添加堆肥并且种植苜蓿和黑麦草对芘污染的土壤进行植物修复
浅谈重金属污染农田的修复方法——以黑麦草治理花垣铅锌矿区农田
盖上健康的土壤也有弊端 , 不仅工作量大 , 同时也要考虑受污染土壤 的堆放和处理。这种方法 比较适用于小范围内且受污染十分严重的 土地, 对于大范围内的污染土壤修复成本高 , 工作量大。
2 . 2化 学 修 复
化学修复方法原理是通过 向土壤 中添加化学改 良剂 , 使化学 改 良剂 与重 金属之 间产生化学反应 , 加快或减弱重金属的移动能
一
2修 护方 法
重金属 。植物修 复大 、 生 通过对数据分析 , 笔 者认 为 , 修复土壤重 金属污染可 以着力 长期长 的植物 ; ( 2 ) 植物的生长期较长 , 所以修复过程也很漫长 ; 最 于一下三种方式 : 物理 、 化学和生物方法 。 后的难题是如何处理富集了重金属的植株 , 避免二次污染 。 2 . 1物 理 修 复 该研究 以黑麦 草( 植物修护 ) 修护 湘西花垣铅锌 矿矿 区土壤 简单 的介绍黑麦草修护铅锌矿矿 区土壤重金 属 物理修复方法主要是换土法( 客土法 ) , 通过把受污染 的土壤 重金属污染为例 ,
含量远远高于健康土壤重金属含量 。 花垣县位于湖南西部武陵山 中添加微生物来改变重金属在土壤中迁移性 , 降低其生物有效性。 脉 中段 ( 1 0 9 。1 5 。 一1 0 9 。3 8 ’ E, 2 8 。1 0 ~2 8 。3 8 ’ N ) , 是 典 型的 中 植物修 复是种植 的植 物对 土壤 中重金属进行 吸收和固定 的方法 , 操作相对简单 , 是 目前大面积修复重金属 亚热带季风 湿润气候 ,年平 均气温 为 1 6 . 5 ℃左右 ,年降雨量 1 这种方法优点是成本低 , 3 9 6 m m, 无 霜期 2 4 1 2 7 9天。境 内土壤 以红壤土 、 红色灰土为主 , 污染土壤的最理想方法。植物修复的原理是利用不 同植 物对 重金 挥发或提取的作用 。植物稳定指利用植物根系对土壤重 植物资源丰富。同时花垣县含有 丰富的矿藏资源 , 已开发的金属 属的稳定 、 将 重金属 固定在植物根系中 , 减弱重金属的迁移 矿藏资源主要有 Mn 、 P b 、 z n 、 c d 、 c u和 H g 。 采矿破坏植被和耕地 , 金属 的吸收作用 , 而且还伴随着产生了大量的矿业废物 , 这些矿业废物重金属含量 性。植物挥发是指植物把 土壤 中的重金属转化为气态 ,挥发人大 气, 主要针对汞和硒 。植物提取即利用植物对重金属 的富集能力 , 较高 , 是环境重金属污染 的主要来源。 利用根 系把土壤 中重金属的吸收 、 转移到地上 , 最终去除土壤中的
紫花苜蓿对铅污染土壤修复能力及其机理的研究
紫花苜蓿对铅污染土壤修复能力及其机理的研究叶春和*(济南大学地理系250022, 济南)摘要以10mmol/L Pb(NO3)2处理紫花苜蓿幼苗10d,分析了Pb在紫花苜蓿幼苗根、茎、叶中的积累情况、Pb在根表皮细胞中的亚细胞区域化特点及Pb在紫花苜蓿体内的主要存在形式。
结果表明,Pb在紫花苜蓿幼苗中积累量(M)特点为:M根>M茎>M叶。
同时X-ray微区分析显示,胞间隙是紫花苜蓿积累Pb浓度最高的部位,细胞壁和液泡次之,胞质中最低。
Pb的存在形式分析表明Pb在紫花苜蓿体内主要以难溶的形式存在,另外BSO能够加剧Pb 污染对紫花苜蓿幼苗Pn和生长的抑制作用,表明紫花苜蓿对Pb的耐受与植物络和素的形成有关。
这些都表明紫花苜蓿对Pb具有一定的耐受机制,避免其对胞质代谢的毒性。
同时紫花苜蓿具有很高的生物量和对Pb较高的富集作用,因此是一种很有利用价值的土壤铅污染修复植物。
关键词土壤修复紫花苜蓿X-ray微区分析随着世界人口的快速增长和工业的迅猛发展,土壤这一人类赖以生存的必需资源正承受着越来越大的压力。
因受到工业三废和农用化学品以及矿区的污染,有相当数量农田的土壤质量日趋下降。
在我国由于重金属污染而引起的粮食减产达1000万吨/年,直接经济损失达100多亿元。
在西方发达国家和其他发展中国家也存在着类似的问题。
土壤修复问题受到人们越来越多的关注,在部分西方国家土壤修复正发展成为一个新兴的环境产业。
1998年9月,第16届国际土壤学大会在法国Motepellier召开,土壤修复问题成为大会的一个热点。
2000年10月第一届土壤修复国际学术会议在中国杭州召开。
对重金属污染土壤修复的措施主要包括物理、化学和生物学措施(bioremediation)。
其中物理和化学措施主要是通过降低有重金属(Pb、Cd、Cu、Zn等)的可溶性和生物可获得性(bioavailability),从而减小其毒害作用。
近年来,土壤修复研究中生物学措施(主要是植物修复技术:phytoremediation)以其过程简单、成本低廉和不存在安全隐患等特点受到了人们越来越多的关注,在这一方面已有很多成功的例子[1、2、3],即通过对特定重金属具有超富集作用的植物从被污染土壤中吸取(phytoextract)重金属离子从而减少其在土壤中的含量,达到土壤修复(remediation)的目的。
黑麦草对多环芳烃污染土壤的修复作用及机制_高彦征
黑麦草对多环芳烃污染土壤的修复作用及机制
高彦征 *+)+ 凌婉婷 *+ 朱利中 )+ 沈其荣 *
,*- 南京农业大学资源与环境学院 + 江苏 南京 )*.($’/ )- 浙江大学环境与资源学院 + 浙江 杭州 !*(()$0
#"$%& 干重计 & 表 , 供试土样中菲和芘的起始浓度 %!" ( S6T.4 , UI1M16. 28I24IM06M18I( 8V P34I6IM304I4 6I/ PW04I4 1I M34 M046M4/ (81.(
注 ’X 为未污染土 ! YB 为未检出 "
,-! 土壤和植物样品中菲和芘分析"+$
,= 5N 并超声萃取 != 51I$ 萃取液收集后过无水硫酸 钠柱 ! 转移到 *= 5N 圆底烧瓶中 !)= # 恒温下浓缩至 干 ! 用正己烷定容到 # 5N$ 取 , 5N 过 # L 硅胶柱 ! 用 ,$, 的二氯甲烷和正己烷溶液洗脱 Z 洗脱液收集后浓 缩至干 ! 用甲醇定容到 # 5N! 过 =-## !5 孔径滤膜 后 !’%N7 分析 " 取 # L 土样于 #* 5N 玻璃离心管中 ! 加入 # L 无 水硫酸钠 ! 混匀 $ 加入 ,= 5N 二氯甲烷 ! 盖紧后 ! 超声
,-# 试验方法
供试潮土采自旱地表层 %=>#= 25&! 有机质含量 为 ,-)*O!P’ 为 *-=* " 土样采集后 !风干 # 过 ! 55 筛 ! 均匀加入菲和芘的丙酮溶液 ! 待丙酮挥发后 ! 用未污 染土不断稀释 Q 多次搅拌 # 混匀 ! 制得菲和芘含量不同 %见表 , & 的污染土样 " 分别称取 *== L 于盆钵中 !*=< 田间持水量下平衡 ) / 后待用 " 黑麦草 %!"#$%& &%’!
