计量经济学_三元线性回归模型案例分析
计量经济学多元线性回归
调整过的R2(The Adjusted R-squared)
因此, R2增加并不意味着加入新的变量一定 会提高模型拟合度。
调整过的R2是R2一个修正版本,当加入新的 解释变量,调整过的R2不一定增加。
R 21(SS /n (R (k 1 ) )1n(k 1 )SSR
SS /n (T 1 )
定义:
y i y 2 to su to a s m flqS ua S总 rT es平
y ˆi y 2exp slu o as m ifq nu e Sd a Sr解 E es释 u ˆi2 ressiu d os m u fq au S l a SrR 残 es 差平
SST= SSE + SSR
3
重新定义变量
为什么我们想这样做? 数据测度单位变换经常被用于减少被估参数小数
点后的零的个数,这样结果更好看一些。 既然这样做主要为了好看,我们希望本质的东西
不改变。
4
重新定义变量:一个例子
以下模型反映了婴儿出生体重与孕妇吸烟量和家 庭收入之间的关系:
(1) b w g h t ˆ 0 ˆ 1 c ig s ˆ 2 fa m in c
explog考虑如果我们想知道时的百分比变化我们不能只报告因为所以22含二次式的模型u的模型我们不能单独将b解释为关于xy变化的度量我们需要将b如果感兴趣的是给定x的初始值和变动预测y的变化那么可以直接使用1
课堂提纲
重新定义变量的影响
估计系数 R 平方 t 统计量
函数形式
对数函数形式 含二次式的模型 含交叉项的模型
24
wage
7.37
3.73
24.4
exper
25
对含二次式模型的进一步讨论
《计量经济学》第3章数据
《计量经济学》各章数据第3章 多元线性回归模型例3.1.1 经过研究,发现家庭书刊消费水平受家庭收入及户主受教育年数的影响。
现对某地区的家庭进行抽样调查,得到样本数据如表3.1.1所示,其中y 表示家庭书刊消费水平(元/年),x 表示家庭收入(元/月),T 表示户主受教育年数。
下面我们估计家庭书刊消费水平同家庭收入、户主受教育年数之间的线性关系。
回归模型设定如下: t t t t u T b x b b y +++=210(t =1,2, …)表3.1.1 某地区家庭书刊消费水平及影响因素的调查数据表例3.4.1根据表3.4.1给出的中国1980-2003年间总产出(用国内生产总值GDP度量,单位:亿元),劳动投入L(用从业人员度量,单位为万人),以及资本投入K(用全社会固定投资度量,单位:亿元),试建立我国的柯布——道格拉斯生产函数。
表3.4.1 1980-2003年中国GDP、劳动投入与资本投入数据例3.4.2 某硫酸厂生产的硫酸透明度一直达不到优质要求,经分析透明度低与硫酸中金属杂质的含量太高有关。
影响透明度的主要金属杂质是铁、钙、铅、镁等。
通过正交试验的方法发现铁是影响硫酸透明度的最主要原因。
测量了47组样本值,数据见表3.4.3。
试建立硫酸透明度(y)与铁杂质含量(x)的回归模型。
表3.4.3 硫酸透明度(y)与铁杂质含量(x)数据例3.4.3假设某企业在15年中每年的产量Y(件)和总成本X(元)的统计资料表3.4.7所示,试估计该企业的总成本函数模型。
表3.4.7 某企业15年中每年总产量与总成本统计资料3.6.1 案例1——中国经济增长影响因素分析根据表3.6.1给出的1980-2003年间总产出(用国内生产总值GDP度量,单位:亿元),最终消费CS(单位:亿元),投资总额I(用固定资产投资总额度量,单位:亿元),出口总额(单位:亿元)统计数据,试对中国经济增长影响因素进行回归分析。
多元线性回归模型案例(DOC)
多元线性回归模型案例分析——中国人口自然增长分析一·研究目的要求中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平。
此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。
影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。
(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。
二·模型设定为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。
暂不考虑文化程度及人口分布的影响。
从《中国统计年鉴》收集到以下数据(见表1):表1 中国人口增长率及相关数据设定的线性回归模型为:1222334t t t t t Y X X X u ββββ=++++三、估计参数利用EViews 估计模型的参数,方法是:1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对话框“Workfile Range ”。
在“Workfile frequency ”中选择“Annual ” (年度),并在“Start date ”中输入开始时间“1988”,在“end date ”中输入最后时间“2005”,点击“ok ”,出现“Workfile UNTITLED ”工作框。
其中已有变量:“c ”—截距项 “resid ”—剩余项。
多元线性回归模型案例
我国农民收入影响因素的回归分析本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。
?农民收入水平的度量常采用人均纯收入指标。
影响农民收入增长的因素是多方面的,既有结构性矛盾因素,又有体制性障碍因素。
但可以归纳为以下几个方面:一是农产品收购价格水平。
二是农业剩余劳动力转移水平。
三是城市化、工业化水平。
四是农业产业结构状况。
五是农业投入水平。
考虑到复杂性和可行性,所以对农业投入与农民收入,本文暂不作讨论。
