反比例函数中的面积问题”的。

而对于“面积法”,更绝非一篇文章能够阐述得了的,只能是“后悔”“有期”了。

今天只谈与反比例函数“自带”的“面积模型”和与反比例函数相关的“面积法”。

一、反比例函数中的“面积模型”反比例函数是“自带”“面积模型”的!常言:“龙生龙,凤生凤”,发比例函数一旦诞生,就“自带”贵族气质——“自带”“面积模型”。

反比例函数就是这么“任性”!(一)反比例函数图像上的坐标矩形与坐标三角形的面积(以下部分内容选自《沙场秋点兵》)1、如图1,若反比例函数解析式为y=x/k,则;S矩形OBAC=|k|;2、如图2,若反比例函数解析式为y=x/k,则;S△OAB=1/2·|k|。

关于这两个结论的证明,自然不用赘述,关于这两个结论的灵活应用,则更是仪态万千,手头有《沙场秋点兵》的话,上面有许多练习,自己练练。

也可从本公众号找到去年推送的文章——反比例函数中的面积问题》自己打印练习......(二)反比例函数中的三角形与等积梯形1、如图3,若反比例函数解析式为y=k/x,则;S△OAB=S梯形BCDA;2、如图4,若反比例函数解析式为y=k/x,则(1)S△OAB=S梯形CDEA;(2)CD2=EB·EA;这两个结论,其实是前面结论的更进一步,但是,已经有些同学不太好理解了。

其证明如下:1、如图3,易知S△BOC=S△AOD=1/2·|k|,∴S△AOM=S梯形ADCM,∴S△BOM+S△ABM=S梯形ADCM+S△ABM,即S△AOB=S梯形BCDA;2、如图4,易知S△COD=S△BOE=1/2·|k|,∴S△COM=S梯形BEDM,则(1)S△COM+S△梯形ABMC=S梯形BEDM+S梯形ABMC,即S△AOB=S梯形BEDM;(2)易知CD·OD=BE·OE,∴BE:CD=OD:OE=CD:AE,即CD2=EB·EA。

反比例函数中的面积问题

反比例函数中的面积问题
而 由四边形OEBF的面积为2得
解得 k=2 评注:第①小题中由图形所在象限可确定k>0,应用结论可直接求k值。 第②小题首先应用三角形面积的计算方法分析得出四个三角形面积相 等,列出含k的方程求k值。
例2(2008贵州省黔南州)如图,矩形ABOD的顶点A是函数 与函数 在第二象限的交点, 轴于B, 轴于D,且矩形ABOD的பைடு நூலகம்积为3. (1)求两函数的解析式. (2)求两函数的交点A、C的坐标.
图象上,∴
解得x=1从而所求面积为π 评注:对于较复杂的图形面积计算问题,先应观察图形的特征,若具有 对称特征,则应用对称关系可以简化解题过程。
四、 讨论与面积有关的综合问题 例8.(2008山东省)(1)探究新知:
如图1,已知△ABC与△ABD的面积相等, 试判断AB与CD的位置关系,并说明理由. (2)结论应用:
与x轴交于点C,其中点A的坐标为(-2,4),点B的横坐标为-4. (1)试确定反比例函数的关系式; (2)求△AOC的面积.
.解:(1)∵点A(-2,4)在反比例函数图象上 ∴k=-8 ∴反比例函数解析式为y=
(2)∵B点的横坐标为-4, ∴纵坐标为y=2 ∴B(-4,2) ∵点A(-2,4)、 点B(-4,2)在直线y=kx+b上 ∴ 4=-2k+b 且2=-4k+b 解得 k=1 b=6 ∴直线AB为y=x+6 与x轴的交点坐标C(-6,0)
(3)若点P是y轴上一动点,且 , 求点P的坐标.
解:(1)由图象知k<0,由结论及已知条件得 -k=3 ∴
∴反比例函数的解析式为 ,一次函数的解析式为 (2)由 ,解得 ,
∴点A、C的坐标分别为(
,3),(3, ) (3)设点P的坐标为(0,m) 直线 与y轴的交点坐标为M(0,2) ∵

专题1-4 一文搞定反比例函数7个模型13类题型(原卷版)

专题1-4 一文搞定反比例函数7个模型13类题型(原卷版)