土壤修复技术介绍-植物萃取技术
土壤修复技术介绍——植物萃取技术1、技术原理:植物萃取技术是一种以植物忍耐、分解或超量积累某些化学元素的生理功能为基础,利用植物及其共存微生物体系来吸收、降解、挥发和富集环境中污染物的治理技术。
根据其作用过程和机理,植物萃取技术可分为植物稳定、植物提取、植物挥发和根系过滤四种类型。
该技术具有修复成本低、过程简单,且环境友好的优点,但修复周期普遍较长。
植物可以吸取容易挥发的六价铬等重金属(汞、硒等)、农药、石油、持久性有机物、炸药以及放射性核素等。
同时,在土壤中添加EDTA、有机酸等螯合剂可以促进植物对于六价铬等重金属的吸收。
六价铬等重金属污染土壤的植物吸取修复技术在国内外都得到了广泛研究,已经应用于砷、镉、铜、锌、镍、铅等六价铬等重金属以及多环芳烃复合污染土壤的修复,并发展出包括络合诱导强化修复、不同植物套作联合修复、修复后植物处理处置的成套集成技术。
2、技术特点:植物萃取技术与物理和化学修复技术相比具有成本低、效率高、无二次污染、不破坏植物生长所需的土壤环境等特点,非常易于就地处理污染物,操作方便。
修复植物对环境的选择性强,很难在特定的环境中利用特定的植物种;气候或是季节条件会影响植物生长,减缓修复效果,延长修复期;修复技术的应用需要大的表面区域;一些有毒物质对植物生长有抑制作用,因此植物修复多只用于低污染水平的区域。
有毒或有害化合物可能会通过植物进入食物链,所以要控制修复后植物的利用。
污染深度不能超过植物根之所及。
这种技术的应用关键在于筛选具有高产和高去污能力的植物,摸清植物对土壤条件和生态环境的适应性。
近年来,中国在六价铬等重金属污染农田土壤的植物吸取修复技术应用方面,在一定程度上开始引领国际前沿研究方向。
但是,虽然开展了利用苜蓿、黑麦草等植物修复多环芳烃、多氯联苯和石油烃的研究工作,有机污染土壤的植物修复技术的田间研究还很少,对炸药、放射性核素污染土壤的植物修复研究则更少。
植物修复技术不仅应用于农田土壤中污染物的去除,而且同时应用于人工湿地建设、填埋场表层覆盖与生态恢复、生物栖身地重建等。
黑麦草修复模拟重金属污染土壤的化学强化及其潜在风险
u i g Lo u L. f r a tfcal ol td s i sn  ̄ m o ri il p l e ol t a y m eas i y u h he v t l
R nWej g a ni n F aa g u D fn
( c o l fCvl nier g o tesUnvri ,N nig20 9 C ia S ho iiE gnei ,S uhat iesy aj 10 6, hn ) o n t i n
第 4 卷 第 4期 1
21 0 1年 7 月
东 南 大 学 学 报 (自然科 学版 )
J UR L O O T A T U V R I Y ( aua SineE io ) O NA FS U HE S NI E ST N tr c c dt n l e i
Vo14l N o. . 4 J l 01 uv 2 1
1t g a e t a d s ra tn sa o l ws ai g ns n ufca t n wa sf l o :Gal n DS。E lca d S i DT a d S A n DS,Gal ,E l c DT ,S i A DS
d i1 .9 9 ji n 1 0 —0 0 .0 10 . 2 o:0 3 6 /.s . 0 1 5 5 2 1 .4 0 6 s
Hale Waihona Puke 黑 麦 草 修 复模 拟 重 金属 污 染 土壤 的化 学 强化 及 其 潜在 风 险
冉文静 傅 大放
( 东南大学土木工程学 院, 南京 2 09 ) 10 6
Ab t a t:Po e t fp tr me i t n o o lp lu e ri cal t e v t l r o u t d sr c tt sso hy o e d ai fs i o l td a t ily wih h a y mea swe e c nd ce o i f t n e tg t h fe t ft e r me a i n usn lu L.t r u h c mia n a e n .Ch lt o i v si a e te e f c so e dito i g Lo i m h h o g he c le h nc me t ea e EDTA .Galca e s ra tntS r e sc e c le h n e n a t r .Th o lla hig t ss li r u f ca DS we eus d a h mi a n a c me tf co s e s i e c n e t we e as a re u o o e v h o e i lrs f c e c n a e n n t i t y. Re u t r lo c ri d o tt bsr e t e p tnt ik o h mia e h nc me t i s sud a l h s ls
植物对土壤污染的修复与利用
植物对土壤污染的修复与利用植物对土壤污染的修复与利用随着工业化和城市化进程的不断加速,土壤污染问题也日益严重。
土壤污染不仅对环境造成了严重破坏,还会对人类的健康和粮食安全产生负面影响。
因此,寻找有效的土壤修复方法成为了一项迫切的任务。
植物修复污染土壤的技术,即利用植物的生理-生物学特性和耐性,通过吸收、积累和降解毒性物质,降低污染物的含量,改善土壤质量和环境状况。
植物修复技术具有操作简单、成本低廉和对环境友好等优点,因此受到了广泛的关注和应用。
首先,植物修复可以通过植物的吸收作用来去除土壤中的有毒物质。
植物的根系可以吸收土壤中的污染物质,将其转化为无毒的物质,并以生物质的形式积累在植物体内。
例如,铜、锌和铅等重金属污染土壤可以利用一些耐金属植物,如责任报告豆、旱金莲、黑苦草等进行修复。
这些植物对重金属离子具有较好的吸收和转运能力,可以有效地去除土壤中的重金属污染物。
其次,植物修复还可以通过植物根际微生物的作用来降解土壤中的有机污染物。
植物根际微生物是一种生活在植物根际的微生物,它们与植物根系形成共生关系,能够分解和降解土壤中的有机物质。
通过植物根际微生物的作用,可以降解土壤中的农药、石油类和有机溶剂等有机污染物。
例如,白蜡树和宽叶长花南星等植物常被用于修复石油类污染土壤,它们能够分泌出生长因子和改变土壤环境,促进土壤中的微生物分解石油类污染物。
此外,植物修复还可以利用植物的生物学功能来改善土壤环境和提高土壤质量。
植物的根系可以增加土壤的透气性和水分保持能力,改善土壤的通气性和保水性。
植物的生长过程中会释放出多种有机物质和酶,可以改变土壤的酸碱度、氧化还原状态和微生物活动水平,促进有机物质的分解和土壤的结构发育。
植物的生长和枯萎可以使土壤形成一种类似腐植质的物质,提高土壤的肥力和保水能力。
最后,植物修复对土壤污染的利用也是一个重要方面。
一方面,修复后的土壤可以用于农业生产和绿化建设,提高土地的利用效益。
污染土壤的植物修复技术介绍
01
植物修复能够治理包括土壤、水体、大气中的有机和无机污染物。主要分为:植物提取、植物稳定、植物挥发、植物降解、根际滤除
02
植物修复(Phytoremediation)
土壤重金属超富集植物的研究可以追溯到19世纪。Baumann早在1885年就报道了遏蓝菜属(Thlaspicalaminare)植物茎叶灰分中的ZnO含量达17%。
生物浓缩放大,化学定时炸弹
污染物会被生物浓缩放大,污染物暂时没显示危害,是化学定时炸弹还没有爆炸 ——治理迫在眉睫
是指利用绿色植物移除环境中的污染物或使这些污染物变为无害。近年来,一系列的研究发现以及各学科的交叉研究使得植物修复这一研究领域发展成为一种潜在的、低费用和无污染的治理环境污染的新途径
植物降解(Phytodegradation)
利用植物或植物和微生物共同作用降解土壤有机污染物
根际滤除(Rhizofiltration)
利用植物根系吸收、吸附污染水体中的重金属)
Thlaspi caerulescens
蜈蚣草
印度芥菜
龙葵
成套技术用,具有可行性
植物修复实例
1
利用植物提取、挥发、降解作用可以永久性地解决土壤污染问题
变废为宝
如美国Viridian环境公司用植物修复技术净化镍污染土壤,每年可以从金属镍的回收中获取2500美元/公顷的收益。
植物稳定(phytostabilization)
植物稳定:利用耐污染物植物降低土壤中有毒污染物的移动性,从而减少污染物被淋滤到地下水或通过空气扩散进一步污染环境的可能性。
如Cunningham等等研究了植物对环境中土壤Pb的固定,发现一些植物可降低Pb的生物可利用性,缓解Pb对环境中生物的毒害作用。
石油污染土壤植物修复技术研究及展望
石油污染土壤植物修复技术研究及展望李先梅;肖易;吴芸紫;韦政伟;金涛;周建利;田应兵【摘要】石油在开采、运输和炼制过程中,由于操作不当等原因,常会有泄露或排放的现象,造成严重的环境污染.石油烃在表层土壤中的积累会导致土壤结构的破坏使土壤通透性能变差,严重影响到农作物的生长和发育.介绍了几种主要的石油污染土壤的修复技术,比较了各类方法的优缺点,重点分析了植物修复石油污染土壤的机理,综述了木本植物、草本植物、花卉植物以及植物联合修复石油污染土壤的应用实例,并对今后植物修复技术的发展方向进行了展望.【期刊名称】《安徽农业科学》【年(卷),期】2014(000)002【总页数】4页(P529-531,534)【关键词】土壤;石油污染;植物修复【作者】李先梅;肖易;吴芸紫;韦政伟;金涛;周建利;田应兵【作者单位】长江大学农学院,湖北荆州434023;长江大学农学院,湖北荆州434023;长江大学农学院,湖北荆州434023;长江大学农学院,湖北荆州434023;长江大学农学院,湖北荆州434023;长江大学农学院,湖北荆州434023;长江大学农学院,湖北荆州434023【正文语种】中文【中图分类】S181.3在石油开采、运输、加工以及储存过程中,由于操作不当或事故泄漏等原因,常会有石油外溢或排放,造成严重的环境污染。
据统计,目前我国共有油井20万口,每口油井污染的土地面积为200~500 m2,由此造成的土壤污染面积可达8 000万m2,这一数值每年还在不断增长[1]。
石油污染土壤的主要表现形式为落地石油污染,80%以上的原油被截留在表层50 cm以上土壤中[2]。
石油烃在表层土壤中的积累会导致土壤黏稠度的增加,影响土壤通透性,损害植物根部,阻碍根的呼吸与养分的吸收,引起根部腐烂,导致作物发芽出苗率降低,结实率下降,抗倒伏、抗病虫害能力降低,对农作物的生长和发育造成很大的负面影响[3],严重者会导致遭受污染土壤在几年甚至几十年寸草不生[4-6]。
紫花苜蓿在改善土壤环境中的应用
·49·随着我国经济快速发展,工业规模化,不良工厂将未经处理的废水废料偷偷排放;农业上为提供市场对作物的巨大需求量,化肥农药的使用;生活中随着社会发展,人们经济水平大幅度提高,汽车数量不断增加,尾气排放,生活垃圾;工业废气里的SO 2等气体进入空气形成酸雨降落;认为对草地绿植的破坏等现象均对土壤环境造成严重破坏。
严重的土壤污染,还会通过食物、水等影响人类健康,如今人们也日益注重饮食健康,意识到了保护土壤环境的重要性。
紫花苜蓿是世界上栽培最广泛的经济作物之一,在我国多个地方也均有种植,因其产量高、适口性好、适应性强、营养丰富,被称为“牧草之王”。
紫花苜蓿不仅在饲料中有重要的经济价值,在修复土壤环境中也有重要潜力,并且随着人们保护环境的意识不断加强,紫花苜蓿修复土壤环境的相关研究也越来越多。
1.紫花苜蓿在修复重金属污染土壤中的应用土壤污染分为有机污染和无机污染两大类,土壤重金属污染属于无机污染,是土壤无机污染的最重要的一个因素。
土壤重金属污染会随着农作物的吸收最终进入到人类身体,严重危害人体健康,现已引起人们的重视。
景俏丽研究了紫花苜蓿对重金属Cd、Pb 污染土壤的修复能力,研究发现EDTA 和Gallic acid 能提高紫花苜蓿对重金属的富集能力,在两种螯合剂的作用下,紫花苜蓿对Cd 和Pb 的富集能力提高了9.16%~34.95%,说明紫花苜蓿适合在EDTA 和Gallic acid 的作用下用于土壤重金属修复,会有更高的效率。
王新等研究了紫花苜蓿对Cd、Pb、Cu、Zn 等三种重金属污染土壤的修复能力。
结果表明,紫花苜蓿对Cd 富集能力最强,对Pb 富集能力最弱,而且在重金属浓度较低时不但不会抑制紫花苜蓿生长,还能够刺激紫花苜蓿生长,使其更快速的富集重金属。
朱剑飞等研究了紫花苜蓿、狼尾草和黑麦草三种牧草对Cu 和Pb 复合污染土壤的修复能力。
结果表明,紫花苜蓿地上部和根部对Pb 的富集能力最强,远高于其他两种牧草对Pb 的富集能力;经三种牧草修复后,土壤重金属含量都有所下降,其中紫花苜蓿对Cu、Pb 复合污染的土壤综合修复效果最好。
植物修复技术在污染土壤修复中的应用
植物修复技术在污染土壤修复中的应用作者:程月来源:《科学与财富》2019年第24期摘要:土壤对于人们的生活、生产至关重要,属于不可获取的自然资源,不过在平时的生活、生产以及在自然因素的影响下,让土壤受到了一定程度的污染,那么怎样把遭到污染的土壤采取合理的修复就成为了相关专家所重点研究的课题。
而绿色植物修复污染土壤属于全新的绿色技术,其能够让遭到污染的土壤得到有效的修复,因此得到了相关工作者的普遍青睐。
关键词:土壤污染;植物修复;应用土壤是农业、林业等最为重要的自然资源。
这些年以来,尽管经济和工业化水平得到了明显的提升,但导致土壤遭到了严重的污染。
通过调查发现,我国农用地遭到重金属等有害物质的破坏占据了20%左右,这对于农业、生态环境造成了潜在的危害。
而在相关专家经过长时间的研究后发现,植物修复技术能够有效的解决土壤污染问题,因此此项技术得到了普遍的重视,那么我们就来具体讨论一下如何在土壤污染修复中合理的采用植物修复技术。
一、传统土壤污染修复技术和植物修复技术之间的对比现在,污染土壤的修复技术有很多,其中主要包括掘削除去、填埋、热解等。
在对场地污染进行修复期间,需要采用哪种技术,则要通过土壤的污染程度、类型等方面来确定。
通常情况下,采用传统的物理/化学处理方式,可以较快的将污染的土壤进行处理,不过却需要耗费大量的资金,而且还会对土壤机能造成影响,特别是会很大程度的降低土壤的植物生产机能,并导致被再次污染。
另外,采用物理/化学方式,通常会使得土壤失去生物生产机能,并且还会失去农业生产所必须要具有的土壤资源,因此只適合运用到污染程度小的土壤修复当中。
植物修复技术的优势在于可以通过自然条件来对污染的土壤进行修复,无需耗费较多的成本,就可以提升土壤的性能,而且还可以对附近的水质、大气、生态环境带来显著的提升,具备很好的生态、社会效益,因此得到了相关工作者的普遍青睐。
但是此项技术同样存在缺点,其中主要包括难以修复深层污染,会因为气候条件的限制而无法发挥出应有的处理效果。
苜蓿对土壤重金属污染的修复效果
苜蓿对土壤重金属污染的修复效果近年来,随着工业化的迅速发展,土壤重金属污染问题日渐突出。
重金属污染对环境和人类健康造成了严重威胁。
因此,寻找有效的修复方法成为当下亟待解决的关键问题之一。
而苜蓿作为一种广泛分布的植物,被广泛应用于修复土壤重金属污染。
首先,苜蓿具有显著的重金属吸附能力。
苜蓿根系具有较长的根毛和细胞壁,这些特殊结构可以增大根系与土壤接触面积,并吸附土壤中的重金属物质。
研究表明,苜蓿根系可以有效地吸附土壤中的铅、镉、铜等重金属,并将其富集在根系内部。
这种富集作用可以有效减少重金属在土壤中的可迁移性,从而降低其对环境和生物的危害。
其次,苜蓿具有显著的重金属沉积能力。
苜蓿根系在吸附重金属后,其中的根瘤菌能够将其转化为不易溶解的物质,如金属硫酸盐和金属硫化物,然后将其沉积在根瘤中。
