《线性代数》知识点归纳整理-大学线代基础知识

合集下载

线性代数基础知识

线性代数基础知识

线性代数基础知识导言:线性代数是现代数学的重要分支之一,广泛应用于数学、物理、工程、计算机科学等领域。

本文将介绍线性代数的基本概念、运算规律和应用,以帮助读者建立对线性代数的基础知识。

一、向量与向量空间1.1 向量的定义与性质向量是具有大小和方向的量,可以用有序数对或矩阵形式表示。

向量的加法与数量乘法满足交换律、结合律和分配律等基本性质。

1.2 向量空间的定义与性质向量空间是由一组向量和运算规则构成的数学结构,包括加法和数量乘法运算。

向量空间满足加法和数量乘法的封闭性、结合律、分配律以及零向量和负向量的存在等性质。

二、矩阵与线性方程组2.1 矩阵的定义与性质矩阵是由一组数按照矩形排列组成的数学对象,可以表示为一个二维数组。

矩阵的加法与数量乘法满足交换律、结合律和分配律等基本性质。

2.2 线性方程组的表示与求解线性方程组可以用矩阵和向量表示,形式为Ax=b。

其中,A为系数矩阵,x为未知向量,b为常数向量。

线性方程组的解可以通过消元法、矩阵的逆或行列式等方法求得。

三、线性变换与特征值特征向量3.1 线性变换的定义与性质线性变换是指一个向量空间到另一个向量空间的映射,保持向量加法和数量乘法运算。

线性变换满足加法封闭性、乘法封闭性和保持零向量不变等性质。

3.2 特征值与特征向量线性变换的特征值和特征向量是线性变换的重要性质。

特征值为标量,特征向量为非零向量,满足Av=λv。

其中,A为线性变换的矩阵表示,λ为特征值,v为对应的特征向量。

四、内积空间与正交性4.1 内积空间的定义与性质内积空间是一个向量空间,具有额外定义的内积运算。

内积满足对称性、线性性、正定性和共轭对称性等性质。

4.2 正交性与正交基在内积空间中,若两个向量的内积为零,则它们互为正交。

正交基是一个向量空间中的基,其中任意两个基向量互相正交。

五、特殊矩阵与特殊向量5.1 对称矩阵与正定矩阵对称矩阵是满足A^T=A的矩阵,其中A^T为A的转置矩阵。

线性代数知识点总结

线性代数知识点总结

大学线性代数知识点总结第一章 行列式 二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j n ij a a a a ...)1(21212121)..(∑-=τ奇偶排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变.转置行列式T D D = ②行列式中某两行列互换,行列式变号.推论:若行列式中某两行列对应元素相等,则行列式等于零. ③常数k 乘以行列式的某一行列,等于k 乘以此行列式. 推论:若行列式中两行列成比例,则行列式值为零; 推论:行列式中某一行列元素全为零,行列式为零. ④行列式具有分行列可加性⑤将行列式某一行列的k 倍加到另一行列上,值不变 行列式依行列展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零.克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解逆否:若方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:3331222113121100a a a a a a a 方法:用221a k 把21a 化为零,..化为三角形行列式⑤上下三角形行列式: 行列式运算常用方法主要行列式定义法二三阶或零元素多的 化零法比例化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵矩阵的运算:加法同型矩阵---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA,不满足消去律;由AB=0,不能得A=0或B=0转置A A T T =)( T T T B A B A +=+)( T T kA kA =)( T T T A B AB =)(反序定理 方幂:2121k k k k A A A +=2121)(k k k kA A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵 数量矩阵:相当于一个数若…… 单位矩阵、上下三角形矩阵若…… 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0 分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A =-1非奇异矩阵、奇异矩阵|A|=0、伴随矩阵 初等变换1、交换两行列 2.、非零k 乘某一行列3、将某行列的K 倍加到另一行列初等变换不改变矩阵的可逆性 初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到的对换阵 倍乘阵 倍加阵等价标准形矩阵⎪⎪⎭⎫⎝⎛=O O O I D r r矩阵的秩rA :满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则rAB=rB 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式n ij nn ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的.矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置T A 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB 但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B AA 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵. 5、若A 可逆,则11--=A A伴随矩阵:A 为N 阶方阵,伴随矩阵:⎪⎪⎭⎫⎝⎛=22211211*A A A A A 代数余子式 特殊矩阵的逆矩阵:对1和2,前提是每个矩阵都可逆1、分块矩阵⎪⎪⎭⎫ ⎝⎛=C O B A D 则⎪⎪⎭⎫ ⎝⎛-=-----11111C O BC A AD 2、准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321A A A A A , 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----141312111A A A A A 3、 I A A A AA ==** 4、1*-=A A A A 可逆 5、1*-=n A A 6、()()A AA A 1*11*==--A 可逆7、()()**T TA A = 8、()***AB AB =判断矩阵是否可逆:充要条件是0≠A ,此时*11A AA =- 求逆矩阵的方法:定义法I AA =-1伴随矩阵法AA A *1=-初等变换法()()1||-=A I I A n n 只能是行变换初等矩阵与矩阵乘法的关系: 设()nm ij aA *=是mn 阶矩阵,则对A 的行实行一次初等变换得到的矩阵,等于用同等的m 阶初等矩阵左乘以A :对A 的列实行一次初等变换得到的矩阵,等于用同种n 阶初等矩阵右乘以A 行变左乘,列变右乘第三章 线性方程组消元法 非齐次线性方程组:增广矩阵→简化阶梯型矩阵rAB=rB=r 当r=n 时,有唯一解;当n r ≠时,有无穷多解 rAB ≠rB,无解齐次线性方程组:仅有零解充要rA=n 有非零解充要rA<n 当齐次线性方程组方程个数<未知量个数,一定有非零解 当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0齐次线性方程组若有零解,一定是无穷多个N 维向量:由n 个实数组成的n 元有序数组.希腊字母表示加法数乘 特殊的向量:行列向量,零向量θ,负向量,相等向量,转置向量 向量间的线性关系: 线性组合或线性表示向量组间的线性相关无:定义179P向量组的秩:极大无关组定义P188定理:如果rj j j ααα,.....,21是向量组s ααα,.....,21的线性无关的部分组,则它是 极大无关组的充要条件是:s ααα,.....,21中的每一个向量都可由rj j j ααα,.....,21线性表出.秩:极大无关组中所含的向量个数.定理:设A 为mn 矩阵,则r A r =)(的充要条件是:A 的列行秩为r.现性方程组解的结构:齐次非齐次、基础解系线性组合或线性表示注:两个向量αβ,若βαk =则α是β线性组合单位向量组任意向量都是单位向量组的线性组合 零向量是任意向量组的线性组合任意向量组中的一个都是他本身的线性组合 向量组间的线性相关无注: n 个n 维单位向量组一定是线性无关 一个非零向量是线性无关,零向量是线性相关 含有零向量的向量组一定是线性相关 若两个向量成比例,则他们一定线性相关向量β可由n ααα,..,21线性表示的充要条件是)...()...(2121T Tn TTTnTTr r βαααααα=判断是否为线性相关的方法:1、定义法:设n k k k ....21,求n k k k ....21适合维数低的2、向量间关系法183P :部分相关则整体相关,整体无关则部分无关3、分量法n 个m 维向量组180P :线性相关充要n r Tn T T <⇒)....(21ααα 线性无关充要n r T n T T =⇒)....(21ααα推论①当m=n 时,相关,则0321=T T T ααα;无关,则0321≠T T T ααα ②当m<n 时,线性相关推广:若向量s ααα,...,21组线性无关,则当s 为奇数时,向量组13221,...,αααααα+++s 也线性无关;当s 为偶数时,向量组也线性相关.定理:如果向量组βααα,,...,21s 线性相关,则向量β可由向量组s ααα,...,21线性表出,且 表示法唯一的充分必要条件是s ααα,...,21线性无关. 极大无关组注:向量组的极大无关组不是唯一的,但他们所含向量的个数是确定的;不全为零的向量组的极大无关组一定存在; 无关的向量组的极大无关组是其本身; 向量组与其极大无关组是等价的. 齐次线性方程组I 解的结构:解为...,21αα I 的两个解的和21αα+仍是它的解; I 解的任意倍数αk 还是它的解;I 解的线性组合s s c c c ααα+++....2211也是它的解,s c c c ,...,21是任意常数.非齐次线性方程组II 解的结构:解为...,21μμII 的两个解的差21μμ-仍是它的解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的一个解,则u+v 是II 的一个解. 定理:如果齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则该方程组的基础解系存在,且在每个基础解系中,恰含有n-r 个解.若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的全部解,则u+v 是II 的全部解.第四章 向量空间向量的内积 实向量定义:α,β=n n T b a b a b a +++=....2211αβ 性质:非负性、对称性、线性性 α,k β=k α,β; k α,k β=2k α,β;α+β,δγ+=α,γ+α,δ+β,γ+β,δ;),(),(1111j i sj j ri i j sj j ri i i l k l k βαβα∑∑∑∑===== n R ∈δγβα,,,,向量的长度),(ααα=0=α的充要条件是α=0;α是单位向量的充要条件是α,α=1单位化 向量的夹角正交向量:αβ是正交向量的充要条件是α,β=0 正交的向量组必定线性无关 正交矩阵:n阶矩阵A I A A AA T T ==性质:1、若A 为正交矩阵,则A可逆,且T A A =-1,且1-A 也是正交矩阵;2、若A 为正交矩阵,则1±=A ;3、若A 、B为同阶正交矩阵,则AB也是正交矩阵; 4、n阶矩阵A=ij a 是正交矩阵的充要条件是A的列行向量组是 标准正交向量;第五章 矩阵的特征值和特征向量 特征值、特征向量A 是N 阶方阵,若数λ使AX=λX,即λI-A=0有非零解,则称λ为A 的一 个特征值,此时,非零解称为A 的属于特征值λ的特征向量. |A|=n λλλ...**21 注: 1、AX=λX2、求特征值、特征向量的方法0=-A I λ 求i λ 将i λ代入λI-AX=0求出所有非零解 3、对于不同的矩阵,有重根、单根、复根、实根主要学习的特殊:n I )(λ的特征向量为任意N 阶非零向量或)(21不全为零i n c c c c ⎪⎪⎪⎭⎫ ⎝⎛4、特征值: 若)0(≠λλ是A 的特征值则1-A --------λ1 则m A --------m λ则kA --------λk若2A =A 则-----------λ=0或1若2A =I 则-----------λ=-1或1若k A =O 则----------λ=0迹trA :迹A=nn a a a +⋯⋯++2211性质:1、N 阶方阵可逆的充要条件是A 的特征值全是非零的2、A 与1-A 有相同的特征值3、N 阶方阵A 的不同特征值所对应的特征向量线性无关4、5、P281相似矩阵定义P283:A 、B 是N 阶矩阵,若存在可逆矩阵P,满足B AP P =-1,则矩阵A 与B 相似,记作A~B性质1、自身性:A~A,P=I2、对称性:若A~B 则B~A B AP P =-1 1-=PBP A A BP P =---111)(3、传递性:若A~B 、B~C 则A~C B AP P =-111 C BP P =-212---C P P A P P =-)()(211214、若AB,则A 与B 同不可逆5、若A~B,则11~--B A B AP P =-1两边同取逆,111---=B P A P6、若A~B,则它们有相同的特征值. 特征值相同的矩阵不一定相似7、若A~B,则)()(B r A r = 初等变换不改变矩阵的秩例子:B AP P =-1则1100100-=P PB AO AP P =-1 A=OI AP P =-1 A=II AP P λ=-1 A=I λ矩阵对角化定理:N 阶矩阵A 与N 阶对角形矩阵相似的充要条件是A 有N 个线性无关的特征向量注:1、P 与^中的i i x λ与顺序一致2、A~^,则^与P 不是唯一的推论:若n 阶方阵A 有n 个互异的特征值,则~^A P281定理:n 阶方阵~^A 的充要条件是对于每一个i K 重特征根i λ,都有i i K n A I r -=-)(λ注:三角形矩阵、数量矩阵I λ的特征值为主对角线.约当形矩阵约当块:形如⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=λλλλ111J 的n 阶矩阵称为n 阶约当块; 约当形矩阵:由若干个约当块组成的对角分块矩阵⎪⎪⎪⎭⎫ ⎝⎛=n J J J J 21i J 是约当块称为约当形矩阵. 定理:任何矩阵A 都相似于一个约当形矩阵,即存在n 阶可逆矩阵J AP P =-1.第六章 二次型二次型与对称矩阵只含有二次项的n 元多项式f 称为一个n 元二次型,简称二次型. 标准型:形如 的二次型,称为标准型.规范型:形如 的二次型,称为规范型.线性变换矩阵的合同:设AB 是n 阶方阵,若存在一个n 阶可逆矩阵C,使得 则称A 与B 是合同的,记作A B.合同的性质:反身性、对称性、传递性、秩、化二次型为标准型:配方法、做变换二次型中不含有平方项。