专题1-4 一文搞定反比例函数7个模型,13类题型知识点梳理 (2)题型一|k|模型..................................................................................................................................................... 题型二面积模型................................................................................................................................................. 题型三垂直模型................................................................................................................................................. 题型四比例端点模型......................................................................................................................................... 题型五矩形模型(平行,比例性质)............................................................................................................. 题型六等线段模型............................................................................................................................................. 题型七等角模型................................................................................................................................................ 题型八反比例函数中的设而不求法............................................................................................................... 题型九反比例函数与相似相似三角形结合..................................................................................................... 题型十反比例函数与一次函数综合................................................................................................................. 题型十一反比例函数中的探究类问题............................................................................................................. 题型十二反比例函数与与几何综合................................................................................................................. 题型十三反比例函数的找规律问题.................................................................................................................知识点梳理【模型1】|k |模型结论1:S 矩形=|k |:结论2:S 三角形=|k |【模型2】面积模型(四类)类型一结论:证明:.类型二结论:① AO=BO ,AB 关于原点对称,② S △ABC =4|k |类型三AOB ABNMS S = 梯形AOB BONAONB S S S =- 四边形ABNM AOM AONB S S S =- 梯形四边形BON AOMS S = AOB ABNM S S ∴= 形梯结论:① ABCD 为平行四边形,② S 四边形ABCD =4S △AOB 类型四结论:S 四边形ABOC =k 2-k 1【模型3】垂直模型结论:证明:作BC ⊥x 轴,AD ⊥x 轴,则△BCO ∽△ODA ,∴【模型4】比例端点模型出现比例端点时可以考虑作垂线构造相似或设点坐标来转化212OBC OAD S O S k OB k A OB OA ∆∆⎛⎫⊥⇒== ⎪⎝⎭212OBC OAD S O S k OB k A OB OA ∆∆⎛⎫⊥⇒== ⎪⎝⎭结论:证明:过点D 作DE ⊥x 轴,,,【模型5】矩形模型(平行性质和比例性质)一、比例性质如图,A,B 是反比例函数y=图象上任意两点,过A 、B 作x 轴、y 轴垂线段线段比(共线的线段之比为定值)证明一:∵S 矩形OADF =S 矩形OGEC ,￿∴证明二:∵结论:二、平行性质2BC OD BA OA ⎛⎫= ⎪⎝⎭~ODE OAB ∆∆2ODE OAB S OD S OA ⎛⎫∴= ⎪⎝⎭ ODE OBC S S = 2ODE OBC OAB OAB S S OD BC OA S S BA ⎛⎫∴=== ⎪⎝⎭xkAO AD CE CO ⨯⨯=CBCEAB AD =CBCEAB AD S S S S ABCO CEGO ABCO ADFO =⇒=矩形矩形矩形矩形CBCE AB AD =如图1、图2、图3,点A 、B 是反比例函数y =k x图象上的任意两点,过点A 作y 轴的垂线,垂足为点C ,过点B 作x 轴的垂线,垂足为点D ,连接AB 、CD ,则AB ∥CD .下面以图1为例来证明(图2、图3证法类似):法一:面积法(等积变形)如图,易知S △ACE =S △ADE ,因为两个三角形同底等高,故ED ∥CA补充xxx图1图2方法二:连接OA 、OB ,延长CA 、DB 交于点E则OC =DE ,OD =CE由k 的几何意义可知S △AOC =S △BOD,,又∵∠E =∠E ,∴△EAB ∽△ECD ∴∠EAB =∠ECD ,∴AB ∥CD 方法三:延长CA 、DB 交于点E1122AC OC BD OD ∴⋅=⋅OD OC AC BD∴=CE DE AC BD ∴=AE BE CE DE∴=设,,则又∵∠E =∠E ,∴△EAB ∽△ECD ∴∠EAB =∠ECD ,∴AB ∥CD 补充拓展:矩形模型中的翻折如图,矩形OABC 顶点A ,C 分别位于x 轴,y 轴正半轴,反比例函数在第一象限图象交矩形OABC 两边于D ,E 点,将△BED 沿ED 翻折,若B 点刚好落在x 轴上的点F 处,则EO=EF【模型六】等线段模型如图1、图2,点A 、B 是反比例函数y =k x图象上的任意两点,直线AB 交y 轴于点C ,交x 轴于点D ,则AC =BD .,k A a a⎛⎫ ⎪⎝⎭,k B b b ⎛⎫ ⎪⎝⎭,E b k a ⎛⎫ ⎪⎝⎭,,,k k kAE b a CE b BE DE a b a∴=-==-=AE BE b a CE DE b-∴==ky x=证明:作AE ⊥y 轴于点E ,作BF ⊥x 轴于点F 由平行性质可知AB ∥EF∴四边形CEFB 和四边形AEFD 均为平行四边形∴BC =EF =AD ,∴AC =BD【模型七】等角模型模型一:如图,点A 、B 是反比例函数=y k x图象上的任意两点,直线OB 交反比例函数=y kx的图象于另一点C ,直线AC 交x 轴于点D ,交y 轴于点E ,直线AB 交x 轴于点F ,交y 轴于点G ,则∠ADF =∠AFD ,∠AEG =∠AGE ,由此可得AD =AF ,CD =AE =AG =BF ,AB =DE.证明:作CN ∥x 轴,AN ∥y 轴,BM ⊥AN 于M则∠ADF =∠ACN ,∠AFD =∠ABM 设A (a ,ka ),B (b ,k b ),则C (-b ,-k b)∴CN =a +b ,AN =k a+k b,BM =b -a ,AM =k a-k b∴tan ∠ACN =AN CN=k a+k b a +b=k ab,tan ∠ABM =AM BM=k a-k b b -a=k ab∴tan ∠ACN =tan ∠ABM ,∴∠ACN =∠ABM ∴∠ADF =∠AFD ,∴AD =AF ,∠CEO =∠FGO ∵∠AEG =∠CEO ,∴∠FGO =∠AEG ∴AE =AG∵AG =BF ,∴AE =BF ,∴AB =DE ∵CD =AE ,∴CD =AE =AG =BF模型二:如图,平行四边形ABCD 顶点A ,B 位于反比例函数ky x在第一象限的图象上,C ,D 分别位于x 轴正半轴和y 轴正半轴上,则必然有∠1=∠2,∠3=∠4E ,F 。

北师大版九年级上册反比例函数——反比例函数中的面积问题精品课件

北师大版九年级上册反比例函数——反比例函数中的面积问题精品课件
两种思想:分类讨论和数形结合
下课了!
•悟性的高低取决于有 无悟“心”,其实,人与 人的差别就在于你是否 去思考, 去发现,去总 结。
(2)在没图的前提下, 须分类讨论
例题1 由解析式 求图形的面积
如图,点A、C是反比例函数y=
3 x
图象上的
点,且关于原点对称,分别过点A、C分别向x
轴、y轴作垂线交于B、D,则矩形面积为
__1_2__.
北师大版九年级上册反比例函数—— 反比例 函数中 的面积 问题精 品课件
练习 由解析式求图形的面积
顶点A、C,∠ABC=90°,OC平分 OA与x轴正半轴的夹角, AB∥x轴,将△ABC沿 AC翻折后得到△AB'C, B'点落在OA上,则四边
形OABC的面积是 2 .
北师大版九年级上册反比例函数—— 反比例 函数中 的面积 问题精 品课件
D
北师大版九年级上册反比例函数—— 反比例 函数中 的面积 问题精 品课件
由图形的面积求解析式
一变:如图,A是反比例函数图象上一点,过
点A作AB⊥y轴于点B,点P在x轴上,△ABP的 6
面积为3,则这个反比例函数的解析式为 y= x .
y
同底等高的两个三角形
BA
的面积相等.
PO
x
北师大版九年级上册反比例函数—— 反比例 函数中 的面积 问题精 品课件
北师大版九年级上册反比例函数—— 反比例 函数中 的面积 问题精 品课件
例题2 由图形的面积求解析式 分类讨论
点P是反比例函数图象上的一点,且PD⊥x轴于
D.如果△POD面积为3,则这个反比例函数的
解析式为____y_=___6x_或__y__=_-__6x_.