这种沉积过程不仅能够稳定重金属的形态,减少其可溶性,还能将其固定在土壤中,从而降低重金属的迁移和扩散。
因此,种植苜蓿可以有效改善土壤重金属污染问题。
此外,苜蓿还具有促进土壤微生物活性的能力。
重金属污染会对土壤微生物群落造成明显的影响,导致微生物数量减少、物种多样性降低等现象。
然而,苜蓿的根系分泌出的有机物质可以作为微生物的营养物质,提供生存环境和生长条件。
同时,苜蓿根系中的根瘤菌也可以与土壤中的其他细菌、真菌等微生物相互作用,建立有益的共生关系。
这些作用可以显著增加土壤微生物的数量和活性,有利于修复受重金属污染的土壤。
另外,苜蓿具有显著的土壤改良能力。
苜蓿能够吸收土壤中的营养物质,并将其转化为有机物质,如蛋白质和氨基酸等。
这些有机物质可以作为土壤养分和有机碳的来源,提高土壤的肥力和水分保持能力。
同时,苜蓿的根系还具有很强的固土能力,能够改良土壤结构,增加土壤通透性和持水能力。
这对于修复受重金属污染的土壤具有重要意义。
苜蓿被广泛应用于重金属污染土壤的修复项目中。
一方面,在重金属污染的农田中种植苜蓿可以提高农作物的品质和产量,并减少重金属对农作物的影响。
苜蓿草的土壤修复与环境保护研究
苜蓿草的土壤修复与环境保护研究近年来,土壤污染和环境退化问题日益严重,给人类社会和生态系统带来了巨大挑战。
在这一背景下,土壤修复和环境保护成为了重要的研究领域。
而苜蓿草作为一种常见的绿肥植物,被广泛研究和应用于土壤修复与环境保护中。
苜蓿草具有独特的生物特性和土壤改良能力,是一种多年生草本植物。
它具有浅根系和高密度的地上部分,能够扩展并固定土壤,防止水土流失和土壤侵蚀。
此外,苜蓿草的根系能够分泌有机酸和其他物质,增加土壤酸度并促进分解有机物,提高土壤肥力。
苜蓿草还能够吸收和积累大量的氮、磷和钾等营养元素,从而减轻土壤中的养分过量和地下水污染。
针对土壤污染和环境保护的需求,苜蓿草在土壤修复中发挥了重要的作用。
研究表明,苜蓿草能够有效地修复重金属污染土壤。
重金属是一种常见的土壤污染物,对环境和人类健康造成严重威胁。
苜蓿草能够通过吸收和积累重金属离子,将其从土壤中转移至地上部分,从而减少其在土壤中的含量。
此外,苜蓿草根系分泌的有机物质能够与重金属形成络合物,减少其毒性和可溶性。
因此,苜蓿草在重金属污染土壤的修复中具有潜在的应用价值。
除了重金属污染土壤的修复,苜蓿草还可以应用于土壤侵蚀的治理。
土壤侵蚀是一种严重的土地退化问题,造成了土壤的流失和贫瘠化。
苜蓿草具有强大的根系和高密度的地上部分,能够有效地固定土壤,减少水土流失。
研究表明,种植苜蓿草能够显著降低土壤侵蚀的速度,并改善土壤的质地和结构。
因此,在治理土壤侵蚀和保护河流等生态系统方面,苜蓿草的种植具有重要的意义。
在环境保护领域,苜蓿草的应用还远不止于此。
苜蓿草能够吸收大量的二氧化碳,帮助减缓气候变化。
同时,苜蓿草也是一种优良的饲料植物,能够提供高质量的饲草,满足农业生产的需求。
此外,苜蓿草的根系能够改善土壤结构和保持土壤湿度,有利于水资源的保护和管理。
因此,苜蓿草在环境保护中的应用具有多重益处和广阔的前景。
总之,苜蓿草作为一种常见的绿肥植物,在土壤修复和环境保护领域发挥着重要的作用。
苜蓿在草地恢复和重建中的作用
苜蓿在草地恢复和重建中的作用草地是地球上最重要的生态系统之一,具有保护土壤、净化水源、生态演替和维持生物多样性等重要功能。
然而,由于人类活动的干扰和气候变化的影响,许多草地遭受了严重的破坏和退化。
为了保护和恢复草地,科学家们一直在寻找各种有效的方法和策略。
其中,苜蓿作为一种常见的草地资源和土壤改良植物,具有重要的作用。
首先,苜蓿具有增加草地土壤有机质的能力。
草地退化往往导致土壤质地变差、土壤养分失衡以及土壤有机质含量下降等问题。
然而,苜蓿根系发达,能够深入土壤中,吸收和积累大量的养分,包括氮、磷、钾等。
同时,苜蓿通过叶绿素和茎秆的降解,可以迅速将养分释放到土壤中,提高土壤肥力。
此外,当苜蓿凋落物分解后,有机质会被还原为土壤中的腐殖质,进一步增加土壤的有机质含量。
因此,通过种植苜蓿,可以有效地改善和提高草地的土壤质量。
其次,苜蓿还具有防止土壤水分流失的功能。
在草地退化的过程中,土壤表面往往失去了植被的覆盖,暴露在空气和雨水的侵蚀下,导致土壤水分迅速流失。
而苜蓿的根系深入土壤中,能够增加土壤的孔隙度和结构稳定性,提高土壤的保水能力。
此外,苜蓿茎叶疏松,具有较大的叶面积,能够有效拦截雨水,减少降雨对土壤的冲击和侵蚀。
因此,种植苜蓿可以有效地降低土壤水分的流失情况,维持草地的水分平衡。
此外,苜蓿还对草地生态系统的物种多样性具有积极的推动作用。
草地退化往往导致物种数量减少,物种组成单一,生态系统的稳定性和抗干扰能力下降。
而苜蓿能够随着时间发展逐渐形成丰富的植物群落,增加物种的多样性和数量。
苜蓿本身作为一种优质的饲料植物,能够为许多动物提供丰富的食物资源,吸引了大量的昆虫和鸟类进驻,进一步促进了草地生态系统的多样性。
此外,苜蓿具有一定的抗逆能力,能够在恶劣的环境条件下存活和繁殖,提供了物种适应和发展的机会。
因此,种植苜蓿可以在草地中增加物种多样性,提高生态系统的稳定性。
最后,苜蓿还具有促进土壤固碳和减轻气候变化的作用。
土壤污染治理中的植物修复技术
土壤污染治理中的植物修复技术
土壤污染是当前环境问题中的一个重要课题,对于土壤污染的治理,除了传统的物理、化学方法之外,植物修复技术也越来越受到关注。
植物修复技术利用植物的生长特性和生
理代谢过程,通过植物的根系、茎叶等部位对土壤中的有毒有害物质进行吸收、吸附、转
化和降解,从而达到净化土壤的目的。
植物修复技术的本质是利用植物的生物吸附、生物转化和生物降解等功能,将有毒有
害物质吸收到植物体内,并通过植物的生物代谢过程将其转化为无毒或低毒的物质。
植物
修复技术有很多种,下面将介绍几种常见的植物修复技术。
首先是植物吸附技术,通过植物的根系、茎叶等部位对土壤中的有毒有害物质进行吸附。
一些植物如铜毛杨、柳树等对重金属离子具有较高的亲和力,能够将土壤中的重金属
吸收到体内,从而减少其在土壤中的残余和迁移。
其次是植物菌根技术,植物菌根与菌根真菌共生关系密切,菌根真菌与植物根系形成
一个菌根网状结构,能够在土壤中扩大植物根系的吸收面积,并能够通过菌根真菌的生物
降解功能将土壤中的有机物质降解为无毒或低毒的物质。
还有植物生物转化技术,通过植物的生物代谢过程将有毒有害物质转化为无毒或低毒
的物质。
一些植物如紫花苜蓿、大豆等能够通过菌根菌株和自身的生物代谢功能将土壤中
的苯乙烯等有机污染物质转化为二氧化碳和水。
植物修复技术是一种环保、经济、可持续的土壤污染治理方法,可以减轻人工处理的
压力,并且对于保护生态环境具有重要意义。
植物修复技术的应用还面临一些挑战,如不
同类型土壤对植物修复的适应性差异、修复效果的不稳定性等问题,需要进一步研究和改进。
紫花苜蓿种子与黑麦草种子的混播方法
紫花苜蓿种子与黑麦草种子的混播方法种植紫花苜蓿和黑麦草可以为牧草生产带来多种好处,例如提高草地的生产力、改善土壤质量和在生态系统中发挥重要作用。
在实践中,混播紫花苜蓿和黑麦草是一种普遍采用的种植方式。
以下是一些混播方法的详细介绍:1. 平均混播平均混播是指将黑麦草种子和紫花苜蓿种子按照一定的比例混在一起,然后通过机器或手工将它们一起播种。
这种方法比较常见,通常是将黑麦草和紫花苜蓿种子按照1:1或2:1的比例混合。
2. 分层播种分层播种是将黑麦草种子和紫花苜蓿种子分成两层,先播种黑麦草,再将紫花苜蓿种子撒在草地表面,以便它们能够在黑麦草表面萌芽。
这种方法的好处是可以在保证黑麦草正常生长的同时,保证紫花苜蓿的种子覆盖度。
3. 交错播种交错播种是指在黑麦草、紫花苜蓿种子之间交替播种,以便它们在土壤中形成互补的根系,利于草地的固氮和水分吸收。
这种方法可以很好地利用草地上空间,使种子的分布更加均匀,但是需要掌握好黑麦草和紫花苜蓿种子的比例。
4. 分离播种分离播种是指将黑麦草种子和紫花苜蓿种子分开,选择不同的时间和地点进行播种。
这种方法的好处是可以利用最佳的播种时间和条件来实现最佳的种植效果,但是需要相对较大的耐心和技术。
5. 搭配作物间播种搭配作物间播种是一种效果比较好的混播方法。
它可以将黑麦草和紫花苜蓿种子分别混合搭配种植其他庄稼,如小麦、玉米等,然后在庄稼收割后设置遮盖物(如石棉板),变成合理利用稀缺土地资源的双作物体系。
在遮盖物下,黑麦草依然能够正常生长,紫花苜蓿则可以在成熟期饮用作物下进行生长,相互间没有竞争,最大程度地利用了资源。
对于任何一种混播方法,我们都应该注意以下几个问题:1.选择适宜的播种时间和地点;2.控制好黑麦草和紫花苜蓿的比例;3.保证种子混合均匀;4.掌握好播种的深度和密度;5.保证播种区域的湿度和养分供给。
这些都是保证混播成功的关键。
如果你采取正确的混播方法,并且注重细节,你将获得一个更健康、更美丽和更丰收的草地。
两种植物对百花湖底泥中重金属污染的修复效果
两种植物对百花湖底泥中重金属污染的修复效果高婧;梁龙超;陈卓【摘要】为了探明黑麦草和紫花苜蓿对重金属污染底泥的修复作用,采取盆栽试验研究两种植物对百花湖底泥中Cu、Zn、Cd重金属污染的修复效果.结果表明:1)两种植物地上部对不同重金属的累积量均小于地下部,地上部的富集系数与转移系数大小顺序相同,黑麦草为Zn>Cd>Cu,紫花苜蓿为Cu>Cd>Zn,且黑麦草对3种重金属的富集与转移均优于紫花苜蓿.2)黑麦草与紫花苜蓿对百花湖底泥中重金属的修复效果顺序分别为Cd>Zn>Cu和Cu>Cd>Zn.【期刊名称】《贵州农业科学》【年(卷),期】2013(041)009【总页数】4页(P184-187)【关键词】植物修复;黑麦草;紫花苜蓿;重金属;底泥【作者】高婧;梁龙超;陈卓【作者单位】贵州师范大学化学与材料科学学院,贵州贵阳550001;贵州省疾病预防控制中心卫生监测检验所,贵州贵阳550004;贵州师范大学化学与材料科学学院,贵州贵阳550001;贵州师范大学化学与材料科学学院,贵州贵阳550001【正文语种】中文【中图分类】X521我国水体重金属污染问题十分突出,特别是底泥的重金属污染给环境造成的潜在生态危害已引起了国内外关注,水体污染的修复已有多种措施[1]。
其中,疏浚底泥是保持水体生态环境最有效的方法,但采用传统方法处置疏浚底泥脱水、堆置等过程可造成土壤和地下水二次污染,存在一定的局限性。
因此,在治理水体重金属污染过程中,开发新的修复技术已成为当前研究的热点[2] 。
其中,植物修复是目前最受关注的修复技术措施之一,且被认为是处理重金属污染疏浚底泥最具发展潜力的方法[3-4],该技术是以自然界存在的超积累植物可大量积累某些特定化学元素为原理,利用植物实现净化污染底泥环境的目的,具有运行成本低廉,避免二次污染,营造良好生态环境等优点[5]。
百花湖是贵阳市的主要饮用水源之一,前人对不同重金属污染湖水、河道和生态环境的研究已有许多报道[5-8],如田林锋等[6]对百花湖沉积物重金属稳定性及潜在生态风险性研究结果表明,部分重金属污染较严重,并存在潜在生态危害;高婧等[7]对百花湖麦西河口底泥中重金属垂直分布特征及生态危害研究结果也表明,百花湖沉积物中存在一定的重金属污染;张蕾等[5]采用温室盆栽试验,研究黑麦草对复合污染河道疏浚底泥的修复情况,结果发现,黑麦草是修复重金属—有机物复合污染的良好植物;杨卓等[8]研究表明,高羊茅和黑麦草具有吸收不同重金属的能力。
芘污染土壤的根瘤菌-植物修复效应研究
芘污染土壤的根瘤菌-植物修复效应研究黄河;张超兰;周永信;谢湉;廖长君【摘要】土壤多环芳烃(PAHs)的污染已经成为了全球性的热点问题,微生物-植物联合修复技术是解决土壤有机污染的一种低耗高效的新型修复技术.以芘作为目标污染物,绿豆根瘤菌(Rhizobium leguminosarum),紫花苜蓿根瘤菌(Rhizobium meliloti)为供试微生物,选用绿豆(Vigna radiata L.)、紫花苜蓿(Medicago sativa L.),黑麦草(Lolium perenne L.)和花生(Arachis hypogaea L.)作为修复植物.采用盆栽实验,研究在100 mg·kg?1芘污染条件下,接种根瘤菌对植物修复芘污染土壤效果的影响.结果表明:培养60 d后,4种植物均提高了芘污染土壤的pH,并提高了土壤脱氢酶的活性,其中种植绿豆的效果最好,其次为花生.此外,4种植物均提高了土壤中芘的去除率,提高幅度依次为绿豆(33.70%)>花生(21.63%)>黑麦草(10.55%)>苜蓿(7.72%).接种根瘤菌后发现,绿豆和花生根瘤数显著高于对照组,苜蓿与根瘤菌没有结合,而黑麦草则不和根瘤菌共生.根瘤菌对土壤中pH有一定的提高作用,但效果不显著.此外,根瘤菌提高了绿豆、花生和紫花苜蓿的生物量以及绿豆和花生处理组土壤的脱氢酶活性.并提高了绿豆和花生对土壤中芘的去除率,分别为4.10%和2.02%.研究表明:种植绿豆对土壤芘的去除率最高(94.63%),根瘤菌能与其根系结合良好,强化了绿豆修复芘污染土壤的能力,结果可为微生物?植物修复芘污染土壤提供新的参考.【期刊名称】《生态环境学报》【年(卷),期】2019(028)007【总页数】7页(P1466-1472)【关键词】污染土壤;芘;植物修复;根瘤菌【作者】黄河;张超兰;周永信;谢湉;廖长君【作者单位】广西大学生命科学与技术学院,广西南宁 530004;广西大学资源环境与材料学院,广西南宁 530004;广西大学资源环境与材料学院,广西南宁 530004;广西博世科环保科技股份有限公司,广西南宁 530007;广西博世科环保科技股份有限公司,广西南宁 530007;广西博世科环保科技股份有限公司,广西南宁 530007【正文语种】中文【中图分类】X53多环芳烃(Polycyclic Aromatic Hydrocarbon,PAHs)是由两个或者两个以上的苯环构成的疏水性有机污染物,环境中普遍存在的具有“三致”毒性的持久性有机污染物(POPs),容易吸附于沉积物上,覆于水中悬浮颗粒物中,且优先向非水相体系转移,土壤是其最主要的环境介质之一(Zhang et al.,2015;Adeleye et al.,2016)。
土壤放射性污染来源及相关修复技术分析
土壤放射性污染来源及相关修复技术分析企业将废弃物进行地下掩埋,这会让土壤环境进一步恶化且污染水源。
2 土壤放射性污染的修复技术土壤放射性污染的源头是放射性物质衰变过程中产生的射线,某些物质要经历长时间的裂变后核素才会消亡,这样就会对环境造成长期危害。
目前,全球范围内的学者主要采取以下几种技术对土壤放射性污染进行修复。
2.1 淋洗技术长久以来,研究人员针对受到污染的土壤采取的是物理和化学修复技术。
土壤中存在一系列的放射性核素,处于最表层的土壤可以在上面铺层沥青,避免让土壤内部的核素扩散到外部,同时可以防止地表水渗透到土壤中受到放射性核素的污染。
但是,放射性污染物质仍然存在于土壤之中,如何将污染物从土壤中分离出来,美国学者提出了土壤淋洗的方法。
通过这种方法,溶解剂进入土壤后与放射性物质产生反应,然后借助于水力压头将溶解剂混合物从土壤中抽取出来。
其中土壤出流流程具体如图 1 所示。
2.2 氧化还原技术研究人员发现在土壤中加入还原剂或者过氧化氢,高锰酸钾等氧化剂可以让土壤中的放射性物质与氧化还原剂产生化学反应,这种方法对于被有机物污染的土壤有应用效果。
2.3 植物修复技术植物具有净化功能,并且与化学修复技术相比成本较低,对周围环境不易产生二次污染等问题。
对于大面积受到污染的土壤,适宜种植苜蓿或者黑麦草来修复多环芳烃等污染物质。
实验人员将植物种植在具有放射性污染的土壤中,通过根系吸收土壤中的放射性核素并转移到地表,人们将生长在地表的部分收集后做处理,可以减少土壤中的放射性物质。
采用植物提取的修复技术需要选择富集植物或者超富集植物。
笔者通过大量收集、比较前人的研究数据发现,四川沿阶草、扁竹兰对土壤中的铀放射性核素的吸收效果最佳,向日葵修复土壤中的铯放射性核素效果最佳。