因此,以全国为例,把农民收入与各影响因素关系进行线性回归分析,并建立数学模型。
一、计量经济模型分析 (一)、数据搜集根据以上分析,我们在影响农民收入因素中引入7个解释变量。
即:2x -财政用于农业的支出的比重,3x -第二、三产业从业人数占全社会从业人数的比重,4x -非农村人口比重,5x -乡村从业人员占农村人口的比重,6x -农业总产值占农林牧总产值的比重,7x -农作物播种面积,8x —农村用电量。
资料来源《中国统计年鉴2006》。
(二)、计量经济学模型建立 我们设定模型为下面所示的形式:利用Eviews 软件进行最小二乘估计,估计结果如下表所示:DependentVariable:Y Method:LeastSquares Sample:Includedobservations:19VariableCoefficientt-StatisticProb.C X1 X3 X4 X5 X6 X7 X8R-squaredMeandependentvarAdjustedR-squared 表1最小二乘估计结果回归分析报告为:()()()()()()()()()()()()()()()()23456782ˆ -1102.373-6.6354X +18.2294X +2.4300X -16.2374X -2.1552X +0.0100X +0.0634X 375.83 3.7813 2.066618.37034 5.8941 2.77080.002330.02128 -2.933 1.7558.820900.20316 2.7550.778 4.27881 2.97930.99582i Y SE t R ===---=230.99316519 1.99327374.66R Df DW F ====二、计量经济学检验(一)、多重共线性的检验及修正①、检验多重共线性 (a)、直观法从“表1最小二乘估计结果”中可以看出,虽然模型的整体拟合的很好,但是x4x6的t统计量并不显着,所以可能存在多重共线性。
计量经济学(庞浩)第三章-多元线性回归模型(1)
矩阵X的秩为K(注意X为n行K列)。
Ran(X)= k
Rak(X'X)=k
即 (X'X) 可逆 假定6:正态性假定
ui ~ N (0, 2 )
u ~ N (0, 2I)
12
第二节 多元线性回归模型的估计
一、普通最小二乘法(OLS)
原则:寻求剩余平方和最小的参数估计式 min : ei2 (Yi Yˆi )2
1
X 22
Xk
2
2
u2
Yn
1 X 2n
X
kn
k
un
Y
X
βu
n 1
nk
k 1 n1
9
9
矩阵表示方式
总体回归函数 E(Y) = Xβ 或 Y = Xβ + u
样本回归函数 Yˆ = Xβˆ 或 Y = Xβˆ + e
其中: Y,Yˆ,u,e 都是有n个元素的列向量
β, βˆ 是有k 个 元素的列向量
多重可决系数:在多元回归模型中,由各个解释
变量联合起来解释了的Y的变差,在Y的总变差中占
的比重,用 R2表示 与简单线性回归中可决系数 r的2 区别只是 不Yˆi 同
多元回归中
Yˆi ˆ1 ˆ2 X2i ˆ3 X3i ˆk Xki
多重可决系数可表示为
R2 ESS TSS
(Yˆi Y )2 (Yi Y )2
0
2
X 2i
Yi
(ˆ1
ˆ2
X 2i
ˆ3
X 3i
ˆki
X ki )
0
(i 1, 2, n)
( j 1, 2, n)
ei 0
X2iei 0
2
计量经济学建模案例
计量经济学建模案例计量经济学是一种运用数学和统计方法对经济现象进行定量分析的方法,可以帮助经济学家解释和预测经济现象,并制定相应的政策。
下面是一种计量经济学建模案例:假设我们要研究某个城市的房价与房屋面积之间的关系。
我们可以使用多元线性回归模型来建模,其中自变量是房屋面积,因变量是房价。
为了使模型更加准确,我们还可以引入其他可能影响房价的变量,如地理位置、房屋年龄、房屋类型等。
首先,我们需要收集相关的数据。
我们可以通过调查和市场价格来获得房屋面积、房价以及其他相关变量的数据。
假设我们收集了100个样本数据来建立模型。
接下来,我们需要进行数据的预处理。
这包括数据清洗、缺失值处理、异常值处理等。
我们可以使用统计软件进行数据处理和分析。
然后,我们可以使用多元线性回归模型来建立房价与房屋面积以及其他相关变量之间的关系。
模型的形式可以表示为:房价= β0 + β1 × 房屋面积+ β2 × 地理位置+ β3 × 房屋年龄 +β4 × 房屋类型+ ε其中,β0、β1、β2、β3、β4是模型的回归系数,表示不同变量对房价的影响程度。
ε是误差项,表示模型无法解释的部分。
接着,我们可以使用最小二乘法估计回归系数,并进行统计显著性检验和模型拟合度检验。
这可以帮助我们判断模型的准确性和可解释性。
最后,我们可以使用估计的回归模型来进行预测和分析。
通过对模型的解释和系数的分析,我们可以得出不同变量对房价的影响程度,并制定相应的政策措施。
总之,计量经济学建模能够帮助我们理解和预测经济现象,对于研究者和政策制定者具有重要意义。
以上是一个简单的计量经济学建模案例,实际的建模过程可能更加复杂,需要根据具体问题进行相应的分析和处理。
计量经济学_三元线性回归模型案例分析
选择“国内生产总值(GDP)”作为经济整体增长水平的代表;选择中央和地方“财政支出”作为公共财政需求的代表;选择“商品零售物价指数”作为物价水平的代表。
由于税制改革难以量化,而且1985年以后财税体制改革对税收增长影响不是很大,可暂不考虑。