专题:反比例函数中的面积问题

专题:反比例函数中的面积问题

微专题 反比例函数中的面积问题
模型一 一点一垂线
反比例函数图象上一点与坐标轴垂线、另一坐标轴上一点(含原点)围成的三 角形面积= |k|.
1
S△ABC= 2 |k|
S△ABC=12 |k|
1
S△AOC= 2 |k|
1. 如图,点A在反比例函数y=- 4 的图象上,AM⊥y轴于点M,点P是x轴上的一
方法一:S△EOF=S△EOD-S△FOD. 方法二:作EM⊥x轴于点M,交OF于点B,FA⊥x轴于点A,则S△OEB=S四边形 BMAF(划归到模型一),则S△EOF=S直角梯形EMAF.
类型一 两交点在反比例函数同一支上
Байду номын сангаас
方法一:当
BE CE

BFFA=m时,则S四边形OFBE=m|k|.
方法二:作EM⊥x轴于点M,
A. 1
B. m-1
C. 2
D. m
第3题图
模型四 两点两垂线
反比例函数与正比例函数的交点及由交点向坐标轴所作两条垂线围成的图形 面积=2|k|.
SABC 2 | k |
易得四边形ANBM是平行四边形, ∴S四边形ANBM=AM·NM=AM·2OM=2|k|
模型四 两点两垂线 反比例函数与正比例函数的交点及由交点向坐标轴所作两条垂线围成的图形
= =
1
2
1
OM·AM+12 OM·BC |k|+1 |k|=|k|
22
S△ABM=S△ADM+S△MDB

1 2
MD·|yB-yA|
S△ABM=S△BMO+S△AMO

1 2
MO·|xB-xA|
3. 如图,直线y=mx与双曲线y=k (k≠0)交于点A,B,过点A作

反比例函数背景下的面积问题(解析版)-2023年中考数学重难点解题大招复习讲义-函数

反比例函数背景下的面积问题(解析版)-2023年中考数学重难点解题大招复习讲义-函数

模型介绍一、反比例函数k 的几何意义1.反比例函数k 的几何意义:如图,在反比例函数图象上任选一点,向两坐标轴作垂线,垂线与坐标轴所围成矩形的面积为k 。

如图二,所围成三角形的面积为2k二、利用k 的几何意义进行面积转化1.如图,直线AB 与反比例函数k y x=(0k ≠)交于A 、B 两点,与x 、y 轴的交点分别为C 、D ,那么OAB OCD OBD OAC S S S S ∆∆∆∆=--,此方法是绝大部分学生选用的方法。

但是,从效率来讲,就比较低2.如图,过点A 、B 作x 轴的垂线,垂足分别为E 、F ,则根据k 的几何意义可得,OBF OAE S S ∆∆=,而OBF OAB OAE ABFE S S S S ∆∆∆+=+梯形,所以OAB ABFE S S ∆=梯形,此方法的好处,在于方便,快捷,不易出错。