除了植物本身可以修复土壤中的污染物质,添加有机酸尤其是柠檬酸可以加速植物修复土壤中的放射性核素。
如果某块区域的土壤受到放射性污染已经不适合种植作物,人们可以采取植物固定的修复技术,通过植物的根系让土壤中的污染物质固定在某一个规定的区域内,防止放射性核素转移。
黑麦对汞铅污染土壤修复能力的实验研究的开题报告
黑麦对汞铅污染土壤修复能力的实验研究的开题报告一、选题背景随着工业化和城市化的发展,汞铅等重金属污染已经成为全球面临的重要环境问题之一。
汞铅等重金属对人体健康和环境造成的危害已经引起了广泛关注。
因此,针对这一问题,研究如何有效修复汞铅等重金属污染的土壤显得非常重要。
黑麦作为一种可耕作的绿肥植物,在土壤修复领域有着广泛的应用。
研究黑麦对汞铅污染土壤修复能力,探究其修复机理和对土壤环境的影响,对于实现土壤修复和环境保护具有重要的科学意义和实践价值。
二、研究目的本研究旨在:1. 评估黑麦对汞铅污染土壤的修复效果;2. 探究黑麦生长过程中的汞铅吸收、转运和积累机制;3. 分析黑麦修复污染土壤对土壤质量和微生物多样性的影响。
三、研究内容本研究将通过田间实验和室内试验相结合的方式开展,主要包括以下内容:1. 田间实验:选择不同程度的汞铅污染土壤和一块未污染土壤作为对照,种植黑麦,并对土壤的汞铅含量、含水量、pH值等指标进行监测,研究黑麦对汞铅污染土壤的修复效果;2. 室内试验:通过盆栽实验,研究黑麦生长过程中的汞铅吸收、转运和积累机制,探究黑麦在生长过程中对重金属的富积特性和种质内部转移机制;3. 分析土壤微生物多样性:通过PCR-DGGE技术分析黑麦修复污染土壤对土壤微生物多样性的影响,为研究黑麦修复污染土壤的生态效应提供依据。
四、研究意义随着全球化进程的加速,重金属污染已经成为全球范围内的一个公共环境问题,对于如何有效治理和修复这一问题,已经引起各国的广泛关注。
因此,本研究具有以下意义:1. 为开发汞铅污染土壤修复技术提供科学依据和技术支持;2. 探究黑麦修复污染土壤的机理,为绿色修复技术的发展提供借鉴;3. 研究黑麦的生态效应,为实现土地的可持续利用提供技术支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Phytoremediation of pyrene contaminated soils amended with compost and planted with ryegrass and alfalfaM.C.Wang a ,Y.T.Chen a ,S.H.Chen b ,S.W.Chang Chien a ,⇑,S.V.Sunkara aa Department of Environmental Engineering and Management,Chaoyang University of Technology,Wufong District 41349,Taichung City,Taiwan,ROC bDepartment of Geography,Chinese Culture University,Yang Ming Shan,Taipei 11114,Taiwan,ROCa r t i c l e i n f o Article history:Received 7September 2011Received in revised form 21December 2011Accepted 22December 2011Available online 14January 2012Keywords:Phytoremediation Pyrene Ryegrass AlfalfaOrganic acids Dissipationa b s t r a c tRyegrass (Lolium perenne )and alfalfa (Medicago sativa )were planted in pots to remediate pyrene contam-inated quartz sand (as a control group),alluvial and red soils amended with and without compost.The pyrene degradation percentages in quartz sand,alluvial soil,and red soil amended with compost (5%,w/w)and planted with ryegrass and alfalfa for 90d growth were 98–99%and 97–99%,respectively,while those of pyrene in the corresponding treatments amended without compost but planted with ryegrass and alfalfa were 91–96%and 58–89%,respectively.Further,those of pyrene in the respective treatments amended with and without compost but unplanted were 54–77%and 51–63%,respectively.Pyrene con-tents in both roots and aboveground parts of ryegrass and alfalfa after 90d growth in quartz sand and the two soils amended with or without compost were trace amounts.Statistical analyses for the parameters of ryegrass planted in red and alluvial soils including the concentrations of total water-soluble volatile low molecular weight organic acids,microbial population,pyrene degradation percentage,and spiked pyrene concentration show significant correlations at 5%and mostly 1%probability levels,by the analysis of variance.It was thus suggested that the interactions among the consortia of plant root exudates,micro-organisms,and amended compost in rhizosphere soils could facilitate bioavailability of pyrene and sub-sequently enhance its dissipation.Ó2012Elsevier Ltd.All rights reserved.1.IntroductionPolycyclic aromatic hydrocarbons (PAHs)are produced by the incomplete combustion of organic material arising,partly,from natural combustion such as forest fire and volcanic eruption,but with the majority due to anthropogenic emission such as cigarette smoking,automobile exhaust,and processing production and spill-age of petroleum (Samanta et al.,2002;Ravindra et al.,2008).Pyr-ene is a PAH consisting of four condensed aromatic rings and is a recalcitrant contaminant in the environment (Cerniglia,1992).Pyr-ene contamination of soils occurs naturally as a result of incom-plete combustion of organic materials such as fossil fuels and vegetation.Although pyrene is not carcinogenic,it is one of 16PAHs on the USEPA list of priority contaminants that can pose a hu-man health risk because pyrene can transform to benzopyrene,which is toxic (White,2002).Therefore,there is a continuous need for the remediation of such organic compounds from contaminated soils.An option in certain situations,phytoremediation is gaining popularity for its low cost and regarded as an effective method in remediation of organic contaminants such as PAHs.This remedia-tion method approach is an in-situ ,not destructive and could rem-edy the soil structure and recover the biological environment (Tesar et al.,2002).Phytoremediation is the use of plants and their associated soil microorganisms,soil amendments,and agronomic techniques to remove or render harmless environmental contami-nants (Cunningham et al.,1996).Kirk et al.(2005)reported that in petroleum contaminated soil,the plant species perennial ryegrass (Lolium perenne )and perennial ryegrass/alfalfa (Medicago sativa )mixture caused the greatest change in the rhizosphere bacterial community and these changes contributed to degradation of petro-leum hydrocarbons in contaminated soil.The microbial commu-nity in the rhizosphere is greatly influenced by roots and root exudates that vary depending on the conditions of plant growth.Root exudation varies both qualitatively and quantitatively be-tween plant species,as a function of plant age,mycorrhizal infec-tion and nutrient status (Jay and Jodi,1995;Günther et al.,1996;Grayston et al.,1996).It has been suggested that faster growing flora like grass species are effective plants for phytoremediation of PAHs in contaminated soils (Fang et al.,2001;Chiapusio et al.,2007;Wang et al.,2008).Grasses have fibrous root systems,resulting in large root length and surface area per unit volume of surface soil.The fibrous roots would provide a larger surface for colonization by soil microorgan-isms than a taproot (Anderson et al.,1993)and allow for greater0045-6535/$-see front matter Ó2012Elsevier Ltd.All rights reserved.doi:10.1016/j.chemosphere.2011.12.063Corresponding author.Tel.:+886423339373;fax:+886423339713.E-mail address:swcc@.tw (S.W.Chang Chien).interaction between the rhizosphere microbial community and the contaminant(Schwab and Banks,1994).Pyrene degradation was evaluated in contaminated soil with Bermuda grass and found that rhizosphere soil has a more diverse and active microbial commu-nity compared to nonvegetated soil.Consequently,the rhizosphere pyrene degrader population and pyrene degradation may be en-hanced compared to nonvegetated bulk soil(Krutz et al.,2005). Soleimani et al.