所以解释变量设定为可观测“国内生产总值(GDP)”、“财政支出”、“商品零售物价指数”一,数理经济学方程Y = C(1) + C(2)*XY i=β0+β2X2+β3X3+β4X4二,计量经济学方程设定线性回归模型为:Y i=β0+β2X2+β3X3+β4X4+μ三,数据收集从《国家统计局》获取以下数据:年份财政收入(亿元)Y 国内生产总值(亿元)X2财政支出(亿元)X3商品零售价格指数(%)X41978 519.28 3624.1 1122.09 100.7 1979 537.82 4038.2 1281.79 102 1980 571.7 4517.8 1228.83 106 1981 629.89 4862.4 1138.41 102.4 1982 700.02 5294.7 1229.98 101.9 1983 775.59 5934.5 1409.52 101.5 1984 947.35 7171 1701.02 102.8 1985 2040.79 8964.4 2004.25 108.8 1986 2090.73 10202.2 2204.91 106 1987 2140.36 11962.5 2262.18 107.3 1988 2390.47 14928.3 2491.21 118.5 1989 2727.4 16909.2 2823.78 117.81990 2821.86 18547.9 3083.59 102.1 1991 2990.17 21617.8 3386.62 102.9 1992 3296.91 26638.1 3742.2 105.4 1993 4255.3 34636.4 4642.3 113.2 1994 5126.88 46759.4 5792.62 121.7 1995 6038.04 58478.1 6823.72 114.8 1996 6909.82 67884.6 7937.55 106.1 1997 8234.04 74462.6 9233.56 100.8 1998 9262.8 78345.2 10798.18 97.4 1999 10682.58 82067.5 13187.67 97 2000 12581.51 89468.1 15886.5 98.5 2001 15301.38 97314.8 18902.58 99.2 2002 17636.45 104790.6 22053.15 98.7四,参数估计利用eviews软件可以得到Y关于X2的散点图:可以看出Y和X2成线性相关关系Y关于X3的散点图:可以看出Y和X3成线性相关关系Y关于X1的散点图:Dependent Variable: YMethod: Least SquaresDate: 01/09/10 Time: 13:16Sample: 1978 2002Included observations: 25Variable Coefficient Std. Error t-Statistic Prob.C -2582.755 940.6119 -2.745825 0.0121X2 0.022067 0.005577 3.956633 0.0007X3 0.702104 0.033236 21.12474 0.0000X4 23.98506 8.738296 2.744821 0.0121R-squared 0.997430 Mean dependent var 4848.366Adjusted R-squared 0.997063 S.D. dependent var 4870.971S.E. of regression 263.9591 Akaike info criterion 14.13511Sum squared resid 1463163. Schwarz criterion 14.33013Log likelihood -172.6889 F-statistic 2717.254Durbin-Watson stat 0.948521 Prob(F-statistic) 0.000000模型估计的结果为:Y i=-2582.755+0.022067X2+0.702104X3+23.98506X4(940.6119) (0.0056) (0.0332) (8.7383)t={-2.7458} {3.9567} {21.1247} {2.7449}R2=0.997 R2=0.997 F=2717.254 df=21五,相关检验1.经济意义检验模型估计结果说明,在假定其他变量不变的情况下,当年GDP 每增长1亿元,税收收入就会增长0.02207亿元;在假定其他变量不变的情况下,当年财政支出每增长1亿元,税收收入就会增长0.7021亿元;在假定其他变量不变的情况下,当零售商品物价指数上涨一个百分点,税收收入就会增长23.985亿元。
计量经济学多元回归分析案例.pdf
计量经济学多元回归分析案例引言计量经济学是运用数理统计和经济学方法研究经济现象的一门学科。
在实际研究中,多元回归分析是一种常用的方法。
本文将通过一个实际案例来介绍计量经济学中的多元回归分析方法和应用。
研究背景单因素回归分析在计量经济学中,单因素回归分析是最基本的方法之一。
它通过确定一个因变量和一个自变量之间的关系,来解释因变量的变化。
然而,在现实世界中,经济现象往往受到多个因素的影响,因此需要使用多元回归分析来更全面地解释经济现象的变化。
问题陈述本研究的问题是探究某个城市的房价与多个因素之间的关系。
具体来说,我们感兴趣的因变量是房价,自变量包括房屋面积、地理位置、周边设施等。
我们希望通过建立一个多元回归模型来解释房价的变化,并分析不同因素对房价的影响程度。
数据收集为了进行多元回归分析,我们需要收集相关的数据。
在本案例中,我们采集了以下数据:1.房价:通过不同的房地产网站获取该城市的房屋销售数据,包括每个房屋的售价信息。
2.房屋面积:通过购房广告或房产中介提供的信息收集每个房屋的面积数据。
3.地理位置:通过经纬度或邮政编码信息获取每个房屋的地理位置信息。
4.周边设施:通过地图应用或开放的公共数据接口获取每个房屋周边设施(如学校、医院、商场等)的数量和距离信息。
数据预处理在进行多元回归分析前,我们需要对收集到的数据进行预处理。
缺失值处理在数据收集过程中,可能会出现数据缺失的情况。
对于缺失的数据,我们可以选择删除相应的样本,或者通过插补方法进行填充。