【例1】.如图,反比例函数y=在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,则△AOB的面积是8.过点A作AC⊥y轴于点C,过点B作BD⊥x轴于点D,∴x=2时,y=3;x=6时,y=1,=S△OBD=3,故S△ACOS四边形AODB=×(3+1)×4+3=11,故△AOB的面积是:11﹣3=8.故答案为:8.变式训练【变1-1】.如图,点A在反比例函数(x>0)的图象上,点B在x轴负半轴上,直线AB交y轴于点C,若,△AOB的面积为12,则k的值为()A.4B.6C.10D.12解:如图,过点A作AD⊥x轴,垂足为D,∵OC∥AD,,∴,∴,k>0,∴k=12,故选:D.【变1-2】.如图,反比例函数y=(k>0)的图象与矩形ABCO的两边相交于E,F两点,=4,则k的值为16.若E是AB的中点,S△BEF解:设E(a,),则B纵坐标也为,∵E是AB中点,∴F点坐标为(2a,),∴BF=BC﹣FC=﹣=,=4,∵S△BEF∴a•=4,∴k=16.故答案是:16.【例2】.如图,平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为6,4,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为12.解:解法一:过点A作x轴的垂线,交CB的延长线于点E,∵BC∥x轴,∴AE⊥BC,∵A,B两点在反比例函数y=(x>0)的图象,且纵坐标分别为6,4,∴A(,6),B(,4),∴AE=2,BE=﹣=,∵菱形ABCD的面积为2,∴BC×AE=2,即BC=,∴AB=BC=,在Rt△AEB中,BE===1,∴k=1,∴k=12.解法二:同理知:BE=1,设A(a,6),则B(a+1,4),∴6a=4(a+1),∴a=2,∴k=2×6=12.故答案为12.变式训练【变2-1】.如图,点A、B在反比例函数y=的图象上,A、B的纵坐标分别是3和6,连接OA、OB,则△OAB的面积是()A.9B.8C.7D.6解:∵点A、B在反比例函数y=的图象上,A、B的纵坐标分别是3和6,∴A(4,3),B(2,6),作AD⊥y轴于D,BE⊥y轴于E,=S△BOE=×12=6,∴S△AOD=S△AOD+S梯形ABED﹣S△BOE=S梯形ABED,∵S△OAB=(4+2)×(6﹣3)=9,∴S△AOB故选:A.【变2-2】.如图,在直角坐标系中,O为坐标原点,函数y=与y=(a>b>0)在第一象限的图象分别为曲线C1,C2,点P为曲线C1上的任意一点,过点P作y轴的垂线交C2于点A,作x轴的垂线交C2于点B,则阴影部分的面积S△AOB=a﹣.(结果用a,b表示)解:设B(m,),A(,n),则P(m,n),∵点P为曲线C1上的任意一点,∴mn=a,=mn﹣b﹣b﹣(m﹣)(n﹣)∴阴影部分的面积S△AOB=mn﹣b﹣(mn﹣b﹣b+)=mn﹣b﹣mn+b﹣=a﹣.故答案为:a﹣.1.如图,在△ABC中,AB=AC,点A在反比例函数y=(k>0,x>0)的图象上,点B,C在x轴上,OC=OB,延长AC交y轴于点D,连接BD,若△BCD的面积等于1,则k的值为()A.3B.2C.D.4解:作AE⊥BC于E,连接OA,∵AB=AC,∴CE=BE,∵OC=OB,∴OC=BC=×2CE=CE,∵AE∥OD,∴△COD∽△CEA,∴=()2=4,∵△BCD的面积等于1,OC=OB,=S△BCD=,∴S△COD=4×=1,∴S△CEA∵OC=CE,=S△CEA=,∴S△AOC=+1=,∴S△AOE=k(k>0),∵S△AOE∴k=3,故选:A.2.如图,OC交双曲线y=于点A,且OC:OA=5:3,若矩形ABCD的面积是8,且AB ∥x轴,则k的值是()A.18B.50C.12D.解:延长DA、交x轴于E,∵四边形ABCD是矩形,且AB∥x轴,∴∠CAB=∠AOE,∴DE⊥x轴,CB⊥x轴,∴∠AEO=∠ABC∴△AOE∽△CAB,∴=()2,∵矩形ABCD的面积是8,OC:OA=5:3,∴△ABC的面积为4,AC:OA=2:3,∴=()2=,=9,∴S△AOE∵双曲线y=经过点A,=|k|=9,∴S△AOE∵k>0,∴k=18,故选:A.3.如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB 的中点,则k的值为()A.﹣8B.8C.﹣2D.﹣4解:设A(a,b),则B(2a,2b),∵点A在反比例函数y1=﹣的图象上,∴ab=﹣2;∵B点在反比例函数y2=的图象上,∴k=2a•2b=4ab=﹣8.故选:A.4.如图,点A(m,n),B(4,)在双曲线y=上,且0<m<n.若△AOB的面积为,则m+n=()A.7B.C.D.3解:∵点A(m,n),B(4,)在双曲线y=上,∴mn=4×=k,∴mn=k=6,∴双曲线为y=,∴n=,作AD⊥x轴于D,BE⊥x轴于E,=S△AOD+S梯形ADEB﹣S△BOE=S梯形ADEB,∵S△AOB∴(+)(4﹣m)=,解得m1=1,m2=﹣16,∵0<m<n.∴m=1,∴n=6,∴m+n=7,故选:A.5.如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x轴=3,则S△于点C,BD⊥x轴于点D,连接OA、BC,已知点C(2,0),BD=3,S△BCDAOC为()A.2B.3C.4D.6解:在Rt△BCD中,∵×CD×BD=3,∴×CD×3=3,∴CD=2,∵C(2,0),∴OC=2,∴OD=4,∴B(4,3),∵点B是反比例函数y=(x>0)图象上的点,∴k=12,∵AC⊥x轴,==6,∴S△AOC故选:D.6.如图,平行于y轴的直线分别交y=与y=的图象(部分)于点A、B,点C是y 轴上的动点,则△ABC的面积为()A.k1﹣k2B.(k1﹣k2)C.k2﹣k1D.(k2﹣k1)解:由题意可知,AB=﹣,AB边上的高为x,=×(﹣)•x=(k1﹣k2),∴S△ABC故选:B.7.已知四边形OABC是矩形,边OA在x轴上,边OC在y轴上,双曲线y=与边BC交于点D、与对角线OB交于中点E,若△OBD的面积为10,则k的值是()A.10B.5C.D.解:设E点的坐标是(x,y),∵E是OB的中点,∴B点的坐标是(2x,2y),则D点的坐标是(,2y),∵△OBD的面积为10,∴×(2x﹣)×2y=10,解得,k=,故选:D.8.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是12,则k=()A.6B.9C.D.解:∵四边形OCBA是矩形,∴AB=OC,OA=BC,设B点的坐标为(a,b),∵BD=3AD,∴D(,b)∵D、E在反比例函数的图象上,∴=k,设E的坐标为(a,y),∴ay=k∴E(a,),=S矩形OCBA﹣S△AOD﹣S△OCE﹣S△BDE=ab﹣k﹣k﹣••(b﹣)=12,∵S△ODE∴4k﹣k﹣+=12k=故选:D.9.如图,一直线经过原点O,且与反比例函数y=(k>0)相交于点A、点B,过点A作AC⊥y轴,垂足为C,连接BC.若△ABC面积为8,则k=8.解:∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积=8÷2=4,又∵A是反比例函数y=图象上的点,且AC⊥y轴于点C,∴△AOC的面积=|k|,∴|k|=4,∵k>0,∴k=8.故答案为8.10.如图,若反比例函数y=的图象经过等边三角形POQ的顶点P,则△POQ的边长为2.解:如图,过点P作x轴的垂线于M,∵△POQ为等边三角形,∴OP=OQ,OM=QM=OQ,∵反比例函数的图象经过点P,∴设P(a,)(a>0),则OM=a,OQ=OP=2a,PM=,在Rt△OPM中,PM===a,∴=a,∴a=1(负值舍去),∴OQ=2a=2,故答案为:2.11.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x 轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.则△OAP 的面积为5.解:过P作MN⊥x轴于M,交AB于N,过A作AD⊥x轴于D,∵A(4,3),∴AD=3,OD=4,∴AO==5,∵AB=AO,∴AB=5,∵AB∥x轴,点B的横坐标是4+5=9,纵坐标是3,即点B的坐标是(9,3),设直线OB的解析式是y=ax,把B点的坐标(9,3)代入得:3=9a,解得:a=,即y=x,∵AB∥x轴,∴MN⊥AB,把A(4,3)代入y=,得k=12,即y=,解方程组得:或,∵点P在第一象限,∴点P的坐标是(6,2),∵A(4,3),AB∥x轴,P(6,2),∴MN=AD=3,PN=3﹣2=1,﹣S△APB=3﹣=5,∴△OAP的面积是S△ABO故答案为:5.12.如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC 面积的最小值为6.解:方法一:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.=AC•BC∵S△ABC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.方法二:因为y=x+m斜率为1,且BC∥x轴,AC∥y轴,∴∠ABC=∠BAC=45°,∴△ABC为等腰直角三角形,∴AC=BC=AB,=AC•BC=AB2,∴S△ABC当AB最小时,m=0,直线为y=x,联立方程,解得或,∴A(,),B(﹣,﹣),AB=×2=2,=×4×6=6.∴S△ABC最小故答案为:6.13.如图,在平面直角坐标系中,△OAB的边OA在x轴正半轴上,其中∠OAB=90°,AO =AB,点C为斜边OB的中点,反比例函数y=(k>0,x>0)的图象过点C,且交线=6,则k的值为8.段AB于点D,连接CD,OD.若S△OCD解:根据题意设B(m,m),则A(m,0),∵点C为斜边OB的中点,∴C(,),∵反比例函数y=(k>0,x>0)的图象过点C,∴k=•=,∵∠OAB=90°,∴D的横坐标为m,∵反比例函数y=(k>0,x>0)的图象过点D,∴D的纵坐标为,作CE⊥x轴于E,=S△AOD,∵S△COES△OCD=S△COE+S梯形ADCE﹣S△AOD=S梯形ADCE,S△OCD=6,∴(AD+CE)•AE=6,即(+)•(m﹣m)=6,∴m2=32,∴k==8,故答案为:8.解法二:作CE⊥OA于E,∵C为AB的中点,OA=AB,∠OAB=90°,=S△AOD=k,S△AOB=2k,∴S△OEC=k,∴S△BOD∵C为斜边OB的中点,=S△BCD=S△BOD=6,∴S△OCD∴×k=6,∴k=8.故答案为:8.14.如图,在平面直角坐标系中,▱OABC的顶点A,B在第一象限内,顶点C在y轴上,经过点A的反比例函数y=(x>0)的图象交BC于点D.若CD=2BD,▱OABC的面积为15,则k的值为18.解:过点D作DN⊥y轴于N,过点B作BM⊥y轴于M,设OC=a,CN=2b,MN=b,∵▱OABC的面积为15,∴BM=,∴ND=BM=,∴A,D点坐标分别为(,3b),(,a+2b),∴•3b=(a+2b),∴b=a,∴k=•3b=•3×a=18,故答案为:18.15.