(2010)investigated the effects of two grass species (Festuca arundinacea Schreb.and Festuca pratensis Huds.),infected and non-infected by endophytic fungi(Neotyphodium coenophi-alum and Neotyphodium uncinatum,respectively)on the degrada-tion of petroleum hydrocarbons in an aged petroleum contaminated soil.They reported that regardless of endophyte infection,pyrene removal in the rhizosphere of the two grass spe-cies were93–97%,whereas the removal in control was73%after 210d.The general subject of phytoremediation and particular its pro-cesses have been reviewed in many journal articles and book chap-ters.Literature review shows that many of the research articles contain some sections on rhizosphere aspects of phytoremediation. Moreover,the complexity and heterogeneity of contaminated‘‘real world’’soils still require the design of integrated approaches of rhi-zosphere management,e.g.,by combining those plants which have the potential to use in rhizo-degradation process and soil manage-ment.An improved understanding of the rhizosphere will help to translate the results of simplified pot experiments to the full com-plexity and heterogeneity offield applications(Wenzel,2009).The aim of the present study was thus to investigate the phytoremedi-ation of pyrene in quartz sand and two kinds of soils by using plant species ryegrass and alfalfa with their rhizosphere microbial com-munities and relation to organic matter amendments.In addition, different parameters were evaluated including pyrene uptake by plants,and microbial population and water-soluble volatile low molecular weight organic acids(LMWOAs)in rhizosphere soils. 2.Materials and methods2.1.ChemicalsPyrene(purity96%)used in this study was purchased from Supelco,USA.Pyrene stock solution(1g LÀ1)was prepared by dis-solving100mg of pyrene in100mL of high performance liquid chromatography(HPLC)-grade acetone.Acetonitrile used as the mobile phase in the HPLC analysis for pyrene was of HPLC grade. Double deionized water was used in all aqueous solutions and dilutions throughout the experiment.2.2.Collection of quartz sand,soils,and compost and their characterizationsTwo types of soils,alluvial soil and red soil,were collected from the surface soils(0–15cm in depth)of agriculturalfields in Taiwan. Sampling locations were identified by a Global positioning system. The collected soil samples were air-dried,ground,passed through a 2-mm sieve,and then stored in closed containers in a dry place at room temperature prior to use.Purchased quartz sand was passed through a2-mm sieve,and the collected quartz sand(with particle size less than2mm)was washed with0.1M HCl(1:10,w/v)to re-move trace amounts of adsorbed oxides,then washed several times with deionized water until it was ClÀfree,andfinally air dried.This quartz sand was used as the control group in this study. The pH of the quartz sand and soil samples were measured in dou-ble deionized water(1:1,w/v)using a model682Titroprocessor pH-meter(Metrohm,Swiss)(McLean,1982).The soil samples were digested with0.01M HCl(Tiessen et al.,1981)to remove inorganic carbon,and their total organic carbon(TOC)content was deter-mined using a Heraeus CHN–O-rapid elemental analyzer.The cat-ion exchange capacity(CEC)of the soils was determined according to the NaOAc method(Rhoades,1982).Particle size distributions were determined with a hydrometer method(Gee and Bauder, 1986).The compost which is commonly used by the farmers in Tai-wan was purchased from fertilizer retailer.The pH of the compost in double deionized water(1:5,w/v)was measured using a pH-meter model682Titroprocessor(Metrohm,Swiss)(McLean, 1982).The suspension,which was used for measuring compost pH,wasfiltered withfilter paper(Whatman42,pore size 2.5l m).The compost was digested with0.01M HCl(Tiessen et al.,1981),and then its organic C and total N contents were deter-mined by a Heraeus CHN–O-rapid elemental analyzer.After diges-tion of compost with concentrated HNO3and30%H2O2,it was analyzed for the contents of P,Ca,Mg,K,Na,B,Zn,Fe,and Mn by an inductively coupled plasma optical emission spectrometer (ICP-OES)(Jones and Case,1990).All of the measurements and determinations were of four replicates for the quartz sand,soil, and compost samples.2.3.Preparation of pyrene contaminated quartz sand and soilsBased on the obtained upper tolerant concentrations of pyrene in quartz sand,alluvial soil,and red soil for the growth of alfalfa and ryegrass in the preliminary experiment(data not shown), the amounts of200,400,and600mg of pyrene were weighed and separately dissolved in4L acetone in glass containers.These various concentrations of pyrene solution were prepared the re-quired sets.Then4kg of quartz sand,alluvial soil,or red soil was added to each of the three concentration levels of pyrene solutions. The resulted quartz sand or soil slurry was vigorously mixed by a stirrer for2h.The contaminated quartz sand and soil slurry sam-ples were equilibrated for2d to allow the sorption of contaminant onto the quartz sand or soils in a fume-hood cabinet.After2d,sol-vents were evaporated in a fume-hood cabinet at room tempera-ture.Thefinal concentration of pyrene(in the quartz sand and soil samples)was50,100,and150mg kgÀ1of quartz sand/soil, which were less than that of upper tolerant concentrations de-scribed above.The contaminated quartz sand,red soil,and alluvial soil were then placed on the shelves of a cabinet,and the doors were closed to maintain dark conditions for60d.During the aging period,the pyrene contaminated quartz sand,red soil,and alluvial soil were amended with the amount of double deionized water equivalent to theirfield capacity moisture tension(33.3kPa)at each3d interval by the weighing method.Moisture tension mea-surements of quartz sand(33.3kPa)and the two soils were ob-tained using a standard(14.5L)pressure cooker(Klute,1986). The aged pyrene contaminated quartz sand,red soil,or alluvial soil was divided into two sets.One set of each was amended with com-post(5%,w/w)while the other set was not.For the amendment of compost to the aged pyrene contaminated quartz sand,red soil,or alluvial soil,the required amount of air-dried and aged quartz sand or soil was ground to pass through a2-mm sieve.Similarly,the compost was pulverized to pass through a2-mm sieve.Then the required amount of sieved compost was mixed thoroughly with quartz sand,alluvial soil,or red soil.Each plastic pot with upper diameter12.1cm,lower diameter9.0cm,and height11.0cm and lined with clean plastic sheet from bottom to the upper rim of pot wasfilled with500g of pyrene contaminated quartz sand, red soil,or alluvial soil amended with or without compost.2.4.Planting of alfalfa and ryegrassIn order to let ryegrass and alfalfa grow to form as turf in quartz sand,red soil,or alluvial soil in a pot,100cultured seedlings of rye-218M.C.Wang et al./Chemosphere87(2012)217–225grass or alfalfa were transplanted to each pot in greenhouse for 90d growth period because this period has been tested to attain the maximum pyrene degradation in quartz sand and the two soils in the preliminary