在本案例中,我们选择使用均值填充的方法。
数据转换由于多元回归模型要求变量之间具有线性关系,因此我们需要对非数值型数据进行转换。
在本案例中,地理位置可以通过编码转换为数值型变量。
模型建立在进行多元回归分析时,我们需要选择适当的模型来描述因变量和自变量之间的关系。
在本案例中,我们选择使用普通最小二乘法(OLS)来估计回归模型的参数。
模型表达式我们将房价作为因变量(Y),房屋面积、地理位置和周边设施作为自变量(X)。
计量经济学-3多元线性回归模型
2020/12/8
计量经济学-3多元线性回归模型
•第一节 概念和基本假定
•一、基本概念: • 设某经济变量Y 与P个解释变量:X1,X2,…,XP存在线性依
存关系。 • 1.总体回归模型:
•其中0为常数项, 1 ~ P 为解释变量X1 ~ XP 的系数,u为随机扰动项。 • 总体回归函数PRF给出的是给定解释变量X1 ~ XP 的值时,Y的期 望值:E ( Y | X1,X2,…,XP )。 • 假定有n组观测值,则可写成矩阵形式:
计量经济学-3多元线性回归模型
•2.样本回归模型的SRF
计量经济学-3多元线性回归模型
•二、基本假定: • 1、u零均值。所有的ui均值为0,E(ui)=0。 • 2、u同方差。Var(ui)=δ2,i=1,2,…,n
计量经济学-3多元线性回归模型
•
计量经济学-3多元线性回归模型
•
•第二节 参数的最小二乘估 计
•五、预测
•(一)点预测 •点预测的两种解释:
计量经济学-3多元线性回归模型
•(二)区间预测
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
•例5,在例1中,若X01=10,X02=10,求总体均值E(Y0|X0) 和总体个别值Y0的区间预测。
•
Yi=β0+β1Xi1+β2Xi2+ui
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
•三、最小二乘估计的性质
计量经济学-3多元线性回归模型
计量经济学例题解答
例1(一元线性回归模型) 令kids 表示一名妇女生育孩子的数目,educ 表示该妇女接受过教育的年数。
生育率对教育年数的简单回归模型为:µββ++=educ kids 10(1)随机扰动项µ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
解答:(1)收入、年龄、家庭状况、政府的相关政策等也是影响生育率的重要的因素,在上述简单回归模型中,它们被包含在了随机扰动项之中。
有些因素可能与增长率水平相关,如收入水平与教育水平往往呈正相关、年龄大小与教育水平呈负相关等。
(2)当归结在随机扰动项中的重要影响因素与模型中的教育水平educ 相关时,上述回归模型不能够揭示教育对生育率在其他条件不变下的影响,因为这时出现解释变量与随机扰动项相关的情形,基本假设4不满足。
例2(一元线性回归模型) 已知回归模型µβα++=N E ,式中E 为某类公司一名新员工的起始薪金(元),N 为所受教育水平(年)。
随机扰动项µ的分布未知,其他所有假设都满足。
(1)从直观及经济角度解释α和β。
(2)OLS 估计量αˆ和满足线性性、无偏性及有效性吗?简单陈述理由。
βˆ(3)对参数的假设检验还能进行吗?简单陈述理由。
解答:(1)N βα+为接受过N 年教育的员工的总体平均起始薪金。
当N 为零时,平均薪金为α,因此α表示没有接受过教育员工的平均起始薪金。
β是每单位N 变化所引起的E 的变化,即表示每多接受一年学校教育所对应的薪金增加值。
(2)OLS 估计量αˆ和仍满足线性性、无偏性及有效性,因为这些性质的的成立无需随机扰动项βˆµ的正态分布假设。
(3)如果t µ的分布未知,则所有的假设检验都是无效的。
因为t 检验与F 检验是建立在µ的正态分布假设之上的。
例3(一元线性回归模型) 对于人均存款与人均收入之间的关系式t t t Y S µβα++=使用美国36年的年度数据得到如下估计模型,括号内为标准差:)011.0()105.151(067.0105.384ˆtt Y S +=2R =0.538 023.199ˆ=σ(1)β的经济解释是什么?(2)α和β的符号是什么?为什么?实际的符号与你的直觉一致吗?如果有冲突的话,你可以给出可能的原因吗?(3)对于拟合优度你有什么看法吗?(4)检验是否每一个回归系数都与零显著不同(在1%水平下)。
多元线性回归模型案例分析报告
多元线性回归模型案例分析——中国人口自然增长分析一·研究目的要求中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平.此后,人口自然增长率<即人口的生育率>很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型.影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:<1>从宏观经济上看,经济整体增长是人口自然增长的基本源泉;<2>居民消费水平,它的高低可能会间接影响人口增长率.〕3〔文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率<4>人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响.二·模型设定为了全面反映中国"人口自然增长率"的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择"国名收入"及"人均GDP"作为经济整体增长的代表;选择"居民消费价格指数增长率"作为居民消费水平的代表.暂不考虑文化程度及人口分布的影响.