如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴于点B,点C在x 轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.解:连DC,如图,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1,∴△ADC的面积为4,设A点坐标为(a,b),则AB=a,OC=2AB=2a,而点D为OB的中点,∴BD=OD=b,=S△ABD+S△ADC+S△ODC,∵S梯形OBAC∴(a+2a)×b=a×b+4+×2a×b,∴ab=,把A(a,b)代入双曲线y=,∴k=ab=.故答案为:.16.如图,已知反比例函数y1=与一次函数y2=k2x+b的图象交于点A(1,8),B(﹣4,m)两点.(1)求k1,k2,b的值;(2)求△AOB的面积;(3)请直接写出不等式x+b的解.解:(1)∵反比例函数y1=与一次函数y2=k2x+b的图象交于点A(1,8)、B(﹣4,m),∴k1=8,B(﹣4,﹣2),解方程组,解得;(2)由(1)知一次函数y=k2x+b的图象与y轴的交点坐标为(0,6),=×6×4+×6×1=15;∴S△AOB(3)﹣4≤x<0或x≥1.17.如图,在平面直角坐标系中,A点的坐标为(a,6),AB⊥x轴于点B,cos∠OAB=,反比例函数y=的图象的一支分别交AO、AB于点C、D.延长AO交反比例函数的图象的另一支于点E.已知点D的纵坐标为.(1)求反比例函数的解析式;(2)求直线EB的解析式;.(3)求S△OEB解:(1)∵A点的坐标为(a,6),AB⊥x轴,∴AB=6,∵cos∠OAB==,∴,∴OA=10,由勾股定理得:OB=8,∴A(8,6),∴D(8,),∵点D在反比例函数的图象上,∴k=8×=12,∴反比例函数的解析式为:y=;(2)设直线OA的解析式为:y=bx,∵A(8,6),∴8b=6,b=,∴直线OA的解析式为:y=x,则,x=±4,∴E(﹣4,﹣3),设直线BE的解式为:y=mx+n,把B(8,0),E(﹣4,﹣3)代入得:,解得:,∴直线BE的解式为:y=x﹣2;=OB•|y E|=×8×3=12.(3)S△OEB18.如图,直线y=x与反比例函数的图象交于点A(3,a),第一象限内的点B在这个反比例函数图象上,OB与x轴正半轴的夹角为α,且tanα=.(1)求反比例函数的解析式;(2)求点B的坐标;.(3)求S△OAB解:(1)∵直线y=x与反比例函数的图象交于点A(3,a),∴a=×3=4,∴点A的坐标为(3,4),∴k=3×4=12,∴反比例函数解析式y=.(2)∵点B在这个反比例函数图象上,设点B坐标为(x,),∵tanα=,∴=,解得:x=±6,∵点B在第一象限,∴x=6,∴点B的坐标为(6,2).(3)设直线OB为y=kx,(k≠0),将点B(6,2)代入得:2=6k,解得:k=,∴OB直线解析式为:y=x.过A点做AC⊥x轴,交OB于点C,如图所示:则点C坐标为(3,1),∴AC=3.S△OAB的面积=S△OAC的面积+S△ACB的面积=×|AC|×6=9.∴△OAB的面积为9.19.已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(﹣2,0),与反比=4.例函数在第一象限内的图象的交于点B(2,n),连接BO,若S△AOB (1)求该反比例函数的解析式和直线AB的解析式;(2)若直线AB与双曲线的另一交点为D点,求△ODB的面积.=•|x A|•y B,解:(1)由题意得:S△AOB即×2×y B=4,y B=4,∴B(2,4),设反比例函数的解析式为:y=,把点B的坐标代入得:k=2×4=8,∴y=,设直线AB的解析式为:y=ax+b,把A(﹣2,0)、B(2,4)代入得:,解得:,∴y=x+2;(2)由题意得:x+2=,解得:x1=﹣4,x2=2,∴D(﹣4,﹣2),=S△OAD+S△OAB=×2×2+4=6.∴S△ODB20.如图,在平行四边形OABC中,,点A在x轴上,点D是AB 的中点,反比例函数的图象经过C,D两点.(1)求k的值;(2)求四边形OABC的面积.解:(1)过点C作CE⊥x轴于E,∵∠AOC=45°,∴OE=CE,∴OE2+CE2=OC2∵OC=2,∴OE=CE=2,∴C(2,2),∵反比例函数的图象经过点C点,∴k=2×2=4;(2)过点D作DF⊥x轴于F,∵四边形OABC是平行四边形,∴AB=OC=2,∠DAF=∠AOC=45°,又∵点D是AB的中点,∴AD=,AF=DF,∴AF2+DF2=AD2,∴AF=DF=1,∴D点的纵坐标为1,∵反比例函数的图象过点D点,∴D(4,1),∴OF=4,OA=OF﹣AF=4﹣1=3,∴平行四边形OABC的面积S=OA•CE=3×2=6.21.如图,直线y=6x与双曲线y=(k≠0,且x>0)交于点A,点A的横坐标为2.(1)求点A的坐标及双曲线的解析式;(2)点B是双曲线上的点,且点B的纵坐标是6,连接OB,AB,求△AOB的面积.解:(1)将x=2代入y=6x,得:y=12,∴点A的坐标为(2,12),将A(2,12)代入y=,得:k=24,∴反比例函数的解析式为y=;(2)在y=中y=6时,x=4,∴点B(4,6),而A(2,12),如图,过A作AC⊥y轴,BD⊥x轴,交于点E,则OD=4,OC=12,BD=6,AC=2,AE=2,BE=6,=S矩形OCED﹣S△AOC﹣S△BOD﹣S△ABE∴S△AOB=4×12﹣×2×12﹣×4×6﹣×2×6=48﹣12﹣12﹣6=18.22.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的表达式;(2)求△AOB的面积;(3)若D(x,0)是x轴上原点左侧的一点,且满足,求x的取值范围.解:(1)∵B(2,﹣4)在反比例函数y=的图象上,∴m=﹣8,∴反比例函数的表达式为y=﹣.∵A(﹣4,n)在y=﹣的图象上,∴n=2,∴A(﹣4,2).∵y=kx+b经过A(﹣4,2)和B(2,﹣4),∴,解得∴一次函数的表达式为y=﹣x﹣2.(2)当y=﹣x﹣2=0时,解得x=﹣2.∴点C(﹣2,0),∴OC=2,=S△AOC+S△COB∴S△AOB=×2×2+×2×4=6.(3)根据函数的图象可知:若D(x,0)是x轴上原点左侧的一点,当﹣4<x<0时,满足kx+b﹣<0.23.如图,一次函数y=k1x+b的图象与反比例函数y=(x<0)的图象相交于点A(﹣1,2)、点B(﹣4,n).(1)求此一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在x轴上存在一点P,使△PAB的周长最小,求点P的坐标.解:(1)∵反比例函数y=(x<0)的图象经过点A(﹣1,2),∴k2=﹣1×2=﹣2,∴反比例函数表达式为:y=﹣,∵反比例y=﹣的图象经过点B(﹣4,n),∴﹣4n=﹣2,解得n=,∴B点坐标为(﹣4,),∵直线y=k1x+b经过点A(﹣1,2),点B(﹣4,),∴,解得:,∴一次函数表达式为:y=+.(2)设直线AB与x轴的交点为C,如图1,当y=0时,x+=0,x=﹣5;∴C点坐标(﹣5,0),∴OC=5.S△AOC=•OC•|y A|=×5×2=5.S△BOC=•OC•|y B|=×5×=.S△AOB=S△AOC﹣S△BOC=5﹣=;(3)如图2,作点A关于x轴的对称点A′,连接A′B,交x轴于点P,此时△PAB的周长最小,∵点A′和A(﹣1,2)关于x轴对称,∴点A′的坐标为(﹣1,﹣2),设直线A′B的表达式为y=ax+c,∵经过点A′(﹣1,﹣2),点B(﹣4,)∴,解得:,∴直线A′B的表达式为:y=﹣x﹣,当y=0时,则x=﹣,∴P点坐标为(﹣,0).24.如图,在平面直角坐标系xOy中,已知四边形DOBC是矩形,且D(0,4),B(6,0).若反比例函数y=(x>0)的图象经过线段OC的中点A(3,2),交DC于点E,交BC于点F.设直线EF的解析式为y=k2x+b.(1)求反比例函数和直线EF的解析式;(2)求△OEF的面积;(3)请结合图象直接写出不等式k2x+b>0的解集.解:(1)∵四边形DOBC是矩形,且D(0,4),B(6,0),∴C点坐标为(6,4),∵A点坐标为(3,2),∴k1=3×2=6,∴反比例函数解析式为y=;把x=6代入y=得x=1,则F点的坐标为(6,1);把y=4代入y=得x=,则E点坐标为(,4),把F(6,1)、E(,4)代入y=k2x+b,得,解得,,∴直线EF的解析式为y=﹣x+5;﹣S△ODE﹣S△OBF﹣S△CEF(2)△OEF的面积=S矩形BCDO=4×6﹣×4×﹣×6×1﹣×(6﹣)×(4﹣1)=;(3)由图象得:不等式k2x+b﹣>0的解集为<x<6.25.如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P,连结OP、OQ.求△OPQ的面积.解:(1)反比例函数y=(m≠0)的图象经过点(1,4),解得m=4,故反比例函数的表达式为y=.一次函数y=﹣x+b的图象与反比例函数的图象相交于点Q(﹣4,n),所以,解得n=﹣1,b=﹣5.∴一次函数的表达式y=﹣x﹣5;(2)由,解得或.∴点P(﹣1,﹣4),在一次函数y=﹣x﹣5中,令y=0,得﹣x﹣5=0,解得x=﹣5,故点A(﹣5,0),S△OPQ=S△OP A﹣S△OAQ=×5×4−×5×1=7.5.26.如图,在平面直角坐标系中,边长为4的等边△OAB的边OB在x轴的负半轴上,反比例函数y=(x<0)的图象经过AB边的中点C,且与OA边交于点D.(1)求k的值;(2)连接OC,CD,求△OCD的面积;(3)若直线y=mx+n与直线CD平行,且与△OAB的边有交点,直接写出n的取值范围.解:(1)∵等边△OAB,∴AB=BO=AO=4,∠ABO=∠BOA=∠OAB=60°,∵点C是AB的中点,∴BC=AC=2,过点C作CM⊥OB,垂足为M,在Rt△BCM中,∠BCM=90°﹣60°=30°,BC=2,∴BM=1,CM=,∴OM=4﹣1=3,∴点C 的坐标为(﹣3,),代入y =得:k =﹣3答:k 的值为﹣3;(2)过点A 作AN ⊥OB ,垂足为N ,由题意得:AN =2CM =2,ON =OB =2,∴A (﹣2,2),设直线OA 的关系式为y =kx ,将A 的坐标代入得:k =﹣,∴直线OA 的关系式为:y =﹣x ,由题意得:,解得:舍去,,∴D (﹣,3)过D 作DE ⊥OB ,垂足为E ,S △OCD =S CMED +S △DOE ﹣S △COM =S CMED =(+3)×(3﹣)=3,答:△OCD 的面积为3.(3)①当与直线CD 平行的直线y =mx +n 过点O 时,此时y =mx +n 的n =0,②当与直线CD 平行的直线y =mx +n 经过点A 时,设直线CD 的关系式为y =ax +b ,把C 、D 坐标代入得:,解得:a =1,b =3+∴直线CD 的关系式为y =x +3+,∵y =mx +n 与直线y =x +3+平行,∴m =1,把A (﹣2,2)代入y =x +n 得:n =2+2因此:0≤n ≤2+2且n .答:n 的取值范围为:0≤n ≤2+2且n ≠3+.。