experiment.All the treatments of experiment including the controls were carried out four replicates.During the growth period,the pyrene contaminated quartz sand,red soil, and alluvial soil in pots were amended with the amount of double deionized water equivalent to theirfield capacity moisture tension (33.3kPa)at each3d interval by the weighing method.2.5.Extraction of pyrene from contaminated soilsIn the present study,continuous batch extraction method(Mara et al.,2007)was selected due to its high efficiency,quick recovery, and lowest volume of solvent required for pyrene extraction from contaminated quartz sand and soils.In the batch extraction proce-dure,1g of aged pyrene contaminated quartz sand,alluvial soil,or red soil was placed in a20mL centrifuge glass tube,after which 10mL of acetonitrile was added and the tube was capped with a screw cap lined with a Teflon pad.The centrifuge tubes were then placed in a reciprocal mechanical shaker(5cm amplitude and 150rpm)and agitated at room temperature(25±1°C)for a pre-scribed time(2h)to attain equilibrium.At the end of the predeter-mined time intervals,the sample was removed,and the supernatant was separated from the quartz sand,alluvial soil,or red soil by centrifugation at2000g for10min.Each centrifugate was thenfiltered using a syringefilter equipped with a0.22l m membranefilter(CRITICAL).The pyrene concentrations of thefil-tered solutions were then determined by HPLC(Hitachi High Tech-nologies,Tokyo,Japan).The column used was Mightysil RP-18GP (250Â4.6mm in size).The sample injection volume was10l L, and the mobile phase was90%acetonitrile and10%double deion-ized water with aflow rate of1mL minÀ1.The detector wave-length was220nm.The background responses,determined for blank samples with similarly treated quartz sand and the two soils (without pyrene),were subtracted from the experimental re-sponses obtained for their corresponding systems(with pyrene), and the resulting differences were taken as the initial pyrene con-centrations.After90d growth period,the remaining pyrene in the composite samples of rhizosphere and bulk quartz sand,red soil, and alluvial soil were used to calculate the pyrene degradation percentages.2.6.Extraction of pyrene from plant tissuesAfter90d growth period,the average height of the ryegrass was around12.3cm while that of alfalfa was around15.2cm.The growth of the plants was well and showed good endurance to the pyrene contaminated quartz sand and the two soils.All har-vested ryegrass and alfalfa were cut into roots and aboveground parts,washed with tap water and then rinsed with deionized water two times and blotted with clean tissue paper in order to remove excess water.The fresh weights of roots and aboveground parts were weighed and then subjected to oven-dried at50°C in an oven for overnight and their oven-dried weights were determined.The pyrene in the aboveground parts and roots were extracted accord-ing to EPA Standard Method3540C(USEPA,1996a).All the samples were extracted with acetone and dichloromethane(1:1,v/v, 80mL)in Soxhlet apparatuses for18h.Florisil column was used for purifying the concentrated extract(EPA Standard Method 3620B)(USEPA,1996b).The eluant was evaporated to less than 2mL by using a rotary evaporator prior to analysis.Pyrene concen-trations in the aboveground parts and roots were analyzed by using Gas Chromatography/Mass Spectrometer(GC–MS),based on the EPA Standard Method8270C(USEPA,1996c).2.7.Measurement of microbial population in rhizosphere quartz sand and soils and observation of mycorrhizal growth on rootsThe quartz sand or soil particles which are easily shaken off from ryegrass or alfalfa roots were collected as non-rhizosphere quartz sand and soil,while thefine quartz sand or soil particles which are attached tightly to the roots were collected as rhizo-sphere quartz sand or soil.10g of rhizosphere quartz sand,red soil, or alluvial soil in an autoclaved test tube were added with100mL sterilized double deionized water and the suspension was shaken and then stirred to make the suspension homogeneously.After the sedimentation of quartz sand or soil particles,10mL superna-tant were taken and diluted with sterilized double deionized water to a total volume100mL making the concentration of diluted mul-tiple10À1.This stepwise dilution procedure was consecutively conducted for six times to obtain the concentrations of diluted multiples10À2to10À7for each rhizosphere quartz sand or soil sample.The prepared culture medium of agar plates was divided into the required sets and each set was evenly smeared with 0.1mL of sterilized double deionized water as control and with that of each concentration of diluted multiple solutions.Finally, all the plates for the treatments were placed in an incubator at 30°C for3d.The growth of microbial colonies on agar plates thus can be used to count the microbial population in rhizosphere quartz sand or soil by colony forming unit(CFU).In addition,the mycorrhizal growth on the intact roots of both ryegrass and alfalfa was observed by a Nikon MM-400/S measuring microscope sys-tem.The magnified multiples vary from50to1000times.2.8.Extraction of water soluble LMWOAs in rhizosphere soils and their determinationEach portion of rhizosphere red soil or alluvial soil washed from each pot described above was extracted with doubled deionized water(500mL)using an end-over-end shaker(amplitude of 2.5cm and200rpm)for8h at25±1°C.The extract was centri-fuged(18600g)for15min at25±1°C to separate the supernatant from the sediment.The supernatant was thenfiltered through a 0.45l m pore size of cellulose nitrate membranefilter(Whatman). Thefiltrate was transferred to a plastic vial containing an anion ex-change membrane(1cmÂ7cm)in hydroxyl form(IONAC MA-3475)and shaken in an end-over-end shaker(amplitude of 2.5cm and200rpm)for8h at25±1°C.The membrane was then transferred to another vial containing HCl(5mL of0.1M solution) and again shaken in an end-over-end shaker(amplitude of2.5cm and200rpm)for8h at25±1°C.All the acidified aqueous extracts were directly used for gas chromatography(GC)analysis of volatile LMWOAs(Szmigielska et al.,1996,1997).The separate column (glass column,2.1m in length and4mm of inner diameter)was filled with SP-1000(Supelco)as stationary phase and aflame ion-ization detector was utilized for GC analysis.The injector,column, and detector were kept at200,150,and200°C,respectively.Nitro-gen gas(purity99.995%)was used as carrier gas at aflow rate of 60mL minÀ1,while the nitrogen gas pressure was kept at 98.1kPa.The HAMILTON(SIX-701N)5l L syringes were applied to inject the samples(1l L each).The chromatograms were re-corded and peaks were integrated using Hewlett–Packard HP3395integrator.All the standard samples of