大一线性代数必考知识点

大一线性代数必考知识点

大一线性代数必考知识点线性代数是大一学生学习的一门重要的数学课程。

掌握线性代数的基础知识对于后续学习高等数学、概率论、统计学等学科都非常重要。

接下来,本文将介绍大一线性代数必考的知识点,以帮助大一学生有效备考。

一、向量和矩阵1. 向量的概念和运算:向量的定义、数量积、向量的代数运算等。

2. 矩阵的概念和运算:矩阵的定义、矩阵的乘法、矩阵的转置和逆等。

3. 向量和矩阵的性质:向量和矩阵的加法和乘法满足的性质,线性相关和线性无关的概念等。

二、线性方程组1. 线性方程组的概念和解法:齐次线性方程组和非齐次线性方程组的定义、高斯消元法、矩阵的秩等。

2. 向量空间和子空间:向量空间的定义、子空间的定义、线性无关组和基、维数的概念等。

三、特征值和特征向量1. 特征值和特征向量的定义:特征值和特征向量的概念和基本性质等。

2. 对角化和相似矩阵:对角化的概念、相似矩阵的性质等。

四、内积空间和正交性1. 内积的定义和性质:内积的定义、内积的基本性质等。

2. 正交向量和正交投影:正交向量的定义、正交投影的概念等。

五、线性变换1. 线性变换的定义和基本性质:线性变换的定义、线性变换的基本性质等。

2. 线性变换的矩阵表示:线性变换与矩阵的关系、矩阵的相似和对角化等。

六、向量空间的维数和秩1. 向量空间的维数和秩的定义和性质:向量空间的维数的定义、秩的定义与性质等。

2. 雅可比矩阵和秩-零度定理:雅可比矩阵的定义和性质、秩-零度定理等。

这些是大一线性代数课程中必考的知识点,通过学习这些知识点,掌握了线性代数的基础知识,将能够更好地理解和应用其他数学知识,为今后的学习打下坚实的基础。

在备考过程中,建议多做习题和练习,加深对这些知识点的理解,并且理论联系实际,将其与实际问题进行结合,提高解决实际问题的能力。

祝大家在线性代数的学习中取得优异的成绩!。

大学线代知识点总结

大学线代知识点总结

大学线代知识点总结线性代数是数学的一个分支,研究向量空间、线性变换和矩阵的基本性质和应用。

它是大学数学课程中的一门重要课程,为学习高等数学和其他数学专业课程打下基础。

本文将对大学线性代数的基本知识点进行总结,包括向量、矩阵、线性变换和特征值等。

1. 向量向量是线性代数中的基本概念之一,具有大小和方向。

向量可以表示为列向量或行向量,可以进行加法和数乘运算,遵循向量空间的定义。

向量的长度称为向量的模,两个向量之间的夹角可以通过向量的内积来计算。

2. 矩阵矩阵是线性代数中的另一个基本概念,是由数字按照矩形排列形成的一个矩形阵列。

矩阵可以进行加法、数乘和乘法运算,乘法运算需要满足矩阵的乘法规则。

矩阵可以表示为方阵或矩阵组成的矩阵。

3. 线性变换线性变换是线性代数中的重要概念,指的是一个向量空间到另一个向量空间的映射,保持向量加法和数乘运算的性质。

线性变换可以由矩阵表示,矩阵的列向量是线性变换后的基向量。

线性变换有许多重要性质,如零空间、核和像等。

4. 特征值与特征向量特征值与特征向量是矩阵理论中的重要概念。

矩阵的特征向量是指矩阵与一个非零向量相乘得到的向量,特征向量的方向不变。

特征值是特征向量对应的标量,表示特征向量在变换前后的缩放比例。

通过特征值和特征向量可以分析矩阵的性质,比如对角化和对称矩阵的性质。

5. 行列式行列式是矩阵理论中的一个重要工具,用于描述矩阵的性质。

行列式可以用来判断矩阵是否可逆,计算矩阵的逆矩阵和求解线性方程组。

行列式的定义是矩阵的一个标量值,通过对矩阵的行或列进行适当的运算得到。

6. 线性方程组线性方程组是线性代数中的另一个核心概念,它是由一系列线性方程组成的方程组。

线性方程组的解集表示了满足所有方程的向量集合。

通过矩阵的系数矩阵和增广矩阵可以表示线性方程组,通过高斯消元法和矩阵的行列式可以求解线性方程组的解。

7. 正交与正交投影正交是线性代数中一个重要的概念,指的是两个向量之间的夹角为90度,或者内积为0。

完整版线性代数知识点总结

完整版线性代数知识点总结

完整版线性代数知识点总结线性代数是数学的一个分支,研究向量空间及其上的线性变换。

它在各个领域中都有广泛的应用,包括物理学、计算机科学、工程学等。

以下是线性代数的一些重要知识点总结:1.向量和向量空间:向量是有方向和大小的量,可以用来表示力、速度、位移等。

向量空间是向量的集合,具有加法和标量乘法运算,同时满足一定的性质。

2.线性方程组和矩阵:线性方程组是一组线性方程的集合,研究其解的性质和求解方法。

矩阵是一个由数构成的矩形数组,可以用来表示线性方程组中的系数和常数。

3.矩阵的运算:包括矩阵的加法、减法和乘法运算。

矩阵乘法是一种重要的运算,可以用来表示线性变换和复合变换。

4.行列式和特征值:行列式是一个标量,表示矩阵的一些性质,如可逆性和面积/体积的变换。

特征值是矩阵对应的线性变换中特殊的值,表示该变换在一些方向上的伸缩程度。

5.向量的内积和正交性:向量的内积是一种二元运算,可以用来表示向量之间的夹角和长度。

正交向量是指内积为零的向量,可以用来表示正交补空间等概念。

6.向量的投影和正交分解:向量的投影是一个向量在另一个向量上的投影,可以用来表示向量的分解。

正交分解是将一个向量分解为与另一个向量正交和平行的两个向量之和。

7.线性变换和线性映射:线性变换是指保持向量加法和标量乘法运算的变换。

线性映射是向量空间之间的函数,具有保持线性运算的性质。

8.特征值和特征向量:特征值和特征向量是线性变换或矩阵中一个重要的概念,用于描述变换的性质和方向。

9.正交矩阵和对称矩阵:正交矩阵是一个方阵,其列向量组成的矩阵是正交的。

对称矩阵是一个方阵,其转置等于自身。

10.奇异值分解:奇异值分解(SVD)是一种矩阵的分解方法,用来将一个矩阵分解为三个矩阵的乘积。

SVD在数据压缩、图像处理和机器学习等领域有广泛的应用。

11.最小二乘法:最小二乘法是一种数学优化方法,用来找到一条曲线或超平面,使得这些数据点到该曲线或超平面的距离平方和最小。

线性代数知识点归纳

线性代数知识点归纳

线性代数知识点归纳线性代数是一门研究向量、向量空间、线性变换以及有限维线性方程组的数学分支。

它广泛应用于各个领域,如物理、计算机科学、工程学等。

线性代数的核心概念和工具包括行列式、矩阵、向量组以及线性方程组等。

下面将详细介绍线性代数的相关知识点。

一、行列式1.1 行列式的概念:行列式是一个函数,它从n×n阶方阵到实数(或复数)的映射。

行列式记作|A|,其中A是一个n×n的方阵。

1.2 逆序数:在n×n阶方阵A中,将行列式中元素a_ij与a_ji互换,所得到的新的行列式称为原行列式的逆序数。

1.3 余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij删去,剩下的(n-1)×(n-1)阶方阵的行列式称为原行列式的余子式,记作M_ij。

1.4 代数余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij替换为它的相反数,然后计算得到的新的行列式,称为原行列式的代数余子式,记作A_ij。

1.5 行列式的性质:行列式具有以下性质:(1)交换行列式中任意两个元素的位置,行列式的值变号。

(2)行列式中某一行(列)的元素乘以常数k,行列式的值也乘以k。

(3)行列式中某一行(列)的元素与另一行(列)的元素相加,行列式的值不变。

(4)行列式某一行(列)的元素与另一行(列)的元素相减,行列式的值变号。

1.6 行列式的计算方法:行列式的计算方法有:降阶法、按行(列)展开法、克拉默法则等。

二、矩阵2.1 矩阵的概念:矩阵是一个由数组元素构成的矩形阵列,矩阵中的元素称为矩阵的项。

矩阵记作A,其中A是一个m×n的矩阵,A_ij表示矩阵A中第i行第j列的元素。

2.2 矩阵的线性运算:矩阵的线性运算包括加法、减法、数乘等。

2.3 矩阵的乘法:两个矩阵A和B的乘法,记作A×B,要求A是一个m×n的矩阵,B是一个n×p的矩阵。

矩阵的乘法满足交换律、结合律和分配律。

大一期末线代知识点

大一期末线代知识点

大一期末线代知识点线性代数是数学中的一门基础学科,对于大一学生来说,线性代数是一个重要的课程。

在期末考试中,了解和掌握各个知识点是取得好成绩的关键。

下面是大一期末线代知识点的详细介绍。

1. 向量和向量空间向量是线性代数中最基本的概念之一。

向量具有大小和方向,可以进行加法和数乘运算。

向量空间是由一组向量构成的集合,满足一定的运算规则。

2. 线性方程组线性方程组是线性代数中的核心内容之一。

线性方程组可以写成矩阵乘以向量的形式,其中矩阵是由方程组的系数构成的。

解线性方程组的方法有高斯消元法、矩阵的逆等。

3. 矩阵和矩阵运算矩阵是线性代数中的另一个重要概念。

矩阵是由数按矩形排列而成的矩形阵列。

矩阵之间可以进行加法、减法和乘法等运算。

4. 行列式行列式是一个与矩阵相对应的数。

它是一个用于描述矩阵性质的重要工具。

行列式的计算方法有代数余子式展开法、三角形法等。

5. 特征值与特征向量特征值和特征向量是描述矩阵特性的重要概念。

通过特征值和特征向量可以判断矩阵的相似性、对角化等性质。

6. 矩阵的秩矩阵的秩是描述矩阵中线性无关的向量个数。

矩阵的秩可以判断矩阵是否可逆、解线性方程组的情况等。

7. 线性变换线性变换是线性代数中的另一个重要概念。

线性变换是指将一个向量空间映射到另一个向量空间的变换。

线性变换可以用矩阵来表示。

8. 内积空间和正交内积空间是线性代数中的一个重要概念。

内积空间中定义了一个内积运算,内积满足一定的运算规则。

正交是内积空间中的一个概念,指的是两个向量的内积为零。

9. 特征分解和奇异值分解特征分解和奇异值分解是对于矩阵的一种分解方法。

特征分解可以将一个矩阵分解成特征值和特征向量的乘积形式,奇异值分解可以将一个矩阵分解成奇异值矩阵的乘积形式。

10. 线性代数的应用线性代数在很多领域都有广泛的应用,如计算机图形学、密码学、信号处理等。

了解线性代数的知识点可以为以后的学习和应用打下坚实的基础。

以上是大一期末线代的主要知识点的简要介绍。

《线性代数》知识点 归纳整理-大学线代基础知识

《线性代数》知识点 归纳整理-大学线代基础知识

《线性代数》知识点归纳整理诚毅学生编01、余子式与代数余子式.............................................................................................................................................. - 2 -02、主对角线.................................................................................................................................................................. - 2 -03、转置行列式.............................................................................................................................................................. - 2 -04、行列式的性质.......................................................................................................................................................... - 3 -05、计算行列式.............................................................................................................................................................. - 3 -06、矩阵中未写出的元素.............................................................................................................................................. - 4 -07、几类特殊的方阵...................................................................................................................................................... - 4 -08、矩阵的运算规则...................................................................................................................................................... - 4 -09、矩阵多项式.............................................................................................................................................................. - 6 -10、对称矩阵.................................................................................................................................................................. - 6 -11、矩阵的分块.............................................................................................................................................................. - 6 -12、矩阵的初等变换...................................................................................................................................................... - 6 -13、矩阵等价.................................................................................................................................................................. - 6 -14、初等矩阵.................................................................................................................................................................. - 7 -15、行阶梯形矩阵与行最简形矩阵.......................................................................................................................... - 7 -16、逆矩阵 ..................................................................................................................................................................... - 7 -17、充分性与必要性的证明题...................................................................................................................................... - 8 -18、伴随矩阵.................................................................................................................................................................. - 8 -19、矩阵的标准形:...................................................................................................................................................... - 9 -20、矩阵的秩:.............................................................................................................................................................. - 9 -21、矩阵的秩的一些定理、推论................................................................................................................................ - 10 -22、线性方程组概念.................................................................................................................................................... - 10 -23、齐次线性方程组与非齐次线性方程组(不含向量)........................................................................................ - 10 -24、行向量、列向量、零向量、负向量的概念........................................................................................................ - 11 -25、线性方程组的向量形式........................................................................................................................................ - 12 -26、线性相关与线性无关的概念.......................................................................................................................... - 12 -27、向量个数大于向量维数的向量组必然线性相关.............................................................................................. - 12 -28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题 ...................................... - 12 -29、线性表示与线性组合的概念.......................................................................................................................... - 12 -30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题 .......................................................... - 12 -31、线性相关(无关)与线性表示的3个定理........................................................................................................ - 12 -32、最大线性无关组与向量组的秩............................................................................................................................ - 12 -33、线性方程组解的结构............................................................................................................................................ - 13 -01、余子式与代数余子式(1)设三阶行列式D =333231232221131211a a a a a a a a a ,则①元素11a ,12a ,13a 的余子式分别为:M 11=33322322a a a a ,M 12=33312321a a a a ,M 13=32312221a a a a对M 11的解释:划掉第1行、第1列,剩下的就是一个二阶行列式33322322a a a a ,这个行列式即元素11a 的余子式M 11。