培优专题23反比例函数的比例系数K和面积的关系-解析版

培优专题23反比例函数的比例系数K和面积的关系-解析版

y
k x
(k
0,
x
0)
的图象经过
OA
的中点
D
,与直角边
AB
交于点 C
,若点
A
的坐标为 4,3,则△AOC
的面
积为( )
A. 5
B. 3
5 C. 2
D. 4.5
【答案】D
【分析】直接根据点 D 是 OA 的中点即可求出 D 点坐标,由 D 点坐标即可求出反比例函数的解析式,故可
得出 AOBC 的面积,由 SA AOC SA AOB SAOBC 即可得出结论
对称的任意两点,BC∥x 轴,AC∥y 轴,△ABC 的面积记为 S,则( )
A. S m
B. S 2m
C. m S 2m
D. S 2m
【答案】B
【分析】根据 A、B 两点在曲线上可设 A、B 两点的坐标,再根据三角形面积公式列出方程,即可得到答
案.
【详解】设点 A(x,y),则点 B(-x,-y),
()
A.4 【答案】C
B.2
C.1
D.6
【分析】根据反比例函数
y=
k x
(k≠0)系数
k
的几何意义得到
SA POA
1 2
4
2, SA BOA
1 2
2
1 ,然后利用
SA POB SA POA SA BOA 进行计算即可.
【详解】解:∵PA⊥x 轴于点 A,交 C2 于点 B,