从《中国统计年鉴》收集到以下数据<见表1>:表1中国人口增长率及相关数据设定的线性回归模型为: 三、估计参数利用EViews 估计模型的参数,方法是:1、建立工作文件:启动EViews,点击File\New\Workfile,在对话框"Workfile Range".在"Workfile frequency"中选择"Annual" 〕年度〔,并在"Start date"中输入开始时间"1988",在"end date"中输入最后时间"2005",点击"ok",出现"Workfile UNTITLED"工作框.其中已有变量:"c"—截距项"resid"—剩余项.在"Objects"菜单中点击"New Objects",在"New Objects"对话框中选"Group",并在"Name for Objects"上定义文件名,点击"OK"出现数据编辑窗口.2、输入数据:点击"Quik"下拉菜单中的"Empty Group",出现"Group"窗口数据编辑框,点第一列与"obs"对应的格,在命令栏输入"Y",点下行键"↓",即将该序列命名为Y,并依此输入Y 的数据.用同年份 人口自然增长率<%.> 国民总收入<亿元> 居民消费价格指数增长率<CPI>% 人均GDP<元> 1988 15.73 15037 18.8 1366 1989 15.04 17001 18 1519 1990 14.39 18718 3.1 1644 1991 12.98 21826 3.4 1893 1992 11.6 26937 6.4 2311 1993 11.45 35260 14.7 2998 1994 11.21 48108 24.1 4044 1995 10.55 59811 17.1 5046 1996 10.42 70142 8.3 5846 1997 10.06 78061 2.8 6420 1998 9.14 83024 -0.8 6796 1999 8.18 88479 -1.4 7159 2000 7.58 98000 0.4 7858 2001 6.95 108068 0.7 8622 2002 6.45 119096 -0.8 9398 2003 6.01 135174 1.2 10542 2004 5.87 159587 3.9 12336 2005 5.89 184089 1.8 14040 20065.38 213132 1.5 16024样方法在对应的列命名X 2、X 3、X 4,并输入相应的数据.或者在EViews 命令框直接键入"data Y 2X X 3 X 4… ",回车出现"Group"窗口数据编辑框,在对应的Y 、X 2、X 3、X 4下输入响应的数据.3、估计参数:点击"Procs"下拉菜单中的"Make Equation",在出现的对话框的"Equation Specification"栏中键入"Y C X 2 X 3 X 4",在"Estimation Settings"栏中选择"Least Sqares"〕最小二乘法〔,点"ok",即出现回归结果: 表3.4根据表3.4中数据,模型估计的结果为:〕0.913842〔 〕0.000134〔 〕0.033919〔 〕0.001771〔t= 〕17.08010〔 〕2.482857〔 〕1.412721〔 〕-2.884953〔930526.02=R 915638.02=R F=62.50441四、模型检验1、经济意义检验模型估计结果说明,在假定其它变量不变的情况下,当年国民总收入每增长1亿元,人口增长率增长0.000332%;在假定其它变量不变的情况下,当年居民消费价格指数增长率每增长 1%,人口增长率增长0.047918%;在假定其它变量不变的情况下,当年人均GDP 没增加一元,人口增长率就会降低0.005109%.这与理论分析和经验判断相一致.2、统计检验<1>拟合优度:由表3.4中数据可以得到:930526.02=R ,修正的可决系数为915638.02=R,这说明模型对样本的拟合很好.<2>F 检验:针对0234:0H βββ===,给定显著性水平0.05α=,在F 分布表中查出自由度为k-1=3和n-k=14的临界值34.3)14,3(=αF .由表3.4中得到F=62.50441,由于F=62.50441 >(3,21) 3.075F α=,应拒绝原假设0234:0H βββ===,说明回归方程显著,即"国民总收入"、"居民消费价格指数增长率"、"人均GDP"等变量联合起来确实对"人口自然增长率"有显著影响.<3>t 检验:分别针对0H :0(1,2,3,4)j j β==,给定显著性水平0.05α=,查t 分布表得自由度为n-k=14临界值145.2)(2/=-k n t α.由表3.4中数据可得,与^1β、^2β、^3β、^4β对应的t 统计量分别为17.08010、2.482857、1.412721、-2.884953除^3β,其绝对值均大于145.2)(2/=-k n t α,这说明分别都应当拒绝0H :)4,2,1(0==j j β,也就是说,当在其它解释变量不变的情况下,解释变量"国民总收入"、"人均GDP"分别对被解释变量"人口自然增长率"Y 都有显著的影响.^3β的绝对值小于145.2)(2/=-k n t α,:这说明接受0H :03=β,X3系数对t 检验不显著,这表明很可能存在多重共线性.所以计算各解释变量的相关系数,选择X2、X3、X4数据,点"view/correlations"得相关系数矩阵<如表4.4>:表4.4由相关系数矩阵可以看出:各解释变量相互之间的相关系数较高,证实确实存在严重多重共线性. 五、消除多重共线性采用逐步回归的办法,去检验和解决多重共线性问题.分别作Y 对X2、X3、X4的一元回归,结果如表4.5所示:表4.5按2R 的大小排序为:X4、X2、X3以X2为基础,顺次加入其他变量逐步回归.首先加入X2回归结果为:t=〕2.542529〔 〕-2.970874〔 920622.02=R当取05.0=α时,131.2)318(025.0)(2/=-=-tt k n α,X2参数的t 检验显著,加入X3回归得t= 〕17.08010〔 〕2.482857〔〕1.412721〔 〕-2.884953〔930526.02=R 915638.02=R F=62.50441当取05.0=α时,145.2)418(2/=-αt ,X3参数的t 检验不显著,予以剔除即40005397.02000350.035540.16ˆX X Y -+=,这是最后消除多重共线性的结果.在假定其它变量不变的情况下,当年国民总收入每增长1亿元,人口增长率增长0.000332%;在假定其它变量不变的情况下,在假定其它变量不变的情况下,当年人均GDP 没增加一元,人口增长率就会降低0.005109%.金服131 王亚平13019122。