线代知识点总结

线代知识点总结

《线性代数》复习知识点和考题分析
一.行列式的计算
1.方阵的行列式;
2.如何判断行列式是否等于0
二.矩阵及其运算
1.判断方阵是否可逆,并会求逆矩阵;
2.解矩阵方程或求矩阵中的参数;
3.求
矩阵的n次幂;4.初等矩阵与初等变换的关系的判定;5.矩阵关系的判定三.向量组
1.向量组线性相关性的判定或证明;
2.根据向量的线性相关性判断空间位置关
系或逆问题;3向量由向量组线性表示;4.向量组的秩和极大无关组四.方程组的解
1.一般方程组求解问题;
2.向量组的线性表示、线性相关、线性无关问题;
3.与
方程组有关的问题
五.特征值及对角化
1.求矩阵的特征值或特征向量;
2.已知含参数矩阵的特征向量或特征值或特征
方程的情况,求参数;3.已知矩阵的特征值或特征向量,求矩阵、其他矩阵的特征值等问题;4.将矩阵对角化或判断矩阵是否可对角化;5.矩阵相似的判定或证明或求一个矩阵的相似矩阵
六.二次型
1.化实二次型为标准二次型或求相应的正交变换;
2.已知一含参数的二次型化
为标准形的正交变换,反求参数或正交矩阵;3.已知二次型的秩,求二次型中的参数和二次型所对应矩阵的表达式;4.矩阵关系合同的判定或证明;5.
矩阵正定的证明。

线性代数知识点归纳大一

线性代数知识点归纳大一

线性代数知识点归纳大一线性代数是大一学生学习的重要数学课程之一,它是现代数学的一个重要分支,广泛应用于各个领域。

在学习线性代数的过程中,我们需要掌握一些基本的概念和方法。

本文将对大一学生所学线性代数的知识点进行归纳总结,以帮助读者更好地理解和掌握相关内容。

一、向量与矩阵1. 向量的定义和运算向量是具有大小和方向的量,通常用箭头表示。

向量的加法和数量乘法是基本的向量运算,可以通过坐标表示和几何直观理解。

2. 矩阵的定义和运算矩阵是由数字排成的长方形阵列。

矩阵的加法、数量乘法和乘法是基本的矩阵运算,它们具有一些特殊的性质,如交换律、分配律等。

二、线性方程组1. 线性方程组的表示和解法线性方程组是以线性方式相联系的一组方程。

可以通过消元法将线性方程组化为简化的形式,或者使用矩阵和向量的表达方式来解决。

2. 行列式行列式是一个方阵所对应的标量值,用来描述矩阵的重要性质和特征。

行列式的计算可以通过按行或按列展开,也可以利用性质简化计算过程。

三、向量空间和线性映射1. 向量空间的定义和性质向量空间是由一组向量构成的集合,它具有加法和数量乘法运算,并且满足一些特定的公理和性质。

2. 线性映射和矩阵表示线性映射是将一个向量空间映射到另一个向量空间的函数,它可以用矩阵来表示。

矩阵乘法可以用来表示线性映射的复合和逆映射。

四、特征值与特征向量1. 特征值和特征向量的定义矩阵的特征值和特征向量是矩阵在特定变换下的重要性质,它们描述了矩阵对向量的拉伸或压缩以及旋转的效果。

2. 特征值分解和对角化特征值分解是将一个矩阵分解为特征值和特征向量的乘积形式,可以帮助我们理解矩阵的性质和应用。

五、内积空间和正交性1. 内积空间的定义和性质内积空间是一个具有内积运算的向量空间,它满足一些特定的公理,如对称性、正定性和线性性。

2. 正交性和正交基正交向量是指两个向量的内积为零,它可以用来衡量两个向量之间的垂直程度。

正交基是指一个向量空间中的基向量两两正交。

大一线性代数知识点总结

大一线性代数知识点总结

大一线性代数知识点总结一、向量与矩阵1.1 向量的概念与性质向量是线性代数中的基本概念,它是指具有大小和方向的量。

在数学中,向量通常用箭头表示,并且可以表示为n维空间中的有序数组。

向量的加法与数乘定义为:- 两个向量的加法:设有两个向量a=(a1, a2, ..., an)和b=(b1, b2, ..., bn),则它们的和定义为:a + b = (a1+b1, a2+b2, ..., an+bn)。

- 数乘:设有一个向量a=(a1, a2, ..., an),一个标量k,那么k乘以a定义为:ka = (ka1, ka2, ..., kan)。

1.2 矩阵的概念与基本运算矩阵是由m行n列元素组成的长方形阵列,它的基本形式可以表示为:A= ( a11 a12 ... a1n )( a21 a22 ... a2n )( ... ... ... ... )( am1 am2 ... amn )其中,aij表示第i行第j列的元素。

矩阵的加法与数乘定义为:- 矩阵的加法:设有两个矩阵A与B,它们是同型矩阵,其相应元素相加即得到矩阵的和:A+B。

- 数乘:设有一个数k,以及一个矩阵A,那么可以通过数量k乘以矩阵A的每一个元素得到新的矩阵kA。

1.3 零向量与单位矩阵零向量是指所有分量都为零的向量,通常用0表示,对于n维空间而言,它的零向量可以表示为(0, 0, ..., 0)。

单位矩阵是指在主对角线上的元素都为1,其余元素都为0的方阵,通常用I表示。

对于n×n的单位矩阵可以表示为:I = ( 1 0 ... 0 )( 0 1 ... 0 )( ... ... ... )( 0 0 ... 1 )1.4 范数与内积向量的范数是指向量的长度,通常可以表示为||v||。