SA POA
1 2
m m m,
k k,
PA 与 PB 的关系无法确定,结论②错误;
③ 点
P
在反比例函数
y
k x

专题反比例函数与三角形四边形的面积等

专题反比例函数与三角形四边形的面积等

反比例函数比例系数k与图形面积经典专题知识点回顾由于反比例函数解析式及图象的特殊性,很多中考试题都将反比例函数与面积结合起来进行考察。

这种考察方式既能考查函数、反比例函数本身的基础知识内容,又能充分体现数形结合的思想方法,考查的题型广泛,考查方法灵活,可以较好地将知识与能力融合在一起。

下面就反比例函数中与面积有关的问题的四种类型归纳如下:利用反比例函数中|k|的几何意义求解与面积有关的问题设P为双曲线上任意一点,过点P作x轴、y轴的垂线PM、PN,垂足分别为M、N,则两垂线段与坐标轴所围成的的矩形PMON的面积为S=|PM|×|PN|=|y|×|x|=|xy|∴xy=k 故S=|k| 从而得结论1:过双曲线上任意一点作x轴、y轴的垂线,所得矩形的面积S为定值|k| 对于下列三个图形中的情形,利用三角形面积的计算方法和图形的对称性以及上述结论,可得出对应的面积的结论为:结论2:在直角三角形ABO中,面积S=结论3:在直角三角形ACB中,面积为S=2|k|结论4:在三角形AMB中,面积为S=|k|类型之一 k 与三角形的面积※1、如图,已知双曲线y=xk(k >0)经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为6,则k=______.最佳答案过D 点作DE⊥x 轴,垂足为E ,由双曲线上点的性质,得S △AOC =S △DOE = 21k, ∵DE⊥x 轴,AB⊥x 轴, ∴DE ∥ AB ,∴△OAB ∽ △OED, 又∵OB=2OD,∴S △OAB =4S △DOE =2k ,由S △OAB -S △OAC =S △OBC ,得2k -21k=6,解得:k=4. 故答案为:4.2、如图1-ZT-1,分别过反比例函数y=x2018(x >0)的图象上任意两点A 、B 作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,,比较它们的大小,可得A.S 1>S 2B.S 1=S 2C.S 1<S 2D.S 1、S 2大小不确定。

反比例函数面积问题

反比例函数面积问题

反比例函数面积问题
反比例函数面积问题通常是指与反比例函数相关的图形面积的计算
问题。

例如,给定反比例函数y=k/x的图像与坐标轴所围成的区域,要求该区域的面积。

解决这类问题通常需要应用积分学知识,因为反比例函数的图像通常是一个双曲线,与坐标轴围成的区域是一个不规则图形。

通过积分,我们可以求出这个不规则图形的面积。

具体地,如果要求反比例函数y=k/x在第一象限内与x轴、y轴所围成的区域面积,可以先求出该函数在第一象限内的图像与x轴之间的面积,然后再乘以2(因为反比例函数在第一、三象限内是对称的)。

这个面积可以通过定积分来计算,积分区间是从0到正无穷大,被积函数是y=k/x。

需要注意的是,由于反比例函数的图像在x轴和y轴上都趋于无穷大,
因此所求得的面积也是无穷大的。

但是,在某些特定情况下,例如给定一个特定的矩形区域,我们可以通过计算该矩形区域内反比例函数图像的面积来得到一个有限的数值。

总之,反比例函数面积问题需要根据具体情况进行具体分析,通常需要应用积分学知识和几何知识来解决。

以上是对于反比例函数面积问题5的回答,希望对你有所帮助。

与反比例函数有关的面积问题中考数学复习专题演示文稿讲课文档

与反比例函数有关的面积问题中考数学复习专题演示文稿讲课文档

(第4题图)
第七页,共27页。
模型三 原点一垂线
模 型 分 过正比例函数与反比例函数的一个交点作坐标轴的 析
垂线,两交点与垂足构成的三角形面积等于|k|.
第八页,共27页。
5.如图,一次函数y=ax+b与反比例函数y= 的k图象交于A、 x
B两点,点A的坐标为(6,2),点B的坐标为(-4,n),AE⊥x 轴,直线AB交y轴于点C,过C作y轴的垂线,交反比例函数图 象于点D,连接AD、BD、BE. (1)求一次函数与反比例函数的解析式; (2)求四边形BEAD的面积.
则四边形BEAD的面积为40.
2
第十一页,共27页。
模型四 两点两垂线
模 型 过反比例函数与正比例函数的交点作两条 坐分标轴析的垂线,两垂线与相关线段围成的图形面积等 于2|k|.
第十二页,共27页。
6. 如图,直线y=2(x-2)+n经过原点,与反比例函数y= 的 图象n 交于点A、B,过点A作AC垂直于x轴,交x轴与点D,过点 B作x BC垂直于y轴,交y轴与点E,AD与BE相交于点C,求:
第二十二页,共27页。
(第9题解图)
10. 如图,点A是反比例函数y= (x2 >0)的图象上任意一 点,AB∥x轴交反比例函数y=- x 的图象3 于点B,以AB 为边作平行四边形ABCD,其中C、D在x轴x 上,则S▱ABCD为
________. 5
第二十三页,共27页。
(第10题图)
【解析】设点A的纵坐标为b,∵点A在反比例函数
2
2
∴S△DCB+S△ADC= 1 ×DC×(yC-yB+yA-yC)
2 = 1 ×DC×(yA-yB),∵点C在直线AB上, ∴当x=0时,
y=2 -1,∴点C的坐标为(0,-1),∴点D的纵坐标为-