计量经济学 实验3 多元回归模型
目录目录 (1)一、建立多元线性回归模型 (3)(一) 建立包括时间变量的三元线性回归模型; (3)1. 建立工作文件:CREATE A 78 94 (3)2. 输入统计资料:DATA Y L K (3)3. 生成时间变量t:GENR T=@TREND(77) (3)4. 建立回归模型:LS Y C T L K (3)(二) 建立剔除时间变量的二元线性回归模型; (4)(三) 建立非线性回归模型——C-D生产函数。
(5)二、比较、选择最佳模型 (8)(一) 回归系数的符号及数值是否合理; (8)(二) 模型的更改是否提高了拟合优度; (8)(三) 模型中各个解释变量是否显著; (8)(四) 残差分布情况 (8)实验三多元回归模型【实验目的】掌握建立多元回归模型和比较、筛选模型的方法。
【实验内容】建立我国国有独立核算工业企业生产函数。
根据生产函数理论,生产函数的基本形式为:()ε,tY=。
其中,L、K分别为生产过程中投入的劳动与资金,fL,K,时间变量t反映技术进步的影响。
表3-1列出了我国1978-1994年期间国有独立核算工业企业的有关统计资料;其中产出Y为工业总产值(可比价),L、K分别为年末职工人数和固定资产净值(可比价)。
资料来源:根据《中国统计年鉴-1995》和《中国工业经济年鉴-1995》计算整理【实验步骤】一、 建立多元线性回归模型(一) 建立包括时间变量的三元线性回归模型;在命令窗口依次键入以下命令即可:1. 建立工作文件: CREATE A 78 942. 输入统计资料: DATA Y L K3. 生成时间变量t : GENR T=@TREND(77)4. 建立回归模型: LS Y C T L K则生产函数的估计结果及有关信息如图3-1所示。
图3-1 我国国有独立核算工业企业生产函数的估计结果 因此,我国国有独立工业企业的生产函数为:K L t y 7764.06667.06789.7732.675ˆ+++-= (模型1)t =(-0.252) (0.672) (0.781) (7.433)9958.02=R 9948.02=R 551.1018=F 模型的计算结果表明,我国国有独立核算工业企业的劳动力边际产出为0.6667,资金的边际产出为0.7764,技术进步的影响使工业总产值平均每年递增77.68亿元。
计量经济学(王少平版)案例分析2
案例分析2—多元线性回归实例分析下面给出了我国20年的人均消费性支出()Y 、人均现金收入1()X 和人均实物收入2()X 的数据,对其三者之间的关系可以利用多元回归的方法进行分析研究。
具体数据如表3-1表3-1 1978-1997中国人均收入与消费支出数据资料表年份 人均消费性支出/元 i Y人均现金收入/元 1X 人均实物收入/元 2X 年份人均消费性支出/元 i Y 人均现金收入/元 1X 人均实物收入/元 2X 1978 116.06 63.88 87.91 1988 476.66 449.80 335.50 1979 134.51 84.68 99.33 1989 535.37 503.22 371.75 1980 162.21 105.47 110.75 1990 584.63 525.36 465.02 1981 190.81 134.52 119.45 1991 619.79 573.39 472.71 1982 220.23 160.05 146.45 1992 659.01 782.45 472.93 1983 248.29 217.78 194.32 1993 769.65 879.80 554.02 1984 237.80 246.93 228.72 1994 1016.81 1215.66 537.72 1985 317.42 288.63 258.68 1995 1310.36 1577.17 760.70 1986 356.95 324.50 268.52 1996 1572.08 1895.68 911.05 1987398.29356.98296.6019971617.152099.38899.82一、建立模型利用经济学知识分析可知,人均消费性支出要受到人均现金收入和人均实物收入的影响。
因此,可以将人均消费性支出()Y 看作被解释变量,人均现金收入1()X 和人均实物收入2()X 看作解释变量建立线性回归模型01122i i i i Y X X βββμ=+++利用实际观测数据通过普通最小二乘法OLS 对回归模型进行参数估计,得线性回归方程01122ˆˆˆˆY X X βββ=++ 利用表3-1的观测数据进行计算得:11544.08iY =∑,112485.33iX=∑,27591.95i X =∑577.204Y =,1624.2665X =,2379.5975X =21117109257.6146i L x ==∑,12122872652.2885i i L x x ==∑22221229306.8636i L x ==∑,115369709.3037Y i i L x y ==∑222205991.2785Y i i L x y ==∑,24088464.4823YY