对于n维向量v=(v1, v2, ..., vn),它的范数定义为:||v|| = √(v1^2 + v2^2 + ... + vn^2)。

线性代数知识点汇总

线性代数知识点汇总

线性代数知识点汇总线性代数是数学中的一个分支,研究向量空间及其上的线性变换。

它是现代数学中的一个重要基础学科,广泛应用于各个领域,如物理学、计算机科学、经济学等。

下面是线性代数的主要知识点的汇总。

1.向量空间:向量空间是线性代数的基本概念,它是一个集合,其中的元素称为向量,满足一定的运算规则,如加法和数乘。

向量空间具有加法和数乘封闭性、结合律、分配律等性质。

2.线性变换:线性变换是向量空间之间的一种映射,它保持向量空间中的加法和数乘运算。

线性变换可以用矩阵表示,矩阵的乘法运算对应于线性变换的复合运算。

3.矩阵:矩阵是线性代数中的一种重要工具,它是一个由数构成的矩形阵列。

矩阵可以表示向量空间中的线性变换,也可以用于解线性方程组、计算行列式、求逆矩阵等。

4.行列式:行列式是一个标量值,它是一个方阵的特征量。

行列式的值可以用于判断矩阵的可逆性、计算矩阵的逆、求解线性方程组等。

5.矩阵的逆:对于一个可逆矩阵,存在一个矩阵使得两者的乘积等于单位矩阵。

这个矩阵称为原矩阵的逆矩阵,它具有一些重要的性质,如对角矩阵的逆矩阵等。

6.线性方程组:线性方程组是线性代数中的一种基本问题,它由一组线性方程组成。

线性方程组的解可以通过矩阵的运算(如高斯消元法、矩阵的逆等)来求解。

7.特征值和特征向量:对于一个线性变换,存在一些特殊的向量,使得它们在变换后只改变了大小而没有改变方向。

这些向量称为特征向量,对应的大小称为特征值。

特征值和特征向量可以用于矩阵的对角化、求解差分方程等。

8.内积空间:内积空间是一种向量空间,它定义了一种内积运算。

内积运算满足对称性、线性性、正定性等性质,它可以用于定义向量的长度、角度、正交性等。

9.正交性:在内积空间中,两个非零向量的内积为零时称为正交。

正交性是线性代数中的一个重要概念,它可以用于构造正交基、正交投影、最小二乘法等。

10.最小二乘法:最小二乘法是一种用于拟合数据的方法,它通过最小化残差平方和来确定最优解。

线性代数知识点归纳

线性代数知识点归纳

第一部分 行列式1. 排列的逆序数2. 行列式按行(列)展开法则3. 行列式的性质及行列式的计算1. 行列式的计算:① (定义法)1212121112121222()1212()n nnn n j j j nj j nj j j j n n nna a a a a a D a a a a a a τ==-∑1②(降阶法)行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积.④ 若A B 与都是方阵(不必同阶),则==()mn A OA A O A BO BO BBO A AA B B O B O*==**=-1⑤ 关于副对角线:(1)211212112111()n n nnn n n n n n n a O a a a a a a a Oa O ---*==-1⑥ 范德蒙德行列式:()1222212111112n ijnj i nn n n nx x x x x x x x x x x ≤<≤---=-∏111⑦ a b -型公式:1[(1)]()n a b b b b a bban b a b b b a b b b ba-=+-- ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法.⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法.(拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算.⑩ (数学归纳法)2. 对于n 阶行列式A ,恒有:1(1)nn k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;3. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值.4. 代数余子式和余子式的关系:(1)(1)i j i j ij ijij ij M A A M ++=-=-第二部分 矩阵1. 矩阵的运算性质2. 矩阵求逆3. 矩阵的秩的性质4. 矩阵方程的求解1. 矩阵的定义 由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭称为m n ⨯矩阵. 记作:()ij m n A a ⨯=或m n A ⨯① 同型矩阵:两个矩阵的行数相等、列数也相等. ② 矩阵相等: 两个矩阵同型,且对应元素相等. ③ 矩阵运算a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减).b. 数与矩阵相乘:数λ与矩阵A 的乘积记作A λ 或A λ,规定为()ij A a λλ=.c. 矩阵与矩阵相乘:设()ij m s A a ⨯=, ()ij s n B b ⨯=,则()ij m n C AB c ⨯==, 其中注:矩阵乘法不满足:交换律、消去律, 即公式00AB BAAB A ==⇒=或B=0不成立.a. 分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭⇒11112222A B AB A B ⎛⎫= ⎪⎝⎭,1122nn n A A A ⎛⎫= ⎪⎝⎭b. 用对角矩阵Λ○左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○行向量; c. 用对角矩阵Λ○右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○列向量. d. 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘. ④ 方阵的幂的性质:mn m n AA A +=, ()()m n mn A A =⑤ 矩阵的转置:把矩阵A 的行换成同序数的列得到的新矩阵,叫做A 的转置矩阵,记作TA . a. 对称矩阵和反对称矩阵: A 是对称矩阵T A =.A 是反对称矩阵T A =-.b. 分块矩阵的转置矩阵:TTT TT A B A C C D BD ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭⑥ 伴随矩阵: ()1121112222*12n Tn ij nnnn A A A A A A AA A A A ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭,ij A 为A 中各个元素的代数余子式. **AAA A A E ==,1*n A A -=, 11A A --=.分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ *(1)(1)mn mn A A B B B A**⎛⎫-⎛⎫= ⎪ ⎪⎪-⎝⎭⎝⎭2. 逆矩阵的求法 方阵A 可逆 0A ≠.①伴随矩阵法 1A A A *-= ○注: 1a b d b c d c a ad bc --⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭1 主换位副变号② 初等变换法 1()()A E E A -−−−−→初等行变换③ 分块矩阵的逆矩阵:111A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ 111A B BA---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭④1231111213a a a a a a -⎛⎫⎛⎫ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 3211111213a a a a a a -⎛⎫⎛⎫⎪⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⑤ 配方法或者待定系数法 (逆矩阵的定义1A B B A E A B-==⇒=) 3.可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖 线后面的第一个元素非零. 当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0时, 4. 初等变换与初等矩阵 对换变换、倍乘变换、倍加(或消法)变换☻矩阵的初等变换和初等矩阵的关系:①对A施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A;②对A施行一次初等○列变换得到的矩阵,等于用相应的初等矩阵○右乘A.注意:初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵.5.关于A矩阵秩的描述:①、()=r A r,A中有r阶子式不为0,1+r阶子式(存在的话) 全部为0;②、()<r A r,A的r阶子式全部为0;③、()≥r A r,A中存在r阶子式不为0;☻矩阵的秩的性质:①()A O r A≠⇔≥1; ()0A O r A=⇔=;0≤()m nr A⨯≤min(,)m n②()()()T Tr A r A r A A==③()()r kA r A k=≠其中0④()(),,()m n n sr A r B nA B r ABB Ax⨯⨯+≤⎧=⇒⎨=⎩若若0的列向量全部是的解⑤()r AB≤{}min(),()r A r B⑥若P、Q可逆,则()()()()r A r PA r AQ r PAQ===;即:可逆矩阵不影响矩阵的秩.⑦若()()()m nAxr AB r Br A nAB O B OAAB AC B Cο⨯⇔=⎧⎪=⎧⎪=⎨⎪⇒=⇒=⎧⎨⎪⎨⎪⎪=⇒=⎩⎩⎩只有零解在矩阵乘法中有左消去律;若()()()n sr AB r Br B nB⨯=⎧=⇒⎨⎩在矩阵乘法中有右消去律.⑧()r rE O E Or A r A AO O O O⎛⎫⎛⎫=⇒ ⎪ ⎪⎝⎭⎝⎭若与唯一的等价,称为矩阵的等价标准型.⑨()r A B±≤()()r A r B+, {}max(),()r A r B≤(,)r A B≤()()r A r B+⑩()()A O O Ar r A r BO B B O⎛⎫⎛⎫==+⎪ ⎪⎝⎭⎝⎭, ()()A Cr r A r BO B⎛⎫≠+⎪⎝⎭☻求矩阵的秩:定义法和行阶梯形阵方法 6 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II)第三部分 线性方程组1. 向量组的线性表示2. 向量组的线性相关性3. 向量组的秩4. 向量空间5.线性方程组的解的判定6. 线性方程组的解的结构(通解)(1)齐次线性方程组的解的结构(基础解系与通解的关系) (2)非齐次线性方程组的解的结构(通解) 1.线性表示:对于给定向量组12,,,,n βααα,若存在一组数12,,,n k k k 使得1122n n k k k βααα=+++,则称β是12,,,n ααα的线性组合,或称称β可由12,,,n ααα的线性表示.