LMWOAs were pur-chased from Supelco,USA.2.9.Statistical analysesAfter90d growth of ryegrass in red and alluvial soils amended with and without compost,the statistical correlations among the concentration of total LMWOAs,microbial population,percentage of pyrene degradation,and spiked pyrene concentration describedM.C.Wang et al./Chemosphere87(2012)217–225219above were investigated.The purchased software SPSS17.0(2008) was used to compute all correlation coefficients among the corre-sponding parameters.3.Results and discussion3.1.Characteristics of quartz sand,soils,and compostAlluvial soil was collected from the sampling location (120°4102.900E,24°1052.500N)while red soil was from the location (120°3509.000E,24°11022.400N).The pH(6.71)of alluvial soil was slightly acid while pH(6.06)of red soil was significantly lower than that of alluvial soil.Quartz sand is chemically inert inorganic com-ponent of the soils in environment,and hence its pH(6.84)was close to the pH of doubled deionized water.The TOC content (4.6mg kgÀ1)of alluvial soil was significantly larger than that (1.6mg kgÀ1)of red soil.The CEC(10.5cmol(+)kgÀ1)of alluvial soil was also significantly larger than that(8.5cmol(+)kgÀ1)of red soil. This is attributed to higher TOC content of alluvial soil compared to higher oxide contents of highly weathered red soil.The texture of alluvial soil was coarse sandy loam and that of red soil was clay, while that of quartz sand was sandy.The pH(5.40)of compost was acidic with high contents of soluble salts.The compost had high organic C(434g kgÀ1)and total N(25.8g kgÀ1)contents with C/N of17.The amounts of macronutrients(P0.82,K0.29,Ca8.37, and Mg2.01g kgÀ1)and micronutrients(Fe414,Mn63.0,B14.7, and Zn16.4mg kgÀ1)of the compost were within the range of common composts.3.2.Biomasses of alfalfa and ryegrass planted in quartz sand and soilsAt the end of90d growth period,dry biomasses of roots and aboveground parts of alfalfa and ryegrass planted in quartz sand, red soil,and alluvial soil spiked with pyrene at the concentration of0,50,100,or150mg kgÀ1with the amendment of compost were mostly and significantly greater than the corresponding treatments without the amendment of compost(Table1).This is mainly because the amended compost supplies inorganic and organic nutrients for the growth of alfalfa and ryegrass.Both without and with the amendment of compost,the dry biomasses of roots of alfalfa and ryegrass planted in quartz sand,red soil,and alluvial soil spiked with pyrene at the concentrations of0,50,100,and 150mg kgÀ1were mostly and significantly greater than the corresponding aboveground parts(Table1).This implicates that both alfalfa and ryegrass are highly root system development plants suitable for phytoremediation of contaminated soils.In comparison,both dry biomasses of roots and aboveground parts of ryegrass were mostly and significantly greater than those of al-falfa planted in red soil and alluvial soil in the corresponding treat-ment.However,both without and with the amendment of compost,much higher concentrations of spiked pyrene in quartz sand,red soil,and alluvial soil did not contribute to significant ef-fect of toxicity on the dry biomasses of roots and aboveground parts of alfalfa and ryegrass(Table1).Tolerance of plant roots to the contaminants in soils is an essential criterion for the process of successful phytoremediation.The planted ryegrass and alfalfa in this study were thus identified as potential plants for phyto-remediation of pyrene contaminated soils.3.3.Pyrene contents of roots and aboveground parts of alfalfa and ryegrassAfter90d growth of alfalfa and ryegrass in quartz sand,red soil, and alluvial soil spiked with pyrene and amended with or without compost,the adsorption of pyrene at the root surfaces and the absorption of pyrene by roots of the two plants were not much pro-nounced.In addition,the amount of pyrene adsorbed at the root surfaces and absorbed by plant roots did not depend on plant spe-cies,type of soils,spiked pyrene concentrations of quartz sand and soils,and the amendment of compost(Table2).Nevertheless,some treatments showed that pyrene contents in the roots of alfalfa and ryegrass were significantly higher than those in the aboveground parts.This indicates that some pyrene was adsorbed at the root surfaces and absorbed by plant roots but not so much transported to the aboveground parts.Same trend of results have been reported by Gao et al.(2006).They studied the interactions of rice(Oryza sativa L.)and PAH-degrading bacteria(Acinetobacter sp.)on en-hanced dissipation of spiked pyrene in waterlogged soil and re-ported that pyrene concentrations in roots ranged from20to 90mg kgÀ1,while the concentrations in shoots were generally lower than0.2mg kgÀ1.Lu et al.(2010)also reported that there was a distinct difference in pyrene distribution between above-ground parts and roots of Bidens maximowicziana and that the roots had enrichment function to pyrene in certain degree,and the most amount of pyrene was probably deposited in roots and not trans-ferred to the shoots.They further elucidated that pyrene was hard to be transferred to the stems and leaves from the roots,or pyrene was decomposed in the process of transferring from roots toTable1Dry biomasses of roots and aboveground parts(g potÀ1)of alfalfa and ryegrass planted in quartz sand and soils spiked with pyrene and amended without or with compost at the end of90d growth period.aTreatment Quartz sand or soil Spiked pyrene concentration(mg kgÀ1)050100150Without compostAlfalfa Quartz sand 1.07GHb0.21Cc 1.08HGb0.29Dc 1.71CDa0.11Fc 2.17EFGa0.28Fc Red soil 2.39FGHb0.81Cc 2.8CDEab0.6Dc 2.84CDab0.56EFc 3.80CDEFa0.42FcAlluvial soil 2.93FGb0.84Cc 3.75CDb0.96CDc 3.95BCb0.98DEFc 5.58ABCa 1.34DecRyegrass Quartz sand0.56Hb 1.55Ca0.60Gab 1.10CDab0.57Db0.95DEFab0.83Gab0.72DEFab Red soil 3.68EFbc 4.64Ba 2.67DEFabcd 4.10Bab 2.15CDbcd 1.82Dcd 1.67FGcd 1.48DdAlluvial soil 5.62DEa 1.88Cb 5.84Ba 2.46Cb 6.84Aa 2.73Cb7.49ABa 2.94CbWith compostAlfalfa Quartz sand 5.22Ea 1.48Cc 4.52BCab 1.15CDc 2.96CDabc0.95DEFc 2.59DEFGbc0.53Fc Red soil7.61CDa 1.66Cc 6.01Bab0.85CDc 5.73ABab0.76EFc 5.01BCDb0.55EFcAlluvial soil10.32Ba 1.52Cc9.12Aab 1.51CDc7.41Ab 1.47Dec 6.95ABb 1.34DEcRyegrass Quartz sand 1.87FGHa 1.47Cab 1.83EFGa 1.44CDab 1.09CDab 1.11DEab0.83Gb0.89DEFb Red soil8.44BCa7.41Aabc7.67Aab 4.99ABab 5.88ABabc 4.68Bab 4.26CDEc 4.56BabAlluvial soil14.85Aa7.06Abcd8.99Ab 6.11Acd8.02Abc 5.51Ad7.59Abcd 5.33Ada Thefirst and second data of a data set in a row are the means of masses of roots and aboveground parts,respectively,of alfalfa and ryegrass.Different lower case and upper case letter following the data in a row and in a column means significant differences among the data by least significant difference at5%level.220M.C.Wang et al./Chemosphere87(2012)217–225shoots.As a result,the pyrene in shoots was comparatively lower than in roots.We thus suggested that the huge molecule of pyrene with the structure of four fused benzene rings make it difficultly to be absorbed by the roots and subsequently transported to the aboveground parts of the plants.Ke et al.