i L y ==∑根据公式计算可得:12221212112212ˆ0.5418Y Y L L L L L L L β-==- 21111222112212ˆ0.5285Y Y L L L L L L L β-==- 01122ˆˆˆ38.3856Y X X βββ=--= 从而得线性回归方程为12ˆ38.38560.54180.5285Y X X =++ 对其进行显著性检验21122ˆˆ13385.3639i YY Y Y e L L L ββ'==--=∑e e2213385.3639787.37433317i e e S n n '====--∑e e()1ˆ0.0448S β== ()2ˆ0.1077S β== 样本决定系数 21122ˆˆ0.9967Y YYYL L R L ββ+==F 统计量()1122ˆˆ()22562.847117Y YL L ESS k F RSS n k ββ+==='--e e给定0.05α=,查第一自由度为2,第二自由度为17的F 分布表临界值0.05 3.59F =,显然2587.7647 3.59>,所以回归方程显著成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计量经济学课程设计班级:学号:姓名:2011年1月一,问题设计改革开放以来,随着经济体制的改革深化和经济的快速增长,中国的财政收支状况发生了很大的变化,中央和地方的税收收入1978年为519.28亿元到2002年已增长到17636.45亿元25年间增长了33倍。
为了研究中国税收收入增长的主要原因,分析中央和地方税收收入的增长规律,预测中国税收未来的增长趋势,需要建立计量经济学模型。
二,理论基础影响中国税收收入增长的因素很多,但据分析主要的因素可能有:(1)从宏观经济看,经济整体增长是税收增长的基本源泉。
(2)公共财政的需求,税收收入是财政的主体,社会经济的发展和社会保障的完善等都对公共财政提出要求,因此对预算指出所表现的公共财政的需求对当年的税收收入可能有一定的影响。
(3)物价水平。
我国的税制结构以流转税为主,以现行价格计算的DGP等指标和和经营者收入水平都与物价水平有关。
(4)税收政策因。
我国自1978年以来经历了两次大的税制改革,一次是1984—1985年的国有企业利改税,另一次是1994年的全国范围内的新税制改革。
税制改革对税收会产生影响,特别是1985年税收陡增215.42%。
但是第二次税制改革对税收的增长速度的影响不是非常大。
因此可以从以上几个方面,分析各种因素对中国税收增长的具体影响。
为了反映中国税收增长的全貌,选择包括中央和地方税收的‘国家财政收入’中的“各项税收”(简称“税收收入”)作为被解释变量,以放映国家税收的增长;选择“国内生产总值(GDP)”作为经济整体增长水平的代表;选择中央和地方“财政支出”作为公共财政需求的代表;选择“商品零售物价指数”作为物价水平的代表。
由于税制改革难以量化,而且1985年以后财税体制改革对税收增长影响不是很大,可暂不考虑。
所以解释变量设定为可观测“国内生产总值(GDP)”、“财政支出”、“商品零售物价指数”三,数理经济学方程Y = C(1) + C(2)*XY i=β0+β2X2+β3X3+β4X4四,计量经济学方程设定线性回归模型为:Y i=β0+β2X2+β3X3+β4X4+μ五,数据收集从《国家统计局》获取以下数据:年份财政收入(亿元)Y 国内生产总值(亿元)X2财政支出(亿元)X3商品零售价格指数(%)X41978 519.28 3624.1 1122.09 100.7 1979 537.82 4038.2 1281.79 102 1980 571.7 4517.8 1228.83 106 1981 629.89 4862.4 1138.41 102.4 1982 700.02 5294.7 1229.98 101.9 1983 775.59 5934.5 1409.52 101.5 1984 947.35 7171 1701.02 102.8 1985 2040.79 8964.4 2004.25 108.8 1986 2090.73 10202.2 2204.91 106 1987 2140.36 11962.5 2262.18 107.3 1988 2390.47 14928.3 2491.21 118.5 1989 2727.4 16909.2 2823.78 117.81990 2821.86 18547.9 3083.59 102.1 1991 2990.17 21617.8 3386.62 102.9 1992 3296.91 26638.1 3742.2 105.4 1993 4255.3 34636.4 4642.3 113.2 1994 5126.88 46759.4 5792.62 121.7 1995 6038.04 58478.1 6823.72 114.8 1996 6909.82 67884.6 7937.55 106.1 1997 8234.04 74462.6 9233.56 100.8 1998 9262.8 78345.2 10798.18 97.4 1999 10682.58 82067.5 13187.67 97 2000 12581.51 89468.1 15886.5 98.5 2001 15301.38 97314.8 18902.58 99.2 2002 17636.45 104790.6 22053.15 98.7六,参数估计利用eviews软件可以得到Y关于X2的散点图:可以看出Y和X2成线性相关关系Y关于X3的散点图:可以看出Y和X3成线性相关关系Y关于X4的散点图:Dependent Variable: YMethod: Least SquaresDate: 01/09/10 Time: 13:16Sample: 1978 2002Included