线性表示的判别定理:β可由12,,,n ααα的线性表示由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩有解 ②、1112111212222212⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭n n m m mn m m a a a x b a a a x b Ax a a a x b β③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)2. 设,,m n n s A B ⨯⨯A 的列向量为12,,,n ααα⋅⋅⋅,B 的列向量为12,,,s βββ⋅⋅⋅,则m sAB C ⨯=⇔()()1112121222121212,,,,,,s s n s n n ns b b b b bb c c c b b b ααα⎛⎫ ⎪ ⎪⋅⋅⋅= ⎪⎪⎝⎭⇔i i A c β= ,(,,)i s =1,2⇔i β为i Ax c =的解 ⇔12,,,s c c c 可由12,,,n ααα⋅⋅⋅线性表示.即:C 的列向量能由A 的列向量线性表示,B 为系数矩阵. 同理:C 的行向量能由B 的行向量线性表示,A 为系数矩阵.即: 1112111212222212n n n n mn n m a a a c a a a c a a a c βββ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⇔111122*********22211222n n m m mn ma a a c a a a c a a a c βββββββββ+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩3. 线性相关性判别方法:法1法2法3 推论♣ 线性相关性判别法(归纳)♣ 线性相关性的性质① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关.③ 部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. (向量维数变动) ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法唯一 4. 最大无关组相关知识向量组12,,,n ααα的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)n r αααA 经过有限次初等变换化为B .12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:()()1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅① 矩阵的行向量组的秩=列向量组的秩=矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.② 矩阵的初等变换不改变矩阵的秩,且不改变行(列)向量间的线性关系③ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .④ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价; ⑤ 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ⑥ 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ⑦ 若两个线性无关的向量组等价,则它们包含的向量个数相等. ⑧ 设A 是m n ⨯矩阵,若()r A m =,A 的行向量线性无关; 5. 线性方程组理论Ax β=1122n n x x x αααβ+++=1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 其中 12,,2,,j j j mj j n αααα⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭1(1)解得判别定理(2)线性方程组解的性质:1212121211221212(1),,(2),,(3),,,,,,,,(4),,(5),,(6k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηοηηηοηηηηολλλληληληγβηογηβηηβηηο=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212),(7),,,,100k k k k k k k Ax Ax Ax Ax Ax ηβηηηοηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪+++=⇔+++=⎪⎪+++=⇔+++=⎩ 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解(3) 判断12,,,s ηηη是Ax ο=的基础解系的条件:① 12,,,s ηηη线性无关; ② 12,,,s ηηη都是Ax ο=的解;③ ()s n r A =-=每个解向量中自由未知量的个数. (4) 求非齐次线性方程组Ax = b 的通解的步骤 (5)其他性质一个齐次线性方程组的基础解系不唯一. √ 若η*是Ax β=的一个解,1,,,s ξξξ是Ax ο=的一个解⇒1,,,,s ξξξη*线性无关√ Ax ο=与Bx ο=同解(,A B 列向量个数相同)⇔()()A r r A r B B ⎛⎫== ⎪⎝⎭, 且有结果: ① 它们的极大无关组相对应,从而秩相等;② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 矩阵m n A ⨯与l n B ⨯的行向量组等价⇔齐次方程组Ax ο=与Bx ο=同解⇔PA B =(左乘可逆矩阵P );矩阵m n A ⨯与l n B ⨯的列向量组等价⇔AQ B =(右乘可逆矩阵Q ).第四部分 方阵的特征值及特征向量1. 施密特正交化过程2. 特征值、特征向量的性质及计算3. 矩阵的相似对角化,尤其是对称阵的相似对角化1.①n 个n 维线性无关的向量,两两正交,每个向量长度为1.②1(,)ni i i a b αβ===∑③(,)0αβ=. 记为:αβ⊥④21ni i a α====∑⑤(,1ααα==. 即长度为1的向量.2. 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=⇔=且 ② 对称性:(,)(,)αββα=③ 线性性:1212(,)(,)(,)ααβαβαβ+=+3. ① 设A 是一个n 阶方阵, 若存在数λ和n 维非零列向量x , 使得 Ax x λ=,则称λ是方阵A 的一个特征值,x 为方阵A 的对应于特征值λ的一个特征向量.②0E A λ-=(或0A E λ-=).③()E A λϕλ-=(或()A E λϕλ-=).④ ()ϕλ是矩阵A 的特征多项式⇒()A O ϕ=⑤12n A λλλ= 1ni A λ=∑tr ,A tr 称为矩阵A⑥ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素. ⑦ 若0A =,则λ=0为A 的特征值,且Ax ο=的基础解系即为属于λ=0的线性无关的特征向量.⑧ ()1r A =⇔A 一定可分解为A =()1212,,,n n a a b b b a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭、21122()n n A a b a b a b A =+++,从而A 的特征值为:11122n n A a b a b a b λ==+++tr , 23n λλλ====0.○注()12,,,Tn a a a 为A 各行的公比,()12,,,n b b b 为A 各列的公比.⑨ 若A 的全部特征值12,,,n λλλ,()f A 是多项式,则:① 若A 满足()f A O=⇒A 的任何一个特征值必满足()i f λ=0②()f A 的全部特征值为12(),(),,()n f f f λλλ;12()()()()n f A f f f λλλ=.⑩ A 与TA 有相同的特征值,但特征向量不一定相同. 4. 特征值与特征向量的求法 (1) 写出矩阵A 的特征方程0A E λ-=,求出特征值i λ.(2) 根据()0i A E x λ-=得到 A 对应于特征值i λ的特征向量. 设()0i A E x λ-=的基础解系为 12,,,in r ξξξ- 其中()i i r r A E λ=-.则A 对应于特征值i λ的全部特征向量为1122,i i n r n r k k k ξξξ--+++其中12,,,i n r k k k -为任意不全为零的数.5. ①1P AP B -= (P 为可逆矩阵) ②1P AP B -= (P 为正交矩阵)③A 与对角阵Λ相似.(称Λ是A6. 相似矩阵的性质: ①E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.○注α是A 关于0λ的特征向量,1P α-是B 关于0λ的特征向量.②A B =tr tr ③A B = 从而,A B 同时可逆或不可逆④ ()()r A r B =⑤若A 与B 相似, 则A 的多项式()f A 与B 的多项式()f A 相似. 7. 矩阵对角化的判定方法① n 阶矩阵A 可对角化 (即相似于对角阵) 的充分必要条件是A 有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成的矩阵,1PAP -为对角阵,主对角线上的元素为A 的特征值.设i α为对应于i λ的线性无关的特征向量,则有:121n P AP λλλ-⎛⎫⎪ ⎪=⎪ ⎪⎝⎭. ② A 可相似对角化⇔()i i n r E A k λ--=,其中i k 为i λ的重数⇔A 恰有n 个线性无关的特征向量.○注:当iλ=0为A 的重的特征值时,A 可相似对角化⇔i λ的重数()n r A =-=Ax ο=基础解系的个数.③ 若n 阶矩阵A 有n 个互异的特征值⇒A 可相似对角化.8. 实对称矩阵的性质:① 特征值全是实数,特征向量是实向量; ② 不同特征值对应的特征向量必定正交;○注:对于普通方阵,不同特征值对应的特征向量线性无关; ③ 一定有n 个线性无关的特征向量. 若A 有重的特征值,该特征值i λ的重数=()i n r E A λ--; ④ 必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形;⑤ 与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形; ⑥ 两个实对称矩阵相似⇔有相同的特征值. 9. 正交矩阵 TAAE =正交矩阵的性质:① 1TAA -=;② TT AAA A E ==;③ 正交阵的行列式等于1或-1;④ A 是正交阵,则TA ,1A -也是正交阵; ⑤ 两个正交阵之积仍是正交阵;⑥ A 的行(列)向量都是单位正交向量组.10. 11.123,,ααα线性无关,单位化:111βηβ=222βηβ=333βηβ=技巧:取正交的基础解系,跳过施密特正交化。