(2003)investigated the potential of two mangrove plant species,Kandelia candel and Bru-guiera gymnorrhiza in wetland systems to remove pyrene from sur-face-or bottom-contaminated sediments.At the end of6-month treatment,significant accumulation of pyrene in roots was only found in microcosms having bottom-contaminated sediments, and pyrene concentrations were3.05and4.50mg kgÀ1in roots of K.candel and B.gymnorrhiza,respectively.They concluded that the overall contribution of root accumulation and plant uptake to the removal of pyrene from contaminated sediments was insignif-icant.As seen in Table2,the obtained data were comparable to those reported by Ke et al.(2003).We thus suggested that the insignificant overall contribution of root accumulation and plant uptake to the removal of pyrene from contaminated quartz sand and the two soils be probably because of the macromolecular size of pyrene,which was difficultly absorbed by the roots of alfalfa and ryegrass.Gao et al.(2011)studied arbuscular mycorrhizal phyto-remediation for soils contaminated with phenanthrene and pyr-ene.They reported that mycorrizal colonization caused increased accumulation of PAHs in alfalfa roots but a decrease in shoot.How-ever,plant uptake contributed negligibly to PAH dissipation in arbuscular mycorrhizal phytoremediation,and alfalfa accumulated PAHs amounted to less than3.24%of total PAH degradation in mycorrhizal soils.Zhu and Zhang(2008)pointed out that organic pollutants in plants depend primarily on the rate of uptake,the metabolism of these chemicals in plant tissues,and plant growth. PAHs can be catabolized by plant enzymes,either mineralized completely to inorganic compounds(e.g.,CO2,H2O),or degraded partially to a stable intermediate that is stored in the plants.Con-sequently,in this study some stable intermediate derived from pyrene catabolized by plant enzymes could occur and store in the roots and/or aboveground parts of ryegrass and alfalfa.3.4.Microbial populations in rhizosphere quartz sand and soilsAs seen from Table3,the microbial population in rhizosphere alluvial soil in the pots amended with compost and planted with ryegrass at spiked pyrene concentration up to150mg kgÀ1,was significantly larger than the corresponding treatment amended without compost.Significant difference in microbial population was also found for the same treatment but planted with alfalfa at spiked pyrene concentration50–150mg kgÀ1.The treatment amended with compost and simultaneously planted with alfalfa or ryegrass in alluvial soil showed that microbial population in-creased with increasing spiked pyrene concentration.This may be attributed to inorganic and organic nutrients provided by the decomposition of compost,promoting the growth of alfalfa and ryegrass(Table1),which their root exudates may thus stimulate the growth of microorganisms in rhizosphere alluvial soil(Table 3).Günther et al.(1996)studied the effect of growing ryegrass on the biodegradation of hydrocarbons in laboratory scale soil col-umns.They pointed out that in the rhizosphere soil system,ali-phatic hydrocarbons disappeared faster than in unvegetated columns.Elimination of contaminants was accompanied by an in-crease in microbial numbers and activities and stimulated by plant roots.In the review paper on rhizosphere carbonflow in trees, Grayston et al.(1996)concluded that a key factor governing micro-bial growth and activity in soils is carbon availability.In our exper-iment,the decomposition of amended compost and plant roots exudates mostly contributed to the available carbon in alluvial soil. The root exudates cause rhizosphere-inhabiting microbial popula-tions to increase well beyond those of the bulk soil(Jones,1998), attracting motile bacteria and fungal hyphae that stimulate an ar-ray of positive,neutral,or negative interactions with plants(Gerh-ardson,2002).In addition,the organic and inorganic nutrients of amended compost associated with root exudates in rhizosphere alluvial soil may also be utilized by microorganisms to stimulate microbial propagation and activity.Binet et al.(2000)investigated the dissipation of a mixture of eight PAHs,ranging from three to six rings,in the rhizosphere of ryegrass.They concluded that the in-creased PAH dissipation in rhizospheric soil was associated with an enhancement of PAH degraders.In our experiment,we found that microbial population in rhizosphere alluvial soil planted with ryegrass and amended with compost were significantly higher than that in the corresponding treatment but unplanted with rye-grass at the four spiked pyrene concentrations(Table3).Both with-out and with compost amendment,the treatments of unplanted and planted with alfalfa and ryegrass in the pots of quartz sand, red soil,and alluvial soil spiked with pyrene at the concentrations of50–150mg kgÀ1,the microbial population in rhizosphere quartzTable2Pyrene contents(mg kgÀ1roots or aboveground parts)of alfalfa and ryegrass planted in quartz sand and soils spiked with pyrene and amended without or with compost.a.Treatment Spiked pyrene concentration(mg kgÀ1quartz sand or soil)050100150AlfalfaQuartz sand ND b ND ND ND0.69BCa0.48Da0.36Da ND ND ND ND ND0.48Ca ND0.50Da0.43BaRed soil ND ND 4.17Aa 1.99Ab 1.50Abc0.97BCcd 1.19BCc0.43Bd ND ND0.80Cab0.57BCDab0.84ABCab0.60CDb 1.48ABa 1.38AbAlluvial soil ND ND 1.02Ca0.94Ba 1.29ABa0.99Ba0.81CDa0.77Ba ND ND 1.90Ba ND 1.44Aa 1.37Aa 1.83Aa0.64BbRyegrassQuartz sand ND ND0.44Cc0.38Dc0.48Cc0.41Dc0.79CDa0.69Bab ND ND0.46Ca ND0.34Cb0.38Dab0.38Dab0.31BbRed soil ND ND0.49Ca0.39CDa0.52Ca0.36Db0.54Da0.52Ba ND ND0.65Cab0.64BCab0.85ABCab0.60CDb0.91BCDa0.73BabAlluvial soil ND ND0.55Cc ND0.97ABCab0.74BCDbc 1.34ABCa0.43Bd ND ND 1.08Ca ND0.88ABCab0.33Dd 1.14BCa0.47Bbca Within the same row of thefirst and second data of each data set are the means of pyrene contents in roots and aboveground parts,respectively.Within the same column of thefirst and second data of each data set are the means of pyrene contents under the treatment amended without or with compost,respectively.Different lower case and upper case letters following the data in a row and in a column,respectively,means significant differences among the data by least significant difference at5%level.b ND indicates that pyrene content in digestion solution was lower than the detection limit of instrument.M.C.Wang et al./Chemosphere87(2012)217–225221。