observations: 25Variable Coefficient Std. Error t-Statistic Prob.C -2582.755 940.6119 -2.745825 0.0121X2 0.022067 0.005577 3.956633 0.0007X3 0.702104 0.033236 21.12474 0.0000X4 23.98506 8.738296 2.744821 0.0121R-squared 0.997430 Mean dependent var 4848.366Adjusted R-squared 0.997063 S.D. dependent var 4870.971S.E. of regression 263.9591 Akaike info criterion 14.13511Sum squared resid 1463163. Schwarz criterion 14.33013Log likelihood -172.6889 F-statistic 2717.254Durbin-Watson stat 0.948521 Prob(F-statistic) 0.000000模型估计的结果为:Y i=-2582.755+0.022067X2+0.702104X3+23.98506X4(940.6119) (0.0056) (0.0332) (8.7383)t={-2.7458} {3.9567} {21.1247} {2.7449}R2=0.997 R2=0.997 F=2717.254 df=21七,相关检验1.经济意义检验模型估计结果说明,在假定其他变量不变的情况下,当年GDP 每增长1亿元,税收收入就会增长0.02207亿元;在假定其他变量不变的情况下,当年财政支出每增长1亿元,税收收入就会增长0.7021亿元;在假定其他变量不变的情况下,当零售商品物价指数上涨一个百分点,税收收入就会增长23.985亿元。
2.统计检验(1)拟合优度:R2=0.997,修正的可决系数为R2=0.997这说明模型对样本拟合的很好。
(2)F检验:针对H0: β2 =β3=β4=0,给定的显著性水平α=0.05,在F分布表中查出自由度为K-1=3和n-k=21的临界值Fα(3,21)=3.075.由Eviews得到F=2717.238>3.075,应拒绝原假设H0,说明回归方程显著,即“国内生产总值(GDP)”“财政支出”“商品零售物价指数”联合起来确实对“税收收入”有显著影响。
(3)T检验:分别针对H:βj=0(j=0,2,3,4),给定的显著水平α=0.05,查t分布表得自由度为n-k=21临界值tα/2(n-k)=2.080。
由Eviews数据可得,与β0β2β3β4对应的t统计量分别为-2.7458,3.9567,21.1247,2.7449,其绝对值均大于2.080,这说明分别都应当拒绝H0,也就是说,当其他解释变量不变的情况下,解释变量“国内生产总值(亿元)X2”“财政支出(亿元)X3”“商品零售价格指数(%)X4”分别对被解释变量“税收收入Y”都有显著的影响。
八,预测财政收入占GDP的比重,又称为国民经济的财政负担率,它综合反映出政府与微观经济主体之间占有和支配社会资源的关系,反映政府调控经济运行的能力和影响社会资源配置的程度。
由于在单个核算期内GDP的变化与财政收入可能不“同步”,因此以单个核算期来看,财政收入占GDP的比重会上下波动。
但从较长时期来看,财政收入占GDP的比重有相对的稳定性和一定的变化趋势。
从上面的实证分析中我们可以看到,GDP与财政收入之间的关系在不同地域、不同经济发展时期是不一样的,那么,可以说,除了我们在第一部分时所指出的两者在经济内涵方面所存在的区别之外,在实际经济生活当中还有以下这些因素会影响到GDP与财政收入的关系:1、财政级别和行政级别从财政收入角度来看,一方面,由于目前我国实行的是分级财政体制,行政级别越高,所掌握的财政资源就越多,例如中央级财政掌握了增值税的75%、海关关税的全部以及其他一些比较重要税种的大部分,而对于地方财政来说,能够完全掌握的只有地方企业营业税和所得税以及其他一些小税种。
另一方面,财政收入采取的是所属制原则,也就是说,一般情况下,中省直企业的大部分税收和利润是由其所属级别的财政来掌握,而不是由其所在地的财政来掌握。
而GDP 所采用的则是所在地原则,也就是说,对于一个地区来说,只要是在本地区的辖区范围之内的单位,不管其税交到哪儿,不管其主管机构是谁,都在GDP的核算口径之内。
这就造成了财政收入与GDP在同一行政级别上数量的不匹配,在客观上形成了地方财政收益率明显低于中央财政收益率的现状。
2、经济发展程度和整体经济效益由于财政收入的主体是税收收入,而税收收入的高低主要取决于这一地区纳税企业的数量以及企业纳税能力的高低。
如果一个地区的市场经济活跃,辖区内的纳税企业数量多、规模大、效益好,在地区生产总值中无税经济成分所占比重相应就小,财政收入占GDP的比重自然也就高。
从对全国部分中等规模城市的定量分析来看,也印证了这一点。
从表中可以看出,财政收入占GDP的比重比较高的城市,大部分是区域优势明显、经济发达程度比较高的地区,而排在后面的城市大多数都是中西部欠发达地区。
3、产业结构层次的高低虽然从宏观上讲财政收入是GDP的重要组成部分,但并不等于说地区经济的发展水平就代表着财政收入的水平。
严格地说,在GDP 的收入分配构成中只有生产税净额和营业盈余的一部分(主要指所得税)构成了财政收入。
由于地区生产总值中各个产业部门的行业构成不同,各行业盈利水平也不同,因而在同样的生产规模和增长速度的条件下,不同的产业结构和行业结构会形成不同的税源状况和盈利水平。
只有当高附加值、高税率的产业部门(行业)在整个地区经济中的比重上升并占据一定优势时,税源才有保障,财政收入与GDP的发展水平才有可能同步,个别产业规划较好的地区财政收入会超过GDP的增长。