线性代数大一必考知识点

线性代数大一必考知识点

线性代数大一必考知识点线性代数是一门重要的数学学科,广泛应用于科学、工程和经济等领域。

作为大一学生,掌握线性代数的基本知识点对于日后的学习和专业发展都至关重要。

以下是线性代数大一必考的几个知识点。

一、矩阵与线性方程组1. 矩阵的定义与性质:矩阵是由m行n列的数排成的矩形数表,具有加法和数乘的运算。

重点掌握矩阵的加法、数乘、转置、乘法等运算法则。

2. 线性方程组的解与解集表示:理解线性方程组解的存在唯一性与解的分类(无解、有唯一解、有无穷多解),能够用矩阵和向量表示解集。

二、向量空间与线性相关性1. 向量的线性组合与生成子空间:了解向量的线性组合的定义与性质,理解生成子空间的概念及其性质。

2. 向量组的线性相关性与线性无关性:掌握线性相关性的定义、性质及相关判定方法,理解线性无关性的定义与性质。

3. 基与维数:理解线性无关组的极大线性无关组概念,了解基的定义与性质,掌握维数的计算方法。

三、矩阵的初等变换与矩阵的等价1. 矩阵的初等变换:了解矩阵的初等行变换和初等列变换的定义与性质,掌握矩阵的初等变换法则。

2. 矩阵的等价与阶梯形矩阵:掌握矩阵等价的定义与判定方法,了解阶梯形矩阵与梯形矩阵的概念。

四、矩阵的运算与逆矩阵1. 矩阵的加法与减法:掌握矩阵加法与减法的定义与性质,能够进行矩阵加法与减法运算。

2. 矩阵的乘法:理解矩阵乘法的定义与性质,了解矩阵乘法的算法与规律。

3. 矩阵的逆与可逆矩阵:了解可逆矩阵的定义与性质,书写矩阵的逆的计算方法。

五、特征值与特征向量1. 特征值与特征向量的定义:清楚特征值与特征向量的定义与性质,了解特征值与特征向量的意义。

2. 特征值与特征向量的计算:掌握特征值与特征向量的计算方法,了解特征值计算的性质。

3. 对角化与相似矩阵:了解对角化的定义与性质,理解相似矩阵的概念与特点。

六、内积空间与正交性1. 内积的定义与性质:理解内积的定义与常见性质,掌握内积空间的基本性质。

《线性代数》知识点-归纳整理-大学线代基础知识

《线性代数》知识点-归纳整理-大学线代基础知识

《线性代数》知识点-归纳整理-大学线代基础知识-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN《线性代数》知识点归纳整理诚毅学生编01、余子式与代数余子式 ............................................................................................................................................. - 3 -02、主对角线 ................................................................................................................................................................. - 3 -03、转置行列式 ............................................................................................................................................................. - 3 -04、行列式的性质 ......................................................................................................................................................... - 4 -05、计算行列式 ............................................................................................................................................................. - 4 -06、矩阵中未写出的元素 ............................................................................................................................................. - 5 -07、几类特殊的方阵 ..................................................................................................................................................... - 5 -08、矩阵的运算规则 ..................................................................................................................................................... - 5 -09、矩阵多项式 ............................................................................................................................................................. - 7 -10、对称矩阵 ................................................................................................................................................................. - 7 -11、矩阵的分块 ............................................................................................................................................................. - 8 -12、矩阵的初等变换 ..................................................................................................................................................... - 8 -13、矩阵等价 ................................................................................................................................................................. - 8 -14、初等矩阵 ................................................................................................................................................................. - 8 -15、行阶梯形矩阵与行最简形矩阵 ......................................................................................................................... - 8 -16、逆矩阵 ..................................................................................................................................................................... - 9 -17、充分性与必要性的证明题 ................................................................................................................................... - 10 -18、伴随矩阵 ............................................................................................................................................................... - 10 -19、矩阵的标准形: ................................................................................................................................................... - 11 -20、矩阵的秩: ........................................................................................................................................................... - 11 -21、矩阵的秩的一些定理、推论 ............................................................................................................................... - 11 -22、线性方程组概念 ................................................................................................................................................... - 11 -23、齐次线性方程组与非齐次线性方程组(不含向量)........................................................................................ - 11 -24、行向量、列向量、零向量、负向量的概念 ....................................................................................................... - 13 -25、线性方程组的向量形式 ....................................................................................................................................... - 13 -26、线性相关与线性无关的概念 ......................................................................................................................... - 13 -27、向量个数大于向量维数的向量组必然线性相关.............................................................................................. - 14 -28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题...................................... - 14 -29、线性表示与线性组合的概念 ......................................................................................................................... - 14 -30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题.......................................................... - 14 -31、线性相关(无关)与线性表示的3个定理 ....................................................................................................... - 14 -32、最大线性无关组与向量组的秩 ........................................................................................................................... - 14 -33、线性方程组解的结构 ........................................................................................................................................... - 14 -01、余子式与代数余子式(1)设三阶行列式D =333231232221131211a a a a a a a a a ,则①元素11a ,12a ,13a 的余子式分别为:M 11=33322322a a a a ,M 12=33312321a a a a ,M 13=32312221a a a a对M 11的解释:划掉第1行、第1列,剩下的就是一个二阶行列式33322322a a a a ,这个行列式即元素11a 的余子式M 11。