反比例函数任意两点和原点三角形面积

反比例函数任意两点和原点三角形面积

反比例函数任意两点和原点三角形面积1. 引言嘿,朋友们!今天咱们聊聊一个有趣的话题,反比例函数。

这可是数学界的一颗璀璨明珠,听起来挺复杂,其实说白了就是一种特别的函数。

咱们身边的许多现象,像是水管的流量、光线的强度,甚至是咱们的体重和身高的关系,都是反比例的。

这不,今天我就想跟你们聊聊反比例函数任意两点和原点构成的三角形面积,听起来是不是有点儿高大上?不过别担心,我会用简单易懂的方式带你们走进这个神奇的数学世界。

2. 反比例函数基础2.1 什么是反比例函数?首先,咱们得搞明白反比例函数到底是个啥。

简单来说,反比例函数的形式是 (y = frac{k{x),其中 (k) 是一个常数。

这就是说,随着 (x) 的增大,(y) 就会变小,反之亦然。

就像你在吃糖果,如果你一个劲儿地吃,最后肯定会剩得少得可怜。

这个函数的图像是一条光滑的曲线,看上去像个“L”字,真是既优雅又有趣。

2.2 反比例函数的性质说到性质,那就有意思了!反比例函数的图像永远不会与坐标轴相交,这也就意味着当 (x) 或 (y) 为零时,函数没有意义。

它总是保持在第一象限和第三象限,这简直像是数学界的一个小秘密。

还有,反比例函数的对称性也很有趣,它关于原点对称,换句话说,如果你把图像翻转一下,它就会重合,哇,数学真是太神奇了!3. 三角形的形成3.1 两点和原点好啦,咱们现在进入正题。

假设我们在反比例函数的图像上取两点,分别是(A(x_1, y_1)) 和 (B(x_2, y_2))。

然后,再把原点 (O(0, 0)) 加进来。

这样,就形成了一个三角形!你可以想象一下,三角形的两边是由这两点和原点连成的。

这感觉就像是搭建一座小桥,把两个朋友连在一起,真是温馨又美好。

3.2 如何计算三角形面积?接下来,让我们来算算这个三角形的面积。

三角形的面积公式是 (frac{1{2 times 底times 高)。

在这里,底边可以看作是 (AB) 这条边的长度,而高就是原点到边 (AB) 的垂直距离。

北师大九年级数学上册 反比例函数与面积问题课件

北师大九年级数学上册 反比例函数与面积问题课件

y
3 x 上的点,分别经过A,B两
点向X轴、y轴作垂线段,若 S阴影 1,则S1 S2 4 .2
x
问题3.如图,已知,A,B是双曲线
y
k x
(k
0) 上的两点,
(1)若A(2,3),求K的值
(2)在(1)的条件下,若点B的横坐标为3, y
连接OA,OB,AB,求△OAB的面积。
反比例函数的应用
创设情境 呈现问题
y k (k 0) 的面积不变性
x
y
P(x, y)
K
S
0Q x
2
k (k 0) 2
y P(x, y)
x 0
S K k(k 0)
注意:(1)面积与P的位置无关
(2)当k符号不确定的情况 下须分类讨论
yk
yx
B
D P(m,n)
o AC
x
S= 1 ︱ k︱ 2
AE
B
o
x
问题4.若A(m,n)是反比例函数图象上的一动点,其
中0<m<3,点B的坐标(3,2),过点A作直线AC∥x轴,交y轴
于点C;过点B作直线BD∥y轴交x轴于点D,交直线AC于点E,
当四边形OBEA的面积为6时,请判断线段AC与AE的大小关系,
并说明理由。
y
AE C
B
o
D
x
问题训练 组建展评
y
yk x
A
Do C
x
B
S△ABC=︱K︱ SACBD=2︱K︱
自主探究 合作讨论
展示交流 规范评价
问题1、在双曲线 y k (X>0) 上 x
任一点分别作x轴、y轴的垂线段, y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数和面积法
面积法应用广泛,方法巧妙,在与反比例函数相关的题中,若能充分利用,并借助基本图形,将大大提高解题速度.
基本图例1:如图1,易证S△ABO =S△ACO =xy=∣k∣初中数学论文初中数学论文,S矩形ABCO=∣k∣
反比例函数与面积法基本图例2:如图2,如果AD∥BC,按同底等高的三角形面积相等,可得到S△ABC =S△DBC,反之,如果S△ABC =S△DBC,得到AE=DF,则有矩形AEFD,所以也可得到AD∥BC,
反比例函数与面积法
x
例 1 如图,在直角坐标平面内,函数( x>0,m是常数)的图象经过A(1,4)、B(a,b),其中a>1.过点A作AC⊥x轴于C,过点B作BD⊥y轴于D,连接AD、BC、DC.(1)证明:AB∥CD
(2)若△ABD的面积是4初中数学论文初中数学论文,求B点坐标,
解析:(1)分别作AP⊥y轴于P,BQ⊥x轴于Q
由基本图例1可知:S矩形APOC= S矩形BQOD=∣m∣
于是有S矩形APDN =S矩形BQCNS△ADN =S△BCN
S△ADC =S△BCD,再根据基本图例2,于是可证出AB∥CD
(2)∵ S△ABD =BD?AN=a(4-b)
∴ 4=a(4-b)= 2a-ab 由基本图例1可知ab=×1×4=2
解得a=3,b= 所以B点坐标是(3,)
例2 (09山东威海)一次函数的图象分别与x轴、y轴交于点M、N,与反比例函数的图象相交于点A、B.过点A分别作AC⊥x轴,AE⊥y轴,垂足分别为C、E;过点B分别作BF⊥x轴,BD⊥y轴,垂足分别为F,D,AC与BD交于点K,连接CD.
(1)若点A、B在反比例函数的图象的同一分支上,如图1初中数学论文初中数学论文,试证明:
①S四边形AEDK =S四边形CFBK;②AN=BM.
(2)若点A,B分别在反比例函数的图象的不同分支上,如图2,则AN 与BM还相等吗?试证明你的结论.
解析:(1)①由基本图例1可知:S矩形AEOC= S矩形BDOF=∣k∣
∴ S矩形AEOC-S矩形KDOC=S矩形BDOF-S矩形KDOC
∴ S四边形AEDK =S四边形CFBK
②按例1思路易证AB∥CD ,而且AC ∥DN, BD∥CM
∴ 有平行四边形ACDN和平行四边形BDCM,于AN=CD,BM=CD
所以AN=BM
(2)连接AD、BC,由基本图例1可知:S矩形BDOF= S矩形ACOE=∣k∣
∴ S矩形AEOC+S矩形KDOC = S矩形BDOF+S矩形KDOC 即S四边形AEDK =S四边形CF
BK
∴ S△ADK =S△BCK ∴ S△ADK-S△CDK=S△BCK-S△CDK 即S△ACD =S△BCD
再按基本图例2思路易证AB∥CD
于是有平行四边形ACDN和平行四边形BDCM,于AN=CD,BM=CD
所以AN与BM仍然相等。

相关文档
最新文档