(完整版)线性代数知识点全归纳

(完整版)线性代数知识点全归纳

1线性代数知识点1、行列式1.n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3.代数余子式和余子式的关系:(1)(1)i j i j ij ijij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;22、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----===***111()()()T T T AB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B OB ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯)33、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11kk k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)4⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式; 二项展开式:01111110()nn n n m n m mn n n n m m n mn n n n n n m a b C a C a b C a b C a b C b C a b-----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;511. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4.()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :6若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤; 向量组A 能由向量组B 线性表示,则()()r A r B ≤;向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆);9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,A 与B 的任何对应的列向量组有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩;10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,【考试中可以直接作为定理使用,而无需证明】 ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关;14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;715. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ;5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7.n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)8第一章 随机事件互斥对立加减功,条件独立乘除清; 全概逆概百分比,二项分布是核心; 必然事件随便用,选择先试不可能。

线性代数知识点总结 大一线性代数知识点

线性代数知识点总结 大一线性代数知识点

线性代数知识点总结大一线性代数知识点线性代数是数学的一个分支,它的研究对象是向量,向量空间,线性变换和有限维的线性方程组。

下面是想跟大家分享的线性代数知识点总结,欢迎大家浏览。

第一章行列式知识点1:行列式、逆序数知识点2:余子式、代数余子式知识点3:行列式的性质知识点4:行列式按一行(列)展开公式知识点5:计算行列式的方法知识点6:克拉默法则第二章矩阵知识点7:矩阵的概念、线性运算及运算律知识点8:矩阵的乘法运算及运算律知识点9:计算方阵的幂知识点10:转置矩阵及运算律知识点11:伴随矩阵及其性质知识点12:逆矩阵及运算律知识点13:矩阵可逆的判断知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解知识点16:初等变换的概念及其应用知识点17:初等方阵的概念知识点18:初等变换与初等方阵的关系知识点19:等价矩阵的概念与判断知识点20:矩阵的子式与最高阶非零子式知识点21:矩阵的秩的概念与判断知识点22:矩阵的秩的性质与定理知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例第三章向量知识点25:向量的概念及运算知识点26:向量的线性组合与线性表示知识点27:向量组之间的线性表示及等价知识点28:向量组线性相关与线性无关的概念知识点29:线性表示与线性相关性的关系知识点30:线性相关性的判别法知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系知识点33:求向量组的最大无关组知识点34:有关向量组的定理的综合运用知识点35:内积的概念及性质知识点36:正交向量组、正交阵及其性质知识点37:向量组的正交规范化、施密特正交化方法知识点38:向量空间(数一)知识点39:基变换与过渡矩阵(数一)知识点40:基变换下的坐标变换(数一)第四章线性方程组知识点41:齐次线性方程组解的性质与结构知识点42:非齐次方程组解的性质及结构知识点43:非齐次线性线性方程组解的各种情形知识点44:用初等行变换求解线性方程组知识点45:线性方程组的公共解、同解知识点46:方程组、矩阵方程与矩阵的乘法运算的关系知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例第五章矩阵的特征值与特征向量知识点48:特征值与特征向量的概念与性质知识点49:特征值和特征向量的求解知识点50:相似矩阵的概念及性质知识点51:矩阵的相似对角化知识点52:实对称矩阵的相似对角化.知识点53:利用相似对角化求矩阵和矩阵的幂第六章二次型知识点54:二次型及其矩阵表示知识点55:矩阵的合同知识点56 : 矩阵的等价、相似与合同的关系知识点57:二次型的标准形知识点58:用正交变换化二次型为标准形知识点59:用配方法化二次型为标准形知识点60:正定二次型的概念及判断。

大学线性代数知识点总结

大学线性代数知识点总结

大学线性代数知识点总结线性代数是大学数学课程中的重要一环,它是研究向量空间及其上的线性变换和线性方程组的数学理论。

掌握线性代数的基本概念和定理,对于深入理解数学和应用领域都具有重要意义。

在本文中,将对大学线性代数的一些重要知识点进行总结。

一、向量与向量空间向量是线性代数的基本概念,它具有大小和方向。

在线性代数中,向量通常用列向量表示。

对于两个向量,可以进行加法和数乘运算。

向量空间是由一组向量及其运算所构成的集合,它具有封闭性、结合律、分配律等性质。

二、矩阵及其运算矩阵是线性代数中另一个重要的概念,它由若干行和列所组成的矩形数表。

矩阵可以进行加法、数乘和乘法运算。

矩阵乘法是线性代数中的核心内容,它不满足交换律。

矩阵的转置、逆矩阵和行列式等运算也是线性代数中常用的操作。

三、线性方程组及其求解线性方程组是线性代数的重要应用之一,它是由一组线性方程所组成的方程组。

线性方程组的解可以通过消元法、矩阵法或向量法来求解。

消元法是一种基本的求解思路,通过一系列行变换将线性方程组转化为等价方程组,进而求解未知数的值。

矩阵法则通过增广矩阵和高斯消元法来求解线性方程组。

向量法则利用矩阵乘法和逆矩阵的性质求解线性方程组。

四、向量空间的基与维数向量空间的基是向量空间的一个重要性质,它是一组线性无关的向量,可以通过线性组合得到向量空间中的任意向量。

向量空间的维数指的是基向量的个数,维数也是向量空间的一个重要特征。

五、特征值与特征向量特征值和特征向量是矩阵的重要性质。

对于一个n阶方阵A,如果存在一个非零向量x,使得Ax=kx,则称k为矩阵A的特征值,x为对应的特征向量。

特征值和特征向量在物理、工程等领域有着广泛的应用,它们可以描述系统的特性和变化规律。

六、线性变换与矩阵的相似性线性变换是线性代数中一个重要的概念,它是由向量空间到它自身的一种映射。

与线性变换相关的概念还有矩阵的相似性。

如果两个矩阵具有相同的特征值,则它们被称为相似矩阵,相似矩阵在各种应用中具有重要意义。

线性代数知识点及总结

线性代数知识点及总结

线性代数知识点总结第一章 行列式1. n 阶行列式()()121212111212122212121==-∑n nnn t p p p n p p np p p p n n nna a a a a a D a a a a a a 2.特殊行列式1212n nλλλλλλ=,()()1122121n n n nλλλλλλ-=-3.行列式的性质定义记111212122212nn n n nna a a a a a D a a a =,112111222212n n T nnnna a a a a a D a a a =,行列式TD 称为行列式D 的转置行列式。

性质1行列式与它的转置行列式相等。

性质2 互换行列式的两行()↔i j r r 或列()↔i j c c ,行列式变号。

推论如果行列式有两行〔列〕完全一样〔成比例〕,则此行列式为零。

性质3 行列式*一行〔列〕中所有的元素都乘以同一数()⨯j k r k ,等于用数k 乘此行列式; 推论1 D 的*一行〔列〕中所有元素的公因子可以提到D 的外面; 推论2 D 中*一行〔列〕所有元素为零,则=0D 。

性质4 假设行列式的*一列〔行〕的元素都是两数之和,则1112111212222212()()()i i n i i n n n ni ninna a a a a a a a a a D a a a a a '+'+='+11121111121121222*********12i n i n i n i n n n ninnn n ninna aa a a a a a a a a a a a a a a a a a a a a a ''=+' 性质6 把行列式的*一列〔行〕的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式的值不变。

而算得行列式的值。

4. 行列式按行〔列〕展开余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的1n -阶行列式叫做元素ij a 的余子式,记作ij M 。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《线性代数》知识点归纳整理诚毅学生编01、余子式与代数余子式- 2 -02、主对角线- 2 -03、转置行列式- 2 -04、行列式的性质- 3 -05、计算行列式- 3 -06、矩阵中未写出的元素- 4 -07、几类特殊的方阵- 4 -08、矩阵的运算规则- 4 -09、矩阵多项式- 6 -10、对称矩阵- 6 -11、矩阵的分块- 6 -12、矩阵的初等变换- 6 -13、矩阵等价- 7 -14、初等矩阵- 7 -15、行阶梯形矩阵与行最简形矩阵- 7 -16、逆矩阵- 7 -17、充分性与必要性的证明题- 8 -18、伴随矩阵- 9 -19、矩阵的标准形:- 9 -20、矩阵的秩:- 9 -21、矩阵的秩的一些定理、推论- 10 -22、线性方程组概念- 10 -23、齐次线性方程组与非齐次线性方程组(不含向量)- 10 -24、行向量、列向量、零向量、负向量的概念- 12 -25、线性方程组的向量形式- 12 -26、线性相关与线性无关的概念- 12 -27、向量个数大于向量维数的向量组必然线性相关- 12 -28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题- 12 -29、线性表示与线性组合的概念- 12 -30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题- 12 -31、线性相关(无关)与线性表示的3个定理- 13 -32、最大线性无关组与向量组的秩- 13 -33、线性方程组解的结构- 13 -01、余子式与代数余子式(1)设三阶行列式D =333231232221131211a a a a a a a a a ,则①元素11a ,12a ,13a 的余子式分别为:M 11=33322322a a a a ,M 12=33312321a a a a ,M 13=32312221a a a a对M 11的解释:划掉第1行、第1列,剩下的就是一个二阶行列式33322322a a a a ,这个行列式即元素11a 的余子式M 11。

其他元素的余子式以此类推。

②元素11a ,12a ,13a 的代数余子式分别为:A 11=(-1)1+1M 11 ,A 12=(-1)1+2M 12 ,A 13=(-1)1+3M 13 .对A ij 的解释(i 表示第i 行,j 表示第j 列):A ij =(-1)i +j M ij . (N 阶行列式以此类推)(2)填空题求余子式和代数余子式时,最好写原式。

比如说,作业P1第1题:M 31=3040,A 31=(-1)3+13040 (3)例题:课本P8、课本P21-27、作业P1第1题、作业P1第3题02、主对角线一个n 阶方阵的主对角线,是所有第k 行第k 列元素的全体,k =1, 2, 3…n ,即从左上到右下 的一条斜线。

与之相对应的称为副对角线或次对角线,即从右上到左下的一条斜线。

03、转置行列式即元素j i a 与元素ji a 的位置对调(i 表示第i 行,j 表示第j 列),比如说,12a 与21a 的位置对调、35a 与53a 的位置对调。

04、行列式的性质详见课本P5-8(性质1.1.1~ 1.1.7) 其中,性质1.1.7可以归纳为这个:11k i A a +22k i Aa + … +kn in A a ⎩⎨⎧≠k i k i A ,,=,=0 (i 表示第i 行,k 表示第k 列) 熟练掌握行列式的性质,可以迅速的简化行列式,方便计算。

例题:作业P1第2题05、计算行列式(1)计算二阶行列式22211211a a a a :①方法(首选):22211211a a a a =21122211a a a a -(即,左上角×右下角-右上角×左下角)②方法:22211211a a a a =12121111A a A a +=21122211a a a a -例题:课本P14(2)计算三阶行列式333231232221131211a a a a a a a a a :333231232221131211a a a a a a a a a =131312121111A a A a A a ++=11a (-1)1+1M 11 +12a (-1)1+2M 12 +13a (-1)1+3M 13 N 阶行列式的计算以此类推。

通常先利用行列式的性质对行列式进行转化,0元素较多时方便计算.(r 是row ,即行。

c 是column ,即列)例题:课本P5、课本P9、课本P14、作业P1第4题、作业P2第3小题(3)n 阶上三角行列式(0元素全在左下角)与n 阶下三角行列式(0元素全在右上角):D =2211a a …nn a (主对角线上元素的乘积) 例题:课本P10、作业P3第4小题有的题可以通过“从第二行起,将各行的元素对应加到第一行”转化成上三角行列式例题:课本P11(4)德蒙行列式:详见课本P12-13(5)有的题可以通过“从第二行起,将各行的元素对应加到第一行”提取出“公因式”,得到元素全为1的一行,方便化简行列式。

例题:作业P2第1小题、作业P2第2小题06、矩阵中未写出的元素课本P48下面有注明,矩阵中未写出的元素都为007、几类特殊的方阵详见课本P30-32(1)上(下)三角矩阵:类似上(下)三角行列式(2)对角矩阵:除了主对角线上的元素外,其他元素都为0(3)数量矩阵:主对角线上的元素都相同(4)零矩阵:所有元素都为0,记作O(5)单位矩阵:主对角线上的元素都为1,其他元素全为0,记作E或E n (其行列式的值为1)08、矩阵的运算规则(1)矩阵的加法(同型的矩阵才能相加减,同型,即矩阵A的行数与矩阵B的行数相同;矩阵A的列数与矩阵B的列数也相同):①课本P32“A+B”、“A-B”②加法交换律:A+B=B+A③加法结合律:A+(B+C)=(A+B)+C(2)矩阵的乘法(基本规则详见课本P34阴影):①数与矩阵的乘法:I.课本P33“kA”II.kA =k n A (因为k A 只等于用数k 乘以矩阵A 的一行或一列后得到的矩阵的行列式) ②同阶矩阵相乘(高中理科数学选修矩阵基础):⎪⎪⎭⎫ ⎝⎛22211211a a a a ×⎪⎪⎭⎫ ⎝⎛22211211b b b b =⎪⎪⎭⎫ ⎝⎛++++22221221212211212212121121121111b a b a b a b a b a b a b a b a 描述:令左边的矩阵为①,令右边的矩阵为②,令计算得到的矩阵为⎪⎪⎭⎫ ⎝⎛D C B A ,则A 的值为:①中第1行的每个元素分别乘以②中第1列的每个元素,并将它们相加。

即A =11a ×11b +12a ×21bB 的值为:①中第1行的每个元素分别乘以②中第2列的每个元素,并将它们相加。

即B =11a ×12b +12a ×22bC 的值为:①中第2行的每个元素分别乘以②中第1列的每个元素,并将它们相加。

即C =21a ×11b +22a ×21bD 的值为:①中第2行的每个元素分别乘以②中第2列的每个元素,并将它们相加。

即D =21a ×12b +22a ×22b .⎪⎪⎪⎭⎫ ⎝⎛333231232221131211a a a a a a a a a ×⎪⎪⎪⎭⎫ ⎝⎛333231232221131211b b b b b b b b b =⎪⎪⎪⎭⎫⎝⎛++++++++++++++++++333323321331323322321231313321321131332323221321322322221221312321221121331323121311321322121211311321121111b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a 描述:令左边的矩阵为①,令右边的矩阵为②,令计算得到的矩阵为⎪⎪⎪⎭⎫⎝⎛I HG F E DC B A,则 A 的值为:①中第1行的每个元素分别乘以②中第1列的每个元素,并将它们相加。

即A =11a ×11b +12a ×21b +13a ×31bB 、C 、D 、E 、F 、G 、H 、I 的值的求法与A 类似。

③数乘结合律:k (lA )=(kl )A ,(kA )B =A (kB )=k (AB ) ④数乘分配律:(k +l )A =kA +lA ,k (A +B )=kA +kB ⑤乘法结合律:(AB )C =A (BC )⑥乘法分配律:A (B +C )=AB +AC ,(A +B )C =AC +BC ⑦需注意的:I.课本P34例题两个不等于零的矩阵的乘积可以是零矩阵 II.课本P34例题数乘的消去律、交换律不成立III.一般来讲,(AB )k ≠A k B k ,因为矩阵乘法不满足交换律IV.课本P40习题第2题:(A +B )2不一定等于A 2+2AB +B 2 ,(A +B )2不一定等于A 2+2AB+B2,(A+B)(A-B)不一定等于A2-B2 . 当AB=BA时,以上三个等式均成立(3)矩阵的转置运算规律:① (A T )T=A②(A±B)T=A T±B T③(kA)T=kA T④ (AB)T=B T A T⑤ (ABC)T=C T B T A T⑥ (ABCD)T=D T C T B T A T(4)同阶方阵相乘所得的方阵的行列式等于两个方阵的行列式的乘积:(详见课本P46)AB=A B(5)例题:课本P35、课本P36-37、课本P40第4大题、课本P40第5大题、课本P51第1 大题、课本P51第4大题、课本P60第4大题、作业P5全部、作业P5第3大题、作业P5第4大题09、矩阵多项式详见课本P 3610、对称矩阵(1)对称矩阵、实对称矩阵、反对称矩阵的概念(详见课本P37)(2)①同阶对称(反对称)矩阵的和、差仍是对称(反对称)矩阵②数与对称(反对称)矩阵的乘积仍是对称(反对称)矩阵③对称(反对称)矩阵的乘积不一定是对称(反对称)矩阵11、矩阵的分块线代老师说这部分的容做了解即可。

详见课本P38-4012、矩阵的初等变换三种行变换与三种列变换:详见课本P 42例题:作业P6全部13、矩阵等价若矩阵A经过若干次初等变换后变成矩阵B,则称矩阵A与矩阵B等价,记为A B14、初等矩阵(1)是由单位矩阵经由一次初等变换而得到的矩阵。

相关文档
最新文档